WO2019059121A1 - Electrode for power storage devices, and power storage device - Google Patents

Electrode for power storage devices, and power storage device Download PDF

Info

Publication number
WO2019059121A1
WO2019059121A1 PCT/JP2018/034157 JP2018034157W WO2019059121A1 WO 2019059121 A1 WO2019059121 A1 WO 2019059121A1 JP 2018034157 W JP2018034157 W JP 2018034157W WO 2019059121 A1 WO2019059121 A1 WO 2019059121A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
storage device
current collector
collector plate
active material
Prior art date
Application number
PCT/JP2018/034157
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 井戸
茂樹 守屋
伸也 前田
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to CN201880060740.0A priority Critical patent/CN111108634B/en
Publication of WO2019059121A1 publication Critical patent/WO2019059121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a storage device and a storage device.
  • Patent Document 1 includes, as a positive electrode active material, a carbonaceous material having a layered structure which can be inserted and released anions formed on a positive electrode current collector having through holes.
  • Cell preparation process for injecting electricity, charge / discharge process for charging / discharging between positive electrode and lithium ion source, and electrochemical contact between negative electrode and lithium ion source Method for manufacturing a power storage device, characterized in that it comprises a and a storage step of occluding lithium ions in the negative electrode is disclosed.
  • metallic lithium is used as a lithium ion supply source. Charge and discharge is performed between the positive electrode and the lithium ion supply source using such a lithium ion supply source, and electrochemical contact is made between the negative electrode and the lithium ion supply source, and lithium ion is absorbed in the negative electrode. I am doing it.
  • metal lithium which is a lithium ion supply source, remains in the power storage device.
  • Lithium metal contained in the lithium ion source is a material which is easily ignited and is dangerous. Therefore, it is preferable that metal lithium does not remain in the storage device.
  • Patent Document 2 describes the use of a carbonaceous material pre-doped with lithium ions as such a lithium ion source. That is, it is described that a carbonaceous material is fixed to a current collector, lithium ions are absorbed between layers of the carbonaceous material by intercalation, and this is used as a lithium-containing electrode. By using such a lithium ion-containing electrode, charging and discharging can be performed between the positive electrode and the lithium ion source without using lithium metal, and further, electrochemistry can be performed between the negative electrode and the lithium ion source. Contact can be made to occlude lithium ions in the negative electrode.
  • Silicon is known as a substance which can be chemically bonded to lithium ions to be alloyed and store lithium ions.
  • lithium ions When lithium is stored using silicon, it is theoretically said that lithium ions of 4000 mAh / g or more can be stored. That is, when lithium is stored using silicon, the storage and release amount of lithium ion per unit volume is large, and the capacity of the power storage device can be increased.
  • expansion and contraction of the active material itself become large when lithium ions are absorbed and released.
  • the present invention is an invention made in view of the above problems, and an object of the present invention is to use an electrode for a storage device having a structure in which warpage and wrinkles are not easily generated even if a large amount of metal ions are occluded and released. It aims at providing an electrical storage device.
  • the electrode for a storage battery device of the present invention is A current collector plate having an electrode portion arrangement region and an electrode portion non-arrangement region;
  • An electrode for a storage device comprising: an electrode portion disposed in the electrode portion disposition region;
  • the current collector plate is formed of austenitic stainless steel including a martensitic structure,
  • the electrode unit contains silicon as an active material,
  • the current collector plate is characterized by including a bent portion in the electrode portion non-arrangement region.
  • the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure.
  • the martensitic structure is high in hardness. Therefore, when the current collector is made of stainless steel having an austenitic structure including a martensitic structure, the current collector can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate. Therefore, even if metal ions are occluded in the active material of the electrode part or metal ions occluded in the active material of the electrode part are released and the volume of the active material changes, the current collector plate is warped or wrinkled. It will be easier to prevent.
  • the current collector plate is provided with a bent portion in the electrode portion non-arrangement region. If such a bent portion is present, a reinforcing action occurs, and the current collector plate is less likely to warp.
  • the electrode for electrical storage devices of this invention is the following aspect.
  • the martensitic structure is scattered like islands in the austenite structure in the cross section in which the current collector plate other than the bent portion is cut along the thickness direction. It is desirable to do. In addition, it can be said that the content (mass) of the austenite structure is larger than the content (mass) of the martensitic structure that the martensitic structure is scattered like islands in the austenite structure. Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
  • the electrode portion disposition region be plural and the bent portion be located between the adjacent electrode portion disposition regions.
  • the current collector plate can be efficiently bent, and the electrode for a storage device can be miniaturized.
  • the bent portion is preferably formed of stainless steel having only an austenite structure.
  • the martensitic structure is high in hardness. Therefore, if the bent portion has a martensitic structure, the current collector plate bends not only to the bent portion but to the electrode arrangement region, and the electrode is easily peeled off.
  • the austenite structure is sufficiently high in toughness. Therefore, when the bent portion is formed of stainless steel having only an austenite structure, the current collector plate becomes difficult to break.
  • the electrode for a storage battery device of the present invention it is desirable that a cut is formed in the bent portion. If a notch is formed in the bent portion, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate. Therefore, it can prevent that an electrode part peels from a current collection board.
  • the electrode for a storage battery device of the present invention it is desirable that a perforation is formed in the bent portion. If perforations are formed in the bent portion, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate. Therefore, it can prevent that an electrode part peels from a current collection board.
  • the bent portion has a cutaway portion. If the bent portion is notched, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate. Therefore, it can prevent that an electrode part peels from a current collection board.
  • the active material is preferably made of only silicon. Silicon can occlude metal ions by chemically bonding to the metal ions. Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more. Therefore, the electrical capacity becomes sufficiently large. As described above, when silicon stores a large amount of metal ions or when a large amount of metal ions are released from silicon, the volume of silicon which is an active material changes significantly. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate.
  • the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
  • An electricity storage device of the present invention includes the electrode for an electricity storage device of the present invention. Therefore, in the electricity storage device of the present invention, wrinkles and warpage are less likely to occur in the current collector plate of the electrode for electricity storage device.
  • the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure.
  • the martensitic structure is high in hardness. Therefore, when the current collector is made of stainless steel having an austenitic structure including a martensitic structure, the current collector can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate.
  • FIG. 1 (a) is a plan view schematically showing an example of an electrode for a storage device of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a).
  • FIG. 2 is sectional drawing which shows typically an example of the cross section which cut
  • FIGS. 3 (a) to 3 (c) are perspective views schematically showing an example of the bent portion of the current collector plate in the electrode for a storage battery device of the present invention.
  • Fig.4 (a) is a top view which shows typically an example of the electrode for electrical storage devices of this invention.
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 5 is a perspective view schematically showing an example of a state in which the storage device electrode shown in FIG. 4 is bent.
  • FIGS. 6 (a) to 6 (d) are schematic views schematically showing an example of the storage mode of the positive electrode, the negative electrode and the separator in the electricity storage device of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
  • FIG. 1 (a) is a plan view schematically showing an example of an electrode for a storage device of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a).
  • the storage device electrode 10 has a rectangular current collector plate 20 having an electrode portion arrangement region 21 and an electrode portion non-arrangement region 22, and a substantially square electrode arrangement region 21.
  • the electrode portion 30 of FIG. The electrode portion arrangement region 21 is located at the central portion of the current collector plate 20, and the periphery thereof is the electrode portion non-arrangement region 22.
  • the current collector plate 20 two bent portions (bent portions 25a and 25b) are formed in the electrode portion non-arrangement region 22 with the electrode portion arrangement region 21 interposed therebetween. Furthermore, as shown in FIG. 1 (b), the current collector plate 20 has a concave shape due to the bending portion 25a and the bending portion 25b.
  • the current collector plate 20 is formed of stainless steel having an austenitic structure including a martensitic structure.
  • the electrode unit 30 contains silicon as an active material.
  • the current collector plate 20 is formed of stainless steel formed of an austenitic structure including a martensitic structure.
  • the martensitic structure is high in hardness. Therefore, when the current collector plate 20 is formed of stainless steel having an austenite structure including a martensitic structure, the current collector plate 20 can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate 20. Therefore, even if metal ions are absorbed in the active material of the electrode unit 30 or metal ions absorbed in the active material of the electrode unit are released and the volume of the active material changes, the current collector plate 20 is warped or wrinkled. Is more likely to be prevented.
  • the martensitic structure is scattered in the form of islands in the austenite structure in the cross section in which the current collector plate 20 other than the bending portion 25a and the bending portion 25b is cut along the thickness direction. Is desirable.
  • the state in which the martensitic structure is scattered in the form of islands in the austenitic structure will be described below with reference to the drawings.
  • FIG. 2 is sectional drawing which shows typically an example of the cross section which cut
  • reference numeral 26 denotes a martensitic structure
  • reference numeral 27 denotes an austenitic structure.
  • “the state in which the martensitic structure is scattered in the form of islands in the austenite structure” means that the martensitic structure 26 is not unevenly distributed in one place, as shown in FIG. Means to be present in the macula.
  • the fact that the martensitic structure is scattered like islands in the austenite structure means that the austenitic structure content (mass) is larger than the martensite structure content (mass). Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
  • the presence of martensitic structure and austenitic structure can be analyzed by the electron backscattering diffraction pattern measurement method (EBSD method) under the following conditions.
  • EBSD method electron backscattering diffraction pattern measurement method
  • the thickness of the current collector plate 20 is preferably 5 to 50 ⁇ m. If the thickness of the current collector plate is less than 5 ⁇ m, the current collector plate is easily broken because it is too thin. If the thickness of the current collector plate is more than 50 ⁇ m, it is too thick, and the size of the power storage device using the electrode for a power storage device including the current collector plate with such a thickness tends to be large.
  • the tensile strength of the current collector plate 20 is not particularly limited, but is preferably 300 to 1,500 MPa.
  • the area of the martensitic structure is 5 to 20% of the entire cross section in the cross section cut along the thickness direction of the current collector plate 20 other than the bent portions 25a and 25b. preferable. If the area occupied by the martensitic structure is within the above range, the current collector plate 20 is less likely to be corroded and has high strength. When the area occupied by the martensitic structure is less than 5%, it is difficult to obtain the strength improvement effect of the current collector plate by containing the martensitic structure.
  • the martensitic structure When the area occupied by the martensitic structure exceeds 20%, the martensitic structure is easily exposed to the surface, and the martensitic structure present inside is continuously connected, and the entire current collector plate is easily corroded. In addition, since the proportion of the martensitic structure is increased, the toughness of the current collector plate is easily reduced. As a result, the current collector plate is easily broken.
  • the current collector plate 20 includes the bending portion 25a and the bending portion 25b in the electrode portion non-arrangement region 22. If such a bent portion is present, a reinforcing action occurs, and the current collector plate 20 is less likely to warp.
  • the bent portions 25a and 25b are preferably formed of stainless steel having only an austenite structure.
  • the martensitic structure is high in hardness. Therefore, if the bent portion has a martensitic structure, the current collector plate bends not only to the bent portion but also to the electrode portion arrangement region, and the electrode portion is easily peeled off.
  • the austenite structure is sufficiently high in toughness. Therefore, when the bent portion is formed of stainless steel having only an austenite structure, current collector plate 20 is less likely to be broken.
  • the following method is mentioned, for example.
  • a current collector plate made of austenitic structure including a martensitic structure is prepared.
  • the current collector plate in a portion to be a bent portion is heated.
  • the martensitic structure is transformed into an austenitic structure by heating.
  • the heating conditions at this time are preferably 1000 to 1200 ° C. and 0.1 to 10 minutes.
  • a method of heating a method of contacting a heated heat source or a method of performing high frequency induction heating may be mentioned.
  • the bent portion 25a and the bent portion 25b can be formed of stainless steel having only an austenite structure.
  • FIGS. 3 (a) to 3 (c) are perspective views schematically showing an example of the bent portion of the current collector plate in the electrode for a storage battery device of the present invention. 3 (a) to 3 (c) show the state of the bent portion before the current collector plate is bent.
  • the notch 28a may be formed in the bending part 25a and the bending part 25b of the current collection board 20.
  • perforations 28 b may be formed in the bent portions 25 a and the bent portions 25 b of the current collector plate 20.
  • the bent portion 25a and the bent portion 25b of the current collector plate 20 may have a cutaway portion 28c.
  • the current collector plate 20 is easily bent. Therefore, when the current collector plate 20 is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate 20.
  • the electrode portion arrangement region is curved, the electrode portions arranged in the electrode portion arrangement region are easily peeled off. However, if the bends 25a and the bends 25b have cuts, such stress is less likely to be applied. Therefore, it can prevent that an electrode part peels from a current collection board.
  • the incisions, perforations, or notched portions may be formed in only one row, or a plurality of rows may be formed.
  • the notches, perforations, and notched parts can be formed on the current collector plate by using a cutter, a press or the like.
  • the electrode unit 30 be made of an active material and a binder.
  • the active material may further contain carbon or the like, as long as it contains silicon.
  • the average particle size of the active material is not particularly limited, but is preferably 1 to 10 ⁇ m. When the average particle size of the active material is 1 ⁇ m or more, the average particle size of the active material can be easily adjusted. If the average particle size of the active material is 10 ⁇ m or less, the specific surface area is sufficiently large, so that the time required for charge and discharge and doping can be shortened.
  • the active material of the electrode unit 30 be made of only silicon. Silicon can occlude metal ions by chemically bonding to the metal ions. Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more. Therefore, when the active material is made only of silicon, the electric capacity is sufficiently large. As described above, when a large amount of metal ions are absorbed by silicon and a large amount of metal ions are released from silicon, the volume of silicon which is an active material largely changes. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate.
  • the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
  • the material of the binder of the electrode part 30 is not specifically limited, A polyimide resin, a polyamide imide resin, etc. can be mentioned. Among these, polyimide resins are preferable.
  • the polyimide resin is a compound which is heat resistant and strong. Therefore, when the active material is bound by a binder made of polyimide resin, the electrode portion 30 can be hardly peeled off from the current collector plate 20 even if the volume of the active material changes due to the storage and release of metal ions.
  • the weight ratio of the active material to the binder in the electrode portion 30 is preferably 70:30 to 90:10.
  • the binder of the electrode unit 30 may contain a conductive aid.
  • the material of the conductive aid is not particularly limited, and carbon black, carbon fibers, carbon nanotubes and the like can be mentioned. Among these, carbon black is preferred.
  • the binder contains a conductive additive, the conductivity of the electrode 10 for a storage battery can be increased. Therefore, current can be collected efficiently.
  • carbon black can ensure conductivity with a small amount. Therefore, when the carbon black is a conductive additive, the conductivity of the storage device electrode 10 can be further improved.
  • the average particle size is preferably 3 to 500 nm.
  • the weight ratio of the conductive additive to the binder is preferably 20 to 50%.
  • the thickness of the electrode portion 30 is not particularly limited, but is preferably 5 to 50 ⁇ m.
  • the thickness of the electrode portion is less than 5 ⁇ m, the amount of the active material is smaller than that of the current collector plate, so that the electric capacity is easily reduced.
  • the thickness of the electrode portion exceeds 50 ⁇ m, the size of the electricity storage device manufactured using the electrode for electricity storage device becomes large. In addition, the distance for the metal ions to move in the electrode portion becomes long, and it takes time for charging and discharging.
  • the areal density of the electrode unit 30 on one side is not particularly limited, but is preferably 0.1 to 10 mg / cm 2 .
  • FIG.4 (a) is a top view which shows typically an example of the electrode for electrical storage devices of this invention.
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A.
  • 4 (a) and 4 (b) show the state of the storage device before it is bent.
  • FIG. 5 is a perspective view schematically showing an example of a state in which the storage device electrode shown in FIG. 4 is bent.
  • the storage device electrode 110 includes a current collector plate 120 having a plurality of electrode portion arrangement regions 121 and an electrode portion non-arrangement region 122, and a plurality of electrode portions 130 arranged in the electrode portion arrangement region 121. It consists of The electrode unit 130 is disposed on both sides of the current collector plate 120.
  • the bending portion 125 is located between the adjacent electrode portion disposition areas 121.
  • the storage device electrode 110 is used by being bent.
  • the bent portion 125 is provided between the adjacent electrode portion disposition areas 121, the current collector plate 120 can be compactly compacted, and the electrode for a storage device can be miniaturized.
  • the preferable material, shape, and the like of the current collector plate 120 are the same as the desired material, shape, and the like of the current collector plate 20 of the storage device electrode 10.
  • the desirable material, shape, and the like of the bending portion 125 are the same as the desirable materials, shape, and the like of the bending portion 25a and the bending portion 25b of the storage device electrode 10.
  • the desired material, shape, and the like of the electrode portion 130 are the same as the desired material, shape, and the like of the electrode portion 30 of the storage device electrode 10.
  • the storage device electrode of the present invention can be used as a positive electrode, a negative electrode or a metal ion supply electrode for doping metal ions of the storage device.
  • Step of Manufacturing Current Collector Plate First, a metal plate formed of stainless steel having an austenite structure is prepared. Next, a current collector plate is manufactured by extending a metal plate. By this spreading process, a portion of the austenite structure is transformed to a martensitic structure. In this manner, a current collector plate made of austenitic structure including a martensitic structure can be manufactured.
  • the electrode portion arrangement region and the electrode portion non-arrangement region of the current collector plate are determined. And the position used as a bending part is determined in the electrode part non-arrangement area
  • the electrode non-arrangement region of the current collector plate may be processed to form a bent portion as stainless steel consisting of only austenite structure, and a cut, a perforation, a notch or the like may be formed at the bent portion. You may form.
  • the method of processing can be utilized, for example, heat treatment, machining, laser processing and the like. It is desirable that the position to be the bent portion be arbitrarily determined according to the application of the electrode for a storage device to be manufactured.
  • the weight ratio of the active material to the binder is not particularly limited, but it is desirable that the weight ratio of the active material to the binder is 70:30 to 90:10.
  • the binder is not particularly limited, and examples thereof include a polyimide resin precursor and a polyamideimide resin precursor. Among these, a polyimide resin precursor is desirable.
  • the viscosity of the active material slurry is preferably 1 to 10 Pa ⁇ s.
  • the viscosity of the slurry is measured using a B-type viscometer under conditions of 1 to 10 rpm.
  • the viscosity of the active material slurry can be adjusted by adjusting the ratio of the active material to the binder. Moreover, you may adjust a viscosity with a thickener etc. as needed.
  • the active material slurry is applied to the electrode portion arrangement region of the current collector plate.
  • the amount of the active material slurry to be coated is not particularly limited, but preferably 0.1 to 10 mg / cm 2 after drying by heating.
  • the current collector plate coated with the active material slurry is pressed.
  • the pressure of the press processing is not particularly limited, but it is sufficient if it can be held down so that the active material becomes flat.
  • the current collector plate coated with the active material slurry is heated to cure the binder contained in the active material slurry.
  • the heating conditions are preferably determined according to the type of binder used.
  • the heating temperature is preferably 250 to 350.degree.
  • the atmosphere at the time of heating is preferably an inert atmosphere such as a nitrogen gas atmosphere.
  • a current collection board is bent in a predetermined shape, and a bending part is formed.
  • this process may be performed immediately after the position determination process of said (2) bending part, and may be performed when manufacturing an electrical storage device using the electrode for electrical storage devices.
  • an electrode for a storage battery device of the present invention in which the current collector plate is deformed into a target shape.
  • a storage device using the storage device electrode of the present invention is also a storage device of the present invention.
  • the electricity storage device of the present invention is Positive electrode, A negative electrode, A separator for separating the positive electrode and the negative electrode; An electricity storage package that accommodates the positive electrode, the negative electrode, and the separator; And the electrolytic solution enclosed in the above-mentioned storage package,
  • the positive electrode or the negative electrode may be the electrode for a storage device of the present invention.
  • the negative electrode is preferably the electrode for the electricity storage device of the present invention.
  • the electricity storage device of the present invention in which the negative electrode is an electrode for a electricity storage device of the present invention will be described.
  • the positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material provided on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and their alloys.
  • the positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
  • these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc.
  • Material substituted may also be used.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the separator is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated
  • the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent as an electrolyte can be used.
  • a solvent such as an electrolyte
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-
  • the metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
  • the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
  • One of these may be used alone, or two or more may be mixed and used.
  • the electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution. When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
  • FIGS. 6 (a) to 6 (d) are schematic views schematically showing an example of the storage mode of the positive electrode, the negative electrode and the separator in the electricity storage device of the present invention.
  • a stacked body 170 in which a positive electrode 150, a separator 160, and a storage device electrode 110 that is a negative electrode are sequentially stacked is wound and a power storage package (not shown) ) May be accommodated.
  • the bent portion of the storage device electrode 110 is positioned at the corner when it is wound.
  • the laminated body 171 in which the positive electrode 150, the separator 160 and the electrode 110 for electricity storage device which is the negative electrode are laminated in order is folded ninety-nine (Not shown).
  • the bent portion of the storage device electrode 110 is positioned at the bent portion at the time of the ninety-nine fold.
  • the direction of the ninety-nine folds of the positive electrode 150 in the laminate 171 shown in FIG. 6B is rotated 90 degrees to form a laminate 171a.
  • the body 171a may be housed in a storage package (not shown).
  • the direction of the ninety-nine fold of the electricity storage device electrode 110 which is the negative electrode in the laminate 171 shown in FIG. 6 (b) is rotated 90 degrees.
  • the stacked body 171b may be housed in a storage package (not shown).
  • the electricity storage device of the present invention is Positive electrode, A negative electrode, A separator for separating the positive electrode and the negative electrode; A metal ion supply electrode for doping metal ions into the positive electrode and / or the negative electrode; An electricity storage package that accommodates the positive electrode, the negative electrode, the separator, and the metal ion supply electrode; And the electrolytic solution enclosed in the above-mentioned storage package,
  • the positive electrode, the negative electrode or the metal ion supply electrode may be the electrode for a storage device of the present invention.
  • the electrode for a storage device of the present invention When the electrode for a storage device of the present invention is used as a metal ion supply electrode, it is necessary to dope the electrode for a storage device of the present invention with metal ions. First, a method of doping metal ions to the electrode for a storage device of the present invention will be described.
  • an organic electrolyte solution is applied to the electrode portion of the current collector plate in the electrode for a storage battery device of the present invention.
  • the organic electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in an organic solvent as an electrolyte can be used.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (Linear carbonates such as EMC), dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxy Linear ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylpho Lumamide, acetonitrile, propyl nitrile, nitromethane,
  • PC propy
  • the organic electrolytic solution preferably has lithium ion conductivity.
  • the electrode portion coated with the organic electrolytic solution is brought into contact with a metal ion source, and heating is performed to dope metal ions.
  • the metal ion source is not particularly limited, and examples thereof include lithium, sodium, magnesium and calcium. Among these, lithium is preferred.
  • the heating conditions are not particularly limited, but heating at 250 to 300 ° C. for 10 to 120 minutes is preferable.
  • the method of doping is not limited to the method of contacting such a metal ion source, Other methods can also be utilized.
  • the metal ion source and the electrode for a storage device can be connected to an external circuit and electrically doped.
  • the positive electrode in the storage device of the present invention preferably has the following configuration. That is, it is desirable that the positive electrode be composed of a positive electrode current collector plate and a positive electrode active material provided on the positive electrode current collector plate.
  • the positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and their alloys.
  • the positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
  • these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc.
  • Material substituted may also be used.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode in the storage device of the present invention preferably has the following configuration. That is, it is desirable that the negative electrode is composed of a negative electrode current collector plate and a negative electrode active material provided on the negative electrode current collector plate.
  • the negative electrode current collector plate is not particularly limited, but is preferably made of aluminum, nickel, copper, silver, an alloy thereof, or the like.
  • the negative electrode active material is not particularly limited, but is preferably made of silicon, silicon monoxide, silicon dioxide, carbon or the like.
  • the separator in the storage device of the present invention is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated
  • the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent can be used.
  • a solvent such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydro
  • the metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
  • the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
  • One of these may be used alone, or two or more may be mixed and used.
  • the electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution. When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
  • FIG. 7 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
  • the storage device 201 is a metal ion supply electrode for doping metal ions, in the storage package 290, the positive electrode 250, the negative electrode 280, the separator 260 for separating the positive electrode 250 and the negative electrode 280.
  • the storage device electrode 210 is accommodated. Further, the separator 260 is impregnated with an electrolytic solution.
  • two storage device electrodes 210 are disposed at the outermost part of the storage package 290.
  • the storage package 290 is a laminate type sealed in a film, and the bent portion 225 of the storage device electrode 210 is positioned along the curved portion of the storage package 290.
  • a plurality of positive electrodes 250, a plurality of separators 260 and a plurality of negative electrodes 280 are disposed in this order between the two electrodes 210 for power storage devices.
  • Each positive electrode 250 is electrically connected by a lead wire 251
  • each negative electrode 280 is electrically connected by a lead wire 281.
  • the storage device electrode 210 desirably has the same configuration as the storage device electrode 10 according to the embodiment of the present invention.
  • the storage device electrode 210 is located at the outermost part of the storage package 290.
  • the current collector plate of the storage device electrode 210 is made of stainless steel having an austenitic structure including a martensitic structure, and therefore has high strength. Therefore, the strength of the entire power storage device 201 also becomes strong. Further, since the outermost part is made of austenitic stainless steel including a martensitic structure, the strength against nailing and the like is strong, and the safety is also sufficiently improved.
  • the storage device electrode of the present invention can be suitably used as a positive electrode or a negative electrode of a storage device, or as a metal ion supply electrode for doping metal ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided are: an electrode for power storage devices which has a structure in which warping and the formation of creases do not readily occur, even if a large amount of metal ions are adsorbed and released; and a power storage device in which said electrode is used. This electrode for power storage devices comprises: a collector plate provided with an area in which electrode parts are to be disposed and an area in which the electrode parts are not to be disposed; and the electrode parts which are disposed in the area in which the electrode parts are to be disposed. The electrode for power storage devices is characterized in that: the collector plate is formed from a stainless steel comprising an austenite structure including a martensite structure; the electrode parts include silicon as an active material; and the collector plate has bent portions provided in the area in which the electrode parts are not to be disposed.

Description

蓄電デバイス用電極及び蓄電デバイスSTORAGE DEVICE ELECTRODE AND STORAGE DEVICE
本発明は、蓄電デバイス用電極及び蓄電デバイスに関する。 The present invention relates to an electrode for a storage device and a storage device.
リチウムなどイオン化傾向の大きな金属を用いた蓄電デバイスは、大容量のエネルギーを蓄えられるため、多くの分野で利用されている。
このような蓄電デバイスの製造方法として、特許文献1には、貫通孔を有する正極集電体上に形成された、アニオンを挿入、脱離し得る層状構造を有する炭素質材料を正極活物質として含む正極と、貫通孔を有する負極集電体上に形成された、リチウムイオンを挿入、脱離し得る層状構造を有する炭素質材料を負極活物質として含む負極と、リチウム塩を含む非水電解液と、を有する蓄電デバイスの製造方法であって、蓄電デバイス用セル内に、セパレータを介して前記正極および負極を積層してなる積層体とリチウムイオン供給源とを配置すると共に、前記非水電解液を注入する蓄電デバイス用セル作製工程と、正極とリチウムイオン供給源との間で充放電を行う充放電工程と、負極とリチウムイオン供給源との間で電気化学的接触を行い、負極にリチウムイオンを吸蔵させる吸蔵工程と、を含むことを特徴とする蓄電デバイスの製造方法が開示されている。
An electricity storage device using a metal having a large ionization tendency such as lithium is used in many fields because it can store a large amount of energy.
As a method of manufacturing such an electric storage device, Patent Document 1 includes, as a positive electrode active material, a carbonaceous material having a layered structure which can be inserted and released anions formed on a positive electrode current collector having through holes. A positive electrode, a negative electrode including a carbonaceous material having a layered structure capable of inserting and removing lithium ions, formed on a negative electrode current collector having through holes, as a negative electrode active material, and a non-aqueous electrolyte containing a lithium salt And a lithium ion source and a laminate formed by laminating the positive electrode and the negative electrode with a separator interposed therebetween in the cell for a storage device, and the non-aqueous electrolyte solution. Cell preparation process for injecting electricity, charge / discharge process for charging / discharging between positive electrode and lithium ion source, and electrochemical contact between negative electrode and lithium ion source Method for manufacturing a power storage device, characterized in that it comprises a and a storage step of occluding lithium ions in the negative electrode is disclosed.
特許文献1に記載の蓄電デバイスの製造方法では、リチウムイオン供給源として、金属リチウムが用いられている。このようなリチウムイオン供給源を用いて、正極とリチウムイオン供給源との間で充放電を行い、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させている。 In the method of manufacturing an electricity storage device described in Patent Document 1, metallic lithium is used as a lithium ion supply source. Charge and discharge is performed between the positive electrode and the lithium ion supply source using such a lithium ion supply source, and electrochemical contact is made between the negative electrode and the lithium ion supply source, and lithium ion is absorbed in the negative electrode. I am doing it.
このような特許文献1に記載された方法で蓄電デバイスを製造すると、蓄電デバイス内にリチウムイオン供給源である金属リチウムが残ることになる。
リチウムイオン供給源に含まれる金属リチウムは、発火しやすく危険な素材である。そのため、金属リチウムは、蓄電デバイス内に残らないことが好ましい。
When a power storage device is manufactured by such a method described in Patent Document 1, metal lithium, which is a lithium ion supply source, remains in the power storage device.
Lithium metal contained in the lithium ion source is a material which is easily ignited and is dangerous. Therefore, it is preferable that metal lithium does not remain in the storage device.
特許文献2には、このようなリチウムイオン供給源として、リチウムイオンのプレドープが施された炭素質材料を用いることが記載されている。
すなわち、集電体に炭素質材料を固定し、インターカレーションにより炭素質材料の層間にリチウムイオンを吸蔵し、これをリチウム含有極として用いることが記載されている。
このようなリチウムイオン含有極を用いることにより、リチウム金属を用いることなく正極とリチウムイオン供給源との間で充放電を行うことができ、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させることができる。
Patent Document 2 describes the use of a carbonaceous material pre-doped with lithium ions as such a lithium ion source.
That is, it is described that a carbonaceous material is fixed to a current collector, lithium ions are absorbed between layers of the carbonaceous material by intercalation, and this is used as a lithium-containing electrode.
By using such a lithium ion-containing electrode, charging and discharging can be performed between the positive electrode and the lithium ion source without using lithium metal, and further, electrochemistry can be performed between the negative electrode and the lithium ion source. Contact can be made to occlude lithium ions in the negative electrode.
インターカレーションによりリチウムイオンを炭素質材料に吸蔵する場合、リチウムイオンの吸蔵量には372mAh/gという理論的な上限値があり、これを超えることができない。このため、炭素質材料よりも多くのリチウムイオンを吸蔵できる材料の検討が行われていた。 When lithium ions are stored in a carbonaceous material by intercalation, the storage amount of lithium ions has a theoretical upper limit of 372 mAh / g, which can not be exceeded. For this reason, examination of material which can occlude more lithium ions than carbonaceous material was performed.
特開2014-211950号公報JP, 2014-211950, A 特開2016-103609号公報JP, 2016-103609, A
シリコンは、リチウムイオンと化学結合して合金化し、リチウムイオンを吸蔵することができる物質として知られている。シリコンを用いてリチウムイオンを吸蔵する場合、理論的に4000mAh/g以上のリチウムイオンを吸蔵できるといわれている。
つまり、シリコンを用いてリチウムイオンを吸蔵する場合、単位体積あたりのリチウムイオンの吸蔵放出量が多く、蓄電デバイスを高容量にすることができる。
しかし、リチウムイオンが吸蔵放出される際に活物質自体の膨張収縮が大きくなるという問題があった。
そのため、シリコンを集電体に固定し、シリコンにリチウムイオンを吸蔵させてリチウム含有極とし、このリチウム含有極を、蓄電デバイスを製造する際のリチウムイオン供給源として用いた場合、集電体に大きな歪が発生し、集電体に反りやシワが発生するという問題があった。
Silicon is known as a substance which can be chemically bonded to lithium ions to be alloyed and store lithium ions. When lithium is stored using silicon, it is theoretically said that lithium ions of 4000 mAh / g or more can be stored.
That is, when lithium is stored using silicon, the storage and release amount of lithium ion per unit volume is large, and the capacity of the power storage device can be increased.
However, there is a problem that expansion and contraction of the active material itself become large when lithium ions are absorbed and released.
Therefore, when silicon is fixed to the current collector and lithium ions are absorbed into silicon to form a lithium-containing electrode, and this lithium-containing electrode is used as a lithium ion supply source when producing an electric storage device, There is a problem that a large distortion occurs and the current collector is warped or wrinkled.
本発明は、上記課題を鑑みてなされた発明であり、本発明の目的は、大量の金属イオンを吸蔵放出しても、反りやシワが発生しにくい構造の蓄電デバイス用電極及びこれを用いた蓄電デバイスを提供することを目的とする。 The present invention is an invention made in view of the above problems, and an object of the present invention is to use an electrode for a storage device having a structure in which warpage and wrinkles are not easily generated even if a large amount of metal ions are occluded and released. It aims at providing an electrical storage device.
(1)本発明の蓄電デバイス用電極は、
電極部配置領域及び電極部非配置領域を有する集電板と、
上記電極部配置領域に配置された電極部とからなる蓄電デバイス用電極であって、
上記集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されており、
上記電極部は、活物質としてシリコンを含み、
上記集電板は、上記電極部非配置領域に曲げ部を備えることを特徴とする。
(1) The electrode for a storage battery device of the present invention is
A current collector plate having an electrode portion arrangement region and an electrode portion non-arrangement region;
An electrode for a storage device, comprising: an electrode portion disposed in the electrode portion disposition region;
The current collector plate is formed of austenitic stainless steel including a martensitic structure,
The electrode unit contains silicon as an active material,
The current collector plate is characterized by including a bent portion in the electrode portion non-arrangement region.
本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。
マルテンサイト組織は硬度が高い。そのため、集電板が、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されていると、集電板を硬く高強度にすることができる。そのため、集電板に、反りやシワが発生することを防止しやすくなる。
従って、電極部の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板に反りやシワが発生することを防止しやすくなる。
In the electrode for a storage battery device of the present invention, the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure.
The martensitic structure is high in hardness. Therefore, when the current collector is made of stainless steel having an austenitic structure including a martensitic structure, the current collector can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate.
Therefore, even if metal ions are occluded in the active material of the electrode part or metal ions occluded in the active material of the electrode part are released and the volume of the active material changes, the current collector plate is warped or wrinkled. It will be easier to prevent.
また、本発明の蓄電デバイス用電極では集電板は、電極部非配置領域に曲げ部を備える。
このような曲げ部があると補強作用が生じ、集電板が反りにくくなる。
Further, in the storage device electrode of the present invention, the current collector plate is provided with a bent portion in the electrode portion non-arrangement region.
If such a bent portion is present, a reinforcing action occurs, and the current collector plate is less likely to warp.
また本発明の蓄電デバイス用電極は、次の態様であることが好ましい。 Moreover, it is preferable that the electrode for electrical storage devices of this invention is the following aspect.
(2)本発明の蓄電デバイス用電極では、上記曲げ部以外の上記集電板を厚さ方向に沿って切断する断面において、上記マルテンサイト組織が、上記オーステナイト組織の中に島状に点在していることが望ましい。
また、マルテンサイト組織がオーステナイト組織の中に島状に点在しているということは、マルテンサイト組織の含有量(質量)よりもオーステナイト組織の含有量(質量)の方が多いといえる。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
(2) In the electrode for a storage battery device of the present invention, the martensitic structure is scattered like islands in the austenite structure in the cross section in which the current collector plate other than the bent portion is cut along the thickness direction. It is desirable to do.
In addition, it can be said that the content (mass) of the austenite structure is larger than the content (mass) of the martensitic structure that the martensitic structure is scattered like islands in the austenite structure.
Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
(3)本発明の蓄電デバイス用電極では、上記電極部配置領域は複数あり、上記曲げ部は、隣り合う上記電極部配置領域の間に位置していることが望ましい。
曲げ部が隣り合う電極部配置領域の間に備えられていると、集電板を効率よく折り曲げることができ、蓄電デバイス用電極を小型化することができる。
(3) In the storage device electrode of the present invention, it is desirable that the electrode portion disposition region be plural and the bent portion be located between the adjacent electrode portion disposition regions.
When the bent portion is provided between the adjacent electrode portion disposition areas, the current collector plate can be efficiently bent, and the electrode for a storage device can be miniaturized.
(4)本発明の蓄電デバイス用電極では、上記曲げ部は、オーステナイト組織のみからなるステンレス鋼から形成されていることが望ましい。
マルテンサイト組織は硬度が高い。そのため、曲げ部にマルテンサイト組織があると、集電板が曲げ部のみでなく電極配置領域まで曲がり、電極が剥がれやすくなる。
一方、オーステナイト組織は靱性が充分に高い。そのため、曲げ部がオーステナイト組織のみからなるステンレス鋼から形成されていると、集電板が折れにくくなる。
(4) In the electrode for a storage battery device of the present invention, the bent portion is preferably formed of stainless steel having only an austenite structure.
The martensitic structure is high in hardness. Therefore, if the bent portion has a martensitic structure, the current collector plate bends not only to the bent portion but to the electrode arrangement region, and the electrode is easily peeled off.
On the other hand, the austenite structure is sufficiently high in toughness. Therefore, when the bent portion is formed of stainless steel having only an austenite structure, the current collector plate becomes difficult to break.
(5)本発明の蓄電デバイス用電極では、上記曲げ部には切れ込みが形成されていることが望ましい。
曲げ部に切れ込みが形成されていると集電板が曲がりやすくなる。そのため、集電板を曲げる際に、集電板の電極部配置領域に応力がかかりにくくなる。
そのため、電極部が集電板から剥がれることを防止することができる。
(5) In the electrode for a storage battery device of the present invention, it is desirable that a cut is formed in the bent portion.
If a notch is formed in the bent portion, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate.
Therefore, it can prevent that an electrode part peels from a current collection board.
(6)本発明の蓄電デバイス用電極では、上記曲げ部にはミシン目が形成されていることが望ましい。
曲げ部にミシン目が形成されていると集電板が曲がりやすくなる。そのため、集電板を曲げる際に、集電板の電極部配置領域に応力がかかりにくくなる。
そのため、電極部が集電板から剥がれることを防止することができる。
(6) In the electrode for a storage battery device of the present invention, it is desirable that a perforation is formed in the bent portion.
If perforations are formed in the bent portion, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate.
Therefore, it can prevent that an electrode part peels from a current collection board.
(7)本発明の蓄電デバイス用電極では、上記曲げ部には切欠いた部分があることが望ましい。
曲げ部に切欠いた部分があると、集電板が曲がりやすくなる。そのため、集電板を曲げる際に、集電板の電極部配置領域に応力がかかりにくくなる。
そのため、電極部が集電板から剥がれることを防止することができる。
(7) In the electrode for a storage battery device of the present invention, it is desirable that the bent portion has a cutaway portion.
If the bent portion is notched, the current collector plate is easily bent. Therefore, when the current collector plate is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate.
Therefore, it can prevent that an electrode part peels from a current collection board.
(8)本発明の蓄電デバイス用電極では、上記活物質は、シリコンのみからなることが望ましい。
シリコンは、金属イオンと化学結合することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、電気容量が充分に大きくなる。
このようにシリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
(8) In the electrode for a storage battery device of the present invention, the active material is preferably made of only silicon.
Silicon can occlude metal ions by chemically bonding to the metal ions.
Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more.
Therefore, the electrical capacity becomes sufficiently large.
As described above, when silicon stores a large amount of metal ions or when a large amount of metal ions are released from silicon, the volume of silicon which is an active material changes significantly. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate.
However, in the electrode for a storage device of the present invention, the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
(9)本発明の蓄電デバイスは、上記本発明の蓄電デバイス用電極を備えることを特徴とする。
そのため、本発明の蓄電デバイスでは、蓄電デバイス用電極の集電板にシワや反りが発生しにくい。
(9) An electricity storage device of the present invention includes the electrode for an electricity storage device of the present invention.
Therefore, in the electricity storage device of the present invention, wrinkles and warpage are less likely to occur in the current collector plate of the electrode for electricity storage device.
本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。
マルテンサイト組織は硬度が高い。そのため、集電板が、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されていると、集電板を硬く高強度にすることができる。そのため、集電板に、反りやシワが発生することを防止しやすくなる。
In the electrode for a storage battery device of the present invention, the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure.
The martensitic structure is high in hardness. Therefore, when the current collector is made of stainless steel having an austenitic structure including a martensitic structure, the current collector can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate.
図1(a)は、本発明の蓄電デバイス用電極の一例を模式的に示す平面図であり、図1(b)は、図1(a)のA-A線断面図である。FIG. 1 (a) is a plan view schematically showing an example of an electrode for a storage device of the present invention, and FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a). 図2は、本発明の蓄電デバイス用電極における集電板を厚さ方向に沿って切断する断面の一例を模式的に示す断面図である。FIG. 2: is sectional drawing which shows typically an example of the cross section which cut | disconnects the current collection board in the thickness direction in the electrode for electrical storage devices of this invention. 図3(a)~(c)は、本発明の蓄電デバイス用電極における集電板の曲げ部の一例を模式的に示す斜視図である。FIGS. 3 (a) to 3 (c) are perspective views schematically showing an example of the bent portion of the current collector plate in the electrode for a storage battery device of the present invention. 図4(a)は、本発明の蓄電デバイス用電極の一例を模式的に示す平面図である。図4(b)は、図4(a)のB-B線断面図である。Fig.4 (a) is a top view which shows typically an example of the electrode for electrical storage devices of this invention. FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A. 図5は、図4に示す蓄電デバイス用電極が折り曲げられた状態の一例を模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing an example of a state in which the storage device electrode shown in FIG. 4 is bent. 図6(a)~(d)は、本発明の蓄電デバイスにおける正極、負極及びセパレータの収容態様の一例を模式的に示す模式図である。FIGS. 6 (a) to 6 (d) are schematic views schematically showing an example of the storage mode of the positive electrode, the negative electrode and the separator in the electricity storage device of the present invention. 図7は、本発明の蓄電デバイスの一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
(発明の詳細な説明)
以下、本発明の蓄電デバイス用電極について図面を用いながら説明するが、本発明の蓄電デバイス用電極は以下の記載に限定されない。
(Detailed Description of the Invention)
Hereinafter, although the electrode for electrical storage devices of this invention is demonstrated using drawing, the electrode for electrical storage devices of this invention is not limited to the following description.
図1(a)は、本発明の蓄電デバイス用電極の一例を模式的に示す平面図であり、図1(b)は、図1(a)のA-A線断面図である。
図1(a)に示すように、蓄電デバイス用電極10は、電極部配置領域21及び電極部非配置領域22を有する矩形の集電板20と、電極部配置領域21に配置された略正方形の電極部30とからなる。
電極部配置領域21は、集電板20の中心部に位置しており、その周囲が電極部非配置領域22である。
また、集電板20には、電極部配置領域21を挟んで、電極部非配置領域22に2つの曲げ部(曲げ部25a及び曲げ部25b)が形成されている。
さらに、図1(b)に示すように、集電板20は、曲げ部25a及び曲げ部25bにより凹形状となっている。
FIG. 1 (a) is a plan view schematically showing an example of an electrode for a storage device of the present invention, and FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a).
As shown in FIG. 1A, the storage device electrode 10 has a rectangular current collector plate 20 having an electrode portion arrangement region 21 and an electrode portion non-arrangement region 22, and a substantially square electrode arrangement region 21. And the electrode portion 30 of FIG.
The electrode portion arrangement region 21 is located at the central portion of the current collector plate 20, and the periphery thereof is the electrode portion non-arrangement region 22.
Further, in the current collector plate 20, two bent portions ( bent portions 25a and 25b) are formed in the electrode portion non-arrangement region 22 with the electrode portion arrangement region 21 interposed therebetween.
Furthermore, as shown in FIG. 1 (b), the current collector plate 20 has a concave shape due to the bending portion 25a and the bending portion 25b.
また、集電板20は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。
また、電極部30は、活物質としてシリコンを含む。
Further, the current collector plate 20 is formed of stainless steel having an austenitic structure including a martensitic structure.
In addition, the electrode unit 30 contains silicon as an active material.
蓄電デバイス用電極10では、集電板20は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。
マルテンサイト組織は硬度が高い。そのため、集電板20が、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されていると、集電板20を硬く高強度にすることができる。そのため、集電板20に、反りやシワが発生することを防止しやすくなる。
従って、電極部30の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板20に反りやシワが発生することを防止しやすくなる。
In the storage device electrode 10, the current collector plate 20 is formed of stainless steel formed of an austenitic structure including a martensitic structure.
The martensitic structure is high in hardness. Therefore, when the current collector plate 20 is formed of stainless steel having an austenite structure including a martensitic structure, the current collector plate 20 can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate 20.
Therefore, even if metal ions are absorbed in the active material of the electrode unit 30 or metal ions absorbed in the active material of the electrode unit are released and the volume of the active material changes, the current collector plate 20 is warped or wrinkled. Is more likely to be prevented.
蓄電デバイス用電極10では、曲げ部25a及び曲げ部25b以外の集電板20を厚さ方向に沿って切断する断面において、マルテンサイト組織が、オーステナイト組織の中に島状に点在していることが望ましい。
マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態を以下に図面を用いて説明する。
In the storage device electrode 10, the martensitic structure is scattered in the form of islands in the austenite structure in the cross section in which the current collector plate 20 other than the bending portion 25a and the bending portion 25b is cut along the thickness direction. Is desirable.
The state in which the martensitic structure is scattered in the form of islands in the austenitic structure will be described below with reference to the drawings.
図2は、本発明の蓄電デバイス用電極における集電板を厚さ方向に沿って切断する断面の一例を模式的に示す断面図である。
図2において、符号26はマルテンサイト組織を示し、符号27はオーステナイト組織を示している。
本明細書において「マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態」とは、図2に示すように、マルテンサイト組織26が一箇所に偏在せず、オーステナイト組織内に斑に存在することを意味する。
FIG. 2: is sectional drawing which shows typically an example of the cross section which cut | disconnects the current collection board in the thickness direction in the electrode for electrical storage devices of this invention.
In FIG. 2, reference numeral 26 denotes a martensitic structure, and reference numeral 27 denotes an austenitic structure.
In the present specification, “the state in which the martensitic structure is scattered in the form of islands in the austenite structure” means that the martensitic structure 26 is not unevenly distributed in one place, as shown in FIG. Means to be present in the macula.
マルテンサイト組織がオーステナイト組織の中に島状に点在しているということは、マルテンサイト組織の含有量(質量)よりもオーステナイト組織の含有量(質量)の方が多いといえる。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
The fact that the martensitic structure is scattered like islands in the austenite structure means that the austenitic structure content (mass) is larger than the martensite structure content (mass).
Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
なお、マルテンサイト組織及びオーステナイト組織の存在は、以下の条件の電子後方散乱回折図測定法(EBSD法)により分析することができる。 The presence of martensitic structure and austenitic structure can be analyzed by the electron backscattering diffraction pattern measurement method (EBSD method) under the following conditions.
(EBSD法の条件)
<分析装置>
EF-SEM:日本電子株式会社製JSM-7000F/EBSDD:TSL Solution
<分析条件>
範囲     :14×36μm
ステップ   :0.05μm/step
測定ポイント :233376
倍率     :5000倍
phase  :γ-鉄、α-鉄
(Conditions of EBSD method)
<Analyzer>
EF-SEM: JSM-7000F / EBSDD manufactured by Nippon Denshi Co., Ltd .: TSL Solution
<Analytical conditions>
Range: 14 x 36 μm
Step: 0.05 μm / step
Measurement point: 233376
Magnification: 5000 times phase: γ-iron, α-iron
蓄電デバイス用電極10では、集電板20の厚さは、5~50μmであることが望ましい。
集電板の厚さが5μm未満であると、薄すぎるので集電板が破れやすくなる。
集電板の厚さが50μmを超えると、厚すぎるので、このような厚さの集電板を含む蓄電デバイス用電極が用いられた蓄電デバイスのサイズが大きくなりやすくなる。
In the storage device electrode 10, the thickness of the current collector plate 20 is preferably 5 to 50 μm.
If the thickness of the current collector plate is less than 5 μm, the current collector plate is easily broken because it is too thin.
If the thickness of the current collector plate is more than 50 μm, it is too thick, and the size of the power storage device using the electrode for a power storage device including the current collector plate with such a thickness tends to be large.
集電板20の引張強度は特に限定されないが、300~1500MPaであることが好ましい。 The tensile strength of the current collector plate 20 is not particularly limited, but is preferably 300 to 1,500 MPa.
蓄電デバイス用電極10では、曲げ部25a及び曲げ部25b以外の集電板20の厚さ方向に沿って切断する断面において、マルテンサイト組織の面積は、断面全体の5~20%であることが好ましい。
マルテンサイト組織が占める面積が上記範囲内であると、集電板20が腐食しにくく、高強度になる。
マルテンサイト組織が占める面積が5%未満であると、マルテンサイト組織を含有することによる集電板の強度向上効果が得られにくくなる。
マルテンサイト組織が占める面積が20%を超えると、マルテンサイト組織が表面に露出しやすくなる上に、内部に存在するマルテンサイト組織まで連続的につながり、集電板全体が腐食しやすくなる。また、マルテンサイト組織の割合が大きくなるので、集電板の靱性が低下しやすくなる、その結果、集電板が折れやすくなる。
In the storage device electrode 10, the area of the martensitic structure is 5 to 20% of the entire cross section in the cross section cut along the thickness direction of the current collector plate 20 other than the bent portions 25a and 25b. preferable.
If the area occupied by the martensitic structure is within the above range, the current collector plate 20 is less likely to be corroded and has high strength.
When the area occupied by the martensitic structure is less than 5%, it is difficult to obtain the strength improvement effect of the current collector plate by containing the martensitic structure.
When the area occupied by the martensitic structure exceeds 20%, the martensitic structure is easily exposed to the surface, and the martensitic structure present inside is continuously connected, and the entire current collector plate is easily corroded. In addition, since the proportion of the martensitic structure is increased, the toughness of the current collector plate is easily reduced. As a result, the current collector plate is easily broken.
蓄電デバイス用電極10では、集電板20は、電極部非配置領域22に曲げ部25a及び曲げ部25bを備える。
このような曲げ部があると補強作用が生じ、集電板20が反りにくくなる。
In the storage device electrode 10, the current collector plate 20 includes the bending portion 25a and the bending portion 25b in the electrode portion non-arrangement region 22.
If such a bent portion is present, a reinforcing action occurs, and the current collector plate 20 is less likely to warp.
蓄電デバイス用電極10では、曲げ部25a及び曲げ部25bは、オーステナイト組織のみからなるステンレス鋼から形成されていることが望ましい。
マルテンサイト組織は硬度が高い。そのため、曲げ部にマルテンサイト組織があると、集電板が曲げ部のみでなく電極部配置領域まで曲がり電極部が剥がれやすくなる。
一方、オーステナイト組織は靱性が充分に高い。そのため、曲げ部がオーステナイト組織のみからなるステンレス鋼から形成されていると、集電板20が折れにくくなる。
In the storage device electrode 10, the bent portions 25a and 25b are preferably formed of stainless steel having only an austenite structure.
The martensitic structure is high in hardness. Therefore, if the bent portion has a martensitic structure, the current collector plate bends not only to the bent portion but also to the electrode portion arrangement region, and the electrode portion is easily peeled off.
On the other hand, the austenite structure is sufficiently high in toughness. Therefore, when the bent portion is formed of stainless steel having only an austenite structure, current collector plate 20 is less likely to be broken.
曲げ部25a及び曲げ部25bを、オーステナイト組織のみからなるステンレス鋼から形成する方法としては、例えば以下の方法が挙げられる。
まず、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成された集電板を準備する。
次に、曲げ部となる部分の集電板を加熱する。マルテンサイト組織は、加熱されることによりオーステナイト組織に変質する。この際の加熱の条件は、1000~1200℃、0.1~10分であることが望ましい。
加熱の方法としては、加熱した熱源を接触させる方法や、高周波誘導加熱を行う方法が挙げられる。
このようにして、曲げ部25a及び曲げ部25bを、オーステナイト組織のみからなるステンレス鋼から形成することができる。
As a method of forming the bending part 25a and the bending part 25b from the stainless steel which consists only of an austenite structure, the following method is mentioned, for example.
First, a current collector plate made of austenitic structure including a martensitic structure is prepared.
Next, the current collector plate in a portion to be a bent portion is heated. The martensitic structure is transformed into an austenitic structure by heating. The heating conditions at this time are preferably 1000 to 1200 ° C. and 0.1 to 10 minutes.
As a method of heating, a method of contacting a heated heat source or a method of performing high frequency induction heating may be mentioned.
Thus, the bent portion 25a and the bent portion 25b can be formed of stainless steel having only an austenite structure.
蓄電デバイス用電極10では、曲げ部25a及び曲げ部25bには、切れ込みが形成されていてもよく、ミシン目が形成されていてもよく、切欠いた部分があってもよい。
このような曲げ部について以下に図面を用いて説明する。
図3(a)~(c)は、本発明の蓄電デバイス用電極における集電板の曲げ部の一例を模式的に示す斜視図である。
なお、図3(a)~(c)では、集電板を曲げる前の曲げ部の状態を示している。
In the storage device electrode 10, a cut may be formed in the bending portion 25a and the bending portion 25b, a perforation may be formed, or a cutaway portion may be present.
Such a bending portion will be described below with reference to the drawings.
FIGS. 3 (a) to 3 (c) are perspective views schematically showing an example of the bent portion of the current collector plate in the electrode for a storage battery device of the present invention.
3 (a) to 3 (c) show the state of the bent portion before the current collector plate is bent.
図3(a)に示すように、蓄電デバイス用電極10では、集電板20の曲げ部25a及び曲げ部25bには、切れ込み28aが形成されていてもよい。
図3(b)に示すように、蓄電デバイス用電極10では、集電板20の曲げ部25a及び曲げ部25bには、ミシン目28bが形成されていてもよい。
図3(c)に示すように。蓄電デバイス用電極10では、集電板20の曲げ部25a及び曲げ部25bに、切欠いた部分28cがあってもよい。
As shown to Fig.3 (a), in the electrode 10 for electrical storage devices, the notch 28a may be formed in the bending part 25a and the bending part 25b of the current collection board 20. As shown in FIG.
As shown in FIG. 3 (b), in the storage device electrode 10, perforations 28 b may be formed in the bent portions 25 a and the bent portions 25 b of the current collector plate 20.
As shown in FIG. 3 (c). In the storage device electrode 10, the bent portion 25a and the bent portion 25b of the current collector plate 20 may have a cutaway portion 28c.
このように、曲げ部25a及び曲げ部25bに、切れ込み28aや、ミシン目28bや、切欠いた部分28cがあると、集電板20が曲がりやすくなる。そのため、集電板20を曲げる際に、集電板20の電極部配置領域に応力がかかりにくくなる。電極部配置領域が湾曲すると、電極部配置領域に配置された電極部が剥がれやすくなる。
しかし、曲げ部25a及び曲げ部25bが切れ込みを有すると、このような応力がかかりにくくなる。
そのため、電極部が集電板から剥がれることを防止することができる。
As described above, when the bent portion 25a and the bent portion 25b have the incisions 28a, the perforations 28b, and the notched portions 28c, the current collector plate 20 is easily bent. Therefore, when the current collector plate 20 is bent, stress is hardly applied to the electrode portion arrangement region of the current collector plate 20. When the electrode portion arrangement region is curved, the electrode portions arranged in the electrode portion arrangement region are easily peeled off.
However, if the bends 25a and the bends 25b have cuts, such stress is less likely to be applied.
Therefore, it can prevent that an electrode part peels from a current collection board.
なお、切れ込みや、ミシン目や、切欠いた部分は1列だけ形成してもよく、複数列形成してもよい。 The incisions, perforations, or notched portions may be formed in only one row, or a plurality of rows may be formed.
切れ込みや、ミシン目や、切欠いた部分は、カッター、プレス等を用いることにより集電板に形成することができる。 The notches, perforations, and notched parts can be formed on the current collector plate by using a cutter, a press or the like.
蓄電デバイス用電極10において、電極部30は、活物質及びバインダからなることが望ましい。 In the storage device electrode 10, it is desirable that the electrode unit 30 be made of an active material and a binder.
活物質は、シリコンを含めば、他にカーボン等を含んでいてもよい。 The active material may further contain carbon or the like, as long as it contains silicon.
活物質の平均粒子径は、特に限定されないが1~10μmであることが好ましい。
活物質の平均粒子径が1μm以上であれば、活物質の平均粒子径を容易に調整することができる。
活物質の平均粒子径が10μm以下であれば、比表面積が充分に大きくなるので、充放電やドープに要する時間を短くすることができる。
The average particle size of the active material is not particularly limited, but is preferably 1 to 10 μm.
When the average particle size of the active material is 1 μm or more, the average particle size of the active material can be easily adjusted.
If the average particle size of the active material is 10 μm or less, the specific surface area is sufficiently large, so that the time required for charge and discharge and doping can be shortened.
蓄電デバイス用電極10において、電極部30の活物質は、シリコンのみからなることが望ましい。
シリコンは、金属イオンと化学結合することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、活物質がシリコンのみからなると、電気容量が充分に大きくなる。
このようシリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
In the storage device electrode 10, it is preferable that the active material of the electrode unit 30 be made of only silicon.
Silicon can occlude metal ions by chemically bonding to the metal ions.
Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more.
Therefore, when the active material is made only of silicon, the electric capacity is sufficiently large.
As described above, when a large amount of metal ions are absorbed by silicon and a large amount of metal ions are released from silicon, the volume of silicon which is an active material largely changes. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate.
However, in the electrode for a storage device of the present invention, the current collector plate is formed of stainless steel formed of an austenitic structure including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
電極部30のバインダの材料は、特に限定されないが、ポリイミド樹脂、ポリアミドイミド樹脂等を挙げることができる。これらの中では、ポリイミド樹脂であることが好ましい。
ポリイミド樹脂は、耐熱性があり、強度がある化合物である。そのため、活物質がポリイミド樹脂からなるバインダで結合されていると、金属イオンの吸蔵放出により活物質の体積が変化したとしても、電極部30を集電板20から剥離しにくくすることができる。
Although the material of the binder of the electrode part 30 is not specifically limited, A polyimide resin, a polyamide imide resin, etc. can be mentioned. Among these, polyimide resins are preferable.
The polyimide resin is a compound which is heat resistant and strong. Therefore, when the active material is bound by a binder made of polyimide resin, the electrode portion 30 can be hardly peeled off from the current collector plate 20 even if the volume of the active material changes due to the storage and release of metal ions.
電極部30における活物質と、バインダとの重量割合は、活物質:バインダ=70:30~90:10であることが好ましい。 The weight ratio of the active material to the binder in the electrode portion 30 is preferably 70:30 to 90:10.
また、電極部30のバインダには、導電助剤が含まれていてもよい。
導電助剤の材料は、特に限定されないが、カーボンブラック、炭素繊維、カーボンナノチューブ等を挙げることができる。これらの中では、カーボンブラックからなることが好ましい。
バインダが導電助剤を含有していると、蓄電デバイス用電極10の導電性を高くすることができる。そのため、効率よく集電することができる。
特に、カーボンブラックは、少量で導電性を確保することができる。そのため、カーボンブラックが導電助剤であると、蓄電デバイス用電極10の導電性をより向上させることができる。
The binder of the electrode unit 30 may contain a conductive aid.
The material of the conductive aid is not particularly limited, and carbon black, carbon fibers, carbon nanotubes and the like can be mentioned. Among these, carbon black is preferred.
When the binder contains a conductive additive, the conductivity of the electrode 10 for a storage battery can be increased. Therefore, current can be collected efficiently.
In particular, carbon black can ensure conductivity with a small amount. Therefore, when the carbon black is a conductive additive, the conductivity of the storage device electrode 10 can be further improved.
導電助剤がカーボンブラックからなる場合、その平均粒子径は、3~500nmであることが好ましい。
電極部30において、バインダに占める導電助剤の重量割合は、20~50%であることが好ましい。
When the conductive aid comprises carbon black, the average particle size is preferably 3 to 500 nm.
In the electrode portion 30, the weight ratio of the conductive additive to the binder is preferably 20 to 50%.
蓄電デバイス用電極10において、電極部30の厚さは、特に限定されないが、5~50μmであることが好ましい。
電極部の厚さが5μm未満であると、集電板に比べて活物質の量が少なくなるので電気容量が低下しやすくなる。
電極部の厚さが50μmを超えると、蓄電デバイス用電極を用いて製造された蓄電デバイスのサイズが大きくなる。また、金属イオンが電極部を移動する距離が長くなり、充放電に時間がかかる。
In the storage device electrode 10, the thickness of the electrode portion 30 is not particularly limited, but is preferably 5 to 50 μm.
When the thickness of the electrode portion is less than 5 μm, the amount of the active material is smaller than that of the current collector plate, so that the electric capacity is easily reduced.
When the thickness of the electrode portion exceeds 50 μm, the size of the electricity storage device manufactured using the electrode for electricity storage device becomes large. In addition, the distance for the metal ions to move in the electrode portion becomes long, and it takes time for charging and discharging.
片面の電極部30の面密度は、特に限定されないが、0.1~10mg/cmであることが望ましい。 The areal density of the electrode unit 30 on one side is not particularly limited, but is preferably 0.1 to 10 mg / cm 2 .
次に、本発明の蓄電デバイス用電極の別の態様について説明する。
図4(a)は、本発明の蓄電デバイス用電極の一例を模式的に示す平面図である。図4(b)は、図4(a)のB-B線断面図である。
なお、図4(a)及び(b)では、折り曲げられる前の蓄電デバイスの状態を示している。
図5は、図4に示す蓄電デバイス用電極が折り曲げられた状態の一例を模式的に示す斜視図である。
Next, another aspect of the storage device electrode of the present invention will be described.
Fig.4 (a) is a top view which shows typically an example of the electrode for electrical storage devices of this invention. FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A.
4 (a) and 4 (b) show the state of the storage device before it is bent.
FIG. 5 is a perspective view schematically showing an example of a state in which the storage device electrode shown in FIG. 4 is bent.
図4に示すように、蓄電デバイス用電極110は、複数の電極部配置領域121及び電極部非配置領域122を有する集電板120と、電極部配置領域121に配置された複数の電極部130とからなる。
電極部130は、集電板120の両面に配置されている。
As shown in FIG. 4, the storage device electrode 110 includes a current collector plate 120 having a plurality of electrode portion arrangement regions 121 and an electrode portion non-arrangement region 122, and a plurality of electrode portions 130 arranged in the electrode portion arrangement region 121. It consists of
The electrode unit 130 is disposed on both sides of the current collector plate 120.
また、隣り合う電極部配置領域121の間には、曲げ部125が位置している。 In addition, the bending portion 125 is located between the adjacent electrode portion disposition areas 121.
図5に示すように、蓄電デバイス用電極110は、折り曲げられて使用される。
曲げ部125が隣り合う電極部配置領域121の間に備えられていると、集電板120をコンパクトに折り曲げることができ、蓄電デバイス用電極を小型化することができる。
As shown in FIG. 5, the storage device electrode 110 is used by being bent.
When the bent portion 125 is provided between the adjacent electrode portion disposition areas 121, the current collector plate 120 can be compactly compacted, and the electrode for a storage device can be miniaturized.
蓄電デバイス用電極110において、集電板120の望ましい材料、形状等は、上記蓄電デバイス用電極10の集電板20の望ましい材料、形状等と同じである。 In the storage device electrode 110, the preferable material, shape, and the like of the current collector plate 120 are the same as the desired material, shape, and the like of the current collector plate 20 of the storage device electrode 10.
蓄電デバイス用電極110において、曲げ部125の望ましい材料、形状等は、上記蓄電デバイス用電極10の曲げ部25a及び曲げ部25bの望ましい材料、形状等と同じである。 In the storage device electrode 110, the desirable material, shape, and the like of the bending portion 125 are the same as the desirable materials, shape, and the like of the bending portion 25a and the bending portion 25b of the storage device electrode 10.
蓄電デバイス用電極110において、電極部130の望ましい材料、形状等は、上記蓄電デバイス用電極10の電極部30の望ましい材料、形状等と同じである。 In the storage device electrode 110, the desired material, shape, and the like of the electrode portion 130 are the same as the desired material, shape, and the like of the electrode portion 30 of the storage device electrode 10.
本発明の蓄電デバイス用電極は、蓄電デバイスの正極、負極又は金属イオンをドープするための金属イオン供給極として使用することができる。 The storage device electrode of the present invention can be used as a positive electrode, a negative electrode or a metal ion supply electrode for doping metal ions of the storage device.
次に、本発明の蓄電デバイス用電極の製造方法について説明する。 Next, the manufacturing method of the electrode for electrical storage devices of this invention is demonstrated.
(1)集電板の作製工程
まず、オーステナイト組織からなるステンレス鋼から形成された金属板を準備する。
次に、金属板を延展加工することにより集電板を作製する。この延展加工により、オーステナイト組織の一部がマルテンサイト組織に変質する。
このようにして、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成された集電板を作製することができる。
(1) Step of Manufacturing Current Collector Plate First, a metal plate formed of stainless steel having an austenite structure is prepared.
Next, a current collector plate is manufactured by extending a metal plate. By this spreading process, a portion of the austenite structure is transformed to a martensitic structure.
In this manner, a current collector plate made of austenitic structure including a martensitic structure can be manufactured.
(2)曲げ部の位置決定工程
次に、集電板の電極部配置領域及び電極部非配置領域を決定する。
そして、集電板の電極部非配置領域に、曲げ部となる位置を決定する。
この際、集電板の電極部非配置領域を加工して、曲げ部となる位置をオーステナイト組織のみからなるステンレス鋼としてもよく、曲げ部となる位置に、切れ込み、ミシン目、切欠き等を形成してもよい。
加工の方法は、たとえば熱処理、機械加工、レーザー加工など利用することができる。
曲げ部となる位置は、製造される蓄電デバイス用電極の用途に応じて任意に決定することが望ましい。
(2) Step of Determining Position of Bent Portion Next, the electrode portion arrangement region and the electrode portion non-arrangement region of the current collector plate are determined.
And the position used as a bending part is determined in the electrode part non-arrangement area | region of a current collection board.
At this time, the electrode non-arrangement region of the current collector plate may be processed to form a bent portion as stainless steel consisting of only austenite structure, and a cut, a perforation, a notch or the like may be formed at the bent portion. You may form.
The method of processing can be utilized, for example, heat treatment, machining, laser processing and the like.
It is desirable that the position to be the bent portion be arbitrarily determined according to the application of the electrode for a storage device to be manufactured.
(3)活物質スラリーの作製工程
シリコンとバインダとを混合し、活物質スラリーを作製する。
活物質とバインダとの重量割合は、特に限定されないが、活物質:バインダ=70:30~90:10となるように調製することが望ましい。
(3) Production Process of Active Material Slurry Silicon and a binder are mixed to produce an active material slurry.
The weight ratio of the active material to the binder is not particularly limited, but it is desirable that the weight ratio of the active material to the binder is 70:30 to 90:10.
バインダとしては、特に限定されず、ポリイミド樹脂前駆体、ポリアミドイミド樹脂前駆体等があげられる。これらの中では、ポリイミド樹脂前駆体が望ましい。 The binder is not particularly limited, and examples thereof include a polyimide resin precursor and a polyamideimide resin precursor. Among these, a polyimide resin precursor is desirable.
塗工性の観点から、活物質スラリーの粘度は、1~10Pa・sであることが好ましい。なお、スラリーの粘度はB型粘度計を用い、1~10rpmとなる条件で測定する。
活物質とバインダの割合を調整することにより活物質スラリーの粘度を調整することができる。また、必要に応じて増粘剤等により粘度を調整してもよい。
From the viewpoint of coatability, the viscosity of the active material slurry is preferably 1 to 10 Pa · s. The viscosity of the slurry is measured using a B-type viscometer under conditions of 1 to 10 rpm.
The viscosity of the active material slurry can be adjusted by adjusting the ratio of the active material to the binder. Moreover, you may adjust a viscosity with a thickener etc. as needed.
(4)活物質スラリーの塗工工程
集電板の電極部配置領域に活物質スラリーを塗工する。
塗工する活物質スラリーの量は、特に限定されないが、加熱乾燥後に0.1~10mg/cmであることが好ましい。
(4) Coating Step of Active Material Slurry The active material slurry is applied to the electrode portion arrangement region of the current collector plate.
The amount of the active material slurry to be coated is not particularly limited, but preferably 0.1 to 10 mg / cm 2 after drying by heating.
(5)プレス加工工程
次に、活物質スラリーが塗工された集電板をプレス加工する。
プレス加工の圧力は、特に限定されないが、活物質が平坦になるように押さえることができれば充分である。
(5) Pressing Process Next, the current collector plate coated with the active material slurry is pressed.
The pressure of the press processing is not particularly limited, but it is sufficient if it can be held down so that the active material becomes flat.
(6)加熱工程
次に、活物質スラリーが塗工された集電板を加熱し、活物質スラリーに含まれるバインダを硬化させる。
加熱条件は、使用するバインダの種類に応じて決定することが好ましい。
バインダがポリイミド樹脂前駆体を含む場合、加熱温度は、250~350℃であることが好ましい。また、加熱時の雰囲気は、窒素ガス雰囲気等の不活性雰囲気であることが好ましい。
(6) Heating Step Next, the current collector plate coated with the active material slurry is heated to cure the binder contained in the active material slurry.
The heating conditions are preferably determined according to the type of binder used.
When the binder contains a polyimide resin precursor, the heating temperature is preferably 250 to 350.degree. Further, the atmosphere at the time of heating is preferably an inert atmosphere such as a nitrogen gas atmosphere.
(7)曲げ部形成工程
次に、集電板を所定の形状に曲げ、曲げ部を形成する。
なお、本工程は、上記(2)曲げ部の位置決定工程の直後に行ってもよく、蓄電デバイス用電極を用いて蓄電デバイスを製造する際に行ってもよい。
(7) Bending part formation process Next, a current collection board is bent in a predetermined shape, and a bending part is formed.
In addition, this process may be performed immediately after the position determination process of said (2) bending part, and may be performed when manufacturing an electrical storage device using the electrode for electrical storage devices.
このような工程を経て、集電板が目的の形状に変形された本発明の蓄電デバイス用電極を製造することができる。 Through such a process, it is possible to manufacture an electrode for a storage battery device of the present invention in which the current collector plate is deformed into a target shape.
次に、本発明の蓄電デバイス用電極が用いられた蓄電デバイスについて説明する。
なお、本発明の蓄電デバイス用電極が用いられた蓄電デバイスは、本発明の蓄電デバイスでもある。
Next, a storage device using the storage device electrode of the present invention will be described.
A storage device using the storage device electrode of the present invention is also a storage device of the present invention.
本発明の蓄電デバイスは、
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極、上記負極及び上記セパレータを収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極又は負極が、上記本発明の蓄電デバイス用電極であってもよい。
The electricity storage device of the present invention is
Positive electrode,
A negative electrode,
A separator for separating the positive electrode and the negative electrode;
An electricity storage package that accommodates the positive electrode, the negative electrode, and the separator;
And the electrolytic solution enclosed in the above-mentioned storage package,
The positive electrode or the negative electrode may be the electrode for a storage device of the present invention.
なお、上記本発明の蓄電デバイスでは、負極が本発明の蓄電デバイス用電極であることが望ましい。
以下、負極が本発明の蓄電デバイス用電極である本発明の蓄電デバイスについて説明する。
In the electricity storage device of the present invention, the negative electrode is preferably the electrode for the electricity storage device of the present invention.
Hereinafter, the electricity storage device of the present invention in which the negative electrode is an electrode for a electricity storage device of the present invention will be described.
本発明の蓄電デバイス用電極では、正極は、正極集電板と、正極集電板に備えられた正極活物質とから構成されていることが望ましい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが好ましい。
正極活物質は、特に限定されないが、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the storage device electrode of the present invention, the positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material provided on the positive electrode current collector.
The positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and their alloys.
The positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
In addition, these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc. Material substituted may also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α It is preferable that ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2).
The positive electrode active material may be used alone or in combination of two or more.
上記本発明の蓄電デバイスにおいて、セパレータは、特に限定されないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることもできる。 In the electricity storage device of the present invention, the separator is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated | stacked those can also be used as a separator. Further, polyimide, polyamide imide, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose, glass fiber, which is highly heat resistant, can also be used. In addition, it is also possible to use a woven fabric separator in which the fibers are bundled and formed into a thread.
上記本発明の蓄電デバイスにおいて、電解液は、特に限定されないが、溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
In the electricity storage device of the present invention, the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent as an electrolyte can be used.
As the solvent, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylforme Amide, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propanesultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid esters and the like.
One of these may be used alone, or two or more may be mixed and used.
金属塩としては、特に限定されないが、リチウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等を用いることができる。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
When a lithium salt is used as the metal salt, the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
One of these may be used alone, or two or more may be mixed and used.
電解液の電解質濃度は、特に限定されないが、0.5~1.5mol/Lであることが好ましい。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
The electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 1.5 mol / L.
If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution.
When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
次に、正極、負極及びセパレータの収容態様について図面を用いて説明する。
なお、以下の説明では、負極が本発明の蓄電デバイス用電極である場合について説明する。
図6(a)~(d)は、本発明の蓄電デバイスにおける正極、負極及びセパレータの収容態様の一例を模式的に示す模式図である。
Next, the accommodation aspect of a positive electrode, a negative electrode, and a separator is demonstrated using drawing.
In the following description, the case where the negative electrode is the electrode for a storage device of the present invention will be described.
FIGS. 6 (a) to 6 (d) are schematic views schematically showing an example of the storage mode of the positive electrode, the negative electrode and the separator in the electricity storage device of the present invention.
図6(a)に示すように、本発明の蓄電デバイスでは、正極150、セパレータ160及び負極である蓄電デバイス用電極110が順に積層された積層体170を、捲回して蓄電パッケージ(図示せず)に収容してもよい。
この際、蓄電デバイス用電極110の曲げ部が、捲回される際の角部に位置するようにする。
As shown in FIG. 6A, in the power storage device of the present invention, a stacked body 170 in which a positive electrode 150, a separator 160, and a storage device electrode 110 that is a negative electrode are sequentially stacked is wound and a power storage package (not shown) ) May be accommodated.
At this time, the bent portion of the storage device electrode 110 is positioned at the corner when it is wound.
図6(b)に示すように、本発明の蓄電デバイスでは、正極150、セパレータ160及び負極である蓄電デバイス用電極110が順に積層された積層体171を、九十九折して蓄電パッケージ(図示せず)に収容されていてもよい。
この際、蓄電デバイス用電極110の曲げ部が、九十九折される際の屈曲部に位置するようにする。
As shown in FIG. 6 (b), in the electricity storage device of the present invention, the laminated body 171 in which the positive electrode 150, the separator 160 and the electrode 110 for electricity storage device which is the negative electrode are laminated in order is folded ninety-nine (Not shown).
At this time, the bent portion of the storage device electrode 110 is positioned at the bent portion at the time of the ninety-nine fold.
図6(c)に示すように、本発明の蓄電デバイスでは、図6(b)に示す積層体171のうち正極150の九十九折の方向を90度回転させて積層体171aとし、積層体171aを蓄電パッケージ(図示せず)に収容してもよい。 As shown in FIG. 6C, in the electricity storage device of the present invention, the direction of the ninety-nine folds of the positive electrode 150 in the laminate 171 shown in FIG. 6B is rotated 90 degrees to form a laminate 171a. The body 171a may be housed in a storage package (not shown).
図6(d)に示すように、本発明の蓄電デバイスでは、図6(b)に示す積層体171のうち負極である蓄電デバイス用電極110の九十九折の方向を90度回転させて積層体171bとし、積層体171bを蓄電パッケージ(図示せず)に収容してもよい。 As shown in FIG. 6 (d), in the electricity storage device of the present invention, the direction of the ninety-nine fold of the electricity storage device electrode 110 which is the negative electrode in the laminate 171 shown in FIG. 6 (b) is rotated 90 degrees. The stacked body 171b may be housed in a storage package (not shown).
次に、本発明の蓄電デバイスの別の態様について説明する。 Next, another aspect of the electricity storage device of the present invention will be described.
本発明の蓄電デバイスは、
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極及び/又は上記負極に金属イオンをドープするための金属イオン供給極と、
上記正極、上記負極、上記セパレータ及び上記金属イオン供給極を収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極、負極又は金属イオン供給極が、上記本発明の蓄電デバイス用電極であってもよい。
The electricity storage device of the present invention is
Positive electrode,
A negative electrode,
A separator for separating the positive electrode and the negative electrode;
A metal ion supply electrode for doping metal ions into the positive electrode and / or the negative electrode;
An electricity storage package that accommodates the positive electrode, the negative electrode, the separator, and the metal ion supply electrode;
And the electrolytic solution enclosed in the above-mentioned storage package,
The positive electrode, the negative electrode or the metal ion supply electrode may be the electrode for a storage device of the present invention.
以下、本発明の蓄電デバイス用電極が、金属イオン供給極として用いられる場合について説明する。 Hereinafter, a case where the storage device electrode of the present invention is used as a metal ion supply electrode will be described.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイス用電極に金属イオンをドープする必要がある。
まず、本発明の蓄電デバイス用電極に金属イオンをドープする方法について説明する。
When the electrode for a storage device of the present invention is used as a metal ion supply electrode, it is necessary to dope the electrode for a storage device of the present invention with metal ions.
First, a method of doping metal ions to the electrode for a storage device of the present invention will be described.
(1)有機電解液塗布工程
まず、本発明の蓄電デバイス用電極における集電板の電極部に有機電解液を塗布する。
有機電解液は、特に限定されないが、有機溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
なお、金属イオン源としてリチウムを用いる場合、有機電解液は、リチウムイオン導電性を有することが好ましい。
(2)加熱工程
次に、有機電解液が塗布された、電極部と金属イオン源とを接触させて、加熱することにより金属イオンをドープする。
金属イオン源としては、特に限定されないが、リチウム、ナトリウム、マグネシウム、カルシウム等があげられる。これらの中では、リチウムであることが好ましい。
加熱の条件は、特に限定されないが、250~300℃、10~120分間加熱することが好ましい。
(1) Organic Electrolyte Solution Application Step First, an organic electrolyte solution is applied to the electrode portion of the current collector plate in the electrode for a storage battery device of the present invention.
The organic electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in an organic solvent as an electrolyte can be used.
As the organic solvent, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( Linear carbonates such as EMC), dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxy Linear ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylpho Lumamide, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propanesultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid esters and the like.
One of these may be used alone, or two or more may be mixed and used.
When lithium is used as the metal ion source, the organic electrolytic solution preferably has lithium ion conductivity.
(2) Heating step Next, the electrode portion coated with the organic electrolytic solution is brought into contact with a metal ion source, and heating is performed to dope metal ions.
The metal ion source is not particularly limited, and examples thereof include lithium, sodium, magnesium and calcium. Among these, lithium is preferred.
The heating conditions are not particularly limited, but heating at 250 to 300 ° C. for 10 to 120 minutes is preferable.
(3)乾燥工程
ドープ後の蓄電デバイス用電極を溶媒で洗浄し自然乾燥させることによりドープが完了する。溶媒としてはDMC(ジメチルカーボネート)などが好適に利用できる。
(3) Drying Step The electrode of the storage device after doping is washed with a solvent and naturally dried to complete the doping. As a solvent, DMC (dimethyl carbonate) can be suitably used.
なお、ドープの方法はこのような金属イオン源に接触させる方法に限定されず、他の方法も利用できる。例えば、金属イオン源と蓄電デバイス用電極とをそれぞれ外部回路につなぎ、電気的にドープすることもできる。 In addition, the method of doping is not limited to the method of contacting such a metal ion source, Other methods can also be utilized. For example, the metal ion source and the electrode for a storage device can be connected to an external circuit and electrically doped.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイスにおける正極は、以下の構成であることが望ましい。
すなわち、正極は、正極集電板と、正極集電板に備えられた正極活物質とから構成されていることが望ましい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが好ましい。
正極活物質は、特に限定されないが、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
When the storage device electrode of the present invention is used as a metal ion supply electrode, the positive electrode in the storage device of the present invention preferably has the following configuration.
That is, it is desirable that the positive electrode be composed of a positive electrode current collector plate and a positive electrode active material provided on the positive electrode current collector plate.
The positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and their alloys.
The positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
In addition, these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc. Material substituted may also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α It is preferable that ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2).
The positive electrode active material may be used alone or in combination of two or more.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイスにおける負極は、以下の構成であることが望ましい。
すなわち、負極は、負極集電板と、負極集電板に備えられた負極活物質とから構成されていることが望ましい。
負極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金等からなることが好ましい。
負極活物質は、特に限定されないが、シリコン、一酸化ケイ素、二酸化ケイ素、炭素等からなることが好ましい。
When the storage device electrode of the present invention is used as a metal ion supply electrode, the negative electrode in the storage device of the present invention preferably has the following configuration.
That is, it is desirable that the negative electrode is composed of a negative electrode current collector plate and a negative electrode active material provided on the negative electrode current collector plate.
The negative electrode current collector plate is not particularly limited, but is preferably made of aluminum, nickel, copper, silver, an alloy thereof, or the like.
The negative electrode active material is not particularly limited, but is preferably made of silicon, silicon monoxide, silicon dioxide, carbon or the like.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、上記本発明の蓄電デバイスにおいて、セパレータは、特に限定されないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることもできる。 When the storage device electrode of the present invention is used as a metal ion supply electrode, the separator in the storage device of the present invention is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated | stacked those can also be used as a separator. Further, polyimide, polyamide imide, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose, glass fiber, which is highly heat resistant, can also be used. In addition, it is also possible to use a woven fabric separator in which the fibers are bundled and formed into a thread.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、上記本発明の蓄電デバイスにおいて、電解液は、特に限定されないが、溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
When the storage device electrode of the present invention is used as a metal ion supply electrode, in the storage device of the present invention, the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent can be used.
As the solvent, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylforme Amide, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propanesultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid esters and the like.
One of these may be used alone, or two or more may be mixed and used.
金属塩としては、特に限定されないが、リチウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等を用いることができる。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
When a lithium salt is used as the metal salt, the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
One of these may be used alone, or two or more may be mixed and used.
電解液の電解質濃度は、特に限定されないが、0.5~1.5mol/Lであることが好ましい。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
The electrolyte concentration of the electrolytic solution is not particularly limited, but is preferably 0.5 to 1.5 mol / L.
If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution.
When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合の正極、負極、金属イオン供給極及びセパレータの収容態様について図面を用いて説明する。
図7は、本発明の蓄電デバイスの一例を模式的に示す断面図である。
The storage aspect of the positive electrode, the negative electrode, the metal ion supply electrode, and the separator in the case of using the electrode for a storage device of the present invention as a metal ion supply electrode will be described with reference to the drawings.
FIG. 7 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
図7に示すように、蓄電デバイス201は、蓄電パッケージ290に正極250と、負極280と、正極250と負極280とを分離するセパレータ260と、金属イオンをドープするための金属イオン供給極である蓄電デバイス用電極210とが収容されてなる。
また、セパレータ260には、電解液が含浸されている。
As shown in FIG. 7, the storage device 201 is a metal ion supply electrode for doping metal ions, in the storage package 290, the positive electrode 250, the negative electrode 280, the separator 260 for separating the positive electrode 250 and the negative electrode 280. The storage device electrode 210 is accommodated.
Further, the separator 260 is impregnated with an electrolytic solution.
図7に示すように、蓄電デバイス201では、2つの蓄電デバイス用電極210が、蓄電パッケージ290の最外部に配置されている。
また、蓄電パッケージ290は、フィルムに封止されたラミネート型であり、蓄電パッケージ290の湾曲部に沿うように、蓄電デバイス用電極210の曲げ部225が位置している。
As shown in FIG. 7, in the storage device 201, two storage device electrodes 210 are disposed at the outermost part of the storage package 290.
The storage package 290 is a laminate type sealed in a film, and the bent portion 225 of the storage device electrode 210 is positioned along the curved portion of the storage package 290.
図7に示すように、2つの蓄電デバイス用電極210の間には、正極250、セパレータ260及び負極280がこの順で複数個配置されている。各正極250はリード線251により電気的に接続されており、各負極280はリード線281により電気的に接続されている。 As shown in FIG. 7, a plurality of positive electrodes 250, a plurality of separators 260 and a plurality of negative electrodes 280 are disposed in this order between the two electrodes 210 for power storage devices. Each positive electrode 250 is electrically connected by a lead wire 251, and each negative electrode 280 is electrically connected by a lead wire 281.
蓄電デバイス201において、蓄電デバイス用電極210は、上記本発明の一例である蓄電デバイス用電極10と同じ構成であることが望ましい。 In the storage device 201, the storage device electrode 210 desirably has the same configuration as the storage device electrode 10 according to the embodiment of the present invention.
このような構成の蓄電デバイス201では、蓄電パッケージ290の最外部に蓄電デバイス用電極210が位置している。
蓄電デバイス用電極210の集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼からなるので強度が強い。そのため、蓄電デバイス201全体の強度も強くなる。
また、最外部が、マルテンサイト組織を含むオーステナイト系ステンレスからなるので釘刺しなどに対する強度が強く、安全性も充分に向上する。
In the storage device 201 having such a configuration, the storage device electrode 210 is located at the outermost part of the storage package 290.
The current collector plate of the storage device electrode 210 is made of stainless steel having an austenitic structure including a martensitic structure, and therefore has high strength. Therefore, the strength of the entire power storage device 201 also becomes strong.
Further, since the outermost part is made of austenitic stainless steel including a martensitic structure, the strength against nailing and the like is strong, and the safety is also sufficiently improved.
本発明の蓄電デバイス用電極は、蓄電デバイスの正極、負極、又は、金属イオンをドープするため金属イオン供給極として好適に用いることができる。 The storage device electrode of the present invention can be suitably used as a positive electrode or a negative electrode of a storage device, or as a metal ion supply electrode for doping metal ions.
10、110、210 蓄電デバイス用電極
20、120 集電板
21、121 電極部配置領域
22、122 電極部非配置領域
25a、25b、125、225 曲げ部
26 マルテンサイト組織
27 オーステナイト組織
28a 切れ込み
28b ミシン目
28c 切欠いた部分
30、130 電極部
150、250 正極
160、260 セパレータ
170、171、172 積層体
201 蓄電デバイス
251、281 リード線
280 負極
290 蓄電パッケージ
10, 110, 210 Storage device electrode 20, 120 Current collecting plate 21, 121 Electrode portion arranging region 22, 122 Electrode portion non-arranging region 25a, 25b, 125, 225 Bending portion 26 Martensite structure 27 Austenite structure 28a Notch 28b Sewing machine Eye 28 c Notched portion 30, 130 Electrode portion 150, 250 Positive electrode 160, 260 Separator 170, 171, 172 Stack 201 201 Power storage device 251, 281 Lead wire 280 Negative electrode 290 Power storage package

Claims (9)

  1. 電極部配置領域及び電極部非配置領域を有する集電板と、
    前記電極部配置領域に配置された電極部とからなる蓄電デバイス用電極であって、
    前記集電板は、マルテンサイト組織を含むオーステナイト組織からなるステンレス鋼から形成されており、
    前記電極部は、活物質としてシリコンを含み、
    前記集電板は、前記電極部非配置領域に曲げ部を備えることを特徴とする蓄電デバイス用電極。
    A current collector plate having an electrode portion arrangement region and an electrode portion non-arrangement region;
    An electrode for a storage device, comprising: an electrode portion disposed in the electrode portion disposition region;
    The current collector plate is formed of austenitic stainless steel including a martensitic structure,
    The electrode unit contains silicon as an active material,
    The said current collection board equips the said electrode part non-arrangement area | region with a bending part, The electrode for electrical storage devices characterized by the above-mentioned.
  2. 前記曲げ部以外の前記集電板を厚さ方向に沿って切断する断面において、前記マルテンサイト組織が、前記オーステナイト組織の中に島状に点在している請求項1に記載の蓄電デバイス用電極。 The power storage device according to claim 1, wherein the martensitic structure is scattered in an island shape in the austenite structure in a cross section in which the current collector plate other than the bent portion is cut along a thickness direction. electrode.
  3. 前記電極部配置領域は複数あり、
    前記曲げ部は、隣り合う前記電極部配置領域の間に位置している請求項1又は2に記載の蓄電デバイス用電極。
    There are a plurality of the electrode portion disposition areas,
    The electrode for a storage device according to claim 1, wherein the bent portion is located between the adjacent electrode portion disposition areas.
  4. 前記曲げ部は、オーステナイト組織のみからなるステンレス鋼から形成されている請求項1~3のいずれかに記載の蓄電デバイス用電極。 The electrode for a storage device according to any one of claims 1 to 3, wherein the bent portion is formed of stainless steel consisting only of an austenite structure.
  5. 前記曲げ部には切れ込みが形成されている請求項1~4のいずれかに記載の蓄電デバイス用電極。 The electrode for a storage device according to any one of claims 1 to 4, wherein a notch is formed in the bent portion.
  6. 前記曲げ部にはミシン目が形成されている請求項1~5のいずれかに記載の蓄電デバイス用電極。 The electrode for a storage device according to any one of claims 1 to 5, wherein perforations are formed in the bent portion.
  7. 前記曲げ部には切欠いた部分がある請求項1~6のいずれかに記載の蓄電デバイス用電極。 The electrode for a storage device according to any one of claims 1 to 6, wherein the bent portion has a cut portion.
  8. 前記活物質は、シリコンのみからなる請求項1~7のいずれかに記載の蓄電デバイス用電極。 The electrode for a storage battery device according to any one of claims 1 to 7, wherein the active material consists only of silicon.
  9. 請求項1~8のいずれかに記載の蓄電デバイス用電極を備えることを特徴とする蓄電デバイス。 A storage device comprising the storage device electrode according to any one of claims 1 to 8.
PCT/JP2018/034157 2017-09-21 2018-09-14 Electrode for power storage devices, and power storage device WO2019059121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880060740.0A CN111108634B (en) 2017-09-21 2018-09-14 Electrode for electricity storage device and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181266A JP7037311B2 (en) 2017-09-21 2017-09-21 Electrodes for power storage devices and power storage devices
JP2017-181266 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059121A1 true WO2019059121A1 (en) 2019-03-28

Family

ID=65810261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034157 WO2019059121A1 (en) 2017-09-21 2018-09-14 Electrode for power storage devices, and power storage device

Country Status (3)

Country Link
JP (1) JP7037311B2 (en)
CN (1) CN111108634B (en)
WO (1) WO2019059121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446664B2 (en) 2020-06-08 2024-03-11 エルジー エナジー ソリューション リミテッド Method for manufacturing electrode including folding part and electrode sheet including folding part

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310423B (en) * 2019-12-04 2022-03-15 宁德时代新能源科技股份有限公司 Laminated cell production system and laminated cell forming method
WO2023190872A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2023190870A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255814A (en) * 1992-03-13 1993-10-05 Nippon Steel Corp Stainless steel thin sheet excellent in damping capacity and its manufacture
JPH07153438A (en) * 1993-12-02 1995-06-16 Yuasa Corp Battery
JP2013051113A (en) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd Copper-coated steel foil assembly and current-carrying member
JP2013101919A (en) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology Collector material for power storage device and production method therefor, electrode for power storage device, and power storage device
JP2015222419A (en) * 2014-04-28 2015-12-10 キヤノン株式会社 Metal substrate, fixing member and heat fixing device
WO2017082153A1 (en) * 2015-11-13 2017-05-18 日立オートモティブシステムズ株式会社 Lithium-ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675700B1 (en) * 1999-08-10 2007-02-01 산요덴키가부시키가이샤 Non-water electrolyte secondary battery and manufacturing method thereof
US20130115495A1 (en) * 2011-03-30 2013-05-09 Panasonic Corporation Lithium primary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255814A (en) * 1992-03-13 1993-10-05 Nippon Steel Corp Stainless steel thin sheet excellent in damping capacity and its manufacture
JPH07153438A (en) * 1993-12-02 1995-06-16 Yuasa Corp Battery
JP2013051113A (en) * 2011-08-31 2013-03-14 Nisshin Steel Co Ltd Copper-coated steel foil assembly and current-carrying member
JP2013101919A (en) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology Collector material for power storage device and production method therefor, electrode for power storage device, and power storage device
JP2015222419A (en) * 2014-04-28 2015-12-10 キヤノン株式会社 Metal substrate, fixing member and heat fixing device
WO2017082153A1 (en) * 2015-11-13 2017-05-18 日立オートモティブシステムズ株式会社 Lithium-ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446664B2 (en) 2020-06-08 2024-03-11 エルジー エナジー ソリューション リミテッド Method for manufacturing electrode including folding part and electrode sheet including folding part

Also Published As

Publication number Publication date
CN111108634B (en) 2023-04-11
CN111108634A (en) 2020-05-05
JP7037311B2 (en) 2022-03-16
JP2019057422A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US8313862B2 (en) Non-aqueous battery with columnar active material
US20150228969A1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2019059121A1 (en) Electrode for power storage devices, and power storage device
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
US20110111276A1 (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP5512057B2 (en) Cylindrical battery
WO2015134783A1 (en) Multivalent metal salts for lithium ion cells having oxygen containing electrode active materials
JP6048147B2 (en) Non-aqueous electrolyte secondary battery
JP5056045B2 (en) Nonaqueous electrolyte secondary battery
US20140020242A1 (en) Method for fabricating a nonaqueous electrolyte secondary battery
JP6768398B2 (en) Electrodes for power storage devices, power storage devices, air batteries and all-solid-state batteries
JP6344507B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6209839B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6982447B2 (en) A method for manufacturing an electrode for a power storage device, a power storage device, and an electrode for a power storage device.
JP6982454B2 (en) A method for manufacturing an electrode for a power storage device, a power storage device, and an electrode for a power storage device.
WO2013183524A1 (en) Nonaqueous electrolyte secondary battery
CN111146444B (en) Electrode for electricity storage device, air cell, and all-solid-state cell
JP6961939B2 (en) Negative electrode agent for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20190025501A (en) Manufacturing method of positive electrode active material, and positive electrode active material and lithium secondary battery using the same
JP7417456B2 (en) Preparation liquid for non-aqueous electrolyte, non-aqueous electrolyte for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
US20180315998A1 (en) Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858398

Country of ref document: EP

Kind code of ref document: A1