WO2019059021A1 - Engine shutdown control device and engine shutdown control method - Google Patents

Engine shutdown control device and engine shutdown control method Download PDF

Info

Publication number
WO2019059021A1
WO2019059021A1 PCT/JP2018/033403 JP2018033403W WO2019059021A1 WO 2019059021 A1 WO2019059021 A1 WO 2019059021A1 JP 2018033403 W JP2018033403 W JP 2018033403W WO 2019059021 A1 WO2019059021 A1 WO 2019059021A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
voltage
vehicle battery
stop control
stop
Prior art date
Application number
PCT/JP2018/033403
Other languages
French (fr)
Japanese (ja)
Inventor
芳幸 塚本
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2019059021A1 publication Critical patent/WO2019059021A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators

Definitions

  • the present invention relates to a technology for controlling an automatic stop of an engine.
  • an engine driven vehicle equipped with an alternator that generates electric power as the engine operates, a starter that starts the engine, and an onboard battery connected to the alternator and the starter. It is also known about idling stop which stops an engine automatically.
  • Patent Document 1 estimates the state of charge of a car battery (abbreviated as state of charge is also referred to as SOC), and based on the estimation result, it is determined whether the remaining capacity of the car battery remains sufficiently. A technique is disclosed that permits judgment if there is an idling stop if it is determined. Further, Non-Patent Document 1 discloses the relationship between SOC and battery open voltage (also referred to as battery open circuit voltage (also referred to as open circuit voltage as OCV)).
  • SOC state of charge of a car battery
  • OCV open circuit voltage
  • Patent No. 5335594 gazette
  • a state in which there is a break in the in-vehicle battery for example, a state in which the electrode plate in the in-vehicle battery is damaged; If the idling stop is permitted in such a state, the vehicle battery and the alternator can not supply power to the starter, and the engine can not be restarted and the vehicle can not be restarted.
  • an object of this invention is to provide the stop control apparatus and stop control method of an engine which avoid the failure of the engine restart after idling stop.
  • an on-board battery an alternator connected to the on-board battery and generating electric power with operation of the engine, and a starter for starting the engine using power supplied from the on-board battery are mounted.
  • the stop control device for controlling the automatic stop of the engine stops the engine when receiving the stop permission information when the vehicle speed of the vehicle is lower than a predetermined value.
  • a detection unit for detecting a current flowing in the on-vehicle battery and a voltage applied to the on-vehicle battery, and a current detection value and a voltage detection value detected by the detection unit
  • the stop permission information is transmitted to the stop control unit. And a part.
  • the idling stop is prevented in the state where the vehicle battery is disconnected, the failure of the engine start after the idling stop is avoided.
  • FIG. 1 is a diagram showing an overall configuration of a vehicle to which a stop control device is applied. It is a flow figure at the time of performing automatic stop processing after engine start processing. It is a flowchart at the time of judging the existence of disconnection in a car battery.
  • FIG. 1 is a diagram showing the configuration of the stop control device 1.
  • the stop control device 1 is mounted on a vehicle (not shown) together with the engine 10.
  • An output shaft (crankshaft) 12 of the engine 10 is mechanically connected to driving wheels (not shown) to drive the vehicle.
  • the alternator 22 is a generator that generates electric power with the operation of the engine 10, and is mounted on a vehicle. Specifically, the rotor of the alternator 22 is mechanically connected to the crankshaft 12 of the engine 10, and the rotation of the rotor by the rotational force of the crankshaft 12 causes the alternator 22 to generate power. Therefore, the alternator 22 may generate electricity by coasting of the vehicle, in addition to the operation of the engine 10.
  • these mechanical connections are schematically represented by alternate long and short dash lines.
  • the regulator 24 is a control circuit that controls the output of the alternator 22 and functions as a voltage adjustment unit that adjusts the output voltage of the alternator 22.
  • a regulator capable of adjusting the output voltage may be provided inside the alternator 22 and the regulator 24 may be omitted.
  • An on-vehicle battery 30 is connected to the battery terminal TB of the regulator 24.
  • a lead storage battery is adopted as the on-vehicle battery 30.
  • each of the plurality of electric loads 44 is connected to the on-vehicle battery 30 in parallel with each of the plurality of switches 42.
  • the plurality of electrical loads 44 include a speedometer that measures the speed of the vehicle in motion.
  • a starter 40 is connected to the on-vehicle battery 30 as an electrical load.
  • the starter 40 is mechanically connected to the crankshaft 12 and applies initial rotation to the engine 10 to start the engine 10. This mechanical connection is also schematically represented by a dashed line in FIG.
  • the power supply line J1 between the battery terminal TB and the in-vehicle battery 30, and the ignition terminal TIG of the regulator 24 are connected via an ignition switch 46.
  • An ECU (Electronic Control Unit) 50 as one of the electrical loads of the on-vehicle battery 30 includes a storage device, and is mainly configured of a microcomputer.
  • This memory device always holds the memory regardless of the state of the main power supply (here, the ignition switch 46) of the ECU 50.
  • the storage device is, for example, a backup RAM whose power supply state is maintained at all times, or a nonvolatile memory such as an EEPROM which always stores data regardless of the presence or absence of power supply.
  • the current sensor 52 is provided on the feed line J1, detects the current discharged from the on-board battery 30, and the current charged to the on-board battery 30, and outputs a current detection value to the ECU 50.
  • the voltage sensor 56 detects a voltage applied to the on-vehicle battery 30, and outputs a voltage detection value to the ECU 50. As described above, the current sensor 52 and the voltage sensor 56 function as the detection unit 5 that detects the current flowing through the in-vehicle battery 30 and the voltage applied to the in-vehicle battery 30.
  • the ECU 50 controls the engine 10, the alternator 22, and the regulator 24 with respect to the components shown in FIG.
  • the ECU 50 controls the output voltage of the alternator 22 based on the current detection value output from the current sensor 52 and the voltage detection value output from the voltage sensor 56. More specifically, the ECU 50 outputs a command value (command voltage) of the output voltage to the command terminal TR of the regulator 24.
  • the regulator 24 adjusts the output voltage of the alternator 22 to the command voltage.
  • the ECU 50 takes in a power generation state signal indicating the power generation capacity of the alternator 22 and the regulator 24 via the monitor terminal TF of the regulator 24.
  • the power generation capacity is a value quantified by the on / off ratio of the switching element in the regulator 24 (specifically, the ratio of the on time to the on / off cycle: Duty).
  • the control of the output voltage is performed so as to reduce the amount of increase of the fuel consumption of the engine 10 by the power generation of the alternator 22 as much as possible while keeping the charge state of the on-board battery 30 within the allowable range.
  • the charge state of the on-vehicle battery 30 is a physical quantity that quantifies the discharge capacity of the on-vehicle battery 30 (more specifically, the ratio of the current charge amount to the full charge of the on-vehicle battery 30).
  • the battery open voltage which is a voltage when the terminal of the on-vehicle battery 30 is open, depends on the charge state of the on-vehicle battery 30. Further, the relationship between the battery open voltage and the state of charge of the on-board battery 30 is stored in the storage device of the ECU 50.
  • the ECU 50 has a start control unit 57, a stop control unit 58, and a stop permission determination unit 59.
  • the start control unit 57 is a functional unit that controls the start processing of the engine 10, supplies power from the on-board battery 30 to the starter 40, and starts the engine 10.
  • the start process is a process in which the start control unit 57 functions to start the engine 10 when the driver of the vehicle turns on the ignition switch 46.
  • the stop control unit 58 and the stop permission determination unit 59 are functional units that perform an automatic stop process of the engine 10.
  • the automatic stop processing referred to here is processing for automatically stopping the engine 10 when the vehicle speed of the running vehicle decreases, and refers to idling stop.
  • the stop control unit 58 stops the engine 10 when the vehicle speed of the vehicle is lower than a predetermined value and all the stop permission information described later is received.
  • the stop permission determination unit 59 determines the presence or absence of a disconnection in the on-vehicle battery 30 based on the current detection value detected by the current sensor 52 and the voltage detection value detected by the voltage sensor 56, and determines that there is no disconnection.
  • the stop permission information 60 is transmitted to the stop control unit 58.
  • stop permission information 60 information transmitted when there is no disconnection in the on-vehicle battery 30
  • other stop permission information for example, Information transmitted when SOC is sufficiently secured.
  • the current detection value is smaller than the reference value or whether the voltage detection value is larger than the reference value as to whether the SOC is sufficiently secured. based on.
  • the stop control device 1 includes a start control unit 57, a stop control unit 58, a stop permission determination unit 59, and a detection unit 5, and controls the start and stop of the engine 10. The details of the start process and the automatic stop process by the stop control device 1 will be described later with reference to FIGS. 2 and 3.
  • FIG. 2 is a flow chart of the automatic stop process after the start process of the engine 10. As shown in FIG. In the following, the flow of processing when automatic stop processing is performed after start processing of the engine 10 will be described with reference to FIG. 2.
  • step ST1 of FIG. 2 the driver of the vehicle turns on the ignition switch 46, whereby the start control unit 57 starts the engine 10.
  • the stop control device 1 determines whether or not the vehicle speed has dropped below a predetermined value in step ST2.
  • Information on the vehicle speed can be obtained from the above-described vehicle speed meter. Since the speed rises without decreasing immediately after the start of traveling of the vehicle, the determination result is No even if the vehicle speed is lower than the predetermined value, and the determination of step ST2 is continued. Similarly, even when the vehicle speed is equal to or higher than the predetermined value, the determination result of step ST2 is No, and the traveling state is maintained.
  • step ST3 the stop control device 1 determines whether all the stop permission information necessary for permitting the automatic stop processing is complete. All stop permission information (for example, two stop permission information of information transmitted when there is no disconnection in the on-vehicle battery 30 and information transmitted when the SOC is sufficiently ensured) to the stop control unit 58 Is input, the determination result in step ST3 of FIG. 2 is Yes, the process proceeds to step ST4, and the automatic stop process is performed by the stop control unit 58 in step ST4 (stop process). On the other hand, when at least one of the stop permission information is missing, the process proceeds to No in step ST3 of FIG. 2, and the automatic stop process is not performed.
  • All stop permission information for example, two stop permission information of information transmitted when there is no disconnection in the on-vehicle battery 30 and information transmitted when the SOC is sufficiently ensured
  • stop permission information 60 it is possible to prevent the idling stop in the state where the vehicle battery is disconnected, and to avoid the failure of the engine restart after the idling stop. Further, by using the stop permission information that the SOC is sufficiently secured, it is possible to prevent the idling stop in the state where the SOC is insufficient, and to avoid the failure of the engine restart after the idling stop.
  • FIG. 3 is a flow chart when judging the presence or absence of disconnection in the on-vehicle battery 30. As shown in FIG. Each step shown in FIG. 3 is executed, for example, at the timing when the determination result of step ST2 shown in FIG. 2 shifts from No to Yes.
  • the flow of processing when determining the presence or absence of disconnection in the on-vehicle battery 30 will be described with reference to FIG. 3.
  • disconnection in the on-vehicle battery 30 refers to disconnection occurring in the on-vehicle battery 30 as viewed from the two connection points of the electric wire extending from the in-vehicle battery 30 and the electric wire extending from the voltage sensor 56. Point to. Specifically, when there is a break in the in-vehicle battery 30, for example, when the electrode plate in the in-vehicle battery is damaged, or when the electrode plate in the in-vehicle battery and the terminal are disconnected, the in-vehicle battery 30 is In the case where there is a connection failure with the external electric wire, or in the case where the electric wire extending from the in-vehicle battery 30 is disconnected in the section of the two connection points, and the like.
  • step ST10 of FIG. 3 is executed.
  • the current sensor 52 detects the current flowing in the on-vehicle battery 30 (indicated as "battery current” in FIG. 3), and gives the detected first current detection value to the stop permission determination unit 59 (detection step).
  • the stop permission determination unit 59 refers to the first current detection value, and compares the magnitude relationship between the absolute value of the first current detection value and the first non-negative predetermined value. The comparison is made to determine whether the first current detection value can be regarded as 0 A (ampere, and so forth). Do.
  • the predetermined value for example, a value sufficiently smaller than the current that normally flows to the on-vehicle battery 30, such as 0.1 mA (milliampere, the same applies hereinafter), is set.
  • step ST11 of FIG. 3 determines that there is no disconnection in the on-vehicle battery 30. At this time, the stop permission determination unit 59 gives the stop permission information 60 to the stop control unit 58 (stop permission determination step).
  • step ST11 of FIG. 3 the determination result in step ST11 of FIG. 3 is Yes, and the process proceeds to step ST12.
  • the determination as to whether or not the first current detection value can be regarded as 0 A is made by comparing the magnitude relationship between the absolute value of the first current detection value and the first non-negative predetermined value.
  • the first current detection value can be regarded as 0 A a disconnection occurs in the on-vehicle battery 30, and no disconnection occurs in the on-vehicle battery 30, and the electric power output from the alternator 22 is supplied to each electric load 44 It is assumed that the on-vehicle battery 30 is neither charged nor discharged. In the former case, the automatic stop process can not be permitted. On the other hand, the automatic stop process can be permitted in the latter case. Therefore, these two cases are classified in each step of steps ST12 to ST16 described later.
  • the stop permission determination unit 59 controls the regulator 24 to reduce the output voltage of the alternator 22 (voltage adjustment step). Further, as shown in step ST13 of FIG. 3, the voltage sensor 56 detects the voltage applied to the on-vehicle battery 30, and supplies the detected voltage detection value to the stop permission determination unit 59. Then, as shown in step ST14 of FIG. 3, the stop permission determination unit 59 refers to the voltage detection value and compares the magnitude relationship between the voltage detection value and the battery open voltage.
  • the battery open voltage is, for example, 12.8 V (volts, the same applies hereinafter), and is specified based on the information stored in the storage device of the ECU 50 (for example, the relationship between the battery open voltage and the charge state of the on-vehicle battery 30). Ru. If the voltage detection value is equal to or higher than the battery open circuit voltage, the determination result of step ST14 is No, the process proceeds to step ST12, and steps ST12 to ST14 are repeated.
  • step ST14 the determination result of step ST14 becomes Yes, and the process proceeds to step ST15.
  • the current sensor 52 detects the current flowing through the on-vehicle battery 30 in a state where the output voltage of the alternator 22 is lowered, and the second current detection value detected is a permission / prohibition decision unit To 59 (detection step).
  • the stop permission determination unit 59 refers to the second current detection value, compares the magnitude relation between the absolute value of the second current detection value and the second non-negative predetermined value, and the second current detection value It is judged whether it can be regarded as 0A.
  • the second non-negative predetermined value a value sufficiently smaller than the current normally flowing to the on-vehicle battery 30, such as 0.1 mA, for example, is set as in step ST11 of FIG.
  • step ST20 the stop permission determination unit 59 determines that there is no disconnection in the on-vehicle battery 30. At this time, the stop permission determination unit 59 gives the stop permission information 60 to the stop control unit 58 (stop permission determination step). After the determination of the presence or absence of the disconnection, as shown in step ST21 of FIG. 3, the stop permission determination unit 59 controls the regulator 24 to restore the output voltage of the alternator 22 to the value before reduction (voltage adjustment step).
  • step ST16 of FIG. 3 determines whether or not the second current detection value can be regarded as 0 A. If the second current detection value can also be regarded as 0 A, there is a high possibility that the vehicle battery 30 is disconnected because the vehicle battery 30 is not discharged even after the output voltage of the alternator 22 has dropped. Therefore, in step ST17, as shown in FIG.
  • the stop permission determination unit 59 determines that there is a break in the on-vehicle battery 30. At this time, the stop permission determination unit 59 does not give the stop permission information 60 to the stop control unit 58 (stop permission determination step). Further, after the determination of the presence or absence of the disconnection, as shown in step ST18 of FIG. 3, the stop permission determination unit 59 controls the regulator 24 to restore the output voltage of the alternator 22 to the value before reduction (voltage adjustment step).
  • step ST3 of FIG. 2 If it is determined that the disconnection is present, the determination result of step ST3 of FIG. 2 is No, and the process proceeds to step ST2, and the automatic stop process is not performed. In this case, it is possible to adopt a mode in which the driver of the vehicle is notified of the conditions and measures, such as displaying that the on-vehicle battery 30 is disconnected on an in-vehicle monitor (not shown).
  • the second current in a state where the output voltage of the alternator 22 is lowered without judging that there is a disconnection immediately. Based on the detection value, determine the presence or absence of disconnection. Therefore, when the electric power output from the alternator 22 is supplied to each of the electric loads 44 and the vehicle battery 30 is neither charged nor discharged, the possibility of erroneously determining that the vehicle battery 30 is broken is reduced. be able to.
  • the output voltage of the alternator 22 when the regulator 24 reduces the output voltage of the alternator 22, the output voltage is made smaller than the battery open circuit voltage.
  • the on-board battery 30 when the on-board battery 30 is fully charged or the SOC of the on-board battery 30 is larger as it approaches full charge, current in the charging direction is less likely to flow through the on-board battery 30.
  • the output voltage of the alternator 22 since the output voltage of the alternator 22 is lowered to promote the flow of the current in the discharge direction to the on-vehicle battery 30, it is determined whether or not the disconnection occurs without being affected by the difficulty of the current flowing in the charge direction. be able to.
  • the regulator 24 sets the output voltage of the alternator 22 to a value before the reduction after the determination of the presence or absence of the disconnection by the stop permission determination unit 59. Restore. Therefore, it is possible to prevent the occurrence of an adverse effect due to the decrease in the output voltage of the alternator 22 in the traveling of the vehicle after the determination of the presence or absence of the disconnection.
  • the aspect in which the output voltage of the alternator 22 is reduced to detect the second current detection value when the first current detection value is regarded as 0 A has been described, but, for example, the first current When the detected value is regarded as 0A, it may be determined that there is a disconnection immediately.
  • the step of detecting the second current detection value in a state where the voltage detection value is lower than the battery open voltage in steps ST12 to ST15 has been described, but the voltage detection value is lower than the battery open voltage.
  • the second current detection value may be detected in a state of being reduced by a predetermined value or more (for example, 0.5 V or more). In this case, when the output voltage of the alternator 22 is sufficiently reduced, the current in the discharge direction easily flows to the on-vehicle battery 30, and it is easy to determine the presence or absence of the disconnection in the subsequent step ST16.
  • stop control device and the stop control method of the engine have been described in detail, but the above description is an exemplification in all aspects, and the stop control device and the stop control method of the engine are limited thereto. It is not a thing. It is understood that numerous modifications not illustrated may be envisaged without departing from the scope of the engine's shutdown control device and shutdown control method.
  • stop control device 5 detection unit 10 engine 22 alternator 24 voltage adjustment unit (regulator) 30 car battery 40 starter 50 ECU 58 Stop control unit 59 Stop permission judgment unit ST1 to ST4, ST10 to ST21 Step

Abstract

The present invention prevents idling of an engine from being stopped when there is a disconnected wire in a battery. This engine shutdown control device is for an engine-driven vehicle having mounted therein an in-vehicle battery, an alternator that is connected to the in-vehicle battery and that is for generating electricity while the engine is running, and a starter for starting the engine by using the electric power supplied from the in-vehicle battery. The engine shutdown control device is provided with: a shutdown control unit which shuts down the engine upon receipt of shutdown permission information in the case when the speed of the vehicle has dropped to a level lower than a prescribed value; a detection unit which detects the current flowing to the in-vehicle battery and the voltage applied to the in-vehicle battery; and a shutdown permission/rejection determination unit which, on the basis of the current detection value and the voltage detection value detected by the detection unit, determines whether or not there is a disconnected wire in the in-vehicle battery, and transmits the shutdown permission information to the shutdown control unit in the case when it is determined that there are no disconnected wires.

Description

エンジンの停止制御装置及び停止制御方法Engine stop control device and stop control method
 この発明は、エンジンの自動停止を制御する技術に関する。 The present invention relates to a technology for controlling an automatic stop of an engine.
 一般に、エンジンの稼働に伴って発電するオルタネータ、エンジンを始動するスタータ、並びにオルタネータ及びスタータに接続された車載バッテリを搭載し、エンジンで駆動される車両が知られている。またエンジンを自動的に停止させるアイドリングストップについても知られている。 Generally, there is known an engine driven vehicle equipped with an alternator that generates electric power as the engine operates, a starter that starts the engine, and an onboard battery connected to the alternator and the starter. It is also known about idling stop which stops an engine automatically.
 特許文献1には、このような車両において、車載バッテリの充電状態(state of charge を略してSOCともいう)を推定し、その推定結果に基づいて車載バッテリの残存容量が十分に残っているかを判断し、残っていればアイドリングストップを許可する技術が開示されている。また、非特許文献1は、SOCとバッテリ開放電圧(バッテリ開回路電圧ともいう(open circuit voltageを略してOCVともいう))との関係を開示している。 In such a vehicle, Patent Document 1 estimates the state of charge of a car battery (abbreviated as state of charge is also referred to as SOC), and based on the estimation result, it is determined whether the remaining capacity of the car battery remains sufficiently. A technique is disclosed that permits judgment if there is an idling stop if it is determined. Further, Non-Patent Document 1 discloses the relationship between SOC and battery open voltage (also referred to as battery open circuit voltage (also referred to as open circuit voltage as OCV)).
特許第5335594号公報Patent No. 5335594 gazette
 しかしながら、車載バッテリの残存容量が十分に残っている場合であっても、車載バッテリにおいて断線がある状態(例えば、車載バッテリ内の極板が損傷している状態や極板と端子とが断絶している状態など)でアイドリングストップを許可すると、車載バッテリからもオルタネータからもスタータへ電力供給をできず、エンジンの再始動に失敗して車両を再発進できなくなる。 However, even if the remaining capacity of the in-vehicle battery remains, a state in which there is a break in the in-vehicle battery (for example, a state in which the electrode plate in the in-vehicle battery is damaged; If the idling stop is permitted in such a state, the vehicle battery and the alternator can not supply power to the starter, and the engine can not be restarted and the vehicle can not be restarted.
 これは車両の立ち往生を招来し、ひいては交通渋滞や交通事故にも繋がるため、アイドリングストップを許可する技術に関し、改善の余地があった。 Since this causes the vehicle to be stuck, which in turn leads to traffic congestion and traffic accidents, there is room for improvement in the technology for permitting idling stop.
 そこで、本発明は、アイドリングストップ後のエンジン再始動の失敗を回避する、エンジンの停止制御装置及び停止制御方法を提供することを目的とする。 Then, an object of this invention is to provide the stop control apparatus and stop control method of an engine which avoid the failure of the engine restart after idling stop.
 上記課題を解決するため、車載バッテリ、前記車載バッテリに接続されておりエンジンの稼働に伴って発電するオルタネータ、及び前記車載バッテリから供給される電力を用いて前記エンジンを始動するスタータを搭載し、前記エンジンで駆動される車両において、前記エンジンの自動停止を制御する停止制御装置は、前記車両の車速が所定値よりも低下している場合で停止許可情報を受けたときに前記エンジンを停止する停止制御部と、前記車載バッテリに流れる電流及び前記車載バッテリにかかる電圧を検出する検出部と、前記検出部により検出された電流検出値及び電圧検出値に基づいて、前記車載バッテリにおける断線の有無を判断し、前記断線がないと判断した場合に、前記停止許可情報を前記停止制御部に伝達する停止許否判断部とを備える。 In order to solve the above problems, an on-board battery, an alternator connected to the on-board battery and generating electric power with operation of the engine, and a starter for starting the engine using power supplied from the on-board battery are mounted. In the vehicle driven by the engine, the stop control device for controlling the automatic stop of the engine stops the engine when receiving the stop permission information when the vehicle speed of the vehicle is lower than a predetermined value. Whether or not there is a break in the on-vehicle battery based on a stop control unit, a detection unit for detecting a current flowing in the on-vehicle battery and a voltage applied to the on-vehicle battery, and a current detection value and a voltage detection value detected by the detection unit When it is determined that there is no disconnection, the stop permission information is transmitted to the stop control unit. And a part.
 本発明では、車載バッテリに断線がある状態でアイドリングストップすることを防止するので、アイドリングストップ後のエンジン始動の失敗が回避される。 In the present invention, since the idling stop is prevented in the state where the vehicle battery is disconnected, the failure of the engine start after the idling stop is avoided.
停止制御装置が適用された車両の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a vehicle to which a stop control device is applied. エンジンの始動処理の後に自動停止処理を行う際のフロー図である。It is a flow figure at the time of performing automatic stop processing after engine start processing. 車載バッテリにおける断線の有無を判断する際のフロー図である。It is a flowchart at the time of judging the existence of disconnection in a car battery.
 {実施形態}
 図1は、停止制御装置1の構成を示す図である。停止制御装置1はエンジン10と共に不図示の車両に搭載される。
{Embodiment}
FIG. 1 is a diagram showing the configuration of the stop control device 1. The stop control device 1 is mounted on a vehicle (not shown) together with the engine 10.
 エンジン10の出力軸(クランク軸)12は不図示の駆動輪に機械的に接続され、車両を駆動する。オルタネータ22は、エンジン10の稼働に伴って発電する発電機であり、車両に搭載される。具体的には、オルタネータ22のロータがエンジン10のクランク軸12と機械的に連結されており、クランク軸12の回転力によって該ロータが回転することでオルタネータ22が発電する。よって、オルタネータ22は、エンジン10の稼働以外に、車両のコースティングによって発電してもよい。図1ではこれらの機械的な連結を一点鎖線で模式的に表した。 An output shaft (crankshaft) 12 of the engine 10 is mechanically connected to driving wheels (not shown) to drive the vehicle. The alternator 22 is a generator that generates electric power with the operation of the engine 10, and is mounted on a vehicle. Specifically, the rotor of the alternator 22 is mechanically connected to the crankshaft 12 of the engine 10, and the rotation of the rotor by the rotational force of the crankshaft 12 causes the alternator 22 to generate power. Therefore, the alternator 22 may generate electricity by coasting of the vehicle, in addition to the operation of the engine 10. In FIG. 1, these mechanical connections are schematically represented by alternate long and short dash lines.
 レギュレータ24は、オルタネータ22の出力を制御する制御回路であり、オルタネータ22の出力電圧を調整する電圧調整部として機能する。ここでは、オルタネータ22とレギュレータ24とを別個の構成として説明しているが、オルタネータ22の内部にその出力電圧を調整可能なレギュレータを設けてレギュレータ24を省略してもよい。 The regulator 24 is a control circuit that controls the output of the alternator 22 and functions as a voltage adjustment unit that adjusts the output voltage of the alternator 22. Here, although the alternator 22 and the regulator 24 are described as separate components, a regulator capable of adjusting the output voltage may be provided inside the alternator 22 and the regulator 24 may be omitted.
 レギュレータ24のバッテリ端子TBには、車載バッテリ30が接続されている。車載バッテリ30には例えば鉛蓄電池が採用される。そして、車載バッテリ30には、これと並列に、複数のスイッチ42のそれぞれを介して複数の電気負荷44のそれぞれが接続されている。複数の電気負荷44の中には、走行中の車両の車速を測定する速度計が含まれる。 An on-vehicle battery 30 is connected to the battery terminal TB of the regulator 24. For example, a lead storage battery is adopted as the on-vehicle battery 30. Then, each of the plurality of electric loads 44 is connected to the on-vehicle battery 30 in parallel with each of the plurality of switches 42. The plurality of electrical loads 44 include a speedometer that measures the speed of the vehicle in motion.
 更に、車載バッテリ30には、電気負荷としてスタータ40が接続されている。スタータ40はクランク軸12に機械的に接続され、エンジン10に初期回転を付与してエンジン10を始動する。この機械的な接続もまた、図1においては鎖線で模式的に表されている。 Furthermore, a starter 40 is connected to the on-vehicle battery 30 as an electrical load. The starter 40 is mechanically connected to the crankshaft 12 and applies initial rotation to the engine 10 to start the engine 10. This mechanical connection is also schematically represented by a dashed line in FIG.
 バッテリ端子TB及び車載バッテリ30間の給電ラインJ1と、レギュレータ24のイグニッション端子TIGとは、イグニッションスイッチ46を介して接続されている。 The power supply line J1 between the battery terminal TB and the in-vehicle battery 30, and the ignition terminal TIG of the regulator 24 are connected via an ignition switch 46.
 車載バッテリ30の電気負荷の1つとしてのECU(Electronic Control Unit)50は、記憶装置を備え、マイクロコンピュータを主体として構成される。この記憶装置は、ECU50の主電源(ここでは、イグニッションスイッチ46)の状態にかかわらず、常時記憶を保持する。具体的には、記憶装置は、常時給電状態が維持されるバックアップRAMや、給電の有無にかかわらず常時記憶を保持するEEPROM等の不揮発性メモリなどである。 An ECU (Electronic Control Unit) 50 as one of the electrical loads of the on-vehicle battery 30 includes a storage device, and is mainly configured of a microcomputer. This memory device always holds the memory regardless of the state of the main power supply (here, the ignition switch 46) of the ECU 50. Specifically, the storage device is, for example, a backup RAM whose power supply state is maintained at all times, or a nonvolatile memory such as an EEPROM which always stores data regardless of the presence or absence of power supply.
 電流センサ52は給電ラインJ1上に設けられ、車載バッテリ30から放電される電流及び車載バッテリ30へと充電される電流を検出し、ECU50に電流検出値を出力する。電圧センサ56は、車載バッテリ30にかかる電圧を検出し、ECU50に電圧検出値を出力する。このように、電流センサ52及び電圧センサ56は、車載バッテリ30を流れる電流および車載バッテリ30にかかる電圧を検出する検出部5として機能する。 The current sensor 52 is provided on the feed line J1, detects the current discharged from the on-board battery 30, and the current charged to the on-board battery 30, and outputs a current detection value to the ECU 50. The voltage sensor 56 detects a voltage applied to the on-vehicle battery 30, and outputs a voltage detection value to the ECU 50. As described above, the current sensor 52 and the voltage sensor 56 function as the detection unit 5 that detects the current flowing through the in-vehicle battery 30 and the voltage applied to the in-vehicle battery 30.
 ECU50は、図1に示された構成要素に関していえば、エンジン10、オルタネータ22、及びレギュレータ24を制御対象とする。特に、ECU50では、電流センサ52から出力された電流検出値及び電圧センサ56から出力された電圧検出値に基づき、オルタネータ22の出力電圧を制御する。より詳細には、ECU50は、レギュレータ24の指令端子TRに、出力電圧の指令値(指令電圧)を出力する。これにより、レギュレータ24では、オルタネータ22の出力電圧を指令電圧に調整する。 The ECU 50 controls the engine 10, the alternator 22, and the regulator 24 with respect to the components shown in FIG. In particular, the ECU 50 controls the output voltage of the alternator 22 based on the current detection value output from the current sensor 52 and the voltage detection value output from the voltage sensor 56. More specifically, the ECU 50 outputs a command value (command voltage) of the output voltage to the command terminal TR of the regulator 24. Thus, the regulator 24 adjusts the output voltage of the alternator 22 to the command voltage.
 また、ECU50は、レギュレータ24のモニタ端子TFを介して、オルタネータ22及びレギュレータ24の発電能力を示す発電状態信号を取り込む。ここで、発電能力とは、レギュレータ24内のスイッチング素子のオン・オフの時比率(詳しくは、オン・オフ周期に対するオン時間の比:Duty)によって定量化される値である。 Further, the ECU 50 takes in a power generation state signal indicating the power generation capacity of the alternator 22 and the regulator 24 via the monitor terminal TF of the regulator 24. Here, the power generation capacity is a value quantified by the on / off ratio of the switching element in the regulator 24 (specifically, the ratio of the on time to the on / off cycle: Duty).
 出力電圧の制御は、車載バッテリ30の充電状態を許容範囲内としつつも、オルタネータ22の発電によるエンジン10の燃料消費量の増量分を極力低減するように行われる。ここで、車載バッテリ30の充電状態は、車載バッテリ30の放電能力(より詳細には、車載バッテリ30の満充電に対する現在の充電量の割合)を定量化した物理量である。非特許文献1に示すように、車載バッテリ30の端子が開放されているときの電圧であるバッテリ開放電圧は車載バッテリ30の充電状態に依存することが知られている。また、バッテリ開放電圧と車載バッテリ30の充電状態との関係は、ECU50の記憶装置に記憶される。 The control of the output voltage is performed so as to reduce the amount of increase of the fuel consumption of the engine 10 by the power generation of the alternator 22 as much as possible while keeping the charge state of the on-board battery 30 within the allowable range. Here, the charge state of the on-vehicle battery 30 is a physical quantity that quantifies the discharge capacity of the on-vehicle battery 30 (more specifically, the ratio of the current charge amount to the full charge of the on-vehicle battery 30). As shown in Non-Patent Document 1, it is known that the battery open voltage, which is a voltage when the terminal of the on-vehicle battery 30 is open, depends on the charge state of the on-vehicle battery 30. Further, the relationship between the battery open voltage and the state of charge of the on-board battery 30 is stored in the storage device of the ECU 50.
 また、ECU50は、始動制御部57と、停止制御部58と、停止許否判断部59とを有する。 Further, the ECU 50 has a start control unit 57, a stop control unit 58, and a stop permission determination unit 59.
 始動制御部57は、エンジン10の始動処理を制御する機能部であり、スタータ40に車載バッテリ30から電力を供給してエンジン10を始動させる。ここで、始動処理とは、車両の運転手がイグニッションスイッチ46をオン操作することにより、始動制御部57が機能してエンジン10を始動させる処理である。 The start control unit 57 is a functional unit that controls the start processing of the engine 10, supplies power from the on-board battery 30 to the starter 40, and starts the engine 10. Here, the start process is a process in which the start control unit 57 functions to start the engine 10 when the driver of the vehicle turns on the ignition switch 46.
 停止制御部58及び停止許否判断部59は、エンジン10の自動停止処理を行う機能部である。ここでいう自動停止処理とは、走行中の車両の車速が低下した際にエンジン10を自動的に停止させる処理であり、アイドリングストップを指す。 The stop control unit 58 and the stop permission determination unit 59 are functional units that perform an automatic stop process of the engine 10. The automatic stop processing referred to here is processing for automatically stopping the engine 10 when the vehicle speed of the running vehicle decreases, and refers to idling stop.
 停止制御部58は、車両の車速が所定値よりも低下している場合であって後述する停止許可情報を全て受けたときに、エンジン10を停止する。 The stop control unit 58 stops the engine 10 when the vehicle speed of the vehicle is lower than a predetermined value and all the stop permission information described later is received.
 停止許否判断部59は、電流センサ52により検出された電流検出値及び電圧センサ56により検出された電圧検出値に基づいて、車載バッテリ30における断線の有無を判断し、断線がないと判断した場合に停止許可情報60を停止制御部58に伝達する。 The stop permission determination unit 59 determines the presence or absence of a disconnection in the on-vehicle battery 30 based on the current detection value detected by the current sensor 52 and the voltage detection value detected by the voltage sensor 56, and determines that there is no disconnection. The stop permission information 60 is transmitted to the stop control unit 58.
 通常、アイドリングストップ中には、各種電気負荷44への電力を車載バッテリ30から供給しなければならないので、車載バッテリ30のSOCは低下していく。また、次回の始動処理時には、車載バッテリ30からスタータ40に電力を供給しなければならない。したがって、アイドリング中のSOC低下量分、及び次回始動時のスタータ40への電力供給分の電力を車載バッテリ30に蓄電させた状態で、自動停止処理を許可する必要がある。 Normally, since the power to the various electric loads 44 must be supplied from the on-vehicle battery 30 during idling stop, the SOC of the on-vehicle battery 30 decreases. Further, at the time of the next start processing, power must be supplied from the on-vehicle battery 30 to the starter 40. Therefore, it is necessary to permit the automatic stop processing in a state where the on-vehicle battery 30 stores the SOC reduction amount during idling and the electric power supply to the starter 40 at the next start.
 よって、自動停止処理を許可するための根拠として採用される情報としては、上記の停止許可情報60(車載バッテリ30における断線がないときに伝達される情報)に加え、他の停止許可情報(例えば、SOCが十分に確保されているときに伝達される情報)がある。SOCが十分に確保されているか否かは、例えば、特許文献1に示すように、電流検出値が基準値よりも小さいか否か、或いは電圧検出値が基準値よりも大きいか否かという判断に基づく。 Therefore, as information to be adopted as the basis for permitting the automatic stop process, in addition to the above-mentioned stop permission information 60 (information transmitted when there is no disconnection in the on-vehicle battery 30), other stop permission information (for example, , Information transmitted when SOC is sufficiently secured. For example, as shown in Patent Document 1, it is determined whether the current detection value is smaller than the reference value or whether the voltage detection value is larger than the reference value as to whether the SOC is sufficiently secured. based on.
 停止制御装置1は、始動制御部57、停止制御部58、停止許否判断部59、及び検出部5を含んで構成され、エンジン10の始動と停止とを制御する装置である。停止制御装置1による始動処理及び自動停止処理の詳細については、図2及び図3を参照しつつ後述する。 The stop control device 1 includes a start control unit 57, a stop control unit 58, a stop permission determination unit 59, and a detection unit 5, and controls the start and stop of the engine 10. The details of the start process and the automatic stop process by the stop control device 1 will be described later with reference to FIGS. 2 and 3.
 図2は、エンジン10の始動処理の後に自動停止処理を行う際のフロー図である。以下では、図2を参照しつつ、エンジン10の始動処理の後に自動停止処理を行う際の処理の流れについて説明する。 FIG. 2 is a flow chart of the automatic stop process after the start process of the engine 10. As shown in FIG. In the following, the flow of processing when automatic stop processing is performed after start processing of the engine 10 will be described with reference to FIG. 2.
 まず、図2のステップST1に示すように、車両の運転手がイグニッションスイッチ46をオン操作することで、始動制御部57がエンジン10を始動させる。その後、停止制御装置1が、ステップST2において車速が所定値よりも低下したか否かについて判断する。車速の情報は上述の車速計から得られる。車両の走行が開始した直後では速度は低下せずに上昇するので、車速が所定値よりも低くても当該判断結果はNoであり、ステップST2の判断が継続する。車速が所定値以上の期間でも同様にステップST2の判断結果はNoであり、走行状態が維持される。 First, as shown in step ST1 of FIG. 2, the driver of the vehicle turns on the ignition switch 46, whereby the start control unit 57 starts the engine 10. After that, the stop control device 1 determines whether or not the vehicle speed has dropped below a predetermined value in step ST2. Information on the vehicle speed can be obtained from the above-described vehicle speed meter. Since the speed rises without decreasing immediately after the start of traveling of the vehicle, the determination result is No even if the vehicle speed is lower than the predetermined value, and the determination of step ST2 is continued. Similarly, even when the vehicle speed is equal to or higher than the predetermined value, the determination result of step ST2 is No, and the traveling state is maintained.
 そして、車速が所定値よりも低下すると、ステップST2の判断結果がYesとなり、処理がステップST3に移行する。ステップST3では、自動停止処理を許可するために必要な停止許可情報が全て揃ったかについて停止制御装置1が判定する。停止制御部58に全ての停止許可情報(例えば、車載バッテリ30における断線がないときに伝達される情報及びSOCが十分に確保されているときに伝達される情報の2つの2つの停止許可情報)が入力された場合には、図2のステップST3の判断結果はYesであり、処理がステップST4に移行し、ステップST4では停止制御部58によって自動停止処理が行われる(停止工程)。他方、停止許可情報の少なくとも1つが欠けている場合には、図2のステップST3でNoに移行し、自動停止処理が行われない。 Then, when the vehicle speed decreases below the predetermined value, the determination result of step ST2 becomes Yes, and the process proceeds to step ST3. In step ST3, the stop control device 1 determines whether all the stop permission information necessary for permitting the automatic stop processing is complete. All stop permission information (for example, two stop permission information of information transmitted when there is no disconnection in the on-vehicle battery 30 and information transmitted when the SOC is sufficiently ensured) to the stop control unit 58 Is input, the determination result in step ST3 of FIG. 2 is Yes, the process proceeds to step ST4, and the automatic stop process is performed by the stop control unit 58 in step ST4 (stop process). On the other hand, when at least one of the stop permission information is missing, the process proceeds to No in step ST3 of FIG. 2, and the automatic stop process is not performed.
 このように、停止許可情報60を用いることで、車載バッテリに断線がある状態でアイドリングストップすることを防止し、アイドリングストップ後のエンジン再始動の失敗を回避できる。また、SOCが十分に確保されているという停止許可情報を用いることで、SOCが不足した状態でアイドリングストップすることを防止し、アイドリングストップ後のエンジン再始動の失敗を回避できる。 As described above, by using the stop permission information 60, it is possible to prevent the idling stop in the state where the vehicle battery is disconnected, and to avoid the failure of the engine restart after the idling stop. Further, by using the stop permission information that the SOC is sufficiently secured, it is possible to prevent the idling stop in the state where the SOC is insufficient, and to avoid the failure of the engine restart after the idling stop.
 図3は、車載バッテリ30における断線の有無を判断する際のフロー図である。図3に示す各工程は、例えば、図2に示すステップST2の判断結果がNoからYesに移行したタイミングで実行される。以下では、図3を参照しつつ、車載バッテリ30における断線の有無を判断する際の処理の流れについて説明する。 FIG. 3 is a flow chart when judging the presence or absence of disconnection in the on-vehicle battery 30. As shown in FIG. Each step shown in FIG. 3 is executed, for example, at the timing when the determination result of step ST2 shown in FIG. 2 shifts from No to Yes. Hereinafter, the flow of processing when determining the presence or absence of disconnection in the on-vehicle battery 30 will be described with reference to FIG. 3.
 なお、本明細書において、車載バッテリ30における断線とは、車載バッテリ30から延出する電線と電圧センサ56から延出する電線との2つの接続箇所からみて車載バッテリ30側で生じている断線を指す。具体的には、車載バッテリ30における断線がある場合とは、例えば、車載バッテリ内の極板が損傷している場合、車載バッテリ内の極板と端子とが断絶している場合、車載バッテリ30と外部電線との接続不良が生じている場合、及び上記2つの接続箇所の区間で車載バッテリ30から延出する電線が切れている場合、などが挙げられる。 In the present specification, disconnection in the on-vehicle battery 30 refers to disconnection occurring in the on-vehicle battery 30 as viewed from the two connection points of the electric wire extending from the in-vehicle battery 30 and the electric wire extending from the voltage sensor 56. Point to. Specifically, when there is a break in the in-vehicle battery 30, for example, when the electrode plate in the in-vehicle battery is damaged, or when the electrode plate in the in-vehicle battery and the terminal are disconnected, the in-vehicle battery 30 is In the case where there is a connection failure with the external electric wire, or in the case where the electric wire extending from the in-vehicle battery 30 is disconnected in the section of the two connection points, and the like.
 図2のステップST2の判断結果がNoからYesへ移行すると、図3のステップST10が実行される。ステップST10では電流センサ52が車載バッテリ30を流れる電流(図3では「バッテリ電流」と表記)を検出し、検出された第1の電流検出値を停止許否判断部59に与える(検出工程)。 When the determination result of step ST2 of FIG. 2 shifts from No to Yes, step ST10 of FIG. 3 is executed. In step ST10, the current sensor 52 detects the current flowing in the on-vehicle battery 30 (indicated as "battery current" in FIG. 3), and gives the detected first current detection value to the stop permission determination unit 59 (detection step).
 その後、処理はステップST11に移行し、停止許否判断部59は、第1の電流検出値を参照し、該第1の電流検出値の絶対値と第1の非負の所定値との大小関係を比較し、第1の電流検出値が0A(アンペア。以下同様。)とみなせるか否かについて判断する。する。該所定値には、例えば0.1mA(ミリアンペア。以下同様。)など、車載バッテリ30に通常流れる電流に比べて十分に小さい値が設定される。 Thereafter, the process proceeds to step ST11, the stop permission determination unit 59 refers to the first current detection value, and compares the magnitude relationship between the absolute value of the first current detection value and the first non-negative predetermined value. The comparison is made to determine whether the first current detection value can be regarded as 0 A (ampere, and so forth). Do. As the predetermined value, for example, a value sufficiently smaller than the current that normally flows to the on-vehicle battery 30, such as 0.1 mA (milliampere, the same applies hereinafter), is set.
 比較の結果、第1の電流検出値の絶対値が第1の非負の所定値を超える場合には、図3のステップST11の判断結果はNoであり、処理がステップST19に移行する。ステップST19では、図3に示すように、停止許否判断部59は車載バッテリ30における断線がないと判断する。このときには、停止許否判断部59は停止許可情報60を停止制御部58に与える(停止許否判断工程)。 If the absolute value of the first current detection value exceeds the first non-negative predetermined value as a result of comparison, the determination result of step ST11 of FIG. 3 is No, and the process proceeds to step ST19. In step ST19, as shown in FIG. 3, the stop permission determination unit 59 determines that there is no disconnection in the on-vehicle battery 30. At this time, the stop permission determination unit 59 gives the stop permission information 60 to the stop control unit 58 (stop permission determination step).
 他方、比較の結果、第1の電流検出値の絶対値が所定値以下の場合には、図3のステップST11の判断結果はYesであり、処理がステップST12に移行する。このように、第1の電流検出値が0Aとみなせるか否かの判断は、第1の電流検出値の絶対値と第1の非負の所定値との大小関係の比較によって行われる。第1の電流検出値が0Aとみなせる場合としては、車載バッテリ30に断線が生じている場合と、車載バッテリ30に断線は生じておらずオルタネータ22から出力された電力が各電気負荷44に供給されており車載バッテリ30には充電も放電もされていない場合との2つが想定される。前者の場合には自動停止処理を許可できない一方で、後者の場合には自動停止処理を許可可能であるので、後述するステップST12~ST16の各工程でこの2つの場合の場合分けを行う。 On the other hand, when the absolute value of the first current detection value is equal to or less than the predetermined value as a result of comparison, the determination result in step ST11 of FIG. 3 is Yes, and the process proceeds to step ST12. As described above, the determination as to whether or not the first current detection value can be regarded as 0 A is made by comparing the magnitude relationship between the absolute value of the first current detection value and the first non-negative predetermined value. In the case where the first current detection value can be regarded as 0 A, a disconnection occurs in the on-vehicle battery 30, and no disconnection occurs in the on-vehicle battery 30, and the electric power output from the alternator 22 is supplied to each electric load 44 It is assumed that the on-vehicle battery 30 is neither charged nor discharged. In the former case, the automatic stop process can not be permitted. On the other hand, the automatic stop process can be permitted in the latter case. Therefore, these two cases are classified in each step of steps ST12 to ST16 described later.
 図3のステップST12に示すように、停止許否判断部59は、レギュレータ24を制御してオルタネータ22の出力電圧を低下させる(電圧調整工程)。また、図3のステップST13に示すように、電圧センサ56が車載バッテリ30にかかる電圧を検出し、検出された電圧検出値を停止許否判断部59に与える。そして、図3のステップST14に示すように、停止許否判断部59は、電圧検出値を参照し、該電圧検出値とバッテリ開放電圧との大小関係を比較する。バッテリ開放電圧は、例えば12.8V(ボルト。以下同様。)であり、ECU50の記憶装置に記憶された情報(例えば、バッテリ開放電圧と車載バッテリ30の充電状態との関係)を基に特定される。電圧検出値がバッテリ開放電圧以上の場合には、ステップST14の判断結果がNoであり、処理がステップST12に移行し、ステップST12~ST14が繰り返される。 As shown in step ST12 of FIG. 3, the stop permission determination unit 59 controls the regulator 24 to reduce the output voltage of the alternator 22 (voltage adjustment step). Further, as shown in step ST13 of FIG. 3, the voltage sensor 56 detects the voltage applied to the on-vehicle battery 30, and supplies the detected voltage detection value to the stop permission determination unit 59. Then, as shown in step ST14 of FIG. 3, the stop permission determination unit 59 refers to the voltage detection value and compares the magnitude relationship between the voltage detection value and the battery open voltage. The battery open voltage is, for example, 12.8 V (volts, the same applies hereinafter), and is specified based on the information stored in the storage device of the ECU 50 (for example, the relationship between the battery open voltage and the charge state of the on-vehicle battery 30). Ru. If the voltage detection value is equal to or higher than the battery open circuit voltage, the determination result of step ST14 is No, the process proceeds to step ST12, and steps ST12 to ST14 are repeated.
 その結果、電圧検出値がバッテリ開放電圧よりも小さくなるまでオルタネータ22の出力電圧が低下され、ステップST14の判断結果がYesになり、処理がステップST15に移行する。これにより、上記後者の場合(すなわち、オルタネータ22から出力された電力が各電気負荷44に供給されており車載バッテリ30には充電も放電もされていない場合)であれば、車載バッテリ30に放電方向の電流が流れることが予想される。他方、上記前者の場合(車載バッテリ30に断線が生じている場合)であれば、車載バッテリ30に電流が流れることはない。よって、車載バッテリ30に流れる電流を再び検出することにより、車載バッテリ30に放電方向の電流が流れていれば断線無し、車載バッテリ30に電流が流れていなければ断線有りと判断することができる。 As a result, the output voltage of the alternator 22 is decreased until the voltage detection value becomes smaller than the battery open voltage, the determination result of step ST14 becomes Yes, and the process proceeds to step ST15. Thereby, in the case of the latter case (ie, when the electric power output from the alternator 22 is supplied to each electric load 44 and the on-vehicle battery 30 is neither charged nor discharged), the vehicle battery 30 is discharged. It is expected that current in the direction will flow. On the other hand, in the case of the former case (when the vehicle battery 30 is disconnected), no current flows in the vehicle battery 30. Therefore, it is possible to determine that there is no disconnection if the current flowing in the in-vehicle battery 30 flows, and no disconnection if the current does not flow in the on-vehicle battery 30, by detecting the current flowing to the in-vehicle battery 30 again.
 図3のステップST15に示すように、オルタネータ22の出力電圧が低下された状態で、電流センサ52が車載バッテリ30を流れる電流を検出し、検出された第2の電流検出値を停止許否判断部59に与える(検出工程)。停止許否判断部59は、第2の電流検出値を参照し、該第2の電流検出値の絶対値と第2の非負の所定値との大小関係を比較し、第2の電流検出値が0Aとみなせるか否かについて判断する。該第2の非負の所定値には、図3のステップST11と同様、例えば0.1mAなど、車載バッテリ30に通常流れる電流に比べて十分に小さい値が設定される。 As shown in step ST15 of FIG. 3, the current sensor 52 detects the current flowing through the on-vehicle battery 30 in a state where the output voltage of the alternator 22 is lowered, and the second current detection value detected is a permission / prohibition decision unit To 59 (detection step). The stop permission determination unit 59 refers to the second current detection value, compares the magnitude relation between the absolute value of the second current detection value and the second non-negative predetermined value, and the second current detection value It is judged whether it can be regarded as 0A. As the second non-negative predetermined value, a value sufficiently smaller than the current normally flowing to the on-vehicle battery 30, such as 0.1 mA, for example, is set as in step ST11 of FIG.
 比較の結果、第2の電流検出値の絶対値が第2の非負の所定値を超える場合には、図3のステップST16の判断結果はNoであり、処理がステップST20に移行する。ステップST20では、図3に示すように、停止許否判断部59は車載バッテリ30における断線がないと判断する。このときには、停止許否判断部59は停止許可情報60を停止制御部58に与える(停止許否判断工程)。また、断線有無の判断後に、図3のステップST21に示すように、停止許否判断部59はレギュレータ24を制御してオルタネータ22の出力電圧を低下前の値に復元させる(電圧調整工程)。 If the absolute value of the second current detection value exceeds the second non-negative predetermined value as a result of comparison, the determination result of step ST16 of FIG. 3 is No, and the process proceeds to step ST20. In step ST20, as shown in FIG. 3, the stop permission determination unit 59 determines that there is no disconnection in the on-vehicle battery 30. At this time, the stop permission determination unit 59 gives the stop permission information 60 to the stop control unit 58 (stop permission determination step). After the determination of the presence or absence of the disconnection, as shown in step ST21 of FIG. 3, the stop permission determination unit 59 controls the regulator 24 to restore the output voltage of the alternator 22 to the value before reduction (voltage adjustment step).
 他方、比較の結果、第2の電流検出値の絶対値が所定値以下の場合には、図3のステップST16の判断結果はYesであり、処理がステップST17に移行する。このように、第2の電流検出値が0Aとみなせるか否かの判断は、第2の電流検出値の絶対値と第2の非負の所定値との大小関係の比較によって行われる。第2の電流検出値も0Aとみなせる場合、オルタネータ22の出力電圧低下後も車載バッテリ30からの放電が生じていないことから、車載バッテリ30に断線が生じている可能性が高い。よって、ステップST17では、図3に示すように、停止許否判断部59は車載バッテリ30における断線があると判断する。このときには、停止許否判断部59は停止許可情報60を停止制御部58に与えない(停止許否判断工程)。また、断線有無の判断後に、図3のステップST18に示すように、停止許否判断部59はレギュレータ24を制御してオルタネータ22の出力電圧を低下前の値に復元させる(電圧調整工程)。 On the other hand, if the absolute value of the second current detection value is less than or equal to the predetermined value as a result of comparison, the determination result of step ST16 of FIG. 3 is Yes, and the process proceeds to step ST17. As described above, the determination as to whether or not the second current detection value can be regarded as 0 A is made by comparing the magnitude relation between the absolute value of the second current detection value and the second non-negative predetermined value. If the second current detection value can also be regarded as 0 A, there is a high possibility that the vehicle battery 30 is disconnected because the vehicle battery 30 is not discharged even after the output voltage of the alternator 22 has dropped. Therefore, in step ST17, as shown in FIG. 3, the stop permission determination unit 59 determines that there is a break in the on-vehicle battery 30. At this time, the stop permission determination unit 59 does not give the stop permission information 60 to the stop control unit 58 (stop permission determination step). Further, after the determination of the presence or absence of the disconnection, as shown in step ST18 of FIG. 3, the stop permission determination unit 59 controls the regulator 24 to restore the output voltage of the alternator 22 to the value before reduction (voltage adjustment step).
 断線有りと判断された場合には、図2のステップST3の判断結果がNoであり、ステップST2に移行することになり、自動停止処理が実行されない。この場合、図示省略の車内モニタに車載バッテリ30が断線している旨を表示するなど、車両の運転手に状況や措置を報知する態様が採用されうる。 If it is determined that the disconnection is present, the determination result of step ST3 of FIG. 2 is No, and the process proceeds to step ST2, and the automatic stop process is not performed. In this case, it is possible to adopt a mode in which the driver of the vehicle is notified of the conditions and measures, such as displaying that the on-vehicle battery 30 is disconnected on an in-vehicle monitor (not shown).
 以上説明したように、本実施形態の技術では、車載バッテリに断線がある状態でアイドリングストップすることを防止するので、アイドリングストップ後のエンジン再始動の失敗を回避できる。 As described above, according to the technology of the present embodiment, it is possible to prevent the idling stop in the state where the vehicle battery is disconnected, so it is possible to avoid the failure of the engine restart after the idling stop.
 また、本実施形態の技術では、第1の電流検出値が0Aとみなせる場合であっても、直ちに断線有りとは判断せずに、オルタネータ22の出力電圧を低下した状態での第2の電流検出値を基に断線の有無を判断する。よって、オルタネータ22から出力された電力が各電気負荷44に供給されており車載バッテリ30には充電も放電もされていない場合に、車載バッテリ30に断線があると誤って判断する可能性を減らすことができる。 Further, in the technology of the present embodiment, even if the first current detection value can be regarded as 0 A, the second current in a state where the output voltage of the alternator 22 is lowered without judging that there is a disconnection immediately. Based on the detection value, determine the presence or absence of disconnection. Therefore, when the electric power output from the alternator 22 is supplied to each of the electric loads 44 and the vehicle battery 30 is neither charged nor discharged, the possibility of erroneously determining that the vehicle battery 30 is broken is reduced. be able to.
 また、本実施形態の技術では、レギュレータ24がオルタネータ22の出力電圧を低下する際に該出力電圧をバッテリ開放電圧よりも小さくする。一般に、車載バッテリ30が満充電の場合又は車載バッテリ30のSOCが満充電に近いほど大きい場合には、車載バッテリ30に充電方向への電流が流れ難い。本実施形態では、オルタネータ22の出力電圧を低下して車載バッテリ30に放電方向への電流が流れることを促すので、充電方向に電流が流れにくいことの影響を受けずに断線の有無を判断することができる。 Further, in the technique of the present embodiment, when the regulator 24 reduces the output voltage of the alternator 22, the output voltage is made smaller than the battery open circuit voltage. In general, when the on-board battery 30 is fully charged or the SOC of the on-board battery 30 is larger as it approaches full charge, current in the charging direction is less likely to flow through the on-board battery 30. In the present embodiment, since the output voltage of the alternator 22 is lowered to promote the flow of the current in the discharge direction to the on-vehicle battery 30, it is determined whether or not the disconnection occurs without being affected by the difficulty of the current flowing in the charge direction. be able to.
 また、本実施形態の技術では、レギュレータ24は、オルタネータ22の出力電圧を低下させた場合に、停止許否判断部59による断線の有無の判断の後に、オルタネータ22の出力電圧を低下前の値に復元させる。よって、断線の有無の判断後の車両の走行において、オルタネータ22の出力電圧低下に起因した悪影響が生じることを防止できる。 Further, in the technology of the present embodiment, when the output voltage of the alternator 22 is reduced, the regulator 24 sets the output voltage of the alternator 22 to a value before the reduction after the determination of the presence or absence of the disconnection by the stop permission determination unit 59. Restore. Therefore, it is possible to prevent the occurrence of an adverse effect due to the decrease in the output voltage of the alternator 22 in the traveling of the vehicle after the determination of the presence or absence of the disconnection.
 {変形例}
 上記実施形態では、車載バッテリ30における断線がないときに伝達される停止許可情報60と、SOCが十分に確保されているときに伝達される停止許可情報を用いる態様について説明したが、さらに他の停止許可情報を用いても構わない。
{Modification}
In the above embodiment, the aspect using the stop permission information 60 transmitted when there is no disconnection in the on-vehicle battery 30 and the stop permission information transmitted when the SOC is sufficiently secured has been described. The stop permission information may be used.
 また、上記実施形態では、第1の電流検出値が0Aとみなされる場合にオルタネータ22の出力電圧を低下して第2の電流検出値を検出する態様について説明したが、例えば、第1の電流検出値が0Aとみなされる場合に直ちに断線有りと判断してもよい。 Further, in the above embodiment, the aspect in which the output voltage of the alternator 22 is reduced to detect the second current detection value when the first current detection value is regarded as 0 A has been described, but, for example, the first current When the detected value is regarded as 0A, it may be determined that there is a disconnection immediately.
 また、上記実施形態では、ステップST12~ST15で電圧検出値をバッテリ開放電圧よりも低下させた状態で第2の電流検出値を検出する態様について説明したが、電圧検出値をバッテリ開放電圧よりも所定値以上(例えば、0.5V以上)低下させた状態で第2の電流検出値を検出する態様でも構わない。この場合、オルタネータ22の出力電圧が十分に低下することにより、車載バッテリ30に放電方向の電流が流れやすくなり、その後のステップST16で断線の有無を判断しやすい。 In the above embodiment, the step of detecting the second current detection value in a state where the voltage detection value is lower than the battery open voltage in steps ST12 to ST15 has been described, but the voltage detection value is lower than the battery open voltage. The second current detection value may be detected in a state of being reduced by a predetermined value or more (for example, 0.5 V or more). In this case, when the output voltage of the alternator 22 is sufficiently reduced, the current in the discharge direction easily flows to the on-vehicle battery 30, and it is easy to determine the presence or absence of the disconnection in the subsequent step ST16.
 以上のようにエンジンの停止制御装置及び停止制御方法は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、エンジンの停止制御装置及び停止制御方法がそれに限定されるものではない。例示されていない無数の変形例が、エンジンの停止制御装置及び停止制御方法の範囲から外れることなく想定され得るものと解される。 As described above, the stop control device and the stop control method of the engine have been described in detail, but the above description is an exemplification in all aspects, and the stop control device and the stop control method of the engine are limited thereto. It is not a thing. It is understood that numerous modifications not illustrated may be envisaged without departing from the scope of the engine's shutdown control device and shutdown control method.
 1 停止制御装置
 5 検出部
 10 エンジン
 22 オルタネータ
 24 電圧調整部(レギュレータ)
 30 車載バッテリ
 40 スタータ
 50 ECU
 58 停止制御部
 59 停止許否判断部
 ST1~ST4,ST10~ST21 ステップ
1 stop control device 5 detection unit 10 engine 22 alternator 24 voltage adjustment unit (regulator)
30 car battery 40 starter 50 ECU
58 Stop control unit 59 Stop permission judgment unit ST1 to ST4, ST10 to ST21 Step

Claims (10)

  1.  車載バッテリ、前記車載バッテリに接続されておりエンジンの稼働に伴って発電するオルタネータ、及び前記車載バッテリから供給される電力を用いて前記エンジンを始動するスタータを搭載し、前記エンジンで駆動される車両において、前記エンジンの自動停止を制御する装置であって、
     前記車両の車速が所定値よりも低下している場合で停止許可情報を受けたときに前記エンジンを停止する停止制御部と、
     前記車載バッテリに流れる電流及び前記車載バッテリにかかる電圧を検出する検出部と、
     前記検出部により検出された電流検出値及び電圧検出値に基づいて、前記車載バッテリにおける断線の有無を判断し、前記断線がないと判断した場合に、前記停止許可情報を前記停止制御部に伝達する停止許否判断部と
    を備える、エンジンの停止制御装置。
    An on-vehicle battery, an alternator connected to the on-vehicle battery and generating electricity with operation of the engine, and a starter for starting the engine using power supplied from the on-vehicle battery are mounted and driven by the engine Device for controlling the automatic stop of the engine,
    A stop control unit that stops the engine when it receives stop permission information when the vehicle speed of the vehicle is lower than a predetermined value;
    A detection unit that detects a current flowing to the on-board battery and a voltage applied to the on-board battery;
    Based on the current detection value and the voltage detection value detected by the detection unit, it is determined whether or not the vehicle battery is disconnected, and the stop permission information is transmitted to the stop control unit when it is determined that the disconnection is not present. An engine stop control device comprising:
  2.  請求項1記載のエンジンの停止制御装置であって、
     前記停止許否判断部は、前記検出部により検出された第1の電流検出値を参照し、前記第1の電流検出値の絶対値が第1の非負の所定値を超える場合には前記断線がないと判断する、エンジンの停止制御装置。
    The engine stop control device according to claim 1, wherein
    The stop permission determination unit refers to the first current detection value detected by the detection unit, and the disconnection occurs when the absolute value of the first current detection value exceeds a first non-negative predetermined value. It is judged that there is no engine stop control device.
  3.  請求項2記載のエンジンの停止制御装置であって、
     前記オルタネータによる出力電圧を調整する電圧調整部、をさらに備え、
     前記第1の電流検出値の前記絶対値が前記第1の非負の所定値以下の場合に、前記電圧調整部は前記出力電圧を低下させ、前記停止許否判断部は前記電圧調整部によって前記出力電圧が低下した状態で前記検出部により検出された第2の電流検出値を参照し、
     前記停止許否判断部は、前記第2の電流検出値の絶対値が第2の非負の所定値以下の場合には前記車載バッテリにおける前記断線があると判断し、前記第2の電流検出値の前記絶対値が前記第2の非負の所定値を超える場合には前記車載バッテリにおける前記断線がないと判断する、エンジンの停止制御装置。
    The engine stop control device according to claim 2,
    And a voltage adjusting unit that adjusts an output voltage of the alternator.
    When the absolute value of the first current detection value is equal to or less than the first non-negative predetermined value, the voltage adjustment unit reduces the output voltage, and the stop permission determination unit determines the output by the voltage adjustment unit. Referring to the second current detection value detected by the detection unit in the state where the voltage is lowered,
    When the absolute value of the second current detection value is equal to or less than a second non-negative predetermined value, the stop permission determination unit determines that the disconnection in the in-vehicle battery is present, and the stop permission determination unit determines the second current detection value. An engine stop control device that determines that the vehicle battery is free of disconnection when the absolute value exceeds the second non-negative predetermined value.
  4.  請求項3記載のエンジンの停止制御装置であって、
     前記電圧調整部は、前記出力電圧を低下させる際に、前記車載バッテリの開放電圧よりも小さくなるまで前記出力電圧を低下させる、エンジンの停止制御装置。
    The engine stop control device according to claim 3, wherein
    The engine stop control device, wherein the voltage adjustment unit reduces the output voltage to a level smaller than the open circuit voltage of the on-board battery when the output voltage is reduced.
  5.  請求項3又は請求項4記載のエンジンの停止制御装置であって、
     前記電圧調整部は、前記出力電圧を低下させた場合、前記停止許否判断部による前記断線の有無の判断の後に、前記出力電圧を低下前の値に復元させる、エンジンの停止制御装置。
    The engine stop control device according to claim 3 or 4, wherein
    The engine stop control device, wherein the voltage adjustment unit restores the output voltage to a value before reduction when the output voltage is reduced, after the determination of presence / absence of disconnection by the stop permission determination unit.
  6.  車載バッテリ、前記車載バッテリに接続されておりエンジンの稼働に伴って発電するオルタネータ、及び前記車載バッテリから供給される電力を用いて前記エンジンを始動するスタータを搭載し、前記エンジンで駆動される車両において、前記エンジンの自動停止を制御する方法であって、
     前記車両の車速が所定値よりも低下した場合で停止許可情報を受けたときに、前記エンジンを停止する停止工程と、
     前記車載バッテリに流れる電流及び前記車載バッテリにかかる電圧を検出する検出工程と、
     前記検出工程で検出された電流検出値及び電圧検出値に基づいて、前記車載バッテリにおける断線の有無を判断し、前記断線がないと判断した場合に前記停止許可情報を出力する停止許否判断工程と
    を備える、エンジンの停止制御方法。
    An on-vehicle battery, an alternator connected to the on-vehicle battery and generating electricity with operation of the engine, and a starter for starting the engine using power supplied from the on-vehicle battery are mounted and driven by the engine A method of controlling the automatic stop of the engine,
    A stop step of stopping the engine when the stop permission information is received when the vehicle speed of the vehicle is lower than a predetermined value;
    A detection step of detecting a current flowing to the on-board battery and a voltage applied to the on-board battery;
    Determining whether or not there is a break in the on-board battery based on the current detection value and the voltage detection value detected in the detection step, and outputting the stop permission information when it is determined that the disconnection does not exist; An engine stop control method comprising:
  7.  請求項6記載のエンジンの停止制御方法であって、
     前記停止許否判断工程では、前記検出工程で検出される第1の電流検出値を参照し、前記第1の電流検出値の絶対値が第1の非負の所定値を超える場合には前記断線がないと判断する、エンジンの停止制御方法。
    The engine stop control method according to claim 6, wherein
    In the stop permission determination step, the first current detection value detected in the detection step is referred to, and the disconnection is caused when the absolute value of the first current detection value exceeds a first non-negative predetermined value. It is determined that the engine stop control method.
  8.  請求項7記載のエンジンの停止制御方法であって、
     前記オルタネータの出力電圧を調整する電圧調整工程、
     をさらに有し、
     前記第1の電流検出値の前記絶対値が前記第1の非負の所定値以下の場合に、前記電圧調整工程で前記出力電圧を低下させ、前記停止許否判断工程では前記電圧調整工程によって前記出力電圧が低下した状態で前記検出工程により検出された第2の電流検出値を参照し、
     前記停止許否判断工程では、前記第2の電流検出値の絶対値が第2の非負の所定値以下の場合には前記車載バッテリにおける前記断線があると判断し、前記第2の電流検出値の絶対値が前記第2の非負の所定値を超える場合には前記車載バッテリにおける前記断線がないと判断する、エンジンの停止制御方法。
    The engine stop control method according to claim 7, wherein
    A voltage adjusting step of adjusting an output voltage of the alternator;
    And have
    When the absolute value of the first current detection value is equal to or less than the first non-negative predetermined value, the output voltage is decreased in the voltage adjustment step, and the output is determined according to the voltage adjustment step in the stop permission determination step. Referring to the second current detection value detected by the detection step in the state where the voltage is lowered,
    In the stop permission determination step, when the absolute value of the second current detection value is equal to or less than a second non-negative predetermined value, it is determined that the disconnection in the on-vehicle battery is present, and the second current detection value is An engine stop control method, wherein it is determined that the vehicle battery is free of disconnection when an absolute value exceeds the second non-negative predetermined value.
  9.  請求項8記載のエンジンの停止制御方法であって、
     前記電圧調整工程は、前記出力電圧を低下させる際に、前記車載バッテリの開放電圧よりも小さくなるまで前記出力電圧を低下させる、エンジンの停止制御方法。
    The engine stop control method according to claim 8, wherein
    The control method of stopping the engine, wherein, in the voltage adjusting step, the output voltage is decreased to a level smaller than the open circuit voltage of the on-board battery when the output voltage is decreased.
  10.  請求項8又は請求項9記載のエンジンの停止制御方法であって、
     前記電圧調整工程は、前記出力電圧を低下させた場合、前記停止許否判断工程における前記断線の有無の判断の後に、前記出力電圧を低下前の値に復元させる、エンジンの停止制御方法。
    The engine stop control method according to claim 8 or 9, wherein
    A method of stopping control of an engine, wherein, when the output voltage is lowered, the voltage adjustment step restores the output voltage to a value before the decrease after the determination of the presence or absence of the disconnection in the stop permission determination step.
PCT/JP2018/033403 2017-09-20 2018-09-10 Engine shutdown control device and engine shutdown control method WO2019059021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-180064 2017-09-20
JP2017180064A JP2019056311A (en) 2017-09-20 2017-09-20 Engine stop control device and stop control method

Publications (1)

Publication Number Publication Date
WO2019059021A1 true WO2019059021A1 (en) 2019-03-28

Family

ID=65810749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033403 WO2019059021A1 (en) 2017-09-20 2018-09-10 Engine shutdown control device and engine shutdown control method

Country Status (2)

Country Link
JP (1) JP2019056311A (en)
WO (1) WO2019059021A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138647A (en) * 2007-12-06 2009-06-25 Fujitsu Ten Ltd Control system and control method
JP2015190451A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 vehicle control device
JP2017026452A (en) * 2015-07-22 2017-02-02 スズキ株式会社 Deterioration determination apparatus of battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138647A (en) * 2007-12-06 2009-06-25 Fujitsu Ten Ltd Control system and control method
JP2015190451A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 vehicle control device
JP2017026452A (en) * 2015-07-22 2017-02-02 スズキ株式会社 Deterioration determination apparatus of battery

Also Published As

Publication number Publication date
JP2019056311A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US11752875B2 (en) Power source system
US9856847B2 (en) Vehicle power source device
US6844634B2 (en) Vehicular electric power generation control apparatus
WO2015015743A1 (en) Vehicular power source system
JP5640950B2 (en) Vehicle control device
JP6598542B2 (en) Power supply device and control method of power supply device
US20170145977A1 (en) Vehicular control apparatus
JP2017127112A (en) Vehicle power supply system
WO2014068918A1 (en) Power supply device for vehicles
US9945342B2 (en) Vehicle control apparatus
US20140046520A1 (en) Method and apparatus for providing hybrid functionality in a vehicle
US20120081127A1 (en) Method for evaluating the ability of a battery to start
WO2018198595A1 (en) In-vehicle power supply system, in-vehicle control device, and power supply control method
CN110654247A (en) Power supply device for vehicle
JP5796545B2 (en) Power system
US7034502B2 (en) Stabilization of a vehicle network by generating short-term available power
WO2019059021A1 (en) Engine shutdown control device and engine shutdown control method
JP6617653B2 (en) Power supply
JP4844440B2 (en) Battery charger
JP6851743B2 (en) Jumping start judgment device
JP2015209126A (en) Power supply device and control method therefor
CN111149270B (en) Vehicle power supply system and power supply control device
JP5442390B2 (en) Automotive refrigeration / refrigeration system
JP2017024461A (en) Power supply device and method of controlling power supply device
EP2363937B1 (en) Power generation control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859890

Country of ref document: EP

Kind code of ref document: A1