WO2019058934A1 - ブレーキ装置 - Google Patents

ブレーキ装置 Download PDF

Info

Publication number
WO2019058934A1
WO2019058934A1 PCT/JP2018/032438 JP2018032438W WO2019058934A1 WO 2019058934 A1 WO2019058934 A1 WO 2019058934A1 JP 2018032438 W JP2018032438 W JP 2018032438W WO 2019058934 A1 WO2019058934 A1 WO 2019058934A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
support pin
support frame
movement
braking
Prior art date
Application number
PCT/JP2018/032438
Other languages
English (en)
French (fr)
Inventor
大河原 義之
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019058934A1 publication Critical patent/WO2019058934A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H5/00Applications or arrangements of brakes with substantially radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • F16D55/2265Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/54Slack adjusters mechanical self-acting in one direction for adjusting excessive play by means of direct linear adjustment

Definitions

  • the present invention relates to a brake device.
  • JP 08-226 467 A is a floating disk brake having a support frame attached to a bogie of a railway vehicle, and a brake main body slidably supported in the axial direction of the wheel with respect to the support frame via a support pin.
  • An apparatus is disclosed.
  • a pair of caliper arms of the brake main body is provided to straddle the wheel (brake disc), and a pressing mechanism is provided for advancing and retracting the brake lining only to one of the caliper arms.
  • one caliper arm provided with the pressing mechanism is provided with a gap adjusting device for automatically adjusting the gap between the brake lining and the brake disc at the time of releasing the brake, but the pressing mechanism is provided.
  • the other caliper arm that is not provided is not provided with a clearance adjustment mechanism. Therefore, there is a possibility that the other brake lining and the brake disc may come into contact with each other when the brake device is not braked. Therefore, the inventors of the present invention propose to move the brake body with respect to the support frame to adjust the gap between the other brake lining and the brake disc.
  • the brake main body tilts with respect to the support frame so as to follow the tilting of the running wheel. Therefore, when moving the brake body with respect to the support frame to adjust the gap between the other brake lining and the brake disc, it is necessary to consider the inclination of the brake body with respect to the support frame.
  • An object of the present invention is to provide a brake device capable of adjusting a gap between a brake lining and a brake disc even when the brake body is inclined with respect to a support frame.
  • the brake device has first and second caliper arms supporting first and second brake linings capable of applying a frictional force by being in sliding contact with the brake disc from both sides of the brake disc.
  • a brake body a support pin axially movably supported by a support frame attached to a vehicle body or a carriage and supporting the brake body, a first caliper arm provided to press the first brake lining against the brake disc and the brake
  • a pressing mechanism which moves the main body in the axial direction of the support pin to press the second brake lining against the brake disc, and a gap which returns the brake main body moved in the axial direction of the support pin at the time of braking
  • An adjusting mechanism, the gap adjusting mechanism is provided on the support frame, and the axial direction of the support pin Movement move in the radial direction while being restricted to is allowed.
  • FIG. 1 is a plan view of a brake device according to an embodiment of the present invention.
  • FIG. 2 is a front view of the brake device.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 and showing the periphery of the first support pin.
  • FIG. 4 is a view showing a state in which the brake body is inclined in one direction with respect to the support frame.
  • FIG. 5 is a view showing a state where the brake main body is inclined in the other direction with respect to the support frame.
  • FIG. 6A is a conceptual diagram for explaining the movement of the clearance adjustment mechanism when the brake main body is inclined with respect to the support frame.
  • FIG. 6B is a conceptual diagram for explaining the movement of a modification of the gap adjusting mechanism when the brake body is inclined with respect to the support frame.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism and shows a non-braking state.
  • FIG. 8 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism, and shows a case where the brake main body moves by less than the reference movement amount to be in a braking state.
  • FIG. 9 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism, and shows a state in which the brake main body has moved by the reference movement amount.
  • FIG. 7 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism and shows a non-braking state.
  • FIG. 8 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism, and shows a case where the brake main body moves by less than the reference movement amount to be in a braking state.
  • FIG. 9 is an enlarged
  • FIG. 10 is an enlarged cross-sectional view showing the vicinity of the gap adjusting mechanism, and shows a case where the brake main body moves beyond the reference movement amount to be in the braking state.
  • FIG. 11 is a cross-sectional view of a brake device according to a modification of the present invention, showing the periphery of a first support pin.
  • FIG. 12 is a cross-sectional view of a brake device according to another modification of the present invention, showing the periphery of the first support pin.
  • the brake device 100 is a floating pneumatic brake for a railway vehicle in which compressed air is used as a working fluid. Instead of compressed air, other working fluid such as working oil may be used.
  • the brake device 100 applies a frictional force to the brake disc 2 rotating with the wheel 1. Specifically, the brake device 100 applies frictional force to the brake disc 2 by the first and second brake linings 3 and 4 capable of applying frictional force by sliding contact with the brake disc from both sides of the brake disc 2. The rotation of the wheel 1 is braked.
  • the brake disc 2 is formed on both sides of the wheel 1 and rotates integrally with the wheel 1. Instead of forming the brake disc 2 integrally with the wheel 1, a separate brake disc 2 that rotates with the wheel 1 may be provided.
  • the brake device 100 is mounted on a brake main body 10 having first and second caliper arms 12 and 14 respectively supporting the first and second brake linings 3 and 4 via a guide plate 5 and a carriage (not shown).
  • the first and second support pins 21 and 22 (see FIG. 2) which are axially movably supported by the support frame 20 and support the brake body 10, and the guide plate 5 supported by the first brake lining 3
  • the brake main body 10 is provided with a pair of anchor pins 33 supported so as to be able to move forward and backward, and a pressing portion 35 as a pressing mechanism that presses the first and second brake linings 3 and 4 against the brake disc 2 by the pressure of compressed air.
  • the brake body 10 is supported by the bogie via the support frame 20 when the brake device 100 is applied to a railway vehicle.
  • the brake body 10 is supported by a vehicle body (not shown).
  • the brake body 10 is a yoke that connects the first caliper arm 12 and the second caliper arm 14 with the first caliper arm 12 and the second caliper arm 14 extending so as to straddle the brake disc 2. It has the part 13 and the 1st, 2nd bracket parts 15 and 16 for supporting the brake main body 10 on a trolley
  • the basic configurations of the peripheral structure of the first support pin 21 and the peripheral structure of the second support pin 22 are the same. Therefore, the peripheral structure of the first support pin 21 will be specifically described below, and the description of the second support pin 22 will be omitted.
  • the first support pin 21 is inserted into the insertion hole 20 a of the support frame 20 as shown in FIG. 3. Both ends of the first support pin 21 are respectively connected to the first and second bracket portions 15 and 16 of the brake body 10.
  • the first support pin 21 is provided parallel to the rotation axis of the wheel 1 and supported by the support frame 20 so as to be movable in the axial direction.
  • the brake body 10 is supported by the support frame 20 so that the first support pin 21 can move in the axial direction.
  • the exposed portion of the first support pin 21 is covered by a rubber boot 25 and protected from dust and the like.
  • the brake body 10 is slidably supported floating relative to the support frame 20 by the first support pins 21.
  • the illustration of the boot 25 is omitted except for FIG.
  • the first and second brake linings 3 and 4 have back plate portions 3a and 4a fixed to the guide plate 5, and friction members 3b and 4b abutting on the brake disc 2 at the time of braking.
  • the friction members 3b and 4b consist of a plurality of segments and are fixed to the surfaces of the back plate portions 3a and 4a.
  • the first and second brake linings 3 and 4 brake the rotation of the wheel 1 by the frictional force generated by the contact between the friction members 3 b and 4 b and the brake disc 2.
  • the first and second brake linings 3 and 4 face the brake disc 2 at predetermined intervals set in advance, respectively, when the brakes are not braked (the state shown in FIG. 1). At the time of braking, the first and second brake linings 3 and 4 move toward the brake disc 2 in response to the pressing force of the pressing portion 35, and are pressed in contact with the brake disc 2 in parallel.
  • the guide plate 5 has a dovetail groove 5a which is formed along the longitudinal direction and in which the back plate portion 3a of the first brake lining 3 is engaged.
  • the guide plate 5 is supported by the brake main body 10 at both longitudinal ends by the pair of anchor pins 33.
  • One anchor pin 33 rotatably supports one end (upper end in FIG. 2) of the guide plate 5 on the brake body 10, and the other anchor pin 33 engages the other end (lower end in FIG. 2) of the guide plate 5 Lock on 10
  • the first caliper arm 12 of the brake body 10 has a pair of adjusters 30 disposed at both ends in the longitudinal direction (vertical direction in FIG. 2) and a pressing portion 35 disposed between the pair of adjusters 30. Provided.
  • the adjuster 30 adjusts the relative position of the first brake lining 3 to the brake disc 2 at a constant time when the brake is not being braked.
  • the adjusters 30 are respectively fastened to the upper and lower end portions of the brake body 10 by the anchor bolts 32.
  • the adjuster 30 is provided so as to be able to move forward and backward with respect to the lining receiver 31 fixed to the brake body 10 by the anchor bolt 32 and the lining receiver 31 to support the first brake lining 3 on the brake body 10
  • Anchor pin 33 a return spring (not shown) that biases the first brake lining 3 in a direction to move away from the brake disc 2
  • the gap between the first brake lining 3 and the brake disc 2 is adjusted to a constant
  • a first gap adjusting mechanism (not shown).
  • the anchor pin 33 When the first brake lining 3 approaches the brake disc 2, the anchor pin 33 is pulled out from the lining receiver 31 by the guide plate 5 displaced together with the first brake lining 3 and axially displaced.
  • the anchor pin 33 resists the brake disc 2 from moving the first brake lining 3 in the circumferential direction by the frictional force at the time of braking when the first brake lining 3 is in sliding contact with the brake disc 2, thereby the first brake lining Hold three.
  • the return spring and the first gap adjusting mechanism are accommodated on the inner periphery of the anchor pin 33.
  • the return spring is a coil spring that is compressed and interposed on the inner circumference of the anchor pin 33.
  • the braking state is a state in which the first and second brake linings 3 and 4 are pressed by the brake disc 2 by the pressing portion 35 described later.
  • the non-braking state is a state in which the pressing force pressed against the brake disc 2 by the pressing portion 35 does not act on the first and second brake linings 3 and 4.
  • the first gap adjustment mechanism adjusts the amount of return of the first brake lining 3 due to the biasing force of the return spring at the time of non-braking when it is constant. That is, the first gap adjusting mechanism keeps the distance between the first brake lining 3 and the brake disc 2 constant at all times during non-braking.
  • the anchor pin 33 returns to the original position before braking at the time of non-braking.
  • the first gap adjusting mechanism is not braking at the time of braking. Advance the position of by the amount of the worn thickness. As a result, the distance between the first brake lining 3 and the brake disc 2 at the time of non-braking can be kept constant at all times.
  • the pressing portion 35 presses the first brake lining 3 against the brake disc 2 by the pressure of compressed air and moves the brake main body 10 in the axial direction of the first support pin 21 by its reaction force to brake the second brake lining 4.
  • the disc 2 is pressed.
  • the pressing portion 35 can have any configuration as long as it presses the first and second brake linings 3 and 4 against the brake disc 2. Therefore, although the detailed description of the pressing portion 35 is omitted, for example, the pressing portion 35 deforms the diaphragm by adjusting the air pressure in the pressure chamber provided inside, and causes the piston to withdraw from the cylinder by the deformation of the diaphragm. . Thereby, the pressing portion 35 presses the first brake lining 3 toward the brake disc 2 rightward in FIG. 1 via the guide plate 5, and the reaction force moves the brake body 10 leftward in FIG. The second brake lining 4 is pulled toward the brake disc 2. In this manner, the brake disc 2 is held between the first and second brake linings 3 and 4 so that the frictional force as the braking force is exerted.
  • the moving direction of the brake body 10 at the time of braking of the brake device 100 in other words, the movement of the brake body 10 such that the second brake lining 4 approaches the brake disc 2 and is pressed.
  • the direction is referred to as "pressing direction”.
  • the moving direction of the brake main body 10 in which the second brake lining 4 and the brake disc 2 are separated is referred to as "canceling direction”.
  • the brake device 100 is provided in a spherical bearing 26 provided in the insertion hole 20 a of the support frame 20 and slidably supporting the first support pin 21, and in the insertion hole 20 a of the support frame 20.
  • a pair of rubber bushes 27 and 28 provided on both sides in the axial direction of the spherical bearing 26 and slidably supporting the first support pin 21 and the brake main body 10 moved in the axial direction of the first support pin 21 during braking.
  • a second gap adjusting mechanism as a gap adjusting mechanism for returning a set distance in the opposite direction when releasing the brake.
  • the spherical bearing 26 includes an outer ring 26a and an inner ring 26b having bearing surfaces slidably fitted to each other.
  • the outer ring 26a and the inner ring 26b engage in relative rotation.
  • the outer ring 26 a is fitted to the inner peripheral surface of the insertion hole 20 a of the support frame 20.
  • the first support pin 21 is slidably inserted into the inner ring 26b.
  • the spherical bearing 26 pivotally supports the brake main body 10 with respect to the support frame 20 and slides in the axial direction of the first support pin 21 (rotational axis direction of the wheel 1) with respect to the support frame 20 Support floating as possible.
  • the support frame 20 has an engagement groove 29b formed on the inner peripheral surface, which restricts the movement of the second gap adjusting mechanism 40 in the axial direction by engaging a ring body 49 of the second gap adjusting mechanism 40 described later.
  • the support frame 20 has a support frame main body 24 attached to a vehicle body or a carriage, and a fixing ring 29 attached to the support frame main body 24 and having an engagement groove 29b formed on the inner periphery.
  • the support frame main body 24 has an annular fixing groove 20b on the outer periphery of the end.
  • the fixing groove 20b is a groove used to fix the boot 25 (see FIG. 1) when the second gap adjusting mechanism 40 is not provided.
  • the fixing ring 29 is attached to axial ends of the first and second support pins 21 and 22 in the support frame main body 24.
  • the fixing ring 29 includes a locking portion 29 a locked to the fixing groove 20 b of the support frame main body 24, an engagement groove 29 b, a boot groove 29 c for attaching the boot 25, and the fixing ring 29 to the support frame main body 24.
  • an outer peripheral groove 29d to which a retaining ring (not shown) to be fixed is attached.
  • the second gap adjusting mechanism 40 can be easily assembled to the brake device 100, and can be easily retrofitted to the existing brake device 100, and assembly compatibility can be ensured. Furthermore, maintenance and replacement of each component of the second gap adjustment mechanism 40 can be easily performed.
  • the fixing ring 29 also has a locking portion 29a that is locked to the fixing groove 20b that is normally used to attach the boot 25, and a boot groove 29c for attaching the boot 25.
  • the second gap adjusting mechanism 40 can be attached using the fixing groove 20b of the existing brake device 100, and the boot 25 can be attached as usual.
  • the second gap adjusting mechanism 40 separates the second brake lining 4 close to the brake disk 2 at the time of braking by a set distance at the time of releasing the braking.
  • the second gap adjusting mechanism 40 is provided on the inner periphery of the fixing ring 29 and exerts a reaction force against the movement of the clamp portion 40a capable of clamping the first support pin 21 and the brake main body 10 at the time of braking. It has a release spring 50 as a biasing member for biasing the clamp portion 40 a and a ring body 49 provided on the outer periphery of the first support pin 21 and in contact with the support frame 20.
  • the ring body 49 axially supports the release spring 50 with the clamp portion 40a.
  • the ring body 49 abuts on the end of the support frame 20.
  • the ring body 49 is pressed against the end of the support frame 20 when the second gap adjustment mechanism 40 is in operation.
  • the internal configuration of the second gap adjusting mechanism 40 will be described in detail later with reference to FIG.
  • the second gap adjusting mechanism 40 is provided on the support frame 20, and restricts axial movement of the first support pin 21 and permits radial movement.
  • the inner diameter of the bottom of the engaging groove 29 b of the fixing ring 29 is formed larger than the outer diameter of the ring body 49 of the second gap adjusting mechanism 40. Therefore, even if the brake main body 10 is inclined with respect to the support frame 20, the ring body 49 can be moved in the engagement groove 29b to maintain the engaged state.
  • the ring body 49 of the second gap adjusting mechanism 40 when the distance between the inner diameter of the bottom of the engagement groove 29b and the outer diameter of the ring body 49 of the second gap adjusting mechanism 40 is the maximum inclination angle ⁇ max [deg] of the brake body 10 with respect to the support frame 20 The displacement amount of the ring body 49 is larger than the displacement amount. Therefore, even when the brake main body 10 is inclined with respect to the support frame 20 by the maximum inclination angle ⁇ max, the ring body 49 can move in the engagement groove 29 b and maintain the engaged state.
  • the brake body 10 is inclined in the left-right direction (the rotation axis direction of the wheel 1) with respect to the support frame 20 so as to follow the tilting of the wheel 1 during traveling.
  • the maximum inclination angle ⁇ max of the brake body 10 with respect to the support frame 20 is, for example, ⁇ 3 [deg].
  • the second gap adjusting mechanism 40 is floatingly supported so as to be movable in the radial direction with respect to the support frame 20. Therefore, as shown in FIGS. 4 and 5, even when the brake body 10 is inclined with respect to the support frame 20 by the angle ⁇ [deg] in one direction or the other direction, the ring body 49 of the second gap adjusting mechanism 40 At least a portion is engaged with the engagement groove 29 b of the fixing ring 29. Therefore, even in this state, the movement of the second gap adjusting mechanism 40 in the axial direction is restricted, so the second brake lining 4 close to the brake disk 2 can be separated by a set distance at the time of braking release. Therefore, in the floating brake device 100, the contact between the second brake lining 4 supported by the second caliper arm 14 where the pressing portion 35 is not provided and the brake disc 2 can be prevented.
  • the ring body 49 is formed in a circular shape. Thereby, at least a part of the ring body 49 is engaged with the engagement groove 29b of the fixing ring 29 even when the brake body 10 is inclined in the left-right direction with respect to the support frame 20 (a state shown by a two-dot chain line) ).
  • the ring body 49 may be formed in an elliptical shape. In this case, the ring body 49 is arranged to move in the direction of the short side of the oval when the brake body 10 inclines to the left and right with respect to the support frame 20.
  • the ring body 49 may have a shape in which at least a part is engaged with the engagement groove 29 b when the brake body 10 is inclined to the left and right with respect to the support frame 20.
  • the release spring 50 is a coil spring that biases the clamp portion 40 a that clamps the first support pin 21 in the release direction.
  • the release spring 50 When the brake body 10 and the first support pin 21 move in the pressing direction at the time of braking, the release spring 50 generates a reaction force to the movement, and the brake body 10 and the first support pin 21 move through the clamp portion 40a. And is biased in the release direction. Thereby, the brake main body 10 and the first support pin 21 are moved in the releasing direction by the biasing force of the release spring 50 when not braking, and a predetermined gap is formed between the second brake lining 4 and the brake disc 2.
  • the brake body 10 and the first support pin 21 are urged in the release direction by the release spring 50 even in the non-braking state. This prevents the brake main body 10 and the first support pin 21 from moving in the pressing direction due to vibration of the vehicle or the like at the time of non-braking.
  • the clamp portion 40 a includes a retainer 41 as a wedge member having a wedge surface 41 a forming a wedge space with the outer peripheral surface of the first support pin 21, a rolling element 42 accommodated in the wedge space, and a rolling element 42.
  • a clamp spring 43 as a pressing member for pressing the retainer 41 so as to press the wedge surface 41 a from the axial direction of the first support pin 21, and between the retainer 41 and the first support pin 21 in the radial direction
  • a cylindrical inner member 44 having a through hole 45a opening in the surface.
  • the retainer 41 is a cylindrical member provided on the outer periphery of the inner member 44.
  • the retainer 41 has a tapered wedge surface 41 a that is inclined with respect to the axial direction of the first support pin 21.
  • the retainer 41 forms a wedge space between the outer circumferential surface of the first support pin 21 and the wedge space whose radial interval gradually narrows along the axial direction of the first support pin 21 by the wedge surface 41 a.
  • a shim ring 41 b for adjusting a clearance and a fixing ring 41 c for fixing the shim ring 41 b to the retainer 41 are provided between the retainer 41 and a flange portion 47 described later of the inner member 44.
  • the rolling element 42 is formed in a cylindrical shape, and contacts both the outer peripheral surface of the first support pin 21 and the wedge surface 41 a through the through hole 45 a.
  • the rolling element 42 is not limited to a cylindrical shape, and may be formed in a spherical shape. Moreover, although the single rolling element 42 is shown in figure in FIG. 7, the number of the rolling elements 42 is not restricted to this, You may be provided with two or more. By providing the plurality of rolling elements 42, the clamp portion 40a can stably support the first support pin 21.
  • the inner member 44 is formed as a cylindrical main body 45 in which the through hole 45 a is formed, and extends radially outward from the outer peripheral surface of the main body 45 as a receiving portion for supporting the clamp spring 43 with the retainer 41.
  • the spring receiving portion 46 is provided on the opposite side to the flange portion 47 with the through hole 45 a interposed therebetween.
  • the clamp spring 43 is interposed between the spring receiving portion 46 and the retainer 41 in a compressed state, and biases the retainer 41 in the right direction in FIG. 7 so that the rolling element 42 is pressed against the wedge surface 41a. Thereby, the rolling element 42 is pushed toward the narrow portion (left side portion in FIG. 7) in the wedge space.
  • the clamp part 40a clamps the first support pin 21 in this manner.
  • the spring receiving portion 46 has a spring receiving surface 46 a against which the clamp spring 43 abuts, and an abutting surface 46 b against which the ring body 49 abuts.
  • the spring receiver 46 is pressed against the C ring 48 by the biasing force of the clamp spring 43.
  • the spring receiver 46 has an axial position defined by the C ring 48.
  • the first support pin 21 in the non-braking state is indicated by a broken line.
  • the axial distance between the flange portion 47 of the clamp portion 40a and the second bracket portion 16 of the brake body 10 will be referred to as a "relative distance" between the clamp portion 40a and the brake body 10.
  • the relative distance in the state where the second brake lining 4 is not worn is set to “L0”.
  • the wheel 1 When the railway vehicle travels, the wheel 1 is rotating at high speed.
  • the brake device 100 is switched to the braking state by the operation of the driver or the like, the pressing portion 35 (see FIG. 1) is moved to the first brake lining 3 via the guide plate 5 by the compressed air supplied from the air pressure source. Is pressed toward the brake disc 2 provided on the wheel 1.
  • a reaction force that causes the pressing portion 35 to press the first brake lining 3 acts on the brake body 10.
  • the brake main body 10 is attached with the release spring 50 together with the first support pin 21 and the clamp portion 40a by the reaction force of the pressing portion 35 while keeping the relative distance L0 with the clamp portion 40a. It moves in the pressing direction against the force. Therefore, the second brake lining 4 is drawn toward the brake disc 2, and the first and second brake linings 3 and 4 abut from both sides of the brake disc 2 to generate a frictional force, and the rotation of the wheel 1 is braked. Ru.
  • the railway vehicle will stop at a reduced speed.
  • the first brake lining 3 separates from being in contact with the brake disc 2 by the restoring force of the return spring provided inside the adjuster 30. Do. Further, the compressed air in the pressure chamber is discharged from the through hole (not shown), and the first brake lining 3 returns to the position before braking.
  • the brake disc 2 and the first brake lining 3 face each other again at a constant interval by the action of the first gap adjusting mechanism.
  • the brake body 10 when the compressed air in the pressure chamber is discharged, the brake body 10, the first support pin 21, and the clamp portion 40a receive the biasing force of the release spring 50 compressed at the time of braking as a restoring force, and release direction Move towards The brake main body 10, the first support pin 21, and the clamp portion 40a move in the release direction until the contact surface 46b of the spring receiving portion 46 abuts on the ring body 49, and the state before braking (FIG. 7) State).
  • the brake disc 2 and the second brake lining 4 face each other with a constant gap, separated from each other. Therefore, the contact between the second brake lining 4 and the brake disc 2 when the brake device 100 is released is prevented. Thus, the wear of the second brake lining 4 can be suppressed, and the life of the second brake lining 4 can be improved. In addition, the wheel 1 can be rotated without being affected by the brake device 100.
  • the guide plate 5 advances toward the brake disc 2 by the amount of wear of the friction member 3b by the first gap adjusting mechanism.
  • the gap between the first brake lining 3 and the brake disc 2 is kept constant.
  • the second caliper arm 14 is not provided with the first gap adjusting mechanism, the friction member 4b of the second brake lining 4 is worn (hereinafter referred to simply as "the second brake lining 4 is worn"). Then, the gap between the second brake lining 4 and the brake disc 2 becomes large. For this reason, in order to bring the second brake lining 4 and the brake disc 2 into contact from the non-braking state to make the braking state, the moving amount of the brake main body 10 moving in the pressing direction becomes large.
  • the brake device 100 when the brake body 10 moves in the pressing direction by the predetermined reference movement amount S0 from the non-braking state (state shown in FIG. 7), the first support pin 21 and the clamp portion 40a are relative to each other.
  • the clamp 40 a and the release spring 50 are configured such that the force to be moved is balanced with the force for clamping the first support pin 21 by the clamp 40 a (hereinafter referred to as “clamping force”).
  • the force for relatively moving the first support pin 21 and the clamp portion 40a acts on the brake body 10 from the pressing portion 35.
  • the biasing force of the release spring 50 which acts on the clamp portion 40a and changes in accordance with the amount of movement of the clamp portion 40a. That is, the relative movement force is a reaction force of the pressing portion 35 acting in the pressing direction with respect to the brake main body 10 and the first support pin 21, and an urging force of the release spring 50 acting in the releasing direction with respect to the clamp portion 40a.
  • the reaction force of the pressing portion 35 is determined according to the desired braking force
  • the relative movement force is mainly determined by the biasing force of the release spring 50.
  • the clamp force of the clamp portion 40 a is a frictional force generated between the rolling element 42 and the first support pin 21 with respect to the relative movement force.
  • the clamping force is determined by the biasing force of the clamp spring 43, the shape of the wedge surface 41a, the shape of the rolling element 42, the coefficient of friction between the first support pin 21 and the rolling element 42, and the like. By setting these appropriately, a desired clamping force can be obtained.
  • the clamping force of the clamping unit 40 a is constant regardless of the amount of movement of the brake body 10. In FIGS. 8 to 10, the clamping force and the relative moving force are schematically indicated by arrows.
  • the force for relatively moving in the braking state is the clamp portion 40a.
  • the clamp portion 40a and the first support pin 21 do not move relative to each other. That is, at the time of braking, the brake main body 10, the first support pin 21, and the clamp portion 40a are integrally pressed while maintaining the relative distance L0 while maintaining the first support pin 21 clamped by the clamp portion 40a. Move in the direction.
  • the biasing force of the release spring 50 when the brake body 10 moves by the reference movement amount S0 is referred to as "reference biasing force”.
  • the release spring 50 is further compressed, so that the force for relative movement is between the rolling element 42 and the first support pin 21. It exceeds the generated frictional force (clamping force).
  • the clamp of the clamp portion 40a is released, and the first support pin 21 and the brake body 10 move in the pressing direction while exceeding the reference movement amount S0, while the clamp portion 40a is further pressed in the pressing direction. It does not move.
  • relative movement between the clamp portion 40a and the first support pin 21 and the brake body 10 is permitted.
  • the force for causing the relative movement to exceed the frictional force (clamping force) between the rolling element 42 and the first support pin 21 allows the clamp portion 40 a and the first support to be A state in which the pin 21 moves relative to the pin 21 is a state in which the clamp of the first support pin 21 by the clamp unit 40 a is released.
  • the first support pin 21 and the brake main body 10 move relative to the clamp portion 40a by a movement amount S2 such that the brake device 100 is in the braking state.
  • the relative distance between the brake body 10 and the clamp portion 40a is L1 smaller than L0.
  • the brake main body 10, the first support pin 21, and the clamp portion 40a move integrally in the releasing direction by the reference biasing force of the release spring 50. Therefore, the brake disc 2 and the second brake lining 4 are separated from each other and face each other again with a fixed gap.
  • the clamp unit 40a does not move in the pressing direction when the clamp is released, and the brake body 10 and the first support pin 21 move the reference movement amount S0. Move in the pressing direction beyond.
  • the clamp part 40a in which the clamp is released clamps the first support pin 21 again after the braking of the brake device 100 is released.
  • the relative distance between the brake body 10 and the clamp portion 40a is L0.
  • the support pin 21 is clamped.
  • the relative distance is L1 smaller than L0.
  • the first support pin 21 is clamped in position. That is, the position at which the first support pin 21 is clamped is shifted by the relative movement distance T between the clamp portion 40 a and the brake main body 10 as compared to before the clamp is released. Therefore, when the brake main body 10 is returned in the releasing direction by the release spring 50, the position of the brake main body 10 after the release of the braking is shifted by the relative movement distance T in the pressing direction.
  • the release spring 50 and the clamp portion 40 a can exhibit a gap adjusting function of adjusting the gap between the second brake lining 4 and the brake disc 2. As a result, even if the wear of the second brake lining 4 progresses, the gap between the second brake lining 4 and the brake disc 2 can be appropriately secured.
  • the biasing force of the release spring 50 is a resistance to the movement of the brake body 10 at the time of braking, so if it becomes excessive, the pressing force of the second brake lining 4 against the brake disc 2 decreases and the braking force becomes unstable. There is a fear.
  • the brake device 100 when the amount of wear of the second brake lining 4 increases and the amount of movement of the brake body 10 at the time of braking exceeds the reference amount of movement S0, the clamp by the clamp portion 40a is released. Therefore, the biasing force of the release spring 50 does not exceed the reference biasing force. In other words, even if the amount of wear of the second brake lining 4 increases, the reaction force from the release spring 50 is suppressed below the reference biasing force, and an increase in resistance to the movement of the brake body 10 can be suppressed. As described above, even if the brake main body 10 moves in the pressing direction by exceeding the reference movement amount S0, the biasing force of the release spring 50 is suppressed to be equal to or lower than the reference biasing force, and the stability of the braking force is secured.
  • the biasing force of the release spring 50 does not exceed the reference biasing force even if the moving amount of the brake main body 10 in the pressing direction exceeds the reference moving amount S0.
  • the release spring 50 biases the clamp portion 40a to separate the second brake lining 4 and the brake disc 2 when braking is not performed, and the clamp is released when the reference movement amount S0 is exceeded, and the reaction force of the release spring 50. Can be suppressed. That is, the resistance to the movement of the brake body 10 at the time of braking is suppressed, and the second brake lining 4 and the brake disc 2 can be separated by the biasing force of the release spring 50 at the time of non-braking.
  • the reference movement amount S0 is determined such that the stability of the braking force and the life of the second brake lining 4 become desired. Specifically, according to the reaction force of the release spring 50 and the movement amount of the brake body 10 (the wear amount of the second brake lining 4), the clamp force and the release determined based on the configuration of the clamp portion 40a The relationship with the relative movement force determined by the spring 50 is adjusted and determined in advance.
  • the set load of the clamp unit 40a is set to, for example, 1000N. Further, the biasing force of the clamp spring 43 is set to, for example, about 200 N or less. Thereby, the clamping force of the clamp part 40a, ie, the frictional force between the rolling element 42 and the 1st support pin 21, becomes about 800N.
  • the biasing force (set load) of the release spring 50 in the non-braking state is set to, for example, about 500N.
  • the biasing force of the release spring 50 is set so as not to exceed 800 N in a state where the brake main body 10 is moved by a movement amount equal to or less than the reference movement amount S0 and the second brake lining 4 contacts the brake disc 2.
  • the biasing force of the release spring 50 is about 700 N when the second brake lining 4 comes into contact with the brake disc 2 to be in a braking state with no wear occurring in the second brake lining 4.
  • the release spring 50 When the brake body 10 moves beyond the reference movement amount S0, the release spring 50 is further compressed and exerts an urging force of about 1000 N which is slightly larger than 800 N. Therefore, with the clamping force of 800 N, the relative movement between the clamp portion 40 a and the first support pin 21 can not be restricted, and both move relative to each other, and the clamp is released.
  • the clamp 40a When the clamp by the clamp 40a is released, the clamp 40a does not move further in the pressing direction, and the reaction force of the release spring 50 does not increase. That is, the biasing force of the release spring 50 does not greatly exceed 800N. Therefore, even if the amount of movement of the brake body 10 increases beyond the reference amount of movement S0 during braking, the reaction force against the movement of the brake body 10 is suppressed to about 800N. Therefore, the contact between the second brake lining 4 and the brake disc 2 at the time of non-braking is prevented while securing the stability of the braking force of the brake device 100.
  • the above specific example showed only an example about a clamping force and the force made to move relatively, and the structure of the brake device 100 is not restricted to the said specific example.
  • the force for moving relative to the clamping force may be configured as in the above-described example, or may be configured otherwise.
  • the second gap adjustment mechanism 40 restricts the axial movement of the first support pin 21 and is capable of radial movement. Therefore, even in a state where the brake body 10 is inclined with respect to the support frame 20, the movement of the second gap adjusting mechanism 40 in the axial direction is restricted. Therefore, even when the brake main body 10 is inclined with respect to the support frame 20, the brake main body 10 moved in the axial direction of the first support pin 21 at the time of braking is returned by the set distance in the opposite direction at the time of releasing the braking. Therefore, it is possible to provide the brake device 100 capable of adjusting the gap between the second brake lining 4 and the brake disc 2 even when the brake body 10 is inclined with respect to the support frame 20.
  • the reaction force of the release spring 50 accompanying the movement of the brake main body 10 at the time of braking is applied to the first support pin 21 via the clamp portion 40a.
  • the brake main body 10 is moved in the direction in which the second brake lining 4 and the brake disc 2 are separated by the reaction force. Therefore, the contact between the second brake lining 4 and the brake disc 2 when the brake device 100 is not braking is prevented. Therefore, the wear of the second brake lining 4 at the time of non-braking is suppressed, and the life of the second brake lining 4 can be improved.
  • the amount of movement of the brake body 10 necessary for braking increases due to the wear of the second brake lining 4, and when the brake body 10 moves in the pressing direction beyond the reference movement amount S0, the first support pin 21 and the clamp portion 40a Of the first support pin 21 and the rolling element 42 of the clamp portion 40a. Since the clamp portion 40a moves relative to the first support pin 21 without moving in the pressing direction, the reaction force of the release spring 50 does not increase even if the brake body 10 moves beyond the reference moving amount S0. As a result, even if the amount of movement of the brake body 10 increases beyond the reference amount of movement S0 during braking, an increase in reaction force with respect to the movement of the brake body 10 is suppressed. Therefore, while ensuring the stability of the braking force of the brake device 100, the gap between the second brake lining 4 and the brake disc 2 at the time of non-braking is appropriately secured to prevent contact between the two, The life of the lining 4 can be improved.
  • the relative movement force and the clamping force are set so that the first support pin 21 and the clamp portion 40a move relative to each other when the movement amount of the brake body 10 exceeds the reference movement amount S0. There is. Therefore, the clamp can be released without providing a release mechanism for releasing the clamp, and the space around the clamp portion 40a can be saved, and the brake device 100 can be miniaturized.
  • the brake device 100 which applies a frictional force to the brake disc 2 which rotates with the wheel 1 has first and second brake linings 3 and 4 which can apply frictional force by being in sliding contact with the brake disc 2 from both sides of the brake disc 2
  • the brake body 10 having the first and second caliper arms 12 and 14 to support, and the first and second support pins that are axially movably supported by the support frame 20 attached to the carriage and support the brake body 10 21 and 22, and provided on the first caliper arm 12, the first brake lining 3 is pressed against the brake disc 2 and the brake main body 10 is moved in the axial direction of the first and second support pins 21 and 22 to make the second brake
  • the pressing portion 35 pressing the lining 4 against the brake disc 2 and the first and second support pins 21 and 22 during braking
  • a second gap adjusting mechanism 40 for returning the brake main body 10 moved in the opposite direction by a set distance in the opposite direction at the time of releasing the braking; the second gap adjusting mechanism 40 is provided on the support frame 20; Axia
  • the movement of the first and second support pins 21 and 22 in the axial direction is restricted and the second gap adjustment mechanism 40 can move in the radial direction. Therefore, even in a state where the brake body 10 is inclined with respect to the support frame 20, the movement of the second gap adjusting mechanism 40 in the axial direction is restricted. Therefore, even when the brake body 10 is inclined with respect to the support frame 20, the brake body 10 moved in the axial direction of the first and second support pins 21 and 22 at the time of braking is returned by the set distance in the opposite direction at the time of braking release. Be Therefore, it is possible to provide the brake device 100 capable of adjusting the gap between the second brake lining 4 and the brake disc 2 even when the brake body 10 is inclined with respect to the support frame 20.
  • the second gap adjusting mechanism 40 has a ring body 49 provided on the outer periphery of the first and second support pins 21 and 22 and in contact with the support frame 20, and the support frame 20 supports the first and second supports.
  • An engagement groove 29b is formed on the inner peripheral surface of the insertion hole 20a through which the pins 21 and 22 are inserted, and the ring body 49 is engaged to restrict the axial movement of the second gap adjusting mechanism 40.
  • the inner diameter of the bottom of the groove 29 b is formed larger than the outer diameter of the ring body 49.
  • the inner diameter of the bottom portion of the engagement groove 29b is formed larger than the outer diameter of the ring body 49, so the ring body 49 is engaged even when the brake body 10 is inclined with respect to the support frame 20.
  • the groove 29b can be moved to maintain the engaged state.
  • the distance between the inner diameter of the bottom of the engagement groove 29b and the outer diameter of the ring body 49 is larger than the displacement of the ring body 49 at the maximum inclination angle ⁇ max with respect to the support frame 20 of the brake body 10.
  • the support frame 20 has a support frame main body 24 attached to a vehicle body or a carriage, and a fixing ring 29 attached to the support frame main body 24 and having an engagement groove 29 b formed on an inner periphery thereof.
  • fixing ring 29 is attached to axial end portions of the first and second support pins 21 and 22 in the support frame main body 24.
  • the second gap adjustment mechanism 40 can be easily attached to the brake device 100, and can be easily retrofitted to the existing brake device 100, ensuring attachment compatibility. it can. Furthermore, maintenance and replacement of each component of the second gap adjustment mechanism 40 can be easily performed.
  • the support frame main body 24 has an annular fixed groove 20b on the outer periphery, and the fixed ring 29 has a locking portion 29a which is locked to the fixed groove 20b.
  • the locking ring 29 has a locking portion 29a that is locked to the locking groove 20b normally used to attach the boot 25.
  • the second gap adjusting mechanism 40 can be attached using the fixing groove 20b of the existing brake device 100.
  • the second gap adjusting mechanism 40 exerts a reaction force against the movement of the brake main body 10 at the time of braking, and the brake main body 10 by the clamp portion 40 a capable of clamping the first and second support pins 21 and 22.
  • the release spring 50 which biases the clamp part 40a so as to resist movement of the
  • the reaction force of the release spring 50 accompanying the movement of the brake body 10 at the time of braking is applied to the first and second support pins 21 and 22 through the clamp portions 40 a and 140.
  • the brake main body 10 is moved in the direction in which the second brake lining 4 and the brake disc 2 are separated by the reaction force. Therefore, the contact between the second brake lining 4 and the brake disc 2 when the brake device 100 is released is prevented. Therefore, the life of the second brake lining 4 of the brake device 100 can be improved.
  • the brake device 100 causes the first and The second support pins 21 and 22 are clamped, and the clamps of the first and second support pins 21 and 22 are released when the brake main body 10 moves in the pressing direction beyond the reference movement amount S0.
  • the amount of movement of the brake body 10 necessary for braking increases due to the wear of the second brake lining 4, and when the brake body 10 moves in the pressing direction beyond the reference movement amount S0, the brake body 10 and the first and The second support pins 21 and 22 move relative to the clamp portion 40a. Therefore, even if the brake main body 10 moves beyond the reference movement amount S0, the clamp portion 40a does not move in the pressing direction, and the reaction force of the release spring 50 does not increase. Therefore, even if the amount of movement of the brake body 10 increases beyond the reference amount of movement S0 at the time of braking, an increase in reaction force with respect to the movement of the brake body 10 is suppressed. Therefore, the life of the second brake lining 4 is improved by preventing the contact between the second brake lining 4 and the brake disc 2 at the time of non-braking while securing the stability of the braking force of the brake device 100, 200. Can.
  • a wedge space in which the clamp portion 40a gradually narrows along the axial direction of the first and second support pins 21, 22 is an outer peripheral surface of the first and second support pins 21, 22.
  • the brake device 100 further includes a cylindrical inner member 44 having a clamp portion 40a provided between the retainer 41 and the first and second support pins 21 and 22 and having a through hole 45a opened to the inner and outer peripheral surfaces.
  • the rolling element 42 contacts the outer peripheral surface of the first and second support pins 21 and 22 through the through hole 45 a, and the inner member 44 supports the clamp spring 43 with the retainer 41.
  • a flange portion 47 supporting the release spring 50 between the ring body 49 and the ring body 49.
  • the clamp spring 43 biases the retainer 41 such that the rolling element 42 is pressed against the wedge surface 41 a. Thereby, the rolling element 42 is pushed toward the narrow portion in the wedge space.
  • the relative movement between the clamp 40a and the first and second support pins 21 and 22 is restricted by the wedge effect, and the clamp 40a clamps the first and second support pins 21 and 22.
  • the second gap adjusting mechanism 40 is provided to the first and second support pins 21 and 22, respectively.
  • the second gap adjusting mechanism 40 may be provided on only one of the first and second support pins 21 and 22.
  • the fixing ring 29 is integrally formed so as to have the locking portion 29a locked to the fixing groove 20b of the support frame 20 and the boot groove 29c for attaching the boot 25.
  • a U-shaped ring 29e formed in a U-shaped cross-sectional shape and having a boot groove 29c and an U-shaped cross-sectional shape similarly to the inner periphery
  • the fixed ring 29 may be formed by combining the fixed cover 29f on which the engagement groove 29b is formed.
  • the fixed cover 29f is formed in a C-shape and is tightened by a bolt 29g to be ring-shaped. In this case, since it is a combination of two members having a U-shaped cross-sectional shape, the formation of the fixing ring 29 is easy.
  • the fixing ring 29 is attached to the support frame main body 24 to form the engagement groove 29 b.
  • the engagement groove 29 b may be formed in the support frame main body 24 without providing the fixing ring 29. In this case, space saving around the support frame 20 can be achieved, and the brake device 100 can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

ブレーキ装置(100)は、ブレーキ本体(10)と、支持枠(20)に軸方向に移動自在に支持されると共に前記ブレーキ本体(10)を支持する支持ピン(21,22)と、第1キャリパアーム(12)に設けられ第1ブレーキライニング(3)をブレーキディスク(2)に押圧すると共に前記ブレーキ本体(10)を前記支持ピン(21,22)の軸方向に移動させて第2ブレーキライニング(4)を前記ブレーキディスク(2)に押圧する押圧機構(35)と、制動時に前記支持ピン(21,22)の軸方向に移動した前記ブレーキ本体(10)を制動解除時に反対方向へ設定距離だけ戻す隙間調整機構(40)と、を備え、前記隙間調整機構(40)は、前記支持枠(20)に設けられ、前記支持ピン(21,22)の軸方向への移動が規制されると共に径方向への移動が許容される。

Description

ブレーキ装置
 本発明は、ブレーキ装置に関するものである。
 JP08-226467Aには、鉄道車両の台車に取り付けられる支持枠と、支持枠に対して支持ピンを介して車輪の軸方向に摺動自在に支持されるブレーキ本体と、を有するフローティング型のディスクブレーキ装置が開示されている。このディスクブレーキ装置では、ブレーキ本体の一対のキャリパアームが車輪(ブレーキディスク)を跨ぐように設けられ、一方のキャリパアームにのみブレーキライニングを進退させる押圧機構が設けられる。
 JP08-226467Aのブレーキ装置では、押圧機構が設けられる一方のキャリパアームには、制動解除時にブレーキライニングとブレーキディスクとの間の隙間を自動的に調整する隙間調整装置が設けられるが、押圧機構が設けられない他方のキャリパアームには、隙間調整機構が設けられない。そのため、ブレーキ装置の非制動時に、他方のブレーキライニングとブレーキディスクとが接触するおそれがある。そこで、本願発明者らは、支持枠に対してブレーキ本体を移動させて、他方のブレーキライニングとブレーキディスクとの隙間を調整することを提案している。
 しかしながら、フローティング型のブレーキ装置では、走行中の車輪の傾動に追従するように、ブレーキ本体が支持枠に対して傾斜する。そのため、支持枠に対してブレーキ本体を移動させて他方のブレーキライニングとブレーキディスクとの隙間を調整する場合には、支持枠に対するブレーキ本体の傾斜を考慮する必要がある。
 本発明は、ブレーキ本体が支持枠に対して傾斜した状態であっても、ブレーキライニングとブレーキディスクとの隙間を調整できるブレーキ装置を提供することを目的とする。
 本発明のある態様によれば、ブレーキ装置は、ブレーキディスクの両側からブレーキディスクに摺接して摩擦力を付与可能な第1及び第2ブレーキライニングをそれぞれ支持する第1及び第2キャリパアームを有するブレーキ本体と、車体又は台車に取り付けられる支持枠に軸方向に移動自在に支持されると共にブレーキ本体を支持する支持ピンと、第1キャリパアームに設けられ第1ブレーキライニングをブレーキディスクに押圧すると共にブレーキ本体を支持ピンの軸方向に移動させて第2ブレーキライニングをブレーキディスクに押圧する押圧機構と、制動時に前記支持ピンの軸方向に移動したブレーキ本体を制動解除時に反対方向へ設定距離だけ戻す隙間調整機構と、を備え、隙間調整機構は、支持枠に設けられ、支持ピンの軸方向への移動が規制されると共に径方向への移動が許容される。
図1は、本発明の実施形態に係るブレーキ装置の平面図である。 図2は、ブレーキ装置の正面図である。 図3は、図1におけるIII-III線に沿った断面図であり、第1支持ピン周辺を示した図である。 図4は、ブレーキ本体が支持枠に対して一方向に傾斜した状態を示す図である。 図5は、ブレーキ本体が支持枠に対して他方向に傾斜した状態を示す図である。 図6Aは、ブレーキ本体が支持枠に対して傾斜した場合の隙間調整機構の動きを説明する概念図である。 図6Bは、ブレーキ本体が支持枠に対して傾斜した場合の隙間調整機構の変形例の動きを説明する概念図である。 図7は、隙間調整機構近傍を示す拡大断面図であり、非制動状態を示す。 図8は、隙間調整機構近傍を示す拡大断面図であり、ブレーキ本体が基準移動量以下で移動して制動状態となった場合を示す。 図9は、隙間調整機構近傍を示す拡大断面図であり、ブレーキ本体が基準移動量だけ移動した状態を示す。 図10は、隙間調整機構近傍を示す拡大断面図であり、ブレーキ本体が基準移動量を超えて移動して制動状態となった場合を示す。 図11は、本発明の変形例に係るブレーキ装置の断面図であり、第1支持ピン周辺を示した図である。 図12は、本発明の他の変形例に係るブレーキ装置の断面図であり、第1支持ピン周辺を示した図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 まず、図1から図3を参照して、本発明の実施形態に係るブレーキ装置100の全体構成について説明する。
 ブレーキ装置100は、作動流体として圧縮空気が用いられる鉄道車両用のフローティング型空気圧ブレーキである。圧縮空気に代えて、作動油など他の作動流体を用いてもよい。
 ブレーキ装置100は、車輪1と共に回転するブレーキディスク2に摩擦力を付与するものである。具体的には、ブレーキ装置100は、ブレーキディスク2の両側からブレーキディスクに摺接して摩擦力を付与可能な第1,第2ブレーキライニング3,4によってブレーキディスク2に摩擦力を付与して、車輪1の回転を制動する。
 ブレーキディスク2は、車輪1の表裏両面に形成されて車輪1と一体に回転する。ブレーキディスク2を車輪1と一体に形成する構成に代えて、車輪1と共に回転する別体のブレーキディスク2を設けてもよい。
 ブレーキ装置100は、ガイドプレート5を介して第1,第2ブレーキライニング3,4をそれぞれ支持する第1,第2キャリパアーム12,14を有するブレーキ本体10と、台車(図示省略)に取り付けられる支持枠20に軸方向に移動自在に支持されると共にブレーキ本体10を支持する第1,第2支持ピン21,22(図2参照)と、第1ブレーキライニング3に支持されるガイドプレート5をブレーキ本体10に進退自在に支持する一対のアンカピン33と、圧縮空気の圧力によって第1,第2ブレーキライニング3,4をブレーキディスク2に押圧する押圧機構としての押圧部35と、を備える。
 ブレーキ本体10は、ブレーキ装置100が鉄道車両に適用される場合には、支持枠20を介して台車に支持される。ブレーキ本体10は、ブレーキ装置100が鉄道車両以外の車両に適用される場合には、車体(図示省略)に支持される。
 ブレーキ本体10は、図1に示すように、ブレーキディスク2に跨るようにして延びる第1キャリパアーム12及び第2キャリパアーム14と、第1キャリパアーム12と第2キャリパアーム14とを連結するヨーク部13と、ブレーキ本体10を台車上に支持するための第1,第2ブラケット部15,16と、を有する。
 第1支持ピン21の周辺構造と第2支持ピン22の周辺構造との基本的な構成は同一である。よって、以下では、第1支持ピン21の周辺構造について具体的に説明し、第2支持ピン22に関しては説明を省略する。
 第1支持ピン21は、図3に示すように、支持枠20の挿通孔20aに挿通する。第1支持ピン21の両端部は、ブレーキ本体10の第1,第2ブラケット部15,16に各々連結される。第1支持ピン21は、車輪1の回転軸と平行に設けられると共に軸方向に移動可能に支持枠20に支持される。これにより、ブレーキ本体10は、第1支持ピン21の軸方向への移動が可能なように支持枠20に支持される。
 第1支持ピン21の露出部は、図1に示すように、ゴム製のブーツ25によって覆われ、ダスト等から保護されている。このようにして、ブレーキ本体10は、第1支持ピン21によって支持枠20に対して摺動可能にフローティング支持される。なお、図1を除き、ブーツ25の図示は省略する。
 第1,第2ブレーキライニング3,4は、ガイドプレート5に固定される裏板部3a,4aと、制動時にブレーキディスク2に当接する摩擦部材3b,4bと、を有する。摩擦部材3b,4bは、複数のセグメントからなり、裏板部3a,4aの表面に固定される。第1,第2ブレーキライニング3,4は、摩擦部材3b及び4bとブレーキディスク2との当接によって発生する摩擦力によって、車輪1の回転を制動する。
 第1,第2ブレーキライニング3,4は、非制動時には、それぞれブレーキディスク2と予め設定された所定の間隔をあけて対向する(図1に示す状態)。第1及び第2ブレーキライニング3,4は、制動時には、押圧部35による押圧力を受けてブレーキディスク2に向かってそれぞれ移動し、ブレーキディスク2に平行に当接して押圧される。
 ガイドプレート5は、長手方向に沿って形成され第1ブレーキライニング3の裏板部3aが係合するアリ溝5aを有する。ガイドプレート5は、長手方向の両端部が、一対のアンカピン33によってブレーキ本体10に支持される。一方のアンカピン33は、ガイドプレート5の一端(図2では上端)をブレーキ本体10に回動可能に支持し、他方のアンカピン33は、ガイドプレート5の他端(図2では下端)をブレーキ本体10に係止する。
 ブレーキ本体10の第1キャリパアーム12には、長手方向(図2中上下方向)の両端部に配置される一対のアジャスタ30と、一対のアジャスタ30の間に配置される押圧部35と、が設けられる。
 アジャスタ30は、非制動時にブレーキディスク2に対する第1ブレーキライニング3の相対位置を一定に調整するものである。アジャスタ30は、アンカボルト32によってブレーキ本体10の上下端部にそれぞれ締結される。
 アジャスタ30は、図1に示すように、アンカボルト32によってブレーキ本体10に固定されるライニング受け31と、ライニング受け31に対して進退可能に設けられて第1ブレーキライニング3をブレーキ本体10に支持するアンカピン33と、第1ブレーキライニング3をブレーキディスク2から離間する方向に付勢するリターンスプリング(図示省略)と、非制動時に第1ブレーキライニング3とブレーキディスク2との隙間を一定に調整する第1隙間調整機構(図示省略)と、を備える。
 アンカピン33は、第1ブレーキライニング3がブレーキディスク2に近接する際に、第1ブレーキライニング3と共に変位するガイドプレート5によってライニング受け31から引き出されて軸方向に変位する。アンカピン33は、第1ブレーキライニング3がブレーキディスク2に摺接する制動時に、摩擦力によってブレーキディスク2が第1ブレーキライニング3を周方向に移動させようとするのに抗して、第1ブレーキライニング3を保持する。アンカピン33の内周に、リターンスプリングと第1隙間調整機構とが収装される。
 リターンスプリングは、アンカピン33の内周に圧縮して介装されるコイルばねである。ブレーキ装置100が制動状態から非制動状態になったときには、リターンスプリングの付勢力によって、アンカピン33がガイドプレート5を介して第1ブレーキライニング3を押し戻し、第1ブレーキライニング3をブレーキディスク2から所定の距離だけ離間させる。これにより、非制動時における第1ブレーキライニング3とブレーキディスク2との距離を調整して、ブレーキディスク2の放熱性を良好にすることができる。なお、制動状態とは、後述する押圧部35によって第1,第2ブレーキライニング3,4がブレーキディスク2に押圧されている状態のことである。また、非制動状態とは、押圧部35によってブレーキディスク2に押圧される押圧力が第1,第2ブレーキライニング3,4に作用しない状態のことである。
 第1隙間調整機構は、非制動時におけるリターンスプリングの付勢力による第1ブレーキライニング3の戻し量を一定に調整する。つまり、第1隙間調整機構は、非制動時における第1ブレーキライニング3とブレーキディスク2の間隔を常に一定に保つ。
 第1ブレーキライニング3の摩耗量が小さく、制動時におけるアンカピン33のストローク量が小さいうちは、非制動時には、アンカピン33が制動前における元の位置まで戻る。
 これに対して、第1ブレーキライニング3の摩耗が進行し、制動時におけるアンカピン33の移動量が大きくなった場合において、非制動時には、第1隙間調整機構が非制動時における第1ブレーキライニング3の位置を、摩耗した厚さの分だけ前進させる。これにより、非制動時における第1ブレーキライニング3とブレーキディスク2との間隔を常に一定に保つことができる。
 押圧部35は、圧縮空気の圧力により第1ブレーキライニング3をブレーキディスク2に押圧すると共にその反力によってブレーキ本体10を第1支持ピン21の軸方向に移動させて第2ブレーキライニング4をブレーキディスク2に押圧する。
 押圧部35は、第1、第2ブレーキライニング3,4をブレーキディスク2に押圧するものであれば、任意の構成とすることができる。このため、押圧部35の詳細な説明は省略するが、例えば、押圧部35は、内部に設けられる圧力室おける空気圧を調整することでダイヤフラムを変形させ、ダイヤフラムの変形によってピストンをシリンダから退出させる。これにより、押圧部35は、ガイドプレート5を介して第1ブレーキライニング3をブレーキディスク2に向けて図1中右方向に押圧し、その反力によってブレーキ本体10を図1中左方向へ移動させて第2ブレーキライニング4をブレーキディスク2に向けて引き寄せる。このようにして、ブレーキディスク2が第1,第2ブレーキライニング3,4によって挟持されて、制動力としての摩擦力が発揮される。
 なお、以下では、図1に示すように、ブレーキ装置100の制動時におけるブレーキ本体10の移動方向、言い換えれば第2ブレーキライニング4がブレーキディスク2に近づいて押圧されるようなブレーキ本体10の移動方向を「押圧方向」と称する。また、反対に第2ブレーキライニング4とブレーキディスク2とが離間するようなブレーキ本体10の移動方向を「解除方向」と称する。
 ブレーキ装置100は、図3に示すように、支持枠20の挿通孔20a内に設けられ第1支持ピン21を摺動自在に支持する球面ベアリング26と、支持枠20の挿通孔20a内であって球面ベアリング26の軸方向両側に設けられ第1支持ピン21を摺動自在に支持する一対のゴム製ブッシュ27,28と、制動時に第1支持ピン21の軸方向に移動したブレーキ本体10を制動解除時に反対方向へ設定距離だけ戻す隙間調整機構としての第2隙間調整機構40と、を更に備える。
 球面ベアリング26は、互いに摺動可能に嵌合する軸受面を有する外輪26a及び内輪26bを備える。外輪26aと内輪26bとは、相対回転可能に係合する。
 外輪26aは、支持枠20の挿通孔20aの内周面に嵌合して設けられる。内輪26bには、第1支持ピン21が摺動自在に挿通する。これにより、球面ベアリング26は、支持枠20に対してブレーキ本体10を揺動可能に支持すると共に支持枠20に対して第1支持ピン21の軸方向(車輪1の回転軸方向)に摺動可能にフローティング支持する。
 支持枠20は、内周面に形成され第2隙間調整機構40の後述するリング体49が係合して第2隙間調整機構40の軸方向への移動を規制する係合溝29bを有する。支持枠20は、車体又は台車に取り付けられる支持枠本体24と、支持枠本体24に取り付けられて内周に係合溝29bが形成される固定部材としての固定リング29と、を有する。
 支持枠本体24は、端部の外周に環状の固定溝20bを有する。この固定溝20bは、第2隙間調整機構40が設けられない場合には、ブーツ25(図1参照)を固定するために用いられる溝である。
 固定リング29は、支持枠本体24における第1,第2支持ピン21,22の軸方向端部に取り付けられる。固定リング29は、支持枠本体24の固定溝20bに係止される係止部29aと、係合溝29bと、ブーツ25を取り付けるためのブーツ溝29cと、固定リング29を支持枠本体24に固定する止め輪(図示省略)が取り付けられる外周溝29dと、を有する。
 固定リング29を設けることで、ブレーキ装置100への第2隙間調整機構40の組み付けが容易となり、既存のブレーキ装置100にも容易に後付けすることができ、組み付け互換性を確保できる。更には、第2隙間調整機構40の各部品のメンテナンスや交換も容易に行うことができる。
 また、固定リング29は、通常はブーツ25を取り付けるために用いられる固定溝20bに係止される係止部29aと、ブーツ25を取り付けるためのブーツ溝29cと、を有する。これにより、既存のブレーキ装置100の固定溝20bを利用して第2隙間調整機構40が取り付けられると共に、通常どおりブーツ25を取り付けることができる。
 第2隙間調整機構40は、制動時にブレーキディスク2に近接した第2ブレーキライニング4を制動解除時に設定距離だけ離間させる。第2隙間調整機構40は、固定リング29の内周に設けられ第1支持ピン21をクランプ可能なクランプ部40aと、制動時のブレーキ本体10の移動に抗するように反力を発揮してクランプ部40aを付勢する付勢部材としてのリリーススプリング50と、第1支持ピン21の外周に設けられて支持枠20に当接するリング体49と、を有する。
 リング体49は、クランプ部40aとの間でリリーススプリング50を軸方向に支持する。リング体49は、支持枠20の端部に当接する。リング体49は、第2隙間調整機構40が作動している状態では支持枠20の端部に押し付けられる。第2隙間調整機構40の内部の構成については、後で図7を参照しながら詳細に説明する。
 第2隙間調整機構40は、支持枠20に設けられ、第1支持ピン21の軸方向への移動が規制されると共に径方向への移動が許容される。
 具体的には、固定リング29の係合溝29bの底部の内径は、第2隙間調整機構40のリング体49の外径と比較して大きく形成される。よって、支持枠20に対してブレーキ本体10が傾斜してもリング体49が係合溝29b内を移動して係合状態を維持することができる。
 より具体的には、係合溝29bの底部の内径と第2隙間調整機構40のリング体49の外径との間隔は、ブレーキ本体10の支持枠20に対する最大傾き角度θmax[deg]のときのリング体49の変位量以上の大きさに形成される。よって、ブレーキ本体10が支持枠20に対して最大傾き角度θmaxだけ傾いた場合にも、リング体49が係合溝29b内を移動して係合状態を維持することができる。
 ブレーキ本体10は、走行中の車輪1の傾動に追従するように、支持枠20に対して左右方向(車輪1の回転軸方向)に傾斜する。ブレーキ本体10の支持枠20に対する最大傾き角度θmaxは、例えば、±3[deg]である。
 これに対して、第2隙間調整機構40は、支持枠20に対して径方向に移動可能なようにフローティング支持される。よって、図4及び図5に示すように、ブレーキ本体10が支持枠20に対して一方向若しくは他方向に角度θ[deg]だけ傾斜した状態でも、第2隙間調整機構40のリング体49は固定リング29の係合溝29bに少なくとも一部が係合している。よって、この状態でも、第2隙間調整機構40の軸方向への移動が規制されるので、制動時にブレーキディスク2に近接した第2ブレーキライニング4を制動解除時に設定距離だけ離間させることができる。したがって、フローティング型のブレーキ装置100において、押圧部35が設けられない第2キャリパアーム14に支持される第2ブレーキライニング4とブレーキディスク2との接触を防止することができる。
 第2隙間調整機構40では、図6Aに示すように、リング体49は円形に形成される。これにより、ブレーキ本体10が支持枠20に対して左右方向に傾斜しても、リング体49の少なくとも一部が固定リング29の係合溝29bに係合している(二点鎖線で示す状態)。これに代えて、図6Bに示すように、リング体49を楕円形に形成してもよい。この場合、リング体49は、ブレーキ本体10が支持枠20に対して左右に傾斜する際に、楕円形の短辺の方向に移動するように配置される。そのため、ブレーキ本体10が支持枠20に対して左右方向に傾斜しても、リング体49の楕円形の長辺の端部近傍が固定リング29の係合溝29bに係合している(二点鎖線で示す状態)。このように、リング体49は、ブレーキ本体10が支持枠20に対して左右に傾斜した場合に係合溝29bに少なくとも一部が係合する形状であればよい。
 次に、図7を参照して、第2隙間調整機構40の各部材について説明する。
 リリーススプリング50は、第1支持ピン21をクランプするクランプ部40aを解除方向に向けて付勢するコイルばねである。
 制動時においてブレーキ本体10及び第1支持ピン21が押圧方向へ移動すると、その移動に対してリリーススプリング50が反力を発生して、ブレーキ本体10及び第1支持ピン21がクランプ部40aを介して解除方向に付勢される。これにより、非制動時にリリーススプリング50の付勢力によってブレーキ本体10及び第1支持ピン21が解除方向に移動し、第2ブレーキライニング4とブレーキディスク2との間に所定の隙間が形成される。
 また、ブレーキ本体10及び第1支持ピン21は、非制動状態であっても、リリーススプリング50によって解除方向に付勢される。これにより、非制動時において、車両の振動等によりブレーキ本体10及び第1支持ピン21が押圧方向に移動することが防止される。
 クランプ部40aは、くさび空間を第1支持ピン21の外周面との間で形成するくさび面41aを有するくさび部材としてのリテーナ41と、くさび空間に収容される転動体42と、転動体42が第1支持ピン21の軸方向からくさび面41aに押し付けられるようにリテーナ41を押圧する押付部材としてのクランプスプリング43と、リテーナ41と第1支持ピン21との径方向の間に設けられ内外周面に開口する貫通孔45aを有する筒状のインナー部材44と、を有する。
 リテーナ41は、インナー部材44の外周に設けられる筒状の部材である。リテーナ41は、第1支持ピン21の軸方向に対して傾斜するテーパ状のくさび面41aを有する。リテーナ41は、くさび面41aによって、第1支持ピン21の軸方向に沿って径方向の間隔が徐々に狭くなるくさび空間を第1支持ピン21の外周面との間で形成する。
 リテーナ41とインナー部材44の後述するフランジ部47との間には、隙間を調整するためのシムリング41bと、シムリング41bをリテーナ41に固定するための固定リング41cと、が設けられる。シムリング41bの厚さを変更することにより、リテーナ41が転動体42を第1支持ピン21に押し付ける力を調整することができる。
 転動体42は、円筒形状に形成され、貫通孔45aを通じて第1支持ピン21の外周面とくさび面41aとの両方に接触する。なお、転動体42は、円筒形状に限らず球状に形成されてもよい。また、図7では、単一の転動体42を図示しているが、転動体42の数はこれに限らず、複数設けられてもよい。複数の転動体42が設けられることにより、クランプ部40aが安定して第1支持ピン21を支持することができる。
 インナー部材44は、貫通孔45aが形成される筒状の本体部45と、本体部45の外周面から径方向外側に延びて形成されリテーナ41との間でクランプスプリング43を支持する受け部としてのばね受け部46と、本体部45の一端から径方向外側に延びて形成されリング体49との間でリリーススプリング50を支持する支持部としてのフランジ部47と、ばね受け部46に対してフランジ部47とは反対側における本体部45の外周面に径方向外側に向けて取り付けられる規制部としてのCリング48と、を有する。
 ばね受け部46は、貫通孔45aを挟んでフランジ部47とは反対側に設けられる。クランプスプリング43は、ばね受け部46とリテーナ41との間に圧縮状態で介装され、転動体42がくさび面41aに押し付けられるようにリテーナ41を図7中右方向に付勢する。これにより、転動体42は、くさび空間において幅が狭い部分(図7中左側部分)に向けて押し込まれる。よって、クランプ部40aと第1支持ピン21との相対移動がくさび効果によって規制される。クランプ部40aは、このようにして第1支持ピン21をクランプする。
 ばね受け部46は、クランプスプリング43が当接するばね受け面46aと、リング体49が当接する当接面46bと、を有する。ばね受け部46は、クランプスプリング43の付勢力によってCリング48に押し付けられる。ばね受け部46は、Cリング48によって軸方向の位置が規定される。
 図7に示すように、ブレーキ装置100の非制動状態では、ばね受け部46の当接面46bとリング体49とが当接する。ばね受け部46とリング体49とが当接することにより、解除方向へのクランプ部40aのそれ以上の移動が規制される。
 次に、図7から図10を参照して、ブレーキ装置100の作用について説明する。
 図8から図10では、非制動状態における第1支持ピン21を破線で示す。また、以下では、クランプ部40aのフランジ部47とブレーキ本体10の第2ブラケット部16との間の軸方向距離を、クランプ部40aとブレーキ本体10との間の「相対距離」と称する。また、図7に示すように、第2ブレーキライニング4が摩耗していない状態における相対距離を「L0」とする。
 鉄道車両の走行時には、車輪1は高速で回転している。ここで、運転士の操作等によってブレーキ装置100が制動状態に切り換えられると、空気圧源から供給される圧縮空気によって、押圧部35(図1参照)がガイドプレート5を介して第1ブレーキライニング3を車輪1に設けられたブレーキディスク2に向けて押圧する。
 この際、ブレーキ本体10には、押圧部35が第1ブレーキライニング3を押圧する反力が作用する。これにより、ブレーキ本体10は、図8に示すように、クランプ部40aとの相対距離L0を保ったまま、押圧部35の反力によって第1支持ピン21及びクランプ部40aと共にリリーススプリング50の付勢力に抗して押圧方向に移動する。よって、第2ブレーキライニング4がブレーキディスク2に向けて引き寄せられ、第1、第2ブレーキライニング3,4がブレーキディスク2の両側から当接して摩擦力が発生し、車輪1の回転は制動される。これにより、鉄道車両は、速度が低下してやがて停止することとなる。
 運転士の操作等によってブレーキ装置100による車輪1の制動が解除されると、アジャスタ30内部に設けられたリターンスプリングの復元力によって、第1ブレーキライニング3はブレーキディスク2に当接した状態から離間する。また、圧力室内の圧縮空気は通孔(図示省略)から排出されて、第1ブレーキライニング3は制動前の位置に戻る。
 これにより、ブレーキディスク2と第1ブレーキライニング3とは、第1隙間調整機構の作用によって再び一定の間隔をもって対峙する。
 一方、圧力室内の圧縮空気が排出されることにより、ブレーキ本体10、第1支持ピン21、及びクランプ部40aは、制動時に圧縮されたリリーススプリング50の付勢力を復元力として受けて、解除方向に向けて移動する。ブレーキ本体10、第1支持ピン21、及びクランプ部40aは、ばね受け部46の当接面46bがリング体49に当接するまで解除方向に向けて移動して、制動前の状態(図7に示す状態)に戻る。
 これにより、ブレーキディスク2と第2ブレーキライニング4とは、互いに離間して再び一定の隙間をもって対峙する。よって、ブレーキ装置100の解除時における第2ブレーキライニング4とブレーキディスク2との接触が防止される。これにより、第2ブレーキライニング4の摩耗が抑制されて、第2ブレーキライニング4の寿命を向上させることができる。また、車輪1は、ブレーキ装置100の影響を受けることなく回転することが可能となる。
 第1ブレーキライニング3の摩擦部材3bが摩耗すると、第1隙間調整機構によりガイドプレート5は、摩擦部材3bが摩耗した分だけブレーキディスク2に向かって前進する。このため、第1ブレーキライニング3とブレーキディスク2との間の隙間は、一定に保たれる。
 これに対し、第2キャリパアーム14には第1隙間調整機構が設けられないため、第2ブレーキライニング4の摩擦部材4bが摩耗(以下、単に「第2ブレーキライニング4が摩耗」とする。)すると、第2ブレーキライニング4とブレーキディスク2との間の隙間は大きくなる。このため、非制動状態から第2ブレーキライニング4とブレーキディスク2とを接触させて制動状態とするために押圧方向へ向けて移動するブレーキ本体10の移動量が大きくなる。
 ここで、ブレーキ装置100では、非制動状態(図7に示す状態)からブレーキ本体10が予め定められた基準移動量S0だけ押圧方向に移動すると、第1支持ピン21とクランプ部40aとを相対移動させる力が、クランプ部40aによる第1支持ピン21をクランプする力(以下、「クランプ力」と称する。)と釣り合うように、クランプ部40a及びリリーススプリング50が構成される。
 具体的に説明すると、制動時において、第1支持ピン21とクランプ部40aとを相対移動させる力(以下、単に「相対移動させる力」と称する。)は、押圧部35からブレーキ本体10に作用する反力と、クランプ部40aに作用しクランプ部40aの移動量に応じて変化するリリーススプリング50の付勢力と、によるものである。つまり、相対移動させる力は、ブレーキ本体10及び第1支持ピン21に対して押圧方向に作用する押圧部35の反力と、クランプ部40aに対して解除方向に作用するリリーススプリング50の付勢力と、によるものである。押圧部35の反力は、所望の制動力に応じて定められるため、相対移動させる力は、主にリリーススプリング50の付勢力によって決定される。
 クランプ部40aのクランプ力は、相対移動させる力に対して転動体42と第1支持ピン21との間で生じる摩擦力である。クランプ力は、クランプスプリング43の付勢力、くさび面41aの形状、転動体42の形状、及び第1支持ピン21と転動体42との間の摩擦係数などにより決定される。これらを適切に設定することにより、所望のクランプ力を得ることができる。クランプ部40aのクランプ力は、ブレーキ本体10の移動量に関わらず、一定である。なお、図8から図10では、クランプ力及び相対移動させる力を模式的に矢印で示している。
 以下、第2隙間調整機構40の作用について具体的に説明する。
 図8に示すように、第2ブレーキライニング4の摩耗が小さくブレーキ本体10の移動量が基準移動量S0よりも小さい移動量S1である場合には、制動状態における相対移動させる力がクランプ部40aのクランプ力を上回らず、クランプ部40aと第1支持ピン21とは相対移動しない。つまり、制動時には、第1支持ピン21がクランプ部40aによってクランプされた状態を維持し相対距離L0を保ったまま、ブレーキ本体10、第1支持ピン21、及びクランプ部40aが一体となって押圧方向へ移動する。
 図9に示すように、制動時のブレーキ本体10の移動量が基準移動量S0となると、リリーススプリング50による付勢力と押圧部35の反力とによる相対移動させる力がクランプ部40aのクランプ力と釣り合う。以下、ブレーキ本体10が基準移動量S0だけ移動した際のリリーススプリング50の付勢力を「基準付勢力」と称する。
 ブレーキ本体10が基準移動量S0を超えて押圧方向へ移動しようとすると、リリーススプリング50が更に圧縮されることになるため、相対移動させる力が転動体42と第1支持ピン21との間で生じる摩擦力(クランプ力)を上回る。これにより、クランプ部40aのクランプが解除されることとなり、第1支持ピン21及びブレーキ本体10は基準移動量S0を超えて押圧方向へ移動する一方で、クランプ部40aはそれ以上押圧方向には移動しない。このようにして、クランプ部40aと第1支持ピン21及びブレーキ本体10との相対移動が許容される。
 このように、本実施形態に係るブレーキ装置100では、相対移動させる力が転動体42と第1支持ピン21との間の摩擦力(クランプ力)を上回ることで、クランプ部40aと第1支持ピン21とが相対移動する状態が、クランプ部40aによる第1支持ピン21のクランプが解除された状態である。
 第1支持ピン21及びブレーキ本体10は、図10に示すように、ブレーキ装置100が制動状態となるような移動量S2までクランプ部40aに対して相対移動する。この際、ブレーキ本体10とクランプ部40aとの相対距離は、L0よりも小さいL1になる。ブレーキ装置100の制動が解除されると、押圧部35からブレーキ本体10に作用する反力がなくなる。このため、ブレーキ本体10及び第1支持ピン21とクランプ部40aとを相対移動させる力がなくなり、相対移動させる力がクランプ力を下回る。よって、再び、第1支持ピン21がクランプ部40aと相対移動しないクランプされた状態となる。これにより、リリーススプリング50の基準付勢力によって、ブレーキ本体10、第1支持ピン21、及びクランプ部40aが解除方向に向けて一体となって移動する。したがって、ブレーキディスク2と第2ブレーキライニング4とが互いに離間して再び一定の隙間をもって対峙する。
 図8から図10を参照してより詳細に説明すると、クランプ部40aは、クランプが解除された状態では押圧方向へ移動せず、ブレーキ本体10及び第1支持ピン21は、基準移動量S0を超えて押圧方向へ移動する。クランプが解除されたクランプ部40aは、ブレーキ装置100の制動が解除された後に、再び第1支持ピン21をクランプする。
 図8及び図9に示すように、クランプ部40aは、ブレーキ本体10の移動量が基準移動量S0以下のクランプ解除前では、ブレーキ本体10とクランプ部40aとの相対距離がL0の位置で第1支持ピン21をクランプしている。これに対し、図10に示すように、クランプ部40aがブレーキ本体10及び第1支持ピン21と相対移動して再び第1支持ピン21をクランプした状態では、相対距離がL0よりも小さいL1の位置で第1支持ピン21をクランプする。つまり、第1支持ピン21をクランプする位置が、クランプが解除される前と比べて、クランプ部40aとブレーキ本体10との相対移動距離Tだけずれる。このため、リリーススプリング50によってブレーキ本体10が解除方向に戻されると、制動解除後のブレーキ本体10の位置は、押圧方向に相対移動距離T分だけずれた位置となる。
 ここで、図10に示すように、ブレーキ本体10が基準移動量S0を超えて移動した状態であっても、クランプ部40aは押圧方向に移動しないため、リリーススプリング50の解除方向への戻し量は、基準移動量S0で一定である。よって、ブレーキ本体10が基準移動量S0を超えて移動して車輪1を制動し、その制動が解除されると、再びブレーキディスク2と第2ブレーキライニング4とは、戻し量(基準移動量S0)に応じた一定の隙間をもって対峙することになる。このように、リリーススプリング50とクランプ部40aとは、第2ブレーキライニング4とブレーキディスク2との間の隙間を調整する隙間調整機能を発揮することができる。これにより、第2ブレーキライニング4の摩耗が進展しても、第2ブレーキライニング4とブレーキディスク2との間の隙間を適切に確保することができる。
 制動時におけるブレーキ本体10の移動量が大きくなると、その分リリーススプリング50の圧縮量も大きくなり、クランプ部40aを付勢するリリーススプリング50の付勢力も大きくなる。リリーススプリング50の付勢力は、制動時のブレーキ本体10の移動の抵抗となるため、過大になるとブレーキディスク2への第2ブレーキライニング4の押し付け力が低下して、制動力が不安定になるおそれがある。
 これに対し、ブレーキ装置100では、第2ブレーキライニング4の摩耗量が大きくなって、制動時のブレーキ本体10の移動量が基準移動量S0を超えると、クランプ部40aによるクランプが解除される。このため、リリーススプリング50の付勢力が基準付勢力を超えることはない。言い換えれば、第2ブレーキライニング4の摩耗量が大きくなっても、リリーススプリング50からの反力が基準付勢力以下に抑制され、ブレーキ本体10の移動に対する抵抗の増加を抑制することができる。このように、ブレーキ本体10が基準移動量S0を超えて押圧方向に移動しても、リリーススプリング50の付勢力が基準付勢力以下に抑制されるため、制動力の安定性が確保される。
 以上のように、ブレーキ装置100では、押圧方向へのブレーキ本体10の移動量が基準移動量S0を超えても、リリーススプリング50の付勢力が基準付勢力を超えることがない。リリーススプリング50がクランプ部40aを付勢することにより、非制動時に第2ブレーキライニング4とブレーキディスク2とを離間させると共に、基準移動量S0を超えるとクランプが解除されてリリーススプリング50の反力を抑制することができる。つまり、制動時のブレーキ本体10の移動に対する抵抗が抑制されると共に、非制動時にはリリーススプリング50の付勢力によって第2ブレーキライニング4とブレーキディスク2とを離間させることができる。
 基準移動量S0は、制動力の安定性及び第2ブレーキライニング4の寿命が所望のものとなるように定められる。具体的には、許容されるリリーススプリング50の反力やブレーキ本体10の移動量(第2ブレーキライニング4の摩耗量)に応じて、クランプ部40aの構成に基づいて決定されるクランプ力とリリーススプリング50によって決定される相対移動させる力との関係を調整して予め定められる。
 以下、クランプ力と相対移動させる力について、具体例を示して詳細に説明する。
 クランプ部40aの設定荷重は、例えば、1000Nに設定される。また、クランプスプリング43の付勢力は、例えば、200N以下程度に設定される。これにより、クランプ部40aのクランプ力、つまり転動体42と第1支持ピン21との間の摩擦力は800N程度となる。
 非制動状態におけるリリーススプリング50の付勢力(セット荷重)は、例えば、500N程度に設定される。リリーススプリング50の付勢力は、基準移動量S0以下の移動量でブレーキ本体10が移動して第2ブレーキライニング4がブレーキディスク2に接触した状態では、800Nを超えないように設定される。例えば、リリーススプリング50の付勢力は、第2ブレーキライニング4に摩耗が生じていない状態で第2ブレーキライニング4がブレーキディスク2に接触して制動状態となると、700N程度の付勢力となる。
 ブレーキ本体10が基準移動量S0だけ押圧方向に移動すると、その分リリーススプリング50が圧縮されて、クランプ力と釣り合う800Nの基準付勢力を発揮するようになる。
 ブレーキ本体10が基準移動量S0を超えて移動すると、リリーススプリング50が更に圧縮されて、800Nよりもわずかに大きく1000N程度の付勢力を発揮する。このため、800Nのクランプ力では、クランプ部40aと第1支持ピン21との相対移動を規制できず、両者が相対移動して、クランプが解除される。
 クランプ部40aによるクランプが解除されると、クランプ部40aは押圧方向へそれ以上移動せず、リリーススプリング50の反力が増加しなくなる。つまり、リリーススプリング50の付勢力は、800Nを大きく超えることはない。よって、制動時においてブレーキ本体10の移動量が基準移動量S0を超えて大きくなっても、ブレーキ本体10の移動に対する反力は800N程度に抑制される。したがって、ブレーキ装置100の制動力の安定性を確保しつつ、非制動時の第2ブレーキライニング4とブレーキディスク2との接触が防止される。
 なお、以上の具体例は、クランプ力と相対移動させる力についての一例を示したにすぎず、ブレーキ装置100の構成は、上記具体例に限られるものではない。ブレーキ装置100では、クランプ力と相対移動させる力を、上記具体例のように構成してもよいし、その他の構成としてもよい。
 以上の実施形態によれば、以下に示す効果を奏する。
 第2隙間調整機構40は、第1支持ピン21の軸方向への移動が規制されると共に径方向への移動が可能である。そのため、ブレーキ本体10が支持枠20に対して傾斜した状態でも、第2隙間調整機構40の軸方向への移動が規制される。よって、ブレーキ本体10が支持枠20に対して傾斜した状態でも、制動時に第1支持ピン21の軸方向に移動したブレーキ本体10は、制動解除時に反対方向へ設定距離だけ戻される。したがって、ブレーキ本体10が支持枠20に対して傾斜した状態であっても、第2ブレーキライニング4とブレーキディスク2との隙間を調整できるブレーキ装置100を提供することができる。
 また、ブレーキ装置100では、制動時のブレーキ本体10の移動に伴うリリーススプリング50の反力がクランプ部40aを介して第1支持ピン21に付与される。これにより、ブレーキ装置100の制動を解除すると、反力によって第2ブレーキライニング4とブレーキディスク2とが離間する方向にブレーキ本体10が移動する。よって、ブレーキ装置100の非制動時における第2ブレーキライニング4とブレーキディスク2との接触が防止される。したがって、非制動時における第2ブレーキライニング4の摩耗が抑制され、第2ブレーキライニング4の寿命を向上させることができる。
 また、第2ブレーキライニング4の摩耗により制動に必要なブレーキ本体10の移動量が増加し、基準移動量S0を超えてブレーキ本体10が押圧方向へ移動すると、第1支持ピン21とクランプ部40aとを相対移動させる力が第1支持ピン21とクランプ部40aの転動体42との間の摩擦力を上回る。クランプ部40aは押圧方向へ移動せずに第1支持ピン21と相対移動するため、ブレーキ本体10が基準移動量S0を超えて移動しても、リリーススプリング50の反力が増加しなくなる。これにより、制動時においてブレーキ本体10の移動量が基準移動量S0を超えて大きくなっても、ブレーキ本体10の移動に対する反力の増加が抑制される。したがって、ブレーキ装置100の制動力の安定性を確保しつつ、非制動時の第2ブレーキライニング4とブレーキディスク2との間の隙間を適切に確保し両者の接触を防止して、第2ブレーキライニング4の寿命を向上させることができる。
 また、ブレーキ装置100では、ブレーキ本体10の移動量が基準移動量S0を超えると第1支持ピン21とクランプ部40aとが相対移動するように、相対移動させる力とクランプ力とを設定している。このため、クランプを解除するための解除機構を設けなくてもクランプを解除でき、クランプ部40a周辺を省スペース化して、ブレーキ装置100を小型化することができる。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 車輪1と共に回転するブレーキディスク2に摩擦力を付与するブレーキ装置100は、ブレーキディスク2の両側からブレーキディスク2に摺接して摩擦力を付与可能な第1及び第2ブレーキライニング3,4をそれぞれ支持する第1及び第2キャリパアーム12,14を有するブレーキ本体10と、台車に取り付けられる支持枠20に軸方向に移動自在に支持されると共にブレーキ本体10を支持する第1及び第2支持ピン21,22と、第1キャリパアーム12に設けられ第1ブレーキライニング3をブレーキディスク2に押圧すると共にブレーキ本体10を第1及び第2支持ピン21,22の軸方向に移動させて第2ブレーキライニング4をブレーキディスク2に押圧する押圧部35と、制動時に第1及び第2支持ピン21,22の軸方向に移動したブレーキ本体10を制動解除時に反対方向へ設定距離だけ戻す第2隙間調整機構40と、を備え、第2隙間調整機構40は、支持枠20に設けられ、第1及び第2支持ピン21,22の軸方向への移動が規制されると共に径方向への移動が許容される。
 この構成では、第2隙間調整機構40は、第1及び第2支持ピン21,22の軸方向への移動が規制されると共に径方向への移動が可能である。そのため、ブレーキ本体10が支持枠20に対して傾斜した状態でも、第2隙間調整機構40の軸方向への移動が規制される。よって、ブレーキ本体10が支持枠20に対して傾斜した状態でも、制動時に第1及び第2支持ピン21,22の軸方向に移動したブレーキ本体10は、制動解除時に反対方向へ設定距離だけ戻される。したがって、ブレーキ本体10が支持枠20に対して傾斜した状態であっても、第2ブレーキライニング4とブレーキディスク2との隙間を調整できるブレーキ装置100を提供することができる。
 また、第2隙間調整機構40は、第1及び第2支持ピン21,22の外周に設けられて支持枠20に当接するリング体49を有し、支持枠20は、第1及び第2支持ピン21,22が挿通する挿通孔20aの内周面に形成されリング体49が係合して第2隙間調整機構40の軸方向への移動を規制する係合溝29bを有し、係合溝29bの底部の内径は、リング体49の外径と比較して大きく形成される。
 この構成では、係合溝29bの底部の内径が、リング体49の外径と比較して大きく形成されるので、支持枠20に対してブレーキ本体10が傾斜してもリング体49が係合溝29b内を移動して係合状態を維持することができる。
 また、係合溝29bの底部の内径とリング体49の外径との間隔は、ブレーキ本体10の支持枠20に対する最大傾き角度θmaxのときのリング体49の変位量以上の大きさに形成される。
 この構成では、ブレーキ本体10が支持枠20に対して最大傾き角度θmaxだけ傾いた場合にも、リング体49が係合溝29b内を移動して係合状態を維持することができる。
 また、支持枠20は、車体又は台車に取り付けられる支持枠本体24と、支持枠本体24に取り付けられて内周に係合溝29bが形成される固定リング29と、を有する。
 また、固定リング29は、支持枠本体24における第1及び第2支持ピン21,22の軸方向端部に取り付けられる。
 これらの構成では、固定リング29を設けることで、ブレーキ装置100への第2隙間調整機構40の組み付けが容易となり、既存のブレーキ装置100にも容易に後付けすることができ、組み付け互換性を確保できる。更には、第2隙間調整機構40の各部品のメンテナンスや交換も容易に行うことができる。
 また、支持枠本体24は、外周に環状の固定溝20bを有し、固定リング29は、固定溝20bに係止される係止部29aを有する。
 この構成では、固定リング29は、通常はブーツ25を取り付けるために用いられる固定溝20bに係止される係止部29aを有する。これにより、既存のブレーキ装置100の固定溝20bを利用して第2隙間調整機構40を取り付けることができる。
 また、第2隙間調整機構40は、第1及び第2支持ピン21,22をクランプ可能なクランプ部40aと、制動時のブレーキ本体10の移動に対して反力を発揮して、ブレーキ本体10の移動に抗するようにクランプ部40aを付勢するリリーススプリング50と、を備える。
 この構成では、制動時のブレーキ本体10の移動に伴うリリーススプリング50の反力がクランプ部40a,140を介して第1及び第2支持ピン21,22に付与される。これにより、ブレーキ装置100の制動を解除すると、反力によって第2ブレーキライニング4とブレーキディスク2とが離間する方向にブレーキ本体10が移動する。よって、ブレーキ装置100の解除時における第2ブレーキライニング4とブレーキディスク2との接触が防止される。したがって、ブレーキ装置100の第2ブレーキライニング4の寿命を向上させることができる。
 また、ブレーキ装置100は、クランプ部40aが、第2ブレーキライニング4がブレーキディスク2に近づく押圧方向へのブレーキ本体10の移動量が予め定められた基準移動量S0以下の状態では、第1及び第2支持ピン21,22をクランプし、ブレーキ本体10が基準移動量S0を超えて押圧方向へ移動する際には、第1及び第2支持ピン21,22のクランプを解除する。
 この構成では、第2ブレーキライニング4の摩耗により制動に必要なブレーキ本体10の移動量が増加し、基準移動量S0を超えてブレーキ本体10が押圧方向へ移動すると、ブレーキ本体10及び第1及び第2支持ピン21,22はクランプ部40aと相対移動する。このため、ブレーキ本体10が基準移動量S0を超えて移動しても、クランプ部40aは押圧方向へ移動せず、リリーススプリング50の反力が増加しなくなる。よって、制動時においてブレーキ本体10の移動量が基準移動量S0を超えて大きくなっても、ブレーキ本体10の移動に対する反力の増加が抑制される。したがって、ブレーキ装置100,200の制動力の安定性を確保しつつ、非制動時の第2ブレーキライニング4とブレーキディスク2との接触を防止して、第2ブレーキライニング4の寿命を向上させることができる。
 また、ブレーキ装置100は、クランプ部40aが、第1及び第2支持ピン21,22の軸方向に沿って間隔が徐々に狭くなるくさび空間を第1及び第2支持ピン21,22の外周面との間で形成するくさび面41aを有するリテーナ41と、くさび空間に収容される転動体42と、転動体42がくさび面41aに軸方向から押し付けられるようにリテーナ41を押圧するクランプスプリング43と、を有する。
 また、ブレーキ装置100は、クランプ部40aが、リテーナ41と第1及び第2支持ピン21,22との間に設けられ内外周面に開口する貫通孔45aを有する筒状のインナー部材44を更に有し、転動体42は、貫通孔45aを通じて第1及び第2支持ピン21,22の外周面に接触し、インナー部材44は、リテーナ41との間でクランプスプリング43を支持するばね受け部46と、リング体49との間でリリーススプリング50を支持するフランジ部47と、を有する。
 これらの構成では、クランプスプリング43が、転動体42がくさび面41aに押し付けられるようにリテーナ41を付勢する。これにより、転動体42は、くさび空間において幅が狭い部分に向けて押し込まれる。よって、クランプ部40aと第1及び第2支持ピン21,22との相対移動がくさび効果によって規制されて、クランプ部40aが第1及び第2支持ピン21,22をクランプする。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、第2隙間調整機構40は、第1及び第2支持ピン21,22にそれぞれ設けられる。これに代えて、第2隙間調整機構40を、第1及び第2支持ピン21,22のいずれか一方のみに設けてもよい。
 また、上記実施形態では、支持枠20の固定溝20bに係止される係止部29aと、ブーツ25を取り付けるためのブーツ溝29cと、を有するように一体に形成される固定リング29を設けている。これに代えて、図11に示す変形例のように、U字状の断面形状に形成されてブーツ溝29cを有するU字状リング29eと、同じくU字状の断面形状に形成されて内周に係合溝29bが形成される固定カバー29fと、を組み合わせて固定リング29を形成してもよい。固定カバー29fは、C字状に形成され、ボルト29gによって締結されてリング状になる。この場合、U字状の断面形状を有する二部材の組み合わせであるため、固定リング29の形成が容易である。
 また、上記実施形態では、支持枠本体24に固定リング29が取り付けられて係合溝29bが形成される。これに代えて、図12に示す他の変形例のように、固定リング29を設けずに、支持枠本体24に係合溝29bを形成してもよい。この場合、支持枠20周辺の省スペース化を図ることができ、ブレーキ装置100を小型化することができる。
 本願は2017年9月21日に日本国特許庁に出願された特願2017-181722に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (10)

  1.  車輪と共に回転するブレーキディスクを挟持して制動するブレーキ装置であって、
     前記ブレーキディスクの両側から前記ブレーキディスクに摺接して摩擦力を付与する第1及び第2ブレーキライニングをそれぞれ支持する第1及び第2キャリパアームを有するブレーキ本体と、
     車体又は台車に取り付けられる支持枠に軸方向に移動自在に支持されると共に前記ブレーキ本体を支持する支持ピンと、
     前記第1キャリパアームに設けられ前記第1ブレーキライニングを前記ブレーキディスクに押圧すると共に前記ブレーキ本体を前記支持ピンの軸方向に移動させて前記第2ブレーキライニングを前記ブレーキディスクに押圧する押圧機構と、
     制動時に前記支持ピンの軸方向に移動した前記ブレーキ本体を制動解除時に反対方向へ設定距離だけ戻す隙間調整機構と、を備え、
     前記隙間調整機構は、前記支持枠に設けられ、前記支持ピンの軸方向への移動が規制されると共に径方向への移動が許容される、
    ブレーキ装置。
  2.  請求項1に記載のブレーキ装置であって、
     前記隙間調整機構は、前記支持ピンの外周に設けられて前記支持枠に当接するリング体を有し、
     前記支持枠は、前記支持ピンが挿通する挿通孔の内周面に形成され前記リング体が係合して前記隙間調整機構の軸方向への移動を規制する係合溝を有し、
     前記係合溝の底部の内径は、前記リング体の外径と比較して大きく形成される、
    ブレーキ装置。
  3.  請求項2に記載のブレーキ装置であって、
     前記係合溝の底部の内径と前記リング体の外径との間隔は、前記ブレーキ本体の前記支持枠に対する最大傾き角度のときの前記リング体の変位量以上の大きさに形成される、
    ブレーキ装置。
  4.  請求項2に記載のブレーキ装置であって、
     前記支持枠は、
     前記車体又は台車に取り付けられる支持枠本体と、
     前記支持枠本体に取り付けられて内周に前記係合溝が形成される固定部材と、を有する、
    ブレーキ装置。
  5.  請求項4に記載のブレーキ装置であって、
     前記固定部材は、前記支持枠本体における前記支持ピンの軸方向端部に取り付けられる、
    ブレーキ装置。
  6.  請求項4に記載のブレーキ装置であって、
     前記支持枠本体は、外周に環状の固定溝を有し、
     前記固定部材は、前記固定溝に係止される係止部を有する、
    ブレーキ装置。
  7.  請求項2に記載のブレーキ装置であって、
     前記隙間調整機構は、
     前記支持ピンをクランプ可能なクランプ部と、
     制動時の前記ブレーキ本体の移動に対して反力を発揮して、前記ブレーキ本体の移動に抗するように前記クランプ部を付勢する付勢部材と、を更に有する、
    ブレーキ装置。
  8.  請求項7に記載のブレーキ装置であって、
     前記支持ピンは、前記第2ブレーキライニングが前記ブレーキディスクに近づく押圧方向への前記ブレーキ本体の移動量が予め定められた基準移動量以下の状態では、前記クランプ部によってクランプされ、前記ブレーキ本体が前記基準移動量を超えて前記押圧方向へ移動する際には、前記クランプ部によるクランプが解除される、
    ブレーキ装置。
  9.  請求項7に記載のブレーキ装置であって、
     前記クランプ部は、
     前記支持ピンの軸方向に沿って間隔が徐々に狭くなるくさび空間を前記支持ピンの外周面との間で形成するくさび面を有するくさび部材と、
     前記くさび空間に収容される転動体と、
     前記転動体が前記くさび面に軸方向から押し付けられるように前記くさび部材又は前記転動体を押圧する押付部材と、を有する、
    ブレーキ装置。
  10.  請求項9に記載のブレーキ装置であって、
     前記クランプ部は、前記くさび部材と前記支持ピンとの間に設けられ内外周面に開口する貫通孔を有する筒状のインナー部材を更に有し、
     前記転動体は、前記貫通孔を通じて前記支持ピンの外周面に接触し、
     前記インナー部材は、
     前記くさび部材との間で前記押付部材を支持する受け部と、
     前記リング体との間で前記付勢部材を支持する支持部と、を有する、
    ブレーキ装置。
PCT/JP2018/032438 2017-09-21 2018-08-31 ブレーキ装置 WO2019058934A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181722 2017-09-21
JP2017181722A JP2019056435A (ja) 2017-09-21 2017-09-21 ブレーキ装置

Publications (1)

Publication Number Publication Date
WO2019058934A1 true WO2019058934A1 (ja) 2019-03-28

Family

ID=65811138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032438 WO2019058934A1 (ja) 2017-09-21 2018-08-31 ブレーキ装置

Country Status (2)

Country Link
JP (1) JP2019056435A (ja)
WO (1) WO2019058934A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632773U (ja) * 1992-09-30 1994-04-28 曙ブレーキ工業株式会社 フローティングキャリパ型ディスクブレーキ
JP2008051170A (ja) * 2006-08-23 2008-03-06 Kayaba Ind Co Ltd 鉄道車両用キャリパブレーキ装置
JP2008051169A (ja) * 2006-08-23 2008-03-06 Kayaba Ind Co Ltd 鉄道車両用キャリパブレーキ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632773U (ja) * 1992-09-30 1994-04-28 曙ブレーキ工業株式会社 フローティングキャリパ型ディスクブレーキ
JP2008051170A (ja) * 2006-08-23 2008-03-06 Kayaba Ind Co Ltd 鉄道車両用キャリパブレーキ装置
JP2008051169A (ja) * 2006-08-23 2008-03-06 Kayaba Ind Co Ltd 鉄道車両用キャリパブレーキ装置

Also Published As

Publication number Publication date
JP2019056435A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US7631733B2 (en) Brake assembly
US8925690B2 (en) Disc brake apparatus
US4044864A (en) Disc brake
JPS591823A (ja) 円板ブレ−キ
JP6543149B2 (ja) ブレーキ装置
US3917032A (en) Single mount and guide pin for a caliper of a disc brake assembly
US10801569B2 (en) Disc brake
WO2013118374A1 (ja) キャリパブレーキ装置
WO2013080381A1 (ja) ディスクブレーキ装置及びキャリパ
US6491138B1 (en) Disc brake
JP2020034043A (ja) ディスクブレーキ
JP6663266B2 (ja) ブレーキ装置
JP2009115214A (ja) 車両用キャリパブレーキ装置
US2968370A (en) Disk brakes
US11204071B2 (en) Disc brake
US4261443A (en) Disc brakes for vehicles
JP4942865B2 (ja) ディスクブレーキ装置及びそのための帯状弾性装置
US20220299073A1 (en) Disc brake
WO2019058934A1 (ja) ブレーキ装置
JP6688645B2 (ja) ブレーキ装置
US20190063518A1 (en) Disc brake
WO2008079087A1 (en) Method and device for disc brakes and vehicle
USRE32470E (en) Disc brakes for vehicles
JP6688646B2 (ja) ブレーキ装置
US3616880A (en) Floating anchor-cylinder drum brake with adjuster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859172

Country of ref document: EP

Kind code of ref document: A1