WO2019058824A1 - Robot hand, robot device, and method for manufacturing electronic apparatus - Google Patents

Robot hand, robot device, and method for manufacturing electronic apparatus Download PDF

Info

Publication number
WO2019058824A1
WO2019058824A1 PCT/JP2018/030502 JP2018030502W WO2019058824A1 WO 2019058824 A1 WO2019058824 A1 WO 2019058824A1 JP 2018030502 W JP2018030502 W JP 2018030502W WO 2019058824 A1 WO2019058824 A1 WO 2019058824A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
axis
finger
suction
robot
Prior art date
Application number
PCT/JP2018/030502
Other languages
French (fr)
Japanese (ja)
Inventor
弘邦 別府
貴行 古坊
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880059000.5A priority Critical patent/CN111065498B/en
Priority to JP2019543482A priority patent/JP7167924B2/en
Publication of WO2019058824A1 publication Critical patent/WO2019058824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present technology relates to, for example, a robot hand used for manufacturing an electronic device, a robot device, and a method of manufacturing an electronic device.
  • the suction type robot hand is advantageous when picking up a work placed on a flat surface, but when the suction force is weak, the work may be dropped from the suction pad during movement or posture conversion.
  • the clamping type robot hand holds relatively high holding power because it directly grips the work, when the work is a thin strip member such as FFC, the work placed flat can be stabilized stably. It can not be gripped.
  • Patent Document 1 discloses a work gripping apparatus having a suction pad capable of holding a work by suction force, and a pair of holding claws for holding the work held by the suction pad from both sides thereof. .
  • the pair of gripping claws can only move for changing the distance between them. For this reason, when changing the posture of the work held by the suction pad, it is necessary to change the posture of the entire robot hand, and it is difficult to change the posture of the work in a limited space.
  • an object of the present technology is to provide a robot hand, a robot device, and an electronic apparatus capable of realizing a series of operations from suction of a work to posture conversion without changing the posture of the entire hand. It is in providing a manufacturing method.
  • a robot hand includes a hand body, a suction unit, and a finger unit.
  • the hand body has a base portion.
  • the suction unit is attached to the base portion and has a suction portion movable in parallel in a first axial direction.
  • the finger unit is attached to the base portion, and has first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Have.
  • the work held by the suction unit can be pivoted around the pivot axis. It can be converted into an attitude rotated at an arbitrary angle.
  • the hand body further includes a joint axis parallel to a third axis intersecting with the first and second axes, and the base portion is configured to be rotatable around the joint axis.
  • the suction unit and the finger unit can be rotated around the joint axis, and the finger unit can be rotated around the other axis of the rotation axis and the joint axis.
  • the hand body may further include first and second wire drive mechanisms for pivoting the first and second finger portions around the pivot axis, respectively.
  • the work can be gripped more properly by absorbing the timing deviation and positional deviation of the rotational movement of the individual finger portions by utilizing the spring property of the wire in each wire drive mechanism.
  • the first and second wire drive mechanisms may have a wire tension adjustment unit including a detection mechanism capable of detecting wire tension respectively. Thereby, the wire tension in each wire drive mechanism can be adjusted appropriately.
  • the hand main body may further include a third wire driving mechanism for rotating the base portion around the joint axis. Since the rotational drive source of the base portion can be configured in the same manner as that of the finger unit, the system can be simplified and the control affinity of each drive source can be enhanced.
  • the finger unit is typically configured to be capable of gripping a work sucked by the suction unit. As a result, it is possible to realize by a series of operations from suction holding of the work to posture conversion.
  • Each of the first and second finger portions may have a movable range of 180 degrees. Thereby, it is possible to invert the front and back of the work by the finger unit.
  • the finger unit may be configured to be capable of sandwiching the work sucked by the suction unit from the uniaxial direction. Thereby, even a thin and flexible thin work can be properly held by the finger unit.
  • a robot apparatus includes a robot arm, a hand main body, a suction unit, and a finger unit.
  • the hand body has a base and is attached to the robot arm.
  • the suction unit is attached to the base portion and has a suction portion movable in parallel in a first axial direction.
  • the finger unit is attached to the base portion, and has first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. And configured to be capable of gripping the workpiece adsorbed by the adsorption unit.
  • a method of manufacturing an electronic device is a method of manufacturing an electronic device having a connection member, which is an adsorption unit attached to a base portion of a robot hand and having a suction portion movable in parallel in a first axial direction. Including adsorbing the connecting member by a unit.
  • a finger unit having first and second finger portions attached to the base portion and pivotable independently about a pivot axis parallel to a second axis intersecting the first axis;
  • the connection member adsorbed by the adsorption unit is gripped.
  • the posture of the connecting member is changed by rotating the finger unit holding the connecting member around the pivot shaft.
  • the present technology it is possible to realize a series of operations from suction of a work to posture conversion without changing the posture of the entire hand.
  • the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
  • FIG. 1 is a schematic front view showing a robot apparatus according to an embodiment of the present technology. It is a schematic perspective view which shows the structure of the hand part in the said robot apparatus. It is an enlarged view of the principal part of the above-mentioned hand part. It is a principal part front view of the above-mentioned hand part. It is a principal part left view of the above-mentioned hand part. It is a principal part right view of the above-mentioned hand part. It is a principal part front view which shows the open state of the finger unit in the said hand part. It is a bottom view of FIG. It is a figure which shows the structure of the wire drive mechanism in the said robot apparatus.
  • FIG. 1 is a schematic front view showing a robot apparatus according to an embodiment of the present technology.
  • FIG. 1 an application example of the present technology to an assembly robot used in a manufacturing process of an electronic device will be described.
  • the robot apparatus 1 includes an assembly robot 100, a work bench 2 supporting a semi-finished product of the electronic device E, and a controller 3 controlling driving of the assembly robot 100.
  • the assembly robot 100 has a hand unit 101 (robot hand) and an articulated arm 102 (robot arm) capable of moving the hand unit 101 to any coordinate position with six-axis degrees of freedom.
  • the hand unit 101 grips a flexible linear or strip-like connecting member C having a connecting portion at its tip such as a cable, a harness, an FFC (Flexible Flat Cable), or an FPC (Flexible Printed Circuit) as a work, It is possible to convert this into a predetermined posture and assemble it into a predetermined part of the electronic device E.
  • a flexible linear or strip-like connecting member C having a connecting portion at its tip such as a cable, a harness, an FFC (Flexible Flat Cable), or an FPC (Flexible Printed Circuit) as a work.
  • the articulated arm 102 is connected to the workbench 2 or a drive unit (not shown) disposed close to the workbench 2.
  • the articulated arm 102 is configured as a transport mechanism that moves the hand unit 101 or converts its posture.
  • the articulated arm 102 is typically composed of a vertical articulated arm, a horizontal articulated arm or the like, but may be composed of an XYZ orthogonal robot (3-axis robot) or the like.
  • the controller 3 is typically configured by a computer having a CPU (Central Processing Unit) and a memory, and is configured to control the driving of the assembly robot 100 in accordance with the program stored in the memory.
  • CPU Central Processing Unit
  • FIG. 2 is a schematic perspective view showing the configuration of the hand unit 101 of the assembly robot 100
  • FIG. 3 is an enlarged view of the main part of the hand unit 101.
  • the hand unit 101 includes a hand body 10, a suction unit 30, and a finger unit 40.
  • the hand main body 10 has a base portion 11, a mechanical portion 12 and a connecting portion 13.
  • the base portion 11 supports the suction unit 30 and the finger unit 40.
  • the base portion 11 has a rotational axis 111 parallel to the Y-axis direction and a joint axis 112 parallel to the X-axis direction.
  • the mechanical portion 12 is formed in a multistage cylindrical shape having a large diameter portion 121 and a small diameter portion 122.
  • the large diameter portion 121 has one end (upper end) attached to the articulated arm 102, and the small diameter portion 122 is provided at the center of the other end (lower end) of the large diameter portion 121.
  • the mechanism unit 12 accommodates a drive source for rotating the finger unit around the rotation shaft 111, a drive source for rotating the base unit 11 around the joint shaft 112, and a power transmission mechanism and adjustment mechanism of these drive sources.
  • the connecting portion 13 connects between the base portion 11 and the small diameter portion 122 of the mechanical portion 12.
  • the connecting portion 13 has a rectangular cylindrical metal tube portion accommodating a power transmission member (drive wire) for transmitting the power of various drive sources in the mechanical portion 12 to each portion of the base portion 11.
  • FIG. 4 is a front view of the main part of the hand unit 101
  • FIG. 5 is a left side view thereof
  • FIG. 6 is a right side view thereof
  • FIG. 7 is a front view of the main part showing the open state of the finger unit 40
  • FIG. FIG. hereinafter, details of the suction unit 30 and the finger unit 40 will be described.
  • the suction unit 30 includes a suction nozzle 31 having a suction portion 311, a drive cylinder 32 for reciprocating the suction nozzle 31 in the Z-axis direction, and a fixing member for fixing between the suction nozzle 31 and the drive cylinder 32. 33 and a connecting member 34 connecting between the drive cylinder 32 and the base portion 11.
  • the suction nozzle 31 has a suction portion 311 at one end (lower end) and a connection portion 312 connected to a negative pressure source (not shown) at the other end (upper end).
  • the negative pressure source is constituted by, for example, a small pump installed in the mechanism unit 12.
  • the suction position of the connection member C by the suction unit 311 is not particularly limited, and in the present embodiment, as shown in FIG. 8, the position is near the end of the connection member C on the connection portion Ce side.
  • the suction position is not limited to the widthwise central region of the connecting member C, and is a position biased from the widthwise center of the connecting member C to the edge on one side (finger unit 40 side) as shown in FIG. It is also good.
  • the drive cylinder 32 is fixed to the connecting member 34 and has a drive rod 321 which can be extended and retracted in the Z-axis direction.
  • the fixing member 33 connects the suction nozzle 31 and the drive rod 321 to each other, and is configured to be able to move the suction nozzle 31 (the suction portion 311) in parallel in the Z-axis direction by driving the drive rod 321.
  • a guide member 35 movable in parallel in the Z-axis direction is fixed between the fixing member 33 and the connecting member 34, whereby movement accuracy of the suction portion 311 along the Z-axis direction is secured.
  • the connecting member 34 has a first end 341 supporting the drive cylinder 32 and a second end 342 fixed to the base 11.
  • the second end 342 is fixed between the pivot shaft 111 and the joint shaft 112 using a suitable fastener such as a screw member.
  • the suction unit 30 is configured to be rotatable around the joint shaft 112 together with the base 11.
  • the finger unit 40 has a first finger portion 41 and a second finger portion 42.
  • the first and second finger portions 41 and 42 are attached to the base portion 11 and configured to be independently pivotable about the pivot shaft 111.
  • the finger unit 40 is configured to be able to grip the workpiece sucked by the suction unit 311.
  • the finger unit 40 is configured to be capable of sandwiching the connection member C adsorbed by the adsorption portion in the thickness direction (Z-axis direction).
  • the first and second finger portions 41 and 42 are configured to be capable of independently and independently pivoting between a clamp position close to each other and an open position separate from each other.
  • the movable range (maximum rotation angle) of each finger portion 41, 42 is not particularly limited, and is 180 degrees in the present embodiment.
  • the finger units 40 are arranged at predetermined intervals in the X-axis direction and the Y-axis direction with respect to the suction unit 30 so as not to interfere with the suction unit 30 in the open position (see FIG. 7).
  • the finger unit 40 is set to a height at which the tip (lower end) thereof is positioned above the lowest position of the suction portion 311.
  • the first and second finger portions 41 and 42 are made of an appropriate material such as a metal material or a synthetic resin material.
  • Each of the first and second finger portions 41 and 42 has a clamp surface having a width direction in the Y-axis direction, and is configured to clamp the workpiece with the clamp surface.
  • the hand body 10 has first and second wire driving mechanisms D1 and D2 for rotating the first and second finger portions 41 and 42 around the pivot shaft 111, respectively.
  • the hand main body 10 further includes a third wire driving mechanism D3 for rotating the base 11 around the joint shaft 112.
  • the first to third wire driving mechanisms D1 to D3 are installed inside the mechanical portion 12 (large diameter portion 121) as shown in FIG.
  • the first to third wire driving mechanisms D1 to D3 have the same configuration, and include a motor M, a pulley P, and a wire W as shown in FIG.
  • a rotating body Ma having a spiral groove formed on the circumferential surface is attached.
  • a metal wire W is bridged between the circumferential surface of the rotating body Ma and the pulley P to be driven via the inside of the small diameter portion 122 of the mechanical portion 12 and the connecting portion 13.
  • the motor M is, for example, a servomotor, and uses the wire W as a power transmission member to rotate the pulley P in a desired rotational direction by a desired amount of rotation (rotational angle).
  • the pulley P1 in the first wire drive mechanism D1 is provided at the proximal end of the first finger portion 41, and the first wire driving mechanism D1 is connected to the first wire W1 across the pulley P1.
  • the finger portion 41 is configured to be pivotable around the pivot shaft 111.
  • the pulley P2 in the second wire drive mechanism D2 is provided at the base end of the second finger portion 42, and the second finger portion 42 is the pivot shaft 112 via the wire W2 bridged over the pulley P2. It is configured to be rotatable around.
  • the pulley P3 in the third wire driving mechanism D3 is provided at the upper end of the base portion 11, and the base portion 11 is the joint shaft 112 via the wire W3 bridged over the pulley P3. It is configured to be rotatable around the
  • the respective finger portions 41 and 42 and the base portion 11 can be configured with the drive system of the same system, so the system can be simplified.
  • the control affinity of each driving source can be enhanced.
  • the wires W1 and W2 are, as shown in FIG. 4, a first guide pulley G1 inserted into the joint shaft 112 adjacent to the pulley P3 and a pair of the guide guide G1 provided between the rotating shaft 111 and the joint shaft 112.
  • the pulleys P1 and P2 are respectively bridged through the second guide pulley G2.
  • the pair of second guide pulleys G2 has an axis parallel to the X-axis direction, and is provided adjacent to the Y-axis direction.
  • Each of the second guide pulleys G2 is formed of two rows of pulley groups each independently supporting the wires W1 and W2 bridged by the pulleys P1 and P2.
  • the wire W1 is bridged over the pulley P1 via a pair of inner first guide pulleys G1 sandwiching the pulley P3 disposed at the center of the joint shaft 112 and one of the pair of second guide pulleys.
  • the wire W2 is bridged to the pulley P2 via the pair of outer first guide pulleys G1 sandwiching the pair of inner first guide pulleys G1 and the other of the pair of second guide pulleys.
  • the pulleys P1 and P2 are disposed adjacent to each other in the axial direction (Y-axis direction) of the pivot shaft 111, as shown in FIGS.
  • the first to third wire drive mechanisms D1 to D3 have wire tension adjustment units each including a detection mechanism capable of detecting the wire tension of each wire drive mechanism.
  • each wire driving mechanism D1 to D3 the motor M is installed on the base B via the load cell C.
  • the load cell C constitutes a detection mechanism that detects the tension of the wire W when the motor M rotationally drives the pulley P.
  • the wire tension adjustment unit has a wire support R that supports the wire W stretched between the motor M and the pulley P.
  • the wire support portion R includes a first unit R1 having a pair of rollers r11 and r12 supporting the upstream side and the downstream side of the wire W wound around the rotating body Ma of the motor M, and the upstream side and the downstream side of the wire W And a second unit R2 having a roller r12 for supporting in common.
  • the second unit R2 is configured to be movable relative to the first unit R1 in one axial direction.
  • the wire support portion R configured as described above constitutes a wire tension adjustment unit capable of arbitrarily adjusting the tension of the wire W.
  • the wire support R adjusts the tension of the wire W based on the output of the detection mechanism including the load cell C so that the wire tension has a predetermined value or range.
  • the predetermined tension of the wires W (W1 to W3) may be the same or different for each of the wire driving mechanisms D1 to D3.
  • the robot apparatus 1 grips one end side of the connection member C such as FFC with the hand unit 101, converts it into a predetermined posture, and connects it to a predetermined part of the electronic device E Do the work.
  • 10A to 10D are schematic views for explaining a series of operations of the hand unit 101 in connection with the above operation.
  • the robot apparatus 1 has a suction process of the connection member C, a gripping process of the connection member C, and a posture conversion process of the connection member C. Each operation of the robot apparatus 1 described later is controlled by the controller 3.
  • the robot device 1 stops the arm portion 101 at a position immediately above the connection member C, and then lowers the adsorption portion 311 of the adsorption unit 30 downward to adsorb and hold the surface near the end of the connection member C (See FIG. 8, 10A). After suction of the connection member C, the arm unit 101 raises the suction portion 311 to arrange the connection member C on the side of the finger unit 40 (see FIG. 10B).
  • connection member C is typically mounted on the top surface of the electronic device W.
  • a camera may be used to move the arm unit 101 to a position immediately above the connection member C.
  • the camera may be installed on the arm unit 101 or may be installed on the articulated arm 102.
  • the arm unit 101 grips the connection member C sucked by the suction unit 311 by the finger unit 40 (see FIG. 10C).
  • the second finger portion 42 is rotated around the pivot shaft 111 via the second wire drive mechanism D2. Rotate it 180 degrees.
  • the connection member C adsorbed by the adsorption unit 311 is nipped by the finger unit 40 in the Z-axis direction.
  • the arm unit 101 converts the connection member C into a predetermined posture by rotating the finger unit 40 holding the connection member C around the rotation axis 111.
  • the posture after conversion is not particularly limited, and typically, a posture suitable for the next step is employed.
  • the first and second finger portions 41 and 42 rotate around the rotation shaft 111 in synchronization with each other.
  • the arm unit 101 may rotate the finger unit 40 not only around the pivot axis 111 but also around the joint axis 112. Thereby, the degree of freedom of the posture of the connection member C is enhanced.
  • the arm unit 101 conveys and connects the connection portion Ce (see FIG. 8) of the connection member C to a predetermined installation position on the electronic device W.
  • the present embodiment it is possible to realize a series of operations from suction holding of a work to posture conversion.
  • the pickup operation of the work can be properly performed by the suction operation by the suction unit 30.
  • the holding power of the work can be enhanced, and therefore, the work of changing the posture of the work can be stably performed.
  • the first and second finger portions 41 and 42 are configured to be independently pivotable around the pivot shaft 111, the work held by the suction unit 30 (connection It is possible to stably convert the member C) into a posture in which the member C) is rotated about the rotation shaft 111 by an arbitrary angle. Thereby, it is possible to convert the work held by the suction unit 30 into another posture without changing the posture of the hand part 101 as a whole. Therefore, the space required for posture conversion of the workpiece can be reduced, which facilitates transport of the workpiece to the narrow area.
  • the wire drive mechanisms D1 and D2 are adopted as the drive sources of the first and second finger portions 41 and 42, the timing of the rotational movement of the individual finger portions 41 and 42 using the spring property of the wire. Misalignment and misalignment can be absorbed. For example, when gripping a work with two finger portions 41 and 42, even if the target positions (gripping positions) are set at slightly overlapping positions, the overlap of the overlapping portions is absorbed by the springiness of the wires W1 and W2. can do. Thus, the workpiece can be stably gripped with a predetermined holding force.
  • a flexible linear or strip-like connecting member C such as FFC
  • the type of the work is not limited to this, for example, plate-like
  • the present technology is also applicable to the handling of other non-thick members such as cards, coins, and strips.
  • the present technology is applicable not only to industrial robots, but also to home robots, medical robots, and the like.
  • the suction unit 311 is configured to be movable in parallel by moving the suction nozzle 31 up and down with the drive cylinder 32, but the suction nozzle 31 itself may have a suction unit that can expand and contract.
  • the wire tension detection mechanism may be configured to be able to dynamically control the adjustment unit so that the tension of each wire becomes a predetermined value. This makes it possible to adjust the wire tension in real time.
  • the present technology can also be configured as follows.
  • a hand body having a base portion, A suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
  • a finger unit attached to the base portion and having first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Equipped robot hand.
  • the robot hand according to (1) above, The hand body further comprises an articulation axis parallel to a third axis intersecting the first and second axes respectively;
  • the robot hand configured to be rotatable about the joint axis.
  • the first and second wire driving mechanisms each have a wire tension adjustment unit including a detection mechanism capable of detecting wire tension.
  • the robot hand according to any one of (2) to (4) above, The robot hand further includes a third wire drive mechanism for rotating the base portion around the joint axis.
  • the finger unit is configured to be capable of gripping a work sucked by the suction unit.
  • the finger unit is configured to be capable of sandwiching a work sucked by the suction unit from the uniaxial direction.
  • a hand body having a base and attached to the robot arm;
  • a suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
  • a finger unit attached to the base portion and having first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis.
  • a method of manufacturing an electronic device having a connecting member Suctioning the connecting member by a suction unit having a suction unit attached to a base portion of the robot hand and movable in parallel in a first axial direction;
  • a finger unit having first and second finger portions that are independently pivotable about a pivot axis attached to the base portion and parallel to a second axis intersecting the first axis; Gripping the connection member adsorbed by the adsorption unit;
  • a method of manufacturing an electronic device wherein a posture of the connection member is changed by rotating a finger unit holding the connection member around the rotation axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

The robot hand relating to one embodiment of the present technology is provided with a hand main body, a suction unit, and a finger unit. The hand main body has a base section. The suction unit is attached to the base section, and has a suction section capable of moving in parallel in first axis direction. The finger unit is attached to the base section, and has first and second finger sections, which can independently rotate about a rotating axis parallel to a second axis intersecting the first axis.

Description

ロボットハンド、ロボット装置及び電子機器の製造方法Robot hand, robot apparatus and method of manufacturing electronic device
 本技術は、例えば、電子機器の製造に用いられるロボットハンド、ロボット装置及び電子機器の製造方法に関する。 The present technology relates to, for example, a robot hand used for manufacturing an electronic device, a robot device, and a method of manufacturing an electronic device.
 近年、電子機器の製造工程にロボット装置が広く用いられている。この種のロボット装置は、ロボットハンドのワーク保持機構として、ワークを真空吸着することが可能な吸着パッドを有する吸着方式と、ワークを把持することが可能なフィンガを有するクランプ方式とが知られている。 In recent years, robot devices have been widely used in the manufacturing process of electronic devices. In this type of robot apparatus, as a workpiece holding mechanism of a robot hand, a suction method having a suction pad capable of vacuum suctioning a workpiece and a clamp method having a finger capable of gripping a workpiece are known. There is.
 吸着方式のロボットハンドは、平面上に載置されたワークを拾い上げる際に有利であるが、吸着力が弱いと移動途中や姿勢変換の際にワークが吸着パッドから脱落するおそれがある。一方、クランプ方式のロボットハンドは、ワークを直接把持するため比較的高い保持力が得られるものの、ワークがFFCのような厚みの小さい帯状部材の場合、平面状に載置されたワークを安定に把持することができない。 The suction type robot hand is advantageous when picking up a work placed on a flat surface, but when the suction force is weak, the work may be dropped from the suction pad during movement or posture conversion. On the other hand, although the clamping type robot hand holds relatively high holding power because it directly grips the work, when the work is a thin strip member such as FFC, the work placed flat can be stabilized stably. It can not be gripped.
 そこで、吸着方式とクランプ方式とを兼ね備えたロボットハンドが知られている。例えば特許文献1には、吸着力によりワークを保持可能な吸着パッドと、吸着パッドに保持されたワークをその両側方から挟み込んで保持する一対の把持爪とを有するワーク把持装置が知られている。 Then, the robot hand which combines an adsorption method and a clamp method is known. For example, Patent Document 1 discloses a work gripping apparatus having a suction pad capable of holding a work by suction force, and a pair of holding claws for holding the work held by the suction pad from both sides thereof. .
特開2010-82748公報JP, 2010-82748, A
 特許文献1に記載の把持装置において、一対の把持爪は、各々の間隔を変化させる動きしかできない。このため、吸着パッドで保持されたワークの姿勢変換に際しては ロボットハンド全体の姿勢変換が必要であり、限られたスペースでのワークの姿勢変換が困難である。 In the gripping device described in Patent Document 1, the pair of gripping claws can only move for changing the distance between them. For this reason, when changing the posture of the work held by the suction pad, it is necessary to change the posture of the entire robot hand, and it is difficult to change the posture of the work in a limited space.
 以上のような事情に鑑み、本技術の目的は、ハンド全体の姿勢を変化させることなくワークの吸着から姿勢変換までの一連の動作を実現することが可能なロボットハンド、ロボット装置及び電子機器の製造方法を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide a robot hand, a robot device, and an electronic apparatus capable of realizing a series of operations from suction of a work to posture conversion without changing the posture of the entire hand. It is in providing a manufacturing method.
 本技術の一形態に係るロボットハンドは、ハンド本体と、吸着ユニットと、フィンガユニットとを具備する。
 上記ハンド本体は、ベース部を有する。
 上記吸着ユニットは、上記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する。
 上記フィンガユニットは、上記ベース部に取り付けられ、上記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有する。
A robot hand according to an embodiment of the present technology includes a hand body, a suction unit, and a finger unit.
The hand body has a base portion.
The suction unit is attached to the base portion and has a suction portion movable in parallel in a first axial direction.
The finger unit is attached to the base portion, and has first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Have.
 上記ロボットハンドにおいては、第1及び第2のフィンガ部が回動軸のまわりに各々独立して回動可能に構成されているため、吸着ユニットで保持されたワークを上記回動軸のまわりに任意の角度回転させた姿勢に変換することができる。 In the robot hand, since the first and second finger portions are configured to be independently pivotable around the pivot axis, the work held by the suction unit can be pivoted around the pivot axis. It can be converted into an attitude rotated at an arbitrary angle.
 上記ハンド本体は、上記第1及び第2の軸にそれぞれ交差する第3の軸に平行な関節軸をさらに有し、上記ベース部は、上記関節軸のまわりに回動可能に構成されてもよい。
 これにより、吸着ユニット及びフィンガユニットを関節軸のまわりに回動させることができるとともに、フィンガユニットを回動軸及び関節軸の他軸まわりに回動させることができる。
The hand body further includes a joint axis parallel to a third axis intersecting with the first and second axes, and the base portion is configured to be rotatable around the joint axis. Good.
Thus, the suction unit and the finger unit can be rotated around the joint axis, and the finger unit can be rotated around the other axis of the rotation axis and the joint axis.
 上記ハンド本体は、上記第1及び第2のフィンガ部をそれぞれ上記回動軸のまわりに回動させる第1及び第2のワイヤ駆動機構をさらに有してもよい。
 各ワイヤ駆動機構におけるワイヤのバネ性を利用して個々のフィンガ部の回転動作のタイミングずれや位置ずれを吸収して、ワークをより適正に把持することができる。
The hand body may further include first and second wire drive mechanisms for pivoting the first and second finger portions around the pivot axis, respectively.
The work can be gripped more properly by absorbing the timing deviation and positional deviation of the rotational movement of the individual finger portions by utilizing the spring property of the wire in each wire drive mechanism.
 上記第1及び第2のワイヤ駆動機構は、ワイヤ張力をそれぞれ検出することが可能な検出機構を含むワイヤ張力調整ユニットを有してもよい。
 これにより、各ワイヤ駆動機構におけるワイヤ張力を適切に調整することができる。
The first and second wire drive mechanisms may have a wire tension adjustment unit including a detection mechanism capable of detecting wire tension respectively.
Thereby, the wire tension in each wire drive mechanism can be adjusted appropriately.
 上記ハンド本体は、上記ベース部を上記関節軸のまわりに回動させる第3のワイヤ駆動機構をさらに有してもよい。
 ベース部の回動駆動源をフィンガユニットのそれと同一方式で構成することができるため、システムの簡素化を図ることができるとともに、各駆動源の制御の親和性を高めることができる。
The hand main body may further include a third wire driving mechanism for rotating the base portion around the joint axis.
Since the rotational drive source of the base portion can be configured in the same manner as that of the finger unit, the system can be simplified and the control affinity of each drive source can be enhanced.
 上記フィンガユニットは、典型的には、上記吸着部に吸着されたワークを把持することが可能に構成される。
 これにより、ワークの吸着保持から姿勢変換まで一連の動作で実現することができる。
The finger unit is typically configured to be capable of gripping a work sucked by the suction unit.
As a result, it is possible to realize by a series of operations from suction holding of the work to posture conversion.
 上記第1及び第2のフィンガ部はそれぞれ、180度の可動範囲を有してもよい。
 これにより、フィンガユニットによりワークの表裏を反転することが可能である。
Each of the first and second finger portions may have a movable range of 180 degrees.
Thereby, it is possible to invert the front and back of the work by the finger unit.
 上記フィンガユニットは、上記吸着部に吸着されたワークを上記一軸方向から挟み込むことが可能に構成されてもよい。
 これにより、厚みがなく柔軟性のある薄手のワークであっても、フィンガユニットによって適切に保持することができる。
The finger unit may be configured to be capable of sandwiching the work sucked by the suction unit from the uniaxial direction.
Thereby, even a thin and flexible thin work can be properly held by the finger unit.
 本技術の一形態に係るロボット装置は、ロボットアームと、ハンド本体と、吸着ユニットと、フィンガユニットとを具備する。
 上記ハンド本体は、ベース部を有し、上記ロボットアームに取り付けられる。
 上記吸着ユニットは、上記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する。
 上記フィンガユニットは、上記ベース部に取り付けられ、上記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有し、上記吸着部に吸着されたワークを把持することが可能に構成される。
A robot apparatus according to an embodiment of the present technology includes a robot arm, a hand main body, a suction unit, and a finger unit.
The hand body has a base and is attached to the robot arm.
The suction unit is attached to the base portion and has a suction portion movable in parallel in a first axial direction.
The finger unit is attached to the base portion, and has first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. And configured to be capable of gripping the workpiece adsorbed by the adsorption unit.
 本技術の一形態に係る電子機器の製造方法は、接続部材を有する電子機器の製造方法であって、ロボットハンドのベース部に取り付けられ第1の軸方向に平行移動可能な吸着部を有する吸着ユニットによって上記接続部材を吸着することを含む。
 上記ベース部に取り付けられ上記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットによって、上記吸着部に吸着された上記接続部材が把持される。
 上記接続部材を把持したフィンガユニットを上記回動軸のまわりに回動させることで、上記接続部材の姿勢が変化させられる。
A method of manufacturing an electronic device according to an embodiment of the present technology is a method of manufacturing an electronic device having a connection member, which is an adsorption unit attached to a base portion of a robot hand and having a suction portion movable in parallel in a first axial direction. Including adsorbing the connecting member by a unit.
A finger unit having first and second finger portions attached to the base portion and pivotable independently about a pivot axis parallel to a second axis intersecting the first axis; The connection member adsorbed by the adsorption unit is gripped.
The posture of the connecting member is changed by rotating the finger unit holding the connecting member around the pivot shaft.
 以上のように、本技術によれば、ハンド全体の姿勢を変化させることなくワークの吸着から姿勢変換までの一連の動作を実現することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
As described above, according to the present technology, it is possible to realize a series of operations from suction of a work to posture conversion without changing the posture of the entire hand.
In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本技術の一実施形態に係るロボット装置を示す概略正面図である。1 is a schematic front view showing a robot apparatus according to an embodiment of the present technology. 上記ロボット装置におけるハンド部の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the hand part in the said robot apparatus. 上記ハンド部の要部の拡大図である。It is an enlarged view of the principal part of the above-mentioned hand part. 上記ハンド部の要部正面図である。It is a principal part front view of the above-mentioned hand part. 上記ハンド部の要部左側面図である。It is a principal part left view of the above-mentioned hand part. 上記ハンド部の要部右側面図である。It is a principal part right view of the above-mentioned hand part. 上記ハンド部におけるフィンガユニットの開放状態を示す要部正面図である。It is a principal part front view which shows the open state of the finger unit in the said hand part. 図7の底面図である。It is a bottom view of FIG. 上記ロボット装置におけるワイヤ駆動機構の構成を示す図である。It is a figure which shows the structure of the wire drive mechanism in the said robot apparatus. 上記ロボット装置による動作説明図であって、ワークの吸着工程を示す図である。It is operation | movement explanatory drawing by the said robot apparatus, Comprising: It is a figure which shows the adsorption | suction process of a workpiece | work. 上記ロボット装置による動作説明図であって、ワークの吸着工程を示す図である。It is operation | movement explanatory drawing by the said robot apparatus, Comprising: It is a figure which shows the adsorption | suction process of a workpiece | work. 上記ロボット装置による動作説明図であって、ワークの把持工程を示す図である。It is operation | movement explanatory drawing by the said robot apparatus, Comprising: It is a figure which shows the holding process of a workpiece | work. 上記ロボット装置による動作説明図であって、ワークの姿勢変換工程を示す図である。It is operation | movement explanatory drawing by the said robot apparatus, Comprising: It is a figure which shows the attitude | position conversion process of a workpiece | work.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments according to the present technology will be described with reference to the drawings.
 図1は、本技術の一実施形態に係るロボット装置を示す概略正面図である。本実施形態では、電子機器の製造工程に用いられる組立ロボットへの本技術の適用例について説明する。 FIG. 1 is a schematic front view showing a robot apparatus according to an embodiment of the present technology. In this embodiment, an application example of the present technology to an assembly robot used in a manufacturing process of an electronic device will be described.
[ロボット装置の概略構成]
 本実施形態のロボット装置1は、組立ロボット100と、電子機器Eの半完成品を支持する作業台2と、組立ロボット100の駆動を制御するコントローラ3とを備える。
[Schematic Configuration of Robot Device]
The robot apparatus 1 according to the present embodiment includes an assembly robot 100, a work bench 2 supporting a semi-finished product of the electronic device E, and a controller 3 controlling driving of the assembly robot 100.
 組立ロボット100は、ハンド部101(ロボットハンド)と、ハンド部101を6軸自由度で任意の座標位置へ移動させることが可能な多関節アーム102(ロボットアーム)とを有する。 The assembly robot 100 has a hand unit 101 (robot hand) and an articulated arm 102 (robot arm) capable of moving the hand unit 101 to any coordinate position with six-axis degrees of freedom.
 ハンド部101は、ワークとして、ケーブル、ハーネス、FFC(Flexible Flat Cable)、FPC(Flexible Printed Circuit)のように先端部に接続部を有する柔軟性の線状あるいは帯状の接続部材Cを把持し、これを所定の姿勢に変換して電子機器Eの所定部位に組み付けることが可能に構成される。 The hand unit 101 grips a flexible linear or strip-like connecting member C having a connecting portion at its tip such as a cable, a harness, an FFC (Flexible Flat Cable), or an FPC (Flexible Printed Circuit) as a work, It is possible to convert this into a predetermined posture and assemble it into a predetermined part of the electronic device E.
 多関節アーム102は、作業台2又は作業台2に近接して配置された図示しない駆動ユニットに接続される。多関節アーム102は、ハンド部101を移動させ、あるいはその姿勢を変換する搬送機構として構成される。多関節アーム102は、典型的には、垂直多関節アーム、水平多関節アーム等で構成されるが、XYZ直交ロボット(3軸ロボット)等で構成されてもよい。 The articulated arm 102 is connected to the workbench 2 or a drive unit (not shown) disposed close to the workbench 2. The articulated arm 102 is configured as a transport mechanism that moves the hand unit 101 or converts its posture. The articulated arm 102 is typically composed of a vertical articulated arm, a horizontal articulated arm or the like, but may be composed of an XYZ orthogonal robot (3-axis robot) or the like.
 コントローラ3は、典型的には、CPU(Central Processing Unit)やメモリを有するコンピュータで構成され、組立ロボット100の駆動を上記メモリに格納されたプログラムに従って制御するように構成される。 The controller 3 is typically configured by a computer having a CPU (Central Processing Unit) and a memory, and is configured to control the driving of the assembly robot 100 in accordance with the program stored in the memory.
[組立ロボット]
 図2は、組立ロボット100のハンド部101の構成を示す概略斜視図、図3は、ハンド部101の要部の拡大図である。
 同図に示すように、ハンド部101は、ハンド本体10と、吸着ユニット30と、フィンガユニット40とを有する。
[Assembly robot]
FIG. 2 is a schematic perspective view showing the configuration of the hand unit 101 of the assembly robot 100, and FIG. 3 is an enlarged view of the main part of the hand unit 101. As shown in FIG.
As shown in the figure, the hand unit 101 includes a hand body 10, a suction unit 30, and a finger unit 40.
 (ハンド本体)
 ハンド本体10は、ベース部11と、機構部12と、連結部13とを有する。
(Hand body)
The hand main body 10 has a base portion 11, a mechanical portion 12 and a connecting portion 13.
 ベース部11は、吸着ユニット30およびフィンガユニット40を支持する。ベース部11は、Y軸方向に平行な回動軸111と、X軸方向に平行な関節軸112とを有する。 The base portion 11 supports the suction unit 30 and the finger unit 40. The base portion 11 has a rotational axis 111 parallel to the Y-axis direction and a joint axis 112 parallel to the X-axis direction.
 機構部12は、大径部121と、小径部122とを有する多段の円筒形状に形成される。大径部121は、多関節アーム102に一端(上端)が取り付けられ、小径部122は大径部121の他端(下端)の中心に設けられる。機構部12は、回動軸111のまわりにフィンガユニットを回転させる駆動源、関節軸112のまわりにベース部11を回転させる駆動源、これら駆動源の動力伝達機構や調整機構等を収容する。 The mechanical portion 12 is formed in a multistage cylindrical shape having a large diameter portion 121 and a small diameter portion 122. The large diameter portion 121 has one end (upper end) attached to the articulated arm 102, and the small diameter portion 122 is provided at the center of the other end (lower end) of the large diameter portion 121. The mechanism unit 12 accommodates a drive source for rotating the finger unit around the rotation shaft 111, a drive source for rotating the base unit 11 around the joint shaft 112, and a power transmission mechanism and adjustment mechanism of these drive sources.
 連結部13は、ベース部11と機構部12の小径部122との間を連結する。連結部13は、機構部12における各種駆動源の動力をベース部11の各部へ伝達する動力伝達部材(駆動ワイヤ)を収容する角筒形状の金属製の筒部を有する。 The connecting portion 13 connects between the base portion 11 and the small diameter portion 122 of the mechanical portion 12. The connecting portion 13 has a rectangular cylindrical metal tube portion accommodating a power transmission member (drive wire) for transmitting the power of various drive sources in the mechanical portion 12 to each portion of the base portion 11.
 図4はハンド部101の要部正面図、図5は同左側面図、図6は同右側面図、図7はフィンガユニット40の開放状態を示す要部正面図、図8は図7の底面図である。以下、吸着ユニット30およびフィンガユニット40の詳細について説明する。 4 is a front view of the main part of the hand unit 101, FIG. 5 is a left side view thereof, FIG. 6 is a right side view thereof, FIG. 7 is a front view of the main part showing the open state of the finger unit 40, and FIG. FIG. Hereinafter, details of the suction unit 30 and the finger unit 40 will be described.
 (吸着ユニット)
 本実施形態において吸着ユニット30は、吸着部311を有する吸着ノズル31と、吸着ノズル31をZ軸方向に往復移動させる駆動シリンダ32と、吸着ノズル31と駆動シリンダ32との間を固定する固定部材33と、駆動シリンダ32とベース部11との間を連結する連結部材34とを有する。
(Suction unit)
In the present embodiment, the suction unit 30 includes a suction nozzle 31 having a suction portion 311, a drive cylinder 32 for reciprocating the suction nozzle 31 in the Z-axis direction, and a fixing member for fixing between the suction nozzle 31 and the drive cylinder 32. 33 and a connecting member 34 connecting between the drive cylinder 32 and the base portion 11.
 吸着ノズル31は、一端部(下端部)に吸着部311、他端部(上端部)に図示しない負圧源と接続される接続部312をそれぞれ有する。上記負圧源は、例えば機構部12に設置された小型ポンプで構成される。 The suction nozzle 31 has a suction portion 311 at one end (lower end) and a connection portion 312 connected to a negative pressure source (not shown) at the other end (upper end). The negative pressure source is constituted by, for example, a small pump installed in the mechanism unit 12.
 吸着部311による接続部材Cの吸着位置は特に限定されず、本実施形態では、図8に示すように、接続部材Cの接続部Ce側の端部近傍位置とされる。吸着位置はまた、接続部材Cの幅方向中央領域に限られず、図8に示すように、接続部材Cの幅方向中央から一方側(フィンガユニット40側)の縁部に偏った位置であってもよい。 The suction position of the connection member C by the suction unit 311 is not particularly limited, and in the present embodiment, as shown in FIG. 8, the position is near the end of the connection member C on the connection portion Ce side. The suction position is not limited to the widthwise central region of the connecting member C, and is a position biased from the widthwise center of the connecting member C to the edge on one side (finger unit 40 side) as shown in FIG. It is also good.
 駆動シリンダ32は、連結部材34に固定され、Z軸方向に伸縮可能な駆動ロッド321を有する。固定部材33は、吸着ノズル31と駆動ロッド321とを相互に連結し、駆動ロッド321の駆動により吸着ノズル31(吸着部311)をZ軸方向に平行移動させることが可能に構成される。固定部材33と連結部材34との間にはZ軸方向に平行移動可能なガイド部材35が固定されており、これにより吸着部311のZ軸方向に沿った移動精度が確保される。 The drive cylinder 32 is fixed to the connecting member 34 and has a drive rod 321 which can be extended and retracted in the Z-axis direction. The fixing member 33 connects the suction nozzle 31 and the drive rod 321 to each other, and is configured to be able to move the suction nozzle 31 (the suction portion 311) in parallel in the Z-axis direction by driving the drive rod 321. A guide member 35 movable in parallel in the Z-axis direction is fixed between the fixing member 33 and the connecting member 34, whereby movement accuracy of the suction portion 311 along the Z-axis direction is secured.
 連結部材34は、駆動シリンダ32を支持する第1の端部341と、ベース部11に固定される第2の端部342とを有する。第2の端部342は、回動軸111と関節軸112との間にネジ部材等の適宜の締結具を用いて固定される。これにより吸着ユニット30は、ベース11とともに関節軸112のまわりに回動可能に構成される。 The connecting member 34 has a first end 341 supporting the drive cylinder 32 and a second end 342 fixed to the base 11. The second end 342 is fixed between the pivot shaft 111 and the joint shaft 112 using a suitable fastener such as a screw member. Thus, the suction unit 30 is configured to be rotatable around the joint shaft 112 together with the base 11.
 (フィンガユニット)
 フィンガユニット40は、第1のフィンガ部41と、第2のフィンガ部42とを有する。第1及び第2のフィンガ部41,42は、ベース部11に取り付けられ、回動軸111のまわりに各々独立して回動可能に構成される。
(Finger unit)
The finger unit 40 has a first finger portion 41 and a second finger portion 42. The first and second finger portions 41 and 42 are attached to the base portion 11 and configured to be independently pivotable about the pivot shaft 111.
 フィンガユニット40は、吸着部311に吸着されたワークを把持することが可能に構成される。本実施形態では、フィンガユニット40は、吸着部に吸着された接続部材Cをその厚み方向(Z軸方向)から挟み込むことが可能に構成される。 The finger unit 40 is configured to be able to grip the workpiece sucked by the suction unit 311. In the present embodiment, the finger unit 40 is configured to be capable of sandwiching the connection member C adsorbed by the adsorption portion in the thickness direction (Z-axis direction).
 第1及び第2のフィンガ部41,42は、相互に近接するクランプ位置と、相互に離間する開放位置との間を個々に独立して回動することが可能に構成される。各フィンガ部41,42の可動範囲(最大回動角度)は特に限定されず、本実施形態では180度である。 The first and second finger portions 41 and 42 are configured to be capable of independently and independently pivoting between a clamp position close to each other and an open position separate from each other. The movable range (maximum rotation angle) of each finger portion 41, 42 is not particularly limited, and is 180 degrees in the present embodiment.
 フィンガユニット40は、開放位置において吸着ユニット30と干渉しないように、吸着ユニット30に対してX軸方向およびY軸方向にそれぞれ所定の間隔をあけて配置される(図7参照)。フィンガユニット40は、その先端(下端)が、吸着部311の最下降位置よりも上方側に位置する高さに設定される。 The finger units 40 are arranged at predetermined intervals in the X-axis direction and the Y-axis direction with respect to the suction unit 30 so as not to interfere with the suction unit 30 in the open position (see FIG. 7). The finger unit 40 is set to a height at which the tip (lower end) thereof is positioned above the lowest position of the suction portion 311.
 本実施形態において、第1及び第2のフィンガ部41,42は、金属材料、合成樹脂材料等の適宜の材料で構成される。第1及び第2のフィンガ部41,42は、Y軸方向に幅方向を有するクランプ面をそれぞれ有し、ワークを当該クランプ面で挟持するように構成される。 In the present embodiment, the first and second finger portions 41 and 42 are made of an appropriate material such as a metal material or a synthetic resin material. Each of the first and second finger portions 41 and 42 has a clamp surface having a width direction in the Y-axis direction, and is configured to clamp the workpiece with the clamp surface.
 ハンド本体10は、第1及び第2のフィンガ部41,42をそれぞれ回動軸111のまわりに回動させる第1及び第2のワイヤ駆動機構D1,D2を有する。ハンド本体10はさらに、ベース部11を関節軸112のまわりに回動させる第3のワイヤ駆動機構D3を有する。第1~第3のワイヤ駆動機構D1~D3は、図1に示すように、機構部12(大径部121)の内部に設置される。 The hand body 10 has first and second wire driving mechanisms D1 and D2 for rotating the first and second finger portions 41 and 42 around the pivot shaft 111, respectively. The hand main body 10 further includes a third wire driving mechanism D3 for rotating the base 11 around the joint shaft 112. The first to third wire driving mechanisms D1 to D3 are installed inside the mechanical portion 12 (large diameter portion 121) as shown in FIG.
 第1~第3のワイヤ駆動機構D1~D3は同一の構成を有し、図9に示すように、モータMと、プーリPと、ワイヤWとを有する。モータMの回転軸先端には、周面に螺旋状の溝が形成された回転体Maが取り付けられている。回転体Maの周面と駆動対象であるプーリPとの間には、機構部12の小径部122および連結部13の内部を介して金属製のワイヤWが架け渡されている。モータMは、例えばサーボモータで構成され、ワイヤWを動力伝達部材として、プーリPを所望とする回転方向に所望とする回転量(回転角度)で回転させる。 The first to third wire driving mechanisms D1 to D3 have the same configuration, and include a motor M, a pulley P, and a wire W as shown in FIG. At the tip of the rotation shaft of the motor M, a rotating body Ma having a spiral groove formed on the circumferential surface is attached. A metal wire W is bridged between the circumferential surface of the rotating body Ma and the pulley P to be driven via the inside of the small diameter portion 122 of the mechanical portion 12 and the connecting portion 13. The motor M is, for example, a servomotor, and uses the wire W as a power transmission member to rotate the pulley P in a desired rotational direction by a desired amount of rotation (rotational angle).
 図5及び図6に示すように、第1のワイヤ駆動機構D1におけるプーリP1は、第1のフィンガ部41の基端部に設けられ、プーリP1に架け渡されたワイヤW1を介して第1のフィンガ部41が回動軸111のまわりに回動可能に構成される。
 第2のワイヤ駆動機構D2におけるプーリP2は、第2のフィンガ部42の基端部に設けられ、プーリP2に架け渡されたワイヤW2を介して第2のフィンガ部42が回動軸112のまわりに回動可能に構成される。
 そして、図4に示すように、第3のワイヤ駆動機構D3におけるプーリP3は、ベース部11の上端部に設けられ、プーリP3に架け渡されたワイヤW3を介してベース部11が関節軸112のまわりに回動可能に構成される。
As shown in FIGS. 5 and 6, the pulley P1 in the first wire drive mechanism D1 is provided at the proximal end of the first finger portion 41, and the first wire driving mechanism D1 is connected to the first wire W1 across the pulley P1. The finger portion 41 is configured to be pivotable around the pivot shaft 111.
The pulley P2 in the second wire drive mechanism D2 is provided at the base end of the second finger portion 42, and the second finger portion 42 is the pivot shaft 112 via the wire W2 bridged over the pulley P2. It is configured to be rotatable around.
Then, as shown in FIG. 4, the pulley P3 in the third wire driving mechanism D3 is provided at the upper end of the base portion 11, and the base portion 11 is the joint shaft 112 via the wire W3 bridged over the pulley P3. It is configured to be rotatable around the
 第1~第3のワイヤ駆動機構D1~D3の採用により、各フィンガ部41,42およびベース部11をそれぞれ同一方式の駆動系で構成することができるため、システムの簡素化を図ることができるとともに、各駆動源の制御の親和性を高めることができる。 By adopting the first to third wire drive mechanisms D1 to D3, the respective finger portions 41 and 42 and the base portion 11 can be configured with the drive system of the same system, so the system can be simplified. In addition, the control affinity of each driving source can be enhanced.
 ワイヤW1,W2は、図4に示すように、プーリP3に隣接して関節軸112に挿通された第1ガイドプーリG1と、回動軸111と関節軸112との間に設けられた一対の第2ガイドプーリG2とを介して、プーリP1,P2にそれぞれ架け渡される。一対の第2ガイドプーリG2は、図6に示すように、X軸方向に平行な軸心を有し、Y軸方向に隣接して設けられる。各第2ガイドプーリG2は、プーリP1,P2に架け渡されるワイヤW1,W2を個々に独立して支持する2列のプーリ群で構成される。 The wires W1 and W2 are, as shown in FIG. 4, a first guide pulley G1 inserted into the joint shaft 112 adjacent to the pulley P3 and a pair of the guide guide G1 provided between the rotating shaft 111 and the joint shaft 112. The pulleys P1 and P2 are respectively bridged through the second guide pulley G2. As shown in FIG. 6, the pair of second guide pulleys G2 has an axis parallel to the X-axis direction, and is provided adjacent to the Y-axis direction. Each of the second guide pulleys G2 is formed of two rows of pulley groups each independently supporting the wires W1 and W2 bridged by the pulleys P1 and P2.
 ワイヤW1は、関節軸112の中央に配置されたプーリP3を挟む内側の一対の第1ガイドプーリG1と、一対の第2ガイドプーリのうちの一方とを介してプーリP1に架け渡される。ワイヤW2は、上記内側の一対の第1ガイドプーリG1を挟む外側の一対の第1ガイドプーリG1と、一対の第2ガイドプーリのうちの他方とを介して、プーリP2に架け渡される。プーリP1,P2は、図5及び図6に示すように、回動軸111の軸方向(Y軸方向)に相互に隣接して配置される。 The wire W1 is bridged over the pulley P1 via a pair of inner first guide pulleys G1 sandwiching the pulley P3 disposed at the center of the joint shaft 112 and one of the pair of second guide pulleys. The wire W2 is bridged to the pulley P2 via the pair of outer first guide pulleys G1 sandwiching the pair of inner first guide pulleys G1 and the other of the pair of second guide pulleys. The pulleys P1 and P2 are disposed adjacent to each other in the axial direction (Y-axis direction) of the pivot shaft 111, as shown in FIGS.
 フィンガユニット40の駆動系にワイヤ駆動機構が採用されることにより、動力伝達機構の簡素化、省スペース化を実現することができる。さらに、ワイヤW1,W2のバネ性を利用して、個々のフィンガ部41,42の回転動作のタイミングずれや位置ずれを吸収することができる。 By adopting a wire drive mechanism in the drive system of the finger unit 40, simplification of the power transmission mechanism and space saving can be realized. Furthermore, by utilizing the spring property of the wires W1 and W2, it is possible to absorb timing deviation and positional deviation of the rotation operation of the individual finger portions 41 and 42.
 第1~第3のワイヤ駆動機構D1~D3は、各ワイヤ駆動機構のワイヤ張力をそれぞれ検出することが可能な検出機構を含むワイヤ張力調整ユニットを有する。 The first to third wire drive mechanisms D1 to D3 have wire tension adjustment units each including a detection mechanism capable of detecting the wire tension of each wire drive mechanism.
 図9に示すように、各ワイヤ駆動機構D1~D3において、モータMは、ロードセルCを介して基台B上に設置される。ロードセルCは、モータMによるプーリPの回転駆動時におけるワイヤWの張力を検出する検出機構を構成する。 As shown in FIG. 9, in each wire driving mechanism D1 to D3, the motor M is installed on the base B via the load cell C. The load cell C constitutes a detection mechanism that detects the tension of the wire W when the motor M rotationally drives the pulley P.
 ワイヤ張力調整ユニットの構成は特に限定されず、例えば図9に示すように、モータMとプーリPとの間に架け渡されたワイヤWを支持するワイヤ支持部Rを備える。ワイヤ支持部Rは、モータMの回転体Maに巻き付けられたワイヤWの上流側および下流側をそれぞれ支持する一対のローラr11,r12を有する第1ユニットR1と、ワイヤWの上流側および下流側を共通に支持するローラr12を有する第2ユニットR2とを有する。第2ユニットR2は、第1ユニットR1に対して一軸方向に相対移動可能に構成される。 The configuration of the wire tension adjustment unit is not particularly limited. For example, as shown in FIG. 9, the wire tension adjustment unit has a wire support R that supports the wire W stretched between the motor M and the pulley P. The wire support portion R includes a first unit R1 having a pair of rollers r11 and r12 supporting the upstream side and the downstream side of the wire W wound around the rotating body Ma of the motor M, and the upstream side and the downstream side of the wire W And a second unit R2 having a roller r12 for supporting in common. The second unit R2 is configured to be movable relative to the first unit R1 in one axial direction.
 以上のように構成されるワイヤ支持部Rは、ワイヤWの張力を任意に調整することが可能なワイヤ張力調整ユニットを構成する。ワイヤ支持部Rは、ロードセルCを含む検出機構の出力に基づいて、ワイヤ張力が所定の値または範囲となるようにワイヤWの張力を調整する。ワイヤW(W1~W3)の所定の張力は、各ワイヤ駆動機構D1~D3について同一であってもよいし、異なっていてもよい。 The wire support portion R configured as described above constitutes a wire tension adjustment unit capable of arbitrarily adjusting the tension of the wire W. The wire support R adjusts the tension of the wire W based on the output of the detection mechanism including the load cell C so that the wire tension has a predetermined value or range. The predetermined tension of the wires W (W1 to W3) may be the same or different for each of the wire driving mechanisms D1 to D3.
[ロボット装置の動作]
 次に、以上のように構成されるロボット装置100およびハンド部101の典型的な動作について説明する。
[Operation of Robot Device]
Next, typical operations of the robot apparatus 100 and the hand unit 101 configured as described above will be described.
 本実施形態のロボット装置1は、上述のように、ハンド部101によってFFC等の接続部材Cの一端側を把持し、これを所定の姿勢に変換して、電子機器Eの所定部位へ接続する作業を行う。図10A~Dは、上記作業に伴うハンド部101の一連の動作を説明する模式図である。 As described above, the robot apparatus 1 according to the present embodiment grips one end side of the connection member C such as FFC with the hand unit 101, converts it into a predetermined posture, and connects it to a predetermined part of the electronic device E Do the work. 10A to 10D are schematic views for explaining a series of operations of the hand unit 101 in connection with the above operation.
 ロボット装置1は、接続部材Cの吸着工程と、接続部材Cの把持工程と、接続部材Cの姿勢変換工程とを有する。後述するロボット装置1の各動作は、コントローラ3により制御される。 The robot apparatus 1 has a suction process of the connection member C, a gripping process of the connection member C, and a posture conversion process of the connection member C. Each operation of the robot apparatus 1 described later is controlled by the controller 3.
 吸着工程において、ロボット装置1は、アーム部101を接続部材Cの直上位置で停止させた後、吸着ユニット30の吸着部311を下方へ下降させて接続部材Cの端部近傍の表面を吸着保持する(図8、10A参照)。接続部材Cの吸着後、アーム部101は、吸着部311を上昇させて接続部材Cをフィンガユニット40の側方に配置させる(図10B参照)。 In the adsorption step, the robot device 1 stops the arm portion 101 at a position immediately above the connection member C, and then lowers the adsorption portion 311 of the adsorption unit 30 downward to adsorb and hold the surface near the end of the connection member C (See FIG. 8, 10A). After suction of the connection member C, the arm unit 101 raises the suction portion 311 to arrange the connection member C on the side of the finger unit 40 (see FIG. 10B).
 接続部材Cは、典型的には電子機器Wの上面に載置される。接続部材Cの直上位置へのアーム部101の移動にはカメラが用いられてもよい。当該カメラは、アーム部101に設置されてもよいし、多関節アーム102に設置されてもよい。 The connection member C is typically mounted on the top surface of the electronic device W. A camera may be used to move the arm unit 101 to a position immediately above the connection member C. The camera may be installed on the arm unit 101 or may be installed on the articulated arm 102.
 把持工程において、アーム部101は、吸着部311で吸着された接続部材Cをフィンガユニット40によって把持する(図10C参照)。図示の例では、第1のフィンガ部41を接続部材Cの上面に対向する位置で待機させたまま、第2のワイヤ駆動機構D2を介して第2のフィンガ部42を回動軸111のまわりに180度回動させる。これにより、吸着部311に吸着された接続部材Cがフィンガユニット40によりZ軸方向に挟持される。 In the gripping process, the arm unit 101 grips the connection member C sucked by the suction unit 311 by the finger unit 40 (see FIG. 10C). In the illustrated example, while the first finger portion 41 stands by at a position facing the upper surface of the connection member C, the second finger portion 42 is rotated around the pivot shaft 111 via the second wire drive mechanism D2. Rotate it 180 degrees. Thus, the connection member C adsorbed by the adsorption unit 311 is nipped by the finger unit 40 in the Z-axis direction.
 フィンガユニット40による接続部材Cの把持工程が完了した後、吸着ユニット30による接続部材Cの吸着動作が解除される。 After the gripping process of the connection member C by the finger unit 40 is completed, the suction operation of the connection member C by the suction unit 30 is released.
 姿勢変換工程において、アーム部101は、接続部材Cを把持したフィンガユニット40を回動軸111のまわりに回動させることで、接続部材Cを所定の姿勢に変換する。変換後の姿勢は特に限定されず、典型的には、次工程に適した姿勢が採用される。 In the posture conversion process, the arm unit 101 converts the connection member C into a predetermined posture by rotating the finger unit 40 holding the connection member C around the rotation axis 111. The posture after conversion is not particularly limited, and typically, a posture suitable for the next step is employed.
 姿勢変換工程では、第1及び第2のフィンガ部41,42は、各々同期して回動軸111のまわりに回動する。これにより、接続部材Cの把持状態を維持しながら、接続部材Cの姿勢を変化させることができる。アーム部101は、フィンガユニット40を回動軸111まわりだけでなく、関節軸112まわりへも回動させてもよい。これにより、接続部材Cの姿勢の自由度が高められる。 In the posture conversion step, the first and second finger portions 41 and 42 rotate around the rotation shaft 111 in synchronization with each other. Thereby, the posture of the connecting member C can be changed while maintaining the gripping state of the connecting member C. The arm unit 101 may rotate the finger unit 40 not only around the pivot axis 111 but also around the joint axis 112. Thereby, the degree of freedom of the posture of the connection member C is enhanced.
 接続部材Cの姿勢の変換工程が完了した後、アーム部101は、接続部材Cの接続部Ce(図8参照)を電子機器W上の所定の組み込み位置へ搬送し、接続する。 After the process of converting the posture of the connection member C is completed, the arm unit 101 conveys and connects the connection portion Ce (see FIG. 8) of the connection member C to a predetermined installation position on the electronic device W.
 以上のように本実施形態によれば、ワークの吸着保持から姿勢変換まで一連の動作で実現することができる。特に、FFCのような厚みのないワーク(接続部材C)であっても、吸着ユニット30による吸着動作によってワークのピックアップ動作を適正に行うことができる。さらに、吸着ユニット30に吸着されたワークをフィンガユニット40により把持することが可能に構成されているため、ワークの保持力が高められ、したがってワークの姿勢変換作業も安定に行うことができる。 As described above, according to the present embodiment, it is possible to realize a series of operations from suction holding of a work to posture conversion. In particular, even for a work (connection member C) without a thickness such as FFC, the pickup operation of the work can be properly performed by the suction operation by the suction unit 30. Further, since the work held by the suction unit 30 can be held by the finger unit 40, the holding power of the work can be enhanced, and therefore, the work of changing the posture of the work can be stably performed.
 本実施形態によれば、第1及び第2のフィンガ部41,42が回動軸111のまわりに各々独立して回動可能に構成されているため、吸着ユニット30で保持されたワーク(接続部材C)を回動軸111のまわりに任意の角度回転させた姿勢に安定に変換することができる。これにより、ハンド部101の全体の姿勢を変化させることなく、吸着ユニット30で保持されたワークを他の姿勢に変換することが可能である。したがって、ワークの姿勢変換に必要なスペースを小さくできるため、狭小領域へのワークの搬送が容易となる。 According to the present embodiment, since the first and second finger portions 41 and 42 are configured to be independently pivotable around the pivot shaft 111, the work held by the suction unit 30 (connection It is possible to stably convert the member C) into a posture in which the member C) is rotated about the rotation shaft 111 by an arbitrary angle. Thereby, it is possible to convert the work held by the suction unit 30 into another posture without changing the posture of the hand part 101 as a whole. Therefore, the space required for posture conversion of the workpiece can be reduced, which facilitates transport of the workpiece to the narrow area.
 さらに、第1及び第2のフィンガ部41,42の駆動源にワイヤ駆動機構D1,D2が採用されているため、ワイヤのバネ性を利用して個々のフィンガ部41,42の回転動作のタイミングずれや位置ずれを吸収することができる。例えば、2つのフィンガ部41,42でワークを把持する場合、それぞれの目標位置(把持位置)を若干オーバーラップした位置に設定したとしても、そのオーバーラップ分をワイヤW1,W2のバネ性で吸収することができる。これにより、ワークを所定の保持力で安定に把持することができる。 Furthermore, since the wire drive mechanisms D1 and D2 are adopted as the drive sources of the first and second finger portions 41 and 42, the timing of the rotational movement of the individual finger portions 41 and 42 using the spring property of the wire. Misalignment and misalignment can be absorbed. For example, when gripping a work with two finger portions 41 and 42, even if the target positions (gripping positions) are set at slightly overlapping positions, the overlap of the overlapping portions is absorbed by the springiness of the wires W1 and W2. can do. Thus, the workpiece can be stably gripped with a predetermined holding force.
 しかも、ワイヤW1,W2の張力の検出および調整機構を有しているため、フィンガユニット40のメンテナンスが容易であり、ワークの種類に応じた張力設定を迅速に行うことができる。 Moreover, since the detection and adjustment mechanism of the tension of the wires W1 and W2 is provided, maintenance of the finger unit 40 is easy, and tension setting can be performed quickly according to the type of work.
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this technique was described, this technique is not limited only to the above-mentioned embodiment, of course, a various change can be added.
 例えば以上の実施形態では、ワークとして、FFCのような柔軟性のある線状あるいは帯状の接続部材Cを例に挙げて説明したが、ワークの種類はこれに限定されず、例えば、板状、カード状、コイン状、短冊状等の厚みのない他の部材のハンドリングにも、本技術は適用可能である。さらに本技術は、産業用ロボットだけでなく、家庭用ロボット、医療用ロボット等にも適用することが可能である。 For example, in the above embodiment, although a flexible linear or strip-like connecting member C such as FFC has been described as an example of the work, the type of the work is not limited to this, for example, plate-like, The present technology is also applicable to the handling of other non-thick members such as cards, coins, and strips. Furthermore, the present technology is applicable not only to industrial robots, but also to home robots, medical robots, and the like.
 吸着ユニット30においては、吸着ノズル31を駆動シリンダ32で昇降移動させることによって吸着部311を平行移動可能に構成されたが、吸着ノズル31自体が伸縮可能な吸着部を有してもよい。 In the suction unit 30, the suction unit 311 is configured to be movable in parallel by moving the suction nozzle 31 up and down with the drive cylinder 32, but the suction nozzle 31 itself may have a suction unit that can expand and contract.
 さらに、ワイヤ張力検出機構により検出されたワイヤ張力に基づいて、各ワイヤの張力が所定の値となるように調整ユニットを動的に制御することが可能に構成されてもよい。これにより、リアルタイムでワイヤ張力の調整を行うことが可能となる。 Furthermore, based on the wire tension detected by the wire tension detection mechanism, it may be configured to be able to dynamically control the adjustment unit so that the tension of each wire becomes a predetermined value. This makes it possible to adjust the wire tension in real time.
 なお、本技術は以下のような構成もとることができる。
(1) ベース部を有するハンド本体と、
 前記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する吸着ユニットと、
 前記ベース部に取り付けられ、前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットと
 を具備するロボットハンド。
(2)上記(1)に記載のロボットハンドであって、
 前記ハンド本体は、前記第1及び第2の軸にそれぞれ交差する第3の軸に平行な関節軸をさらに有し、
 前記ベース部は、前記関節軸のまわりに回動可能に構成される
 ロボットハンド。
(3)上記(1)又は(2)に記載のロボットハンドであって、
 前記ハンド本体は、前記第1及び第2のフィンガ部をそれぞれ前記回動軸のまわりに回動させる第1及び第2のワイヤ駆動機構をさらに有する
 ロボットハンド。
(4)上記(3)に記載のロボットハンドであって、
 前記第1及び第2のワイヤ駆動機構は、ワイヤ張力をそれぞれ検出することが可能な検出機構を含むワイヤ張力調整ユニットを有する
 ロボットハンド。
(5)上記(2)~(4)のいずれか1つに記載のロボットハンドであって、
 前記ハンド本体は、前記ベース部を前記関節軸のまわりに回動させる第3のワイヤ駆動機構をさらに有する
 ロボットハンド。
(6)上記(1)~(5)のいずれか1つに記載のロボットハンドであって、
 前記フィンガユニットは、前記吸着部に吸着されたワークを把持することが可能に構成される
 ロボットハンド。
(7)上記(1)~(6)のいずれか1つに記載のロボットハンドであって、
 前記第1及び第2のフィンガ部はそれぞれ、180度の可動範囲を有する
 ロボットハンド。
(8)上記(7)に記載のロボットハンドであって、
 前記フィンガユニットは、前記吸着部に吸着されたワークを前記一軸方向から挟み込むことが可能に構成される
 ロボットハンド。
(9) ロボットアームと、
 ベース部を有し、前記ロボットアームに取り付けられるハンド本体と、
 前記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する吸着ユニットと、
 前記ベース部に取り付けられ、前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットと
 を具備するロボット装置。
(10) 接続部材を有する電子機器の製造方法であって、
 ロボットハンドのベース部に取り付けられ第1の軸方向に平行移動可能な吸着部を有する吸着ユニットによって前記接続部材を吸着し、
 前記ベース部に取り付けられ前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットによって、前記吸着部に吸着された前記接続部材を把持し、
 前記接続部材を把持したフィンガユニットを前記回動軸のまわりに回動させることで、前記接続部材の姿勢を変化させる
 電子機器の製造方法。
The present technology can also be configured as follows.
(1) A hand body having a base portion,
A suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
A finger unit attached to the base portion and having first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Equipped robot hand.
(2) The robot hand according to (1) above,
The hand body further comprises an articulation axis parallel to a third axis intersecting the first and second axes respectively;
The robot hand configured to be rotatable about the joint axis.
(3) The robot hand according to (1) or (2) above,
The robot hand further includes first and second wire drive mechanisms for pivoting the first and second finger portions around the pivot axis, respectively.
(4) The robot hand according to (3) above,
The first and second wire driving mechanisms each have a wire tension adjustment unit including a detection mechanism capable of detecting wire tension.
(5) The robot hand according to any one of (2) to (4) above,
The robot hand further includes a third wire drive mechanism for rotating the base portion around the joint axis.
(6) The robot hand according to any one of (1) to (5) above,
The finger unit is configured to be capable of gripping a work sucked by the suction unit.
(7) The robot hand according to any one of (1) to (6) above,
The first and second finger portions each have a movable range of 180 degrees.
(8) The robot hand according to (7) above,
The finger unit is configured to be capable of sandwiching a work sucked by the suction unit from the uniaxial direction.
(9) With the robot arm
A hand body having a base and attached to the robot arm;
A suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
A finger unit attached to the base portion and having first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Robot equipment to be equipped.
(10) A method of manufacturing an electronic device having a connecting member,
Suctioning the connecting member by a suction unit having a suction unit attached to a base portion of the robot hand and movable in parallel in a first axial direction;
A finger unit having first and second finger portions that are independently pivotable about a pivot axis attached to the base portion and parallel to a second axis intersecting the first axis; Gripping the connection member adsorbed by the adsorption unit;
A method of manufacturing an electronic device, wherein a posture of the connection member is changed by rotating a finger unit holding the connection member around the rotation axis.
 1…ロボット装置
 3…コントローラ
 10…ハンド本体
 11…ベース部
 30…吸着ユニット
 40…フィンガユニット
 41…第1のフィンガ部
 42…第2のフィンガ部
 100…組立ロボット
 101…ハンド部
 102…多関節アーム
 311…吸着部
 C…線状部材
DESCRIPTION OF SYMBOLS 1 ... Robot apparatus 3 ... Controller 10 ... Hand main body 11 ... Base part 30 ... Suction unit 40 ... Finger unit 41 ... 1st finger part 42 ... 2nd finger part 100 ... Assembly robot 101 ... Hand part 102 ... Articulated arm 311 ... adsorption section C ... linear member

Claims (10)

  1.  ベース部を有するハンド本体と、
     前記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する吸着ユニットと、
     前記ベース部に取り付けられ、前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットと
     を具備するロボットハンド。
    A hand body having a base portion,
    A suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
    A finger unit attached to the base portion and having first and second finger portions that can independently rotate around a rotation axis parallel to a second axis intersecting the first axis. Equipped robot hand.
  2.  請求項1に記載のロボットハンドであって、
     前記ハンド本体は、前記第1及び第2の軸にそれぞれ交差する第3の軸に平行な関節軸をさらに有し、
     前記ベース部は、前記関節軸のまわりに回動可能に構成される
     ロボットハンド。
    The robot hand according to claim 1, wherein
    The hand body further comprises an articulation axis parallel to a third axis intersecting the first and second axes respectively;
    The robot hand configured to be rotatable about the joint axis.
  3.  請求項1に記載のロボットハンドであって、
     前記ハンド本体は、前記第1及び第2のフィンガ部をそれぞれ前記回動軸のまわりに回動させる第1及び第2のワイヤ駆動機構をさらに有する
     ロボットハンド。
    The robot hand according to claim 1, wherein
    The robot hand further includes first and second wire drive mechanisms for pivoting the first and second finger portions around the pivot axis, respectively.
  4.  請求項3に記載のロボットハンドであって、
     前記第1及び第2のワイヤ駆動機構は、ワイヤ張力をそれぞれ検出することが可能な検出機構を含むワイヤ張力調整ユニットを有する
     ロボットハンド。
    The robot hand according to claim 3, wherein
    The first and second wire driving mechanisms each have a wire tension adjustment unit including a detection mechanism capable of detecting wire tension.
  5.  請求項2に記載のロボットハンドであって、
     前記ハンド本体は、前記ベース部を前記関節軸のまわりに回動させる第3のワイヤ駆動機構をさらに有する
     ロボットハンド。
    The robot hand according to claim 2, wherein
    The robot hand further includes a third wire drive mechanism for rotating the base portion around the joint axis.
  6.  請求項1に記載のロボットハンドであって、
     前記フィンガユニットは、前記吸着部に吸着されたワークを把持することが可能に構成される
     ロボットハンド。
    The robot hand according to claim 1, wherein
    The finger unit is configured to be capable of gripping a work sucked by the suction unit.
  7.  請求項1に記載のロボットハンドであって、
     前記第1及び第2のフィンガ部はそれぞれ、180度の可動範囲を有する
     ロボットハンド。
    The robot hand according to claim 1, wherein
    The first and second finger portions each have a movable range of 180 degrees.
  8.  請求項7に記載のロボットハンドであって、
     前記フィンガユニットは、前記吸着部に吸着されたワークを前記一軸方向から挟み込むことが可能に構成される
     ロボットハンド。
    The robot hand according to claim 7, wherein
    The finger unit is configured to be capable of sandwiching a work sucked by the suction unit from the uniaxial direction.
  9.  ロボットアームと、
     ベース部を有し、前記ロボットアームに取り付けられるハンド本体と、
     前記ベース部に取り付けられ、第1の軸方向に平行移動可能な吸着部を有する吸着ユニットと、
     前記ベース部に取り付けられ、前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有し、前記吸着部に吸着されたワークを把持することが可能に構成されたフィンガユニットと
     を具備するロボット装置。
    With a robot arm,
    A hand body having a base and attached to the robot arm;
    A suction unit attached to the base portion and having a suction portion movable in parallel in a first axial direction;
    It has a first and a second finger portion attached to the base portion and capable of independently rotating around a rotational axis parallel to a second axis intersecting the first axis, the adsorption A robot apparatus comprising: a finger unit configured to be capable of gripping a workpiece attracted to a part.
  10.  接続部材を有する電子機器の製造方法であって、
     ロボットハンドのベース部に取り付けられ第1の軸方向に平行移動可能な吸着部を有する吸着ユニットによって前記接続部材を吸着し、
     前記ベース部に取り付けられ前記第1の軸と交差する第2の軸に平行な回動軸のまわりに各々独立して回動可能な第1及び第2のフィンガ部を有するフィンガユニットによって、前記吸着部に吸着された前記接続部材を把持し、
     前記接続部材を把持したフィンガユニットを前記回動軸のまわりに回動させることで、前記接続部材の姿勢を変化させる
     電子機器の製造方法。
    A method of manufacturing an electronic device having a connection member, comprising:
    Suctioning the connecting member by a suction unit having a suction unit attached to a base portion of the robot hand and movable in parallel in a first axial direction;
    A finger unit having first and second finger portions that are independently pivotable about a pivot axis attached to the base portion and parallel to a second axis intersecting the first axis; Gripping the connection member adsorbed by the adsorption unit;
    A method of manufacturing an electronic device, wherein a posture of the connection member is changed by rotating a finger unit holding the connection member around the rotation axis.
PCT/JP2018/030502 2017-09-21 2018-08-17 Robot hand, robot device, and method for manufacturing electronic apparatus WO2019058824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880059000.5A CN111065498B (en) 2017-09-21 2018-08-17 Robot hand, robot device, and method of producing electronic device
JP2019543482A JP7167924B2 (en) 2017-09-21 2018-08-17 ROBOT HAND, ROBOT DEVICE, AND ELECTRONIC DEVICE MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-181111 2017-09-21
JP2017181111 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019058824A1 true WO2019058824A1 (en) 2019-03-28

Family

ID=65811262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030502 WO2019058824A1 (en) 2017-09-21 2018-08-17 Robot hand, robot device, and method for manufacturing electronic apparatus

Country Status (4)

Country Link
JP (1) JP7167924B2 (en)
CN (1) CN111065498B (en)
TW (1) TWI765085B (en)
WO (1) WO2019058824A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111687646A (en) * 2020-07-23 2020-09-22 无锡恒尚装饰工程有限公司 Automatic aluminum profile processing production line and processing technology thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220666U (en) * 1975-07-30 1977-02-14
US4858974A (en) * 1988-05-02 1989-08-22 Stannek Karl H Robotic gripper head
JPH0295591A (en) * 1988-09-29 1990-04-06 Matsushita Electric Ind Co Ltd Holding device
US5863086A (en) * 1994-11-21 1999-01-26 Mcneilus Truck And Manufacturing, Inc. Container holding and lifting device
JP2001121468A (en) * 1999-10-26 2001-05-08 Temusu:Kk Manipulator
JP2004025326A (en) * 2002-06-24 2004-01-29 Okura Yusoki Co Ltd Grasping device and transfer machine
JP2010005736A (en) * 2008-06-26 2010-01-14 Fuji Heavy Ind Ltd Dangerous object gripping device
JP2015112651A (en) * 2013-12-09 2015-06-22 Thk株式会社 Hand mechanism
JP2017109271A (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Work device and work method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597453B1 (en) * 1986-04-18 1988-08-05 Tech Nles Ste Gle DEVICE FOR TRANSFERRING OBJECTS, ESPECIALLY GLASS PLATES
JP4362167B2 (en) * 1999-06-11 2009-11-11 三島光産株式会社 Glass substrate loading method and apparatus
JP5449876B2 (en) * 2008-08-28 2014-03-19 東京応化工業株式会社 Transport device
CN101383313B (en) * 2008-10-24 2010-06-16 陈百捷 Manipulator for fetching and delivering silicon chip
JP5886768B2 (en) * 2013-01-15 2016-03-16 マルゴ工業株式会社 Article posture changing device
EP3035901B1 (en) * 2013-08-21 2019-10-30 Hocoma AG Hand motion exercising device
CN204450563U (en) * 2015-02-06 2015-07-08 合肥工业大学 A kind of adjustable sheet part catching robot
CN104802159B (en) * 2015-04-23 2017-04-05 天长市天力液压机械有限责任公司 Textile rubber roll special manipulator
CN105015930A (en) * 2015-06-25 2015-11-04 张家港市华源染织有限公司 Storage frame allowing cloth to be taken
CN106003119A (en) * 2016-06-24 2016-10-12 先驱智能机械(深圳)有限公司 Object grabbing method and system for suction type mechanical hand
CN106006094B (en) * 2016-07-15 2018-03-30 江苏海事职业技术学院 Ship aids in winch
CN206085088U (en) * 2016-10-19 2017-04-12 上汽通用汽车有限公司 Robot tongs with intelligent regulation formula secondary protection mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220666U (en) * 1975-07-30 1977-02-14
US4858974A (en) * 1988-05-02 1989-08-22 Stannek Karl H Robotic gripper head
JPH0295591A (en) * 1988-09-29 1990-04-06 Matsushita Electric Ind Co Ltd Holding device
US5863086A (en) * 1994-11-21 1999-01-26 Mcneilus Truck And Manufacturing, Inc. Container holding and lifting device
JP2001121468A (en) * 1999-10-26 2001-05-08 Temusu:Kk Manipulator
JP2004025326A (en) * 2002-06-24 2004-01-29 Okura Yusoki Co Ltd Grasping device and transfer machine
JP2010005736A (en) * 2008-06-26 2010-01-14 Fuji Heavy Ind Ltd Dangerous object gripping device
JP2015112651A (en) * 2013-12-09 2015-06-22 Thk株式会社 Hand mechanism
JP2017109271A (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Work device and work method

Also Published As

Publication number Publication date
CN111065498A (en) 2020-04-24
TWI765085B (en) 2022-05-21
TW201919831A (en) 2019-06-01
CN111065498B (en) 2023-05-12
JP7167924B2 (en) 2022-11-09
JPWO2019058824A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US20220016789A1 (en) Tool stocker, interchangeable tool, robot apparatus, robot system, control method of robot system, and storage medium
US20140125080A1 (en) End effector and robot
JP7015265B2 (en) A robot device equipped with a work tool for gripping a work including a connector and a work tool.
CN107053252B (en) Robot
US8668423B2 (en) Grasping device, robot system, and method of manufacturing mechanical product
US9882333B2 (en) Gripping and assembling device for flexible object
US20120313388A1 (en) Transfer device, and workpiece mounting device
CN104625676A (en) Shaft hole assembly industrial robot system and working method thereof
CN108356458B (en) Three-axis real-time tracking welding device capable of rotating symmetrically for welding
WO2017203945A1 (en) Workpiece gripping device and workpiece gripping method
US20220347838A1 (en) Substrate assembling device and substrate assembling method
CN113710436A (en) Holding device and robot provided with same
WO2019058824A1 (en) Robot hand, robot device, and method for manufacturing electronic apparatus
US10632581B2 (en) Workpiece conveying apparatus for a pressing machine
US11718937B2 (en) Adaptive apparatus for transporting and sewing material along arbitrary seam shapes
JP4607756B2 (en) Robot hand and substrate transfer robot
JP2016124081A (en) Parallel link robot
WO2016129526A1 (en) End effector and robot
JP6804951B2 (en) Robot hand
US10913166B1 (en) Gripper
JPH05131389A (en) Object handling device
WO2022091246A1 (en) Cable attachment device and robot
CN218313521U (en) Automatic production equipment based on multi-degree-of-freedom parallel mechanism
JP2020007131A (en) Attitude changing device and working device
JP2014188633A (en) End effector and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859273

Country of ref document: EP

Kind code of ref document: A1