WO2019058795A1 - Curable composition, sealing material composition, and adhesive composition - Google Patents
Curable composition, sealing material composition, and adhesive composition Download PDFInfo
- Publication number
- WO2019058795A1 WO2019058795A1 PCT/JP2018/029557 JP2018029557W WO2019058795A1 WO 2019058795 A1 WO2019058795 A1 WO 2019058795A1 JP 2018029557 W JP2018029557 W JP 2018029557W WO 2019058795 A1 WO2019058795 A1 WO 2019058795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- less
- curable composition
- polymer
- acrylic polymer
- Prior art date
Links
- 0 CC(*)(*)C(N(C(*)(*)*)OC(C)(*)**C(O)=O)P(O*)(O*)=O Chemical compound CC(*)(*)C(N(C(*)(*)*)OC(C)(*)**C(O)=O)P(O*)(O*)=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J143/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Adhesives based on derivatives of such polymers
- C09J143/04—Homopolymers or copolymers of monomers containing silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
- C08F230/085—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
Definitions
- the present invention relates to a curable composition, and more specifically, a curable composition capable of curing at room temperature with moisture such as in the air to form a cured product exhibiting excellent mechanical properties, and the curing
- the present invention relates to a sealant composition of the composition and an adhesive composition containing the curable composition.
- the curable composition containing a polymer having a room temperature curing type reactive group examples include compositions containing various polymers such as modified silicones, urethanes, polysulfides and acrylics, and are used for construction applications, electricity, and so on. It is widely used as an adhesive, sealing material, paint, etc. in electronics related applications, automotive related applications etc.
- a modified silicone polymer is a curable composition based on an oxyalkylene polymer having a hydrolyzable silyl group, it has good workability and mechanical properties such as elongation at break and strength at break. It is widely used as a base polymer for adhesives and sealants because it is a well-balanced material.
- a curable composition containing a modified silicone polymer as a base polymer has a problem that the resulting cured product has insufficient weather resistance. For this reason, curable compositions comprising an acrylic polymer have been proposed.
- Patent Document 1 discloses a specific vinyl polymer having an alkoxysilyl group, a polyoxyalkylene compound having an alkoxysilyl group at an end, and a specific vinyl polymer having no polypropylene glycol having a specific molecular weight or an alkoxysilyl group.
- a sealant composition containing the same.
- Patent Document 2 discloses a sealing material composition including an oxyalkylene polymer having a hydrolyzable silyl group and a specific vinyl polymer having a crosslinkable functional group.
- Patent Document 3 includes a specific vinyl polymer containing a (meth) acrylic acid ester monomer having a hydrolyzable silyl group as a constituent monomer, and a hydrolyzable silyl group-containing oxyalkylene polymer. It is disclosed that such a curable resin composition can be suitably used as a sealing material and an adhesive for exterior tiles.
- the cured products obtained from the compositions described in Patent Documents 1 to 3 exhibit good mechanical properties and also have improved weatherability.
- the demand for improving the weatherability is high, and a further improvement of the weatherability has been required for the curable composition.
- the weatherability tends to be improved by increasing the molecular weight of the polymer, but it is known that problems occur in terms of coatability and handling because the composition has a high viscosity.
- the present invention has been made in view of the above circumstances, and has a low viscosity, is excellent in workability, and is also excellent in mechanical properties and weather resistance of a cured product, a curable composition, a sealing material composition and an adhesive composition It aims at providing a thing.
- this inventor makes the (meth) acrylic-type polymer which has a reactive silyl group a base resin, and is a curable composition containing a low molecular-weight (meth) acrylic-type polymer. It has been found that when the low molecular weight (meth) acrylic polymer has a specific amount of double bonds, the weather resistance of a cured product and an adhesive containing the cured product is improved.
- the present invention has been completed based on the findings. According to the present specification, the following means are provided.
- a (meth) acrylic polymer (A) having a weight average molecular weight of 500 or more and less than 10,000, and a (meth) acrylic polymer having a weight average molecular weight of 10,000 or more and 100,000 or less A curable composition comprising (B), wherein The (meth) acrylic polymer (A) has a double bond in the molecule of 0.01 meq / g or more and 1.0 meq / g or less, The curable composition in which the said (meth) acrylic-type polymer (B) has a reactive silyl group in a molecule
- the (meth) acrylic polymer (B) according to any one of the above [1] to [4], having 0.1 or more and 2.2 or less reactive silyl groups in the molecule.
- Curable composition [6] The curable composition according to any one of the above [1] to [5], wherein the (meth) acrylic acid polymer (B) has a dialkoxysilyl group as a reactive silyl group.
- the (meth) acrylic polymer (B) is a (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms in all monomer units constituting the (meth) acrylic polymer
- the curable composition according to any one of the above [1] to [6] which contains 5% by mass or more.
- the double bond concentration contained in the whole of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) is 0.01 meq / g or more and 0.50 meq / g or less
- the amount of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) used is 10 to 90/90 to 10 in mass ratio [1] to [8] ]
- a sealing material composition comprising the curable composition according to any one of the above [1] to [11].
- An adhesive composition comprising the curable composition according to any one of the above [1] to [11].
- the curable composition of the present invention is low in viscosity and excellent in workability.
- a cured product having excellent strength, elongation, and weather resistance can be obtained from the composition.
- adhesives such as a sealing material in which excellent mechanical physical property and high weather resistance are calculated
- (meth) acrylic means acrylic and / or methacrylic
- (meth) acrylate means acrylate and / or methacrylate
- (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
- the curable composition of the present invention is a (meth) acrylic polymer having a weight average molecular weight of 500 or more and less than 10,000 which is the component (A) (hereinafter referred to as "low molecular weight (meth) acrylic polymer") And a (meth) acrylic polymer having a weight average molecular weight of 10,000 or more and 100,000 or less which is the component (B) (hereinafter, referred to as an essential component of "high molecular weight (meth) acrylic polymer”
- an oxyalkylene polymer having a reactive silyl group may be included as the component (C)
- the curable composition of the present invention will be described below including the details of each component .
- the low molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, and for example, polymerizes a monomer mixture containing the (meth) acrylic monomer It can be obtained by
- the (meth) acrylic monomer is a monomer having a (meth) acryloyl group in the molecule, and (meth) acrylic acid, (meth) acrylic acid alkyl ester, (meth) acrylic acid alkoxyalkyl ester, etc. It can be mentioned.
- the amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
- (meth) acrylic acid alkyl ester examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n (meth) acrylate -Butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl (meth) acrylate Cyclohexyl, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, (meth) acrylic acid Decyl
- (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms are preferable from the viewpoint of mechanical properties of a cured product.
- the amount of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferably 10% by mass or more based on the total constituent monomers of the low molecular weight (meth) acrylic polymer. Preferably it is 30 mass% or more, More preferably, it is 50 mass% or more. In addition, an upper limit is 100 mass%, may be 90 mass%, may be 80 mass%, and may be 50 mass%.
- the curable composition contains an oxyalkylene polymer
- the carbon number of the alkyl group is preferably 10 to 20, more preferably 12 to 20.
- the amount of the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is preferably 5% by mass or more, and more preferably, to the total constituent monomers of the low molecular weight (meth) acrylic polymer Is 10% by mass or more, more preferably 20% by mass or more.
- an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
- (meth) acrylic acid alkoxyalkyl esters include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxybutyl (meth) acrylate, methoxyhexyl (meth) acrylate, (meth) Ethoxymethyl acrylate, ethoxyethyl (meth) acrylate, ethoxybutyl (meth) acrylate, ethoxyhexyl (meth) acrylate, butoxymethyl (meth) acrylate, butoxyethyl (meth) acrylate, (meth) acrylate
- Examples thereof include butoxybutyl and butoxyhexyl (meth) acrylate, and one or more of these can be used.
- (meth) acrylic acid alkoxyalkyl ester having an alkoxyalkyl group having 2 to 8 carbon atoms is preferable from the viewpoint of mechanical properties of a cured product, and (meth) acrylic acid having an alkoxyalkyl group having 2 to 4 carbon atoms Acid alkoxy alkyl esters are more preferred.
- the amount of the (meth) acrylic acid alkoxyalkyl ester used is preferably 10% by mass or more, more preferably 30% by mass or more, based on the total constituent monomers of the low molecular weight (meth) acrylic polymer. More preferably, it is 50 mass% or more.
- an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
- the low molecular weight (meth) acrylic polymer may have a reactive silyl group in the molecule.
- the mechanical properties of the cured product tend to be good.
- the type of reactive silyl group is not particularly limited, and examples thereof include an alkoxysilyl group, a halogenosilyl group, and a silanol group.
- an alkoxysilyl group is preferable from the viewpoint of easily controlling the reactivity.
- alkoxysilyl group examples include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, dimethoxyethoxysilyl group and methoxydiethoxysilyl group; methyldimethoxysilyl group, methyldiethoxysilyl group, ethyldimethoxysilyl group And dialkoxysilyl groups such as ethyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl group, dimethylethoxysilyl group, diethylmethoxysilyl group and diethylethoxysilyl group.
- a dialkoxysilyl group is preferable in that the cured product exhibits good elongation and is excellent in heat resistance stability.
- the average value of the number of reactive silyl groups contained in one polymer molecule is preferably 0.1 in view of the tensile strength of the cured product. Or more, more preferably 0.2 or more.
- the average value of the number of reactive silyl groups may be 0.3 or more, 0.5 or more, or 1.0 or more.
- the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less.
- the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
- the position of the reactive silyl group contained in the (meth) acrylic polymer is not particularly limited, and can be the side chain and / or the end of the polymer.
- the reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
- vinyl monomers having a reactive silyl group vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, etc .; trimethoxysilylpropyl (meth) acrylate ( Silyl group-containing (meth) acrylic esters such as triethoxysilylpropyl acrylate, dimethylmethoxysilylpropyl (meth) acrylate and methyldimethoxysilylpropyl methacrylate (meth) acrylate; silyl groups such as trimethoxysilylpropyl vinyl ether Containing vinyl ethers; silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate and the
- the low molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
- the other monomers include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycidyl (meth) acrylate, (meth) Functional group-containing monomers such as 2-aminoethyl acrylate, ethylene oxide adduct of (meth) acrylic acid;
- (Meth) acrylic acid aromatic esters such as phenyl (meth) acrylate, toluyl (meth) acrylate, and benzyl (meth) acrylate;
- the weight average molecular weight (Mw) of the low molecular weight (meth) acrylic polymer is a polystyrene equivalent molecular weight by gel permeation chromatography (hereinafter also referred to as "GPC"), and it is 500 from the viewpoint of strength and weatherability of the cured product. It is the above, Preferably it is 1,000 or more, More preferably, it is 2,000 or more. Mw may be 3,000 or more.
- the upper limit value of Mw is less than 10,000, and may be 9,500 or less, or 9,000 or less, 8,000 or less May be Although the range of Mw is 500 or more and less than 10,000, it can be set combining the above-mentioned upper limit and lower limit besides this.
- the range of Mw is, for example, 1,000 or more and less than 10,000, may be 2,000 or more and less than 10,000, and may be 3,000 or more and 90,000 or less.
- the molecular weight distribution of the low molecular weight (meth) acrylic polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
- Mw / Mn is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2., from the viewpoint of the balance between tensile physical properties and workability. It is 5 or less, more preferably 2.0 or less.
- the lower limit of Mw / Mn is usually 1.0.
- the viscosity of the low molecular weight (meth) acrylic polymer is preferably 1,000 mPa ⁇ s or more at 25 ° C., and more preferably 2,000 mPa ⁇ s or more.
- the viscosity may be 3,000 mPa ⁇ s or more, 5,000 mPa ⁇ s or more, or 10,000 mPa ⁇ s or more.
- the upper limit of the viscosity is preferably 100,000 mPa ⁇ s or less, more preferably 80,000 mPa ⁇ s or less, and still more preferably 60,000 mPa ⁇ s or less.
- the viscosity range can be set by combining the above upper limit value and lower limit value, and is, for example, 1,000 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, and 2,000 mPa ⁇ s or more and 80,000 mPa ⁇ s. Or less and may be 3,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less.
- the low molecular weight (meth) acrylic polymer has a double bond in the molecule.
- the low molecular weight (meth) acrylic polymer has an appropriate amount of double bonds, for example, the double bonds react during the period when the cured product is exposed to the outdoors, etc., and the molecular weight is appropriately increased, Weatherability is improved.
- the cured product can exhibit excellent weatherability while suppressing the viscosity of the low molecular weight (meth) acrylic polymer to ensure the workability.
- the above mechanism is an assumption and does not limit the scope of the present invention.
- the amount of double bonds contained in the low molecular weight (meth) acrylic polymer is required to have 0.01 meq / g or more from the viewpoint of exhibiting the effect on the above-mentioned weather resistance.
- the amount of double bonds may be 0.05 meq / g or more, 0.10 meq / g or more, 0.20 meq / g or more, 0.30 meq / g or more. May be On the other hand, if the amount of double bonds is too large, the degree of crosslinking of the cured product becomes too high during exposure, and as a result, the flexibility tends to be insufficient, so that cracking tends to occur.
- the amount of double bonds is 1.0 meq / g or less, preferably 0.50 meq / g or less, and more preferably 0.30 meq / g or less.
- the range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, and 0.05 meq / g or more 1 It may be not more than 0 meq / g, and not less than 0.10 meq / g and not more than 0.50 meq / g.
- the double bond can also be introduced by carrying out the production of the (meth) acrylic acid polymer under high temperature conditions.
- the polymerization temperature is 100 ° C. or higher, a cleavage reaction starting from hydrogen abstraction reaction from the polymer chain occurs for high temperature polymerization, so the ethylenic unsaturation represented by the following general formula (1) at the molecular terminal A polymer with bonds is obtained.
- the polymerization temperature is preferably 120 ° C. or more, more preferably 150 ° C. or more. The higher the polymerization temperature, the higher the double bond concentration in the polymer. According to the above method, it is possible to obtain a (meth) acrylic polymer having a double bond simply and with good productivity.
- a very small amount of polymerization initiator may be used, and it is not necessary to use a chain transfer agent such as mercaptan or a polymerization solvent, and a copolymer with high purity can be obtained.
- M represents a monomer unit
- n is a natural number representing the degree of polymerization
- R 1 represents a monovalent organic group.
- an alkyl group a hydroxyalkyl group, an alkoxyalkyl group, an alkyl group which may have other substituents, a phenyl group, a benzyl group, a polyalkylene glycol group, a dialkylamino It is an alkyl group, a trialkoxysilylalkyl group, an alkyldialkoxysilylalkyl group or a hydrogen atom.
- Low molecular weight (meth) acrylic polymers can be produced by conventional radical polymerization. Any of solution polymerization, bulk polymerization and dispersion polymerization may be employed, and living radical polymerization may be utilized.
- the reaction process may be any of batch system, semi-batch system and continuous polymerization. Among these, a high temperature continuous polymerization method at 100 to 350 ° C. is preferable.
- JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, etc. may be used.
- a reactor containing a monomer mixture comprising each monomer and, if necessary, a polymerization solvent at a constant feed rate
- the polymerization liquid is withdrawn in an amount corresponding to the supply amount of the monomer mixture.
- a polymerization initiator can also be mix
- the amount to be blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture.
- the pressure depends on the reaction temperature and the boiling point of the monomer mixture and solvent used, and does not affect the reaction, but may be a pressure that can maintain the reaction temperature.
- the residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomers may not react sufficiently, and if the unreacted monomers exceed 60 minutes, the productivity may be deteriorated.
- the preferred residence time is 2 to 40 minutes.
- any initiator which generates radicals at a predetermined reaction temperature may be used.
- One of these polymerization initiators may be used alone, or two or more thereof may be used in combination.
- the double bond concentration of the obtained polymer tends to be high.
- using an organic peroxide rather than an azo compound tends to give a polymer having a high double bond concentration.
- the amount of the polymerization initiator used can be appropriately adjusted according to the types of the polymerization initiator and the monomer, the desired molecular weight, the polymerization conditions and the like, but in general, based on 100 parts by mass of the monomer used The amount is 0.001 to 10 parts by mass. When polymers of the same molecular weight are obtained, the smaller the amount of polymerization initiator used, the higher the double bond concentration in the obtained polymer tends to be.
- an organic hydrocarbon compound is suitable, and cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, Examples thereof include esters such as ethyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone and cyclohexanone, and alcohols such as methanol, ethanol and isopropanol. One or more of these can be used.
- the solvent does not dissolve the (meth) acrylic acid ester copolymer well, the scale tends to grow on the wall of the reactor, which tends to cause production problems in the washing step and the like.
- an organic solvent having a high chain transfer ability such as isopropanol
- the amount of the solvent used is preferably 80 parts by mass or less with respect to 100 parts by mass of all vinyl monomers. By setting the amount to 80 parts by mass or less, high conversion can be obtained in a short time. More preferably, it is 1 to 50 parts by mass.
- dehydrating agents such as trimethyl orthoacetate and trimethyl orthoformate can also be added.
- a known chain transfer agent may be used for the production of the low molecular weight (meth) acrylic polymer.
- a chain transfer agent When a chain transfer agent is used, the double bond concentration in the resulting polymer tends to be low. Also, in general, the double bond concentration is reduced by increasing the amount of chain transfer agent used.
- the reaction liquid withdrawn from the reactor can be carried on to the next step as it is, or the polymer can be isolated by distilling off volatile components such as unreacted monomers, solvents and low molecular weight oligomers by distillation or the like. It can be released. It is also possible to return some of the unreacted monomers, solvents, and volatile components such as low molecular weight oligomers distilled off from the reaction solution back to the raw material tank or directly back to the reactor and use them again for the polymerization reaction.
- the method of recycling unreacted monomers and solvents is a preferable method from the economical point of view. In the case of recycling, it is necessary to determine the mixing ratio of the newly supplied monomer mixture so as to maintain the desired monomer ratio and the desired amount of solvent in the reactor.
- the amount of double bonds introduced into the polymer can be reduced by post treatment under heating conditions by adding a radical generator.
- the addition amount of the radical generating agent is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer, the reduction effect of the double bond concentration is larger as the addition amount is larger.
- the heating temperature in the heat treatment is about 50 to 130 ° C., but the lower the temperature, the larger the reduction effect of the double bond concentration.
- the heating temperature is preferably in the range of 50 to 110 ° C., more preferably in the range of 50 to 100 ° C.
- the heat treatment time is not particularly limited, but it is preferable to set the amount of the remaining radical generator to be less than 1% by mass with respect to the polymer. Those skilled in the art can calculate the remaining radicals from the activation energy, frequency factor and reaction temperature of the radical generator used.
- the double bond concentration can also be reduced by hydrogenating the (meth) acrylic polymer as post-treatment.
- the hydrogenation can be carried out by any known method. That is, after adding a homogeneous system catalyst or a heterogeneous system catalyst to the polymer reaction solution, the system is made into a hydrogen atmosphere, the pressure is heated to normal pressure to 10 MPa, the temperature is heated to about 20 to 180 ° C., and it is for 2 to 20 hours. Let it react.
- homogeneous catalysts include rhodium complexes such as chlorotris (triphenylphosphine) rhodium, ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium and chlorohydrocarbonyltris (triphenylphosphine) ruthenium, and dichlorobis (triphenylphosphine).
- platinum complexes such as platinum, and iridium complexes such as carbonyl bis (triphenylphosphine) iridium and the like.
- heterogeneous catalysts include solid catalysts in which transition metals such as nickel, rhodium, ruthenium, palladium and platinum are supported on carbon, silica, alumina, fibers, organic gel-like substances and the like. Heterogeneous catalysts are preferable in that the catalyst can be easily removed by filtration or the like, so that the quality is stable and expensive catalysts can be reused.
- the amount of catalyst added is about 10 to 1,000 ppm with respect to the vinyl polymer in the case of a homogeneous catalyst. In the case of a heterogeneous catalyst, it is about 1,000 to 10,000 ppm.
- the high molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, as with the low molecular weight (meth) acrylic polymer.
- (meth) acrylic monomers include (meth) acrylic acid and (meth) acrylic acid alkyl esters.
- the amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
- (meth) acrylic acid alkyl ester the same compounds as those described in the explanation of the low molecular weight (meth) acrylic polymer can be used. Among these, (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms are preferable from the viewpoint of mechanical properties of a cured product.
- the amount of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferably 10% by mass or more based on the total constituent monomers of the high molecular weight (meth) acrylic polymer. Preferably it is 30 mass% or more, More preferably, it is 50 mass% or more. In addition, an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
- the curable composition contains an oxyalkylene polymer
- the carbon number of the alkyl group is preferably 10 to 20, more preferably 12 to 20.
- the amount of the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is preferably 5% by mass or more, and more preferably, to the total constituent monomers of the high molecular weight (meth) acrylic polymer Is 10% by mass or more, more preferably 20% by mass or more.
- an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
- the high molecular weight (meth) acrylic polymer has a reactive silyl group in the molecule. For this reason, the hardened
- the type of reactive silyl group is not particularly limited, and examples thereof include an alkoxysilyl group, a halogenosilyl group, and a silanol group. However, an alkoxysilyl group is preferable from the viewpoint of easily controlling the reactivity.
- alkoxysilyl group examples include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, dimethoxyethoxysilyl group and methoxydiethoxysilyl group; methyldimethoxysilyl group, methyldiethoxysilyl group, ethyldimethoxysilyl group And dialkoxysilyl groups such as ethyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl group, dimethylethoxysilyl group, diethylmethoxysilyl group and diethylethoxysilyl group.
- a dialkoxysilyl group is preferable in that the cured product exhibits good elongation and is excellent in heat resistance stability.
- the average value of the number of reactive silyl groups contained in one high molecular weight (meth) acrylic polymer is preferably 0.1 or more, more preferably 0.2, from the viewpoint of the tensile strength of the cured product. Or more, more preferably 0.3 or more.
- the average value of the number of reactive silyl groups may be 0.5 or more, 0.8 or more, or 1.0 or more.
- the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less.
- the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
- the position of the reactive silyl group is not particularly limited, and may be at the side chain and / or at the end of the polymer.
- the reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
- a vinyl monomer having a reactive silyl group the same compounds as those described in the explanation of the low molecular weight (meth) acrylic polymer can be used.
- the high molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
- the above-mentioned other monomers the same compounds as those described in the above description of the low molecular weight (meth) acrylic polymer, and methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, (Meth) acrylate methoxybutyl, (meth) acrylate methoxyhexyl, (meth) acrylate ethoxymethyl, (meth) acrylate ethoxyethyl, (meth) acrylate ethoxybutyl, (meth) acrylate ethoxyhexyl, (meth) Examples include, but are not limited to, (meth) acrylic acid alkoxyalkyl esters such as butoxymethyl acrylate, butoxyethyl (meth) acrylate, butoxybutyl (
- the weight average molecular weight (Mw) of the high molecular weight (meth) acrylic polymer is a polystyrene equivalent molecular weight by gel permeation chromatography (hereinafter also referred to as "GPC"), and it is 10 from the viewpoint of strength and weatherability of the cured product. Or more, preferably 11,000 or more, more preferably 15,000 or more, still more preferably 20,000 or more, and even more preferably 25,000 or more. Mw may be 30,000 or more, and may be 40,000 or more. On the other hand, from the viewpoint of workability (low viscosity), the upper limit value of Mw is 100,000, preferably 90,000 or less, and more preferably 80,000 or less.
- GPC gel permeation chromatography
- the upper limit value may be 70,000 or less, 60,000 or less, or 50,000 or less.
- the range of Mw can be set combining said upper limit and lower limit, it is 10,000 or more and 100,000 or less, for example, may be 10,000 or more and 80,000 or less, and 10 It may be 1,000 or more and 50,000 or less, and may be 15,000 or more and 50,000 or less.
- the molecular weight distribution of the high molecular weight (meth) acrylic polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
- Mw / Mn is preferably 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less, and still more preferably 3., from the viewpoint of the balance between tensile physical properties and workability. It is 0 or less, more preferably 2.0 or less.
- the lower limit of Mw / Mn is usually 1.0.
- the viscosity of the high molecular weight (meth) acrylic polymer is preferably 300,000 mPa ⁇ s or less at 25 ° C., more preferably 200,000 mPa ⁇ s or less, and still more preferably 100,000 mPa ⁇ s or less. More preferably, it is 80,000 mPa ⁇ s or less, still more preferably 60,000 mPa ⁇ s or less, and most preferably 40,000 mPa ⁇ s or less. If the viscosity is 200,000 mPa ⁇ s or less, the workability of the curable composition becomes good, which is preferable.
- the lower limit of the viscosity may be 5,000 mPa ⁇ s or more, 10,000 mPa ⁇ s or more, and 20,000 mPa ⁇ s.
- the high molecular weight (meth) acrylic polymer may have a double bond in the molecule.
- the case of having a double bond in the molecule is preferable because it tends to improve the weather resistance of the resulting cured product.
- the double bond can be introduced by the same method as in the case of the low molecular weight (meth) acrylic polymer.
- the amount of double bonds contained in the high molecular weight (meth) acrylic polymer is preferably 0.01 meq / g or more, more preferably 0.03 meq / g or more from the viewpoint of exhibiting the effect on the above-mentioned weather resistance. More preferably, it is 0.05 meq / g or more.
- the amount of double bond is preferably 1.0 meq / g or less, more preferably 0.50 meq / g or less, and more preferably 0.30 meq / g or less.
- the range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, and 0.05 meq / g or more 1 It may be not more than 0 meq / g, and not less than 0.10 meq / g and not more than 0.50 meq / g.
- the high molecular weight (meth) acrylic polymer can be produced by ordinary radical polymerization as the low molecular weight (meth) acrylic polymer. Any of solution polymerization, bulk polymerization and dispersion polymerization may be employed, and living radical polymerization may be utilized.
- the reaction process may be any of batch system, semi-batch system and continuous polymerization. Among these, a high temperature continuous polymerization method at 100 to 350 ° C. is preferable.
- RAFT method reversible addition-cleavage chain transfer polymerization method
- NMP method nitroxy radical method
- ATRP method atom transfer radical polymerization method
- RAFT method RAFT method
- NMP method nitroxy radical method
- ATRP method atom transfer radical polymerization method
- RAFT method RAFT method
- NMP method nitroxy radical method
- ATRP method atom transfer radical polymerization method
- Various polymerization methods such as a polymerization method using an organic tellurium compound (TERP method), a polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), and an iodine transfer polymerization method be able to.
- TMP method organic tellurium compound
- SBRP method organic antimony compound
- BIRP method organic bismuth compound
- iodine transfer polymerization method be able to.
- RAFT agent a specific polymerization control agent
- RAFT agent a specific polymerization control agent
- RAFT agent various known RAFT agents such as dithioester compounds, xanthate compounds, trithiocarbonate compounds and dithiocarbamate compounds can be used.
- the RAFT agent may be a monofunctional one having only one active site, or a bifunctional or higher functional one. The amount of the RAFT agent used is appropriately adjusted depending on the type of monomer and RAFT agent used.
- radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but it is easy to handle in safety, at the time of radical polymerization Azo compounds are preferred in that side reactions are less likely to occur.
- azo compound examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1) Carbonitrile), 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide) and the like.
- the radical polymerization initiator may be used alone or in combination of two or more.
- the use ratio of the radical polymerization initiator is not particularly limited, but from the viewpoint of obtaining a polymer having a smaller molecular weight distribution, it is preferable to set the use amount of the radical polymerization initiator to 0.5 mol or less with respect to 1 mol of the RAFT agent. It is more preferable that the amount be less than or equal to 2 mol. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the radical polymerization initiator used per 1 mol of the RAFT agent is 0.01 mol. Therefore, the use amount of the radical polymerization initiator relative to 1 mol of the RAFT agent is preferably in the range of 0.01 mol to 0.5 mol, and more preferably in the range of 0.05 mol to 0.2 mol.
- the reaction temperature in the polymerization reaction by the RAFT method is preferably 40 ° C. to 100 ° C., more preferably 45 ° C. to 90 ° C., and still more preferably 50 ° C. to 80 ° C. If the reaction temperature is 40 ° C. or higher, the polymerization reaction can be smoothly advanced. On the other hand, when the reaction temperature is 100 ° C. or less, side reactions can be suppressed, and restrictions on the initiators and solvents that can be used are relaxed.
- polymerization proceeds through a nitroxide radical derived from a specific alkoxyamine compound having a nitroxide and the like as a living radical polymerization initiator.
- the type of nitroxide radical to be used is not particularly limited, but from the viewpoint of polymerization controllability at the time of polymerizing a monomer containing an acrylate, using the compound represented by General Formula (2) as the nitroxide compound Is preferred.
- R 1 is an alkyl group having 1 to 2 carbon atoms or a hydrogen atom
- R 2 is an alkyl group having 1 to 2 carbon atoms or a nitrile group
- R 3 is — (CH 2 ) m-
- m Is 0-2 and R 4 and R 5 are alkyl groups having 1 to 4 carbon atoms ⁇
- the nitroxide compound represented by the general formula (2) is primarily dissociated by heating at about 70 to 80 ° C. to cause an addition reaction with a vinyl monomer. At this time, it is possible to obtain a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl monomer having two or more vinyl groups. Subsequently, the vinyl-based monomer can be living-polymerized by secondarily dissociating the above-mentioned polymerization precursor under heating. The amount of the nitroxide compound used is appropriately adjusted according to the type of monomer and nitroxide compound used.
- the nitroxide radical represented by the general formula (3) is 0.001 to 0 per 1 mol of the nitroxide compound represented by the above general formula (2).
- the polymerization may be carried out by adding in the range of 2 mol.
- R 4 and R 5 each represent an alkyl group having 1 to 4 carbon atoms.
- nitroxide radical represented by the above general formula (3) By adding 0.001 mol or more of nitroxide radical represented by the above general formula (3), the time for the concentration of the nitroxide radical to reach a steady state is shortened. This makes it possible to control the polymerization to a higher degree, and to obtain a polymer having a narrower molecular weight distribution. On the other hand, when the addition amount of the nitroxide radical is too large, polymerization may not proceed.
- a more preferable addition amount of the above nitroxide radical to 1 mol of the above nitroxide compound is in the range of 0.01 to 0.5 mol, and a further preferable addition amount is in the range of 0.05 to 0.2 mol.
- the reaction temperature in the NMP method is preferably 50 ° C. or more and 140 ° C. or less, more preferably 60 ° C. or more and 130 ° C. or less, still more preferably 70 ° C. or more and 120 ° C. or less, particularly preferably 80 ° C. or more and 120 ° C. It is below. If the reaction temperature is 50 ° C. or more, the polymerization reaction can be smoothly advanced. On the other hand, if the reaction temperature is 140 ° C. or less, side reactions such as radical chain transfer tend to be suppressed.
- a polymerization reaction is generally carried out using an organic halide as an initiator and a transition metal complex as a catalyst.
- the organic halide which is an initiator may be a monofunctional one or a difunctional or higher functional one.
- a bromide and a chloride are preferable.
- the reaction temperature in the ATRP method is preferably 20 ° C. or more and 200 ° C. or less, more preferably 50 ° C. or more and 150 ° C. or less. If the reaction temperature is 20 ° C. or more, the polymerization reaction can be smoothly advanced.
- Living radical polymerization may be carried out in the presence of known chain transfer agents.
- polymerization solvents can be used in living radical polymerization. Specifically, aromatic compounds such as benzene, toluene, xylene and anisole; ester compounds such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketone compounds such as acetone and methyl ethyl ketone; dimethylformamide, acetonitrile, dimethyl sulfoxide Alcohol, water and the like can be mentioned. Moreover, you may carry out by aspects, such as block polymerization, without using a polymerization solvent.
- the oxyalkylene polymer having a reactive silyl group is not particularly limited as long as it contains a repeating unit represented by the following general formula (4). -O-R 2- (4) (Wherein, R 2 is a divalent hydrocarbon group)
- R 2 in the general formula (1) include the following. (CH 2 ) n (n is an integer of 1 to 10) CH (CH 3 ) CH 2 CH (C 2 H 5 ) CH 2 C (CH 3 ) 2 CH 2
- the oxyalkylene polymer may contain one or more of the above repeating units in combination. Among these, CH (CH 3 ) CH 2 is preferable in terms of excellent workability.
- the reactive silyl group contained in the oxyalkylene polymer containing a reactive silyl group is not particularly limited, and examples thereof include alkoxysilyl group, halogenosilyl group and silanol group, but from the viewpoint of easy control of reactivity, alkoxysilyl Groups are preferred.
- alkoxysilyl group include trimethoxysilyl group, methyldimethoxysilyl group, dimethylmethoxysilyl group, triethoxysilyl group, methyldiethoxysilyl group, dimethylethoxysilyl group and the like.
- the method for producing the oxyalkylene polymer is not particularly limited.
- a polymerization method using an alkali catalyst such as KOH, a heavy metal using a transition metal compound-porphyrin complex catalyst, using the corresponding epoxy compound or diol as a raw material A legal method, a polymerization method using a complex metal cyanide complex catalyst, a polymerization method using phosphazene, and the like can be mentioned.
- the oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
- the average value of the number of reactive silyl groups contained in one oxyalkylene polymer molecule is preferably in the range of 1 to 4 from the viewpoint of performance such as adhesiveness and tensile properties of the cured product, and more preferably The range is 1.5 to 3.
- the position of the reactive silyl group contained in the above-mentioned oxyalkylene polymer is not particularly limited, and can be a side chain and / or an end of the polymer.
- the oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
- the number average molecular weight (Mn) of the oxyalkylene polymer having a reactive silyl group is preferably 5,000 or more, more preferably 10,000 or more, and still more preferably 15,000, from the viewpoint of mechanical properties. It is above. Mn may be 18,000 or more, 22,000 or more, or 25,000 or more.
- the upper limit value of Mn is preferably 60,000 or less, more preferably 50,000 or less, and still more preferably 40,000 or less from the viewpoint of workability (viscosity) at the time of coating of the curable composition. .
- the range of Mn can be set by combining the above upper limit value and lower limit value, but, for example, is 5,000 or more and 60,000 or less, and may be 15,000 or more and 60,000 or less, 18 It may be 1,000 or more and 50,000 or less, or 22,000 or more and 50,000 or less.
- a commercial item may be used as an oxyalkylene polymer having a reactive silyl group.
- Kaneka Co., Ltd. “MS polymer S203”, “MS polymer S303”, “MS polymer S810”, “Syryl SAT 200”, “Syryl SAT 350”, “Syryl EST 280” and “Syryl SAT 30”, and Asahi Glass Exexer's “Exester S2410”, “Exester S2420” and “Exester S3430” (all trade names) are exemplified.
- the curable composition of the present invention contains the (A) component and the (B) component as essential components.
- the ratio of the component (A) and the component (B) ((A) / (B)) is preferably 10 to 10 by mass ratio in that the weatherability and mechanical properties of the resulting cured product are good. It is 90/90 to 10, more preferably 30 to 70/70 to 30.
- the amount of double bonds contained in the curable composition is preferably 0.01 meq / g or more, more preferably 0.05 meq / g or more, from the viewpoint of weatherability.
- the amount of double bonds may be 0.10 meq / g or more, and may be 0.15 meq / g or more.
- the amount of double bonds is preferably 1.0 meq / g or less, more preferably 0.80 meq / g or less, still more preferably 0.60 meq / g or less, still more preferably 0.
- the range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, 0.01 meq / g or more and 0 It may be 5.0 meq / g or less, and may be 0.05 meq / g or more and 0.50 meq / g or less.
- the curable composition of the present invention can contain components other than the (A) component and the (B) component, as long as the effects exhibited by the present invention are not impaired.
- Such components include fillers, plasticizers, anti-aging agents, curing accelerators, tack inhibitors, adhesion promoters and the like.
- filler light calcium carbonate having an average particle diameter of about 0.02 to 2.0 ⁇ m, heavy calcium carbonate having an average particle diameter of about 1.0 to 5.0 ⁇ m, titanium oxide, carbon black, synthetic silicic acid, talc, zeolite Mica, silica, calcined clay, kaolin, bentonite, aluminum hydroxide and barium sulfate, glass balloon, silica balloon, polymethyl methacrylate balloon are exemplified. These fillers can improve the mechanical properties of the cured product and improve the strength and elongation.
- light calcium carbonate, ground calcium carbonate and titanium oxide which are highly effective in improving physical properties, are preferable, and a mixture of light calcium carbonate and ground calcium carbonate is more preferable.
- the amount of the filler added is preferably 20 to 300 parts by mass, more preferably 50 to 200 parts by mass, based on 100 parts by mass of the total of the components (A) and (B).
- the weight ratio of light calcium carbonate / heavy calcium carbonate is preferably in the range of 90/10 to 50/50.
- plasticizers include liquid polyurethane resins, polyester plasticizers obtained from dicarboxylic acids and diols; ethers or esters of polyalkylene glycols such as polyethylene glycol and polypropylene glycol; and sugar polyalcohols such as sucrose, etc.
- Polyether plasticizers such as saccharide-based polyethers obtained by addition-polymerizing alkylene oxides such as oxide and propylene oxide and then etherifying or esterifying them; polystyrene-based plasticizers such as poly- ⁇ -methylstyrene; crosslinkability Poly (meth) acrylate etc. which do not have a functional group are mentioned.
- poly (meth) acrylates having no crosslinkable functional group are preferable in terms of durability such as weather resistance of the cured product.
- those having a Mw of 1,000 to 7,000 and a glass transition temperature of ⁇ 30 ° C. or less are more preferable.
- the amount of the plasticizer used in the curable composition is preferably in the range of 0 to 100 parts by mass, and 0 to 80 parts by mass, based on 100 parts by mass of the total amount including the components (A) and (B). And may be in the range of 0 to 50 parts by mass.
- anti-aging agents examples include UV absorbers such as benzophenone compounds, benzotriazole compounds and oxalic acid anilide compounds, light stabilizers such as hindered amine compounds, antioxidants such as hindered phenols, thermal stabilizers, or An anti-aging agent which is a mixture of these can be used.
- UV absorbers such as benzophenone compounds, benzotriazole compounds and oxalic acid anilide compounds
- light stabilizers such as hindered amine compounds
- antioxidants such as hindered phenols
- thermal stabilizers thermal stabilizers
- tin-based catalysts examples include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetonate, dioctyltin dilaurate and the like.
- trade names "Neostan U-28”, “Neostan U-100", “Neostan U-200”, “Neostan U-220H”, “Neostan U-303", “SCAT-” manufactured by Nitto Kasei Co., Ltd. 24 etc. is illustrated.
- titanium-based catalysts examples include tetraisopropyl titanate, tetra n-butyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetylacetonate, dibutoxy titanium diacetyl acetonate, diisopropoxy titanium diacetyl acetonate, Titanium octylene glycolate, titanium lactate and the like can be mentioned.
- tertiary amines examples include triethylamine, tributylamine, triethylenediamine, hexamethylenetetramine, 1,8-diazabicyclo [5,4,0] undecen-7 (DBU), diazabicyclononene (DBN), N- Methyl morpholine, N-ethyl morpholine and the like can be mentioned.
- the amount of the curing accelerator used is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts in total of the components (A) and (B).
- An optical polymerization initiator manufactured by Toagosei Co., Ltd. which is an acrylic oligomer, saturated fatty acid oil such as soy sauce or linseed oil
- a trade name "R15HT” manufactured by Idemitsu Sekiyu Co., Ltd., a trade name "PBB 3000” manufactured by Nippon Soda Co., Ltd., a trade name "Goselac 500B” manufactured by Nippon Gohsei Kagakusha, and the like are exemplified.
- adhesion imparting agent examples include aminosilanes such as trade names “KBM602”, “KBM603”, “KBE602”, “KBE603”, “KBM902” and “KBM903” manufactured by Shin-Etsu Silicone Co., Ltd.
- dehydrating agents such as methyl orthoformate, methyl orthoacetate, and vinylsilane, organic solvents and the like may be blended.
- the curable composition of the present invention can be adjusted as a one-component type in which all the compounding components are compounded and stored in advance, and are hardened by absorbing moisture in the air after application.
- components such as a curing catalyst, a filler, a plasticizer, water and the like may be separately blended as a curing agent, and it may be adjusted as a two-component type in which the compounding material and the polymerization composition are mixed before use. More preferable is a one-component type which is easy to handle and has few mistakes in mixing and mixing at the time of application.
- the curable composition of the present invention cures at normal temperature, and a cured product excellent in weatherability and mechanical properties is obtained. For this reason, it can be suitably used as a sealant composition in which high durability is required.
- the sealant composition of the present invention contains the above-mentioned curable composition, and, if necessary, other components are compounded according to a conventional method.
- the said curable composition can be suitably utilized for an adhesive agent.
- an adhesive agent In the field of adhesives for building materials, high weatherability and durability are required to ensure 10 years or more, and the adhesive composition of the present invention can satisfy the requirements. In particular, in the case of tile adhesion of the outer wall, maintenance of the appearance and adhesion is required for a long time and can be met.
- the adhesive composition of the present invention contains the above-mentioned curable composition, and, if necessary, other components are blended in accordance with a conventional method.
- the adhesive composition of the present invention may be one to which an epoxy resin is added.
- an epoxy resin for example, epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p -Hydroxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol epoxy resin, diaminodiphenylmethane epoxy resin, urethane modified epoxy resin, various alicyclic epoxy resins, N, N-diglycidyl aniline, N, N-diglycidyl Examples thereof include -o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, hydantoin type epoxy resin and the like.
- flame-retardant epoxy resins such as glycidyl ether of tetrabromobisphenol A, glycidyl ethers of polyhydric alcohols such as glycerin, epoxidates of unsaturated polymers such as petroleum resin, etc. are exemplified, but these are limited thereto.
- epoxy resins that are commonly used can be used.
- these epoxy resins those containing at least two epoxy groups in the molecule are particularly preferable in view of high reactivity during curing and that the cured product is likely to form a three-dimensional network.
- bisphenol A epoxy resins and novolac epoxy resins are more preferable.
- the epoxy resin is 1 to 100 parts by weight based on 100 parts by mass of the total polymer (total mass of low molecular weight (meth) acrylic polymer (A) and high molecular weight (meth) acrylic polymer (B)) of the present invention It is preferable to use it so that it may become a mass part. When the amount of the epoxy resin exceeds 100 parts by mass, the weather resistance may be lowered.
- curing agent of an epoxy resin when using an epoxy resin, it is preferable to use the hardening
- curing agents for epoxy resins ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, diaminodicyclohexylmethane, m-xylenediamine, m-phenylene Primary amines such as diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, etc., linear diamines represented by (CH 3 ) 2 N (CH 2 ) n N (CH 3 ) 2 (wherein n is an integer of 1 to 10), A linear tertiary amine represented by (CH 3 ) 2 -N (CH 2 ) n -CH 3 (wherein n
- the adhesive composition provided by the present invention has a reactive silyl group
- when the above epoxy resin is used in combination by adding a compound having a group capable of reacting to both the reactive silyl group and the epoxy group
- the strength of the cured adhesive composition can also be improved.
- the compound having a group capable of reacting to both a reactive silyl group and an epoxy group are, for example, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl)- Examples thereof include ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane.
- the adhesive composition provided by the present invention contains the above-mentioned curable composition. Therefore, while being able to exhibit the effect of the said curable composition in the use of an adhesive agent, adhesiveness with a top coat can be improved. Moreover, especially in the exterior tile adhesive, the effect of the said curable composition can be exhibited highly.
- ⁇ Weatherability test (2)> Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to prepare a cured sheet.
- the resulting cured product was placed in a metalling weather meter ("DAIPLA METAL WEATHER KU-R5NCI-A" manufactured by Daipra Wintess Co., Ltd.) and subjected to an accelerated weathering test.
- the conditions were irradiation 63 ° C., 70% RH, and illuminance 80 mW / cm 2, and a test of a shower for 2 minutes was carried out every 2 hours for 1000 hours.
- the color difference ( ⁇ E) is the lightness (L * ) measured by the spectrocolorimeter. Red - determined by substituting the values of the blue direction chromaticity (b *) in the formula - green direction chromaticity (a *) and yellow.
- ⁇ Tension test> Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to form a cured sheet.
- a dumbbell for tensile test (JIS K 6251 type 3) is prepared from the obtained cured product, and a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation) is used under a condition of a tensile speed of 200 mm / min. Elongation at break and breaking strength were measured.
- ⁇ Adhesive strength test> According to the adhesive strength test method in JIS A5557 (2006) organic adhesive for exterior tile application, the test was performed using a mortar board and an exterior mosaic tile. An adhesive is applied in a thickness of about 5 mm to a mortar board (TP Giken Co., Ltd., 10 ⁇ 50 ⁇ 50 mm), and after drawing with a comb, a commercially available exterior mosaic tile (45 ⁇ ) conforming to JIS A5209. 45 mm) was attached. After curing for 4 weeks under conditions of 23 ° C and 50% RH, a dedicated jig is attached to the tile side and the mortar side, and using a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation), the condition at 23 ° C. The adhesion strength was measured by conducting a tensile test at a tensile speed of 3 mm / min.
- MMA methyl methacrylate
- MEK methyl ethyl ketone
- DTBP di-t-butyl peroxide
- the reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
- the point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction.
- the solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
- Synthesis Examples 2 to 4 (Production of (Meth) acrylic Polymers A-2 to A-4) By the same operation as in Synthesis Example 1 except that the concentrate obtained after the polymerization step of Synthesis Example 1 is used, and the addition amount of the radical generator (Perhexyl O) and the treatment conditions in the post-treatment step are changed as shown in Table 1. And (meth) acrylic polymers A-2 to A-4 were obtained. The properties of each polymer are shown in Table 1.
- Synthesis Examples 5 to 10 (Production of (Meth) acrylic Polymers A-5 to A-10) By the same operation as in Synthesis Example 1 except that the raw materials used in the polymerization step and the temperature in the reactor, the addition amount of the radical generator (Perhexyl O) in the post-treatment step, and the treatment conditions were changed as shown in Table 1 A meta) acrylic polymer A-5 to A-10 was obtained.
- Synthesis Example 10 ((meth) acrylic polymer A-10), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Table 1.
- HA 20 parts of HA, 60.2 parts of n-butyl acrylate (hereinafter referred to as “BA”), 7 parts of MMA, 10 parts of isopropyl alcohol (hereinafter referred to as “IPA”), trimethyl orthoacetate (hereinafter referred to as 5 parts of “MOA”), 5 parts of MEK, and 0.1 part of di-t-hexyl peroxide (made by NOF, trade name “Perhexyl H", hereinafter "DTHP”) as a polymerization initiator
- the monomer mixture is continuously fed from the raw material tank to the reactor at a constant feed rate (48 g / min, residence time: 12 minutes), and a reaction solution corresponding to the feed amount of the monomer mixture is discharged.
- reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
- the point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction.
- the solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
- Synthesis Examples 13 to 22 and 24 (Production of (meth) acrylic polymers B-2 to B-11 and B-13) The same as in Synthesis Example 12 except that the raw materials used in the polymerization step and the temperature in the reactor, the type and amount of the radical generator in the post-treatment step, and the treatment conditions are as shown in Tables 2 and 3. By operation, (meth) acrylic polymers B-2 to B-11 and B-13 were obtained. In Synthesis Example 18 ((meth) acrylic polymer B-7), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Tables 2 and 3.
- Synthesis example 23 (Production of (meth) acrylic polymer B-12) ⁇ Synthesis of RAFT agent (1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene) 1-dodecanethiol (42.2 g), 20% aqueous KOH solution (63.8 g), trioctylmethyl in an eggplant-type flask Ammonium chloride (1.5 g) was added and the mixture was cooled in an ice bath, carbon disulfide (15.9 g) and tetrahydrofuran (hereinafter also referred to as "THF”) (38 ml) were added and stirred for 20 minutes.
- RAFT agent 1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene) 1-dodecanethiol (42.2 g), 20% aqueous KOH solution (63.8 g), trioctylmethyl in an eggplant-
- ES-S2420 Modified silicon (manufactured by Asahi Glass Co., Ltd., trade name "Exester S2420”)
- PPG Exenol 2020 (manufactured by Asahi Glass Co., Ltd.)
- CCR Light calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name "Shiroka Hana CCR")
- Super SS Heavy calcium carbonate (Maruo Calcium Co., Ltd., trade name "Super SS”)
- R820 Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.)
- Tinuvin B75 anti-aging agent (manufactured by BASF Japan Ltd.)
- U220H Dibutyltin diacetylacetonate (manufactured by Nitto Kasei Co., Ltd.) Narsem titanium: Dibutoxy titanium diacetylacetonate (manufactured
- Examples 1 to 28 are the evaluations of the curable composition of the present invention, and show good results in both weather resistance and mechanical properties.
- the ratio of the low molecular weight (meth) acrylic polymer to the high molecular weight (meth) acrylic polymer is in the range of 10/90 to 90/10, the result that the weather resistance of the resulting cured product is excellent is obtained. (Examples 16, 23 to 26).
- the workability (applicability of application) when each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm was good.
- the curable composition provided by the present invention is excellent in weather resistance, mechanical properties and workability, and can be suitably used as a sealing material composition.
- the high molecular weight (meth) acrylic polymer (component B) did not have a reactive silyl group, and the weather resistance of the cured product was not sufficient.
- the double bond concentration of the low molecular weight (meth) acrylic polymer (component A) was out of the range specified in the present invention, and both showed poor weatherability of the cured product.
- the weatherability of the cured product was also insufficient in Comparative Example 4 in which the high molecular weight (meth) acrylic polymer as the component (B) was not included.
- the curable composition of the present invention is cured at normal temperature by moisture and the like in the atmosphere, and a cured product having excellent weather resistance and mechanical properties is obtained. Moreover, since it has a suitable viscosity, it is excellent also in workability. Therefore, it is suitable as a curable composition for adhesives, such as a sealing material and an adhesive agent for exterior tiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Sealing Material Composition (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
[Problem] To provide a curable composition, a sealing material composition, and an adhesive composition having excellent workability and providing a cured product with excellent mechanical properties and weather resistance. [Solution] Disclosed is a curable composition comprising: a (meth)acrylic polymer (A) having a weight-average molecular weight of 500 or greater to less than 10,000; and a (meth)acrylic polymer (B) having a weight-average molecular weight of from 10,000 to 100,000. The (meth)acrylic polymer (A) includes, in the molecule thereof, from 0.01 meq/g to 1.0 meq/g double bonds. The (meth)acrylic polymer (B) includes a reactive silyl group in the molecule thereof.
Description
本発明は、硬化性組成物に関するものであり、より詳しくは、大気中などの水分により室温硬化して、優れた機械物性を発現する硬化物を形成し得る硬化性組成物、及び該硬化性組成物のシーリング材組成物や該硬化性組成物を含有する接着剤組成物に関するものである。
The present invention relates to a curable composition, and more specifically, a curable composition capable of curing at room temperature with moisture such as in the air to form a cured product exhibiting excellent mechanical properties, and the curing The present invention relates to a sealant composition of the composition and an adhesive composition containing the curable composition.
室温硬化型の反応性基を有する重合体を含む硬化性組成物としては、変性シリコーン系、ウレタン系、ポリサルファイド系及びアクリル系等の各種重合体を含む組成物が挙げられ、建築用途、電気・電子分野関連用途、自動車関連用途等における接着剤、シーリング材、塗料等として幅広く用いられている。例えば、変性シリコーン系重合体は、加水分解性シリル基を有するオキシアルキレン系重合体をベースとする硬化性組成物であるが、作業性が良好で、破断伸びや破断強度などの機械的物性のバランスが良い材料であることから、接着剤やシーリング材のベースポリマーとして広く利用されている。
しかし、変性シリコーン系の重合体をベースポリマーとする硬化性組成物は、得られる硬化物の耐候性が不十分であるという課題を有することが知られている。このため、アクリル系重合体を含む硬化性組成物が提案されている。 Examples of the curable composition containing a polymer having a room temperature curing type reactive group include compositions containing various polymers such as modified silicones, urethanes, polysulfides and acrylics, and are used for construction applications, electricity, and so on. It is widely used as an adhesive, sealing material, paint, etc. in electronics related applications, automotive related applications etc. For example, although a modified silicone polymer is a curable composition based on an oxyalkylene polymer having a hydrolyzable silyl group, it has good workability and mechanical properties such as elongation at break and strength at break. It is widely used as a base polymer for adhesives and sealants because it is a well-balanced material.
However, it is known that a curable composition containing a modified silicone polymer as a base polymer has a problem that the resulting cured product has insufficient weather resistance. For this reason, curable compositions comprising an acrylic polymer have been proposed.
しかし、変性シリコーン系の重合体をベースポリマーとする硬化性組成物は、得られる硬化物の耐候性が不十分であるという課題を有することが知られている。このため、アクリル系重合体を含む硬化性組成物が提案されている。 Examples of the curable composition containing a polymer having a room temperature curing type reactive group include compositions containing various polymers such as modified silicones, urethanes, polysulfides and acrylics, and are used for construction applications, electricity, and so on. It is widely used as an adhesive, sealing material, paint, etc. in electronics related applications, automotive related applications etc. For example, although a modified silicone polymer is a curable composition based on an oxyalkylene polymer having a hydrolyzable silyl group, it has good workability and mechanical properties such as elongation at break and strength at break. It is widely used as a base polymer for adhesives and sealants because it is a well-balanced material.
However, it is known that a curable composition containing a modified silicone polymer as a base polymer has a problem that the resulting cured product has insufficient weather resistance. For this reason, curable compositions comprising an acrylic polymer have been proposed.
特許文献1には、アルコキシシリル基を有する特定のビニル重合体、末端にアルコキシシリル基を有するポリオキシアルキレン化合物、および特定分子量を有するポリプロピレングリコールまたはアルコキシシリル基を有さない特定のビニル重合体を含有するシーリング材組成物が開示されている。特許文献2には、加水分解性シリル基を有するオキシアルキレン重合体および架橋性官能基を有する特定のビニル重合体を含むシーリング材組成物が開示されている。特許文献3には、加水分解性シリル基を有する(メタ)アクリル酸エステル単量体を構成単量体に含む特定のビニル重合体、及び加水分解性シリル基含有オキシアルキレン系重合体を含んでなる硬化性樹脂組成物がシーリング材及び外装タイル用接着剤に好適に利用できることが開示されている。
Patent Document 1 discloses a specific vinyl polymer having an alkoxysilyl group, a polyoxyalkylene compound having an alkoxysilyl group at an end, and a specific vinyl polymer having no polypropylene glycol having a specific molecular weight or an alkoxysilyl group. Disclosed is a sealant composition containing the same. Patent Document 2 discloses a sealing material composition including an oxyalkylene polymer having a hydrolyzable silyl group and a specific vinyl polymer having a crosslinkable functional group. Patent Document 3 includes a specific vinyl polymer containing a (meth) acrylic acid ester monomer having a hydrolyzable silyl group as a constituent monomer, and a hydrolyzable silyl group-containing oxyalkylene polymer. It is disclosed that such a curable resin composition can be suitably used as a sealing material and an adhesive for exterior tiles.
特許文献1~3に記載された組成物から得られる硬化物は良好な機械物性を示し、耐候性も改善されている。しかし、耐候性向上に関する要求は高く、硬化性組成物に対しても更なる耐候性の改善が求められていた。また、一般に重合体を高分子量化することにより耐候性は改善される傾向にあるが、組成物が高粘度となるため塗工性及びハンドリングの点で問題が生じることが知られている。
The cured products obtained from the compositions described in Patent Documents 1 to 3 exhibit good mechanical properties and also have improved weatherability. However, the demand for improving the weatherability is high, and a further improvement of the weatherability has been required for the curable composition. In general, the weatherability tends to be improved by increasing the molecular weight of the polymer, but it is known that problems occur in terms of coatability and handling because the composition has a high viscosity.
本発明は上記事情に鑑みてなされたものであり、低粘度であるため作業性に優れ、かつ、硬化物の機械物性及び耐候性にも優れる硬化性組成物、シーリング材組成物及び接着剤組成物を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and has a low viscosity, is excellent in workability, and is also excellent in mechanical properties and weather resistance of a cured product, a curable composition, a sealing material composition and an adhesive composition It aims at providing a thing.
上記課題を解決するために鋭意検討した結果、本発明者は、反応性シリル基を有する(メタ)アクリル系重合体をベース樹脂とし、低分子量(メタ)アクリル系重合体を含む硬化性組成物であって、当該低分子(メタ)アクリル系重合体中が特定量の二重結合を有することにより、硬化物並びに該硬化物を含有する接着剤の耐候性が向上することを見出した。本発明は、当該知見に基づいて完成したものである。本明細書によれば以下の手段を提供する。
As a result of earnestly examining in order to solve the said subject, this inventor makes the (meth) acrylic-type polymer which has a reactive silyl group a base resin, and is a curable composition containing a low molecular-weight (meth) acrylic-type polymer. It has been found that when the low molecular weight (meth) acrylic polymer has a specific amount of double bonds, the weather resistance of a cured product and an adhesive containing the cured product is improved. The present invention has been completed based on the findings. According to the present specification, the following means are provided.
〔1〕重量平均分子量が500以上、10,000未満である(メタ)アクリル系重合体(A)、及び重量平均分子量が10,000以上、100,000以下である(メタ)アクリル系重合体(B)を含む硬化性組成物であって、
前記(メタ)アクリル系重合体(A)は、分子中に二重結合を0.01meq/g以上、1.0meq/g以下有し、
前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を有する、硬化性組成物。
〔2〕前記(メタ)アクリル系重合体(A)は、25℃における粘度が1,000mPa・s以上、100,000mPa・s以下である前記〔1〕に記載の硬化性組成物。
〔3〕前記(メタ)アクリル系重合体(B)は、25℃における粘度が5,000mPa・s以上、300,000mPa・s以下である〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕前記(メタ)アクリル系重合体(A)は、分子中に反応性シリル基を有する前記〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を0.1個以上、2.2個以下有する前記〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕前記(メタ)アクリル酸系重合体(B)は、反応性シリル基としてジアルコキシシリル基を有する前記〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕前記(メタ)アクリル系重合体(B)は、当該(メタ)アクリル系重合体を構成する全単量体単位中、炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを5質量%以上含む前記〔1〕~〔6〕のいずれかに記載の硬化性組成物。
〔8〕前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)全体に含まれる二重結合濃度は、0.01meq/g以上、0.50meq/g以下である前記〔1〕~〔7〕のいずれかに記載の硬化性組成物。
〔9〕前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)の使用量は、質量比で10~90/90~10である前記〔1〕~〔8〕のいずれかに記載の硬化性組成物。
〔10〕さらに、オキシアルキレン系重合体を含む前記〔1〕~〔9〕のいずれかに記載の硬化性組成物。
〔11〕硬化促進剤として、錫系触媒、チタン系触媒及び3級アミン類からなる群より選ばれる1種以上の化合物を含む前記〔1〕~〔10〕のいずれかに記載の硬化性組成物。
〔12〕前記〔1〕~〔11〕のいずれかに記載の硬化性組成物を含有することを特徴とするシーリング材組成物。
〔13〕前記〔1〕~〔11〕のいずれかに記載の硬化性組成物を含有することを特徴とする接着剤組成物。 [1] A (meth) acrylic polymer (A) having a weight average molecular weight of 500 or more and less than 10,000, and a (meth) acrylic polymer having a weight average molecular weight of 10,000 or more and 100,000 or less A curable composition comprising (B), wherein
The (meth) acrylic polymer (A) has a double bond in the molecule of 0.01 meq / g or more and 1.0 meq / g or less,
The curable composition in which the said (meth) acrylic-type polymer (B) has a reactive silyl group in a molecule | numerator.
[2] The curable composition according to the above [1], wherein the (meth) acrylic polymer (A) has a viscosity of 1,000 mPa · s or more and 100,000 mPa · s or less at 25 ° C.
[3] The curable composition as described in [1] or [2], wherein the (meth) acrylic polymer (B) has a viscosity at 25 ° C. of 5,000 mPa · s or more and 300,000 mPa · s or less .
[4] The curable composition according to any one of the above [1] to [3], wherein the (meth) acrylic polymer (A) has a reactive silyl group in its molecule.
[5] The (meth) acrylic polymer (B) according to any one of the above [1] to [4], having 0.1 or more and 2.2 or less reactive silyl groups in the molecule. Curable composition.
[6] The curable composition according to any one of the above [1] to [5], wherein the (meth) acrylic acid polymer (B) has a dialkoxysilyl group as a reactive silyl group.
[7] The (meth) acrylic polymer (B) is a (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms in all monomer units constituting the (meth) acrylic polymer The curable composition according to any one of the above [1] to [6], which contains 5% by mass or more.
[8] The double bond concentration contained in the whole of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) is 0.01 meq / g or more and 0.50 meq / g or less The curable composition according to any one of the above-mentioned [1] to [7].
[9] The amount of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) used is 10 to 90/90 to 10 in mass ratio [1] to [8] ] The curable composition as described in any one of-.
[10] The curable composition according to any one of the above [1] to [9], further comprising an oxyalkylene polymer.
[11] The curable composition according to any one of the above [1] to [10], which contains one or more compounds selected from the group consisting of tin-based catalysts, titanium-based catalysts and tertiary amines as a curing accelerator. object.
[12] A sealing material composition comprising the curable composition according to any one of the above [1] to [11].
[13] An adhesive composition comprising the curable composition according to any one of the above [1] to [11].
前記(メタ)アクリル系重合体(A)は、分子中に二重結合を0.01meq/g以上、1.0meq/g以下有し、
前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を有する、硬化性組成物。
〔2〕前記(メタ)アクリル系重合体(A)は、25℃における粘度が1,000mPa・s以上、100,000mPa・s以下である前記〔1〕に記載の硬化性組成物。
〔3〕前記(メタ)アクリル系重合体(B)は、25℃における粘度が5,000mPa・s以上、300,000mPa・s以下である〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕前記(メタ)アクリル系重合体(A)は、分子中に反応性シリル基を有する前記〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を0.1個以上、2.2個以下有する前記〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕前記(メタ)アクリル酸系重合体(B)は、反応性シリル基としてジアルコキシシリル基を有する前記〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕前記(メタ)アクリル系重合体(B)は、当該(メタ)アクリル系重合体を構成する全単量体単位中、炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを5質量%以上含む前記〔1〕~〔6〕のいずれかに記載の硬化性組成物。
〔8〕前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)全体に含まれる二重結合濃度は、0.01meq/g以上、0.50meq/g以下である前記〔1〕~〔7〕のいずれかに記載の硬化性組成物。
〔9〕前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)の使用量は、質量比で10~90/90~10である前記〔1〕~〔8〕のいずれかに記載の硬化性組成物。
〔10〕さらに、オキシアルキレン系重合体を含む前記〔1〕~〔9〕のいずれかに記載の硬化性組成物。
〔11〕硬化促進剤として、錫系触媒、チタン系触媒及び3級アミン類からなる群より選ばれる1種以上の化合物を含む前記〔1〕~〔10〕のいずれかに記載の硬化性組成物。
〔12〕前記〔1〕~〔11〕のいずれかに記載の硬化性組成物を含有することを特徴とするシーリング材組成物。
〔13〕前記〔1〕~〔11〕のいずれかに記載の硬化性組成物を含有することを特徴とする接着剤組成物。 [1] A (meth) acrylic polymer (A) having a weight average molecular weight of 500 or more and less than 10,000, and a (meth) acrylic polymer having a weight average molecular weight of 10,000 or more and 100,000 or less A curable composition comprising (B), wherein
The (meth) acrylic polymer (A) has a double bond in the molecule of 0.01 meq / g or more and 1.0 meq / g or less,
The curable composition in which the said (meth) acrylic-type polymer (B) has a reactive silyl group in a molecule | numerator.
[2] The curable composition according to the above [1], wherein the (meth) acrylic polymer (A) has a viscosity of 1,000 mPa · s or more and 100,000 mPa · s or less at 25 ° C.
[3] The curable composition as described in [1] or [2], wherein the (meth) acrylic polymer (B) has a viscosity at 25 ° C. of 5,000 mPa · s or more and 300,000 mPa · s or less .
[4] The curable composition according to any one of the above [1] to [3], wherein the (meth) acrylic polymer (A) has a reactive silyl group in its molecule.
[5] The (meth) acrylic polymer (B) according to any one of the above [1] to [4], having 0.1 or more and 2.2 or less reactive silyl groups in the molecule. Curable composition.
[6] The curable composition according to any one of the above [1] to [5], wherein the (meth) acrylic acid polymer (B) has a dialkoxysilyl group as a reactive silyl group.
[7] The (meth) acrylic polymer (B) is a (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms in all monomer units constituting the (meth) acrylic polymer The curable composition according to any one of the above [1] to [6], which contains 5% by mass or more.
[8] The double bond concentration contained in the whole of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) is 0.01 meq / g or more and 0.50 meq / g or less The curable composition according to any one of the above-mentioned [1] to [7].
[9] The amount of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) used is 10 to 90/90 to 10 in mass ratio [1] to [8] ] The curable composition as described in any one of-.
[10] The curable composition according to any one of the above [1] to [9], further comprising an oxyalkylene polymer.
[11] The curable composition according to any one of the above [1] to [10], which contains one or more compounds selected from the group consisting of tin-based catalysts, titanium-based catalysts and tertiary amines as a curing accelerator. object.
[12] A sealing material composition comprising the curable composition according to any one of the above [1] to [11].
[13] An adhesive composition comprising the curable composition according to any one of the above [1] to [11].
本発明の硬化性組成物は低粘度で作業性に優れる。また、当該組成物からは強度および伸び、並びに耐候性にも優れる硬化物が得られる。このため、優れた機械物性および高耐候性が求められるシーリング材、外装タイル用接着剤などの接着剤に好適に用いられる。
The curable composition of the present invention is low in viscosity and excellent in workability. In addition, a cured product having excellent strength, elongation, and weather resistance can be obtained from the composition. For this reason, it is used suitably for adhesives, such as a sealing material in which excellent mechanical physical property and high weather resistance are calculated | required, and an adhesive agent for exterior tiles.
以下、本発明を詳しく説明する。尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
Hereinafter, the present invention will be described in detail. In the present specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Moreover, "(meth) acryloyl group" means an acryloyl group and / or a methacryloyl group.
本発明の硬化性組成物は、(A)成分である重量平均分子量が500以上、10,000未満の(メタ)アクリル系重合体(以下、「低分子量(メタ)アクリル系重合体」という)、及び(B)成分である重量平均分子量が10,000以上、100,000以下の(メタ)アクリル系重合体(以下、「高分子量(メタ)アクリル系重合体」という必須成分とするものである。また、必要に応じて、(C)成分として反応性シリル基を有するオキシアルキレン系重合体を含んでもよい。以下に、各成分の詳細を含め、本発明の硬化性組成物について説明する。
The curable composition of the present invention is a (meth) acrylic polymer having a weight average molecular weight of 500 or more and less than 10,000 which is the component (A) (hereinafter referred to as "low molecular weight (meth) acrylic polymer") And a (meth) acrylic polymer having a weight average molecular weight of 10,000 or more and 100,000 or less which is the component (B) (hereinafter, referred to as an essential component of "high molecular weight (meth) acrylic polymer" In addition, if necessary, an oxyalkylene polymer having a reactive silyl group may be included as the component (C) The curable composition of the present invention will be described below including the details of each component .
<(A)成分:低分子量(メタ)アクリル系重合体>
低分子量(メタ)アクリル系重合体は、(メタ)アクリル系単量体に由来する構造単位を有する重合体であり、例えば、(メタ)アクリル系単量体を含む単量体混合物を重合することにより得ることができる。(メタ)アクリル系単量体は、分子中に(メタ)アクリロイル基を有する単量体であり、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステル等が挙げられる。(メタ)アクリル系単量体の使用量は、(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10~100質量%の範囲であり、より好ましくは30~100質量%の範囲であり、さらに好ましくは50~100質量%の範囲である。 <(A) Component: Low Molecular Weight (Meth) Acrylic Polymer>
The low molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, and for example, polymerizes a monomer mixture containing the (meth) acrylic monomer It can be obtained by The (meth) acrylic monomer is a monomer having a (meth) acryloyl group in the molecule, and (meth) acrylic acid, (meth) acrylic acid alkyl ester, (meth) acrylic acid alkoxyalkyl ester, etc. It can be mentioned. The amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
低分子量(メタ)アクリル系重合体は、(メタ)アクリル系単量体に由来する構造単位を有する重合体であり、例えば、(メタ)アクリル系単量体を含む単量体混合物を重合することにより得ることができる。(メタ)アクリル系単量体は、分子中に(メタ)アクリロイル基を有する単量体であり、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステル等が挙げられる。(メタ)アクリル系単量体の使用量は、(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10~100質量%の範囲であり、より好ましくは30~100質量%の範囲であり、さらに好ましくは50~100質量%の範囲である。 <(A) Component: Low Molecular Weight (Meth) Acrylic Polymer>
The low molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, and for example, polymerizes a monomer mixture containing the (meth) acrylic monomer It can be obtained by The (meth) acrylic monomer is a monomer having a (meth) acryloyl group in the molecule, and (meth) acrylic acid, (meth) acrylic acid alkyl ester, (meth) acrylic acid alkoxyalkyl ester, etc. It can be mentioned. The amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
(メタ)アクリル酸アルキルエステルとしては、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル、(メタ)アクリル酸ヘンイコシル、(メタ)アクリル酸ベヘニル、(メタ)アクリル酸テトラコシル、(メタ)アクリル酸ヘキサコシル、(メタ)アクリル酸オクタコシル、(メタ)アクリル酸トリアコンチル、(メタ)アクリル酸ドトリアコンチル、(メタ)アクリル酸テトラトリアコンチル、(メタ)アクリル酸ヘキサトリアコンチル、(メタ)アクリル酸オクタトリアコンチル、(メタ)アクリル酸テトラコンチル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸イソウンデシル、(メタ)アクリル酸イソラウリル、(メタ)アクリル酸イソトリデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸イソペンタデシル、(メタ)アクリル酸イソヘキサデシル、(メタ)アクリル酸イソヘプタデシル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸イソノナデシル、(メタ)アクリル酸イソエイコシル、(メタ)アクリル酸イソヘンイコシル、(メタ)アクリル酸イソベヘニル、(メタ)アクリル酸イソテトラコシル、(メタ)アクリル酸イソヘキサコシル、(メタ)アクリル酸イソオクタコシル、(メタ)アクリル酸イソトリアコンチル、(メタ)アクリル酸イソドトリアコンチル、(メタ)アクリル酸イソテトラトリアコンチル、(メタ)アクリル酸イソヘキサトリアコンチル、(メタ)アクリル酸イソオクタトリアコンチル、(メタ)アクリル酸イソテトラコンチル等の直鎖状若しくは分岐状脂肪族アルキル基又は脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル等が例示され、これらの内の1種又は2種以上を用いることができる。これらの中でも、硬化物の機械物性の観点から炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルの使用量は、低分子量(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%以上である。なお、上限値は100質量%であり、90質量%であってもよく、80質量%であってもよく50質量%であってもよい。
Specific examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n (meth) acrylate -Butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl (meth) acrylate Cyclohexyl, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, (meth) acrylic acid Decyl, undecyl (meth) acrylate, lauryl (meth) acrylate, (meth) acrylate Tridecyl acid, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, stearyl (meth) acrylate, nonadecyl (meth) acrylate, (meth) acrylate Eicosyl, helicosyl (meth) acrylate, behenyl (meth) acrylate, tetracosyl (meth) acrylate, hexacosyl (meth) acrylate, octacosyl (meth) acrylate, tricontyl (meth) acrylate, dotriacontyl (meth) acrylate , (Meth) acrylate tetratriacontyl, (meth) acrylate hexatriacontyl, (meth) acrylate octatriacontyl, (meth) acrylate tetracontyl, (meth) acrylate isodecyl, (meth) acrylate Iso Ndecyl, Isolauryl (meth) acrylate, Isotridecyl (meth) acrylate, Isotetradecyl (meth) acrylate, Isopentadecyl (meth) acrylate, Isohexadecyl (meth) acrylate, Isoheptadecyl (meth) acrylate (Meth) acrylic acid isostearyl, (meth) acrylic acid isononadecyl, (meth) acrylic acid isoeicosyl, (meth) acrylic acid isohenicosyl, (meth) acrylic acid isobehenyl, (meth) acrylic acid isotetrakosyl, (meth) acrylic acid isohexacosyl, (Meth) acrylate isooctacosyl, (meth) acrylate isotriacontyl, (meth) acrylate isodotriacontyl, (meth) acrylate isotetratriacontyl, (meth) acrylate isohexatriacontyl (, Examples thereof include (meth) acrylic acid alkyl esters having a linear or branched aliphatic alkyl group or alicyclic alkyl group such as isooctatriacontol acrylate, and isotetracontyl (meth) acrylate. One or more of these can be used. Among these, (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms are preferable from the viewpoint of mechanical properties of a cured product. The amount of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferably 10% by mass or more based on the total constituent monomers of the low molecular weight (meth) acrylic polymer. Preferably it is 30 mass% or more, More preferably, it is 50 mass% or more. In addition, an upper limit is 100 mass%, may be 90 mass%, may be 80 mass%, and may be 50 mass%.
また、上記の内、炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを使用すると、硬化性組成物がオキシアルキレン系重合体を含む場合に当該オキシアルキレン系重合体との良好な相溶性が確保され、機械物性及び耐候性が良好となる点で好ましい。アルキル基の炭素数は好ましくは10~20であり、より好ましくは12~20である。炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルの使用量は、低分子量(メタ)アクリル系重合体の全構成単量体に対し、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。なお、上限は100質量%以下であり、90質量%以下であってもよく、80質量%以下であってもよく50質量%以下であってもよい。
Further, among the above, when the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is used, when the curable composition contains an oxyalkylene polymer, it is preferable with the oxyalkylene polymer. It is preferable in that compatibility is ensured and mechanical physical properties and weather resistance become good. The carbon number of the alkyl group is preferably 10 to 20, more preferably 12 to 20. The amount of the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is preferably 5% by mass or more, and more preferably, to the total constituent monomers of the low molecular weight (meth) acrylic polymer Is 10% by mass or more, more preferably 20% by mass or more. In addition, an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
(メタ)アクリル酸アルコキシアルキルエステルとしては、具体的には(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸メトキシヘキシル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸エトキシブチル、(メタ)アクリル酸エトキシヘキシル、(メタ)アクリル酸ブトキシメチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸ブトキシブチル及び(メタ)アクリル酸ブトキシヘキシル等が挙げられ、これらの内の1種又は2種以上を用いることができる。これらの中でも、硬化物の機械的物性の観点から炭素数2~8のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステルが好ましく、炭素数2~4のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステルがより好ましい。(メタ)アクリル酸アルコキシアルキルエステルの使用量は、低分子量(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%以上である。なお、上限は100質量%以下であり、90質量%以下であってもよく、80質量%以下であってもよく50質量%以下であってもよい。
Specific examples of (meth) acrylic acid alkoxyalkyl esters include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxybutyl (meth) acrylate, methoxyhexyl (meth) acrylate, (meth) Ethoxymethyl acrylate, ethoxyethyl (meth) acrylate, ethoxybutyl (meth) acrylate, ethoxyhexyl (meth) acrylate, butoxymethyl (meth) acrylate, butoxyethyl (meth) acrylate, (meth) acrylate Examples thereof include butoxybutyl and butoxyhexyl (meth) acrylate, and one or more of these can be used. Among these, (meth) acrylic acid alkoxyalkyl ester having an alkoxyalkyl group having 2 to 8 carbon atoms is preferable from the viewpoint of mechanical properties of a cured product, and (meth) acrylic acid having an alkoxyalkyl group having 2 to 4 carbon atoms Acid alkoxy alkyl esters are more preferred. The amount of the (meth) acrylic acid alkoxyalkyl ester used is preferably 10% by mass or more, more preferably 30% by mass or more, based on the total constituent monomers of the low molecular weight (meth) acrylic polymer. More preferably, it is 50 mass% or more. In addition, an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
低分子量(メタ)アクリル系重合体は、分子中に反応性シリル基を有していてもよい。低分子量(メタ)アクリル系重合体が反応性シリル基を有する場合、硬化物の機械物性が良好なものとなる傾向がある。反応性シリル基の種類は特に限定されず、アルコキシシリル基、ハロゲノシリル基、シラノール基等が挙げられるが、反応性を制御し易い点からアルコキシシリル基が好ましい。アルコキシシリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、ジメトキシエトキシシリル基及びメトキシジエトキシシリル基等のトリアルコキシシリル基;メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基及びエチルジエトキシシリル基等のジアルコキシシリル基;ジメチルメトキシシリル基、ジメチルエトキシシリル基、ジエチルメトキシシリル基及びジエチルエトキシシリル基等のモノアルコキシシリル基が挙げられる。これらの内でも、硬化物が良好な伸びを示し、耐熱安定性にも優れる点で、ジアルコキシシリル基が好ましい。
The low molecular weight (meth) acrylic polymer may have a reactive silyl group in the molecule. When the low molecular weight (meth) acrylic polymer has a reactive silyl group, the mechanical properties of the cured product tend to be good. The type of reactive silyl group is not particularly limited, and examples thereof include an alkoxysilyl group, a halogenosilyl group, and a silanol group. However, an alkoxysilyl group is preferable from the viewpoint of easily controlling the reactivity. Specific examples of the alkoxysilyl group include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, dimethoxyethoxysilyl group and methoxydiethoxysilyl group; methyldimethoxysilyl group, methyldiethoxysilyl group, ethyldimethoxysilyl group And dialkoxysilyl groups such as ethyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl group, dimethylethoxysilyl group, diethylmethoxysilyl group and diethylethoxysilyl group. Among these, a dialkoxysilyl group is preferable in that the cured product exhibits good elongation and is excellent in heat resistance stability.
低分子量(メタ)アクリル系重合体が反応性シリル基を有する場合、重合体1分子に含まれる反応性シリル基の数の平均値は、硬化物の引張強度の観点から、好ましくは0.1個以上であり、より好ましくは0.2個以上である。反応性シリル基の数の平均値は、0.3個以上であってもよく、0.5個以上であってもよく、1.0個以上であってもよい。硬化物の伸びを確保する観点から、上限値は、好ましくは5.0個以下であり、より好ましくは4.0個以下であり、さらに好ましくは3.0個以下であり、一層好ましくは2.5個以下であり、より一層好ましくは2.2個以下である。反応性シリル基の数の平均値の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.1個以上5.0個以下であり、0.1個以上3.0個以下であってもよく、0.1個以上2.2個以下であってもよく、0.2個以上2.2個以下であってもよい。
上記(メタ)アクリル系重合体に含まれる反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。 When the low molecular weight (meth) acrylic polymer has a reactive silyl group, the average value of the number of reactive silyl groups contained in one polymer molecule is preferably 0.1 in view of the tensile strength of the cured product. Or more, more preferably 0.2 or more. The average value of the number of reactive silyl groups may be 0.3 or more, 0.5 or more, or 1.0 or more. From the viewpoint of securing the elongation of the cured product, the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less. Although the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
The position of the reactive silyl group contained in the (meth) acrylic polymer is not particularly limited, and can be the side chain and / or the end of the polymer.
上記(メタ)アクリル系重合体に含まれる反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。 When the low molecular weight (meth) acrylic polymer has a reactive silyl group, the average value of the number of reactive silyl groups contained in one polymer molecule is preferably 0.1 in view of the tensile strength of the cured product. Or more, more preferably 0.2 or more. The average value of the number of reactive silyl groups may be 0.3 or more, 0.5 or more, or 1.0 or more. From the viewpoint of securing the elongation of the cured product, the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less. Although the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
The position of the reactive silyl group contained in the (meth) acrylic polymer is not particularly limited, and can be the side chain and / or the end of the polymer.
反応性シリル基は、例えば、(メタ)アクリル系単量体及び反応性シリル基を有するビニル系単量体を含む単量体混合物を重合することにより得ることができる。
反応性シリル基を有するビニル系単量体としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸トリエトキシシリルプロピル、(メタ)アクリル酸ジメチルメトキシシリルプロピル及び(メタ)アクリル酸メチルジメトキシシリルプロピル等のシリル基含有(メタ)アクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等が例示され、これらの内の1種又は2種以上を用いることができる。 The reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
As vinyl monomers having a reactive silyl group, vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, etc .; trimethoxysilylpropyl (meth) acrylate ( Silyl group-containing (meth) acrylic esters such as triethoxysilylpropyl acrylate, dimethylmethoxysilylpropyl (meth) acrylate and methyldimethoxysilylpropyl methacrylate (meth) acrylate; silyl groups such as trimethoxysilylpropyl vinyl ether Containing vinyl ethers; silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate and the like are exemplified, and one or more of them may be used.
反応性シリル基を有するビニル系単量体としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸トリエトキシシリルプロピル、(メタ)アクリル酸ジメチルメトキシシリルプロピル及び(メタ)アクリル酸メチルジメトキシシリルプロピル等のシリル基含有(メタ)アクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等が例示され、これらの内の1種又は2種以上を用いることができる。 The reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
As vinyl monomers having a reactive silyl group, vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, etc .; trimethoxysilylpropyl (meth) acrylate ( Silyl group-containing (meth) acrylic esters such as triethoxysilylpropyl acrylate, dimethylmethoxysilylpropyl (meth) acrylate and methyldimethoxysilylpropyl methacrylate (meth) acrylate; silyl groups such as trimethoxysilylpropyl vinyl ether Containing vinyl ethers; silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate and the like are exemplified, and one or more of them may be used.
低分子量(メタ)アクリル系重合体は、上記の単量体以外にこれらと共重合可能な他の単量体を共重合してもよい。
上記の他の単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸のエチレンオキサイド付加物等の官能基含有単量体;
(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸芳香族エステル類;
(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等のフッ素含有(メタ)アクリル酸エステル類;
パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有オレフィン類;
スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族単量体;
無水マレイン酸;マレイン酸及びフマル酸等の不飽和ジカルボン酸、並びに、これらのモノアルキルエステル及びジアルキルエステル;
マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド化合物;
アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;
アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;
酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;
エチレン、プロピレン等のアルケン類;
ブタジエン、イソプレン等の共役ジエン類;
塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられるが、これらに限らない。また、これらのうちの1種又は2種以上を用いることができる。 The low molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
Examples of the other monomers include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycidyl (meth) acrylate, (meth) Functional group-containing monomers such as 2-aminoethyl acrylate, ethylene oxide adduct of (meth) acrylic acid;
(Meth) acrylic acid aromatic esters such as phenyl (meth) acrylate, toluyl (meth) acrylate, and benzyl (meth) acrylate;
(Meth) acrylic acid trifluoromethylmethyl, (meth) acrylic acid 2-trifluoromethylethyl, (meth) acrylic acid 2-perfluoroethyl ethyl, (meth) acrylic acid 2-perfluoroethyl 2-perfluorobutyl Ethyl, 2-Perfluoroethyl (meth) acrylate, Perfluoromethyl (meth) acrylate, Diperfluoromethylmethyl (meth) acrylate, 2-Perfluoromethyl-2-perfluoroethyl methyl (meth) acrylate And fluorine-containing (meth) acrylic esters such as 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate and 2-perfluorohexadecylethyl (meth) acrylate;
Fluorine-containing olefins such as perfluoroethylene, perfluoropropylene and vinylidene fluoride;
Aromatic monomers such as styrene, vinyl toluene, α-methylstyrene, chlorostyrene, styrene sulfonic acid and salts thereof;
Maleic anhydride; unsaturated dicarboxylic acids such as maleic acid and fumaric acid, and monoalkyl esters and dialkyl esters thereof;
Maleimide compounds such as maleimide, methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, phenyl maleimide, cyclohexyl maleimide and the like;
Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile;
Amide group-containing vinyl monomers such as acrylamide and methacrylamide;
Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate;
Alkenes such as ethylene and propylene;
Conjugated dienes such as butadiene and isoprene;
Examples include, but are not limited to, vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. Moreover, 1 type or 2 types or more of these can be used.
上記の他の単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸のエチレンオキサイド付加物等の官能基含有単量体;
(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸芳香族エステル類;
(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等のフッ素含有(メタ)アクリル酸エステル類;
パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有オレフィン類;
スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等の芳香族単量体;
無水マレイン酸;マレイン酸及びフマル酸等の不飽和ジカルボン酸、並びに、これらのモノアルキルエステル及びジアルキルエステル;
マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド化合物;
アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;
アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;
酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;
エチレン、プロピレン等のアルケン類;
ブタジエン、イソプレン等の共役ジエン類;
塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられるが、これらに限らない。また、これらのうちの1種又は2種以上を用いることができる。 The low molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
Examples of the other monomers include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycidyl (meth) acrylate, (meth) Functional group-containing monomers such as 2-aminoethyl acrylate, ethylene oxide adduct of (meth) acrylic acid;
(Meth) acrylic acid aromatic esters such as phenyl (meth) acrylate, toluyl (meth) acrylate, and benzyl (meth) acrylate;
(Meth) acrylic acid trifluoromethylmethyl, (meth) acrylic acid 2-trifluoromethylethyl, (meth) acrylic acid 2-perfluoroethyl ethyl, (meth) acrylic acid 2-perfluoroethyl 2-perfluorobutyl Ethyl, 2-Perfluoroethyl (meth) acrylate, Perfluoromethyl (meth) acrylate, Diperfluoromethylmethyl (meth) acrylate, 2-Perfluoromethyl-2-perfluoroethyl methyl (meth) acrylate And fluorine-containing (meth) acrylic esters such as 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate and 2-perfluorohexadecylethyl (meth) acrylate;
Fluorine-containing olefins such as perfluoroethylene, perfluoropropylene and vinylidene fluoride;
Aromatic monomers such as styrene, vinyl toluene, α-methylstyrene, chlorostyrene, styrene sulfonic acid and salts thereof;
Maleic anhydride; unsaturated dicarboxylic acids such as maleic acid and fumaric acid, and monoalkyl esters and dialkyl esters thereof;
Maleimide compounds such as maleimide, methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, phenyl maleimide, cyclohexyl maleimide and the like;
Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile;
Amide group-containing vinyl monomers such as acrylamide and methacrylamide;
Vinyl esters such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate and vinyl cinnamate;
Alkenes such as ethylene and propylene;
Conjugated dienes such as butadiene and isoprene;
Examples include, but are not limited to, vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. Moreover, 1 type or 2 types or more of these can be used.
低分子量(メタ)アクリル系重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)によるポリスチレン換算分子量で、硬化物の強度及び耐候性の観点から500以上であり、好ましくは1,000以上であり、より好ましくは2,000以上である。Mwは3,000以上であってもよい。一方、作業性(低粘度)の観点から、Mwの上限値は10,000未満であり、9,500以下であってもよく、9,000以下であってもよく、8,000以下であってもよい。Mwの範囲は、500以上10,000未満であるが、この他に上記の上限値及び下限値を組み合せて設定することができる。Mwの範囲は、例えば、1,000以上10,000未満であり、2,000以上10,000未満であってもよく、3,000以上90,000以下であってもよい。
The weight average molecular weight (Mw) of the low molecular weight (meth) acrylic polymer is a polystyrene equivalent molecular weight by gel permeation chromatography (hereinafter also referred to as "GPC"), and it is 500 from the viewpoint of strength and weatherability of the cured product. It is the above, Preferably it is 1,000 or more, More preferably, it is 2,000 or more. Mw may be 3,000 or more. On the other hand, from the viewpoint of workability (low viscosity), the upper limit value of Mw is less than 10,000, and may be 9,500 or less, or 9,000 or less, 8,000 or less May be Although the range of Mw is 500 or more and less than 10,000, it can be set combining the above-mentioned upper limit and lower limit besides this. The range of Mw is, for example, 1,000 or more and less than 10,000, may be 2,000 or more and less than 10,000, and may be 3,000 or more and 90,000 or less.
低分子量(メタ)アクリル系重合体の分子量分布は、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)として算出される。Mw/Mnは、引張物性と作業性とのバランスの観点から好ましくは5.0以下であり、より好ましくは4.0以下であり、さらに好ましくは3.0以下であり、一層好ましくは2.5以下であり、より一層好ましくは2.0以下である。尚、Mw/Mnの下限値は通常1.0である。
The molecular weight distribution of the low molecular weight (meth) acrylic polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Mw / Mn is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2., from the viewpoint of the balance between tensile physical properties and workability. It is 5 or less, more preferably 2.0 or less. The lower limit of Mw / Mn is usually 1.0.
低分子量(メタ)アクリル系重合体の粘度は、25℃において好ましくは1,000mPa・s以上であり、より好ましくは2,000mPa・s以上である。粘度は3,000mPa・s以上であってもよく、5,000mPa・s以上であってもよく、10,000mPa・s以上であってもよい。粘度の上限は、好ましくは100,000mPa・s以下であり、より好ましくは80,000mPa・s以下であり、さらに好ましくは60,000mPa・s以下である。粘度が1,000mPa・s以上であれば、垂直面に塗布した際の垂れが抑制されるために好ましく、100,000mPa・s以下にすることにより、硬化性組成物の作業性が良好になる。粘度の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、1,000mPa・s以上100,000mPa・s以下であり、2,000mPa・s以上80,000mPa・s以下であってもよく、3,000mPa・s以上60,000mPa・s以下であってもよい。
The viscosity of the low molecular weight (meth) acrylic polymer is preferably 1,000 mPa · s or more at 25 ° C., and more preferably 2,000 mPa · s or more. The viscosity may be 3,000 mPa · s or more, 5,000 mPa · s or more, or 10,000 mPa · s or more. The upper limit of the viscosity is preferably 100,000 mPa · s or less, more preferably 80,000 mPa · s or less, and still more preferably 60,000 mPa · s or less. If the viscosity is 1,000 mPa · s or more, it is preferable in order to suppress sag when applied to a vertical surface, and by setting the viscosity to 100,000 mPa · s or less, the workability of the curable composition becomes good. . The viscosity range can be set by combining the above upper limit value and lower limit value, and is, for example, 1,000 mPa · s or more and 100,000 mPa · s or less, and 2,000 mPa · s or more and 80,000 mPa · s. Or less and may be 3,000 mPa · s or more and 60,000 mPa · s or less.
本発明では、低分子量(メタ)アクリル系重合体は分子中に二重結合を有する。低分子量(メタ)アクリル系重合体が適当量の二重結合を有すると、例えば硬化物が屋外等に暴露されている期間中に当該二重結合が反応し、適度に高分子量化するため、耐候性が向上する。このため、本発明では、低分子量(メタ)アクリル系重合体の粘度を抑制して作業性を確保しつつ、その硬化物は優れた耐候性を示すことができる。尚、上記メカニズムは推察であり、本発明の範囲を限定するものではない。
In the present invention, the low molecular weight (meth) acrylic polymer has a double bond in the molecule. When the low molecular weight (meth) acrylic polymer has an appropriate amount of double bonds, for example, the double bonds react during the period when the cured product is exposed to the outdoors, etc., and the molecular weight is appropriately increased, Weatherability is improved. For this reason, in the present invention, the cured product can exhibit excellent weatherability while suppressing the viscosity of the low molecular weight (meth) acrylic polymer to ensure the workability. The above mechanism is an assumption and does not limit the scope of the present invention.
低分子量(メタ)アクリル系重合体に含まれる二重結合の量は、上記耐候性への効果を発現する観点から0.01meq/g以上有することを要する。二重結合の量は0.05meq/g以上であってもよく、0.10meq/g以上であってもよく、0.20meq/g以上であってもよく、0.30meq/g以上であってもよい。一方、二重結合の量が多過ぎると、暴露中に硬化物の架橋度が高くなりすぎて柔軟性が不足する結果、クラックが発生し易くなる傾向がある。このため、二重結合の量は、1.0meq/g以下であり、好ましくは0.50meq/g以下であり、より好ましくは0.30meq/g以下である。二重結合の量の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.01meq/g以上1.0meq/g以下であり、0.05meq/g以上1.0meq/g以下であってもよく、0.10meq/g以上0.50meq/g以下であってもよい。
The amount of double bonds contained in the low molecular weight (meth) acrylic polymer is required to have 0.01 meq / g or more from the viewpoint of exhibiting the effect on the above-mentioned weather resistance. The amount of double bonds may be 0.05 meq / g or more, 0.10 meq / g or more, 0.20 meq / g or more, 0.30 meq / g or more. May be On the other hand, if the amount of double bonds is too large, the degree of crosslinking of the cured product becomes too high during exposure, and as a result, the flexibility tends to be insufficient, so that cracking tends to occur. For this reason, the amount of double bonds is 1.0 meq / g or less, preferably 0.50 meq / g or less, and more preferably 0.30 meq / g or less. The range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, and 0.05 meq / g or more 1 It may be not more than 0 meq / g, and not less than 0.10 meq / g and not more than 0.50 meq / g.
二重結合の導入方法には特別の制限はなく、当業者に公知の方法を採用することができる。例えば、分子中に二重結合を複数有する単量体を共重合する方法や、官能基を有する(メタ)アクリル系重合体を製造した後、当該官能基と反応し得る官能基及び二重結合を有する化合物と反応する方法等が挙げられる。
There is no particular limitation on the method of introducing a double bond, and methods known to those skilled in the art can be employed. For example, a method of copolymerizing a monomer having a plurality of double bonds in the molecule, or a functional group and a double bond capable of reacting with the functional group after producing a (meth) acrylic polymer having a functional group And the like.
また、(メタ)アクリル酸系重合体の製造を高温条件下で行うことによっても二重結合を導入することができる。例えば、100℃以上の重合温度であれば、高温重合のために高分子鎖からの水素引き抜き反応に始まる切断反応が起こるため、分子末端に下記一般式(1)で表されるエチレン性不飽和結合を有する重合体が得られる。重合温度は好ましくは120℃以上であり、より好ましくは150℃以上である。重合温度は高い方が重合体中の二重結合濃度が高くなる傾向がある。上記方法によれば、簡便かつ生産性良く二重結合を有する(メタ)アクリル系重合体を得ることができる。さらに、分子量制御に多量の開始剤や連鎖移動剤等の不純物を含まず容易に製造することが可能となる。メルカプタン等の連鎖移動剤は耐候性の低下につながるため、使用しないことが好ましい。一方、分解反応による重合液の着色や分子量低下等の虞がなくなる点から、重合温度の上限は350℃以下とすることが好ましい。上記の温度範囲で重合することにより、適度な分子量を有し、粘度が低く、無着色で夾雑物の少ない共重合体を効率よく製造することができる。すなわち、当該重合方法によれば、極微量の重合開始剤を使用すればよく、メルカプタンのような連鎖移動剤や、重合溶剤を使用する必要がなく、純度の高い共重合体を得ることができる。
The double bond can also be introduced by carrying out the production of the (meth) acrylic acid polymer under high temperature conditions. For example, if the polymerization temperature is 100 ° C. or higher, a cleavage reaction starting from hydrogen abstraction reaction from the polymer chain occurs for high temperature polymerization, so the ethylenic unsaturation represented by the following general formula (1) at the molecular terminal A polymer with bonds is obtained. The polymerization temperature is preferably 120 ° C. or more, more preferably 150 ° C. or more. The higher the polymerization temperature, the higher the double bond concentration in the polymer. According to the above method, it is possible to obtain a (meth) acrylic polymer having a double bond simply and with good productivity. Furthermore, it becomes possible to manufacture easily, without containing impurities, such as a large amount of initiator and chain transfer agent, in molecular weight control. Chain transfer agents such as mercaptans are preferably not used because they lead to a decrease in weatherability. On the other hand, it is preferable to set the upper limit of the polymerization temperature to 350 ° C. or less, from the viewpoint of eliminating the possibility of the coloring of the polymerization liquid due to the decomposition reaction or the molecular weight decrease. By polymerizing in the above temperature range, a copolymer having an appropriate molecular weight, a low viscosity, no coloring, and few impurities can be efficiently produced. That is, according to the polymerization method, a very small amount of polymerization initiator may be used, and it is not necessary to use a chain transfer agent such as mercaptan or a polymerization solvent, and a copolymer with high purity can be obtained. .
上記一般式(1)におけるR1としては、アルキル基、ヒドロキシアルキル基、アルコキシアルキル基、その他の置換基を有していてもよいアルキル基、フェニル基、ベンジル基、ポリアルキレングリコール基、ジアルキルアミノアルキル基、トリアルコキシシリルアルキル基、アルキルジアルコキシシリルアルキル基又は水素原子である。
As R 1 in the above general formula (1), an alkyl group, a hydroxyalkyl group, an alkoxyalkyl group, an alkyl group which may have other substituents, a phenyl group, a benzyl group, a polyalkylene glycol group, a dialkylamino It is an alkyl group, a trialkoxysilylalkyl group, an alkyldialkoxysilylalkyl group or a hydrogen atom.
低分子量(メタ)アクリル系重合体は、通常のラジカル重合によって製造することができる。溶液重合、塊状重合、分散重合いずれの方法を採用してもよく、また、リビングラジカル重合法を利用してもよい。反応プロセスは、バッチ式、セミバッチ式、連続重合のいずれの方法でもよい。これらの中でも、100~350℃の高温連続重合方法が好ましい。
Low molecular weight (meth) acrylic polymers can be produced by conventional radical polymerization. Any of solution polymerization, bulk polymerization and dispersion polymerization may be employed, and living radical polymerization may be utilized. The reaction process may be any of batch system, semi-batch system and continuous polymerization. Among these, a high temperature continuous polymerization method at 100 to 350 ° C. is preferable.
一般に、重合体中に均一に架橋性官能基が導入された場合、該重合体を含む硬化性組成物の硬化性、及び得られる硬化物の耐候性等の物性が良好となる。この点、反応器に撹拌槽型反応器を用いた場合、組成分布(架橋性官能基の分布)や分子量分布の比較的狭い(メタ)アクリル系重合体を得ることができるため好ましい。また、連続撹拌槽型反応器を用いるプロセスが組成分布、分子量分布を狭くする点でより好ましい。
In general, when a crosslinkable functional group is uniformly introduced into a polymer, physical properties such as the curability of a curable composition containing the polymer and the weather resistance of a cured product to be obtained become good. In this respect, when a stirred tank type reactor is used for the reactor, a (meth) acrylic polymer having a relatively narrow distribution of composition (distribution of crosslinkable functional groups) and molecular weight distribution can be obtained, which is preferable. Moreover, the process using a continuous stirring tank type reactor is more preferable at the point which narrows composition distribution and molecular weight distribution.
高温連続重合法としては、特開昭57-502171号公報、特開昭59-6207号公報、特開昭60-215007号公報等に開示された公知の方法に従えば良い。例えば、加圧可能な反応機を溶媒で満たし、加圧下で所定温度に設定した後、各単量体、及び必要に応じて重合溶媒とからなる単量体混合物を一定の供給速度で反応器へ供給し、単量体混合物の供給量に見合う量の重合液を抜き出す方法が挙げられる。また、単量体混合物には、必要に応じて重合開始剤を配合することもできる。その配合する場合の配合量としては、単量体混合物100質量部に対して0.001~2質量部であることが好ましい。圧力は、反応温度と使用する単量体混合物及び溶媒の沸点に依存するもので、反応に影響を及ぼさないが、前記反応温度を維持できる圧力であればよい。単量体混合物の滞留時間は、1~60分であることが好ましい。滞留時間が1分に満たない場合は単量体が十分に反応しない恐れがあり、未反応単量体が60分を越える場合は、生産性が悪くなってしまうことがある。好ましい滞留時間は2~40分である。
As the high temperature continuous polymerization method, known methods disclosed in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, etc. may be used. For example, after filling a pressurizable reactor with a solvent and setting the temperature to a predetermined temperature under pressure, a reactor containing a monomer mixture comprising each monomer and, if necessary, a polymerization solvent at a constant feed rate And the polymerization liquid is withdrawn in an amount corresponding to the supply amount of the monomer mixture. Moreover, a polymerization initiator can also be mix | blended with a monomer mixture as needed. The amount to be blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture. The pressure depends on the reaction temperature and the boiling point of the monomer mixture and solvent used, and does not affect the reaction, but may be a pressure that can maintain the reaction temperature. The residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomers may not react sufficiently, and if the unreacted monomers exceed 60 minutes, the productivity may be deteriorated. The preferred residence time is 2 to 40 minutes.
低分子量(メタ)アクリル系重合体を得るために用いる重合開始剤の例としては、所定の反応温度でラジカルを発生する開始剤であれば何でもよい。具体的には、ジ-t-ブチルパーオキシド、ジ-t-ヘキシルパーオキシド、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、クメンハイドロパーオキシド、t-ブチルハイドロパーオキシド等の有機過酸化物、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド、4,4'-アゾビス(4-シアノバレリックアシッド)などのアゾ系化合物が挙げられる。重合開始剤はこれらの内の1種を単独で用いてもよいし、2種以上を併用してもよい。重合開始剤として水素引き抜き能が高いものを使用した場合、得られる重合体の二重結合濃度が高くなる傾向がある。例えば、アゾ系化合物よりも有機過酸化物を使用した方が、二重結合濃度の高い重合体が得られる傾向がある。
重合開始剤の使用量は、重合開始剤及び単量体の種類、所望する分子量、重合条件等により適宜調整することができるが、一般的には、使用する単量体100質量部に対して0.001~10質量部である。同じ分子量の重合体を得る場合、重合開始剤の使用量が少ないほど、得られる重合体中の二重結合濃度は高くなる傾向がある。 As an example of a polymerization initiator used to obtain a low molecular weight (meth) acrylic polymer, any initiator which generates radicals at a predetermined reaction temperature may be used. Specifically, di-t-butyl peroxide, di-t-hexyl peroxide, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, cumene hydroperoxide Oxides, organic peroxides such as t-butyl hydroperoxide, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), azobiscyclohexacarbonitrile, Azo compounds such as azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-amidinopropane) dihydrochloride, and 4,4′-azobis (4-cyanovaleric acid) can be mentioned. One of these polymerization initiators may be used alone, or two or more thereof may be used in combination. When one having a high hydrogen abstraction ability is used as the polymerization initiator, the double bond concentration of the obtained polymer tends to be high. For example, using an organic peroxide rather than an azo compound tends to give a polymer having a high double bond concentration.
The amount of the polymerization initiator used can be appropriately adjusted according to the types of the polymerization initiator and the monomer, the desired molecular weight, the polymerization conditions and the like, but in general, based on 100 parts by mass of the monomer used The amount is 0.001 to 10 parts by mass. When polymers of the same molecular weight are obtained, the smaller the amount of polymerization initiator used, the higher the double bond concentration in the obtained polymer tends to be.
重合開始剤の使用量は、重合開始剤及び単量体の種類、所望する分子量、重合条件等により適宜調整することができるが、一般的には、使用する単量体100質量部に対して0.001~10質量部である。同じ分子量の重合体を得る場合、重合開始剤の使用量が少ないほど、得られる重合体中の二重結合濃度は高くなる傾向がある。 As an example of a polymerization initiator used to obtain a low molecular weight (meth) acrylic polymer, any initiator which generates radicals at a predetermined reaction temperature may be used. Specifically, di-t-butyl peroxide, di-t-hexyl peroxide, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, cumene hydroperoxide Oxides, organic peroxides such as t-butyl hydroperoxide, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), azobiscyclohexacarbonitrile, Azo compounds such as azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-amidinopropane) dihydrochloride, and 4,4′-azobis (4-cyanovaleric acid) can be mentioned. One of these polymerization initiators may be used alone, or two or more thereof may be used in combination. When one having a high hydrogen abstraction ability is used as the polymerization initiator, the double bond concentration of the obtained polymer tends to be high. For example, using an organic peroxide rather than an azo compound tends to give a polymer having a high double bond concentration.
The amount of the polymerization initiator used can be appropriately adjusted according to the types of the polymerization initiator and the monomer, the desired molecular weight, the polymerization conditions and the like, but in general, based on 100 parts by mass of the monomer used The amount is 0.001 to 10 parts by mass. When polymers of the same molecular weight are obtained, the smaller the amount of polymerization initiator used, the higher the double bond concentration in the obtained polymer tends to be.
低分子量(メタ)アクリル系重合体の製造に有機溶媒を用いる場合、有機炭化水素系化合物が適当であり、テトラヒドロフラン及びジオキサン等の環状エーテル類、ベンゼン、トルエン及びキシレン等の芳香族炭化水素化合物、酢酸エチル及び酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン類等、メタノール、エタノール、イソプロパノール等のアルコール類が例示され、これらの1種または2種以上を用いることができる。(メタ)アクリル酸エステル共重合体をよく溶解しない溶剤では、反応器の壁にスケールが成長しやすく洗浄工程等で生産上の問題がおきやすい。また、例えばイソプロパノール等の連鎖移動能の高い有機溶媒を使用した場合、得られる重合体中の二重結合濃度は低くなる傾向がある。
溶媒の使用量は、全ビニル単量体100質量部に対して、80質量部以下とすることが好ましい。80質量部以下とすることにより、短時間で高い転化率が得られる。より好ましくは、1~50質量部である。また、オルト酢酸トリメチル、オルト蟻酸トリメチル等の脱水剤を添加することもできる。 When an organic solvent is used to produce a low molecular weight (meth) acrylic polymer, an organic hydrocarbon compound is suitable, and cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, Examples thereof include esters such as ethyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone and cyclohexanone, and alcohols such as methanol, ethanol and isopropanol. One or more of these can be used. If the solvent does not dissolve the (meth) acrylic acid ester copolymer well, the scale tends to grow on the wall of the reactor, which tends to cause production problems in the washing step and the like. In addition, when an organic solvent having a high chain transfer ability such as isopropanol is used, the double bond concentration in the obtained polymer tends to be low.
The amount of the solvent used is preferably 80 parts by mass or less with respect to 100 parts by mass of all vinyl monomers. By setting the amount to 80 parts by mass or less, high conversion can be obtained in a short time. More preferably, it is 1 to 50 parts by mass. In addition, dehydrating agents such as trimethyl orthoacetate and trimethyl orthoformate can also be added.
溶媒の使用量は、全ビニル単量体100質量部に対して、80質量部以下とすることが好ましい。80質量部以下とすることにより、短時間で高い転化率が得られる。より好ましくは、1~50質量部である。また、オルト酢酸トリメチル、オルト蟻酸トリメチル等の脱水剤を添加することもできる。 When an organic solvent is used to produce a low molecular weight (meth) acrylic polymer, an organic hydrocarbon compound is suitable, and cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, Examples thereof include esters such as ethyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone and cyclohexanone, and alcohols such as methanol, ethanol and isopropanol. One or more of these can be used. If the solvent does not dissolve the (meth) acrylic acid ester copolymer well, the scale tends to grow on the wall of the reactor, which tends to cause production problems in the washing step and the like. In addition, when an organic solvent having a high chain transfer ability such as isopropanol is used, the double bond concentration in the obtained polymer tends to be low.
The amount of the solvent used is preferably 80 parts by mass or less with respect to 100 parts by mass of all vinyl monomers. By setting the amount to 80 parts by mass or less, high conversion can be obtained in a short time. More preferably, it is 1 to 50 parts by mass. In addition, dehydrating agents such as trimethyl orthoacetate and trimethyl orthoformate can also be added.
低分子量(メタ)アクリル系重合体の製造には、公知の連鎖移動剤を使用してもよい。連鎖移動剤を使用した場合、得られる重合体中の二重結合濃度は低くなる傾向がある。また、一般に、連鎖移動剤の使用量を増加することにより二重結合濃度は低下する。
A known chain transfer agent may be used for the production of the low molecular weight (meth) acrylic polymer. When a chain transfer agent is used, the double bond concentration in the resulting polymer tends to be low. Also, in general, the double bond concentration is reduced by increasing the amount of chain transfer agent used.
反応器から抜き出された反応液は、そのまま次の工程に進むか、あるいは蒸留等により未反応単量体、溶剤、および低分子量オリゴマー等の揮発性成分を留去することによって重合体を単離することができる。反応液から留去した未反応単量体、溶剤、および低分子量オリゴマーなどの揮発性成分の一部を原料タンクに戻すかまたは直接反応器に戻し、再度重合反応に利用することもできる。
このように未反応単量体および溶剤をリサイクルする方法は経済性の面から好ましい方法である。リサイクルする場合には、反応器内で望ましい単量体比と望ましい溶剤量を維持するように新たに供給する単量体混合物の混合比を決定する必要がある。 The reaction liquid withdrawn from the reactor can be carried on to the next step as it is, or the polymer can be isolated by distilling off volatile components such as unreacted monomers, solvents and low molecular weight oligomers by distillation or the like. It can be released. It is also possible to return some of the unreacted monomers, solvents, and volatile components such as low molecular weight oligomers distilled off from the reaction solution back to the raw material tank or directly back to the reactor and use them again for the polymerization reaction.
Thus, the method of recycling unreacted monomers and solvents is a preferable method from the economical point of view. In the case of recycling, it is necessary to determine the mixing ratio of the newly supplied monomer mixture so as to maintain the desired monomer ratio and the desired amount of solvent in the reactor.
このように未反応単量体および溶剤をリサイクルする方法は経済性の面から好ましい方法である。リサイクルする場合には、反応器内で望ましい単量体比と望ましい溶剤量を維持するように新たに供給する単量体混合物の混合比を決定する必要がある。 The reaction liquid withdrawn from the reactor can be carried on to the next step as it is, or the polymer can be isolated by distilling off volatile components such as unreacted monomers, solvents and low molecular weight oligomers by distillation or the like. It can be released. It is also possible to return some of the unreacted monomers, solvents, and volatile components such as low molecular weight oligomers distilled off from the reaction solution back to the raw material tank or directly back to the reactor and use them again for the polymerization reaction.
Thus, the method of recycling unreacted monomers and solvents is a preferable method from the economical point of view. In the case of recycling, it is necessary to determine the mixing ratio of the newly supplied monomer mixture so as to maintain the desired monomer ratio and the desired amount of solvent in the reactor.
重合体中に導入された二重結合は、ラジカル発生剤を添加して加熱条件下にて後処理することによりその量を低減することができる。ラジカル発生剤の添加量は、重合体100質量部に対して0.1~10質量部程度であるが、当該添加量が多いほど、二重結合濃度の低減効果は大きい。
加熱処理の際の加熱温度は50~130℃程度であるが、温度が低いほど二重結合濃度の低減効果は大きい。加熱温度は、好ましくは50~110℃の範囲であり、より好ましくは50~100℃の範囲である。
加熱処理時間は特に制限されるものではないが、残存するラジカル発生剤量が、重合体に対して1質量%未満となるよう設定することが好ましい。当業者であれば、当該残存するラジカルを、使用するラジカル発生剤の活性化エネルギー、頻度因子及び反応温度から計算することができる。 The amount of double bonds introduced into the polymer can be reduced by post treatment under heating conditions by adding a radical generator. Although the addition amount of the radical generating agent is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer, the reduction effect of the double bond concentration is larger as the addition amount is larger.
The heating temperature in the heat treatment is about 50 to 130 ° C., but the lower the temperature, the larger the reduction effect of the double bond concentration. The heating temperature is preferably in the range of 50 to 110 ° C., more preferably in the range of 50 to 100 ° C.
The heat treatment time is not particularly limited, but it is preferable to set the amount of the remaining radical generator to be less than 1% by mass with respect to the polymer. Those skilled in the art can calculate the remaining radicals from the activation energy, frequency factor and reaction temperature of the radical generator used.
加熱処理の際の加熱温度は50~130℃程度であるが、温度が低いほど二重結合濃度の低減効果は大きい。加熱温度は、好ましくは50~110℃の範囲であり、より好ましくは50~100℃の範囲である。
加熱処理時間は特に制限されるものではないが、残存するラジカル発生剤量が、重合体に対して1質量%未満となるよう設定することが好ましい。当業者であれば、当該残存するラジカルを、使用するラジカル発生剤の活性化エネルギー、頻度因子及び反応温度から計算することができる。 The amount of double bonds introduced into the polymer can be reduced by post treatment under heating conditions by adding a radical generator. Although the addition amount of the radical generating agent is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer, the reduction effect of the double bond concentration is larger as the addition amount is larger.
The heating temperature in the heat treatment is about 50 to 130 ° C., but the lower the temperature, the larger the reduction effect of the double bond concentration. The heating temperature is preferably in the range of 50 to 110 ° C., more preferably in the range of 50 to 100 ° C.
The heat treatment time is not particularly limited, but it is preferable to set the amount of the remaining radical generator to be less than 1% by mass with respect to the polymer. Those skilled in the art can calculate the remaining radicals from the activation energy, frequency factor and reaction temperature of the radical generator used.
二重結合濃度は、後処理として(メタ)アクリル系重合体に水素付加を行うことによっても低減することができる。水素付加は、従来公知の方法を採用することができる。
即ち、重合体反応液に均一系触媒または不均一系触媒を添加した後、系内を水素雰囲気にし、圧力を常圧~10MPa、温度を20~180℃程度に加熱し、2~20時間ほど反応させる。均一系触媒の具体例としては、クロロトリス(トリフェニルホスフィン)ロジウム等のロジウム錯体、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフェニルホスフィン)ルテニウム等のルテニウム錯体、ジクロロビス(トリフェニルホスフィン)白金等の白金錯体、カルボニルビス(トリフェニルホスフィン)イリジウム等のイリジウム錯体等が挙げられる。一方、不均一系触媒としては、ニッケル、ロジウム、ルテニウム、パラジウム、白金等の遷移金属をカーボン、シリカ、アルミナ、繊維、有機ゲル状物等に担持させた固体触媒が挙げられる。不均一系触媒の方が、ろ過等により容易に触媒が除去できるため、品質が安定する、高価な触媒が再利用できるといった点で好ましい。添加する触媒量としては、均一系触媒の場合、ビニル重合体に対して、10~1,000ppm程度である。不均一系触媒の場合、1,000~10,000ppm程度である。 The double bond concentration can also be reduced by hydrogenating the (meth) acrylic polymer as post-treatment. The hydrogenation can be carried out by any known method.
That is, after adding a homogeneous system catalyst or a heterogeneous system catalyst to the polymer reaction solution, the system is made into a hydrogen atmosphere, the pressure is heated to normal pressure to 10 MPa, the temperature is heated to about 20 to 180 ° C., and it is for 2 to 20 hours. Let it react. Specific examples of homogeneous catalysts include rhodium complexes such as chlorotris (triphenylphosphine) rhodium, ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium and chlorohydrocarbonyltris (triphenylphosphine) ruthenium, and dichlorobis (triphenylphosphine). And platinum complexes such as platinum, and iridium complexes such as carbonyl bis (triphenylphosphine) iridium and the like. On the other hand, examples of heterogeneous catalysts include solid catalysts in which transition metals such as nickel, rhodium, ruthenium, palladium and platinum are supported on carbon, silica, alumina, fibers, organic gel-like substances and the like. Heterogeneous catalysts are preferable in that the catalyst can be easily removed by filtration or the like, so that the quality is stable and expensive catalysts can be reused. The amount of catalyst added is about 10 to 1,000 ppm with respect to the vinyl polymer in the case of a homogeneous catalyst. In the case of a heterogeneous catalyst, it is about 1,000 to 10,000 ppm.
即ち、重合体反応液に均一系触媒または不均一系触媒を添加した後、系内を水素雰囲気にし、圧力を常圧~10MPa、温度を20~180℃程度に加熱し、2~20時間ほど反応させる。均一系触媒の具体例としては、クロロトリス(トリフェニルホスフィン)ロジウム等のロジウム錯体、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフェニルホスフィン)ルテニウム等のルテニウム錯体、ジクロロビス(トリフェニルホスフィン)白金等の白金錯体、カルボニルビス(トリフェニルホスフィン)イリジウム等のイリジウム錯体等が挙げられる。一方、不均一系触媒としては、ニッケル、ロジウム、ルテニウム、パラジウム、白金等の遷移金属をカーボン、シリカ、アルミナ、繊維、有機ゲル状物等に担持させた固体触媒が挙げられる。不均一系触媒の方が、ろ過等により容易に触媒が除去できるため、品質が安定する、高価な触媒が再利用できるといった点で好ましい。添加する触媒量としては、均一系触媒の場合、ビニル重合体に対して、10~1,000ppm程度である。不均一系触媒の場合、1,000~10,000ppm程度である。 The double bond concentration can also be reduced by hydrogenating the (meth) acrylic polymer as post-treatment. The hydrogenation can be carried out by any known method.
That is, after adding a homogeneous system catalyst or a heterogeneous system catalyst to the polymer reaction solution, the system is made into a hydrogen atmosphere, the pressure is heated to normal pressure to 10 MPa, the temperature is heated to about 20 to 180 ° C., and it is for 2 to 20 hours. Let it react. Specific examples of homogeneous catalysts include rhodium complexes such as chlorotris (triphenylphosphine) rhodium, ruthenium complexes such as dichlorotris (triphenylphosphine) ruthenium and chlorohydrocarbonyltris (triphenylphosphine) ruthenium, and dichlorobis (triphenylphosphine). And platinum complexes such as platinum, and iridium complexes such as carbonyl bis (triphenylphosphine) iridium and the like. On the other hand, examples of heterogeneous catalysts include solid catalysts in which transition metals such as nickel, rhodium, ruthenium, palladium and platinum are supported on carbon, silica, alumina, fibers, organic gel-like substances and the like. Heterogeneous catalysts are preferable in that the catalyst can be easily removed by filtration or the like, so that the quality is stable and expensive catalysts can be reused. The amount of catalyst added is about 10 to 1,000 ppm with respect to the vinyl polymer in the case of a homogeneous catalyst. In the case of a heterogeneous catalyst, it is about 1,000 to 10,000 ppm.
<(B)成分:高分子量(メタ)アクリル系重合体>
高分子量(メタ)アクリル系重合体は、上記低分子量(メタ)アクリル系重合体と同様、(メタ)アクリル系単量体に由来する構造単位を有する重合体である。(メタ)アクリル系単量体としては、(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステル等が挙げられる。(メタ)アクリル系単量体の使用量は、(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10~100質量%の範囲であり、より好ましくは30~100質量%の範囲であり、さらに好ましくは50~100質量%の範囲である。 <(B) component: high molecular weight (meth) acrylic polymer>
The high molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, as with the low molecular weight (meth) acrylic polymer. Examples of (meth) acrylic monomers include (meth) acrylic acid and (meth) acrylic acid alkyl esters. The amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
高分子量(メタ)アクリル系重合体は、上記低分子量(メタ)アクリル系重合体と同様、(メタ)アクリル系単量体に由来する構造単位を有する重合体である。(メタ)アクリル系単量体としては、(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステル等が挙げられる。(メタ)アクリル系単量体の使用量は、(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10~100質量%の範囲であり、より好ましくは30~100質量%の範囲であり、さらに好ましくは50~100質量%の範囲である。 <(B) component: high molecular weight (meth) acrylic polymer>
The high molecular weight (meth) acrylic polymer is a polymer having a structural unit derived from a (meth) acrylic monomer, as with the low molecular weight (meth) acrylic polymer. Examples of (meth) acrylic monomers include (meth) acrylic acid and (meth) acrylic acid alkyl esters. The amount of the (meth) acrylic monomer used is preferably in the range of 10 to 100% by mass, more preferably 30 to 100% by mass, based on the total constituent monomers of the (meth) acrylic polymer. It is preferably in the range of 50 to 100% by mass.
(メタ)アクリル酸アルキルエステルとしては、上記低分子量(メタ)アクリル系重合体の説明において記載したものと同様の化合物を用いることができる。これらの中でも、硬化物の機械物性の観点から炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルの使用量は、高分子量(メタ)アクリル系重合体の全構成単量体に対し、好ましくは10質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%以上である。なお、上限は100質量%以下であり、90質量%以下であってもよく、80質量%以下であってもよく50質量%以下であってもよい。
As the (meth) acrylic acid alkyl ester, the same compounds as those described in the explanation of the low molecular weight (meth) acrylic polymer can be used. Among these, (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms are preferable from the viewpoint of mechanical properties of a cured product. The amount of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferably 10% by mass or more based on the total constituent monomers of the high molecular weight (meth) acrylic polymer. Preferably it is 30 mass% or more, More preferably, it is 50 mass% or more. In addition, an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
また、上記の内、炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを使用すると、硬化性組成物がオキシアルキレン系重合体を含む場合に当該オキシアルキレン系重合体との良好な相溶性が確保され、機械物性及び耐候性が良好となる点で好ましい。アルキル基の炭素数は好ましくは10~20であり、より好ましくは12~20である。炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルの使用量は、高分子量(メタ)アクリル系重合体の全構成単量体に対し、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは20質量%以上である。なお、上限は100質量%以下であり、90質量%以下であってもよく、80質量%以下であってもよく50質量%以下であってもよい。
Further, among the above, when the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is used, when the curable composition contains an oxyalkylene polymer, it is preferable with the oxyalkylene polymer. It is preferable in that compatibility is ensured and mechanical physical properties and weather resistance become good. The carbon number of the alkyl group is preferably 10 to 20, more preferably 12 to 20. The amount of the (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms is preferably 5% by mass or more, and more preferably, to the total constituent monomers of the high molecular weight (meth) acrylic polymer Is 10% by mass or more, more preferably 20% by mass or more. In addition, an upper limit is 100 mass% or less, may be 90 mass% or less, may be 80 mass% or less, and may be 50 mass% or less.
高分子量(メタ)アクリル系重合体は、分子中に反応性シリル基を有する。このため、当該高分子量(メタ)アクリル系重合体を含む硬化性組成物から得られる硬化物は、良好な機械物性を示す。反応性シリル基の種類は特に限定されず、アルコキシシリル基、ハロゲノシリル基、シラノール基等が挙げられるが、反応性を制御し易い点からアルコキシシリル基が好ましい。アルコキシシリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、ジメトキシエトキシシリル基及びメトキシジエトキシシリル基等のトリアルコキシシリル基;メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基及びエチルジエトキシシリル基等のジアルコキシシリル基;ジメチルメトキシシリル基、ジメチルエトキシシリル基、ジエチルメトキシシリル基及びジエチルエトキシシリル基等のモノアルコキシシリル基が挙げられる。これらの内でも、硬化物が良好な伸びを示し、耐熱安定性にも優れる点で、ジアルコキシシリル基が好ましい。
The high molecular weight (meth) acrylic polymer has a reactive silyl group in the molecule. For this reason, the hardened | cured material obtained from the curable composition containing the said high molecular weight (meth) acrylic-type polymer shows a favorable mechanical physical property. The type of reactive silyl group is not particularly limited, and examples thereof include an alkoxysilyl group, a halogenosilyl group, and a silanol group. However, an alkoxysilyl group is preferable from the viewpoint of easily controlling the reactivity. Specific examples of the alkoxysilyl group include trialkoxysilyl groups such as trimethoxysilyl group, triethoxysilyl group, dimethoxyethoxysilyl group and methoxydiethoxysilyl group; methyldimethoxysilyl group, methyldiethoxysilyl group, ethyldimethoxysilyl group And dialkoxysilyl groups such as ethyldiethoxysilyl group; and monoalkoxysilyl groups such as dimethylmethoxysilyl group, dimethylethoxysilyl group, diethylmethoxysilyl group and diethylethoxysilyl group. Among these, a dialkoxysilyl group is preferable in that the cured product exhibits good elongation and is excellent in heat resistance stability.
高分子量(メタ)アクリル系重合体1分子に含まれる反応性シリル基の数の平均値は、硬化物の引張強度の観点から、好ましくは0.1個以上であり、より好ましくは0.2個以上であり、さらに好ましくは0.3個以上である。反応性シリル基の数の平均値は、0.5個以上であってもよく、0.8個以上であってもよく、1.0個以上であってもよい。硬化物の伸びを確保する観点から、上限値は、好ましくは5.0個以下であり、より好ましくは4.0個以下であり、さらに好ましくは3.0個以下であり、一層好ましくは2.5個以下であり、より一層好ましくは2.2個以下である。反応性シリル基の数の平均値の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.1個以上5.0個以下であり、0.1個以上3.0個以下であってもよく、0.1個以上2.2個以下であってもよく、0.2個以上2.2個以下であってもよい。
反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。 The average value of the number of reactive silyl groups contained in one high molecular weight (meth) acrylic polymer is preferably 0.1 or more, more preferably 0.2, from the viewpoint of the tensile strength of the cured product. Or more, more preferably 0.3 or more. The average value of the number of reactive silyl groups may be 0.5 or more, 0.8 or more, or 1.0 or more. From the viewpoint of securing the elongation of the cured product, the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less. Although the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
The position of the reactive silyl group is not particularly limited, and may be at the side chain and / or at the end of the polymer.
反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。 The average value of the number of reactive silyl groups contained in one high molecular weight (meth) acrylic polymer is preferably 0.1 or more, more preferably 0.2, from the viewpoint of the tensile strength of the cured product. Or more, more preferably 0.3 or more. The average value of the number of reactive silyl groups may be 0.5 or more, 0.8 or more, or 1.0 or more. From the viewpoint of securing the elongation of the cured product, the upper limit value is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and still more preferably 2 .5 or less, more preferably 2.2 or less. Although the range of the average value of the number of reactive silyl groups can be set by combining the above upper limit value and lower limit value, for example, 0.1 or more and 5.0 or less, and 0.1 or more It may be 3.0 or less, may be 0.1 or more and 2.2 or less, and may be 0.2 or more and 2.2 or less.
The position of the reactive silyl group is not particularly limited, and may be at the side chain and / or at the end of the polymer.
反応性シリル基は、例えば、(メタ)アクリル系単量体及び反応性シリル基を有するビニル系単量体を含む単量体混合物を重合することにより得ることができる。
反応性シリル基を有するビニル系単量体としては、上記低分子量(メタ)アクリル系重合体の説明において記載したものと同様の化合物を用いることができる。 The reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
As the vinyl monomer having a reactive silyl group, the same compounds as those described in the explanation of the low molecular weight (meth) acrylic polymer can be used.
反応性シリル基を有するビニル系単量体としては、上記低分子量(メタ)アクリル系重合体の説明において記載したものと同様の化合物を用いることができる。 The reactive silyl group can be obtained, for example, by polymerizing a monomer mixture containing a (meth) acrylic monomer and a vinyl monomer having a reactive silyl group.
As the vinyl monomer having a reactive silyl group, the same compounds as those described in the explanation of the low molecular weight (meth) acrylic polymer can be used.
高分子量(メタ)アクリル系重合体は、上記の単量体以外にこれらと共重合可能な他の単量体を共重合してもよい。
上記の他の単量体としては、上記低分子量(メタ)アクリル系重合体の説明において記載したものと同様の化合物、並びに、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸メトキシヘキシル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸エトキシブチル、(メタ)アクリル酸エトキシヘキシル、(メタ)アクリル酸ブトキシメチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸ブトキシブチル及び(メタ)アクリル酸ブトキシヘキシル等の(メタ)アクリル酸アルコキシアルキルエステルが挙げられるが、これらに限らない。また、これらのうちの1種又は2種以上を用いることができる。 The high molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
As the above-mentioned other monomers, the same compounds as those described in the above description of the low molecular weight (meth) acrylic polymer, and methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, (Meth) acrylate methoxybutyl, (meth) acrylate methoxyhexyl, (meth) acrylate ethoxymethyl, (meth) acrylate ethoxyethyl, (meth) acrylate ethoxybutyl, (meth) acrylate ethoxyhexyl, (meth) Examples include, but are not limited to, (meth) acrylic acid alkoxyalkyl esters such as butoxymethyl acrylate, butoxyethyl (meth) acrylate, butoxybutyl (meth) acrylate and butoxyhexyl (meth) acrylate. Moreover, 1 type or 2 types or more of these can be used.
上記の他の単量体としては、上記低分子量(メタ)アクリル系重合体の説明において記載したものと同様の化合物、並びに、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸メトキシヘキシル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸エトキシブチル、(メタ)アクリル酸エトキシヘキシル、(メタ)アクリル酸ブトキシメチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸ブトキシブチル及び(メタ)アクリル酸ブトキシヘキシル等の(メタ)アクリル酸アルコキシアルキルエステルが挙げられるが、これらに限らない。また、これらのうちの1種又は2種以上を用いることができる。 The high molecular weight (meth) acrylic polymer may be copolymerized with other monomers copolymerizable therewith besides the above-mentioned monomers.
As the above-mentioned other monomers, the same compounds as those described in the above description of the low molecular weight (meth) acrylic polymer, and methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, (Meth) acrylate methoxybutyl, (meth) acrylate methoxyhexyl, (meth) acrylate ethoxymethyl, (meth) acrylate ethoxyethyl, (meth) acrylate ethoxybutyl, (meth) acrylate ethoxyhexyl, (meth) Examples include, but are not limited to, (meth) acrylic acid alkoxyalkyl esters such as butoxymethyl acrylate, butoxyethyl (meth) acrylate, butoxybutyl (meth) acrylate and butoxyhexyl (meth) acrylate. Moreover, 1 type or 2 types or more of these can be used.
高分子量(メタ)アクリル系重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)によるポリスチレン換算分子量で、硬化物の強度及び耐候性の観点から10,000以上であり、好ましくは11,000以上であり、さらに好ましくは15,000以上であり、さらに好ましくは20,000以上であり、一層好ましくは25,000以上である。Mwは、30,000以上であってもよく、40,000以上であってもよい。一方、作業性(低粘度)の観点から、Mwの上限値は100,000であり、好ましくは90,000以下であり、より好ましくは80,000以下である。上限値は、70,000以下であってもよく、60,000以下であってもよく、50,000以下であってもよい。Mwの範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、10,000以上100,000以下であり、10,000以上80,000以下であってもよく、10,000以上50,000以下であってもよく、15,000以上50,000以下であってもよい。
The weight average molecular weight (Mw) of the high molecular weight (meth) acrylic polymer is a polystyrene equivalent molecular weight by gel permeation chromatography (hereinafter also referred to as "GPC"), and it is 10 from the viewpoint of strength and weatherability of the cured product. Or more, preferably 11,000 or more, more preferably 15,000 or more, still more preferably 20,000 or more, and even more preferably 25,000 or more. Mw may be 30,000 or more, and may be 40,000 or more. On the other hand, from the viewpoint of workability (low viscosity), the upper limit value of Mw is 100,000, preferably 90,000 or less, and more preferably 80,000 or less. The upper limit value may be 70,000 or less, 60,000 or less, or 50,000 or less. Although the range of Mw can be set combining said upper limit and lower limit, it is 10,000 or more and 100,000 or less, for example, may be 10,000 or more and 80,000 or less, and 10 It may be 1,000 or more and 50,000 or less, and may be 15,000 or more and 50,000 or less.
高分子量(メタ)アクリル系重合体の分子量分布は、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)として算出される。Mw/Mnは、引張物性と作業性とのバランスの観点から好ましくは6.0以下であり、より好ましくは5.0以下であり、さらに好ましくは4.0以下であり、一層好ましくは3.0以下であり、より一層好ましくは2.0以下である。尚、Mw/Mnの下限値は通常1.0である。
The molecular weight distribution of the high molecular weight (meth) acrylic polymer is calculated as a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Mw / Mn is preferably 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less, and still more preferably 3., from the viewpoint of the balance between tensile physical properties and workability. It is 0 or less, more preferably 2.0 or less. The lower limit of Mw / Mn is usually 1.0.
高分子量(メタ)アクリル系重合体の粘度は、25℃において好ましくは300,000mPa・s以下であり、より好ましくは200,000mPa・s以下であり、さらに好ましくは100,000mPa・s以下であり、一層好ましくは80,000mPa・s以下であり、より一層好ましくは60,000mPa・s以下であり、もっとも好ましくは40,000mPa・s以下である。粘度が200,000mPa・s以下であれば硬化性組成物の作業性が良好となり好ましい。粘度の下限は、5,000mPa・s以上であってもよく、10,000mPa・s以上であってもよく20,000mPa・sであってもよい。
The viscosity of the high molecular weight (meth) acrylic polymer is preferably 300,000 mPa · s or less at 25 ° C., more preferably 200,000 mPa · s or less, and still more preferably 100,000 mPa · s or less. More preferably, it is 80,000 mPa · s or less, still more preferably 60,000 mPa · s or less, and most preferably 40,000 mPa · s or less. If the viscosity is 200,000 mPa · s or less, the workability of the curable composition becomes good, which is preferable. The lower limit of the viscosity may be 5,000 mPa · s or more, 10,000 mPa · s or more, and 20,000 mPa · s.
本発明では、高分子量(メタ)アクリル系重合体は分子中に二重結合を有していてもよい。分子中に二重結合を有する場合、得られる硬化物の耐候性が向上する傾向があるため好ましい。二重結合は、上記低分子量(メタ)アクリル系重合体の場合と同様の方法により導入することができる。
高分子量(メタ)アクリル系重合体に含まれる二重結合の量は、上記耐候性への効果を発現する観点から好ましくは0.01meq/g以上であり、より好ましくは0.03meq/g以上であり、さらに好ましくは0.05meq/g以上である。一方、耐候性の観点から、二重結合の量は、好ましくは1.0meq/g以下であり、より好ましくは0.50meq/g以下であり、より好ましくは0.30meq/g以下である。二重結合の量の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.01meq/g以上1.0meq/g以下であり、0.05meq/g以上1.0meq/g以下であってもよく、0.10meq/g以上0.50meq/g以下であってもよい。 In the present invention, the high molecular weight (meth) acrylic polymer may have a double bond in the molecule. The case of having a double bond in the molecule is preferable because it tends to improve the weather resistance of the resulting cured product. The double bond can be introduced by the same method as in the case of the low molecular weight (meth) acrylic polymer.
The amount of double bonds contained in the high molecular weight (meth) acrylic polymer is preferably 0.01 meq / g or more, more preferably 0.03 meq / g or more from the viewpoint of exhibiting the effect on the above-mentioned weather resistance. More preferably, it is 0.05 meq / g or more. On the other hand, from the viewpoint of weatherability, the amount of double bond is preferably 1.0 meq / g or less, more preferably 0.50 meq / g or less, and more preferably 0.30 meq / g or less. The range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, and 0.05 meq / g or more 1 It may be not more than 0 meq / g, and not less than 0.10 meq / g and not more than 0.50 meq / g.
高分子量(メタ)アクリル系重合体に含まれる二重結合の量は、上記耐候性への効果を発現する観点から好ましくは0.01meq/g以上であり、より好ましくは0.03meq/g以上であり、さらに好ましくは0.05meq/g以上である。一方、耐候性の観点から、二重結合の量は、好ましくは1.0meq/g以下であり、より好ましくは0.50meq/g以下であり、より好ましくは0.30meq/g以下である。二重結合の量の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.01meq/g以上1.0meq/g以下であり、0.05meq/g以上1.0meq/g以下であってもよく、0.10meq/g以上0.50meq/g以下であってもよい。 In the present invention, the high molecular weight (meth) acrylic polymer may have a double bond in the molecule. The case of having a double bond in the molecule is preferable because it tends to improve the weather resistance of the resulting cured product. The double bond can be introduced by the same method as in the case of the low molecular weight (meth) acrylic polymer.
The amount of double bonds contained in the high molecular weight (meth) acrylic polymer is preferably 0.01 meq / g or more, more preferably 0.03 meq / g or more from the viewpoint of exhibiting the effect on the above-mentioned weather resistance. More preferably, it is 0.05 meq / g or more. On the other hand, from the viewpoint of weatherability, the amount of double bond is preferably 1.0 meq / g or less, more preferably 0.50 meq / g or less, and more preferably 0.30 meq / g or less. The range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, and 0.05 meq / g or more 1 It may be not more than 0 meq / g, and not less than 0.10 meq / g and not more than 0.50 meq / g.
高分子量(メタ)アクリル系重合体は、低分子量(メタ)アクリル系重合体と同様、通常のラジカル重合によって製造することができる。溶液重合、塊状重合、分散重合いずれの方法を採用してもよく、また、リビングラジカル重合法を利用してもよい。反応プロセスは、バッチ式、セミバッチ式、連続重合のいずれの方法でもよい。これらの中でも、100~350℃の高温連続重合方法が好ましい。
The high molecular weight (meth) acrylic polymer can be produced by ordinary radical polymerization as the low molecular weight (meth) acrylic polymer. Any of solution polymerization, bulk polymerization and dispersion polymerization may be employed, and living radical polymerization may be utilized. The reaction process may be any of batch system, semi-batch system and continuous polymerization. Among these, a high temperature continuous polymerization method at 100 to 350 ° C. is preferable.
リビングラジカル重合法を利用する場合、その種類についても特段の制限はなく、可逆的付加-開裂連鎖移動重合法(RAFT法)、ニトロキシラジカル法(NMP法)、原子移動ラジカル重合法(ATRP法)、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)及びヨウ素移動重合法等の各種重合方法を採用することができる。これらの内でも、重合の制御性と実施の簡便さの観点から、RAFT法、NMP法及びATRP法が好ましい。
When a living radical polymerization method is used, there is no particular limitation on its type, and reversible addition-cleavage chain transfer polymerization method (RAFT method), nitroxy radical method (NMP method), atom transfer radical polymerization method (ATRP method) ), Various polymerization methods such as a polymerization method using an organic tellurium compound (TERP method), a polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), and an iodine transfer polymerization method be able to. Among these, the RAFT method, the NMP method and the ATRP method are preferable from the viewpoint of controllability of polymerization and ease of implementation.
RAFT法では、特定の重合制御剤(RAFT剤)及び一般的なフリーラジカル重合開始剤の存在下、可逆的な連鎖移動反応を介して制御された重合が進行する。RAFT剤としては、ジチオエステル化合物、ザンテート化合物、トリチオカーボネート化合物及びジチオカーバメート化合物等、公知の各種RAFT剤を使用することができる。
RAFT剤は活性点を1箇所のみ有する一官能のものを用いてもよいし、二官能以上のものを用いてもよい。また、RAFT剤の使用量は、用いる単量体及びRAFT剤の種類等により適宜調整される。 In the RAFT method, controlled polymerization proceeds via a reversible chain transfer reaction in the presence of a specific polymerization control agent (RAFT agent) and a general free radical polymerization initiator. As the RAFT agent, various known RAFT agents such as dithioester compounds, xanthate compounds, trithiocarbonate compounds and dithiocarbamate compounds can be used.
The RAFT agent may be a monofunctional one having only one active site, or a bifunctional or higher functional one. The amount of the RAFT agent used is appropriately adjusted depending on the type of monomer and RAFT agent used.
RAFT剤は活性点を1箇所のみ有する一官能のものを用いてもよいし、二官能以上のものを用いてもよい。また、RAFT剤の使用量は、用いる単量体及びRAFT剤の種類等により適宜調整される。 In the RAFT method, controlled polymerization proceeds via a reversible chain transfer reaction in the presence of a specific polymerization control agent (RAFT agent) and a general free radical polymerization initiator. As the RAFT agent, various known RAFT agents such as dithioester compounds, xanthate compounds, trithiocarbonate compounds and dithiocarbamate compounds can be used.
The RAFT agent may be a monofunctional one having only one active site, or a bifunctional or higher functional one. The amount of the RAFT agent used is appropriately adjusted depending on the type of monomer and RAFT agent used.
RAFT法による重合の際に用いる重合開始剤としては、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができるが、安全上取り扱い易く、ラジカル重合時の副反応が起こりにくい点からアゾ化合物が好ましい。
上記アゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等が挙げられる。
上記ラジカル重合開始剤は1種類のみ使用しても又は2種以上を併用してもよい。 As a polymerization initiator used in the polymerization by the RAFT method, known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but it is easy to handle in safety, at the time of radical polymerization Azo compounds are preferred in that side reactions are less likely to occur.
Specific examples of the azo compound include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1) Carbonitrile), 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide) and the like.
The radical polymerization initiator may be used alone or in combination of two or more.
上記アゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等が挙げられる。
上記ラジカル重合開始剤は1種類のみ使用しても又は2種以上を併用してもよい。 As a polymerization initiator used in the polymerization by the RAFT method, known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but it is easy to handle in safety, at the time of radical polymerization Azo compounds are preferred in that side reactions are less likely to occur.
Specific examples of the azo compound include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1) Carbonitrile), 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide) and the like.
The radical polymerization initiator may be used alone or in combination of two or more.
ラジカル重合開始剤の使用割合は特に制限されないが、分子量分布がより小さい重合体を得る点から、上記RAFT剤1molに対する上記ラジカル重合開始剤の使用量を0.5mol以下とすることが好ましく、0.2mol以下とするのがより好ましい。また、重合反応を安定的に行う観点から、RAFT剤1molに対するラジカル重合開始剤の使用量の下限は、0.01molである。よって、RAFT剤1molに対するラジカル重合開始剤の使用量は、0.01mol以上0.5mol以下の範囲が好ましく、0.05mol以上0.2mol以下の範囲がより好ましい。
The use ratio of the radical polymerization initiator is not particularly limited, but from the viewpoint of obtaining a polymer having a smaller molecular weight distribution, it is preferable to set the use amount of the radical polymerization initiator to 0.5 mol or less with respect to 1 mol of the RAFT agent. It is more preferable that the amount be less than or equal to 2 mol. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the radical polymerization initiator used per 1 mol of the RAFT agent is 0.01 mol. Therefore, the use amount of the radical polymerization initiator relative to 1 mol of the RAFT agent is preferably in the range of 0.01 mol to 0.5 mol, and more preferably in the range of 0.05 mol to 0.2 mol.
RAFT法による重合反応の際の反応温度は、好ましくは40℃以上100℃以下であり、より好ましくは45℃以上90℃以下であり、さらに好ましくは50℃以上80℃以下である。反応温度が40℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が100℃以下であれば、副反応が抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される。
The reaction temperature in the polymerization reaction by the RAFT method is preferably 40 ° C. to 100 ° C., more preferably 45 ° C. to 90 ° C., and still more preferably 50 ° C. to 80 ° C. If the reaction temperature is 40 ° C. or higher, the polymerization reaction can be smoothly advanced. On the other hand, when the reaction temperature is 100 ° C. or less, side reactions can be suppressed, and restrictions on the initiators and solvents that can be used are relaxed.
NMP法では、ニトロキシドを有する特定のアルコキシアミン化合物等をリビングラジカル重合開始剤として用い、これに由来するニトロキシドラジカルを介して重合が進行する。本開示では、用いるニトロキシドラジカルの種類に特に制限はないが、アクリレートを含む単量体を重合する際の重合制御性の観点から、ニトロキシド化合物として一般式(2)で表される化合物を用いることが好ましい。
In the NMP method, polymerization proceeds through a nitroxide radical derived from a specific alkoxyamine compound having a nitroxide and the like as a living radical polymerization initiator. In the present disclosure, the type of nitroxide radical to be used is not particularly limited, but from the viewpoint of polymerization controllability at the time of polymerizing a monomer containing an acrylate, using the compound represented by General Formula (2) as the nitroxide compound Is preferred.
上記一般式(2)で表されるニトロキシド化合物は、70~80℃程度の加熱により一次解離し、ビニル系単量体と付加反応を起こす。この際、2以上のビニル基を有するビニル系単量体にニトロキシド化合物を付加することにより多官能性の重合前駆体を得ることが可能である。次いで、上記重合前駆体を加熱下で二次解離することにより、ビニル系単量体をリビング重合することができる。
ニトロキシド化合物の使用量は、用いる単量体及びニトロキシド化合物の種類等により適宜調整される。 The nitroxide compound represented by the general formula (2) is primarily dissociated by heating at about 70 to 80 ° C. to cause an addition reaction with a vinyl monomer. At this time, it is possible to obtain a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl monomer having two or more vinyl groups. Subsequently, the vinyl-based monomer can be living-polymerized by secondarily dissociating the above-mentioned polymerization precursor under heating.
The amount of the nitroxide compound used is appropriately adjusted according to the type of monomer and nitroxide compound used.
ニトロキシド化合物の使用量は、用いる単量体及びニトロキシド化合物の種類等により適宜調整される。 The nitroxide compound represented by the general formula (2) is primarily dissociated by heating at about 70 to 80 ° C. to cause an addition reaction with a vinyl monomer. At this time, it is possible to obtain a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl monomer having two or more vinyl groups. Subsequently, the vinyl-based monomer can be living-polymerized by secondarily dissociating the above-mentioned polymerization precursor under heating.
The amount of the nitroxide compound used is appropriately adjusted according to the type of monomer and nitroxide compound used.
高分子量(メタ)アクリル系重合体をNMP法により製造する場合、上記一般式(2)で表されるニトロキシド化合物1molに対し、一般式(3)で表されるニトロキシドラジカルを0.001~0.2molの範囲で添加して重合を行ってもよい。
When producing a high molecular weight (meth) acrylic polymer by the NMP method, the nitroxide radical represented by the general formula (3) is 0.001 to 0 per 1 mol of the nitroxide compound represented by the above general formula (2). The polymerization may be carried out by adding in the range of 2 mol.
上記一般式(3)で表されるニトロキシドラジカルを0.001mol以上添加することにより、ニトロキシドラジカルの濃度が定常状態に達する時間が短縮される。これにより、重合をより高度に制御することが可能となり、より分子量分布の狭い重合体を得ることができる。一方、上記ニトロキシドラジカルの添加量が多すぎると重合が進行しない場合がある。上記ニトロキシド化合物1molに対する上記ニトロキシドラジカルのより好ましい添加量は0.01~0.5molの範囲であり、さらに好ましい添加量は0.05~0.2molの範囲である。
By adding 0.001 mol or more of nitroxide radical represented by the above general formula (3), the time for the concentration of the nitroxide radical to reach a steady state is shortened. This makes it possible to control the polymerization to a higher degree, and to obtain a polymer having a narrower molecular weight distribution. On the other hand, when the addition amount of the nitroxide radical is too large, polymerization may not proceed. A more preferable addition amount of the above nitroxide radical to 1 mol of the above nitroxide compound is in the range of 0.01 to 0.5 mol, and a further preferable addition amount is in the range of 0.05 to 0.2 mol.
NMP法における反応温度は、好ましくは50℃以上140℃以下であり、より好ましくは60℃以上130℃以下であり、さらに好ましくは70℃以上120℃以下であり、特に好ましくは80℃以上120℃以下である。反応温度が50℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が140℃以下であれば、ラジカル連鎖移動等の副反応が抑制される傾向がある。
The reaction temperature in the NMP method is preferably 50 ° C. or more and 140 ° C. or less, more preferably 60 ° C. or more and 130 ° C. or less, still more preferably 70 ° C. or more and 120 ° C. or less, particularly preferably 80 ° C. or more and 120 ° C. It is below. If the reaction temperature is 50 ° C. or more, the polymerization reaction can be smoothly advanced. On the other hand, if the reaction temperature is 140 ° C. or less, side reactions such as radical chain transfer tend to be suppressed.
ATRP法では、一般に有機ハロゲン化物を開始剤とし、触媒に遷移金属錯体を用いて重合反応が行われる。開始剤である有機ハロゲン化物は、一官能性のものを用いてもよいし、二官能以上のものを用いてもよい。また、ハロゲンの種類としては臭化物及び塩化物が好ましい。
In the ATRP method, a polymerization reaction is generally carried out using an organic halide as an initiator and a transition metal complex as a catalyst. The organic halide which is an initiator may be a monofunctional one or a difunctional or higher functional one. Moreover, as a kind of halogen, a bromide and a chloride are preferable.
ATRP法における反応温度は、好ましくは20℃以上200℃以下であり、より好ましくは50℃以上150℃以下である。反応温度20℃以上であれば、重合反応を円滑に進めることができる。
The reaction temperature in the ATRP method is preferably 20 ° C. or more and 200 ° C. or less, more preferably 50 ° C. or more and 150 ° C. or less. If the reaction temperature is 20 ° C. or more, the polymerization reaction can be smoothly advanced.
リビングラジカル重合は、公知の連鎖移動剤の存在下で実施してもよい。
Living radical polymerization may be carried out in the presence of known chain transfer agents.
また、リビングラジカル重合において公知の重合溶媒を用いることができる。具体的には、ベンゼン、トルエン、キシレン及びアニソール等の芳香族化合物;酢酸メチル、酢酸エチル、酢酸プロピル及び酢酸ブチル等のエステル化合物;アセトン及びメチルエチルケトン等のケトン化合物;ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド、アルコール、水等が挙げられる。また、重合溶媒を使用せず、塊状重合等の態様で行ってもよい。
In addition, known polymerization solvents can be used in living radical polymerization. Specifically, aromatic compounds such as benzene, toluene, xylene and anisole; ester compounds such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketone compounds such as acetone and methyl ethyl ketone; dimethylformamide, acetonitrile, dimethyl sulfoxide Alcohol, water and the like can be mentioned. Moreover, you may carry out by aspects, such as block polymerization, without using a polymerization solvent.
<(C)成分:反応性シリル基を有するオキシアルキレン系重合体>
反応性シリル基を有するオキシアルキレン系重合体は下記一般式(4)で表される繰り返し単位を含むものであれば、特に限定されない。
-O-R2- (4)
(式中、R2は、2価の炭化水素基である。)
上記一般式(1)におけるR2としては、以下のものが例示される。
(CH2)n (nは1~10の整数)
CH(CH3)CH2
CH(C2H5)CH2
C(CH3)2CH2
上記オキシアルキレン系重合体は、上記繰り返し単位を1種又は2種以上を組み合わせて含んでもよい。これらの中でも、作業性に優れる点で、CH(CH3)CH2が好ましい。 <Component (C): Oxyalkylene Polymer Having Reactive Silyl Group>
The oxyalkylene polymer having a reactive silyl group is not particularly limited as long as it contains a repeating unit represented by the following general formula (4).
-O-R 2- (4)
(Wherein, R 2 is a divalent hydrocarbon group)
Examples of R 2 in the general formula (1) include the following.
(CH 2 ) n (n is an integer of 1 to 10)
CH (CH 3 ) CH 2
CH (C 2 H 5 ) CH 2
C (CH 3 ) 2 CH 2
The oxyalkylene polymer may contain one or more of the above repeating units in combination. Among these, CH (CH 3 ) CH 2 is preferable in terms of excellent workability.
反応性シリル基を有するオキシアルキレン系重合体は下記一般式(4)で表される繰り返し単位を含むものであれば、特に限定されない。
-O-R2- (4)
(式中、R2は、2価の炭化水素基である。)
上記一般式(1)におけるR2としては、以下のものが例示される。
(CH2)n (nは1~10の整数)
CH(CH3)CH2
CH(C2H5)CH2
C(CH3)2CH2
上記オキシアルキレン系重合体は、上記繰り返し単位を1種又は2種以上を組み合わせて含んでもよい。これらの中でも、作業性に優れる点で、CH(CH3)CH2が好ましい。 <Component (C): Oxyalkylene Polymer Having Reactive Silyl Group>
The oxyalkylene polymer having a reactive silyl group is not particularly limited as long as it contains a repeating unit represented by the following general formula (4).
-O-R 2- (4)
(Wherein, R 2 is a divalent hydrocarbon group)
Examples of R 2 in the general formula (1) include the following.
(CH 2 ) n (n is an integer of 1 to 10)
CH (CH 3 ) CH 2
CH (C 2 H 5 ) CH 2
C (CH 3 ) 2 CH 2
The oxyalkylene polymer may contain one or more of the above repeating units in combination. Among these, CH (CH 3 ) CH 2 is preferable in terms of excellent workability.
反応性シリル基を含有するオキシアルキレン系重合体に含まれる反応性シリル基は特に限定されず、アルコキシシリル基、ハロゲノシリル基、シラノール基等が挙げられるが、反応性を制御し易い点からアルコキシシリル基が好ましい。アルコキシシリル基の具体例としては、トリメトキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基、トリエトキシシリル基、メチルジエトキシシリル基、ジメチルエトキシシリル基等が挙げられる。
The reactive silyl group contained in the oxyalkylene polymer containing a reactive silyl group is not particularly limited, and examples thereof include alkoxysilyl group, halogenosilyl group and silanol group, but from the viewpoint of easy control of reactivity, alkoxysilyl Groups are preferred. Specific examples of the alkoxysilyl group include trimethoxysilyl group, methyldimethoxysilyl group, dimethylmethoxysilyl group, triethoxysilyl group, methyldiethoxysilyl group, dimethylethoxysilyl group and the like.
オキシアルキレン系重合体の製造方法としては、特に限定されるものではないが、例えば対応するエポキシ化合物又はジオールを原料として、KOHのようなアルカリ触媒による重合法、遷移金属化合物-ポルフィリン錯体触媒による重合法、複合金属シアン化物錯体触媒による重合法、フォスファゼンを用いた重合法等が挙げられる。
また、上記オキシアルキレン系重合体は、直鎖状重合体又は分岐状重合体のいずれでもよい。また、これらを組み合わせて用いてもよい。 The method for producing the oxyalkylene polymer is not particularly limited. For example, a polymerization method using an alkali catalyst such as KOH, a heavy metal using a transition metal compound-porphyrin complex catalyst, using the corresponding epoxy compound or diol as a raw material A legal method, a polymerization method using a complex metal cyanide complex catalyst, a polymerization method using phosphazene, and the like can be mentioned.
The oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
また、上記オキシアルキレン系重合体は、直鎖状重合体又は分岐状重合体のいずれでもよい。また、これらを組み合わせて用いてもよい。 The method for producing the oxyalkylene polymer is not particularly limited. For example, a polymerization method using an alkali catalyst such as KOH, a heavy metal using a transition metal compound-porphyrin complex catalyst, using the corresponding epoxy compound or diol as a raw material A legal method, a polymerization method using a complex metal cyanide complex catalyst, a polymerization method using phosphazene, and the like can be mentioned.
The oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
オキシアルキレン系重合体1分子に含まれる反応性シリル基の数の平均値は、硬化物の接着性及び引張特性等の性能の観点から、好ましくは1~4個の範囲であり、より好ましくは1.5~3個の範囲である。
上記オキシアルキレン系重合体に含まれる反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。
また、上記オキシアルキレン系重合体は、直鎖状重合体及び分岐状重合体のいずれでもよい。また、これらを組み合わせて用いてもよい。 The average value of the number of reactive silyl groups contained in one oxyalkylene polymer molecule is preferably in the range of 1 to 4 from the viewpoint of performance such as adhesiveness and tensile properties of the cured product, and more preferably The range is 1.5 to 3.
The position of the reactive silyl group contained in the above-mentioned oxyalkylene polymer is not particularly limited, and can be a side chain and / or an end of the polymer.
The oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
上記オキシアルキレン系重合体に含まれる反応性シリル基の位置は、特に限定されるものではなく、重合体の側鎖及び/又は末端とすることができる。
また、上記オキシアルキレン系重合体は、直鎖状重合体及び分岐状重合体のいずれでもよい。また、これらを組み合わせて用いてもよい。 The average value of the number of reactive silyl groups contained in one oxyalkylene polymer molecule is preferably in the range of 1 to 4 from the viewpoint of performance such as adhesiveness and tensile properties of the cured product, and more preferably The range is 1.5 to 3.
The position of the reactive silyl group contained in the above-mentioned oxyalkylene polymer is not particularly limited, and can be a side chain and / or an end of the polymer.
The oxyalkylene polymer may be either a linear polymer or a branched polymer. Moreover, you may use combining these.
反応性シリル基を有するオキシアルキレン系重合体の数平均分子量(Mn)は、機械物性の観点から好ましくは5,000以上であり、より好ましくは10,000以上であり、さらに好ましくは15,000以上である。Mnは、18,000以上であってもよく、22,000以上であってもよく、25,000以上であってもよい。Mnの上限値は硬化性組成物の塗工時の作業性(粘度)の観点から好ましくは60,000以下であり、より好ましくは50,000以下であり、さらに好ましくは40,000以下である。Mnの範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、5,000以上60,000以下であり、15,000以上60,000以下であってもよく、18,000以上50,000以下であってもよく、22,000以上50,000以下であってもよい。
The number average molecular weight (Mn) of the oxyalkylene polymer having a reactive silyl group is preferably 5,000 or more, more preferably 10,000 or more, and still more preferably 15,000, from the viewpoint of mechanical properties. It is above. Mn may be 18,000 or more, 22,000 or more, or 25,000 or more. The upper limit value of Mn is preferably 60,000 or less, more preferably 50,000 or less, and still more preferably 40,000 or less from the viewpoint of workability (viscosity) at the time of coating of the curable composition. . The range of Mn can be set by combining the above upper limit value and lower limit value, but, for example, is 5,000 or more and 60,000 or less, and may be 15,000 or more and 60,000 or less, 18 It may be 1,000 or more and 50,000 or less, or 22,000 or more and 50,000 or less.
反応性シリル基を有するオキシアルキレン系重合体として市販品を使用してもよい。具体例としては、株式会社カネカ製「MSポリマーS203」、「MSポリマーS303」、「MSポリマーS810」、「サイリルSAT200」、「サイリルSAT350」、「サイリルEST280」及び「サイリルSAT30」、並びに、旭硝子株式会社製「エクセスターS2410」、「エクセスターS2420」及び「エクセスターS3430」(いずれも商品名)が例示される。
A commercial item may be used as an oxyalkylene polymer having a reactive silyl group. As a specific example, Kaneka Co., Ltd. "MS polymer S203", "MS polymer S303", "MS polymer S810", "Syryl SAT 200", "Syryl SAT 350", "Syryl EST 280" and "Syryl SAT 30", and Asahi Glass Exexer's "Exester S2410", "Exester S2420" and "Exester S3430" (all trade names) are exemplified.
<硬化性組成物>
上記の通り、本発明の硬化性組成物は、(A)成分及び(B)成分を必須成分とするものである。ここで、得られる硬化物の耐候性及び機械物性が良好となる点で、上記(A)成分及び(B)成分の割合((A)/(B))は、質量比で好ましくは10~90/90~10であり、より好ましくは30~70/70~30である。 <Curable composition>
As described above, the curable composition of the present invention contains the (A) component and the (B) component as essential components. Here, the ratio of the component (A) and the component (B) ((A) / (B)) is preferably 10 to 10 by mass ratio in that the weatherability and mechanical properties of the resulting cured product are good. It is 90/90 to 10, more preferably 30 to 70/70 to 30.
上記の通り、本発明の硬化性組成物は、(A)成分及び(B)成分を必須成分とするものである。ここで、得られる硬化物の耐候性及び機械物性が良好となる点で、上記(A)成分及び(B)成分の割合((A)/(B))は、質量比で好ましくは10~90/90~10であり、より好ましくは30~70/70~30である。 <Curable composition>
As described above, the curable composition of the present invention contains the (A) component and the (B) component as essential components. Here, the ratio of the component (A) and the component (B) ((A) / (B)) is preferably 10 to 10 by mass ratio in that the weatherability and mechanical properties of the resulting cured product are good. It is 90/90 to 10, more preferably 30 to 70/70 to 30.
硬化性組成物に含まれる二重結合の量は、耐候性の観点から、好ましくは0.01meq/g以上であり、より好ましくは0.05meq/g以上である。二重結合の量は0.10meq/g以上であってもよく、0.15meq/g以上であってもよい。一方、二重結合の量が多過ぎると、暴露中に硬化物の架橋度が高くなりすぎて柔軟性が不足する結果、クラックが発生し易くなる傾向がある。このため、二重結合の量は、好ましくは1.0meq/g以下であり、より好ましくは0.80meq/g以下であり、さらに好ましくは0.60meq/g以下であり、一層好ましくは0.50meq/g以下であり、より一層好ましくは0.40meq/g以下である。二重結合の量の範囲は、上記の上限値及び下限値を組み合せて設定することができるが、例えば、0.01meq/g以上1.0meq/g以下であり、0.01meq/g以上0.5.0meq/g以下であってもよく、0.05meq/g以上0.50meq/g以下であってもよい。
The amount of double bonds contained in the curable composition is preferably 0.01 meq / g or more, more preferably 0.05 meq / g or more, from the viewpoint of weatherability. The amount of double bonds may be 0.10 meq / g or more, and may be 0.15 meq / g or more. On the other hand, if the amount of double bonds is too large, the degree of crosslinking of the cured product becomes too high during exposure, and as a result, the flexibility tends to be insufficient, so that cracking tends to occur. Therefore, the amount of double bonds is preferably 1.0 meq / g or less, more preferably 0.80 meq / g or less, still more preferably 0.60 meq / g or less, still more preferably 0. It is 50 meq / g or less, and still more preferably 0.40 meq / g or less. The range of the amount of double bonds can be set by combining the above upper limit value and lower limit value, and is, for example, 0.01 meq / g or more and 1.0 meq / g or less, 0.01 meq / g or more and 0 It may be 5.0 meq / g or less, and may be 0.05 meq / g or more and 0.50 meq / g or less.
本発明の硬化性組成物は、本発明により奏される効果を妨げない限りにおいて、(A)成分及び(B)成分以外の成分を含むことができる。係る成分には、充填材、可塑剤、老化防止剤、硬化促進剤、タック防止剤、密着付与剤等が含まれる。
The curable composition of the present invention can contain components other than the (A) component and the (B) component, as long as the effects exhibited by the present invention are not impaired. Such components include fillers, plasticizers, anti-aging agents, curing accelerators, tack inhibitors, adhesion promoters and the like.
充填材としては平均粒径0.02~2.0μm程度の軽質炭酸カルシウム、平均粒径1.0~5.0μm程度の重質炭酸カルシウム、酸化チタン、カーボンブラック、合成ケイ酸、タルク、ゼオライト、マイカ、シリカ、焼成クレー、カオリン、ベントナイト、水酸化アルミニウム及び硫酸バリウム、ガラスバルーン、シリカバルーン、ポリメタクリル酸メチルバルーンが例示される。これら充填材により、硬化物の機械的な性質が改善され、強度や伸度を向上させることができる。
これらの中でも、物性改善の効果が高い、軽質炭酸カルシウム、重質炭酸カルシウム及び酸化チタンが好ましく、軽質炭酸カルシウムと重質炭酸カルシウムとの混合物がより好ましい。充填剤の添加量は、(A)及び(B)成分の総量を100質量部とした場合、20~300質量部が好ましく、より好ましくは、50~200質量部である。上記のように軽質炭酸カルシウムと重質炭酸カルシウムの混合物とする場合には、軽質炭酸カルシウム/重質炭酸カルシウムの質量割合が90/10~50/50の範囲であることが好ましい。 As the filler, light calcium carbonate having an average particle diameter of about 0.02 to 2.0 μm, heavy calcium carbonate having an average particle diameter of about 1.0 to 5.0 μm, titanium oxide, carbon black, synthetic silicic acid, talc, zeolite Mica, silica, calcined clay, kaolin, bentonite, aluminum hydroxide and barium sulfate, glass balloon, silica balloon, polymethyl methacrylate balloon are exemplified. These fillers can improve the mechanical properties of the cured product and improve the strength and elongation.
Among these, light calcium carbonate, ground calcium carbonate and titanium oxide, which are highly effective in improving physical properties, are preferable, and a mixture of light calcium carbonate and ground calcium carbonate is more preferable. The amount of the filler added is preferably 20 to 300 parts by mass, more preferably 50 to 200 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). When a mixture of light calcium carbonate and heavy calcium carbonate is used as described above, the weight ratio of light calcium carbonate / heavy calcium carbonate is preferably in the range of 90/10 to 50/50.
これらの中でも、物性改善の効果が高い、軽質炭酸カルシウム、重質炭酸カルシウム及び酸化チタンが好ましく、軽質炭酸カルシウムと重質炭酸カルシウムとの混合物がより好ましい。充填剤の添加量は、(A)及び(B)成分の総量を100質量部とした場合、20~300質量部が好ましく、より好ましくは、50~200質量部である。上記のように軽質炭酸カルシウムと重質炭酸カルシウムの混合物とする場合には、軽質炭酸カルシウム/重質炭酸カルシウムの質量割合が90/10~50/50の範囲であることが好ましい。 As the filler, light calcium carbonate having an average particle diameter of about 0.02 to 2.0 μm, heavy calcium carbonate having an average particle diameter of about 1.0 to 5.0 μm, titanium oxide, carbon black, synthetic silicic acid, talc, zeolite Mica, silica, calcined clay, kaolin, bentonite, aluminum hydroxide and barium sulfate, glass balloon, silica balloon, polymethyl methacrylate balloon are exemplified. These fillers can improve the mechanical properties of the cured product and improve the strength and elongation.
Among these, light calcium carbonate, ground calcium carbonate and titanium oxide, which are highly effective in improving physical properties, are preferable, and a mixture of light calcium carbonate and ground calcium carbonate is more preferable. The amount of the filler added is preferably 20 to 300 parts by mass, more preferably 50 to 200 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). When a mixture of light calcium carbonate and heavy calcium carbonate is used as described above, the weight ratio of light calcium carbonate / heavy calcium carbonate is preferably in the range of 90/10 to 50/50.
可塑剤としては、液状ポリウレタン樹脂、ジカルボン酸とジオールとから得られたポリエステル系可塑剤;ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコールのエーテル化物あるいはエステル化物;スクロース等の糖類多価アルコールに、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加重合した後、エーテル化又はエステル化して得られた糖類系ポリエーテル等のポリエーテル系可塑剤;ポリ-α-メチルスチレン等のポリスチレン系可塑剤;架橋性官能基を有さないポリ(メタ)アクリレート等が挙げられる。これらの内、架橋性官能基を有さないポリ(メタ)アクリレートが硬化物の耐候性等の耐久性の点で好ましい。中でも、Mwが1,000~7,000の範囲であり、且つ、ガラス転移温度が-30℃以下のものがより好ましい。
Examples of plasticizers include liquid polyurethane resins, polyester plasticizers obtained from dicarboxylic acids and diols; ethers or esters of polyalkylene glycols such as polyethylene glycol and polypropylene glycol; and sugar polyalcohols such as sucrose, etc. Polyether plasticizers such as saccharide-based polyethers obtained by addition-polymerizing alkylene oxides such as oxide and propylene oxide and then etherifying or esterifying them; polystyrene-based plasticizers such as poly-α-methylstyrene; crosslinkability Poly (meth) acrylate etc. which do not have a functional group are mentioned. Among these, poly (meth) acrylates having no crosslinkable functional group are preferable in terms of durability such as weather resistance of the cured product. Among them, those having a Mw of 1,000 to 7,000 and a glass transition temperature of −30 ° C. or less are more preferable.
硬化性組成物における可塑剤の使用量は、(A)成分及び(B)成分を含めた総量を100質量部とした場合、好ましくは0~100質量部の範囲であり、0~80質量部の範囲であってもよく、0~50質量部の範囲であってもよい。
The amount of the plasticizer used in the curable composition is preferably in the range of 0 to 100 parts by mass, and 0 to 80 parts by mass, based on 100 parts by mass of the total amount including the components (A) and (B). And may be in the range of 0 to 50 parts by mass.
老化防止剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物及びシュウ酸アニリド系化合物などの紫外線吸収剤、ヒンダードアミン系化合物などの光安定剤、ヒンダードフェノール系などの酸化防止剤、熱安定剤、またはこれらの混合物である老化防止剤を用いることができる。
紫外線吸収剤としては、BASF社製の商品名「チヌビン571」、「チヌビン1130」、「チヌビン327」が例示される。光安定剤としては同社製の商品名「チヌビン292」、「チヌビン144」、「チヌビン123」、三共社製の商品名「サノール770」が例示される。熱安定剤としては、BASF社製の商品名「イルガノックス1135」、「イルガノックス1520」、「イルガノックス1330」が例示される。紫外線吸収剤/光安定剤/熱安定剤の混合物であるBASF社製の商品名「チヌビンB75」を使用してもよい。 Examples of anti-aging agents include UV absorbers such as benzophenone compounds, benzotriazole compounds and oxalic acid anilide compounds, light stabilizers such as hindered amine compounds, antioxidants such as hindered phenols, thermal stabilizers, or An anti-aging agent which is a mixture of these can be used.
As an ultraviolet absorber, the brand names "tinuvin 571", "tinuvin 1130", and "tinuvin 327" made from BASF are illustrated. As a light stabilizer, the brand name "tinuvin 292", "tinuvin 144", "tinuvin 123" by the company, and the brand name "Sanol 770" by a Sanko company are illustrated, for example. As a heat stabilizer, brand names "Irganox 1135", "Irganox 1520", and "Irganox 1330" manufactured by BASF Corp. are exemplified. A trade name "Tinuvin B75" manufactured by BASF, which is a mixture of UV absorber / light stabilizer / heat stabilizer may be used.
紫外線吸収剤としては、BASF社製の商品名「チヌビン571」、「チヌビン1130」、「チヌビン327」が例示される。光安定剤としては同社製の商品名「チヌビン292」、「チヌビン144」、「チヌビン123」、三共社製の商品名「サノール770」が例示される。熱安定剤としては、BASF社製の商品名「イルガノックス1135」、「イルガノックス1520」、「イルガノックス1330」が例示される。紫外線吸収剤/光安定剤/熱安定剤の混合物であるBASF社製の商品名「チヌビンB75」を使用してもよい。 Examples of anti-aging agents include UV absorbers such as benzophenone compounds, benzotriazole compounds and oxalic acid anilide compounds, light stabilizers such as hindered amine compounds, antioxidants such as hindered phenols, thermal stabilizers, or An anti-aging agent which is a mixture of these can be used.
As an ultraviolet absorber, the brand names "tinuvin 571", "tinuvin 1130", and "tinuvin 327" made from BASF are illustrated. As a light stabilizer, the brand name "tinuvin 292", "tinuvin 144", "tinuvin 123" by the company, and the brand name "Sanol 770" by a Sanko company are illustrated, for example. As a heat stabilizer, brand names "Irganox 1135", "Irganox 1520", and "Irganox 1330" manufactured by BASF Corp. are exemplified. A trade name "Tinuvin B75" manufactured by BASF, which is a mixture of UV absorber / light stabilizer / heat stabilizer may be used.
硬化促進剤としては、錫系触媒、チタン系触媒及び3級アミン類等の公知の化合物を使用することができる。
錫系触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアセトナート、ジオクチル錫ジラウレート等が挙げられる。具体的には、日東化成社製の商品名「ネオスタンU-28」、「ネオスタンU-100」、「ネオスタンU-200」、「ネオスタンU-220H」、「ネオスタンU-303」、「SCAT-24」等が例示される。
チタン系触媒としては、例えば、テトライソプロピルチタネート、テトラn-ブチルチタネート、チタンアセチルアセトナート、チタンテトラアセチルアセトナート、チタンエチルアセチルアセトナート、ジブトキシチタンジアセチルアセトナート、ジイソプロポキシチタンジアセチルアセトナート、チタンオクチレングリコレート、チタンラクテート等が挙げられる。
3級アミン類としては、例えば、トリエチルアミン、トリブチルアミン、トリエチレンジアミン、ヘキサメチレンテトラミン、1,8-ジアザビシクロ〔5,4,0〕ウンデセン-7(DBU)、ジアザビシクロノネン(DBN)、N-メチルモルホリン、N-エチルモルホリン等が挙げられる。 As the curing accelerator, known compounds such as tin-based catalysts, titanium-based catalysts and tertiary amines can be used.
Examples of tin-based catalysts include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetonate, dioctyltin dilaurate and the like. Specifically, trade names "Neostan U-28", "Neostan U-100", "Neostan U-200", "Neostan U-220H", "Neostan U-303", "SCAT-" manufactured by Nitto Kasei Co., Ltd. 24 etc. is illustrated.
Examples of titanium-based catalysts include tetraisopropyl titanate, tetra n-butyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetylacetonate, dibutoxy titanium diacetyl acetonate, diisopropoxy titanium diacetyl acetonate, Titanium octylene glycolate, titanium lactate and the like can be mentioned.
Examples of tertiary amines include triethylamine, tributylamine, triethylenediamine, hexamethylenetetramine, 1,8-diazabicyclo [5,4,0] undecen-7 (DBU), diazabicyclononene (DBN), N- Methyl morpholine, N-ethyl morpholine and the like can be mentioned.
錫系触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアセトナート、ジオクチル錫ジラウレート等が挙げられる。具体的には、日東化成社製の商品名「ネオスタンU-28」、「ネオスタンU-100」、「ネオスタンU-200」、「ネオスタンU-220H」、「ネオスタンU-303」、「SCAT-24」等が例示される。
チタン系触媒としては、例えば、テトライソプロピルチタネート、テトラn-ブチルチタネート、チタンアセチルアセトナート、チタンテトラアセチルアセトナート、チタンエチルアセチルアセトナート、ジブトキシチタンジアセチルアセトナート、ジイソプロポキシチタンジアセチルアセトナート、チタンオクチレングリコレート、チタンラクテート等が挙げられる。
3級アミン類としては、例えば、トリエチルアミン、トリブチルアミン、トリエチレンジアミン、ヘキサメチレンテトラミン、1,8-ジアザビシクロ〔5,4,0〕ウンデセン-7(DBU)、ジアザビシクロノネン(DBN)、N-メチルモルホリン、N-エチルモルホリン等が挙げられる。 As the curing accelerator, known compounds such as tin-based catalysts, titanium-based catalysts and tertiary amines can be used.
Examples of tin-based catalysts include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetonate, dioctyltin dilaurate and the like. Specifically, trade names "Neostan U-28", "Neostan U-100", "Neostan U-200", "Neostan U-220H", "Neostan U-303", "SCAT-" manufactured by Nitto Kasei Co., Ltd. 24 etc. is illustrated.
Examples of titanium-based catalysts include tetraisopropyl titanate, tetra n-butyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetylacetonate, dibutoxy titanium diacetyl acetonate, diisopropoxy titanium diacetyl acetonate, Titanium octylene glycolate, titanium lactate and the like can be mentioned.
Examples of tertiary amines include triethylamine, tributylamine, triethylenediamine, hexamethylenetetramine, 1,8-diazabicyclo [5,4,0] undecen-7 (DBU), diazabicyclononene (DBN), N- Methyl morpholine, N-ethyl morpholine and the like can be mentioned.
硬化促進剤の使用量は、(A)成分及び(B)成分の合計100質量に対し、好ましくは0.1~5質量部であり、より好ましくは0.5~2質量部である。
The amount of the curing accelerator used is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts in total of the components (A) and (B).
タック防止剤としては、アクリル系オリゴマーである東亞合成社製の商品名「アロニックスM8030」、「M8100」,「M309」、または光重合開始剤との混合物、桐油、亜麻仁油などの飽和脂肪酸油、出光石油社製の商品名「R15HT」、日本曹達社製の商品名「PBB3000」、日本合成化学者製の商品名「ゴーセラック500B」などが例示される。
As an anti-tack agent, trade name “Alonix M 8030”, “M 8100”, “M 309” or a mixture with an optical polymerization initiator manufactured by Toagosei Co., Ltd. which is an acrylic oligomer, saturated fatty acid oil such as soy sauce or linseed oil, A trade name "R15HT" manufactured by Idemitsu Sekiyu Co., Ltd., a trade name "PBB 3000" manufactured by Nippon Soda Co., Ltd., a trade name "Goselac 500B" manufactured by Nippon Gohsei Kagakusha, and the like are exemplified.
密着性付与剤としては、信越シリコーン社製の商品名「KBM602」、「KBM603」、「KBE602」、「KBE603」、「KBM902」、「KBM903」などのアミノシラン類が例示される。
その他にも、オルト蟻酸メチル、オルト酢酸メチル、及びビニルシラン等の脱水剤、有機溶剤等を配合してもよい。 Examples of the adhesion imparting agent include aminosilanes such as trade names "KBM602", "KBM603", "KBE602", "KBE603", "KBM902" and "KBM903" manufactured by Shin-Etsu Silicone Co., Ltd.
In addition, dehydrating agents such as methyl orthoformate, methyl orthoacetate, and vinylsilane, organic solvents and the like may be blended.
その他にも、オルト蟻酸メチル、オルト酢酸メチル、及びビニルシラン等の脱水剤、有機溶剤等を配合してもよい。 Examples of the adhesion imparting agent include aminosilanes such as trade names "KBM602", "KBM603", "KBE602", "KBE603", "KBM902" and "KBM903" manufactured by Shin-Etsu Silicone Co., Ltd.
In addition, dehydrating agents such as methyl orthoformate, methyl orthoacetate, and vinylsilane, organic solvents and the like may be blended.
本発明の硬化性組成物は、全ての配合成分を予め配合密封保存し、塗布後空気中の湿分を吸収することにより硬化する1成分型として調整することが可能である。また、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合組成物を使用前に混合する2成分型として調整することもできる。取扱いが容易で、塗布時の調合混合の間違いも少ない1成分型がより好ましい。
The curable composition of the present invention can be adjusted as a one-component type in which all the compounding components are compounded and stored in advance, and are hardened by absorbing moisture in the air after application. Moreover, components such as a curing catalyst, a filler, a plasticizer, water and the like may be separately blended as a curing agent, and it may be adjusted as a two-component type in which the compounding material and the polymerization composition are mixed before use. More preferable is a one-component type which is easy to handle and has few mistakes in mixing and mixing at the time of application.
本発明の硬化性組成物は、常温で硬化し、耐候性及び機械的物性に優れた硬化物が得られる。このため、高い耐久性が求められるシーリング材組成物として好適に利用することができる。本発明のシーリング材組成物は、前記硬化性組成物を含有するものであり、必要によりその他の成分が常法に従って配合される。
The curable composition of the present invention cures at normal temperature, and a cured product excellent in weatherability and mechanical properties is obtained. For this reason, it can be suitably used as a sealant composition in which high durability is required. The sealant composition of the present invention contains the above-mentioned curable composition, and, if necessary, other components are compounded according to a conventional method.
また、前記硬化性組成物は、接着剤に好適に利用できる。建材用の接着剤分野では10年以上を保障する高い耐候性、耐久性が求められ、本発明の接着剤組成物はその要求を満足することができる。特に外壁のタイル接着等では外観と接着性の維持が長期に渡って求められ、その要求に応ずることができる。本発明の接着剤組成物は、前記硬化性組成物を含有するものであり、必要によりその他の成分が常法に従って配合される。
Moreover, the said curable composition can be suitably utilized for an adhesive agent. In the field of adhesives for building materials, high weatherability and durability are required to ensure 10 years or more, and the adhesive composition of the present invention can satisfy the requirements. In particular, in the case of tile adhesion of the outer wall, maintenance of the appearance and adhesion is required for a long time and can be met. The adhesive composition of the present invention contains the above-mentioned curable composition, and, if necessary, other components are blended in accordance with a conventional method.
本発明の接着剤組成物は、エポキシ樹脂が添加されたものであっても良い。かかるエポキシ樹脂としては、例えばエピクロルヒドリン-ビスフェノールA型エポキシ樹脂、エピクロルヒドリン-ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p-オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m-アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、ヒダントイン型エポキシ樹脂などが例示される。さらに、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、グリセリンなどのごとき多価アルコールのグリシジルエーテル、石油樹脂などのごとき不飽和重合体のエポキシ化物等が例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用されうる。これらのエポキシ樹脂のうちではとくにエポキシ基を少なくとも分子中に2個含有するものが、硬化に際し反応性が高く、また硬化物が3次元的網目をつくりやすいなどの点から好ましい。これらの中でもビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などがより好ましい。
The adhesive composition of the present invention may be one to which an epoxy resin is added. As such an epoxy resin, for example, epichlorohydrin-bisphenol A type epoxy resin, epichlorohydrin-bisphenol F type epoxy resin, novolac type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidyl ether type epoxy resin of bisphenol A propylene oxide adduct, p -Hydroxybenzoic acid glycidyl ether ester type epoxy resin, m-aminophenol epoxy resin, diaminodiphenylmethane epoxy resin, urethane modified epoxy resin, various alicyclic epoxy resins, N, N-diglycidyl aniline, N, N-diglycidyl Examples thereof include -o-toluidine, triglycidyl isocyanurate, polyalkylene glycol diglycidyl ether, hydantoin type epoxy resin and the like. Further, flame-retardant epoxy resins such as glycidyl ether of tetrabromobisphenol A, glycidyl ethers of polyhydric alcohols such as glycerin, epoxidates of unsaturated polymers such as petroleum resin, etc. are exemplified, but these are limited thereto. In general, epoxy resins that are commonly used can be used. Among these epoxy resins, those containing at least two epoxy groups in the molecule are particularly preferable in view of high reactivity during curing and that the cured product is likely to form a three-dimensional network. Among these, bisphenol A epoxy resins and novolac epoxy resins are more preferable.
エポキシ樹脂は、本発明の全重合体(低分子量(メタ)アクリル系重合体(A)および高分子量(メタ)アクリル系重合体(B)の合計質量)100質量部を基準として、1~100質量部となるように配合して使用することが好ましい。エポキシ樹脂が100質量部を超えると耐候性が低下する場合がある。
The epoxy resin is 1 to 100 parts by weight based on 100 parts by mass of the total polymer (total mass of low molecular weight (meth) acrylic polymer (A) and high molecular weight (meth) acrylic polymer (B)) of the present invention It is preferable to use it so that it may become a mass part. When the amount of the epoxy resin exceeds 100 parts by mass, the weather resistance may be lowered.
また、エポキシ樹脂を使用する場合は、エポキシ樹脂の硬化剤を併用することが好ましい。エポキシ樹脂の硬化剤としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンジアミン、ジエチルアミノプロピルアミン、N-アミノエチルピペラジン、イソホロンジアミン、ジアミノジシクロヘキシルメタン、m-キシレンジアミン、m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の1級アミン、(CH3)2N(CH2)nN(CH3)2(式中nは1~10の整数)で示される直鎖状ジアミン、(CH3)2-N(CH2)n-CH3(式中nは0~10の整数)で示される直鎖第3級アミン、テトラメチルグアニジン、N{(CH2)nCH3}3(式中nは1~10の整数)で示されるアルキル第3級モノアミン、トリエタノールアミン、ピペリジン、N,N'-ジメチルピペラジン、トリエチレンジアミン、ピリジン、ピコリン、ジアザビシクロウンデセン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、BASF社製ラミロンC-260、CIBA社製Araldit HY-964およびロームアンドハース社製メンセンジアミン等の第2級または第3級アミン、1,2-エチレンビス(イソペンチリデンイミン)、1,2-ヘキシレンビス(イソペンチリデンイミン)、1,2-プロピレンビス(イソペンチリデンイミン)、p,p′-ビフェニレンビス(イソペンチリデンイミン)、1,2-エチレンビス(イソプロピリデンイミン)、1,3-プロピレンビス(イソプロピリデンイミン)、p-フェニレンビス(イソペンチリデンイミン)等のケチミン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸等の酸無水物、各種ポリアミド樹脂、ジシアンジアミドおよびその誘導体および各種イミダゾール類等が例示される。かかる硬化剤の使用量は、エポキシ樹脂100質量部に対し、5質量部~100質量部が好ましい。
Moreover, when using an epoxy resin, it is preferable to use the hardening | curing agent of an epoxy resin together. As curing agents for epoxy resins, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, diaminodicyclohexylmethane, m-xylenediamine, m-phenylene Primary amines such as diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, etc., linear diamines represented by (CH 3 ) 2 N (CH 2 ) n N (CH 3 ) 2 (wherein n is an integer of 1 to 10), A linear tertiary amine represented by (CH 3 ) 2 -N (CH 2 ) n -CH 3 (wherein n is an integer of 0 to 10), tetramethyl guanidine, N {(CH 2 ) n CH 3 } 3 (In the formula, n is an integer of 1 to 10) alkyl tertiary monoamines, trie Tanolamine, piperidine, N, N'-dimethylpiperazine, triethylenediamine, pyridine, picoline, diazabicycloundecene, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol ) Phenol, LAFILON C-260 manufactured by BASF, Araldit HY-964 manufactured by CIBA, and a secondary or tertiary amine such as mensens diamine manufactured by Rohm and Haas, 1,2-ethylene bis (isopentylideneimine) 1,2-Hexylene bis (isopentylidene imine), 1,2-propylene bis (isopentylidene imine), p, p′-biphenylene bis (isopentylidene imine), 1,2-ethylene bis (isopropylidene imine) ), 1,3-propylene bis (isopropylide) Imines), ketimines such as p-phenylene bis (isopentylidene imine), acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, various polyamide resins, dicyandiamide and derivatives thereof And various imidazoles and the like. The amount of the curing agent used is preferably 5 parts by mass to 100 parts by mass with respect to 100 parts by mass of the epoxy resin.
本発明で提供される接着剤組成物は反応性シリル基を有するため、上記エポキシ樹脂を併用した場合は、反応性シリル基とエポキシ基の両方に反応可能な基を有する化合物を添加することにより硬化した接着剤組成物の強度を向上させることもできる。反応性シリル基とエポキシ基の両方に反応可能な基を有する化合物の具体例としては、例えばN-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシランおよびγ-アミノプロピルトリエトキシシラン等が挙げられる。
Since the adhesive composition provided by the present invention has a reactive silyl group, when the above epoxy resin is used in combination, by adding a compound having a group capable of reacting to both the reactive silyl group and the epoxy group The strength of the cured adhesive composition can also be improved. Specific examples of the compound having a group capable of reacting to both a reactive silyl group and an epoxy group are, for example, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl)- Examples thereof include γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane.
本発明で提供される接着剤組成物は、前記硬化性組成物を含有する。そのため、接着剤の用途において前記硬化性組成物の効果を発揮することができるとともに、上塗り塗料との密着性を向上させることができる。また、特に、外装用タイル接着剤において、前記硬化性組成物の効果を高く発揮することができる。
The adhesive composition provided by the present invention contains the above-mentioned curable composition. Therefore, while being able to exhibit the effect of the said curable composition in the use of an adhesive agent, adhesiveness with a top coat can be improved. Moreover, especially in the exterior tile adhesive, the effect of the said curable composition can be exhibited highly.
以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
製造例、実施例及び比較例で得られた重合体の分析方法、並びに硬化性組成物から得られた硬化物の評価方法について以下に記載する。 Hereinafter, the present invention will be specifically described based on examples. The present invention is not limited by these examples. In the following, “parts” and “%” mean parts by mass and% by mass unless otherwise specified.
The analysis method of the polymer obtained by a manufacture example, an Example, and a comparative example, and the evaluation method of the hardened | cured material obtained from the curable composition are described below.
製造例、実施例及び比較例で得られた重合体の分析方法、並びに硬化性組成物から得られた硬化物の評価方法について以下に記載する。 Hereinafter, the present invention will be specifically described based on examples. The present invention is not limited by these examples. In the following, “parts” and “%” mean parts by mass and% by mass unless otherwise specified.
The analysis method of the polymer obtained by a manufacture example, an Example, and a comparative example, and the evaluation method of the hardened | cured material obtained from the curable composition are described below.
<二重結合量の定量方法>
1H-NMRの測定により、5.5ppm付近にある二重結合に結合した水素に由来するシグナルの積分値、及び3.0~4.5ppmにあるエステル基に隣接した炭素に結合した水素に由来するシグナルの積分値の比、並びに重合体の組成から、重合体の質量当たりの二重結合濃度を算出した。 <Method of quantifying double bond amount>
According to the measurement of 1 H-NMR, the integral value of the signal derived from the hydrogen bonded to the double bond at around 5.5 ppm, and the hydrogen bonded to the carbon adjacent to the ester group at 3.0 to 4.5 ppm The double bond concentration per mass of the polymer was calculated from the ratio of the integral value of the derived signal and the composition of the polymer.
1H-NMRの測定により、5.5ppm付近にある二重結合に結合した水素に由来するシグナルの積分値、及び3.0~4.5ppmにあるエステル基に隣接した炭素に結合した水素に由来するシグナルの積分値の比、並びに重合体の組成から、重合体の質量当たりの二重結合濃度を算出した。 <Method of quantifying double bond amount>
According to the measurement of 1 H-NMR, the integral value of the signal derived from the hydrogen bonded to the double bond at around 5.5 ppm, and the hydrogen bonded to the carbon adjacent to the ester group at 3.0 to 4.5 ppm The double bond concentration per mass of the polymer was calculated from the ratio of the integral value of the derived signal and the composition of the polymer.
<分子量測定>
ゲル浸透クロマトグラフ装置(型式名「HLC-8320」、東ソー社製)を用いて、下記の条件よりポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。
○測定条件
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
カラム温度:40℃
溶離液:テトラヒドロフラン
検出器:RI <Molecular weight measurement>
Using a gel permeation chromatograph (model name “HLC-8320”, manufactured by Tosoh Corporation), a number average molecular weight (Mn) and a weight average molecular weight (Mw) in terms of polystyrene were obtained under the following conditions. Moreover, molecular weight distribution (Mw / Mn) was computed from the obtained value.
○ Measurement condition column: Tosoh TSKgel SuperMultipore HZ-M × 4 column temperature: 40 ° C
Eluent: tetrahydrofuran detector: RI
ゲル浸透クロマトグラフ装置(型式名「HLC-8320」、東ソー社製)を用いて、下記の条件よりポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。
○測定条件
カラム:東ソー製TSKgel SuperMultiporeHZ-M×4本
カラム温度:40℃
溶離液:テトラヒドロフラン
検出器:RI <Molecular weight measurement>
Using a gel permeation chromatograph (model name “HLC-8320”, manufactured by Tosoh Corporation), a number average molecular weight (Mn) and a weight average molecular weight (Mw) in terms of polystyrene were obtained under the following conditions. Moreover, molecular weight distribution (Mw / Mn) was computed from the obtained value.
○ Measurement condition column: Tosoh TSKgel SuperMultipore HZ-M × 4 column temperature: 40 ° C
Eluent: tetrahydrofuran detector: RI
<(メタ)アクリル系重合体に含まれる反応性シリル基の平均数>
反応性シリル基であるアルコキシシリル基の数(平均数)f(Si)は全構成単量体を100質量部とした場合の反応性シリル基を有する単量体の質量部から、下記式を用いて算出した。
f(Si)={シリル基単量体の質量部/(シリル基単量体の分子量×100/Mn)} <Average number of reactive silyl groups contained in (meth) acrylic polymer>
The number (average number) f (Si) of the alkoxysilyl group which is a reactive silyl group is represented by the following formula from the mass part of the monomer having a reactive silyl group when the total constituent monomer is 100 parts by mass: Calculated using.
f (Si) = {mass part of silyl group monomer / (molecular weight of silyl group monomer x 100 / Mn)}
反応性シリル基であるアルコキシシリル基の数(平均数)f(Si)は全構成単量体を100質量部とした場合の反応性シリル基を有する単量体の質量部から、下記式を用いて算出した。
f(Si)={シリル基単量体の質量部/(シリル基単量体の分子量×100/Mn)} <Average number of reactive silyl groups contained in (meth) acrylic polymer>
The number (average number) f (Si) of the alkoxysilyl group which is a reactive silyl group is represented by the following formula from the mass part of the monomer having a reactive silyl group when the total constituent monomer is 100 parts by mass: Calculated using.
f (Si) = {mass part of silyl group monomer / (molecular weight of silyl group monomer x 100 / Mn)}
<(メタ)アクリル系重合体の粘度>
TVE-20H型粘度計(塩水/平板方式、東機産業社製)を用いて、下記の条件下でE型粘度を測定した。
○測定条件
コーン形状:角度1°34′、半径24mm(10000mPa・s未満)
角度3°、半径7.7mm(10000mPa・s以上)
温度:25℃±0.5℃ <Viscosity of (meth) acrylic polymer>
The viscosity of E-type was measured under the following conditions using a TVE-20H viscometer (salt water / plate type, manufactured by Toki Sangyo Co., Ltd.).
○ Measurement conditions Cone shape: Angle 1 ° 34 ′, radius 24 mm (less than 10000 mPa · s)
Angle 3 °, radius 7.7 mm (more than 10000 mPa · s)
Temperature: 25 ° C ± 0.5 ° C
TVE-20H型粘度計(塩水/平板方式、東機産業社製)を用いて、下記の条件下でE型粘度を測定した。
○測定条件
コーン形状:角度1°34′、半径24mm(10000mPa・s未満)
角度3°、半径7.7mm(10000mPa・s以上)
温度:25℃±0.5℃ <Viscosity of (meth) acrylic polymer>
The viscosity of E-type was measured under the following conditions using a TVE-20H viscometer (salt water / plate type, manufactured by Toki Sangyo Co., Ltd.).
○ Measurement conditions Cone shape: Angle 1 ° 34 ′, radius 24 mm (less than 10000 mPa · s)
Angle 3 °, radius 7.7 mm (more than 10000 mPa · s)
Temperature: 25 ° C ± 0.5 ° C
<耐候性試験(1)>
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作成した。得られた硬化物をメタリングウェザーメーター(ダイプラ・ウィンテス社製「DAIPLA METAL WEATHER KU-R5NCI-A」)に入れ、促進耐候試験を行った。条件は照射63℃、70%RH、照度80mW/cm2とし、2時間に1回2分間のシャワーで試験を実施した。外観にクラック、ブリード等の異常が生じ始めた時間を記録した。 <Weatherability test (1)>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to form a cured sheet. The resulting cured product was placed in a metalling weather meter ("DAIPLA METAL WEATHER KU-R5NCI-A" manufactured by Daipra Wintess Co., Ltd.) and subjected to an accelerated weathering test. The conditions were irradiation 63 ° C., 70% RH, and illuminance 80 mW / cm 2, and the test was carried out with a shower for 2 minutes once every 2 hours. The time when abnormalities such as cracks and bleeding started to occur was recorded.
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作成した。得られた硬化物をメタリングウェザーメーター(ダイプラ・ウィンテス社製「DAIPLA METAL WEATHER KU-R5NCI-A」)に入れ、促進耐候試験を行った。条件は照射63℃、70%RH、照度80mW/cm2とし、2時間に1回2分間のシャワーで試験を実施した。外観にクラック、ブリード等の異常が生じ始めた時間を記録した。 <Weatherability test (1)>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to form a cured sheet. The resulting cured product was placed in a metalling weather meter ("DAIPLA METAL WEATHER KU-R5NCI-A" manufactured by Daipra Wintess Co., Ltd.) and subjected to an accelerated weathering test. The conditions were irradiation 63 ° C., 70% RH, and illuminance 80 mW / cm 2, and the test was carried out with a shower for 2 minutes once every 2 hours. The time when abnormalities such as cracks and bleeding started to occur was recorded.
<耐候性試験(2)>
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作製した。得られた硬化物をメタリングウェザーメーター(ダイプラ・ウィンテス社製「DAIPLA METAL WEATHER KU-R5NCI-A」)に入れ、促進耐候試験を行った。条件は照射63℃、70%RH、照度80mW/cm2とし、2時間に1回2分間のシャワーの試験を1000時間実施した。1000時間後に、表面状態の目視確認(クラック発生の有無)および色差計(日本電色社製分光色彩計SE-2000)により色差(△E)を求め、退色の程度か
ら耐候性の評価を行った。なお、色差(△E)は、分光色彩計で測定された明度(L*)
、赤-緑方向の色度(a*)および黄-青方向の色度(b*)の値を下記式に代入することで求めた。 <Weatherability test (2)>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to prepare a cured sheet. The resulting cured product was placed in a metalling weather meter ("DAIPLA METAL WEATHER KU-R5NCI-A" manufactured by Daipra Wintess Co., Ltd.) and subjected to an accelerated weathering test. The conditions were irradiation 63 ° C., 70% RH, and illuminance 80 mW / cm 2, and a test of a shower for 2 minutes was carried out every 2 hours for 1000 hours. After 1000 hours, the surface condition was visually confirmed (presence or absence of cracks) and the color difference (ΔE) was determined using a color difference meter (Nippon Denshoku Co., Ltd. spectral colorimeter SE-2000), and weatherability was evaluated from the degree of fading. The The color difference (ΔE) is the lightness (L * ) measured by the spectrocolorimeter.
Red - determined by substituting the values of the blue direction chromaticity (b *) in the formula - green direction chromaticity (a *) and yellow.
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作製した。得られた硬化物をメタリングウェザーメーター(ダイプラ・ウィンテス社製「DAIPLA METAL WEATHER KU-R5NCI-A」)に入れ、促進耐候試験を行った。条件は照射63℃、70%RH、照度80mW/cm2とし、2時間に1回2分間のシャワーの試験を1000時間実施した。1000時間後に、表面状態の目視確認(クラック発生の有無)および色差計(日本電色社製分光色彩計SE-2000)により色差(△E)を求め、退色の程度か
ら耐候性の評価を行った。なお、色差(△E)は、分光色彩計で測定された明度(L*)
、赤-緑方向の色度(a*)および黄-青方向の色度(b*)の値を下記式に代入することで求めた。 <Weatherability test (2)>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to prepare a cured sheet. The resulting cured product was placed in a metalling weather meter ("DAIPLA METAL WEATHER KU-R5NCI-A" manufactured by Daipra Wintess Co., Ltd.) and subjected to an accelerated weathering test. The conditions were irradiation 63 ° C., 70% RH, and illuminance 80 mW / cm 2, and a test of a shower for 2 minutes was carried out every 2 hours for 1000 hours. After 1000 hours, the surface condition was visually confirmed (presence or absence of cracks) and the color difference (ΔE) was determined using a color difference meter (Nippon Denshoku Co., Ltd. spectral colorimeter SE-2000), and weatherability was evaluated from the degree of fading. The The color difference (ΔE) is the lightness (L * ) measured by the spectrocolorimeter.
Red - determined by substituting the values of the blue direction chromaticity (b *) in the formula - green direction chromaticity (a *) and yellow.
<引張試験>
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作成した。得られた硬化物より引張試験用ダンベル(JIS K 6251 3号型)を作成し、引張試験機(オートグラフAGS-J、島津製作所社製)を用いて、引張速度200mm/分の条件下での破断伸び及び破断強度を測定した。 <Tension test>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to form a cured sheet. A dumbbell for tensile test (JIS K 6251 type 3) is prepared from the obtained cured product, and a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation) is used under a condition of a tensile speed of 200 mm / min. Elongation at break and breaking strength were measured.
各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作成した。得られた硬化物より引張試験用ダンベル(JIS K 6251 3号型)を作成し、引張試験機(オートグラフAGS-J、島津製作所社製)を用いて、引張速度200mm/分の条件下での破断伸び及び破断強度を測定した。 <Tension test>
Each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm, and cured for 1 week under conditions of 23 ° C. and 50% RH to form a cured sheet. A dumbbell for tensile test (JIS K 6251 type 3) is prepared from the obtained cured product, and a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation) is used under a condition of a tensile speed of 200 mm / min. Elongation at break and breaking strength were measured.
<接着強度試験>
JIS A5557(2006) 外装タイル張り用有機系接着剤における接着強さ試験方法に準拠して、モルタル板と外装モザイクタイルを用いて試験を行った。
モルタル板(TP技研製、10×50×50mm)に、接着剤を約5mmの厚みで塗布し、くし目ごてで引いたのち、JIS A5209の規定に適合する市販の外装モザイクタイル(45×45mm)を接着させた。23℃、50%RHの条件で4週間養生させた後、タイル側およびモルタル側に専用治具を取り付け、引張試験機(オートグラフAGS-J、島津製作所社製)を用いて、23℃条件下、引張速度3mm/分で引張試験を行うことにより、接着強さを測定した。 <Adhesive strength test>
According to the adhesive strength test method in JIS A5557 (2006) organic adhesive for exterior tile application, the test was performed using a mortar board and an exterior mosaic tile.
An adhesive is applied in a thickness of about 5 mm to a mortar board (TP Giken Co., Ltd., 10 × 50 × 50 mm), and after drawing with a comb, a commercially available exterior mosaic tile (45 ×) conforming to JIS A5209. 45 mm) was attached. After curing for 4 weeks under conditions of 23 ° C and 50% RH, a dedicated jig is attached to the tile side and the mortar side, and using a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation), the condition at 23 ° C. The adhesion strength was measured by conducting a tensile test at a tensile speed of 3 mm / min.
JIS A5557(2006) 外装タイル張り用有機系接着剤における接着強さ試験方法に準拠して、モルタル板と外装モザイクタイルを用いて試験を行った。
モルタル板(TP技研製、10×50×50mm)に、接着剤を約5mmの厚みで塗布し、くし目ごてで引いたのち、JIS A5209の規定に適合する市販の外装モザイクタイル(45×45mm)を接着させた。23℃、50%RHの条件で4週間養生させた後、タイル側およびモルタル側に専用治具を取り付け、引張試験機(オートグラフAGS-J、島津製作所社製)を用いて、23℃条件下、引張速度3mm/分で引張試験を行うことにより、接着強さを測定した。 <Adhesive strength test>
According to the adhesive strength test method in JIS A5557 (2006) organic adhesive for exterior tile application, the test was performed using a mortar board and an exterior mosaic tile.
An adhesive is applied in a thickness of about 5 mm to a mortar board (TP Giken Co., Ltd., 10 × 50 × 50 mm), and after drawing with a comb, a commercially available exterior mosaic tile (45 ×) conforming to JIS A5209. 45 mm) was attached. After curing for 4 weeks under conditions of 23 ° C and 50% RH, a dedicated jig is attached to the tile side and the mortar side, and using a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation), the condition at 23 ° C. The adhesion strength was measured by conducting a tensile test at a tensile speed of 3 mm / min.
≪(A)成分:低分子量(メタ)アクリル系重合体の製造≫
合成例1((メタ)アクリル系重合体A-1の製造)
○重合工程
オイルジャケットを備えた容量1000mLの加圧式攪拌槽型反応器の温度を265℃に保った。次いで、反応器の圧力を一定に保ちながら、単量体として、アクリル酸テトラデシル(以下、「TDA」という。)を10部、アクリル酸2-エチルヘキシル(以下、「HA」という)を70部、メタクリル酸メチル(以下、「MMA」という)を20部、溶媒として、メチルエチルケトン(以下、「MEK」という)を20部、重合開始剤としてジ-t-ブチルパーオキサイド(日油製、商品名「パーブチルD」、以下、「DTBP」という)を0.2部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケットの温度を制御することにより、反応温度を264~266℃に保持した。
単量体混合物の供給開始から温度が安定した時点を、反応液の採取開始点とし、これから25分間反応を継続した結果、1.2kgの単量体混合液を供給し、1.2kgの反応液を回収した。その後反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して濃縮液を得た。 << (A) Component: Production of low molecular weight (meth) acrylic polymer >>
Synthesis Example 1 (Production of (Meth) acrylic Polymer A-1)
○ Polymerization process The temperature of a 1000 mL capacity pressure type stirred tank reactor equipped with an oil jacket was maintained at 265 ° C. Subsequently, 10 parts of tetradecyl acrylate (hereinafter referred to as "TDA") and 70 parts of 2-ethylhexyl acrylate (hereinafter referred to as "HA") as monomers while keeping the pressure of the reactor constant. 20 parts of methyl methacrylate (hereinafter referred to as "MMA"), 20 parts of methyl ethyl ketone (hereinafter referred to as "MEK") as a solvent, di-t-butyl peroxide (manufactured by NOF Corporation, trade name " The monomer mixture consisting of 0.2 part of “Perbutyl D” (hereinafter referred to as “DTBP”) is continuously fed from the raw material tank to the reactor at a constant feed rate (48 g / min, residence time: 12 minutes) The reaction solution corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet. Immediately after the start of the reaction, the reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
The point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction. The solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
合成例1((メタ)アクリル系重合体A-1の製造)
○重合工程
オイルジャケットを備えた容量1000mLの加圧式攪拌槽型反応器の温度を265℃に保った。次いで、反応器の圧力を一定に保ちながら、単量体として、アクリル酸テトラデシル(以下、「TDA」という。)を10部、アクリル酸2-エチルヘキシル(以下、「HA」という)を70部、メタクリル酸メチル(以下、「MMA」という)を20部、溶媒として、メチルエチルケトン(以下、「MEK」という)を20部、重合開始剤としてジ-t-ブチルパーオキサイド(日油製、商品名「パーブチルD」、以下、「DTBP」という)を0.2部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケットの温度を制御することにより、反応温度を264~266℃に保持した。
単量体混合物の供給開始から温度が安定した時点を、反応液の採取開始点とし、これから25分間反応を継続した結果、1.2kgの単量体混合液を供給し、1.2kgの反応液を回収した。その後反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して濃縮液を得た。 << (A) Component: Production of low molecular weight (meth) acrylic polymer >>
Synthesis Example 1 (Production of (Meth) acrylic Polymer A-1)
○ Polymerization process The temperature of a 1000 mL capacity pressure type stirred tank reactor equipped with an oil jacket was maintained at 265 ° C. Subsequently, 10 parts of tetradecyl acrylate (hereinafter referred to as "TDA") and 70 parts of 2-ethylhexyl acrylate (hereinafter referred to as "HA") as monomers while keeping the pressure of the reactor constant. 20 parts of methyl methacrylate (hereinafter referred to as "MMA"), 20 parts of methyl ethyl ketone (hereinafter referred to as "MEK") as a solvent, di-t-butyl peroxide (manufactured by NOF Corporation, trade name " The monomer mixture consisting of 0.2 part of “Perbutyl D” (hereinafter referred to as “DTBP”) is continuously fed from the raw material tank to the reactor at a constant feed rate (48 g / min, residence time: 12 minutes) The reaction solution corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet. Immediately after the start of the reaction, the reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
The point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction. The solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
○後処理工程
次いで、窒素置換したフラスコに、上記重合工程で得られた濃縮液を100重量部入れ、液温が90℃になるまで、窒素を流しながら加熱撹拌した。90℃になった時点でラジカル発生剤であるt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名「パーヘキシルO」)を0.5部添加し、90℃に保ちながら16時間撹拌することにより(メタ)アクリル系重合体A-1を得た。重合体の性状について、表1に示した。 ○ Post-Treatment Step Next, 100 parts by weight of the concentrate obtained in the above polymerization step was placed in a nitrogen-substituted flask, and heated and stirred while flowing nitrogen until the liquid temperature reached 90 ° C. At 90 ° C., 0.5 part of a radical generator t-butylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name “Perhexyl O”) is added, and kept at 90 ° C. By stirring for 16 hours, a (meth) acrylic polymer A-1 was obtained. The properties of the polymer are shown in Table 1.
次いで、窒素置換したフラスコに、上記重合工程で得られた濃縮液を100重量部入れ、液温が90℃になるまで、窒素を流しながら加熱撹拌した。90℃になった時点でラジカル発生剤であるt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名「パーヘキシルO」)を0.5部添加し、90℃に保ちながら16時間撹拌することにより(メタ)アクリル系重合体A-1を得た。重合体の性状について、表1に示した。 ○ Post-Treatment Step Next, 100 parts by weight of the concentrate obtained in the above polymerization step was placed in a nitrogen-substituted flask, and heated and stirred while flowing nitrogen until the liquid temperature reached 90 ° C. At 90 ° C., 0.5 part of a radical generator t-butylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name “Perhexyl O”) is added, and kept at 90 ° C. By stirring for 16 hours, a (meth) acrylic polymer A-1 was obtained. The properties of the polymer are shown in Table 1.
合成例2~4((メタ)アクリル系重合体A-2~A-4の製造)
合成例1の重合工程後に得られた濃縮液を使用し、後処理工程におけるラジカル発生剤(パーヘキシルO)の添加量及び処理条件を表1の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体A-2~A-4を得た。各重合体の性状について、表1に示した。 Synthesis Examples 2 to 4 (Production of (Meth) acrylic Polymers A-2 to A-4)
By the same operation as in Synthesis Example 1 except that the concentrate obtained after the polymerization step of Synthesis Example 1 is used, and the addition amount of the radical generator (Perhexyl O) and the treatment conditions in the post-treatment step are changed as shown in Table 1. And (meth) acrylic polymers A-2 to A-4 were obtained. The properties of each polymer are shown in Table 1.
合成例1の重合工程後に得られた濃縮液を使用し、後処理工程におけるラジカル発生剤(パーヘキシルO)の添加量及び処理条件を表1の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体A-2~A-4を得た。各重合体の性状について、表1に示した。 Synthesis Examples 2 to 4 (Production of (Meth) acrylic Polymers A-2 to A-4)
By the same operation as in Synthesis Example 1 except that the concentrate obtained after the polymerization step of Synthesis Example 1 is used, and the addition amount of the radical generator (Perhexyl O) and the treatment conditions in the post-treatment step are changed as shown in Table 1. And (meth) acrylic polymers A-2 to A-4 were obtained. The properties of each polymer are shown in Table 1.
合成例5~10((メタ)アクリル系重合体A-5~A-10の製造)
重合工程で使用する原料及び反応器内温、並びに、後処理工程におけるラジカル発生剤(パーヘキシルO)の添加量及び処理条件を表1の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体A-5~A-10を得た。尚、合成例10((メタ)アクリル系重合体A-10)では、重合工程後に得られた濃縮液の後処理は実施しなかった。各重合体の性状について、表1に示した。 Synthesis Examples 5 to 10 (Production of (Meth) acrylic Polymers A-5 to A-10)
By the same operation as in Synthesis Example 1 except that the raw materials used in the polymerization step and the temperature in the reactor, the addition amount of the radical generator (Perhexyl O) in the post-treatment step, and the treatment conditions were changed as shown in Table 1 A meta) acrylic polymer A-5 to A-10 was obtained. In Synthesis Example 10 ((meth) acrylic polymer A-10), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Table 1.
重合工程で使用する原料及び反応器内温、並びに、後処理工程におけるラジカル発生剤(パーヘキシルO)の添加量及び処理条件を表1の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体A-5~A-10を得た。尚、合成例10((メタ)アクリル系重合体A-10)では、重合工程後に得られた濃縮液の後処理は実施しなかった。各重合体の性状について、表1に示した。 Synthesis Examples 5 to 10 (Production of (Meth) acrylic Polymers A-5 to A-10)
By the same operation as in Synthesis Example 1 except that the raw materials used in the polymerization step and the temperature in the reactor, the addition amount of the radical generator (Perhexyl O) in the post-treatment step, and the treatment conditions were changed as shown in Table 1 A meta) acrylic polymer A-5 to A-10 was obtained. In Synthesis Example 10 ((meth) acrylic polymer A-10), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Table 1.
合成例11((メタ)アクリル系重合体A-11の製造)
還流冷却器のついたフラスコに、酢酸ブチル(150部)を入れ、オイルバスで内温を94℃に保ち、攪拌を行った。滴下ロートにて、HA(80部)、TDA(10部)、MMA(10部)、ABN-E(8部)、の混合液を、4時間かけて滴下した。さらに94℃に保ちながら、2時間攪拌した。その後、エバポレーターにより、90℃、10mmHgの条件下、反応液の脱溶剤を行い、揮発成分を分離することにより(メタ)アクリル系重合体A-11を得た。重合体の性状について、表1に示した。 Synthesis Example 11 (Production of (Meth) acrylic Polymer A-11)
In a flask equipped with a reflux condenser, butyl acetate (150 parts) was added, and stirring was performed by maintaining the internal temperature at 94 ° C. with an oil bath. A mixed solution of HA (80 parts), TDA (10 parts), MMA (10 parts), and ABN-E (8 parts) was dropped over 4 hours with a dropping funnel. The mixture was further stirred for 2 hours while maintaining the temperature at 94 ° C. Thereafter, the solvent of the reaction solution was removed by an evaporator under conditions of 90 ° C. and 10 mmHg, and the volatile component was separated to obtain a (meth) acrylic polymer A-11. The properties of the polymer are shown in Table 1.
還流冷却器のついたフラスコに、酢酸ブチル(150部)を入れ、オイルバスで内温を94℃に保ち、攪拌を行った。滴下ロートにて、HA(80部)、TDA(10部)、MMA(10部)、ABN-E(8部)、の混合液を、4時間かけて滴下した。さらに94℃に保ちながら、2時間攪拌した。その後、エバポレーターにより、90℃、10mmHgの条件下、反応液の脱溶剤を行い、揮発成分を分離することにより(メタ)アクリル系重合体A-11を得た。重合体の性状について、表1に示した。 Synthesis Example 11 (Production of (Meth) acrylic Polymer A-11)
In a flask equipped with a reflux condenser, butyl acetate (150 parts) was added, and stirring was performed by maintaining the internal temperature at 94 ° C. with an oil bath. A mixed solution of HA (80 parts), TDA (10 parts), MMA (10 parts), and ABN-E (8 parts) was dropped over 4 hours with a dropping funnel. The mixture was further stirred for 2 hours while maintaining the temperature at 94 ° C. Thereafter, the solvent of the reaction solution was removed by an evaporator under conditions of 90 ° C. and 10 mmHg, and the volatile component was separated to obtain a (meth) acrylic polymer A-11. The properties of the polymer are shown in Table 1.
≪(B)成分:高分子量(メタ)アクリル系重合体の製造≫
合成例12((メタ)アクリル系重合体B-1の製造)
○重合工程
オイルジャケットを備えた容量1000mLの加圧式攪拌槽型反応器の温度を184℃に保った。次いで、反応器の圧力を一定に保ちながら、3-メタクリロキシプロピルジメトキシシラン(東レ・ダウコーニング社製、商品名「Z6033」、以下「DMS」という。)を2.8部、TDAを10部、HAを20部、アクリル酸n-ブチル(以下、「BA」という)を60.2部、MMAを7部、イソプロピルアルコール(以下、「IPA」という)を10部、オルソ酢酸トリメチル(以下、「MOA」という)を5部、MEKを5部、重合開始剤としてジ-t-ヘキシルパーオキサイド(日油製、商品名「パーヘキシルH」、以下、「DTHP」という)を0.1部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケットの温度を制御することにより、反応温度を264~266℃に保持した。
単量体混合物の供給開始から温度が安定した時点を、反応液の採取開始点とし、これから25分間反応を継続した結果、1.2kgの単量体混合液を供給し、1.2kgの反応液を回収した。その後反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して濃縮液を得た。 << (B) Component: Production of high molecular weight (meth) acrylic polymer >>
Synthesis example 12 (Production of (meth) acrylic polymer B-1)
○ Polymerization process The temperature of a 1000 mL capacity pressure type stirred tank reactor equipped with an oil jacket was maintained at 184 ° C. Then, keeping the pressure of the reactor constant, 2.8 parts of 3-methacryloxypropyldimethoxysilane (made by Toray Dow Corning, trade name "Z6033", hereinafter "DMS") and 10 parts of TDA. 20 parts of HA, 60.2 parts of n-butyl acrylate (hereinafter referred to as “BA”), 7 parts of MMA, 10 parts of isopropyl alcohol (hereinafter referred to as “IPA”), trimethyl orthoacetate (hereinafter referred to as 5 parts of "MOA"), 5 parts of MEK, and 0.1 part of di-t-hexyl peroxide (made by NOF, trade name "Perhexyl H", hereinafter "DTHP") as a polymerization initiator The monomer mixture is continuously fed from the raw material tank to the reactor at a constant feed rate (48 g / min, residence time: 12 minutes), and a reaction solution corresponding to the feed amount of the monomer mixture is discharged. It was continuously withdrawn from. Immediately after the start of the reaction, the reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
The point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction. The solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
合成例12((メタ)アクリル系重合体B-1の製造)
○重合工程
オイルジャケットを備えた容量1000mLの加圧式攪拌槽型反応器の温度を184℃に保った。次いで、反応器の圧力を一定に保ちながら、3-メタクリロキシプロピルジメトキシシラン(東レ・ダウコーニング社製、商品名「Z6033」、以下「DMS」という。)を2.8部、TDAを10部、HAを20部、アクリル酸n-ブチル(以下、「BA」という)を60.2部、MMAを7部、イソプロピルアルコール(以下、「IPA」という)を10部、オルソ酢酸トリメチル(以下、「MOA」という)を5部、MEKを5部、重合開始剤としてジ-t-ヘキシルパーオキサイド(日油製、商品名「パーヘキシルH」、以下、「DTHP」という)を0.1部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケットの温度を制御することにより、反応温度を264~266℃に保持した。
単量体混合物の供給開始から温度が安定した時点を、反応液の採取開始点とし、これから25分間反応を継続した結果、1.2kgの単量体混合液を供給し、1.2kgの反応液を回収した。その後反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して濃縮液を得た。 << (B) Component: Production of high molecular weight (meth) acrylic polymer >>
Synthesis example 12 (Production of (meth) acrylic polymer B-1)
○ Polymerization process The temperature of a 1000 mL capacity pressure type stirred tank reactor equipped with an oil jacket was maintained at 184 ° C. Then, keeping the pressure of the reactor constant, 2.8 parts of 3-methacryloxypropyldimethoxysilane (made by Toray Dow Corning, trade name "Z6033", hereinafter "DMS") and 10 parts of TDA. 20 parts of HA, 60.2 parts of n-butyl acrylate (hereinafter referred to as “BA”), 7 parts of MMA, 10 parts of isopropyl alcohol (hereinafter referred to as “IPA”), trimethyl orthoacetate (hereinafter referred to as 5 parts of "MOA"), 5 parts of MEK, and 0.1 part of di-t-hexyl peroxide (made by NOF, trade name "Perhexyl H", hereinafter "DTHP") as a polymerization initiator The monomer mixture is continuously fed from the raw material tank to the reactor at a constant feed rate (48 g / min, residence time: 12 minutes), and a reaction solution corresponding to the feed amount of the monomer mixture is discharged. It was continuously withdrawn from. Immediately after the start of the reaction, the reaction temperature was once lowered, and a temperature rise due to heat of polymerization was observed, but the reaction temperature was maintained at 264 to 266 ° C. by controlling the temperature of the oil jacket.
The point at which the temperature is stabilized from the start of supply of the monomer mixture is taken as the collection start point of the reaction solution, and as a result of continuing the reaction for 25 minutes, 1.2 kg of the monomer mixture is supplied, 1.2 kg of the reaction. The solution was collected. Thereafter, the reaction solution was introduced into a thin-film evaporator, and volatile components such as unreacted monomers were separated to obtain a concentrated solution.
○後処理工程
上記重合工程後に得られた濃縮液を使用し、後処理工程におけるラジカル発生剤の種類及び添加量、並びに、処理条件を表2の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体B-1を得た。重合体の性状について、表2に示した。 ○ Post-treatment step The same operation as in Synthesis Example 1 except that the concentration and amount of the radical generating agent added in the post-treatment step and the treatment conditions are changed as shown in Table 2 using the concentrate obtained after the above-mentioned polymerization step Thus, a (meth) acrylic polymer B-1 was obtained. The properties of the polymer are shown in Table 2.
上記重合工程後に得られた濃縮液を使用し、後処理工程におけるラジカル発生剤の種類及び添加量、並びに、処理条件を表2の通り変更した以外は合成例1と同様の操作により、(メタ)アクリル系重合体B-1を得た。重合体の性状について、表2に示した。 ○ Post-treatment step The same operation as in Synthesis Example 1 except that the concentration and amount of the radical generating agent added in the post-treatment step and the treatment conditions are changed as shown in Table 2 using the concentrate obtained after the above-mentioned polymerization step Thus, a (meth) acrylic polymer B-1 was obtained. The properties of the polymer are shown in Table 2.
合成例13~22及び24((メタ)アクリル系重合体B-2~B-11及びB-13の製造)
重合工程で使用する原料及び反応器内温、並びに、後処理工程におけるラジカル発生剤の種類及び添加量、並びに、処処理条件を表2及び表3の通りとした以外は合成例12と同様の操作により、(メタ)アクリル系重合体B-2~B-11及びB-13を得た。尚、合成例18((メタ)アクリル系重合体B-7)では、重合工程後に得られた濃縮液の後処理は実施しなかった。各重合体の性状について、表2及び表3に示した。 Synthesis Examples 13 to 22 and 24 (Production of (meth) acrylic polymers B-2 to B-11 and B-13)
The same as in Synthesis Example 12 except that the raw materials used in the polymerization step and the temperature in the reactor, the type and amount of the radical generator in the post-treatment step, and the treatment conditions are as shown in Tables 2 and 3. By operation, (meth) acrylic polymers B-2 to B-11 and B-13 were obtained. In Synthesis Example 18 ((meth) acrylic polymer B-7), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Tables 2 and 3.
重合工程で使用する原料及び反応器内温、並びに、後処理工程におけるラジカル発生剤の種類及び添加量、並びに、処処理条件を表2及び表3の通りとした以外は合成例12と同様の操作により、(メタ)アクリル系重合体B-2~B-11及びB-13を得た。尚、合成例18((メタ)アクリル系重合体B-7)では、重合工程後に得られた濃縮液の後処理は実施しなかった。各重合体の性状について、表2及び表3に示した。 Synthesis Examples 13 to 22 and 24 (Production of (meth) acrylic polymers B-2 to B-11 and B-13)
The same as in Synthesis Example 12 except that the raw materials used in the polymerization step and the temperature in the reactor, the type and amount of the radical generator in the post-treatment step, and the treatment conditions are as shown in Tables 2 and 3. By operation, (meth) acrylic polymers B-2 to B-11 and B-13 were obtained. In Synthesis Example 18 ((meth) acrylic polymer B-7), post-treatment of the concentrate obtained after the polymerization step was not performed. The properties of each polymer are shown in Tables 2 and 3.
合成例23((メタ)アクリル系重合体B-12の製造)
○RAFT剤(1,4-ビス(n-ドデシルスルファニルチオカルボニルスルファニルメチル)ベンゼン)の合成
ナス型フラスコに1-ドデカンチオール(42.2g)、20%KOH水溶液(63.8g)、トリオクチルメチルアンモニウムクロリド(1.5g)を加えて氷浴で冷却し、二硫化炭素(15.9g)、テトラヒドロフラン(以下「THF」ともいう)(38ml)を加え20分攪拌した。α、α’-ジクロロ-p-キシレン(16.6g)のTHF溶液(170ml)を30分かけて滴下した。室温で1時間反応させた後、クロロホルムから抽出し、純水で洗浄、無水硫酸ナトリウムで乾燥、ロータリーエバポレータで濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製した後、酢酸エチルから再結晶することにより、以下の式(5)で表される1,4-ビス(n-ドデシルスルファニルチオカルボニルスルファニルメチル)ベンゼン(以下「DLBTTC」ともいう)を収率80%で得た。1H-NMR測定より7.2ppm、4.6ppm、3.4ppmに目的物のピークを確認した。 Synthesis example 23 (Production of (meth) acrylic polymer B-12)
○ Synthesis of RAFT agent (1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene) 1-dodecanethiol (42.2 g), 20% aqueous KOH solution (63.8 g), trioctylmethyl in an eggplant-type flask Ammonium chloride (1.5 g) was added and the mixture was cooled in an ice bath, carbon disulfide (15.9 g) and tetrahydrofuran (hereinafter also referred to as "THF") (38 ml) were added and stirred for 20 minutes. A THF solution (170 ml) of α, α′-dichloro-p-xylene (16.6 g) was added dropwise over 30 minutes. The mixture was allowed to react at room temperature for 1 hour, extracted from chloroform, washed with pure water, dried over anhydrous sodium sulfate, and concentrated by a rotary evaporator. The crude product obtained is purified by column chromatography and then recrystallized from ethyl acetate to give 1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene represented by the following formula (5) An 80% yield (hereinafter also referred to as "DLBTTC") was obtained. The peaks of the desired product were confirmed at 7.2 ppm, 4.6 ppm and 3.4 ppm by 1 H-NMR measurement.
○RAFT剤(1,4-ビス(n-ドデシルスルファニルチオカルボニルスルファニルメチル)ベンゼン)の合成
ナス型フラスコに1-ドデカンチオール(42.2g)、20%KOH水溶液(63.8g)、トリオクチルメチルアンモニウムクロリド(1.5g)を加えて氷浴で冷却し、二硫化炭素(15.9g)、テトラヒドロフラン(以下「THF」ともいう)(38ml)を加え20分攪拌した。α、α’-ジクロロ-p-キシレン(16.6g)のTHF溶液(170ml)を30分かけて滴下した。室温で1時間反応させた後、クロロホルムから抽出し、純水で洗浄、無水硫酸ナトリウムで乾燥、ロータリーエバポレータで濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製した後、酢酸エチルから再結晶することにより、以下の式(5)で表される1,4-ビス(n-ドデシルスルファニルチオカルボニルスルファニルメチル)ベンゼン(以下「DLBTTC」ともいう)を収率80%で得た。1H-NMR測定より7.2ppm、4.6ppm、3.4ppmに目的物のピークを確認した。 Synthesis example 23 (Production of (meth) acrylic polymer B-12)
○ Synthesis of RAFT agent (1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene) 1-dodecanethiol (42.2 g), 20% aqueous KOH solution (63.8 g), trioctylmethyl in an eggplant-type flask Ammonium chloride (1.5 g) was added and the mixture was cooled in an ice bath, carbon disulfide (15.9 g) and tetrahydrofuran (hereinafter also referred to as "THF") (38 ml) were added and stirred for 20 minutes. A THF solution (170 ml) of α, α′-dichloro-p-xylene (16.6 g) was added dropwise over 30 minutes. The mixture was allowed to react at room temperature for 1 hour, extracted from chloroform, washed with pure water, dried over anhydrous sodium sulfate, and concentrated by a rotary evaporator. The crude product obtained is purified by column chromatography and then recrystallized from ethyl acetate to give 1,4-bis (n-dodecylsulfanylthiocarbonylsulfanylmethyl) benzene represented by the following formula (5) An 80% yield (hereinafter also referred to as "DLBTTC") was obtained. The peaks of the desired product were confirmed at 7.2 ppm, 4.6 ppm and 3.4 ppm by 1 H-NMR measurement.
○高分子量(メタ)アクリル系重合体の製造
攪拌機、温度計を装着した1Lフラスコに上記1で得られたRAFT剤(DLBTTC)(9.13g)、2,2’-アゾビス2-メチルブチロニトリル(以下「ABN-E」という)(0.53g)、BA(560g)およびアニソール(230g)を仕込み、窒素バブリングで十分脱気し、60℃の恒温槽で攪拌しながら重合を開始した。3時間30分後、室温まで冷却し、反応を停止した。上記重合溶液を、メタノールから再沈殿精製、真空乾燥することで重合体を得た。
次いで、上記重合体(320g)を、攪拌機、温度計を装着した1Lフラスコに入れ、さらに、BA(138.9g)、DMS(5.3g)、ABN-E(0.40g)、およびアニソール(285g)を仕込み、窒素バブリングで十分脱気し、60℃の恒温槽で攪拌しながら重合を再開始した。8時間後、室温まで冷却し、反応を停止した。この重合溶液を、メタノールから再沈殿精製、真空乾燥することで(メタ)アクリル系重合体B-12を得た。重合体の性状について、表3に示した。 ○ Production of high molecular weight (meth) acrylic polymer The RAFT agent (DLBTTC) (9.13 g) obtained in the above 1 in a 1 L flask equipped with a stirrer and a thermometer, 2,2'-azobis 2-methylbutyro A nitrile (hereinafter referred to as "ABN-E") (0.53 g), BA (560 g) and anisole (230 g) were charged, sufficiently degassed by nitrogen bubbling, and polymerization was initiated while stirring in a thermostat at 60.degree. After 3 hours and 30 minutes, the reaction was cooled to room temperature and quenched. The polymer solution was purified by reprecipitation from methanol and vacuum dried to obtain a polymer.
Next, the above polymer (320 g) is placed in a 1 L flask equipped with a stirrer and a thermometer, and further BA (138.9 g), DMS (5.3 g), ABN-E (0.40 g), and anisole ( 285 g) was charged, sufficiently degassed by bubbling nitrogen, and polymerization was restarted while stirring in a thermostat of 60 ° C. After 8 hours, the reaction was cooled to room temperature and quenched. This polymerization solution was purified by reprecipitation from methanol and vacuum drying to obtain a (meth) acrylic polymer B-12. The properties of the polymer are shown in Table 3.
攪拌機、温度計を装着した1Lフラスコに上記1で得られたRAFT剤(DLBTTC)(9.13g)、2,2’-アゾビス2-メチルブチロニトリル(以下「ABN-E」という)(0.53g)、BA(560g)およびアニソール(230g)を仕込み、窒素バブリングで十分脱気し、60℃の恒温槽で攪拌しながら重合を開始した。3時間30分後、室温まで冷却し、反応を停止した。上記重合溶液を、メタノールから再沈殿精製、真空乾燥することで重合体を得た。
次いで、上記重合体(320g)を、攪拌機、温度計を装着した1Lフラスコに入れ、さらに、BA(138.9g)、DMS(5.3g)、ABN-E(0.40g)、およびアニソール(285g)を仕込み、窒素バブリングで十分脱気し、60℃の恒温槽で攪拌しながら重合を再開始した。8時間後、室温まで冷却し、反応を停止した。この重合溶液を、メタノールから再沈殿精製、真空乾燥することで(メタ)アクリル系重合体B-12を得た。重合体の性状について、表3に示した。 ○ Production of high molecular weight (meth) acrylic polymer The RAFT agent (DLBTTC) (9.13 g) obtained in the above 1 in a 1 L flask equipped with a stirrer and a thermometer, 2,2'-azobis 2-methylbutyro A nitrile (hereinafter referred to as "ABN-E") (0.53 g), BA (560 g) and anisole (230 g) were charged, sufficiently degassed by nitrogen bubbling, and polymerization was initiated while stirring in a thermostat at 60.degree. After 3 hours and 30 minutes, the reaction was cooled to room temperature and quenched. The polymer solution was purified by reprecipitation from methanol and vacuum dried to obtain a polymer.
Next, the above polymer (320 g) is placed in a 1 L flask equipped with a stirrer and a thermometer, and further BA (138.9 g), DMS (5.3 g), ABN-E (0.40 g), and anisole ( 285 g) was charged, sufficiently degassed by bubbling nitrogen, and polymerization was restarted while stirring in a thermostat of 60 ° C. After 8 hours, the reaction was cooled to room temperature and quenched. This polymerization solution was purified by reprecipitation from methanol and vacuum drying to obtain a (meth) acrylic polymer B-12. The properties of the polymer are shown in Table 3.
表1~3に示された化合物の詳細は以下の通り。
BA:アクリル酸ブチル
HA:アクリル酸2-エチルヘキシル
TDA:アクリル酸トリデシル
MMA:メタクリル酸メチル
DMS:3-メタクリロキシプロピルメチルジメトキシシラン
TMS:3-メタクリロキシプロピルトリメトキシシラン
IPA:イソプロピルアルコール
MOA:オルソ酢酸メチル
MEK:メチルエチルケトン
BAC:酢酸ブチル
DTBP:ジ-t-ブチルパーオキサイド
DTHP:ジ-t-ヘキシルパーオキシド
ABN-E:2,2’-アゾビス(2-メチルブチロニトリル)
PHO:t-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名「パーヘキシルO」)
AIBN:2,2’-アゾビス(イソブチロニトリル) The details of the compounds shown in Tables 1 to 3 are as follows.
BA: butyl acrylate HA: 2-ethylhexyl acrylate TDA: tridecyl acrylate MMA: methyl methacrylate DMS: 3-methacryloxypropyl methyl dimethoxysilane TMS: 3-methacryloxypropyl trimethoxysilane IPA: isopropyl alcohol MOA: ortho acetic acid Methyl MEK: methyl ethyl ketone BAC: butyl acetate DTBP: di-t-butyl peroxide DTHP: di-t-hexyl peroxide ABN-E: 2,2'-azobis (2-methylbutyronitrile)
PHO: t-butylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name "Perhexyl O")
AIBN: 2,2'-azobis (isobutyronitrile)
BA:アクリル酸ブチル
HA:アクリル酸2-エチルヘキシル
TDA:アクリル酸トリデシル
MMA:メタクリル酸メチル
DMS:3-メタクリロキシプロピルメチルジメトキシシラン
TMS:3-メタクリロキシプロピルトリメトキシシラン
IPA:イソプロピルアルコール
MOA:オルソ酢酸メチル
MEK:メチルエチルケトン
BAC:酢酸ブチル
DTBP:ジ-t-ブチルパーオキサイド
DTHP:ジ-t-ヘキシルパーオキシド
ABN-E:2,2’-アゾビス(2-メチルブチロニトリル)
PHO:t-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名「パーヘキシルO」)
AIBN:2,2’-アゾビス(イソブチロニトリル) The details of the compounds shown in Tables 1 to 3 are as follows.
BA: butyl acrylate HA: 2-ethylhexyl acrylate TDA: tridecyl acrylate MMA: methyl methacrylate DMS: 3-methacryloxypropyl methyl dimethoxysilane TMS: 3-methacryloxypropyl trimethoxysilane IPA: isopropyl alcohol MOA: ortho acetic acid Methyl MEK: methyl ethyl ketone BAC: butyl acetate DTBP: di-t-butyl peroxide DTHP: di-t-hexyl peroxide ABN-E: 2,2'-azobis (2-methylbutyronitrile)
PHO: t-butylperoxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name "Perhexyl O")
AIBN: 2,2'-azobis (isobutyronitrile)
≪硬化性組成物の調製及び評価≫
実施例1~28、比較例1~4
上記合成例で得られた低分子量(メタ)アクリル系重合体(A成分)及び高分子量(メタ)アクリル系重合体(B成分)、並びに市販の原料を表4~6に示す割合で配合し、プラネタリーミキサーを用いて、温度60℃、10Torrの条件で1時間混合することにより硬化性組成物を得た。各組成物から得られた硬化物について耐候性試験及び引張試験を行い、結果を表4~表6に示した。 << Preparation and evaluation of curable composition >>
Examples 1 to 28, Comparative Examples 1 to 4
The low molecular weight (meth) acrylic polymer (component A) and the high molecular weight (meth) acrylic polymer (component B) obtained in the above synthesis example, and commercially available materials are blended in the proportions shown in Tables 4 to 6 A curable composition was obtained by mixing for 1 hour under conditions of a temperature of 60 ° C. and 10 Torr using a planetary mixer. The cured product obtained from each composition was subjected to a weathering test and a tensile test, and the results are shown in Tables 4 to 6.
実施例1~28、比較例1~4
上記合成例で得られた低分子量(メタ)アクリル系重合体(A成分)及び高分子量(メタ)アクリル系重合体(B成分)、並びに市販の原料を表4~6に示す割合で配合し、プラネタリーミキサーを用いて、温度60℃、10Torrの条件で1時間混合することにより硬化性組成物を得た。各組成物から得られた硬化物について耐候性試験及び引張試験を行い、結果を表4~表6に示した。 << Preparation and evaluation of curable composition >>
Examples 1 to 28, Comparative Examples 1 to 4
The low molecular weight (meth) acrylic polymer (component A) and the high molecular weight (meth) acrylic polymer (component B) obtained in the above synthesis example, and commercially available materials are blended in the proportions shown in Tables 4 to 6 A curable composition was obtained by mixing for 1 hour under conditions of a temperature of 60 ° C. and 10 Torr using a planetary mixer. The cured product obtained from each composition was subjected to a weathering test and a tensile test, and the results are shown in Tables 4 to 6.
表4~表6に示された化合物の詳細は以下の通り。
ES-S2420:変性シリコン(旭硝子社製、商品名「エクセスターS2420」)
PPG:エクセノール2020(旭硝子株式会社製)
CCR:軽質炭酸カルシウム(白石カルシウム社製、商品名「白艶華CCR」)
スーパーSS:重質炭酸カルシウム(丸尾カルシウム社製、商品名「スーパーSS」)
R820:酸化チタン(石原産業社製)
チヌビンB75:老化防止剤(BASFジャパン社製)
U220H:ジブチル錫ジアセチルアセトナート(日東化成社製)
ナーセムチタン:ジブトキシチタンジアセチルアセトナート(日本化学産業社製、商品名「ナーセムチタン」)
DBU:1,8-ジアザビシクロ〔5,4,0〕ウンデセン-7
SH6020:3-(2-アミノエチル)アミノプロピルトリメトキシシラン(東レ・ダウコーニング社製)
SZ6030:ビニルトリメトキシシラン(東レ・ダウコーニング社製)
The details of the compounds shown in Tables 4 to 6 are as follows.
ES-S2420: Modified silicon (manufactured by Asahi Glass Co., Ltd., trade name "Exester S2420")
PPG: Exenol 2020 (manufactured by Asahi Glass Co., Ltd.)
CCR: Light calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name "Shiroka Hana CCR")
Super SS: Heavy calcium carbonate (Maruo Calcium Co., Ltd., trade name "Super SS")
R820: Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.)
Tinuvin B75: anti-aging agent (manufactured by BASF Japan Ltd.)
U220H: Dibutyltin diacetylacetonate (manufactured by Nitto Kasei Co., Ltd.)
Narsem titanium: Dibutoxy titanium diacetylacetonate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name "Narsem titanium")
DBU: 1,8-Diazabicyclo [5,4,0] undecene-7
SH6020: 3- (2-aminoethyl) aminopropyltrimethoxysilane (made by Toray Dow Corning)
SZ6030: Vinyltrimethoxysilane (made by Toray Dow Corning)
ES-S2420:変性シリコン(旭硝子社製、商品名「エクセスターS2420」)
PPG:エクセノール2020(旭硝子株式会社製)
CCR:軽質炭酸カルシウム(白石カルシウム社製、商品名「白艶華CCR」)
スーパーSS:重質炭酸カルシウム(丸尾カルシウム社製、商品名「スーパーSS」)
R820:酸化チタン(石原産業社製)
チヌビンB75:老化防止剤(BASFジャパン社製)
U220H:ジブチル錫ジアセチルアセトナート(日東化成社製)
ナーセムチタン:ジブトキシチタンジアセチルアセトナート(日本化学産業社製、商品名「ナーセムチタン」)
DBU:1,8-ジアザビシクロ〔5,4,0〕ウンデセン-7
SH6020:3-(2-アミノエチル)アミノプロピルトリメトキシシラン(東レ・ダウコーニング社製)
SZ6030:ビニルトリメトキシシラン(東レ・ダウコーニング社製)
The details of the compounds shown in Tables 4 to 6 are as follows.
ES-S2420: Modified silicon (manufactured by Asahi Glass Co., Ltd., trade name "Exester S2420")
PPG: Exenol 2020 (manufactured by Asahi Glass Co., Ltd.)
CCR: Light calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name "Shiroka Hana CCR")
Super SS: Heavy calcium carbonate (Maruo Calcium Co., Ltd., trade name "Super SS")
R820: Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.)
Tinuvin B75: anti-aging agent (manufactured by BASF Japan Ltd.)
U220H: Dibutyltin diacetylacetonate (manufactured by Nitto Kasei Co., Ltd.)
Narsem titanium: Dibutoxy titanium diacetylacetonate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name "Narsem titanium")
DBU: 1,8-Diazabicyclo [5,4,0] undecene-7
SH6020: 3- (2-aminoethyl) aminopropyltrimethoxysilane (made by Toray Dow Corning)
SZ6030: Vinyltrimethoxysilane (made by Toray Dow Corning)
実施例1~28は、本発明の硬化性組成物に関する評価であり、耐候性及び機械物性ともに良好な結果が示された。また、低分子量(メタ)アクリル系重合体と高分子量(メタ)アクリル系重合体の比率が10/90~90/10の範囲であると、得られる硬化物の耐候性に優れる結果が得られた(実施例16、23~26)。
また、耐候性試験及び引っ張り試験において、各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布した際の作業性(塗布しやすさ)は、何れも良好であった。したがって、本発明で提供される硬化性組成物は、耐候性、機械物性並びに、作業性に優れており、シーリング材組成物として好適に利用することができるものであった。
一方、比較例1は、高分子量(メタ)アクリル系重合体(B成分)が反応性シリル基を有さないものであり、硬化物の耐候性は十分ではなかった。比較例2及び3は、低分子量(メタ)アクリル系重合体(A成分)の二重結合濃度が本願発明で規定する範囲外であり、ともに硬化物の耐候性に劣る結果が示された。(B)成分である高分子量(メタ)アクリル系重合体を含まない比較例4も同様に、硬化物の耐候性は不十分であった。
Examples 1 to 28 are the evaluations of the curable composition of the present invention, and show good results in both weather resistance and mechanical properties. In addition, when the ratio of the low molecular weight (meth) acrylic polymer to the high molecular weight (meth) acrylic polymer is in the range of 10/90 to 90/10, the result that the weather resistance of the resulting cured product is excellent is obtained. (Examples 16, 23 to 26).
Moreover, in the weather resistance test and the tension test, the workability (applicability of application) when each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm was good. Therefore, the curable composition provided by the present invention is excellent in weather resistance, mechanical properties and workability, and can be suitably used as a sealing material composition.
On the other hand, in Comparative Example 1, the high molecular weight (meth) acrylic polymer (component B) did not have a reactive silyl group, and the weather resistance of the cured product was not sufficient. In Comparative Examples 2 and 3, the double bond concentration of the low molecular weight (meth) acrylic polymer (component A) was out of the range specified in the present invention, and both showed poor weatherability of the cured product. The weatherability of the cured product was also insufficient in Comparative Example 4 in which the high molecular weight (meth) acrylic polymer as the component (B) was not included.
また、耐候性試験及び引っ張り試験において、各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布した際の作業性(塗布しやすさ)は、何れも良好であった。したがって、本発明で提供される硬化性組成物は、耐候性、機械物性並びに、作業性に優れており、シーリング材組成物として好適に利用することができるものであった。
一方、比較例1は、高分子量(メタ)アクリル系重合体(B成分)が反応性シリル基を有さないものであり、硬化物の耐候性は十分ではなかった。比較例2及び3は、低分子量(メタ)アクリル系重合体(A成分)の二重結合濃度が本願発明で規定する範囲外であり、ともに硬化物の耐候性に劣る結果が示された。(B)成分である高分子量(メタ)アクリル系重合体を含まない比較例4も同様に、硬化物の耐候性は不十分であった。
Examples 1 to 28 are the evaluations of the curable composition of the present invention, and show good results in both weather resistance and mechanical properties. In addition, when the ratio of the low molecular weight (meth) acrylic polymer to the high molecular weight (meth) acrylic polymer is in the range of 10/90 to 90/10, the result that the weather resistance of the resulting cured product is excellent is obtained. (Examples 16, 23 to 26).
Moreover, in the weather resistance test and the tension test, the workability (applicability of application) when each curable composition was applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm was good. Therefore, the curable composition provided by the present invention is excellent in weather resistance, mechanical properties and workability, and can be suitably used as a sealing material composition.
On the other hand, in Comparative Example 1, the high molecular weight (meth) acrylic polymer (component B) did not have a reactive silyl group, and the weather resistance of the cured product was not sufficient. In Comparative Examples 2 and 3, the double bond concentration of the low molecular weight (meth) acrylic polymer (component A) was out of the range specified in the present invention, and both showed poor weatherability of the cured product. The weatherability of the cured product was also insufficient in Comparative Example 4 in which the high molecular weight (meth) acrylic polymer as the component (B) was not included.
≪接着剤組成物の調製及び評価≫
実施例29~32、比較例5~6
上記合成例で得られた低分子量(メタ)アクリル系重合体(A成分)、および、高分子量(メタ)アクリル系重合体(B成分)、並びに市販の原料を表7に示す割合で配合し、プラネタリーミキサーを用いて、温度60℃、10Torrの条件で1時間混合することにより接着剤組成物を得た。各組成物について耐候性試験(2)及び接着強度試験を行い、結果を表7に示した。 << Preparation and Evaluation of Adhesive Composition >>
Examples 29 to 32, Comparative Examples 5 to 6
The low molecular weight (meth) acrylic polymer (component A), high molecular weight (meth) acrylic polymer (component B), and commercially available materials obtained in the above synthesis examples were blended in the proportions shown in Table 7 An adhesive composition was obtained by mixing for 1 hour at a temperature of 60 ° C. and 10 Torr using a planetary mixer. The weather resistance test (2) and the adhesive strength test were conducted for each composition, and the results are shown in Table 7.
実施例29~32、比較例5~6
上記合成例で得られた低分子量(メタ)アクリル系重合体(A成分)、および、高分子量(メタ)アクリル系重合体(B成分)、並びに市販の原料を表7に示す割合で配合し、プラネタリーミキサーを用いて、温度60℃、10Torrの条件で1時間混合することにより接着剤組成物を得た。各組成物について耐候性試験(2)及び接着強度試験を行い、結果を表7に示した。 << Preparation and Evaluation of Adhesive Composition >>
Examples 29 to 32, Comparative Examples 5 to 6
The low molecular weight (meth) acrylic polymer (component A), high molecular weight (meth) acrylic polymer (component B), and commercially available materials obtained in the above synthesis examples were blended in the proportions shown in Table 7 An adhesive composition was obtained by mixing for 1 hour at a temperature of 60 ° C. and 10 Torr using a planetary mixer. The weather resistance test (2) and the adhesive strength test were conducted for each composition, and the results are shown in Table 7.
表7に示された化合物の詳細は以下の通り。
S-3430:変性シリコーン(旭硝子株式会社製)
jER828:エポキシ樹脂(三菱ケミカル社製)
jERキュアH30:エポキシ硬化剤(三菱ケミカル社製)
CCR:軽質炭酸カルシウム(白石カルシウム社製、商品名「白艶華CCR」)
スーパーSS:重質炭酸カルシウム(丸尾カルシウム社製、商品名「スーパーSS」)
#45:カーボンブラック(三菱ケミカル社製)
R820:酸化チタン(石原産業社製)
チヌビンB75:老化防止剤(BASFジャパン社製)
U220H:ジブチル錫ジアセチルアセトナート(日東化成社製)
S340:ケチミン系シランカップリング剤 サイラエース (JNC社製)
SZ6030:ビニルトリメトキシシラン(東レ・ダウコーニング社製) The details of the compounds shown in Table 7 are as follows.
S-3430: Modified silicone (manufactured by Asahi Glass Co., Ltd.)
jER 828: Epoxy resin (made by Mitsubishi Chemical Corporation)
jER Cure H30: Epoxy curing agent (made by Mitsubishi Chemical Corporation)
CCR: Light calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name "Shiroka Hana CCR")
Super SS: Heavy calcium carbonate (Maruo Calcium Co., Ltd., trade name "Super SS")
# 45: Carbon black (made by Mitsubishi Chemical Corporation)
R820: Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.)
Tinuvin B75: anti-aging agent (manufactured by BASF Japan Ltd.)
U220H: Dibutyltin diacetylacetonate (manufactured by Nitto Kasei Co., Ltd.)
S340: Ketimine based silane coupling agent Thyra Ace (JNC)
SZ6030: Vinyltrimethoxysilane (made by Toray Dow Corning)
S-3430:変性シリコーン(旭硝子株式会社製)
jER828:エポキシ樹脂(三菱ケミカル社製)
jERキュアH30:エポキシ硬化剤(三菱ケミカル社製)
CCR:軽質炭酸カルシウム(白石カルシウム社製、商品名「白艶華CCR」)
スーパーSS:重質炭酸カルシウム(丸尾カルシウム社製、商品名「スーパーSS」)
#45:カーボンブラック(三菱ケミカル社製)
R820:酸化チタン(石原産業社製)
チヌビンB75:老化防止剤(BASFジャパン社製)
U220H:ジブチル錫ジアセチルアセトナート(日東化成社製)
S340:ケチミン系シランカップリング剤 サイラエース (JNC社製)
SZ6030:ビニルトリメトキシシラン(東レ・ダウコーニング社製) The details of the compounds shown in Table 7 are as follows.
S-3430: Modified silicone (manufactured by Asahi Glass Co., Ltd.)
jER 828: Epoxy resin (made by Mitsubishi Chemical Corporation)
jER Cure H30: Epoxy curing agent (made by Mitsubishi Chemical Corporation)
CCR: Light calcium carbonate (manufactured by Shiroishi Calcium Co., Ltd., trade name "Shiroka Hana CCR")
Super SS: Heavy calcium carbonate (Maruo Calcium Co., Ltd., trade name "Super SS")
# 45: Carbon black (made by Mitsubishi Chemical Corporation)
R820: Titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.)
Tinuvin B75: anti-aging agent (manufactured by BASF Japan Ltd.)
U220H: Dibutyltin diacetylacetonate (manufactured by Nitto Kasei Co., Ltd.)
S340: Ketimine based silane coupling agent Thyra Ace (JNC)
SZ6030: Vinyltrimethoxysilane (made by Toray Dow Corning)
接着強度試験の結果、実施例29~32および比較例5~6は、いずれも、強度、破壊状態とも問題はなく、接着剤として使用できるレベルにあることが分かった。また、耐候性試験(2)において、各硬化性組成物を厚さ2mmでテフロン(登録商標)のシートに塗布した際の作業性(塗布しやすさ)は、各実施例、比較例ともに良好であった。また、接着強度試験において、モルタル板に接着剤を約5mmの厚みで塗布し、くし目ごてで引いたのち、外装モザイクタイルを接着させるという一連の接着操作時の各工程の作業性は、いずれも良好であった。
一方、耐候性試験(2)の結果、適度な量の二重結合を有する接着剤組成物を用いた実施例29~32は、表面状態の変化がなく、色差(△E)も小さいことが分かった。これに対して、過度な量の二重結合を含む接着剤組成物を用いた比較例5では、表面にクラックが発生し、耐候性が不十分となることが分かった。一つの理由として、二重結合の反応が適量を超えて進行したため、表面の柔軟性が失われたこと等が推定される。また、含有される二重結合が少なすぎる接着剤組成物を用いた比較例6は、退色が顕著であり、耐候性が不十分となることが分かった。一つの理由として、二重結合の反応による分子量の上昇が不十分なため、炭酸カルシウムを接着剤内部に保持する力が不足し、炭酸カルシウムが接着剤表面でむき出しになることで退色(白化)が進むこと等が推定される。
接着強度試験および耐候性試験(2)の結果より、本発明で提供される接着剤組成物は、接着強度、耐候性、並びに、作業性に優れることが理解される。
As a result of the adhesive strength test, it was found that all of Examples 29 to 32 and Comparative Examples 5 to 6 had no problem in both the strength and the fracture state, and were at levels usable as an adhesive. Moreover, in the weather resistance test (2), the workability (application ease) when each curable composition is applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm is good in each of the examples and comparative examples. Met. In addition, in the adhesive strength test, the workability of each process during a series of bonding operations is to apply the adhesive with a thickness of about 5 mm to the mortar board, pull it with a comb, and then bond the exterior mosaic tile. All were good.
On the other hand, as a result of the weathering test (2), Examples 29 to 32 using an adhesive composition having a proper amount of double bonds show no change in the surface state and a small color difference (ΔE). I understood. On the other hand, in Comparative Example 5 using an adhesive composition containing an excessive amount of double bonds, it was found that a crack was generated on the surface and the weather resistance was insufficient. As one reason, it is presumed that the flexibility of the surface is lost, etc., because the reaction of the double bond has proceeded in excess of the appropriate amount. In addition, it was found that Comparative Example 6 using the adhesive composition containing too few double bonds contained remarkable discoloration and insufficient weatherability. One of the reasons is that the increase in molecular weight due to the double bond reaction is insufficient, so the ability to hold calcium carbonate inside the adhesive is insufficient and calcium carbonate is exposed on the adhesive surface to cause discoloration (whitening) It is estimated that
From the results of the adhesive strength test and the weather resistance test (2), it is understood that the adhesive composition provided by the present invention is excellent in adhesive strength, weather resistance and workability.
一方、耐候性試験(2)の結果、適度な量の二重結合を有する接着剤組成物を用いた実施例29~32は、表面状態の変化がなく、色差(△E)も小さいことが分かった。これに対して、過度な量の二重結合を含む接着剤組成物を用いた比較例5では、表面にクラックが発生し、耐候性が不十分となることが分かった。一つの理由として、二重結合の反応が適量を超えて進行したため、表面の柔軟性が失われたこと等が推定される。また、含有される二重結合が少なすぎる接着剤組成物を用いた比較例6は、退色が顕著であり、耐候性が不十分となることが分かった。一つの理由として、二重結合の反応による分子量の上昇が不十分なため、炭酸カルシウムを接着剤内部に保持する力が不足し、炭酸カルシウムが接着剤表面でむき出しになることで退色(白化)が進むこと等が推定される。
接着強度試験および耐候性試験(2)の結果より、本発明で提供される接着剤組成物は、接着強度、耐候性、並びに、作業性に優れることが理解される。
As a result of the adhesive strength test, it was found that all of Examples 29 to 32 and Comparative Examples 5 to 6 had no problem in both the strength and the fracture state, and were at levels usable as an adhesive. Moreover, in the weather resistance test (2), the workability (application ease) when each curable composition is applied to a sheet of Teflon (registered trademark) with a thickness of 2 mm is good in each of the examples and comparative examples. Met. In addition, in the adhesive strength test, the workability of each process during a series of bonding operations is to apply the adhesive with a thickness of about 5 mm to the mortar board, pull it with a comb, and then bond the exterior mosaic tile. All were good.
On the other hand, as a result of the weathering test (2), Examples 29 to 32 using an adhesive composition having a proper amount of double bonds show no change in the surface state and a small color difference (ΔE). I understood. On the other hand, in Comparative Example 5 using an adhesive composition containing an excessive amount of double bonds, it was found that a crack was generated on the surface and the weather resistance was insufficient. As one reason, it is presumed that the flexibility of the surface is lost, etc., because the reaction of the double bond has proceeded in excess of the appropriate amount. In addition, it was found that Comparative Example 6 using the adhesive composition containing too few double bonds contained remarkable discoloration and insufficient weatherability. One of the reasons is that the increase in molecular weight due to the double bond reaction is insufficient, so the ability to hold calcium carbonate inside the adhesive is insufficient and calcium carbonate is exposed on the adhesive surface to cause discoloration (whitening) It is estimated that
From the results of the adhesive strength test and the weather resistance test (2), it is understood that the adhesive composition provided by the present invention is excellent in adhesive strength, weather resistance and workability.
本発明の硬化性組成物は、大気中の水分等により常温で硬化し、優れた耐候性と機械物性を有する硬化物が得られる。また、適度な粘度を有することから、作業性にも優れる。よって、シーリング材、外装タイル用接着剤などの接着剤に向けた硬化性組成物として好適である。
The curable composition of the present invention is cured at normal temperature by moisture and the like in the atmosphere, and a cured product having excellent weather resistance and mechanical properties is obtained. Moreover, since it has a suitable viscosity, it is excellent also in workability. Therefore, it is suitable as a curable composition for adhesives, such as a sealing material and an adhesive agent for exterior tiles.
Claims (13)
- 重量平均分子量が500以上、10,000未満である(メタ)アクリル系重合体(A)、及び重量平均分子量が10,000以上、100,000以下である(メタ)アクリル系重合体(B)を含む硬化性組成物であって、
前記(メタ)アクリル系重合体(A)は、分子中に二重結合を0.01meq/g以上、1.0meq/g以下有し、
前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を有する、硬化性組成物。 (Meth) acrylic polymers (A) having a weight average molecular weight of 500 or more and less than 10,000, and (meth) acrylic polymers (B) having a weight average molecular weight of 10,000 or more and 100,000 or less A curable composition comprising
The (meth) acrylic polymer (A) has a double bond in the molecule of 0.01 meq / g or more and 1.0 meq / g or less,
The curable composition in which the said (meth) acrylic-type polymer (B) has a reactive silyl group in a molecule | numerator. - 前記(メタ)アクリル系重合体(A)は、25℃における粘度が1,000mPa・s以上、100,000mPa・s以下である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the (meth) acrylic polymer (A) has a viscosity of 1,000 mPa · s or more and 100,000 mPa · s or less at 25 ° C.
- 前記(メタ)アクリル系重合体(B)は、25℃における粘度が5,000mPa・s以上、300,000mPa・s以下である請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the (meth) acrylic polymer (B) has a viscosity of 5,000 mPa · s or more and 300,000 mPa · s or less at 25 ° C.
- 前記(メタ)アクリル系重合体(A)は、分子中に反応性シリル基を有する請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the (meth) acrylic polymer (A) has a reactive silyl group in its molecule.
- 前記(メタ)アクリル系重合体(B)は、分子中に反応性シリル基を0.1個以上、2.2個以下有する請求項1~4のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the (meth) acrylic polymer (B) has 0.1 or more and 2.2 or less of reactive silyl groups in the molecule. .
- 前記(メタ)アクリル酸系重合体(B)は、反応性シリル基としてジアルコキシシリル基を有する請求項1~5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the (meth) acrylic acid polymer (B) has a dialkoxysilyl group as a reactive silyl group.
- 前記(メタ)アクリル系重合体(B)は、当該(メタ)アクリル系重合体を構成する全単量体単位中、炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステルを5質量%以上含む請求項1~6のいずれか1項に記載の硬化性組成物。 The (meth) acrylic polymer (B) contains 5 mass of (meth) acrylic acid alkyl ester having an alkyl group having 10 or more carbon atoms in all monomer units constituting the (meth) acrylic polymer The curable composition according to any one of claims 1 to 6, which contains at least%.
- 前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)全体に含まれる二重結合濃度は、0.01meq/g以上、0.50meq/g以下である請求項1~7のいずれか1項に記載の硬化性組成物。 The double bond concentration contained in the whole of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) is 0.01 meq / g or more and 0.50 meq / g or less. The curable composition according to any one of 1 to 7.
- 前記(メタ)アクリル系重合体(A)及び前記(メタ)アクリル系重合体(B)の使用量は、質量比で10~90/90~10である請求項1~8のいずれか1項に記載の硬化性組成物。 The amount of the (meth) acrylic polymer (A) and the (meth) acrylic polymer (B) used is 10 to 90/90 to 10 in mass ratio. The curable composition as described in-.
- さらに、オキシアルキレン系重合体を含む請求項1~9のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 9, further comprising an oxyalkylene polymer.
- 硬化促進剤として、錫系触媒、チタン系触媒及び3級アミン類からなる群より選ばれる1種以上の化合物を含む請求項1~10のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 10, which contains, as a curing accelerator, one or more compounds selected from the group consisting of tin-based catalysts, titanium-based catalysts and tertiary amines.
- 請求項1~11のいずれか1項に記載の硬化性組成物を含有することを特徴とするシーリング材組成物。 A sealing material composition comprising the curable composition according to any one of claims 1 to 11.
- 請求項1~11のいずれか1項に記載の硬化性組成物を含有することを特徴とする接着剤組成物。 An adhesive composition comprising the curable composition according to any one of claims 1 to 11.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880060544.3A CN111094443B (en) | 2017-09-20 | 2018-08-07 | Curable composition, sealing material composition, and adhesive composition |
PH12020550087A PH12020550087A1 (en) | 2017-09-20 | 2020-03-16 | Curable composition, sealing material composition, and adhesive composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-179763 | 2017-09-20 | ||
JP2017179763 | 2017-09-20 | ||
JP2018027182A JP6376301B1 (en) | 2018-02-19 | 2018-02-19 | Curable composition and adhesive composition |
JP2018-027182 | 2018-02-19 | ||
JP2018-027477 | 2018-02-20 | ||
JP2018027477A JP6376303B1 (en) | 2017-09-20 | 2018-02-20 | Curable composition and sealing material composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058795A1 true WO2019058795A1 (en) | 2019-03-28 |
Family
ID=65811368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029557 WO2019058795A1 (en) | 2017-09-20 | 2018-08-07 | Curable composition, sealing material composition, and adhesive composition |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111094443B (en) |
PH (1) | PH12020550087A1 (en) |
WO (1) | WO2019058795A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059634A (en) * | 2019-10-03 | 2021-04-15 | Agc株式会社 | Curable composition, cured product, and method for producing curable composition |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004244492A (en) * | 2003-02-13 | 2004-09-02 | Auto Kagaku Kogyo Kk | Curable composition and sealant composition |
JP2005082750A (en) * | 2003-09-10 | 2005-03-31 | Cemedine Co Ltd | Curable composition excellent in adhesive property |
JP2005171115A (en) * | 2003-12-12 | 2005-06-30 | Toagosei Co Ltd | Adhesive composition |
JP2005179559A (en) * | 2003-12-22 | 2005-07-07 | Toagosei Co Ltd | Sealing material composition |
WO2005073322A1 (en) * | 2004-01-30 | 2005-08-11 | Kaneka Corporation | Hardenable composition |
JP2007023293A (en) * | 2006-09-07 | 2007-02-01 | Auto Kagaku Kogyo Kk | Curable composition and sealant composition |
WO2014175358A1 (en) * | 2013-04-24 | 2014-10-30 | 積水フーラー株式会社 | Curable composition, and joint structure produced using same |
JP2017088766A (en) * | 2015-11-12 | 2017-05-25 | 東亞合成株式会社 | Curable composition |
JP6376300B1 (en) * | 2018-02-19 | 2018-08-22 | 東亞合成株式会社 | Curable composition and adhesive composition |
JP6376302B1 (en) * | 2017-09-20 | 2018-08-22 | 東亞合成株式会社 | Curable composition and sealing material composition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003252494A1 (en) * | 2002-07-25 | 2004-02-16 | Kaneka Corporation | Curable composition and sealing method for ceramic siding boards |
ATE532825T1 (en) * | 2003-04-10 | 2011-11-15 | Kaneka Corp | CURDABLE COMPOSITION |
CN103926795A (en) * | 2013-01-16 | 2014-07-16 | 施敏打硬株式会社 | Photocurable Composition |
-
2018
- 2018-08-07 CN CN201880060544.3A patent/CN111094443B/en active Active
- 2018-08-07 WO PCT/JP2018/029557 patent/WO2019058795A1/en active Application Filing
-
2020
- 2020-03-16 PH PH12020550087A patent/PH12020550087A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004244492A (en) * | 2003-02-13 | 2004-09-02 | Auto Kagaku Kogyo Kk | Curable composition and sealant composition |
JP2005082750A (en) * | 2003-09-10 | 2005-03-31 | Cemedine Co Ltd | Curable composition excellent in adhesive property |
JP2005171115A (en) * | 2003-12-12 | 2005-06-30 | Toagosei Co Ltd | Adhesive composition |
JP2005179559A (en) * | 2003-12-22 | 2005-07-07 | Toagosei Co Ltd | Sealing material composition |
WO2005073322A1 (en) * | 2004-01-30 | 2005-08-11 | Kaneka Corporation | Hardenable composition |
JP2007023293A (en) * | 2006-09-07 | 2007-02-01 | Auto Kagaku Kogyo Kk | Curable composition and sealant composition |
WO2014175358A1 (en) * | 2013-04-24 | 2014-10-30 | 積水フーラー株式会社 | Curable composition, and joint structure produced using same |
JP2017088766A (en) * | 2015-11-12 | 2017-05-25 | 東亞合成株式会社 | Curable composition |
JP6376302B1 (en) * | 2017-09-20 | 2018-08-22 | 東亞合成株式会社 | Curable composition and sealing material composition |
JP6376300B1 (en) * | 2018-02-19 | 2018-08-22 | 東亞合成株式会社 | Curable composition and adhesive composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059634A (en) * | 2019-10-03 | 2021-04-15 | Agc株式会社 | Curable composition, cured product, and method for producing curable composition |
JP7380041B2 (en) | 2019-10-03 | 2023-11-15 | Agc株式会社 | Method for producing curable composition |
Also Published As
Publication number | Publication date |
---|---|
CN111094443B (en) | 2022-07-05 |
PH12020550087A1 (en) | 2020-10-12 |
CN111094443A (en) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10308802B2 (en) | Polymers including one or more 1,1-disubstituted alkene compounds and polymer compositions thereof | |
JP5991523B2 (en) | Room temperature moisture curable adhesive composition | |
JP6376303B1 (en) | Curable composition and sealing material composition | |
JP7081592B2 (en) | Curable resin composition and its manufacturing method | |
US20190202947A1 (en) | Compositions containing 1,1-disubstituted alkene compounds for preparing polymers having enhanced glass transition temperatures | |
JP6376301B1 (en) | Curable composition and adhesive composition | |
JP6500755B2 (en) | Curable composition | |
JP7239901B2 (en) | Curable resin composition, block copolymer and method for producing the same | |
JP6376300B1 (en) | Curable composition and adhesive composition | |
WO2019058795A1 (en) | Curable composition, sealing material composition, and adhesive composition | |
JP7392907B2 (en) | Curable resin composition and adhesive composition | |
JP5228350B2 (en) | Moisture curable composition, adhesive composition and sealing agent composition containing the same | |
JP4649895B2 (en) | Sealant composition | |
JP2023072761A (en) | Curable resin composition and sealing material composition | |
JP6376302B1 (en) | Curable composition and sealing material composition | |
WO2019058794A1 (en) | Curable composition, sealing material composition, and adhesive composition | |
JP4905459B2 (en) | Sealant composition | |
JP6425187B2 (en) | Moisture curable type curable composition | |
JP2023021680A (en) | Curable composition | |
JP2019143116A (en) | Curable composition and adhesive composition | |
JP2022075060A (en) | Curable composition | |
WO2020262273A1 (en) | Block copolymer and resin composition, and production method for block copolymer | |
JP2006002008A (en) | Moisture curable composition and adhesive composition | |
JP2003226854A (en) | Adhesive composition | |
JP2022083241A (en) | Curable composition, and adhesive composition, and method for producing curable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18859272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18859272 Country of ref document: EP Kind code of ref document: A1 |