WO2019058671A1 - 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置 - Google Patents

故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019058671A1
WO2019058671A1 PCT/JP2018/023116 JP2018023116W WO2019058671A1 WO 2019058671 A1 WO2019058671 A1 WO 2019058671A1 JP 2018023116 W JP2018023116 W JP 2018023116W WO 2019058671 A1 WO2019058671 A1 WO 2019058671A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
phase
failure
failure diagnosis
motor
Prior art date
Application number
PCT/JP2018/023116
Other languages
English (en)
French (fr)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880052833.9A priority Critical patent/CN111033287B/zh
Publication of WO2019058671A1 publication Critical patent/WO2019058671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • n is an integer of 3 or more
  • the control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200.
  • Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on, for example, a voltage of 12 V of the power supply 101.
  • the drive circuit 350 is typically a predriver (sometimes referred to as a "gate driver").
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switching element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and controls the gate of each switching element give.
  • gate control signal gate control signal
  • the pre-driver may not be required. In that case, the function of the pre-driver may be implemented in the controller 340.
  • the fuses ISW_ 11 and ISW_ 12 are connected between the power supply 101 and the first inverter 120.
  • the fuses ISW_11 and ISW_12 can interrupt a large current that can flow from the power supply 101 to the first inverter 120.
  • the fuses ISW 21 and ISW 22 are connected between the power supply 101 and the second inverter 130.
  • the fuses ISW_ 21 and ISW_ 22 can interrupt a large current that can flow from the power supply 101 to the second inverter 130.
  • a relay or the like may be used instead of the fuse.
  • the first shunt resistor S_A1 is used to detect an A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low side switching element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low side switching element SW_B1L and the GND line GL.
  • the first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low side switching element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1, and S_C1 are commonly connected to the GND line GL of the first inverter 120.
  • the A phase leg of the first inverter 120 (specifically, the node between the high side switching element SW_A1H and the low side switching element SW_A1L) is connected to one end A1 of the A phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
  • part of the current flowing from the switching element SW_A1H to the winding M1 may flow to the switching element SW_A2H. That is, the current flowing from the switching element SW_A1H to the winding M1 may branch to the switching element SW_A2L and the switching element SW_A2H and flow. Similarly, part of the current flowing from the switching element SW_A2H to the winding M1 may flow to the switching element SW_A1H.
  • a part of the current flowing from the switching element SW_C1H to the winding M3 may flow to the switching element SW_C2H. Further, part of the current flowing from the switching element SW_C2H to the winding M3 may flow to the switching element SW_C1H.
  • the failure is roughly classified into “open failure” and “short failure".
  • Open fault refers to a fault in which the source-drain of the FET is open (in other words, the source-drain resistance is always in a high impedance state).
  • Short circuit failure refers to a failure in which the source-drain of the FET is constantly shorted. In the failure diagnosis of the present embodiment, an open failure of the switching element is detected.
  • each block in the functional block diagram is shown not in hardware but in functional block.
  • the software used for motor control and failure diagnosis may be, for example, a module that configures a computer program for executing specific processing corresponding to each functional block.
  • Such computer programs are stored, for example, in the ROM 360.
  • the controller 340 can read an instruction from the ROM 360 and sequentially execute each process.
  • the controller 340 receives the current value detected by the current sensor 150 via the input circuit 330 (FIG. 1).
  • the current sensor 150 detects the current flowing in each phase using the above-described shunt resistor, so that the current flowing in each of the plurality of switching elements provided in the first and second inverters 120 and 130 can be grasped.
  • the voltage detection circuit 380 (FIG. 1) detects the voltage applied to each of the plurality of switching elements included in the first and second inverters 120 and 130, for example, and outputs the voltage to the controller 340.
  • the controller 340 includes, for example, a fault diagnosis unit 800 and a motor control unit 900.
  • the failure diagnosis unit 800 diagnoses the presence or absence of a failure using current and / or voltage information on each of the plurality of switching elements.
  • the failure diagnosis unit 800 outputs a signal indicating the diagnosis result of the presence or absence of a failure to the motor control unit 900.
  • the motor control unit 900 switches control of the first and second inverters 120 and 130 according to the diagnosis result. Specifically, the motor control unit 900 can determine the on / off operation of the switching elements of the first and second inverters 120 and 130 based on the diagnosis result. The motor control unit 900 can further determine the on / off operation of the fuses ISW_11, ISW_12, ISW_21 and ISW_22 based on the diagnosis result.
  • each functional block may be referred to as a unit for convenience of explanation. Naturally, this notation is not used with the intention of limiting interpretation of each functional block to hardware or software.
  • the failure diagnosis unit 800 includes 12 switching elements SW_A1H, SW_A1L, SW_B1H, SW_B1L, SW_C1H, SW_C1L, SW_A2H, SW_A2L, SW_A2L, SW_B2H, SW_B2L, SW_C2H, and 12 of the first and second inverters 120 and 130. , Execute the fault diagnosis of the present embodiment.
  • the switching element SW_A1H when the switching element SW_A1H is not broken, that is, normal, a current of 10 mA or more flows in the switching element SW_A1H to which the gate control signal is supplied.
  • the switching element SW_A1H has an open failure, the current flowing through the switching element SW_A1H to which the gate control signal is supplied is less than 10 mA.
  • step S102 If it is determined in step S102 that the detected current is less than 10 mA, the process proceeds to step S103.
  • step S103 when the switching element SW_A1H is controlled to be in the on state, the failure diagnosis unit 800_I detects the time when the current flowing through the switching element SW_A1H is less than 10 mA.
  • the failure diagnosis unit 800_I determines whether the detected time is equal to or longer than a predetermined time (step S104).
  • the predetermined time is, for example, 50 ⁇ s. Note that 50 ⁇ s is an example, and the embodiment of the present disclosure is not limited thereto.
  • the predetermined time may be set in accordance with the structure and rotational speed of motor 200.
  • the failure diagnosis unit 800_I determines that the switching element SW_A1H is normal (step S108).
  • the failure diagnosis unit 800_I outputs a signal indicating that the switching element SW_A1H is normal to the motor control unit 900, and returns to the process of step S101.
  • the failure diagnosis unit 800_I determines that the switching element SW_A1H is normal (step S108).
  • the failure diagnosis unit 800_I outputs a signal indicating that the switching element SW_A1H is normal to the motor control unit 900, and returns to the process of step S101.
  • the control mode at the time of abnormality is, for example, a control mode in which the neutral point of the winding is formed in the failed inverter, and the motor 200 is driven by the non-failed inverter.
  • the motor control unit 900 performs control to turn off the fuses ISW_11 and ISW_12. Accordingly, the first inverter 120 including the failed switching element SW_A1H is separated from the power supply and the GND. Then, for example, the switching elements SW_A1H, SW_B1H, and SW_C1H are turned off, and the switching elements SW_A1L, SW_B1L, and SW_C1L are turned on, whereby the first inverter 120 is configured with a neutral point. By using this neutral point, the motor 200 can be driven by the second inverter 130 which has not failed.
  • the control mode at the time of abnormality may be shutdown.
  • the shutdown is control for stopping the operation of the motor 200.
  • the fault diagnosis unit 800 _I executes the same fault diagnosis as the fault diagnosis for the switching element SW_A1H with respect to switching elements other than the switching elements SW_A1H in the plurality of switching elements included in the first and second inverters 120 and 130. .
  • failure diagnosis of the present embodiment when a failure occurs in a switching element, it is possible to identify which of the plurality of switching elements has failed. By identifying the failed switching element, appropriate control can be performed according to the failure point.
  • the failure diagnosis unit 800_I illustrated in FIG. 6 is a failure diagnosis unit 800 that diagnoses the presence or absence of a failure of the switching element using the value of the current flowing through the detected switching element.
  • a failure diagnosis unit 800 that diagnoses the presence or absence of a failure of the switching element using the value of the current flowing through the detected switching element.
  • the fault diagnosis unit 800 _I executes the same fault diagnosis as the fault diagnosis for the switching element SW_A1H with respect to switching elements other than the switching elements SW_A1H in the plurality of switching elements included in the first and second inverters 120 and 130. .
  • failure diagnosis unit 800_V determines that the detected voltage is not 0.5 V or more, it determines that switching element SW_A1H is normal (step S108). Failure diagnosis unit 800_V outputs a signal indicating that switching element SW_A1H is normal to motor control unit 900, and returns to the process of step S111.
  • the OR block 861 determines that the switching element SW_A1H is normal if both of the signals output from the failure diagnosis units 800_I and 800_V are normal. When it is determined that the switching element SW_A1H is normal, the OR block 861 outputs a signal (for example, “0”) indicating that the switching element SW_A1H is normal to the motor control unit 900.
  • the OR block 861 determines that the switching element SW_A1H is out of order if at least one of the signals output from the failure diagnosis units 800_I and 800_V indicates an abnormality. If it is determined that the switching element SW_A1H is faulty, the OR block 861 outputs a signal (for example, “1”) indicating that the switching element SW_A1H is faulty to the motor control unit 900. When receiving a signal indicating that the switching element SW_A1H is broken, the motor control unit 900 changes the control mode of the motor 200 from the normal control mode to the abnormal control mode.
  • FIG. 13 shows another example of the functional block of the fault diagnosis unit 800_IV.
  • the fault diagnosis unit 800_IV shown in FIG. 13 includes a fault diagnosis unit 800_I, a fault diagnosis unit 800_V, and an AND block 862.
  • fault diagnosis units 800_I and 800_IV shown in FIG. 13 is similar to the operation of fault diagnosis units 800_I and 800_IV shown in FIG. In the example shown in FIG. 13, the output of each of the fault diagnosis units 800 _I and 800 _IV is input to an AND block 862.
  • the controller 340 includes a fault diagnosis unit 800P_I as the fault diagnosis unit 800.
  • the failure diagnosis unit 800P_I diagnoses the presence or absence of a phase failure using the value of the current flowing through the switching element.
  • FIG. 19 shows an example of a functional block of the failure diagnosis unit 800P_VA.
  • Failure diagnosis unit 800P_VA shown in FIG. 19 includes failure diagnosis units 800_V1H, 800_V1L, 800_V2H, 800_V2L, and an OR block 870_V.
  • the OR block 881B determines that the B phase is normal if both of the signals output from the failure diagnosis units 800P_IB and 800P_VB are normal. If it is determined that the B phase is normal, the OR block 881B outputs a signal indicating that the B phase is normal to the motor control unit 900.
  • the OR block 881 C determines that the C phase is normal if both of the signals output from the failure diagnosis units 800 P_IC and 800 P_VC indicate that they are normal. If it is determined that the C phase is normal, the OR block 881C outputs a signal indicating that the C phase is normal to the motor control unit 900.
  • the controller 340 controls the motor 200 by, for example, three-phase conduction control.
  • the controller 340 performs control to stop the driving of the motor 200, for example.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000 by Embodiment 1 can be used suitably for the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

実施形態にかかる故障診断方法は、電気機器が備えるオンとオフの切替えが繰り返されるスイッチング素子の故障の有無を診断する。故障診断方法は、スイッチング素子がオン状態に制御されたときにスイッチング素子を流れる電流が所定電流未満であるか判定するステップと、スイッチング素子を流れる電流が所定電流未満である場合、スイッチング素子を流れる電流が所定電流未満になる時間を検出するステップと、検出した時間が所定時間以上であるか判定するステップと、検出した時間が所定時間以上である場合、検出した時間が所定時間以上になる回数をカウントするステップと、カウントした合計回数が所定回数以上であるか判定するステップと、カウントした合計回数が所定回数以上である場合、スイッチング素子は故障していると判定するステップとを含む。

Description

故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
本開示は、故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。
近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。
特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。 
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。 
特許文献4は、4つの電気的分離手段、および、2つのインバータを有し、三相モータに供給する電力を変換するモータ駆動装置を開示する。1つのインバータに対し、電源およびインバータの間に1つの電気的分離手段が設けられ、インバータおよびグランド(以下、GNDと表記する。)の間に1つの電気的分離手段が設けられている。故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータを駆動することが可能である。そのとき、故障したインバータに接続された2つの電気的分離手段を遮断状態にすることによって、故障したインバータは電源およびGNDから分離される。
特開2016-34204号公報 特開2016-32977号公報 特開2008-132919号公報 特許第5797751号公報
上記のような電力変換装置を用いてモータを駆動する装置において、電力変換装置に故障が発生した場合には、その故障箇所を特定することが求められる。 
例えば、電力変換装置が備えるスイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することが求められる。また、例えば、n相(nは3以上の整数)の巻線を備えるモータに電力を供給する電力変換装置に故障が発生した場合、複数の相のうちのどの相が故障したのかを特定することが求められる。 
本開示の実施形態は、故障が発生した場合に、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することが可能な故障診断方法を提供する。 
また、本開示の実施形態は、故障が発生した場合に、複数の相のうちのどの相が故障したのかを特定することが可能な故障診断方法を提供する。
本開示の例示的な故障診断方法は、電気機器が備えるオンとオフの切替えが繰り返されるスイッチング素子の故障の有無を診断する故障診断方法であって、前記スイッチング素子がオン状態に制御されたときに前記スイッチング素子を流れる電流が所定電流未満であるか判定するステップと、前記スイッチング素子を流れる電流が前記所定電流未満である場合、前記スイッチング素子を流れる電流が前記所定電流未満になる時間を検出するステップと、前記検出した時間が所定時間以上であるか判定するステップと、前記検出した時間が前記所定時間以上である場合、前記検出した時間が前記所定時間以上になる回数をカウントするステップと、前記カウントした合計回数が所定回数以上であるか判定するステップと、前記カウントした合計回数が前記所定回数以上である場合、前記スイッチング素子は故障していると判定するステップとを含む。
本開示の実施形態によれば、故障が発生した場合に、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。
また、本開示の実施形態によれば、故障が発生した場合に、複数の相のうちのどの相が故障したのかを特定することができる。
図1は、例示的な実施形態1によるモータモジュール2000の典型的なブロック構成を模式的に示すブロック図である。 図2は、例示的な実施形態1によるインバータユニット100の回路構成を模式的に示す回路図である。 図3は、三相通電制御に従ってインバータユニット100を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。 図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示する機能ブロック図である。 図5は、スイッチング素子を流れる電流の値を用いて、スイッチング素子の故障の有無を診断する動作を示すフローチャートである。 図6は、スイッチング素子を流れる電流の値を用いて、スイッチング素子の故障の有無を診断する動作の一例を説明する図である。 図7は、ANDブロック822の出力値、積分器831の出力値、比較器841の出力値の関係を示す図である。 図8は、ANDブロック822の出力値、積分器831の出力値、比較器851の出力値の関係を示す図である。 図9は、スイッチング素子にかかる電圧の値を用いて、スイッチング素子の故障の有無を診断する動作を示すフローチャートである。 図10は、スイッチング素子にかかる電圧の値を用いて、スイッチング素子の故障の有無を診断する動作の一例を説明する図である。 図11は、電流値および電圧値の両方を用いてスイッチング素子の故障の有無を診断するコントローラ340を示す図である。 図12は、故障診断ユニット800_IVの機能ブロックの一例を示す図である。 図13は、故障診断ユニット800_IVの機能ブロックの別の例を示す図である。 図14は、電流値を用いて相の故障の有無を診断するコントローラ340を示す図である。 図15は、故障診断ユニット800P_Iの機能ブロックの一例を示す図である。 図16は、故障診断ユニット800P_IAの機能ブロックの一例を示す図である。 図17は、電圧値を用いて相の故障の有無を診断するコントローラ340を示す図である。 図18は、故障診断ユニット800P_Vの機能ブロックの一例を示す図である。 図19は、故障診断ユニット800P_VAの機能ブロックの一例を示す図である。 図20は、電流値および電圧値の両方を用いて相の故障の有無を診断するコントローラ340を示す図である。 図21は、故障診断ユニット800P_IVの機能ブロックの一例を示す図である 図22は、故障診断ユニット800P_IVの機能ブロックの別の例を示す図である 図23は、実施形態1の変形例による、単体のインバータ140を有するインバータユニット100Aの回路構成を模式的に示す回路図である。 図24は、実施形態2による電動パワーステアリング装置3000の典型的な構成を示す模式図である。
以下、添付の図面を参照しながら、本開示の故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるモータ制御方法も本開示の範疇である。 



(実施形態1)



〔1.モータモジュール2000および電力変換装置1000の構造〕



 図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。 
モータモジュール2000は、典型的に、電力変換装置1000およびモータ200を備える。電力変換装置1000は、インバータユニット100と制御回路300とを備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。 
電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。 
モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。 
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。 
制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。 
電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。 
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。 
入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル変換回路である。 
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチング素子(典型的には半導体スイッチング素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。 
駆動回路350は、典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチング素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチング素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない場合がある。その場合、プリドライバの機能は、コントローラ340に実装され得る。 
駆動回路350は、電圧検出回路380を備える。電圧検出回路380は、例えば、第1および第2インバータ120、130が備える複数のスイッチング素子のそれぞれにかかる電圧を検出する。例えば、スイッチング素子がFETである場合は、電圧検出回路380は、各FETのソース-ドレイン間の電圧を検出する。 
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 
図2を参照して、インバータユニット100の具体的な回路構成を説明する。 
図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。 
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。 
ヒューズISW_11、ISW_12が、電源101と第1インバータ120との間に接続される。ヒューズISW_11、ISW_12は、電源101から第1インバータ120に流れ得る大電流を遮断することができる。ヒューズISW_21、ISW_22が、電源101と第2インバータ130との間に接続される。ヒューズISW_21、ISW_22は、電源101から第2インバータ130に流れ得る大電流を遮断することができる。ヒューズの代わりにリレーなどを用いてもよい。 
図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチング素子、ローサイドスイッチング素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチング素子SW_A1H、ローサイドスイッチング素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチング素子SW_B1H、ローサイドスイッチング素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチング素子SW_C1H、ローサイドスイッチング素子SW_C1Lおよび第1シャント抵抗S_C1を有する。 
スイッチング素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。 
第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えば、ローサイドスイッチング素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えば、ローサイドスイッチング素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えば、ローサイドスイッチング素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1、S_C1は、第1インバータ120のGNDラインGLと共通に接続されている。 
第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチング素子、ローサイドスイッチング素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチング素子SW_A2H、ローサイドスイッチング素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチング素子SW_B2H、ローサイドスイッチング素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチング素子SW_C2H、ローサイドスイッチング素子SW_C2Lおよびシャント抵抗S_C2を有する。 
シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチング素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチング素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチング素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2、S_C2は、第2インバータ130のGNDラインGLと共通に接続されている。 
上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。 
第1インバータ120のA相レグ(具体的には、ハイサイドスイッチング素子SW_A1Hおよびローサイドスイッチング素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。 
制御回路300は、第1および第2インバータ120、130の両方を用いて三相通電制御することによってモータ200を駆動する。具体的に、制御回路300は、第1インバータ110のスイッチング素子と第2インバータ140のスイッチング素子とを互いに逆位相(位相差=180°)でスイッチング制御することにより三相通電制御を行う。このとき、ヒューズISW_11、ISW_12、ISW_21、ISW_22はオンにする。例えば、スイッチング素子SW_A1L、SW_A1H、SW_A2LおよびSW_A2Hを含むHブリッジに着目すると、スイッチング素子SW_A1Lがオンすると、スイッチング素子SW_A2Lはオフし、スイッチング素子SW_A1Lがオフすると、スイッチング素子SW_A2Lはオンする。これと同様に、スイッチング素子
SW_A1Hがオンすると、スイッチング素子SW_A2Hはオフし、スイッチング素子SW_A1Hがオフすると、スイッチング素子SW_A2Hはオンする。電源101から出力された電流は、ハイサイドスイッチング素子、巻線、ローサイドスイッチング素子を通ってGNDラインGLに流れる。電力変換装置100の結線は、オープン結線と称される場合がある。 
ここで、A相の巻線M1を流れる電流の経路の例を説明する。スイッチング素子SW_A1Hおよびスイッチング素子SW_A2Lがオンであり、スイッチング素子SW_A2Hおよびスイッチング素子SW_A1Lがオフのとき、電流は、電源101、スイッチング素子SW_A1H、巻線M1、スイッチング素子SW_A2L、GNDラインGLの順に流れる。スイッチング素子SW_A2Hおよびスイッチング素子SW_A1Lがオンであり、スイッチング素子SW_A1Hおよびスイッチング素子SW_A2Lがオフのとき、電流は、電源101、スイッチング素子SW_A2H、巻線M1、スイッチング素子SW_A1L、GNDラインGLの順に流れる。 
なお、スイッチング素子SW_A1Hから巻線M1へ流れた電流の一部が、スイッチング素子SW_A2Hへ流れる場合がある。すなわち、スイッチング素子SW_A1Hから巻線M1へ流れた電流が、スイッチング素子SW_A2Lとスイッチング素子SW_A2Hとに分岐して流れる場合がある。同様に、スイッチング素子SW_A2Hから巻線M1へ流れた電流の一部が、スイッチング素子SW_A1Hへ流れる場合がある。 
次に、B相の巻線M2を流れる電流の経路の例を説明する。スイッチング素子SW_B1Hおよびスイッチング素子SW_B2Lがオンであり、スイッチング素子SW_B2Hおよびスイッチング素子SW_B1Lがオフのとき、電流は、電源101、スイッチング素子SW_B1H、巻線M2、スイッチング素子SW_B2L、GNDラインGLの順に流れる。スイッチング素子SW_B2Hおよびスイッチング素子SW_B1Lがオンであり、スイッチング素子SW_B1Hおよびスイッチング素子SW_B2Lがオフのとき、電流は、電源101、スイッチング素子SW_B2H、巻線M2、スイッチング素子SW_B1L、GNDラインGLの順に流れる。 
なお、上記と同様に、スイッチング素子SW_B1Hから巻線M2へ流れた電流の一部が、スイッチング素子SW_B2Hへ流れる場合がある。また、スイッチング素子SW_B2Hから巻線M2へ流れた電流の一部が、スイッチング素子SW_B1Hへ流れる場合がある。 
次に、C相の巻線M3を流れる電流の経路の例を説明する。スイッチング素子SW_C1Hおよびスイッチング素子SW_C2Lがオンであり、スイッチング素子SW_C2Hおよびスイッチング素子SW_C1Lがオフのとき、電流は、電源101、スイッチング素子SW_C1H、巻線M3、スイッチング素子SW_C2L、GNDラインGLの順に流れる。スイッチング素子SW_C2Hおよびスイッチング素子SW_C1Lがオンであり、スイッチング素子SW_C1Hおよびスイッチング素子SW_C2Lがオフのとき、電流は、電源101、スイッチング素子SW_C2H、巻線M3、スイッチング素子SW_C1L、GNDラインGLの順に流れる。 
なお、上記と同様に、スイッチング素子SW_C1Hから巻線M3へ流れた電流の一部が、スイッチング素子SW_C2Hへ流れる場合がある。また、スイッチング素子SW_C2Hから巻線M3へ流れた電流の一部が、スイッチング素子SW_C1Hへ流れる場合がある。 
図3は、三相通電制御に従ってインバータユニット100を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示している。図3の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表している。例えば、制御回路300は、図3に示す電流波形を得るためのPWM信号を生成することができる。 



〔2.故障診断〕



次に、本実施形態による故障診断方法を説明する。ここでは、図1に示す電力変換装置1000を例に、スイッチング素子の故障の有無を診断する方法を説明する。 
スイッチング素子がFETである場合、故障には大きく分けて「オープン故障」と「ショート故障」とがある。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗が常時ハイインピーダンスになること)を指す。「ショート故障」は、FETのソース-ドレイン間が常時短絡する故障を指す。本実施形態の故障診断では、スイッチング素子のオープン故障を検出する。 
本実施形態による故障診断方法を実現するためのアルゴリズムは、例えばマイクロコントローラ、特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、ハードウェアおよびソフトウェアの組み合わせによっても実現することができる。 
図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5は、コントローラ340が実行する故障診断の一例を示すフローチャートである。 
本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御および故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。 
コントローラ340は、入力回路330(図1)を介して、電流センサ150が検出した電流値を受け取る。電流センサ150が上記のシャント抵抗を用いて各相を流れる電流を検出することで、第1および第2インバータ120、130が備える複数のスイッチング素子のそれぞれを流れる電流を把握することができる。電圧検出回路380(図1)は、例えば、第1および第2インバータ120、130が備える複数のスイッチング素子のそれぞれにかかる電圧を検出して、コントローラ340へ出力する。 
コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。故障診断ユニット800は、複数のスイッチング素子のそれぞれに関する電流および/または電圧の情報を用いて、故障の有無を診断する。故障診断ユニット800は、故障の有無の診断結果を示す信号をモータ制御ユニット900に出力する。 
モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチング素子のスイッチング動作の全般を制御するPWM信号を、診断結果に基づいて生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。 
モータ制御ユニット900は、第1および第2インバータ120、130の制御を診断結果に応じて切替える。具体的に説明すると、モータ制御ユニット900は、第1および第2インバータ120、130のスイッチング素子のオン・オフ動作を診断結果に基づいて決定することが可能である。モータ制御ユニット900は、さらに、ヒューズISW_11、ISW_12、ISW_21およびISW_22のオン・オフ動作を診断結果に基づいて決定することが可能である。 
本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、この表記は、各機能ブロックを、ハードウェアまたはソフトウェアに限定解釈する意図で用いられない。 
各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は、例えばコントローラ340のコアであり得る。上述したように、コントローラ340は、FPGAによって実現され得る。その場合、全てまたは一部の機能ブロックは、ハードウェアで実現され得る。 
複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。 
第1および第2インバータ120、130が備える複数のスイッチング素子に故障が発生していないとき、制御回路300は、正常時の制御モードとして上記の三相通電制御を実行する。三相通電制御において、複数のスイッチング素子のそれぞれは、オンとオフの切替えを繰り返す。故障診断ユニット800は、第1および第2インバータ120、130が備える12個のスイッチング素子SW_A1H、SW_A1L、SW_B1H、SW_B1L、SW_C1H、SW_C1L、SW_A2H、SW_A2L、SW_B2H、SW_B2L、SW_C2H、SW_C2Lのそれぞれに対して、本実施形態の故障診断を実行する。 



〔2-1.電流値を用いたスイッチング素子の故障診断〕



図5を参照しながら、スイッチング素子を流れる電流を検出してスイッチング素子の故障の有無を診断する動作を説明する。スイッチング素子がFETである場合、スイッチング素子を流れる電流は、FETのソースとドレインとの間を流れる電流である。ここでは、スイッチング素子を流れる電流の値を用いてスイッチング素子の故障の有無を診断する故障診断ユニット800を故障診断ユニット800_Iと表現する。 
ここでは、第1および第2インバータ120、130が備える複数のスイッチング素子のうちの1つであるスイッチング素子SW_A1Hの故障の有無を診断する例を説明する。この故障診断は、スイッチング素子SW_A1Hをオンにする動作を行う毎に繰り返し実行され得る。 
故障診断ユニット800_Iは、スイッチング素子SW_A1Hがオン状態に制御されたときにスイッチング素子SW_A1Hを流れる電流を検出する(ステップS101)。例えば、スイッチング素子SW_A1Hおよびスイッチング素子SW_A2Lがオンであり、スイッチング素子SW_A2Hおよびスイッチング素子SW_A1Lがオフのとき、電流は、電源101、スイッチング素子SW_A1H、巻線M1、スイッチング素子SW_A2L、シャント抵抗S_A2、GNDラインGLの順に流れる。シャント抵抗S_A2を流れる電流の大きさは、スイッチング素子SW_A1Hを流れる電流の大きさに該当する。故障診断ユニット800_Iは、例えば、シャント抵抗S_A2を流れる電流からスイッチング素子SW_A1Hを流れる電流の大きさを検出することができる。 
次に、故障診断ユニット800_Iは、スイッチング素子SW_A1Hがオン状態に制御されたときにスイッチング素子SW_A1Hを流れる電流が所定電流未満であるか判定する(ステップS102)。所定電流は例えば10mAである。なお、10mAは一例であり、本開示の実施形態はそれに限定されない。 
この例では、スイッチング素子SW_A1Hが故障していない、すなわち正常である場合は、ゲート制御信号が供給されたスイッチング素子SW_A1Hには10mA以上の電流が流れる。スイッチング素子SW_A1Hがオープン故障している場合、ゲート制御信号が供給されたスイッチング素子SW_A1Hを流れる電流は10mA未満になる。 
故障診断ユニット800_Iは、検出した電流は10mA未満でないと判定した場合、スイッチング素子SW_A1Hは正常であると判定する(ステップS108)。故障診断ユニット800_Iは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS101の処理に戻る。 
ステップS102において、検出した電流が10mA未満であると判定した場合、ステップS103の処理に進む。ステップS103において、故障診断ユニット800_Iは、スイッチング素子SW_A1Hがオン状態に制御されたときに、スイッチング素子SW_A1Hを流れる電流が10mA未満になる時間を検出する。次に、故障診断ユニット800_Iは、検出した時間が所定時間以上であるか判定する(ステップS104)。所定時間は例えば50μsである。なお、50μsは一例であり、本開示の実施形態はそれに限定されない。所定時間は、モータ200の構造および回転数に応じて設定され得る。 
スイッチング素子SW_A1Hが正常である場合であっても、ノイズ等の外乱により、オン状態のスイッチング素子SW_A1Hを流れる電流が10mA未満になることが短時間発生し得る。このようなノイズに起因した異常値に基づいて、スイッチング素子SW_A1Hは異常であると判定してしまうと、正しい判定ができない。そこで、本実施形態では、電流が10mA未満になる時間が短時間(例えば50μs未満)である場合は、スイッチング素子SW_A1Hは正常であると判定する。 
故障診断ユニット800_Iは、検出した時間が50μs以上でないと判定した場合、スイッチング素子SW_A1Hは正常であると判定する(ステップS108)。故障診断ユニット800_Iは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS101の処理に戻る。 
ステップS104において、検出した時間が50μs以上であると判定した場合、ステップS105の処理に進む。ステップS105において、故障診断ユニット800_Iは、検出した時間が50μs以上になる回数をカウントする。次に、故障診断ユニット800_Iは、カウントした合計回数が所定回数以上であるか判定する(ステップS106)。所定回数は例えば3回である。なお、3回は一例であり、本開示の実施形態はそれに限定されない。所定回数は複数回数であればよく、2回でもよいし、4回以上であってもよい。 
検出した時間が50μs以上である場合、スイッチング素子SW_A1Hはオープン故障している可能性があるが、それを1回検出したのみの段階では、未だ故障とは判定しない。スイッチング素子SW_A1Hが本当にオープン故障している場合、制御回路300がスイッチング素子SW_A1Hにゲート制御信号を供給するたびに、ステップS104の処理において、検出した時間は50μs以上であると判定される。検出した時間は50μs以上であるとの判定が複数回(例えば3回)行われた場合、スイッチング素子SW_A1Hはオープン故障していると判定する。 
ステップS106において、カウントした合計回数が3回以上でないと判定した場合、故障診断ユニット800_Iは、スイッチング素子SW_A1Hは正常であると判定する(ステップS108)。故障診断ユニット800_Iは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS101の処理に戻る。 
ステップS106において、カウントした合計回数が3回以上であると判定した場合、スイッチング素子SW_A1Hはオープン故障していると判定する(ステップS107)。故障診断ユニット800_Iは、スイッチング素子SW_A1Hは故障していることを示す信号をモータ制御ユニット900に出力する。故障診断ユニット800_Iは、スイッチング素子SW_A1Hが故障していることを示す信号をモータ制御ユニット900に出力した後、ステップS101の処理に戻ってもよい。 
モータ制御ユニット900は、スイッチング素子SW_A1Hが故障していることを示す信号を受け取ると、モータ200の制御モードを正常時の制御モードから異常時の制御モードに変更する。 
異常時の制御モードは、例えば、故障したインバータに巻線の中性点を構成し、故障していないインバータによってモータ200を駆動する制御モードである。スイッチング素子SW_A1Hが故障している場合、モータ制御ユニット900は、ヒューズISW_11、ISW_12をオフにする制御を行う。これにより、故障したスイッチング素子SW_A1Hを備える第1インバータ120は、電源およびGNDから分離される。そして、例えば、スイッチング素子SW_A1H、SW_B1H、SW_C1Hをオフにし、スイッチング素子SW_A1L、SW_B1L、SW_C1Lをオンにすることで、第1インバータ120に中性点が構成される。この中性点を用いることで、故障していない第2インバータ130によってモータ200を駆動することができる。 
また、異常時の制御モードは、二相通電制御であってもよい。A相に属するスイッチング素子SW_A1Hが故障している場合、モータ制御ユニット900は、A相に属する全てのスイッチング素子SW_A1H、SW_A1L、SW_A2H、SW_A2Lをオフにする。そして、B相およびC相に属するスイッチング素子SW_B1H、SW_B1L、SW_B2H、SW_B2L、SW_C1H、SW_C1L、SW_C2H、SW_C2Lを用いて、二相通電制御を行う。このように、故障していない相を用いてモータ200を駆動することができる。 
なお、異常時の制御モードは、シャットダウンであってもよい。シャットダウンは、モータ200の動作を停止させる制御である。 
故障診断ユニット800_Iは、第1および第2インバータ120、130が備える複数のスイッチング素子におけるスイッチング素子SW_A1H以外のスイッチング素子に対しても、上記のスイッチング素子SW_A1Hに対する故障診断と同様の故障診断を実行する。 
本実施形態の故障診断では、スイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。故障したスイッチング素子を特定できることにより、故障箇所に応じた適切な制御を行うことができる。 
次に、図6を用いて、検出したスイッチング素子を流れる電流を検出してスイッチング素子の故障の有無を診断する動作の一例を説明する。 
図6に示す故障診断ユニット800_Iは、検出したスイッチング素子を流れる電流の値を用いて、スイッチング素子の故障の有無を診断する故障診断ユニット800である。ここでは、第1および第2インバータ120、130が備える複数のスイッチング素子のうちの1つであるスイッチング素子SW_A1Hの故障の有無を診断する例を説明する。 
故障診断ユニット800_Iには、検出したスイッチング素子SW_A1Hの電流値(図6中の“I”)が入力される。また、故障診断ユニット800_Iには、スイッチング素子SW_A1Hをオンにするゲート制御信号(図6中の“S”)が入力される。絶対値ブロック811は、検出したスイッチング素子SW_A1Hの電流の絶対値を求める。比較器(Comparator)812は、得られた絶対値と、予め決められた電流下限値とを比較する。この電流下限値は、図5に示すステップS102の処理において用いる所定電流に相当し、例えば10mAである。なお、10mAは一例であり、本開示の実施形態はそれに限定されない。 
比較器812は、電流の絶対値が10mA以上である場合は1を出力し、10mA未満である場合は0を出力する。NOTブロック821は、“NOT”の論理演算を行い、比較器812の出力値を反転させる。 
ANDブロック822には、NOTブロック821の出力値とゲート制御信号とが入力される。ここで、スイッチング素子SW_A1HをオンにするためのHighレベルのゲート制御信号を1とし、スイッチング素子SW_A1HをオフにするためのLowレベルのゲート制御信号を0とする。ANDブロック822は、“AND”の論理演算を行う。ANDブロック822は、NOTブロック821の出力値およびゲート制御信号の両方が1のときに、1を出力する。すなわち、ANDブロック822は、スイッチング素子SW_A1Hがオン状態に制御されたときにスイッチング素子SW_A1Hを流れる電流が下限値未満である場合に、1を出力する。それ以外の場合は、ANDブロック822は0を出力する。 
ORブロック832には、ANDブロック822の出力値と比較器841の出力値とが入力される。ORブロック832は、“OR”の論理演算を行う。比較器841が出力する初期値は0である。ORブロック832は、ANDブロック822の出力値および比較器841の出力値の少なくとも一方が1のときは、1を出力する。ORブロック832は、ANDブロック822の出力値および比較器841の出力値の両方が0のときは、0を出力する。NOTブロック833は、“NOT”の論理演算を行い、ORブロック832の出力値を反転させる。 
積分器(Integrator)831は、ANDブロック822の出力値を積算して出力する。比較器841は、積分器831の出力値と第1基準値とを比較する。比較器851は、積分器8
31の出力値と第2基準値とを比較する。 
図7は、ANDブロック822の出力値、積分器831の出力値、比較器841の出力値の関係を示す図である。図7の横軸は時間を表している。第1基準値は、図5に示すステップS104の処理において用いる所定時間に相当する値である。例えば、所定時間50μsに相当する積分器831の出力値を10とする。積分器831がハードウェアである場合等、積分器831の出力値を電圧で表すと、出力値“10”は、例えば積分器831の出力電圧1.0Vに相当する。 
上述したように、スイッチング素子SW_A1Hが正常である場合であっても、ノイズ等の外乱により、オン状態のスイッチング素子SW_A1Hを流れる電流が10mA未満になることが短時間発生し得る。図7の例では、ANDブロック822が1を10μsの時間出力している部分がノイズに該当する。積分器831は、10μsの期間、ANDブロック822の出力値を積算した値を出力する。図7の例では、積分器831は2を出力する。比較器841は、積分器831の出力値“2”は第1基準値“10”未満であることから、0を出力する。 
スイッチング素子SW_A1Hがオフになると、ANDブロック822は0を出力する。ORブロック832は、ANDブロック822の出力値および比較器841の出力値の両方が0のときは、0を出力する。これに応じて、NOTブロック833は1を出力する。積分器831は、NOTブロック833から1が入力されると、積算した値をリセットする。 
一方、ANDブロック822が1を出力する時間が50μs以上になると、積分器831が積算して出力する値は10以上になる。比較器841は、積分器831の出力値が第1基準値“10”以上であることから、1を出力する。 
比較器841の出力値が1になることにより、スイッチング素子SW_A1Hがオフになっても、ORブロック832は1を出力し、NOTブロック833は0を出力する。積分器831は、NOTブロック833から0が入力されると、積算した値を保持したまま積算を続ける。積算値のリセットは行わない。 
図8は、ANDブロック822の出力値、積分器831の出力値、比較器851の出力値の関係を示す図である。図8の横軸は時間を表している。第2基準値は、図5に示すステップS106の処理において用いる所定回数に相当する値である。例えば、カウント回数3回に相当する積分器831の出力値を30とする。 
比較器841の出力値が1になった場合、積分器831は、ANDブロック822の出力値を積算し続ける。比較器851は、積分器831の出力値が第2基準値“30”未満である間は、0を出力する。比較器851は、積分器831の出力値が第2基準値“30”以上になると1を出力する。この比較器851の出力値“1”が、スイッチング素子SW_A1Hは故障していることを示す信号となり、モータ制御ユニット900に入力される。 
積分器831の出力値が第2基準値“30”未満である間は、比較器851は0を出力する。この比較器851の出力値“0”が、スイッチング素子SW_A1Hは正常であることを示す信号となり、モータ制御ユニット900に入力される。
なお、比較器841の出力値が1になった後、一定時間(例えば数秒間)が経過しても、積分器831の出力値が第2基準値“30”未満である場合は、積分器831は積算した値をリセットしてもよい。ANDブロック822が1を50μs以上出力した場合、スイッチング素子SW_A1Hは故障している可能性がある。しかし、ANDブロック822が1を50μs以上出力することが連続しない場合は、スイッチング素子SW_A1Hは故障していないとみなし、積分器831をリセットして故障診断を継続してもよい。
このように、故障診断ユニット800_Iは、検出したスイッチング素子を流れる電流の値を用いて、スイッチング素子の故障の有無を診断することができる。 
故障診断ユニット800_Iは、第1および第2インバータ120、130が備える複数のスイッチング素子におけるスイッチング素子SW_A1H以外のスイッチング素子に対しても、上記のスイッチング素子SW_A1Hに対する故障診断と同様の故障診断を実行する。 
本実施形態の故障診断では、スイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。故障したスイッチング素子を特定できることにより、故障箇所に応じた適切な制御を行うことができる。 



〔2-2.電圧値を用いたスイッチング素子の故障診断〕



次に、図9を参照しながら、スイッチング素子にかかる電圧を検出して、スイッチング素子の故障の有無を診断する動作を説明する。ここでは、スイッチング素子にかかる電圧の値を用いてスイッチング素子の故障の有無を診断する故障診断ユニット800を故障診断ユニット800_Vと表現する。図9は、スイッチング素子にかかる電圧の値を用いて、スイッチング素子の故障の有無を診断する動作を示すフローチャートである。スイッチング素子がFETである場合、スイッチング素子にかかる電圧は、FETのソース-ドレイン間電圧である。図9に示すステップS105からS108の動作は、図5に示すステップS105からS108の動作と同様である。 
ここでは、第1および第2インバータ120、130が備える複数のスイッチング素子のうちの1つであるスイッチング素子SW_A1Hの故障の有無を診断する例を説明する。この故障診断は、スイッチング素子SW_A1Hをオンにする動作を行う毎に繰り返し実行され得る。 
故障診断ユニット800_Vは、スイッチング素子SW_A1Hがオン状態に制御されたときのスイッチング素子SW_A1Hのソース-ドレイン間電圧を検出する(ステップS111)。例えば、故障診断ユニット800_Vは、電圧検出回路380(図1)の出力信号を用いて、スイッチング素子SW_A1Hのソース-ドレイン間電圧を検出することができる。 
次に、故障診断ユニット800_Vは、スイッチング素子SW_A1Hがオン状態に制御されたときのスイッチング素子SW_A1Hのソース-ドレイン間電圧が所定電圧以上であるか判定する(ステップS112)。所定電圧は例えば0.5Vである。なお、0.5Vは一例であり、本開示の実施形態はそれに限定されない。 
この例では、スイッチング素子SW_A1Hが故障していない、すなわち正常である場合は、ゲート制御信号が供給されたスイッチング素子SW_A1Hのソース-ドレイン間電圧は、0.5V未満になる。スイッチング素子SW_A1Hがオープン故障している場合、ゲート制御信号が供給されたスイッチング素子SW_A1Hのソース-ドレイン間電圧は0.5V以上になる。 
故障診断ユニット800_Vは、検出した電圧は0.5V以上でないと判定した場合、スイッチング素子SW_A1Hは正常であると判定する(ステップS108)。故障診断ユニット800_Vは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS111の処理に戻る。 
ステップS112において、検出した電圧が0.5V以上であると判定した場合、ステップS113の処理に進む。ステップS113において、故障診断ユニット800_Vは、スイッチング素子SW_A1Hがオン状態に制御されたときに、スイッチング素子SW_A1Hのソース-ドレイン間電圧が0.5V以上になる時間を検出する。次に、故障診断ユニット800_Vは、検出した時間が所定時間以上であるか判定する(ステップS114)。所定時間は例えば50μsである。なお、50μsは一例であり、本開示の実施形態はそれに限定されない。 
スイッチング素子SW_A1Hが正常である場合であっても、ノイズ等の外乱により、オン状態のスイッチング素子SW_A1Hのソース-ドレイン間電圧が0.5V以上になることが短時間発生し得る。このようなノイズに起因した異常値に基づいて、スイッチング素子SW_A1Hは異常であると判定してしまうと、正しい判定ができない。そこで、本実施形態では、電圧が0.5V以上になる時間が短時間(例えば50μs未満)である場合は、スイッチング素子SW_A1Hは正常であると判定する。 
故障診断ユニット800_Vは、検出した時間が50μs以上でないと判定した場合、スイッチング素子SW_A1Hは正常であると判定する(ステップS108)。故障診断ユニット800_Vは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS111の処理に戻る。 
ステップS114において、検出した時間が50μs以上であると判定した場合、ステップS105の処理に進む。図9に示すステップS105からS108の動作は、図5に示すステップS105からS108の動作と同様であるので、ここでは、その詳細な説明の繰り返しは省略する。 
図9の例では、ステップS108において、スイッチング素子SW_A1Hは正常であると判定した場合、故障診断ユニット800_Vは、スイッチング素子SW_A1Hが正常であることを示す信号をモータ制御ユニット900に出力し、ステップS111の処理に戻る。ステップS107において、スイッチング素子SW_A1Hはオープン故障していると判定した場合、故障診断ユニット800_Vは、スイッチング素子SW_A1Hが故障していることを示す信号をモータ制御ユニット900に出力する。故障診断ユニット800_Iは、スイッチング素子SW_A1Hが故障していることを示す信号をモータ制御ユニット900に出力した後、ステップS111の処理に戻ってもよい。 
モータ制御ユニット900は、スイッチング素子SW_A1Hが故障していることを示す信号を受け取ると、モータ200の制御モードを正常時の制御モードから異常時の制御モードに変更する。 
故障診断ユニット800_Vは、第1および第2インバータ120、130が備える複数のスイッチング素子におけるスイッチング素子SW_A1H以外のスイッチング素子に対しても、上記のスイッチング素子SW_A1Hに対する故障診断と同様の故障診断を実行する。 
本実施形態の故障診断では、スイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。故障したスイッチング素子を特定できることにより、故障箇所に応じた適切な制御を行うことができる。 
次に、図10を用いて、スイッチング素子にかかる電圧を検出して、スイッチング素子の故障の有無を診断する動作の一例を説明する。 
図10に示す故障診断ユニット800_Vは、検出したスイッチング素子にかかる電圧の値を用いて、スイッチング素子の故障の有無を診断する故障診断ユニット800である。ここでは、第1および第2インバータ120、130が備える複数のスイッチング素子のうちの1つであるスイッチング素子SW_A1Hの故障の有無を診断する例を説明する。 
故障診断ユニット800_Vには、検出したスイッチング素子SW_A1Hのソース-ドレイン間電圧(図10中の“V”)が入力される。また、故障診断ユニット800_Vには、スイッチング素子SW_A1Hをオンにするゲート制御信号(図10中の“S”)が入力される。絶対値ブロック813は、検出したスイッチング素子SW_A1Hのソース-ドレイン間電圧の絶対値を求める。比較器814は、得られた絶対値と、予め決められた電圧下限値とを比較する。この電圧下限値は、図9に示すステップS112の処理において用いる所定電圧に相当し、例えば0.5Vである。なお、0.5Vは一例であり、本開示の実施形態はそれに限定されない。 
比較器814は、電圧の絶対値が0.5V以上である場合は1を出力し、0.5V未満である場合は0を出力する。ANDブロック822には、比較器814の出力とゲート制御信号とが入力される。ANDブロック822は、比較器814の出力値およびゲート制御信号の両方が1のときに、1を出力する。すなわち、ANDブロック822は、スイッチング素子SW_A1Hがオン状態に制御されたときのスイッチング素子SW_A1Hのソース-ドレイン間電圧が下限値以上である場合に、1を出力する。それ以外の場合は、ANDブロック822は0を出力する。ANDブロック822の出力は、積分器831およびORブロック832に入力される。 
積分器831、ORブロック832、NOTブロック833、比較器841、比較器851の動作は、図6から図8を用いて説明した動作と同様であるため、ここではその詳細な説明の繰り返しは省略する。 
比較器841の出力値が1になった場合、積分器831は、ANDブロック822の出力値を積算し続ける。比較器851は、積分器831の出力値が第2基準値“30”未満である間は、0を出力する。比較器851は、積分器831の出力値が第2基準値“30”以上になると1を出力する。 
このように、故障診断ユニット800_Vは、検出したスイッチング素子にかかる電圧の値を用いて、スイッチング素子の故障の有無を診断することができる。 
故障診断ユニット800_Vは、第1および第2インバータ120、130が備える複数のスイッチング素子におけるスイッチング素子SW_A1H以外のスイッチング素子に対しても、上記のスイッチング素子SW_A1Hに対する故障診断と同様の故障診断を実行する。 
本実施形態の故障診断では、スイッチング素子に故障が発生した場合、複数のスイッチング素子のうちのどのスイッチング素子が故障したのかを特定することができる。故障したスイッチング素子を特定できることにより、故障箇所に応じた適切な制御を行うことができる。 



〔2-3.電流値および電圧値の両方を用いたスイッチング素子の故障診断〕



次に、スイッチング素子を流れる電流の値およびスイッチング素子にかかる電圧の値の両方を用いてスイッチング素子の故障の有無を診断する動作を説明する。この例では、図11に示すように、コントローラ340は、故障診断ユニット800として、故障診断ユニット800_IVを備える。故障診断ユニット800_IVは、スイッチング素子を流れる電流の値およびスイッチング素子にかかる電圧の値の両方を用いてスイッチング素子の故障の有無を診断する。 
図12は、故障診断ユニット800_IVの機能ブロックの一例を示している。図12に示す故障診断ユニット800_IVは、故障診断ユニット800_Iと、故障診断ユニット800_Vと、ORブロック861とを備える。 
故障診断ユニット800_Iは、図5から図8を参照しながら説明した、電流値を用いた診断を行う。但し、この例では、図5に示すステップS108において、故障診断ユニット800_Iは、スイッチング素子SW_A1Hを流れる電流は正常であると判定する。この場合、故障診断ユニット800_Iは、スイッチング素子SW_A1Hを流れる電流は正常であることを示す信号(例えば“0”)をORブロック861に出力し、ステップS101の処理に戻る。また、図5に示すステップS107において、故障診断ユニット800_Iは、スイッチング素子SW_A1Hを流れる電流は異常であると判定する。故障診断ユニット800_Iは、スイッチング素子SW_A1Hを流れる電流は異常であることを示す信号(例えば“1”)をORブロック861に出力する。 
また、この例では、図6に示す比較器851の出力値“0”は、スイッチング素子SW_A1Hを流れる電流は正常であることを示す信号となる。比較器851の出力値“1”は、スイッチング素子SW_A1Hを流れる電流は異常であることを示す信号となる。比較器851の出力は、ORブロック861に入力される。 
このように、図12に示す故障診断ユニット800_Iは、スイッチング素子を流れる電流の異常の有無を判定する。 
故障診断ユニット800_Vは、図9および図10を参照しながら説明した、電圧値を用いた診断を行う。但し、この例では、図9に示すステップS108において、故障診断ユニット800_Vは、スイッチング素子SW_A1Hにかかる電圧は正常であると判定する。この場合、故障診断ユニット800_Vは、スイッチング素子SW_A1Hにかかる電圧は正常であることを示す信号(例えば“0”)をORブロック861に出力し、ステップS111の処理に戻る。また、図9に示すステップS107において、故障診断ユニット800_Vは、スイッチング素子SW_A1Hにかかる電圧は異常であると判定する。故障診断ユニット800_Vは、スイッチング素子SW_A1Hにかかる電圧は異常であることを示す信号(例えば“1”)をORブロック861に出力する。 
また、この例では、図10に示す比較器851の出力値“0”は、スイッチング素子SW_A1Hにかかる電圧は正常であることを示す信号となる。比較器851の出力値“1”は、スイッチング素子SW_A1Hにかかる電圧は異常であることを示す信号となる。比較器851の出力は、ORブロック861に入力される。 
このように、図12に示す故障診断ユニット800_Vは、スイッチング素子にかかる電圧の異常の有無を判定する。 
ORブロック861は、故障診断ユニット800_Iおよび800_Vが出力する信号の両方が正常であることを示す場合、スイッチング素子SW_A1Hは正常であると判定する。スイッチング素子SW_A1Hは正常であると判定した場合、ORブロック861は、スイッチング素子SW_A1Hは正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ORブロック861は、故障診断ユニット800_Iおよび800_Vが出力する信号の少なくとも一方が異常であることを示す場合、スイッチング素子SW_A1Hは故障していると判定する。スイッチング素子SW_A1Hは故障していると判定した場合、ORブロック861は、スイッチング素子SW_A1Hが故障していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。モータ制御ユニット900は、スイッチング素子SW_A1Hが故障していることを示す信号を受け取ると、モータ200の制御モードを正常時の制御モードから異常時の制御モードに変更する。 
図12に示す例では、故障診断ユニット800_IVは、検出した電流値および電圧値の両方を用いて故障診断を行う。そして、検出した電流値および電圧値のうちの少なくとも一方が異常である場合に、スイッチング素子は故障していると判定する。例えば、電流センサ150が故障した場合はスイッチング素子を流れる電流は検出できなくなるが、この場合でも、検出した電圧値を用いて故障の有無を診断することができる。また、例えば、電圧検出回路380が故障した場合はスイッチング素子にかかる電圧は検出できなくなるが、この場合でも、検出した電流値を用いて故障の有無を診断することができる。 
図13は、故障診断ユニット800_IVの機能ブロックの別の例を示している。図13に示す故障診断ユニット800_IVは、故障診断ユニット800_Iと、故障診断ユニット800_Vと、ANDブロック862とを備える。 
図13に示す故障診断ユニット800_Iおよび800_IVの動作は、図12に示す故障診断ユニット800_Iおよび800_IVの動作と同様である。図13に示す例では、故障診断ユニット800_Iおよび800_IVのそれぞれの出力は、ANDブロック862に入力される。 
ANDブロック862は、故障診断ユニット800_Iおよび800_Vが出力する信号の少なくとも一方が正常であることを示す場合、スイッチング素子SW_A1Hは正常であると判定する。スイッチング素子SW_A1Hは正常であると判定した場合、ANDブロック862は、スイッチング素子SW_A1Hは正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ANDブロック862は、故障診断ユニット800_Iおよび800_Vが出力する信号の両方が異常であることを示す場合、スイッチング素子SW_A1Hは故障していると判定する。スイッチング素子SW_A1Hは故障していると判定した場合、ANDブロック862は、スイッチング素子SW_A1Hが故障していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。モータ制御ユニット900は、スイッチング素子SW_A1Hが故障していることを示す信号を受け取ると、モータ200の制御モードを正常時の制御モードから異常時の制御モードに変更する。 
図13に示す例では、故障診断ユニット800_IVは、検出した電流値および電圧値の両方を用いて故障診断を行う。そして、検出した電流値および電圧値の両方が異常である場合に、スイッチング素子は故障していると判定する。電流値および電圧値の両方が異常である場合に故障と判定することにより、故障という判定の信頼性を高めることができる。 
上記の説明では、電力変換装置1000を例に、スイッチング素子の故障の有無を診断する方法を説明した。本開示の実施形態にかかるスイッチング素子の故障の有無を診断する故障診断方法は、電力変換装置1000以外の様々な装置に適用することができる。例えば、DC-DCコンバータなどの各種コンバータ、風力発電システムなどの各種発電システムにもこれらの故障診断方法を適用することができる。本開示の実施形態かかるスイッチング素子の故障の有無を診断する故障診断方法は、オンとオフの切替えが繰り返されるスイッチング素子を備える電気機器に適用することができる。 



〔2-4.電流値を用いた相の故障診断〕



次に、本実施形態による相の故障の有無を診断する故障診断方法を説明する。ここでは、図1に示す電力変換装置1000を例に、相の故障の有無を診断する方法を説明する。 
第1および第2インバータ120、130が備える複数のスイッチング素子は、モータ200が備えるA相の巻線M1、B相の巻線M2、C相の巻線M3に接続される。故障が発生した場合、その故障がA相、B相、C相のうちの何れの相で発生しているのか特定することができれば、その故障箇所に応じた適切な制御を行うことができる。例えば、A相に故障が発生していることが特定できれば、残りのB相、C相を用いて二相通電制御を行うことができる。 
この例では、図14に示すように、コントローラ340は、故障診断ユニット800として、故障診断ユニット800P_Iを備える。故障診断ユニット800P_Iは、スイッチング素子を流れる電流の値を用いて相の故障の有無を診断する。 
図15は、故障診断ユニット800P_Iの機能ブロックの一例を示している。図15に示す故障診断ユニット800P_Iは、故障診断ユニット800P_IA、800P_IB、800P_ICを備える。故障診断ユニット800P_IAは、A相に属するスイッチング素子を流れる電流の値を用いてA相の故障診断を行う。故障診断ユニット800P_IBは、B相に属するスイッチング素子を流れる電流の値を用いてB相の故障診断を行う。故障診断ユニット800P_ICは、C相に属するスイッチング素子を流れる電流の値を用いてC相の故障診断を行う。 
図16は、故障診断ユニット800P_IAの機能ブロックの一例を示している。図16に示す故障診断ユニット800P_IAは、故障診断ユニット800_I1H、800_I1L、800_I2H、800_I2Lと、ORブロック870_Iとを備える。 
図2に示す例では、A相の巻線M1には、スイッチング素子SW_A1H、SW_A1L、SW_A2H、SW_A2Lが接続される。

 故障診断ユニット800_I1Hには、スイッチング素子SW_A1Hを流れる電流I_A1Hと、スイッチング素子SW_A1Hをオンにするゲート制御信号S_A1Hとが入力される。故障診断ユニット800_I1Lには、スイッチング素子SW_A1Lを流れる電流I_A1Lと、スイッチング素子SW_A1Lをオンにするゲート制御信号S_A1Lとが入力される。故障診断ユニット800_I2Hには、スイッチング素子SW_A2Hを流れる電流I_A2Hと、スイッチング素子SW_A2Hをオンにするゲート制御信号S_A2Hとが入力される。故障診断ユニット800_I2Lには、スイッチング素子SW_A2Lを流れる電流I_A2Lと、スイッチング素子SW_A2Lをオンにするゲート制御信号S_A2Lとが入力される。
故障診断ユニット800_I1Hは、図5から図8を参照しながら説明した、電流値を用いた故障診断を行う。図5のステップS108において、スイッチング素子SW_A1Hは正常であると判定した場合、故障診断ユニット800_I1Hは、スイッチング素子SW_A1Hが正常であることを示す信号(例えば“0”)をORブロック870_Iに出力し、ステップS101の処理に戻る。ステップS107において、スイッチング素子SW_A1Hは故障していると判定した場合、故障診断ユニット800_I1Hは、スイッチング素子SW_A1Hは故障していることを示す信号(例えば“1”)をORブロック870_Iに出力する。 
故障診断ユニット800_I1Hと同様に、故障診断ユニット800_I1L、800_I2H、800_I2Lも、スイッチング素子SW_A1L、SW_A2H、SW_A2Lの故障診断を行う。4個の故障診断ユニット800_I1H、800_I1L、800_I2H、800_I2Lのそれぞれの出力は、ORブロック870_Iに入力される。 
ORブロック870_Iは、4個の故障診断ユニット800_I1H、800_I1L、800_I2H、800_I2Lの出力の全てが正常を示していた場合、A相は正常であると判定する。A相は正常であると判定した場合、ORブロック870_Iは、A相は正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ORブロック870_Iは、4個の故障診断ユニット800_I1H、800_I1L、800_I2H、800_I2Lの出力信号のいずれかが故障を示していた場合、A相に故障が発生していると判定する。A相に故障が発生していると判定した場合、ORブロック870_Iは、A相に故障が発生していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。 
故障診断ユニット800P_IAと同様に、図15に示す故障診断ユニット800P_IB、800P_ICも、B相およびC相の故障の有無の診断を行う。故障診断ユニット800P_IB、800P_ICは、故障診断の結果を示す信号をモータ制御ユニット900に出力する。 
モータ制御ユニット900は、故障診断ユニット800P_IA、800P_IB、800P_ICの出力信号から、A相、B相、C相の故障の有無を判定することができる。また、故障が発生した場合、モータ制御ユニット900は、故障診断ユニット800P_IA、800P_IB、800P_ICの出力信号から、どの相に故障が発生しているのかを特定することができる。故障している相が特定できることにより、モータ制御ユニット900は、故障箇所に応じた適切な制御を行うことができる。例えば、モータ制御ユニット900は、故障相以外の残りの二相を用いて二相通電制御を行うことができる。 



〔2-5.電圧値を用いた相の故障診断〕



次に、電圧値を用いて相の故障の有無を診断する故障診断方法を説明する。ここでは、図1に示す電力変換装置1000を例に、相の故障の有無を診断する方法を説明する。 
この例では、図17に示すように、コントローラ340は、故障診断ユニット800として、故障診断ユニット800P_Vを備える。故障診断ユニット800P_Vは、スイッチング素子にかかる電圧の値を用いて相の故障の有無を診断する。 
図18は、故障診断ユニット800P_Vの機能ブロックの一例を示している。図18に示す故障診断ユニット800P_Vは、故障診断ユニット800P_VA、800P_VB、800P_VCを備える。故障診断ユニット800P_VAは、A相に属するスイッチング素子にかかる電圧の値を用いてA相の故障診断を行う。故障診断ユニット800P_VBは、B相に属するスイッチング素子にかかる電圧の値を用いてB相の故障診断を行う。故障診断ユニット800P_VCは、C相に属するスイッチング素子にかかる電圧の値を用いてC相の故障診断を行う。 
図19は、故障診断ユニット800P_VAの機能ブロックの一例を示している。図19に示す故障診断ユニット800P_VAは、故障診断ユニット800_V1H、800_V1L、800_V2H、800_V2Lと、ORブロック870_Vとを備える。 
故障診断ユニット800_V1Hには、スイッチング素子SW_A1Hにかかる電圧V_A1Hと、ゲート制御信号S_A1Hとが入力される。故障診断ユニット800_V1Lには、スイッチング素子SW_A1Lにかかる電圧V_A1Lと、ゲート制御信号S_A1Lとが入力される。故障診断ユニット800_V2Hには、スイッチング素子SW_A2Hにかかる電圧V_A2Hと、ゲート制御信号S_A2Hとが入力される。故障診断ユニット800_V2Lには、スイッチング素子SW_A2Lにかかる電圧V_A2Lと、ゲート制御信号S_A2Lとが入力される。 
故障診断ユニット800_V1Hは、図9および図10を参照しながら説明した、電圧値を用いた故障診断を行う。図9のステップS108において、スイッチング素子SW_A1Hは正常であると判定した場合、故障診断ユニット800_V1Hは、スイッチング素子SW_A1Hが正常であることを示す信号(例えば“0”)をORブロック870_Vに出力し、ステップS111の処理に戻る。図9のステップS107において、スイッチング素子SW_A1Hは故障していると判定した場合、故障診断ユニット800_V1Hは、スイッチング素子SW_A1Hは故障していることを示す信号(例えば“1”)をORブロック870_Vに出力する。 
故障診断ユニット800_V1Hと同様に、故障診断ユニット800_V1L、800_V2H、800_V2Lも、スイッチング素子SW_A1L、SW_A2H、SW_A2Lの故障診断を行う。4個の故障診断ユニット800_V1H、800_V1L、800_V2H、800_V2Lのそれぞれの出力は、ORブロック870_Vに入力される。 
ORブロック870_Vは、4個の故障診断ユニット800_V1H、800_V1L、800_V2H、800_V2Lの出力信号の全てが正常を示していた場合、A相は正常であると判定する。A相は正常であると判定した場合、ORブロック870_Vは、A相は正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ORブロック870_Vは、4個の故障診断ユニット800_V1H、800_V1L、800_V2H、800_V2Lの出力信号のいずれかが故障を示していた場合、A相に故障が発生していると判定する。A相に故障が発生していると判定した場合、ORブロック870_Vは、A相に故障が発生していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。 
故障診断ユニット800P_VAと同様に、図18に示す故障診断ユニット800P_VB、800P_VCも、B相およびC相の故障の有無の診断を行う。故障診断ユニット800P_VB、800P_VCは、故障診断の結果を示す信号をモータ制御ユニット900に出力する。 
モータ制御ユニット900は、故障診断ユニット800P_VA、800P_VB、800P_VCの出力信号から、A相、B相、C相の故障の有無を判定することができる。また、故障が発生した場合、モータ制御ユニット900は、故障診断ユニット800P_VA、800P_VB、800P_VCの出力信号から、どの相に故障が発生しているのかを特定することができる。故障している相が特定できることにより、モータ制御ユニット900は、故障箇所に応じた適切な制御を行うことができる。例えば、モータ制御ユニット900は、故障相以外の残りの二相を用いて二相通電制御を行うことができる。 



〔2-6.電流値および電圧値の両方を用いた相の故障診断〕



次に、電流値および電圧値の両方を用いて相の故障の有無を診断する故障診断方法を説明する。この例では、図20に示すように、コントローラ340は、故障診断ユニット800として、故障診断ユニット800P_IVを備える。故障診断ユニット800P_IVは、スイッチング素子を流れる電流の値およびスイッチング素子にかかる電圧の値の両方を用いて相の故障の有無を診断する。 
図21は、故障診断ユニット800P_IVの機能ブロックの一例を示している。図21に示す故障診断ユニット800P_IVは、故障診断ユニット800P_IAおよび800P_VAと、ORブロック881Aとを備える。
故障診断ユニット800P_IAは、図15および図16を参照しながら説明した、電流値を用いた診断を行う。故障診断ユニット800P_VAは、図18および図19を参照しながら説明した、電圧値を用いた診断を行う。
ORブロック881Aは、故障診断ユニット800P_IAおよび800P_VAが出力する信号の両方が正常であることを示す場合、A相は正常であると判定する。A相は正常であると判定した場合、ORブロック881Aは、A相は正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ORブロック881Aは、故障診断ユニット800P_IAおよび800P_VAが出力する信号の少なくとも一方が異常であることを示す場合、A相は故障していると判定する。A相は故障していると判定した場合、ORブロック881Aは、A相が故障していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。 
故障診断ユニット800P_IVは、故障診断ユニット800P_IBおよび800P_VBと、ORブロック881Bとをさらに備える。

 故障診断ユニット800P_IBは、図15および図16を参照しながら説明した、電流値を用いた診断を行う。故障診断ユニット800P_VBは、図18および図19を参照しながら説明した、電圧値を用いた診断を行う。
ORブロック881Bは、故障診断ユニット800P_IBおよび800P_VBが出力する信号の両方が正常であることを示す場合、B相は正常であると判定する。B相は正常であると判定した場合、ORブロック881Bは、B相は正常であることを示す信号をモータ制御ユニット900に出力する。 
ORブロック881Bは、故障診断ユニット800P_IBおよび800P_VBが出力する信号の少なくとも一方が異常であることを示す場合、B相は故障していると判定する。B相は故障していると判定した場合、ORブロック881Bは、B相が故障していることを示す信号をモータ制御ユニット900に出力する。 
故障診断ユニット800P_IVは、故障診断ユニット800P_ICおよび800P_VCと、ORブロック881Cとをさらに備える。

 故障診断ユニット800P_ICは、図15および図16を参照しながら説明した、電流値を用いた診断を行う。故障診断ユニット800P_VCは、図18および図19を参照しながら説明した、電圧値を用いた診断を行う。
ORブロック881Cは、故障診断ユニット800P_ICおよび800P_VCが出力する信号の両方が正常であることを示す場合、C相は正常であると判定する。C相は正常であると判定した場合、ORブロック881Cは、C相は正常であることを示す信号をモータ制御ユニット900に出力する。 
ORブロック881Cは、故障診断ユニット800P_ICおよび800P_VCが出力する信号の少なくとも一方が異常であることを示す場合、C相は故障していると判定する。C相は故障していると判定した場合、ORブロック881Cは、C相が故障していることを示す信号をモータ制御ユニット900に出力する。 
モータ制御ユニット900は、ORブロック881A、881B、881Cの出力信号から、A相、B相、C相の故障の有無を判定することができる。故障が発生した場合、モータ制御ユニット900は、どの相に故障が発生しているのかを特定することができる。故障している相が特定できることにより、モータ制御ユニット900は、故障箇所に応じた適切な制御を行うことができる。例えば、モータ制御ユニット900は、故障相以外の残りの二相を用いて二相通電制御を行うことができる。 
図21に示す例では、故障診断ユニット800P_IVは、検出した電流値および電圧値の両方を用いて故障診断を行う。例えば、電流センサ150が故障した場合はスイッチング素子を流れる電流は検出できなくなるが、この場合でも、検出した電圧値を用いて故障の有無を診断することができる。また、例えば、電圧検出回路380が故障した場合はスイッチング素子にかかる電圧は検出できなくなるが、この場合でも、検出した電流値を用いて故障の有無を診断することができる。 
図22は、故障診断ユニット800P_IVの機能ブロックの別の例を示している。図21に示す故障診断ユニット800_IVと比較して、図22に示す故障診断ユニット800_IVは、ORブロック881A、881Bおよび881Cの代わりに、ANDブロック882A、882Bおよび882Cを備える。 
図22に示す例では、故障診断ユニット800P_IAおよび800P_VAのそれぞれの出力は、ANDブロック882Aに入力される。故障診断ユニット800P_IBおよび800P_VBのそれぞれの出力は、ANDブロック882Bに入力される。故障診断ユニット800P_ICおよび800P_VCのそれぞれの出力は、ANDブロック882Cに入力される。 
ANDブロック882Aは、故障診断ユニット800P_IAおよび800P_VAが出力する信号の少なくとも一方が正常であることを示す場合、A相は正常であると判定する。A相は正常であると判定した場合、ANDブロック882Aは、A相は正常であることを示す信号(例えば“0”)をモータ制御ユニット900に出力する。 
ANDブロック882Aは、故障診断ユニット800P_IAおよび800P_VAが出力する信号の両方が異常であることを示す場合、A相は故障していると判定する。A相は故障していると判定した場合、ANDブロック882Aは、A相が故障していることを示す信号(例えば“1”)をモータ制御ユニット900に出力する。 
ANDブロック882Bは、故障診断ユニット800P_IBおよび800P_VBが出力する信号の少なくとも一方が正常であることを示す場合、B相は正常であると判定する。B相は正常であると判定した場合、ANDブロック882Bは、B相は正常であることを示す信号をモータ制御ユニット900に出力する。 
ANDブロック882Bは、故障診断ユニット800P_IBおよび800P_VBが出力する信号の両方が異常であることを示す場合、B相は故障していると判定する。B相は故障していると判定した場合、ANDブロック882Bは、B相が故障していることを示す信号をモータ制御ユニット900に出力する。 
ANDブロック882Cは、故障診断ユニット800P_ICおよび800P_VCが出力する信号の少なくとも一方が正常であることを示す場合、C相は正常であると判定する。C相は正常であると判定した場合、ANDブロック882Cは、C相は正常であることを示す信号をモータ制御ユニット900に出力する。 
ANDブロック882Cは、故障診断ユニット800P_ICおよび800P_VCが出力する信号の両方が異常であることを示す場合、C相は故障していると判定する。C相は故障していると判定した場合、ANDブロック882Cは、C相が故障していることを示す信号をモータ制御ユニット900に出力する。 
モータ制御ユニット900は、ORブロック882A、882B、882Cの出力信号から、A相、B相、C相の故障の有無を判定することができる。故障が発生した場合、モータ制御ユニット900は、どの相に故障が発生しているのかを特定することができる。故障している相が特定できることにより、モータ制御ユニット900は、故障箇所に応じた適切な制御を行うことができる。 
図22に示す例では、故障診断ユニット800P_IVは、検出した電流値および電圧値の両方を用いて故障診断を行う。電流値および電圧値の両方が異常である場合に故障と判定することにより、故障という判定の信頼性を高めることができる。 
本開示の実施形態にかかる故障診断方法は、図2に示すような3個のHブリッジを有するインバータユニット100を備える電力変換装置1000に限られず、巻線の一端同士がY結線されたモータを駆動する電力変換装置にも好適に用いることができる。 
図23は、本実施形態の変形例による、単体のインバータ140を有するインバータユニット100Aの回路構成を模式的に示している。 
この例では、インバータユニット100Aは、一端同士がY結線された三相の巻線を有するモータ200に接続される。実施形態にかかる故障診断方法は、例えば三相電流を用いるモータに適用可能であり、一端同士がデルタ結線された巻線を有するモータにも適用可能である。インバータ140のA相レグは、ローサイドスイッチ素子SW_AL、ハイサイドスイッチ素子SW_AHおよびシャント抵抗S_Aを有する。B相レグは、ローサイドスイッチ素子SW_BL、ハイサイドスイッチ素子SW_BHおよびシャント抵抗S_Bを有する。C相レグは、ローサイドスイッチ素子SW_CL、ハイサイドスイッチ素子SW_CHおよびシャント抵抗S_Cを有する。 
コントローラ340は、上述した故障診断方法と同様の方法で、インバータ140が備える複数のスイッチング素子の故障の有無を診断することができる。また、コントローラ340は、上述した故障診断方法と同様の方法で、A相、B相、C相の故障の有無を診断することができる。 
インバータ140に故障が発生していないときは、コントローラ340は、例えば、三相通電制御でモータ200を制御する。インバータ140に故障が発生したとき、コントローラ340は、例えば、モータ200の駆動を停止させる制御を行う。 
このように、コントローラ340は、インバータ140が正常であるか異常であるかに応じて、モータ200の制御を変更することができる。 



(実施形態2)



図24は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。 
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。 
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態によるモータ制御方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から4(自動化の基準)に対応した自動運転車に搭載され得る。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
100、100A:インバータユニット、101:電源、120:第1インバータ、130:第2インバータ、140:インバータ、150:電流センサ、200:モータ、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、1000:電力変換装置、2000:モータモジュール、3000:電動パワーステアリング装置

Claims (11)

  1. 電気機器が備えるオンとオフの切替えが繰り返されるスイッチング素子の故障の有無を診断する故障診断方法であって、

     前記スイッチング素子がオン状態に制御されたときに前記スイッチング素子を流れる電流が所定電流未満であるか判定するステップと、

     前記スイッチング素子を流れる電流が前記所定電流未満である場合、前記スイッチング素子を流れる電流が前記所定電流未満になる時間を検出するステップと、

     前記検出した時間が所定時間以上であるか判定するステップと、

     前記検出した時間が前記所定時間以上である場合、前記検出した時間が前記所定時間以上になる回数をカウントするステップと、

     前記カウントした合計回数が所定回数以上であるか判定するステップと、

     前記カウントした合計回数が前記所定回数以上である場合、前記スイッチング素子は故障していると判定するステップと、

     を含む、故障診断方法。
  2. 前記スイッチング素子を流れる電流が前記所定電流未満でない場合、前記スイッチング素子は正常であると判定するステップをさらに含む、請求項1に記載の故障診断方法。


  3. 前記検出した時間が所定時間以上でない場合、前記スイッチング素子は正常であると判定するステップをさらに含む、請求項1または2に記載の故障診断方法。


  4. 前記カウントした合計回数が前記所定回数以上でない場合、前記スイッチング素子は正常であると判定するステップをさらに含む、請求項1から3のいずれかに記載の故障診断方法。


  5. 前記スイッチング素子はトランジスタであり、

    前記スイッチング素子を流れる電流は、前記トランジスタのソースとドレインとの間を流れる電流である、請求項1から4のいずれかに記載の故障診断方法。
  6. 前記電気機器は、電源からの電力をモータに供給する電力に変換する電力変換装置であり、

    前記スイッチング素子は、前記電力変換装置が備えるスイッチング素子である、請求項1から5のいずれかに記載の故障診断方法。
  7. 請求項6に記載の故障診断方法を実行するモータ制御方法であって、

     前記スイッチング素子は故障していないと判定したときは、第1制御モードで前記モータを制御し、

     前記スイッチング素子は故障していると判定したときは、前記第1の制御モードとは異なる第2制御モードで前記モータを制御する、モータ制御方法。


  8. スイッチング素子と、

    前記スイッチング素子のオンとオフの切替え動作を制御する制御回路と、

    を備え、

     前記制御回路は、

     前記スイッチング素子がオン状態に制御されたときに前記スイッチング素子を流れる電流が所定電流未満であるか判定し、

     前記スイッチング素子を流れる電流が前記所定電流未満である場合、前記スイッチング素子を流れる電流が前記所定電流未満になる時間を検出し、

     前記検出した時間が所定時間以上であるか判定し、

     前記検出した時間が前記所定時間以上である場合、前記検出した時間が前記所定時間以上になる回数をカウントし、

     前記カウントした合計回数が所定回数以上であるか判定し、

     前記カウントした合計回数が前記所定回数以上である場合、前記スイッチング素子は故障していると判定する、電気機器。
  9. 前記電気機器は、電源からの電力をモータに供給する電力に変換する電力変換装置であり、



     前記スイッチング素子は、前記電力変換装置が備えるスイッチング素子である、請求項8に記載の電気機器。


  10. モータと、

    請求項9に記載の電気機器と、

    を備えるモータモジュール。
  11. 請求項10に記載のモータモジュールを備える電動パワーステアリング装置。
PCT/JP2018/023116 2017-09-25 2018-06-18 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置 WO2019058671A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880052833.9A CN111033287B (zh) 2017-09-25 2018-06-18 故障诊断方法、马达控制方法、电力转换装置、马达模块以及电动助力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184125 2017-09-25
JP2017-184125 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019058671A1 true WO2019058671A1 (ja) 2019-03-28

Family

ID=65810230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023116 WO2019058671A1 (ja) 2017-09-25 2018-06-18 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置

Country Status (2)

Country Link
CN (1) CN111033287B (ja)
WO (1) WO2019058671A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827218B (zh) * 2022-08-26 2023-12-21 台達電子工業股份有限公司 開關短路診斷方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246327A (ja) * 2009-04-09 2010-10-28 Nissan Motor Co Ltd インバータの故障診断装置
JP2015002634A (ja) * 2013-06-17 2015-01-05 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP2015142408A (ja) * 2014-01-28 2015-08-03 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP2015154572A (ja) * 2014-02-13 2015-08-24 トヨタ自動車株式会社 インバータ回路の故障検出方法、駆動装置及びモータ駆動システム
JP2015192526A (ja) * 2014-03-28 2015-11-02 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712871B2 (ja) * 1991-05-13 1998-02-16 三菱電機株式会社 インバータ装置の出力電流極性検出回路
JP4438833B2 (ja) * 2007-07-04 2010-03-24 トヨタ自動車株式会社 電力変換装置の異常検出装置および異常検出方法
JP4361116B2 (ja) * 2008-01-09 2009-11-11 ファナック株式会社 ダイナミックブレーキ回路故障検出機能を備えたモータ駆動装置
JP2011205838A (ja) * 2010-03-26 2011-10-13 Omron Automotive Electronics Co Ltd モータ駆動装置
JP5595551B1 (ja) * 2013-04-01 2014-09-24 三菱電機株式会社 モータ制御装置、およびモータ制御装置を備えた電動パワーステアリング装置
CN103713255B (zh) * 2013-12-12 2016-08-24 华为技术有限公司 一种电路故障检测方法、系统以及控制器
KR101551099B1 (ko) * 2014-06-13 2015-09-08 현대자동차주식회사 모터 시스템의 고장 판정 방법
US10259492B2 (en) * 2014-11-04 2019-04-16 Mitsubishi Electric Corporation Motor control device, electric power steering device and inverter system failure detection method
JP6408938B2 (ja) * 2015-03-06 2018-10-17 日立オートモティブシステムズ株式会社 インバータの故障診断装置及び故障診断方法
CN105021971B (zh) * 2015-06-11 2018-01-30 阳江核电有限公司 整流回路晶闸管运行状况测试方法以及测试装置
CN106125012B (zh) * 2016-06-28 2019-03-19 南京航空航天大学 一种间接式矩阵变换器故障诊断方法
CN106371010A (zh) * 2016-09-29 2017-02-01 法乐第(北京)网络科技有限公司 故障检测方法、机动车
CN106908722B (zh) * 2016-12-12 2019-04-05 大连理工大学 一种开关磁阻电机的相电流故障的诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246327A (ja) * 2009-04-09 2010-10-28 Nissan Motor Co Ltd インバータの故障診断装置
JP2015002634A (ja) * 2013-06-17 2015-01-05 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP2015142408A (ja) * 2014-01-28 2015-08-03 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP2015154572A (ja) * 2014-02-13 2015-08-24 トヨタ自動車株式会社 インバータ回路の故障検出方法、駆動装置及びモータ駆動システム
JP2015192526A (ja) * 2014-03-28 2015-11-02 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置

Also Published As

Publication number Publication date
CN111033287A (zh) 2020-04-17
CN111033287B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US8248010B2 (en) Motor driving device, electric power steering device using the same and method for detecting failure in the same
WO2018163591A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7088200B2 (ja) モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7238777B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7070575B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019064749A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7070548B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019058671A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN211830634U (zh) 电力转换装置、马达模块以及电动助力转向装置
CN212413082U (zh) 电力转换装置、马达模块以及电动助力转向装置
WO2019058672A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058675A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7052801B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058676A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058677A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019058670A1 (ja) 故障診断方法、モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN212258835U (zh) 电力转换装置、马达模块以及电动助力转向装置
WO2019159663A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019064748A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019220782A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JPWO2019220781A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019044105A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP