WO2019058658A1 - 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム - Google Patents

流体解析装置および流体解析装置の作動方法並びに流体解析プログラム Download PDF

Info

Publication number
WO2019058658A1
WO2019058658A1 PCT/JP2018/022330 JP2018022330W WO2019058658A1 WO 2019058658 A1 WO2019058658 A1 WO 2019058658A1 JP 2018022330 W JP2018022330 W JP 2018022330W WO 2019058658 A1 WO2019058658 A1 WO 2019058658A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow velocity
anatomical structure
position information
velocity vector
Prior art date
Application number
PCT/JP2018/022330
Other languages
English (en)
French (fr)
Inventor
広貴 伊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019543409A priority Critical patent/JP6811872B2/ja
Publication of WO2019058658A1 publication Critical patent/WO2019058658A1/ja
Priority to US16/780,915 priority patent/US11580635B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to a fluid analysis device that displays the flow velocity of fluid in an anatomical structure, an operation method of the fluid analysis device, and a fluid analysis program.
  • a blood flow analysis method using such medical images for example, three-dimensional or ultrasonic waves or MRI (Magnetic Resonance Imaging) images captured by three-dimensional cine phase contrast magnetic resonance method are used. It is possible to display flow velocity vectors for each voxel, each pixel, or area on a two-dimensional plane.
  • MRI Magnetic Resonance Imaging
  • Patent Document 1 a two-dimensional velocity vector of each point in a blood vessel is calculated based on information of blood flow velocity obtained from an ultrasonic diagnostic apparatus, and the blood flow is calculated based on the two-dimensional velocity vector of each point.
  • a technique is described to estimate the flow path (eg, streamline) of the Moreover, in patent document 2, when forming the streamline which shows the flow of a blood flow based on distribution of a velocity vector, the flow of a blood flow is reverse-tracked in the reverse direction of the flow velocity vector, and a start point is searched and it starts. Techniques are described for forming streamlines that are extended from points.
  • Patent Document 3 a method of outputting a trajectory related to the flow rate of body fluid in an organ based on the concentration of a contrast agent when estimating a trajectory based on a flow velocity vector field estimated from volume data Is described.
  • FIG. 12 a method of displaying a vector or a flow line indicating the flow of blood flowing through a blood vessel on a three-dimensional projection image is widely used.
  • a flow different from the actual flow is displayed across the blood vessel wall (see a point P surrounded by a broken line).
  • the fluid analysis apparatus uses the information of the three-dimensional flow velocity vector representing the flow velocity of the fluid in the anatomical structure on a voxel basis from the three-dimensional volume data obtained by imaging the object including the anatomical structure in which the fluid flows From a point in the anatomical structure, providing the route position information that can be acquired and identified in order along the path of the anatomical structure to each position inside the anatomical structure And a drawing unit for drawing a trace representing the flow of the fluid in a visibly-visible manner by selecting the three-dimensional flow velocity vector so that the path position information of the position where the three-dimensional flow velocity vector exists is sequentially arranged.
  • the operation method of the fluid analysis apparatus is an operation method of the fluid analysis apparatus including the application unit and the drawing unit, wherein the application unit captures an object including an anatomical structure through which the fluid flows.
  • Information of three-dimensional flow velocity vector representing flow velocity of fluid in an anatomical structure is acquired for each voxel from two-dimensional volume data, and path position information in which the order along the path of the anatomical structure can be identified is anatomical It assigns to each position inside the dynamic structure, and the drawing unit selects the three-dimensional flow velocity vector so that the path position information of the position where the three-dimensional flow velocity vector exists from one point in the anatomical structure is arranged in order Thus, the trajectory representing the flow of the fluid is drawn so as to be visible.
  • a fluid analysis program uses a computer to generate information on a three-dimensional flow velocity vector representing the flow velocity of fluid in an anatomical structure from three-dimensional volume data obtained by imaging an object including the anatomical structure in which the fluid flows.
  • a computer uses a computer to generate information on a three-dimensional flow velocity vector representing the flow velocity of fluid in an anatomical structure from three-dimensional volume data obtained by imaging an object including the anatomical structure in which the fluid flows.
  • path position information in which the order along the path of the anatomical structure can be identified to each position inside the anatomical structure.
  • Anatomical structure refers to a structure that constitutes the body, such as a tissue or an organ.
  • “three-dimensional volume data” is composed of voxels obtained by finely dividing a three-dimensional space, and the flow rate of the liquid present at each voxel position, or the transmission amount of radiation or magnetism through organs or tissues, etc. Composed of data representing the corresponding physical quantity.
  • each voxel has data such as the value of the flow velocity of a fluid such as blood, and the concentration value corresponding to an organ or a tissue.
  • the concentration values also include concentration values of fluids such as blood contained in tissue such as blood vessels.
  • the “three-dimensional flow velocity vector” may be obtained from the flow velocity value of each voxel, or may be obtained from the movement amount of the concentration value corresponding to the tissue.
  • the “path position information in which the order along the path can be identified” is information indicating the order of voxels at positions along the path, and is, for example, a continuous number assigned to each voxel along the path. It is also good.
  • “Select 3D flow velocity vector so that the route position information is arranged in order” is to select voxels in which the route position information monotonously increases (or decreases) along the route and obtain 3D flow velocity vector of each voxel Say what to do. In order to select the voxels so that the path position information is arranged in order, the voxels at positions where the distance along the path between two points on the path is longer than a predetermined distance are different even if the selected voxels are not consecutive numbers.
  • the route position information is information that indicates the position along the route based on the information indicating the anteroposterior relationship at the junction or junction of the route.
  • “Draw a trace that represents the flow of the fluid in a visible manner” only needs to recognize the trace that represents the flow of the fluid, and draw each particle that constitutes the fluid, even if it represents a trace by a line. It may be possible to recognize how the particles move.
  • the applying unit extracts the centerline of the anatomical structure, applies route position information along the centerline, and places the centerline at each position in a cross section perpendicular to the central line of the anatomical structure.
  • the same information as the given route position information may be given.
  • the application unit may apply the same route position information as the route position information provided along the centerline of the anatomical structure closest to the position of the three-dimensional flow velocity vector in the anatomical structure. .
  • the drawing unit may draw a trace so as to be visible on the morphological image obtained by projecting the form of the anatomical structure on the projection surface.
  • the attaching unit connects a path before the branch and a plurality of paths after the branch, or a plurality of paths before the junction and a path after the junction
  • the drawing unit may draw the trace so as to be visible on the basis of the path position information and the relative position information by adding relative position information representing the connection relation of
  • the three-dimensional flow velocity vector may be obtained from three-dimensional volume data captured by three-dimensional cine phase contrast magnetic resonance method.
  • the three-dimensional flow velocity vector may be a flow velocity vector of blood.
  • the three-dimensional flow velocity vector may be obtained by the result of blood flow analysis simulation.
  • the fluid may be spinal fluid
  • the three-dimensional flow velocity vector may be a flow velocity vector of spinal fluid
  • the trajectory may be a streamline, a trajectory or a streamline.
  • trajectory may be drawn by particle tracking.
  • Another fluid analysis apparatus comprises a memory for storing instructions for causing a computer to execute, and a processor configured to execute the stored instructions, the processor being an anatomical device in which fluid flows Information on the three-dimensional flow velocity vector representing the flow velocity of fluid in the anatomical structure is acquired for each voxel from the three-dimensional volume data obtained by photographing the object including the structure, and the order along the path of the anatomical structure is Discernable path position information is given to each position inside the anatomical structure, and path position information of the position where a three-dimensional flow velocity vector exists from one point in the anatomical structure is arranged in order. Execute processing to select the flow velocity vector.
  • the order along the path of an anatomical structure is identified using three-dimensional volume data in which each voxel has information of a three-dimensional flow velocity vector representing the flow velocity of fluid in the anatomical structure.
  • the possible flow path position information is given to each position inside the anatomical structure, and the flow of fluid is selected by selecting the three-dimensional flow velocity vector so that the path position information is sequentially arranged from one point in the anatomical structure.
  • Diagram showing the schematic configuration of a medical information system A diagram showing a schematic configuration of a fluid analysis apparatus according to a first embodiment of the present invention Figure for explaining the method of giving route identification information Figure for explaining the method of giving route identification information of two blood vessel regions Figure for explaining the method of giving the route identification information of the part where the blood vessel is branched Figure for explaining the method of giving route identification information of the place where the blood vessel is connected Diagram for explaining volume data captured by three-dimensional cine phase contrast magnetic resonance method Diagram to illustrate how to trace voxels to draw a trajectory Diagram to illustrate how to trace voxels to draw a trajectory The figure which showed the state which projected the streamline created by tracing the voxel on the projection surface An example of drawing a streamline An example of a streamline when blood vessels bifurcate An example of a streamline when blood vessels merge Flow chart showing the flow of processing of the fluid analysis system of the present invention Conventional streamline display example
  • FIG. 1 is a block diagram showing a schematic configuration of a medical information system of the present embodiment.
  • the fluid analysis apparatus 1, the medical image storage server 2, and the imaging apparatus 3 (hereinafter referred to as “modality”) It is connected and configured in a communicable state.
  • Modality 3 is, for example, a CT (Computed Tomography) apparatus, an MRI (Magnetic Resonance Imaging) apparatus, an ultrasonic imaging apparatus, etc., and the photographed three-dimensional volume data conforms to the DICOM (Digital Imaging and Consications in Medicine) standard. It is sent to the medical image storage server 2 via the network 4 and stored according to the storage format and communication standard.
  • CT Computer Tomography
  • MRI Magnetic Resonance Imaging
  • ultrasonic imaging apparatus etc.
  • DICOM Digital Imaging and Consications in Medicine
  • the fluid analysis apparatus 1 is a general-purpose computer, and has a central processing unit (CPU), memory (main storage device), storage (auxiliary storage device), input / output interface, communication interface, input device, display device, and data bus Etc., and a known operation system etc. is installed.
  • a liquid crystal display or the like is included as a display device, and a pointing device such as a keyboard and / or a mouse is included as an input device.
  • the storage is configured by a hard disk or a solid state drive (SSD).
  • SSD solid state drive
  • a GPU Graphics Processing Unit
  • the fluid analysis program of the present embodiment is installed in this computer, and the computer functions as the fluid analysis device 1 by executing the fluid analysis program.
  • the fluid analysis apparatus 1 has a function of transmitting an image to the medical image storage server 2 and receiving an image from the medical image storage server 2, and is performed by executing a software program for each function.
  • the fluid analysis program is distributed by being recorded on a recording medium such as a digital versatile disc (DVD) and a compact disc read only memory (CD-ROM), and installed in a computer from the recording medium.
  • a recording medium such as a digital versatile disc (DVD) and a compact disc read only memory (CD-ROM)
  • the fluid analysis program is stored in a state accessible from the outside to the storage device or network storage of the server computer connected to the network, and installed after being downloaded to the computer in response to an external request. You may
  • the fluid analysis apparatus 1 includes an image acquisition unit 10, a structure extraction unit 11, an application unit 12, a drawing unit 13, and a morphological image generation unit 15, as shown in FIG.
  • the image acquisition unit 10 acquires three-dimensional volume data 6 of a patient captured in advance.
  • the three-dimensional volume data 6 is data captured by a CT apparatus, an MRI apparatus, an ultrasonic imaging apparatus, or the like.
  • the three-dimensional volume data 6 is stored in advance in the medical image storage server 2 together with patient identification information, and the image acquisition unit 10 is based on patient identification information input by the user using an input device such as a keyboard.
  • the one or more types of three-dimensional volume data 6 having the identification information are read from the medical image storage server 2 and stored in a storage (not shown).
  • Three-dimensional volume data 6 are CT images, contrast CT images, MRI images, contrast MRI images, and volume data captured by three-dimensional cine phase contrast magnetic resonance (3D cine PC MRI).
  • 3D cine PC MRI three-dimensional cine phase contrast magnetic resonance
  • the structure extraction unit 11 extracts an anatomical structure from the three-dimensional volume data 6.
  • the structures in which the fluid flows are tubular structures such as blood vessels.
  • the image acquiring unit 10 acquires three-dimensional volume data 6 of the patient's chest, and the anatomical structure is a blood vessel and the fluid is blood will be described.
  • the structure extraction unit 11 will be described below as the blood vessel region extraction unit 11.
  • the blood vessel region extraction unit 11 extracts a blood vessel region (a region of an anatomical structure) from the three-dimensional volume data 6. Specifically, the extraction of the blood vessel region is performed using a CT image (or a contrast-enhanced CT image) or an MRI image (or a contrast-enhanced MRI image).
  • the blood vessel region extraction unit 11 of the present embodiment will explain a case where a blood vessel region is extracted from a chest CT image.
  • the blood vessel region extraction unit 11 performs, for example, multiple resolution conversion on the three-dimensional volume data 6 of the chest to generate a plurality of images of different resolutions, and performs eigenvalue analysis on the images of each resolution using a Hessian matrix. Go and extract the line structure.
  • the blood vessel region is extracted as a collection of line structures of various sizes in the chest region by integrating analysis results in each resolution image (for example, Y Sato, et al., “Three-dimensional multi- See, for example, “scale line filter for segmentation and visualization of curvilinear structures in medical images.”, Medical Image Analysis, June 1998, Vol. 2, No. 2, pp 143-168, etc.).
  • tree structure data representing blood vessels are generated by connecting center lines of the extracted line structures using a minimum spanning tree algorithm or the like.
  • a cross section orthogonal to the core line is obtained at each point on the core line connecting the center line of the blood vessel, the contour of the blood vessel is recognized in each cross section, and known segmentation methods such as graph cut method using information representing the contour
  • the blood vessel region may be extracted using
  • the blood vessel region extraction method is not limited to the method described above, and other known methods such as a region expansion method may be used.
  • the applying unit 12 applies, to each position inside the blood vessel, path position information in which the order of the position along the path of the blood vessel can be identified.
  • the center line C of the blood vessel region extracted by the blood vessel region extraction unit 11 is extracted, and each voxel of the center line C is sequentially assigned with uniquely determined route position information along the route.
  • the route position information assigns consecutive numbers sequentially from a predetermined one point of the center line C. For example, as route position information, numbers are assigned in order of 1, 2, 3 ... along the route.
  • FIG. 3 shows an example in which the assigned numbers are shown every ten.
  • the vertical cross section Q is set at each position of the center line C of the blood vessel area R, and the same path position information as the path position information of the center line C is given to all voxels in the blood vessel area R.
  • the path position information of the voxel corresponding to the center line C is "10"
  • all the path position information of voxels of the blood vessel region R included in the vertical cross section Q is "10"
  • FIG. 4 shows the case where the path position information of the voxel of the vertical cross section of the center line C1 is "20" and the path position information of the voxel of the vertical cross section of the center line C2 is "30".
  • the path position information of the voxel vi is "30".
  • the path position information becomes discontinuous, and the path The order of position information can not be identified at the connection unit. Therefore, relative position information is recorded which represents the connection relationship between the route before branching and the plurality of routes after branching, or the connection relationship between the plurality of routes before merging and the route after merging.
  • continuous route position information is given to the blood vessel region R0 and the blood vessel region R1, and consecutive numbers are assigned in order from “A0”.
  • new path position information "B0" is given from the connection part "A90”, and consecutive numbers are assigned sequentially from “B0”.
  • A90” and “B0” are connection parts, and are recorded as relative position information indicating that a path before branching and a plurality of paths after branching are connected at the branch part.
  • the blood vessel area R0 and the blood vessel area R2 are connected at “A90” of the blood vessel area R0 and “B0” of the blood vessel area R2, and relative position information indicating that the blood vessel branches into two is recorded from here Do.
  • continuous route position information is given to the blood vessel region R3 and the blood vessel region R4, and consecutive numbers are assigned sequentially from "A200".
  • the blood vessel region R5 is a blood vessel which merges, and numbers sequentially assigned from the first route position information "C100" are assigned, and merge in "A270" of the blood vessel region R4 in "C160".
  • the blood vessel area R3 and the blood vessel area R4 are connected at "A270" of the blood vessel area R3 and "C160" of the blood vessel area R4, and relative position information indicating that two blood vessels merge is recorded.
  • the drawing unit 13 further includes a vector acquisition unit 14 (see FIG. 2), and the path position information and relative position information of the voxels given by the giving unit 12 and the direction of the three-dimensional flow velocity vector obtained by the vector acquisition unit 14
  • drawing is performed so that the flow of blood can be recognized, and display is performed on the display device.
  • a trajectory representing the flow of blood may be drawn and displayed. Trajectories include streamlines, trajectories, or veins.
  • a streamline is a line that smoothly connects the velocity vector of blood from the position of the starting point, a trajectory is a trajectory along which one fluid particle moves with the passage of time, and a stream line is in the flow It is a line formed by connecting all fluid particles passing through a certain fixed point.
  • a method of drawing capable of recognizing trajectories representing the flow of blood, a method of visualizing movement of particles in a velocity field such as particle tracking (Particle Tracking or Particle Tracer) is used. You may make it draw so that a flow can be recognized.
  • the vector acquisition unit 14 acquires a three-dimensional flow velocity vector representing the blood flow velocity and the blood flow direction in the blood vessel region.
  • the three-dimensional flow velocity vector can be acquired by various methods.
  • the image acquisition unit 10 acquires three-dimensional volume data captured by three-dimensional cine phase contrast magnetic resonance method, and the three-dimensional volume data is acquired.
  • a three-dimensional flow velocity vector is acquired using the velocity information in the blood vessel region acquired based on this.
  • the volume data captured by the three-dimensional cine phase contrast magnetic resonance method includes magnitude data M and X encoded in the X axis direction, Y axis direction, and Z axis direction (VENC: velocity encoding)
  • the phase data Phx in the direction, the phase data Phy in the Y-axis direction, and the phase data Phz in the Z-axis direction are composed of volume data obtained at a predetermined cycle (for example, cardiac cycle) along time t.
  • phase data Phx in the X direction, the phase data Phy in the Y axis direction, and the phase data Phz in the Z axis direction are data representing the flow velocity in each axis direction, and a three-dimensional flow velocity vector at each voxel position is obtained from three phase data.
  • the CT image from which the blood vessel area is extracted by the blood vessel area extraction unit 11 and each phase data Phx, Phy and Phz photographed by three-dimensional cine phase contrast magnetic resonance method are aligned so that the same position corresponds. Do it.
  • the alignment between the CT image and the volume data of each phase data may be performed using a known method such as aligning the feature points of the imaging region.
  • the three-dimensional flow velocity vector in the blood vessel region obtains the velocity component in each axial direction from each voxel of each phase data Phx, Phy and Phz corresponding to the position of the voxel in the blood vessel region based on the result of the blood vessel region extraction unit 11 To obtain a three-dimensional flow velocity vector.
  • a three-dimensional flow velocity vector in a blood vessel region is acquired using volume data captured by a three-dimensional cine phase contrast magnetic resonance method using an MRI apparatus will be specifically described as an example.
  • FIG. 7A a method of performing drawing such that the flow of blood can be recognized according to the three-dimensional flow velocity vector acquired by the vector acquisition unit 14 will be specifically described.
  • the drawing method will be described by taking streamlines as an example.
  • one point in a blood vessel region is selected as a start point, and streamlines are generated while tracing voxels in which path position information continues according to a three-dimensional flow velocity vector of each voxel.
  • FIG. 7A will be described using voxels represented in two dimensions for convenience.
  • the grids of FIG. 7A each represent one voxel, and the arrows indicate flow velocity vector directions.
  • the dashed frame indicates the range of voxels included in one section of the cross section perpendicular to the center line C1 of the blood vessel region R1 or the central line C2 of the blood vessel region R2, and the same broken line position information Ru.
  • Route position information of the voxel v 1 is "A10”.
  • the next voxel in the voxel v 1 is a voxel v 2 with the voxel v 1 in the direction indicated by the flow velocity vector.
  • Route position information of the voxel v 2 is "A11", the route position information of the voxel v 1 and the voxel v 2 is continuous. That is, since alongside the route position information along the path, the voxel v 2 is determined to be within the blood vessel region R1, to produce a stream line that connects the flow line vector of the voxel v 1 and the voxel v 2.
  • the following voxel of the voxel v 2 is a voxel v 3 in the direction of the previously indicated by velocity vector from the voxel v 2.
  • Path positional information of the voxel v 3 is "A12", since the route position information of the voxel v 2 and the voxel v 3 are arranged in this order, the voxel v 3 is determined to be within the blood vessel region R1.
  • the voxel v to generate a stream line that connects the 2 and streamline vector of the voxel v 3, already stretched streamlines that connects the voxel v 1 and streamline vector of the voxel v 2 generated.
  • the voxel v 4 is in the blood vessel region R1 It is determined that the vector is determined to be, and a streamline obtained by connecting the streamline vectors of voxel v 3 and voxel v 4 is generated, and the already generated streamline is extended.
  • the next voxel in the voxel v 4 is the voxel v 5 in a voxel v 4 in the direction indicated by the flow velocity vector, voxel v path positional information 5 is "A110", the voxel v path positional information of 4 "A13 "Is not continuous path position information.
  • the route position information of the voxel v 4 and v 5 are each as "A13", “A110", section along the path is away 96 compartments.
  • the same blood vessel region R1 may not have continuous path position information.
  • the first path positional information of the voxel v 1 is "A10”
  • the next route position information of the voxel v 2 directions pointing velocity vector of the voxel v 1 is may become the "A12". In this case, it is determined that the route position information is not continuous but the route position information is arranged in order.
  • the route position information of the voxel v 2 is, before and after digits of the route position information successive to the route position information of the voxel v1 "A10", “A11”, for example, close to "A11", such as "A10” or "A12” It may be route location information.
  • Path positional information of the voxel v 1 and v 2 are each as "A10", "A12", since neither because it does away only one compartment minute are considered to be the blood vessel region R1, while the voxel v 1 and the voxel v 2 To create a streamline connecting the flow velocity vectors.
  • the path position information is not a continuous number, it can be determined from the size of the voxel and the width of the blood vessel that the path position information of the next voxel traced from one voxel is in the same blood vessel region R1. , Connect flow velocity vectors of two voxels to generate a streamline
  • the drawing unit 13 projects the streamlines generated by tracing each voxel of the three-dimensional volume data 6, as shown in FIG.
  • the image projected on the surface S is displayed on the display device.
  • FIG. 9 shows an example in which streamlines are drawn by the above method.
  • the conventional method of FIG. 12 it is possible to end the streamline which has penetrated the blood vessel wall like the point P surrounded by a broken line in front of the blood vessel wall in the method of the present invention.
  • the streamlines connecting “A90” and “B0” have a voxel with path position information following “B0” in the direction pointed by the three-dimensional flow velocity vector of each voxel, or a path position following “A90” Depending on whether there is a voxel to which information is given, it is divided into whether the streamlines are connected from the blood vessel region R0 to the blood vessel region R1 or the flow lines are connected from the blood vessel region R0 to the blood vessel region R2.
  • FIG. 10A shows an example in which the streamlines are divided into two blood vessels from the junction of “A90” and “B0”.
  • the streamlines connected to "A270” and “C160” include voxels to which path position information connected to "A270” is given in the direction pointed by the three-dimensional flow velocity vector of each voxel, or path position information connected to "C160" Depending on whether there is a voxel to which is given, there are streamlines connecting from blood vessel region R3 to the direction of blood vessel region R4, and streamlines connecting from blood vessel region R5 to the direction of blood vessel region R4.
  • FIG. 10B shows an example in which two streamlines merge into one blood vessel from the junction of “A270” and “C160”.
  • streamlines are generated by connecting only the three-dimensional flow velocity vectors of voxels in which the path position information of the voxels when tracing the three-dimensional flow velocity vector is sequentially arranged.
  • the path position information it becomes possible not to draw a streamline that passes from the blood vessel region R1 to the blood vessel region R2 beyond the blood vessel wall.
  • the determination in the same manner makes it possible to prevent the drawing of a trace beyond the wall of a blood vessel. The same applies to the case of drawing using a particle tracking method.
  • the flow velocity vector may be acquired by performing a blood flow analysis (CFD).
  • CFD blood flow analysis
  • blood flow analysis can be performed using blood vessel regions extracted from each of CT images captured in time series.
  • a contrast CT image or a contrast MRI image can be used.
  • the image acquiring unit 10 acquires a three-dimensional ultrasonic image captured in time series by Doppler measurement, and acquires a flow velocity vector using velocity information in the blood vessel region acquired based on the ultrasonic image. You may do so.
  • the morphological image generation unit 15 generates a morphological image by performing volume rendering processing on a CT image or an MRI image.
  • a morphological image it is particularly desirable to generate a morphological image using an image in which the blood vessel area and the other area are clearly distinguished, such as a contrast CT image or a contrast MRI image.
  • the drawing unit 13 superimposes and displays on the morphological image generated by the morphological image generation unit 15 trajectories indicating the flow of blood, such as the streamlines, the trajectory, or the vascular line. Alternatively, the movement of the particles obtained by the particle tracking method is superimposed and drawn on the morphological image.
  • the image acquisition unit 10 performs two types of three-dimensional volume data of contrast CT of the patient and MRI captured by three-dimensional cine phase contrast magnetic resonance method. It is acquired (S10).
  • a blood vessel region is extracted from the contrast CT image of the chest acquired by the image acquisition unit 10 using the blood vessel region extraction unit 11 (S11). Further, the morphological image generation unit 15 generates a morphological image (S12).
  • the imparting unit 12 imparts path position information and relative position information along the path of the blood vessel region extracted by the blood vessel region extraction unit 11 (S13).
  • the drawing unit 13 selects the voxel of the start point (S14), and from the path position information of the voxel given by the giving unit 12 and the MRI three-dimensional volume data photographed by the three-dimensional cine phase contrast magnetic resonance method
  • the next voxel is selected according to the direction of the three-dimensional flow velocity vector acquired by the vector acquisition unit 14, and a streamline connecting the flow velocity vector of the voxel is drawn (S15).
  • a streamline which connects the flow velocity vector of each voxel is drawn (S15).
  • streamlines are connected using relative position information of blood vessels and path position information.
  • the drawing unit 13 ends the drawing of the streamlines.
  • the drawing of the streamline is ended (S16-YES).
  • the streamlines are drawn without crossing the blood vessel wall, so that the flow of the blood flow can be easily understood.
  • the fluid analysis apparatus it is possible to observe the backflow in the artery which has come out of the heart or the place where the blood flow is swirled in the aneurysm by making it easy to grasp the flow of blood. Becomes easier.
  • the anatomical structure may be a region through which spinal fluid flows like a brain, and the fluid may be spinal fluid.
  • the morphological image generation unit 15 generates a morphological image obtained by volume rendering of a brain or the like. A drawing in which a flow such as a streamline can be recognized is superimposed and displayed on the morphological image generated in this manner.
  • the path position information and the relative position information can be used as the path of the blood vessel even when drawn by the trajectory, the vein line, or the particle tracking method. By applying along, there is no flow through the blood vessel wall and it becomes possible to accurately grasp the flow of blood.
  • one computer functions as a fluid analysis device
  • functions may be distributed to a plurality of computers.
  • the extraction of an anatomical structure and / or the generation of a morphological image are performed by another computer dedicated to image processing, and the computer displaying the result of fluid analysis processing from the other computer dedicated to image processing
  • a general purpose computer functions as a fluid analysis device
  • the dedicated computer may be firmware that executes a program recorded in a non-volatile memory, such as a built-in ROM (Read Only Memory) or a flash memory.
  • a dedicated circuit such as an application specific integrated circuit (ASIC) or field programmable gate arrays (FPGA) that permanently stores a program for executing at least a part of the function of the fluid analysis apparatus. It may be provided.
  • the program instruction stored in the dedicated circuit may be combined with the program instruction executed by the general-purpose CPU programmed to use the program of the dedicated circuit.
  • the computer hardware configuration may be combined to execute program instructions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本発明は、血管のような流体の流れの傾向が把握し易くするような表示を行う流体解析装置および流体解析装置の作動方法並びに流体解析プログラムを提供する。解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報を各ボクセルが有する3次元ボリュームデータを用いて、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与し、解剖学的構造物内の1点から3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように3次元流速ベクトルを選択することにより流体の流れ表す軌跡を視認可能に描画する。

Description

流体解析装置および流体解析装置の作動方法並びに流体解析プログラム
 本発明は、解剖学的構造物内の流体の流速を表示する流体解析装置および流体解析装置の作動方法並びに流体解析プログラムに関する。
 近年、血液の流れを診断または治療に役立てようとする研究などが多数報告され、実際の血流を4次元的に測定する4D Flow技術、または数値流体力学を用いた血流解析(CFD:Computational Fluid Dynamics)により血液の流れをシミュレーションにより把握する方法などが用いられるようになってきた。
 このような医用画像を用いた血流解析の手法を用いれば、例えば、超音波、または、3次元シネ位相コントラスト磁気共鳴法によって撮影されたMRI(Magnetic Resonance Imaging)画像を用いて、3次元または2次元平面上において、各ボクセル、各ピクセル、または領域毎に流速ベクトルを表示することが可能である。また、造影剤を投与して撮影したCT画像またはMRI画像から血管モデルを生成し、その血管モデルに基づいて、CFDを行って流速ベクトルを求める手法も提案されている。
 また、患者の心疾患の診断をするために、血液の流れを確認できるようにすることが望まれている。画像診断の初期、カンファレンスまたは学会発表時、または、患者説明時などにおいて血液の流れの全体像をわかりやすく簡便に示すことが有用であり、様々な表示手法が検討されている。さらに、流れを3次元的に描画する手法として、流線、流跡線、および流脈線表示が広く使われている。
 特許文献1には、超音波診断装置から得られた血流速度の情報に基づいて、血管内の各点の2次元速度ベクトルを計算し、各点の2次元速度ベクトルに基づいて、血流の流れの経路(例えば、流線)を推定する手法が記載されている。また、特許文献2では、速度ベクトルの分布に基づいて血流の流れを示す流線を形成する際に、流速ベクトルの逆方向に血流の流れを逆追跡して開始点を探索し、開始点から伸長された流線を形成する手法が記載されている。特許文献3には、ボリュームデータから推定された流速ベクトル場に基づいて流跡線を推定する際に、造影剤の濃度に基づいて臓器内の体液の流量に関係する流跡線を出力する手法が記載されている。
特開2010-125203号公報 特開2016-10425号公報 特表2015-536699号公報
 従来、図12に示すように、3次元投影画像上において血管を流れる血液の流れを示すベクトルまたは流線を表示する方法が広く用いられている。しかし、血管が重なりあって存在している場合には血管壁を越えて、実際とは異なる流れが表示されてしまう(破線で囲まれている箇所Pを参照)。
 そこで、本発明では、上述のような問題を解決するために、血液のような流体の流れの傾向を把握し易くするような表示を行う流体解析装置および流体解析装置の作動方法並びに流体解析プログラムを提供することを目的とする。
 本発明の流体解析装置は、内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与する付与部と、解剖学的構造物内の1点から3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように3次元流速ベクトルを選択することにより流体の流れを表す軌跡を視認可能に描画する描画部とを備える。
 本発明の流体解析装置の作動方法は、付与部と描画部を備えた流体解析装置の作動方法であって、付与部が、内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与し、描画部が、解剖学的構造物内の1点から3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように3次元流速ベクトルを選択することにより流体の流れを表す軌跡を視認可能に描画する。
 本発明の流体解析プログラムは、コンピュータを、内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与する付与部と、解剖学的構造物内の1点から3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように3次元流速ベクトルを選択することにより流体の流れを表す軌跡を視認可能に描画する描画部として機能させる。
 「解剖学的構造物」とは、組織または臓器などの体を構成する構造物をいう。
 また、「3次元ボリュームデータ」は、3次元空間を細かく区切ったボクセルにより構成され、各ボクセルの位置に存在する液体の流速、あるいは、臓器または組織などを放射線または磁気が透過した透過量などに応じた物理量を表わすデータにより構成される。例えば、具体的には、各ボクセルに、血液などの流体の流速の値、臓器または組織に応じた濃度値などのデータを有している。また、濃度値は、血管のような組織に含まれる血液などの流体の濃度値も含んでいる。また、「3次元流速ベクトル」は、各ボクセルの流速の値から取得してもよいし、組織に応じた濃度値の移動量から取得してもよい。
 「経路に沿った順番が識別可能な経路位置情報」とは、経路に沿った位置のボクセルの順番がわかる情報であって、例えば、経路に沿った各ボクセルに割り振った連続する番号であってもよい。「経路位置情報が順に並ぶように3次元流速ベクトルを選択する」とは、経路に沿って経路位置情報が単調に増加(または減少)するボクセルを選択し、各ボクセルの3次元流速ベクトルを取得することをいう。経路位置情報が順に並ぶようにボクセルを選択するには、選択したボクセルが連続した番号でなくとも、経路上の2点間の経路に沿った距離が所定の距離以上に離れた位置のボクセルではなく、かつ、ボクセルを経路に沿って追跡する際に単調に増加(または減少)する経路位置情報を有したボクセルを選択するようにすればよい。また、経路位置情報は、経路の分岐点または合流点ではその前後関係を表す情報に基づいて経路に沿った位置がわかる情報である。
 「流体の流れ表す軌跡を視認可能に描画」とは、流体の流れを表す軌跡が認識可能であればよく、線により軌跡を表したものであっても、流体を構成する各粒子を描画することにより粒子が移動する様子を認識可能なものであってもよい。
 また、付与部が、解剖学的構造物の中心線を抽出して中心線に沿って経路位置情報を付与し、解剖学的構造物の中心線に垂直な断面内の各位置に中心線に付与された経路位置情報と同じ情報を付与してもよい。
また、付与部が、解剖学的構造物内の3次元流速ベクトルの位置に最も近い解剖学的構造物の中心線に沿って付与された経路位置情報と同じ経路位置情報を付与してもよい。
 また、描画部は、解剖学的構造物の形態を投影面に投影した形態画像上に、軌跡を視認可能に描画するようにしてもよい。
 また、付与部が、解剖学的構造物が分岐または合流する接続部の前後において、分岐前の経路と分岐後の複数の経路の接続関係、または、合流前の複数の経路と合流後の経路の接続関係を表す相対位置情報を付与するようにして、描画部が、経路位置情報および相対位置情報に基づいて軌跡を視認可能に描画するようにしてもよい。
 また、3次元流速ベクトルは、3次元シネ位相コントラスト磁気共鳴法によって撮影された3次元ボリュームデータから得られてもよい。
 また、解剖学的構造物が血管であり、かつ、流体が血液である場合に、3次元流速ベクトルは、血液の流速ベクトルであってもよい。
 また、3次元流速ベクトルは、血流解析シミュレーションの結果により得られてもよい。
 また、流体が髄液であって、3次元流速ベクトルは、髄液の流速ベクトルであってもよい。
 また、軌跡は、流線、流跡線、または、流脈線であってもよい。
 また、軌跡は、粒子追跡法により描画されてもよい。
 本発明の他の流体解析装置は、コンピュータに実行させるための命令を記憶するメモリと、記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与し、解剖学的構造物内の1点から3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように3次元流速ベクトルを選択する処理を実行する。
 本発明によれば、解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報を各ボクセルが有する3次元ボリュームデータを用いて、解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を解剖学的構造物の内部の各位置に付与し、解剖学的構造物内の1点から経路位置情報が順に並ぶように3次元流速ベクトルを選択することにより流体の流れ表す軌跡を視認可能に描画する。これにより、解剖学的構造物の経路が交差している場合でも構造物の経路に沿わない流れを表示することがなくなるため、迅速かつ直感的に流れの傾向を3次元的に把握することが可能になる。
医療情報システムの概略構成を表す図 本発明の第1の実施形態の流体解析装置の概略構成を表す図 経路識別情報の付与の方法を説明するための図 2つの血管領域の経路識別情報の付与の方法を説明するための図 血管が分岐している箇所の経路識別情報の付与の方法を説明するための図 血管が結合している箇所の経路識別情報の付与の方法を説明するための図 3次元シネ位相コントラスト磁気共鳴法によって撮影されたボリュームデータを説明するための図 軌跡を描画するためにボクセルを辿る方法を説明するための図 軌跡を描画するためにボクセルを辿る方法を説明するための図 ボクセルを辿って生成した流線を投影面に投影した状態を示す図 流線を描画した一例 血管が分岐するときの流線の一例 血管が合流するときの流線の一例 本発明の流体解析装置の処理の流れを示すフローチャート 従来の流線の表示例
 以下、図面を参照して本発明の第1の実施形態の流体解析装置1を備えた医療情報システムについて説明する。図1は、本実施形態の医療情報システムの概略構成を示すブロック図である。
 本実施形態の医療情報システムは、具体的には、図1に示すように、流体解析装置1、医用画像保管サーバ2、および、撮影装置3(以下、モダリティという)がネットワーク4を介して互いに通信可能な状態で接続されて構成されている。
 モダリティ3は、たとえばCT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置および超音波撮影装置などであり、撮影された3次元ボリュームデータは、DICOM(Digital Imaging and COmmunications in Medicine)規格に準拠した格納フォーマットおよび通信規格に従って、ネットワーク4を介して医用画像保管サーバ2に送信されて保管される。
 流体解析装置1は、汎用のコンピュータであり、CPU(Central Processing Unit)、メモリ(主記憶装置)、ストレージ(補助記憶装置)、入出力インターフェース、通信インターフェース、入力装置、表示装置、および、データバスなどの周知のハードウェア構成を備え、周知のオペレーションシステムなどがインストールされている。また、表示装置として液晶ディスプレイなどを有し、入力装置としてキーボードおよび/またはマウスなどのポインティングデバイスを有している。ストレージは、ハードディスクまたはSSD(Solid State Drive)などにより構成される。なお、必要に応じてコンピュータにGPU(Graphics Processing Unit)を設けるようにしてもよい。このコンピュータに、本実施形態の流体解析プログラムをインストールし、このコンピュータが流体解析プログラムを実行することにより流体解析装置1として機能する。また、流体解析装置1は、医用画像保管サーバ2に対する画像の送信要求、医用画像保管サーバ2から画像の受信を行う機能を備え、各機能のためのソフトウェアプログラムを実行することにより行われる。
 流体解析プログラムは、DVD(Digital Versatile Disc)およびCD-ROM(Compact Disc Read Only Memory)などの記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。または、流体解析プログラムは、ネットワークに接続されたサーバコンピュータの記憶装置もしくはネットワークストレージに対して、外部からアクセス可能な状態で記憶され、外部からの要求に応じてコンピュータにダウンロードされた後に、インストールされるようにしてもよい。
 流体解析装置1は、図2に示すように画像取得部10、構造物抽出部11、付与部12、描画部13、および形態画像生成部15を備える。
 画像取得部10は、予め撮影された患者の3次元ボリュームデータ6を取得する。3次元ボリュームデータ6は、本実施形態においては、CT装置、MRI装置または超音波撮影装置などによって撮影されたデータである。
 3次元ボリュームデータ6は、医用画像保管サーバ2に患者の識別情報とともに予め保管されており、画像取得部10は、キーボードなどの入力装置を用いてユーザによって入力された患者の識別情報に基づいて、その識別情報を有する1種類以上の3次元ボリュームデータ6を医用画像保管サーバ2から読み出してストレージ(不図示)に記憶する。また、3次元ボリュームデータ6は、CT画像、造影CT画像、MRI画像、造影MRI画像、および3次元シネ位相コントラスト磁気共鳴法(3D cine PC MRI)によって撮影されたボリュームデータなどであり、本実施形態では、同じ患者の同じ部位を撮影した複数種類の3次元ボリュームデータをストレージに記憶する場合について説明する。
 構造物抽出部11は、3次元ボリュームデータ6から解剖学的構造物を抽出する。内部に流体が流れる構造物には、血管のような管状構造物がある。以下、本実施形態では、画像取得部10により、患者の胸部の3次元ボリュームデータ6を取得し、解剖学的構造物が血管あり、流体が血液である場合について説明する。なお、構造物抽出部11は、血管領域抽出部11として以下説明する。
 血管領域抽出部11は、3次元ボリュームデータ6から血管領域(解剖学的構造物の領域)を抽出する。具体的には、血管領域の抽出は、CT画像(または、造影CT画像)、MRI画像(または造影MRI画像)を用いて行われる。本実施形態の血管領域抽出部11は、胸部のCT画像から血管領域を抽出する場合について説明する。血管領域抽出部11は、例えば、胸部の3次元ボリュームデータ6に対して多重解像度変換を行って複数の異なる解像度の画像を生成し、各解像度の画像に対してヘッセ行列を用いて固有値解析を行って線構造を抽出する。さらに、各解像度の画像における解析結果を統合することによって、胸部領域中の様々なサイズの線構造の集合体として、血管領域を抽出する(たとえばY Sato, et al.、「Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images.」、Medical Image Analysis、1998年6月、Vol.2、No.2、p.p.143-168など参照)。さらに、最小全域木アルゴリズムなどを用いて、抽出された各線構造の中心線を連結することにより、血管を表す木構造のデータを生成する。あるいは、血管の中心線を結ぶ芯線上の各点において芯線に直交する断面を求め、各断面において血管の輪郭を認識し、その輪郭を表す情報を利用してグラフカット法などの公知のセグメンテーション手法を用いて、血管領域を抽出するようにしてもよい。
 なお、血管領域の抽出方法としては上記の方法に限らず、領域拡張法などのその他の公知な手法を用いるようにしてもよい。
 付与部12は、血管の経路に沿った位置の順番が識別可能な経路位置情報を血管の内部の各位置に付与する。
 まず、図3に示すように、血管領域抽出部11によって抽出した血管領域の中心線Cを抽出し、中心線Cの各ボクセルに、一意に決められた経路位置情報を経路に沿って順に付与する。具体的には、経路位置情報は中心線Cの所定の1点から順に連続する数字を割り当てる。例えば、経路位置情報として、経路に沿って1,2,3・・・と順に数字を割り当てる。図3は、割り当てた数字を10ごとに表した例である。血管領域Rの中心線Cの各位置において垂直断面Qを設定して、中心線Cの経路位置情報と同じ経路位置情報を血管領域R内の全てのボクセルに付与する。図3の右の拡大図に示すように、中心線Cに該当するボクセルの経路位置情報が「10」の場合、垂直断面Qに含まれる血管領域Rのボクセルの経路位置情報は全て「10」にする。
 図4に示すように、2つの血管領域R1およびR2が隣接する場所においては、各ボクセルviから2つの血管領域R1およびR2の中心線C1およびC2までの距離が短い方の血管領域の経路位置情報をそのボクセルに付与する。図4は、中心線C1の垂直断面のボクセルの経路位置情報が「20」であり、中心線C2の垂直断面のボクセルの経路位置情報が「30」である場合を示す。ボクセルviから中心線C1までの距離と、ボクセルviから中心線C2までの距離では、中心線C2までの距離の方が短いのでのボクセルviの経路位置情報は「30」となる。
 図5Aに示すように血管の経路が2つに分岐している接続部、あるいは、図5Bに示すように2つの血管が合流している接続部では、経路位置情報は不連続になり、経路位置情報の順番が接続部では識別できなくなる。そこで、分岐前の経路と分岐後の複数の経路の接続関係、または、合流前の複数の経路と合流後の経路の接続関係を表す相対位置情報を記録する。
 図5Aの例では、血管領域R0および血管領域R1は連続した経路位置情報が付与され、「A0」から順に連続する数字が割り当てられている。血管が分岐後の血管領域R2では、接続部「A90」から新たな経路位置情報「B0」が付与され、「B0」から順に連続する数字が割り当てられている。「A90」と「B0」が接続部となり、分岐部において分岐前の経路と分岐後の複数の経路が接続することを表す相対位置情報として記録する。図5Aの例では、血管領域R0および血管領域R2が血管領域R0の「A90」と血管領域R2の「B0」において接続し、ここから血管が2つに分岐することを表わす相対位置情報を記録する。
 図5Bの例では、血管領域R3および血管領域R4は連続した経路位置情報が付与され、「A200」から順に連続する数字が割り当てられている。血管領域R5は合流する血管であり、最初の経路位置情報「C100」から順に連続する数字が割り当てられ、「C160」において血管領域R4の「A270」に合流する。図5Bの例では、血管領域R3および血管領域R4が血管領域R3の「A270」と血管領域R4の「C160」において接続し、2つの血管が合流することを表わす相対位置情報を記録する。
 描画部13は、ベクトル取得部14をさらに備え(図2参照)、付与部12により付与されたボクセルの経路位置情報および相対位置情報と、ベクトル取得部14により取得した3次元流速ベクトルの向きとに従って、血液の流れが認識可能なような描画を行なって、表示装置に表示を行う。具体的には、例えば、血液の流れを表す軌跡を描画して表示してもよい。軌跡には、流線、流跡線、または流脈線がある。流線は、始点の位置から血液の速度ベクトルを滑らかにつないだ線であり、流跡線は、1つの流体粒子が時間の経過により移動する軌跡であり、流脈線は、流れの中のある固定点を通過した全ての流体粒子を連ねてできる線である。あるいは、血液の流れを表す軌跡を認識可能な描画を行う手法として、粒子追跡法(Particle TrackingまたはParticle Tracer)などの速度場の中においた粒子が動く様子を可視化する手法を用いて、血液の流れを認識できるような描画をおこなうようにしてもよい。
 ベクトル取得部14は、血管領域内の血流速度および血流方向を表す3次元流速ベクトルを取得する。3次元流速ベクトルは、種々の方法により取得することができるが、例えば、画像取得部10において3次元シネ位相コントラスト磁気共鳴法によって撮影された3次元ボリュームデータを取得し、その3次元ボリュームデータに基づいて取得された血管領域内の速度情報を用いて3次元流速ベクトルを取得する。
 図6に示すように、3次元シネ位相コントラスト磁気共鳴法によって撮影されたボリュームデータは、マグニチュードデータMと、X軸方向、Y軸方向、およびZ軸方向にエンコード(VENC:velocity encoding)したX方向の位相データPhx、Y軸方向の位相データPhy、およびZ軸方向の位相データPhzを時間tに沿って所定の周期(例えば、心周期)で得たボリュームデータで構成される。X方向の位相データPhx、Y軸方向の位相データPhy、およびZ軸方向の位相データPhzは各軸方向の流速を表すデータであり、3つの位相データから各ボクセル位置の3次元流速ベクトルが得られる。
次に、血管領域抽出部11により血管領域を抽出したCT画像と、3次元シネ位相コントラスト磁気共鳴法によって撮影された各位相データPhx、PhyおよびPhzは、同じ位置が対応するように位置合せを行なっておく。CT画像と各位相データのボリュームデータ間の位置合せは、撮影部位の特徴点を位置合わせするなど公知の手法を用いればよい。血管領域内の3次元流速ベクトルは、血管領域抽出部11の結果に基づいて、血管領域のボクセルの位置に対応する各位相データPhx、PhyおよびPhzの各ボクセルから各軸方向の速度成分を得て3次元流速ベクトルを取得する。以下、MRI装置を用いて3次元シネ位相コントラスト磁気共鳴法によって撮影されたボリュームデータを用いて、血管領域内の3次元流速ベクトルを取得する場合を例に具体的に説明する。
 次に、描画部13が、ベクトル取得部14により取得した3次元流速ベクトルに従って、血液の流れが認識可能なような描画を行う手法について具体的に説明する。ここでは、流線を例に描画方法を説明する。まず、血管領域内の1点を開始点に選択して、各ボクセルの3次元流速ベクトルに従って経路位置情報が連続するボクセルを辿りながら流線を生成する。ボクセルの辿り方を、図7Aを用いて説明する。なお、図7Aでは、便宜上2次元で表したボクセルを用いて説明する。図7Aの格子がそれぞれ1つのボクセルを表し、矢印は流速ベクトル方向を示す。破線の枠は血管領域R1の中心線C1または血管領域R2の中心線C2に対して垂直な断面の1区画分に含まれるボクセルの範囲を示し、破線の枠内は同じ経路位置情報が付される。まず、ボクセルvから流線の描画を開始する場合について説明する。ボクセルvの経路位置情報は「A10」である。ボクセルvの次のボクセルは、ボクセルvから流速ベクトルの指す方向にあるボクセルvである。ボクセルvの経路位置情報は「A11」であり、ボクセルvとボクセルvの経路位置情報は連続している。つまり、経路に沿って経路位置情報が並んでいるので、ボクセルvは血管領域R1内にあると判定され、ボクセルvとボクセルvの流線ベクトルをつないだ流線を生成する。さらに、ボクセルvの次のボクセルは、ボクセルvから流速ベクトルの指す方向の先にあるボクセルvとなる。ボクセルvの経路位置情報は「A12」であり、ボクセルvとボクセルvの経路位置情報は順に並んでいるので、ボクセルvは血管領域R1内にあると判定される。そこで、ボクセルvとボクセルvの流線ベクトルをつないだ流線を生成し、既に生成したボクセルvとボクセルvの流線ベクトルをつないだ流線を伸ばしていく。同様にして、ボクセルvの次のボクセルvの経路位置情報は「A13」であり、ボクセルvとボクセルvの経路位置情報は連続しているので、ボクセルvは血管領域R1内にあると判定され、ボクセルvとボクセルvの流線ベクトルをつないだ流線を生成し、既に生成された流線を伸ばしていく。
 ボクセルvの次のボクセルは、ボクセルvから流速ベクトルが指す方向にあるボクセルvであるが、ボクセルvの経路位置情報は「A110」であり、ボクセルvの経路位置情報「A13」に連続する経路位置情報ではない。また、ボクセルvとvの経路位置情報はそれぞれ「A13」と「A110」であり、経路に沿った区間が96区画離れている。2点の間で96区画分ある様な場合は、2点間の経路に沿った距離(中心線上の距離)はかなり離れていると考えられるため、ボクセルvと同じ血管領域R1ではなく、ボクセルvは血管領域R2にあると考えられる。そこで、ボクセルvの位置は同じ血管領域R1内ではなく隣接する血管領域R2である判定される。そこで、ボクセルvから始まった流線はボクセルvで終点となる。
 一方、血管の経路の向きとボクセルの関係が図7Bに示すような関係である場合には、経路の傾きとボクセルの位置によっては、経路位置情報が連続した値でなくとも同じ血管領域R1内である場合も存在する。最初のボクセルvの経路位置情報は「A10」であるが、ボクセルvの流速ベクトルが指す向きの次のボクセルvの経路位置情報は「A12」になる場合がある。この場合、経路位置情報は連続していないが経路位置情報は順に並んでいると判定される。例えば、ボクセルvの経路位置情報が、ボクセルv1の経路位置情報「A10」に連続する経路位置情報「A11」の前後の数字、例えば、「A10」または「A12」などの「A11」に近い経路位置情報になることがある。ボクセルvとvの経路位置情報はそれぞれ「A10」と「A12」であり、1区画分しか離れていないためどちらも血管領域R1にあると考えられるので、ボクセルvとボクセルv間で流速ベクトルをつないだ流線を生成する。このように経路位置情報が連続する番号でなくとも、ボクセルの大きさと血管の幅から、1つのボクセルから辿った次のボクセルの経路位置情報が同じ血管領域R1内であると判定できる場合には、2つのボクセルの流速ベクトルをつないだ流線を生成する
 以上の通りボクセルを辿って流線を作成する場合、各ボクセルの経路位置情報に基づいて、経路に沿った距離に応じて2つのボクセルが、所定の距離以上に離れているか否かを判別することにより隣接する他の血管領域内であるか否かを判定する。
 上述では、2次元平面で流線の描画方法について説明したが、実際には、描画部13は、図8に示すように、3次元ボリュームデータ6の各ボクセルを辿って生成した流線を投影面Sに投影した画像を表示装置に表示する。
 上述では、経路位置情報が経路に沿って単調に増加する場合について説明したが、経路位置情報が経路に沿って単調に減少するようにしてもよい。
 図9に上記の手法によって流線を描画した例を示す。図12の従来の手法では、破線により囲まれた箇所Pのように血管壁を突き抜けていた流線を、本発明の手法では血管壁の前で終わりにすることが可能である。
 次に、血管が分岐している個所について説明する。図5Aに示すように、「A90」と「B0」が接続部になり、この周辺では、「A90」に続く経路位置情報を付与されたボクセルおよび「B0」に続く経路位置情報を付与されたボクセルが存在する。「A90」と「B0」から先につなぐ流線は、各ボクセルの3次元流速ベクトルが指す方向に「B0」に続く経路位置情報が付与されたボクセルがあるか、「A90」に続く経路位置情報が付与されたボクセルがあるかに応じて、流線が血管領域R0から血管領域R1の方向に繋がるか、流線が血管領域R0から血管領域R2の方向に繋がるかに分かれる。図10Aに、「A90」と「B0」の接続部から2つの血管に流線が分かれる例を示す。
 次に、血管が合流する個所について説明する。図5Bに示すように、「A270」と「C160」が接続部になり、この周辺では、「A270」に繋がる経路位置情報を付与されたボクセルおよび「C160」に繋がる経路位置情報を付与されたボクセルが存在する。「A270」と「C160」に繋がる流線には、各ボクセルの3次元流速ベクトルが指す方向に「A270」に繋がる経路位置情報が付与されたボクセルがあるか、「C160」に繋がる経路位置情報が付与されたボクセルがあるかに応じて、血管領域R3から血管領域R4の方向に繋がる流線と、血管領域R5から血管領域R4の方向に繋がる流線とがある。図10Bに、「A270」と「C160」の接続部から2つの流線が1つの血管に合流する例を示す。
 以上説明したように、3次元流速ベクトルを辿った時のボクセルの経路位置情報が順に並んでいるボクセルの3次元流速ベクトルのみをつないで流線を生成する。このように、経路位置情報を付与することにより、血管壁を越えて血管領域R1から血管領域R2に入るような流線を描画しないようにすることが可能になる。流跡線または流脈線の描画においても、同様に判定することにより、血管壁を越えて軌跡を描くことを防ぐことが可能になる。粒子追跡法を用いて描画する場合も同様である。
 上述では、3次元流速ベクトルを3次元シネ位相コントラスト磁気共鳴法によって撮影されたボリュームデータから取得する場合について説明したが、血管領域抽出部11によって抽出された血管領域を用いて数値流体力学を用いた血流解析(CFD)を行うことによって流速ベクトルを取得するようにしてもよい。例えば、時系列で撮影されたCT画像のそれぞれから抽出された血管領域を用いて血流解析を行うことが可能である。具体的には、造影CT画像、または造影MRI画像を用いることができる。
 また、画像取得部10においてドップラー計測によって時系列に撮影された3次元の超音波画像を取得し、その超音波画像に基づいて取得された血管領域内の速度情報を用いて流速ベクトルを取得するようにしてもよい。
 形態画像生成部15は、CT画像またはMRI画像に対してボリュームレンダリング処理を施すことにより形態画像を生成する。形態画像を生成する場合には、特に、造影CT画像または造影MRI画像のように血管領域とそれ以外の領域の区別が明確な画像を用いて、形態画像を生成するようにするのが望ましい。
 描画部13は、形態画像生成部15によって生成された形態画像上に、上記の流線、流跡線、または流脈線のような血液の流れを示す軌跡を重ねて表示する。あるいは、形態画像上に粒子追跡法により得られた粒子が動く様子を重ねて描画する。
 次に本実施形態の流体解析装置の処理の流れについて、図11に示すフローチャートを参照しながら説明する。
 まず、ユーザによる患者の識別情報などの設定入力に応じて、その患者の造影CTと、3次元シネ位相コントラスト磁気共鳴法によって撮影されたMRIの2種類の3次元ボリュームデータが画像取得部10によって取得される(S10)。
 次に、画像取得部10によって取得された胸部の造影CT画像から血管領域抽出部11を用いて血管領域を抽出する(S11)。また、形態画像生成部15によって形態画像を生成する(S12)。
 さらに、付与部12は、血管領域抽出部11が抽出した血管領域の経路に沿って経路位置情報および相対位置情報を付与する(S13)。
描画部13は、開始点のボクセルを選択して(S14)、付与部12によって付与されたボクセルの経路位置情報と、3次元シネ位相コントラスト磁気共鳴法によって撮影されたMRIの3次元ボリュームデータからベクトル取得部14によって取得した3次元流速ベクトルの向きとに従って、次のボクセルを選択して、ボクセルの流速ベクトルをつないだ流線を描画する(S15)。流線が終了するまで(S16-NO)、経路位置情報と3次元流速ベクトルの向きに基づいてボクセルを辿りながら、各ボクセルの流速ベクトルをつないだ流線を描画する(S15)。また、血管が分岐または合流する接続部では、血管の相対位置情報と経路位置情報を用いて流線をつないでいく。
 描画部13は、経路位置情報に連続していないボクセルに到達すると、流線の描画を終了する。あるいは、血管領域が終了すると、流線の描画を終了する(S16-YES)。
 上記の実施形態では、図9に示すように、流線が血管壁を越えることなく描画されるので、血流の流れが分かりやすくなる。このように流体解析装置において、血液の流れを把握しやすくすることにより、心臓から出た動脈における逆流、または動脈瘤内において血流が渦状になっている箇所を観察することが可能になり診断が容易になる。
 上記の実施形態では、血流を解析する場合について説明したが、解剖学的構造物が脳のように髄液が流れる領域であって、流体が髄液であってもよい。なお、解剖学的構造物が脳の場合は、形態画像生成部15では、脳などのボリュームレンダリングした形態画像を生成する。このようにして生成された形態画像上に流線などの流れが認識可能な描画を重ねて表示する。
 上記では流線を描画する場合について詳細に説明したが、流跡線、流脈線、または、粒子追跡法により描画される場合であっても、経路位置情報および相対位置情報を血管の経路に沿って付与することによって、血管壁を通り抜ける流れがなくなり、血液の流れを正確に把握することが可能になる。
 上記では、1つのコンピュータを流体解析装置として機能させる場合について説明したが、複数のコンピュータに機能を分散させるようにしてもよい。例えば、解剖学的構造物の抽出および/または形態画像の生成は画像処理専用の他のコンピュータによって行ない、流体解析処理の結果を表示させるコンピュータでは、画像処理専用の他のコンピュータから解剖学的構造物の情報および/または形態画像を受信して、形態画像を表示した上で代表2次元流速ベクトルを重ねて表示するようにしてもよい。
 また、上記では、汎用コンピュータが流体解析装置として機能する場合について説明したが、専用コンピュータによって実施されてもよい。専用コンピュータは、内蔵されたROM(Read Only Memory)またはフラッシュメモリなど、不揮発メモリに記録されたプログラムを実行するファームウェアであってもよい。さらに、この流体解析装置の少なくとも一部の機能を実行するためのプログラムを永久的に記憶するASIC(Application Specific Integrated Circuit :特定用途向け集積回路)またはFPGA(field programmable gate arrays)などの専用回路を設けるようにしてもよい。あるいは、専用回路に記憶されたプログラム命令と、専用回路のプログラムを利用するようにプログラムされた汎用のCPUによって実行されるプログラム命令と組み合わせるようにしてもよい。以上のように、コンピュータのハードウェア構成をどのように組み合わせてプログラム命令を実行してもよい。
1 流体解析装置
2 医用画像保管サーバ
3 撮影装置
4 ネットワーク
6 3次元ボリュームデータ
10 画像取得部
11 構造物抽出部
12 付与部
13 形態画像生成部
13 描画部
14 ベクトル取得部
15 形態画像生成部

Claims (13)

  1.  内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから前記解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、前記解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を前記解剖学的構造物の内部の各位置に付与する付与部と、
     前記解剖学的構造物内の1点から前記3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように前記3次元流速ベクトルを選択することにより前記流体の流れを表す軌跡を視認可能に描画する描画部とを備えた流体解析装置。
  2.  前記付与部が、前記解剖学的構造物の中心線を抽出して該中心線に沿って経路位置情報を付与し、前記解剖学的構造物の前記中心線に垂直な断面内の各位置に該中心線に付与された経路位置情報と同じ情報を付与する請求項1記載の流体解析装置。
  3.  前記付与部が、前記解剖学的構造物内の3次元流速ベクトルの位置に最も近い前記解剖学的構造物の中心線に沿って付与された経路位置情報と同じ前記経路位置情報を付与する請求項2記載の流体解析装置。
  4.  前記描画部は、前記解剖学的構造物の形態を投影面に投影した形態画像上に、前記軌跡を視認可能に描画する請求項1~3のいずれか1項記載の流体解析装置。
  5.  前記付与部が、前記解剖学的構造物が分岐または合流する接続部の前後において、前記分岐前の経路と前記分岐後の複数の経路の接続関係、または、前記合流前の複数の経路と前記合流後の経路の接続関係を表す相対位置情報を付与し、
     前記描画部が、前記経路位置情報および前記相対位置情報に基づいて前記軌跡を視認可能に描画する請求項1~4のいずれか1項記載の流体解析装置。
  6.  前記3次元流速ベクトルは、3次元シネ位相コントラスト磁気共鳴法によって撮影された3次元ボリュームデータから得られる請求項1~5のいずれか1項記載の流体解析装置。
  7.  前記解剖学的構造物が血管であり、かつ、前記流体が血液であり
     前記3次元流速ベクトルは、血液の流速ベクトルである請求項1~6のいずれか1項記載の流体解析装置。
  8.  前記3次元流速ベクトルは、血流解析シミュレーションの結果により得られる請求項7記載の流体解析装置。
  9.  前記流体が髄液であり、
     前記3次元流速ベクトルは、髄液の流速ベクトルである請求項1~6のいずれか1項記載の流体解析装置。
  10.  前記軌跡は、流線、流跡線、または、流脈線である請求項1~9のいずれか1項記載の流体解析装置。
  11.  前記軌跡は、粒子追跡法により描画される請求項1~9のいずれか1項記載の流体解析装置。
  12.  付与部と描画部を備えた流体解析装置の作動方法であって、
     前記付与部が、内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから前記解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、前記解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を前記解剖学的構造物の内部の各位置に付与し、
     前記描画部が、前記解剖学的構造物内の1点から前記3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように前記3次元流速ベクトルを選択することにより前記流体の流れを表す軌跡を視認可能に描画する流体解析装置の作動方法。
  13.  コンピュータを、
     内部に流体が流れる解剖学的構造物を含む被写体を撮影した3次元ボリュームデータから前記解剖学的構造物内の流体の流速を表わす3次元流速ベクトルの情報をボクセルごとに取得し、前記解剖学的構造物の経路に沿った順番が識別可能な経路位置情報を前記解剖学的構造物の内部の各位置に付与する付与部と、
     前記解剖学的構造物内の1点から前記3次元流速ベクトルが存在する位置の経路位置情報が順に並ぶように前記3次元流速ベクトルを選択することにより前記流体の流れを表す軌跡を視認可能に描画する描画部として機能させるための流体解析プログラム。
PCT/JP2018/022330 2017-09-19 2018-06-12 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム WO2019058658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019543409A JP6811872B2 (ja) 2017-09-19 2018-06-12 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム
US16/780,915 US11580635B2 (en) 2017-09-19 2020-02-04 Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017179169 2017-09-19
JP2017-179169 2017-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/780,915 Continuation US11580635B2 (en) 2017-09-19 2020-02-04 Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program

Publications (1)

Publication Number Publication Date
WO2019058658A1 true WO2019058658A1 (ja) 2019-03-28

Family

ID=65811082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022330 WO2019058658A1 (ja) 2017-09-19 2018-06-12 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム

Country Status (3)

Country Link
US (1) US11580635B2 (ja)
JP (1) JP6811872B2 (ja)
WO (1) WO2019058658A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213522A (ja) * 1994-01-26 1995-08-15 Toshiba Corp 超音波診断装置
JP2007044408A (ja) * 2005-08-12 2007-02-22 Aloka Co Ltd 超音波診断装置
JP2016214550A (ja) * 2015-05-20 2016-12-22 株式会社日立製作所 超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5416392B2 (ja) 2008-11-28 2014-02-12 日立アロカメディカル株式会社 超音波診断装置
KR20140082663A (ko) * 2011-08-26 2014-07-02 이비엠 가부시키가이샤 혈류성상 진단을 위한 시스템, 그 방법 및 컴퓨터 소프트웨어 프로그램
FR2996667B1 (fr) 2012-10-05 2015-12-11 Olea Medical Systeme et procede pour estimer une quantite d'interet dans un systeme cinematique par tomographie par agent de contraste
JP5844430B1 (ja) 2014-06-27 2016-01-20 日立アロカメディカル株式会社 超音波診断装置
JP6517031B2 (ja) * 2015-02-05 2019-05-22 キヤノンメディカルシステムズ株式会社 医用画像処理装置および磁気共鳴イメージング装置
JP6818492B2 (ja) * 2015-10-05 2021-01-20 キヤノンメディカルシステムズ株式会社 画像処理装置、画像処理方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213522A (ja) * 1994-01-26 1995-08-15 Toshiba Corp 超音波診断装置
JP2007044408A (ja) * 2005-08-12 2007-02-22 Aloka Co Ltd 超音波診断装置
JP2016214550A (ja) * 2015-05-20 2016-12-22 株式会社日立製作所 超音波診断装置

Also Published As

Publication number Publication date
US20200170520A1 (en) 2020-06-04
JPWO2019058658A1 (ja) 2020-10-08
US11580635B2 (en) 2023-02-14
JP6811872B2 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
JP5345934B2 (ja) 観察のための三次元レンダリングからのデータ集合の選択
JP7522269B2 (ja) 医用画像処理方法、医用画像処理装置、医用画像処理システム及び医用画像処理プログラム
JP5566370B2 (ja) 医用画像処理装置及び方法
Meuschke et al. Combined visualization of vessel deformation and hemodynamics in cerebral aneurysms
CN106163401B (zh) 用于冠状血管的医学成像的设备和方法
US11730384B2 (en) Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program
US9786069B2 (en) Refined reconstruction of time-varying data
US11266322B2 (en) Blood flow analysis apparatus, blood flow analysis method, and blood flow analysis program
JP7262606B2 (ja) 領域同定装置、方法およびプログラム
JP6811872B2 (ja) 流体解析装置および流体解析装置の作動方法並びに流体解析プログラム
US10977792B2 (en) Quantitative evaluation of time-varying data
JP7502125B2 (ja) 医用画像処理装置、医用画像処理システム、及び、医用画像処理方法
JP7059391B2 (ja) 流体解析装置、方法およびプログラム
JP7368500B2 (ja) 流体解析装置、方法およびプログラム
JP2019180840A (ja) 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム
Grabner et al. Aorta cross-section calculation and 3D visualization from CT or MRT data using VRML

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858017

Country of ref document: EP

Kind code of ref document: A1