WO2019058554A1 - Manufacturing method of semiconductor device, substrate processing device and program - Google Patents

Manufacturing method of semiconductor device, substrate processing device and program Download PDF

Info

Publication number
WO2019058554A1
WO2019058554A1 PCT/JP2017/034543 JP2017034543W WO2019058554A1 WO 2019058554 A1 WO2019058554 A1 WO 2019058554A1 JP 2017034543 W JP2017034543 W JP 2017034543W WO 2019058554 A1 WO2019058554 A1 WO 2019058554A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxygen
substrate
fluorine
film
Prior art date
Application number
PCT/JP2017/034543
Other languages
French (fr)
Japanese (ja)
Inventor
小川 有人
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2017/034543 priority Critical patent/WO2019058554A1/en
Priority to JP2019542952A priority patent/JP6979463B2/en
Priority to SG11202001565UA priority patent/SG11202001565UA/en
Priority to CN201780094844.9A priority patent/CN111095490B/en
Publication of WO2019058554A1 publication Critical patent/WO2019058554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
  • a tungsten (W) film is used as a control gate of a NAND-type flush memory having a three-dimensional structure or an electrode for a word line of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • An object of the present invention is to provide a technology capable of suppressing the reaction of the etching gas with a film other than the film to be etched which has been exposed during the etch back.
  • An oxygen-containing gas and a fluorine-containing etching gas are supplied to the substrate in which the second metal film is embedded in the opening in which the first metal film is formed on the surface, and the second metal film is etched back Etch back process, Removing the oxygen-containing gas and the fluorine-containing etching gas; Technology is provided.
  • the present invention it is possible to suppress the reaction of the etching gas with a film other than the film to be etched which has been exposed at the time of etch back.
  • FIG. 1 shows a schematic of a device in an embodiment of the present invention. It is a longitudinal cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this invention.
  • FIG. 3 is a schematic cross-sectional view taken along line AA in FIG.
  • It is a schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the timing of gas supply in one Embodiment of this invention. It is a figure which shows the positional relationship of the kind of board
  • substrate is a schematic of a device in an embodiment of the present invention. It is a longitudinal cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this invention.
  • FIG. 3 is a schematic cross
  • the other film may be exposed at the portion where the W film is not embedded.
  • a silicon film (Si film), a silicon oxide film (SiO film), a silicon nitride film (SiN film), an aluminum oxide film (AlO film), etc. may be mentioned.
  • Si silicon
  • Si substrate Si is exposed on the back surface.
  • silicon 601 corresponds to the Si substrate.
  • an aluminum oxide film 603 and a titanium nitride film 602 are formed on silicon 604, and tungsten 601 may be embedded.
  • the etching gas when Si is exposed, it may react with the etching gas to scrape Si, or the etched W may react with Si and W may enter Si.
  • the etching gas when AlO is exposed, it may react with elements contained in the etching gas to form foreign matter, and the foreign matter may remain in the AlO.
  • the foreign matter when a halogen-based etching gas is used as the etching gas, the foreign matter is mainly composed of Al and a halogen element.
  • nitrogen trifluoride (NF 3 ) gas which is a fluorine-containing gas, is used as the etching gas, Al reacts with F to form AlF. Since AlF has a low vapor pressure, it may remain in AlO as a solid.
  • the inventors conducted earnest studies and considered flowing an oxygen-containing gas simultaneously with the etching gas at the time of etch back. For example, by flowing an oxygen-containing gas, Si and O react with each other at the exposed portion of Si to form SiO, thereby suppressing the reaction with the etching gas and suppressing the removal of Si. It is possible to suppress the reaction between the etched W and Si, and the entry of W into Si. This is because Si reacts with W to form a tungsten silicon film (tungsten silicide, WSi), but SiO does not react with W. In addition, the reaction of AlO with the etching gas can be suppressed, and the formation of foreign matter can be suppressed by reacting with the elements contained in the etching gas. Details will be described below.
  • the substrate processing apparatus 10 is configured as an example of an apparatus used in a manufacturing process of a semiconductor device.
  • the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 which constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
  • the outer tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
  • a manifold (inlet flange) 209 is disposed concentrically with the outer tube 203.
  • the manifold 209 is made of, for example, a metal such as stainless steel (SUS), and is formed in a cylindrical shape whose upper and lower ends are open.
  • an O-ring 220a as a sealing member is provided.
  • the inner tube 204 which comprises a reaction container is arrange
  • the inner tube 204 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
  • a processing vessel (reaction vessel) is mainly configured by the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in a cylindrical hollow portion (inner side of the inner tube 204) of the processing container.
  • the processing chamber 201 is configured to be able to accommodate the wafers 200 as a substrate in a state in which the wafers 200 are horizontally arranged in multiple stages in the vertical posture by a boat 217 described later.
  • nozzles 410, 420, 430 are provided to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, and 330 as gas supply lines are connected to the nozzles 410, 420, and 430, respectively.
  • the substrate processing apparatus 10 is provided with the three nozzles 410, 420, 430 and the three gas supply pipes 310, 320, 330, and supplies a plurality of types of gas into the processing chamber 201. It is configured to be able to.
  • the processing furnace 202 of this embodiment is not limited to the above-mentioned form.
  • valves 314, 324 and 334 which are on-off valves, are provided in the gas supply pipes 310, 320 and 330, respectively.
  • Gas supply pipes 610, 620, 630 for supplying an etching gas are connected to the downstream side of the valves 314, 324, 334 of the gas supply pipes 310, 320, 330, respectively.
  • MFCs 612, 622, and 632 as flow controllers (flow control units) and valves 614, 624, and 634 as on-off valves are provided in this order from the upstream side.
  • gas supply pipes 510, 520, and 530 for supplying an inert gas are connected to the downstream side of the valves 314, 324, and 334 of the gas supply pipes 310, 320, and 330, respectively.
  • the gas supply pipes 510, 520, and 530 are provided with MFCs 512, 522, and 532 as flow controllers (flow control units) and valves 514, 524, and 534 as on-off valves in this order from the upstream side.
  • Nozzles 410, 420, and 430 are connected to and connected to tip ends of the gas supply pipes 310, 320, and 330, respectively.
  • the nozzles 410, 420, 430 are configured as L-shaped nozzles, and the horizontal portion thereof is provided to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Vertical portions of the nozzles 410, 420, 430 are provided inside a channel-shaped (groove-shaped) preliminary chamber 201a which is formed to project radially outward of the inner tube 204 and extend in the vertical direction. It is provided upward along the inner wall of the inner tube 204 in the preparatory chamber 201a (upward in the arrangement direction of the wafers 200).
  • the nozzles 410, 420, 430 are provided to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410 a, 420 a, 430 a are provided at positions facing the wafer 200. Is provided. Thereby, the processing gas is supplied to the wafer 200 from the gas supply holes 410 a, 420 a, 430 a of the nozzles 410, 420, 430 respectively.
  • a plurality of gas supply holes 410a, 420a, 430a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
  • the gas supply holes 410a, 420a, 430a are not limited to the above-mentioned form.
  • the opening area may be gradually increased from the lower portion to the upper portion of the inner tube 204. This makes it possible to further equalize the flow rate of the gas supplied from the gas supply holes 410a, 420a and 430a.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at heights from the lower portion to the upper portion of the boat 217 described later. Therefore, the processing gas supplied from the gas supply holes 410 a, 420 a, 430 a of the nozzles 410, 420, 430 into the processing chamber 201 is stored in the wafer 200 stored from the lower part to the upper part of the boat 217, ie, the boat 217. The entire area of the wafer 200 is supplied.
  • the nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend near the ceiling of the boat 217.
  • a source gas (metal-containing gas, source gas) containing a metal element is supplied as a processing gas into the processing chamber 201 via the MFC 312, the valve 314, and the nozzle 410.
  • a raw material for example, tungsten (W) as a metal element is used, and a halogen-based raw material (halide) and tungsten hexafluoride (WF 6 ) as a fluorine-containing raw material gas are used.
  • the reducing gas is supplied from the gas supply pipe 320 into the processing chamber 201 through the MFC 322, the valve 324, and the nozzle 420.
  • hydrogen (H 2 ) gas can be used as the H-containing gas containing hydrogen (H) as the reducing gas.
  • An oxidizing gas is supplied from the gas supply pipe 330 into the processing chamber 201 via the MFC 332, the valve 334 and the nozzle 430.
  • oxygen (O 2 ) gas can be used, for example, as an O-containing gas containing oxygen (O).
  • nitrogen (N 2 ) gas from the gas supply pipes 510, 520, and 530 is, for example, a processing chamber via the MFCs 512, 522 and 532, valves 514, 524 and 534, and nozzles 410, 420 and 430, respectively. 201 is supplied.
  • N 2 gas for example, nitrogen (Ar) gas, helium (He) gas, neon (Ne) gas Or a rare gas such as xenon (Xe) gas.
  • the etching gas is supplied from the gas supply pipes 610, 620, and 630 into the processing chamber 201 through the MFCs 612, 622, and 632, the valves 614, 624, and 634, and the nozzles 410, 420, and 430, respectively.
  • the etching gas for example, nitrogen trifluoride (NF 3 ) as a fluorine-containing etching gas that is a halogen-based etching gas containing a halogen element and contains a fluorine element can be used.
  • NF 3 nitrogen trifluoride
  • the gas supply system is configured, only the nozzles 410, 420, and 430 may be considered as the gas supply system.
  • the raw material gas supply system mainly includes the gas supply pipes 310 and 330, the MFCs 312 and 332, and the valves 314 and 334. It may be considered in the system.
  • the reducing gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system.
  • the etching gas flows from the gas supply pipes 610, 620, 630
  • the etching gas supply system is mainly configured by the gas supply pipes 610, 620, 630, the MFCs 612, 622, 623, and the valves 614, 624, 634.
  • the nozzles 410, 420 and 430 may be included in the etching gas supply system.
  • the inert gas supply system is mainly configured by the gas supply pipes 510, 520, 530, the MFCs 512, 522, 532, and the valves 514, 524, 534.
  • the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
  • the gas supply method according to the present embodiment is performed in the annular longitudinal space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in the cylindrical space.
  • the gas is conveyed via the nozzles 410, 420, 430 arranged in the Then, the gas is ejected from the plurality of gas supply holes 410 a, 420 a, 430 a provided at positions facing the wafer of the nozzles 410, 420, 430 into the inner tube 204.
  • the source gas or the like is ejected in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction by the gas supply holes 410a of the nozzle 410, the gas supply holes 420a of the nozzle 420, and the gas supply holes 430a of the nozzle 430. ing.
  • the exhaust hole (exhaust port) 204a is a side wall of the inner tube 204 and is a through hole formed at a position facing the nozzles 410, 420, 430, that is, a position opposite to the preparatory chamber 201a by 180 degrees.
  • the slit-like through holes are elongated in the vertical direction. Therefore, the gas supplied from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 into the processing chamber 201 and flowing over the surface of the wafer 200, that is, the remaining gas (residual gas) is an exhaust hole 204a.
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200 (preferably, positions facing the lower and upper portions of the boat 217), and the gas supply holes 410a, 420a, and 430a are provided for the wafers 200 in the processing chamber 201.
  • the gas supplied to the vicinity flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust path 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted parallel to the main surface of the wafer 200 through the exhaust hole 204 a.
  • the exhaust hole 204a is not limited to a slit-like through hole, and may be constituted by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as an evacuation device in order from the upstream side. 246 are connected.
  • the APC valve 243 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, the valve in a state where the vacuum pump 246 is operated.
  • the pressure in the process chamber 201 can be adjusted by adjusting the opening degree.
  • An exhaust system that is, an exhaust line is mainly configured by the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace port that can close the lower end opening of the manifold 209 in an airtight manner.
  • the seal cap 219 is configured to abut on the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of metal such as SUS, for example, and formed in a disk shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating a boat 217 containing the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting and lowering mechanism installed vertically on the outside of the outer tube 203.
  • the boat elevator 115 is configured to be able to carry the boat 217 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 stored in the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal position and in a vertical direction with their centers aligned with one another, that is, It is configured to arrange at intervals.
  • the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported by multiple stages (not shown) in a horizontal posture. This configuration makes it difficult for the heat from the heater 207 to be transmitted to the seal cap 219 side.
  • this embodiment is not limited to the above-mentioned form.
  • a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the amount of current supplied to the heater 207 based on the temperature information detected by the temperature sensor 263,
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped similarly to the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
  • the storage device 121c readably stores a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure and conditions of a method of manufacturing a semiconductor device described later are described.
  • the process recipe is a combination of processes so as to cause the controller 121 to execute each step (each step) in a method of manufacturing a semiconductor device to be described later so as to obtain a predetermined result, and functions as a program.
  • the process recipe, the control program and the like are generically referred to simply as a program.
  • the RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
  • the I / O port 121 d may be any of the above-mentioned MFCs 312, 322, 332, 512, 522, 522, 612, 622, 632, valves 314, 324, 334, 514, 534, 614, 624, 634, pressure sensors 245, It is connected to the APC valve 243, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115 and the like.
  • the CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, 532, 612, 622, and 632, and the valves 314, 324, 334, 514, 524, and 534 so as to conform to the contents of the read recipe.
  • the controller 121 is stored in an external storage device (for example, a magnetic tape, a magnetic disk such as a flexible disk or hard disk, an optical disk such as a CD or DVD, a magnetooptical disk such as MO, a semiconductor memory such as a USB memory or memory card)
  • the above-described program can be configured by installing it on a computer.
  • the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • the recording medium may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate Processing Process As one process of manufacturing process of semiconductor device (device), it is a pattern provided on wafer 200 as a silicon substrate, and an AlO film and a titanium nitride film (TiN film) are formed in order on the surface
  • TiN film titanium nitride film
  • An example of a W film formation step of embedding a W film in the hole of the pattern and an etch back step of etching back the W film will be described with reference to FIG.
  • the W film forming step and the etch back step are performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • the manufacturing process (substrate processing process) of the semiconductor device according to the present embodiment is as follows. For a wafer 200 in which a second metal film (for example, a W film) is embedded in an opening (a hole) in which a first metal film (for example, a TiN film) is formed on the surface, oxygen containing gas (for example, O 2 gas) And fluorine-containing gas (e.g., NF 3 gas) to etch back the W film; A removal step of removing O 2 gas and NF 3 gas; including.
  • oxygen containing gas for example, O 2 gas
  • fluorine-containing gas e.g., NF 3 gas
  • wafer when the word "wafer” is used, it means “wafer itself” or “laminate (aggregate) of a wafer and a predetermined layer or film or the like formed on the surface”. (That is, when a predetermined layer or film formed on the surface is referred to as a wafer).
  • surface of wafer when the term “surface of wafer” is used in this specification, it means “surface (exposed surface) of wafer itself” or “surface of a predetermined layer or film or the like formed on a wafer” That is, it may mean “the outermost surface of the wafer as a laminate”.
  • substrate when the word “substrate” is used in this specification, it is synonymous with the case where the word "wafer” is used.
  • the vacuum pump 246 evacuates the processing chamber 201 to a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at all times at least until the processing on the wafer 200 is completed.
  • the heater 207 heats the inside of the processing chamber 201 to a desired temperature. At this time, the amount of current supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 (temperature adjustment) so that the interior of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until processing of the wafer 200 is completed.
  • the valves 314 and 324 are opened to flow the WF 6 gas and the H 2 gas into the gas supply pipes 310 and 320, respectively.
  • the flow rates of the WF 6 gas and the H 2 gas are adjusted by the MFCs 312 and 324, respectively, supplied from the gas supply holes 410a and 420a of the nozzles 410 and 420 into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • WF 6 gas and H 2 gas are supplied to the wafer 200.
  • the valves 514 and 524 may be simultaneously opened to flow an inert gas such as N 2 gas into the gas supply pipes 510 and 520.
  • the flow rate of the N 2 gas flowing in the gas supply pipes 510 and 520 is adjusted by the MFCs 512 and 522, and is supplied together with the WF 6 gas and the H 2 gas into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • the valve 534 is opened to flow the N 2 gas into the gas supply 530 in order to prevent the WF 6 gas and the H 2 gas from intruding into the nozzle 430.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 330 and the nozzle 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to, for example, a pressure in the range of 10 to 6630 Pa.
  • the supply amount of WF 6 gas controlled by MFC 312 is, for example, the supply amount in the range of 0.01 to 5 slm
  • the supply flow rate of H 2 gas controlled by MFC 322 is, for example, the flow rate in the range of 0.1 to 50 slm.
  • the time for supplying the WF 6 gas and the H 2 gas to the wafer 200, that is, the gas supply time (irradiation time) is determined according to the desired film thickness.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 is, for example, a temperature within a range of 100 ° C. to 500 ° C., preferably a temperature within a range of 150 to 450 ° C.
  • the WF 6 gas and the H 2 gas flowing into the processing chamber 201 react (gas phase reaction) in the gas phase or react (surface reaction) on the substrate surface, and a W film is formed on the wafer 200.
  • the W film is embedded in the hole formed on the wafer 200, and the W film is also formed on the TiN film formed on the surface of the wafer 200.
  • the valves 314 and 324 are closed to stop the supply of the WF 6 gas and the H 2 gas.
  • the APC valve 243 kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the WF 6 gas and the H 2 gas remaining in the processing chamber 201 are removed from the processing chamber 201.
  • the valves 514, 524 and 534 are kept open to maintain the supply of N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas, and the effect of removing WF 6 gas and H 2 gas from the processing chamber 201 after contributing to the formation of unreacted or W film remaining in the processing chamber 201 can be enhanced.
  • the valve 334 is opened to flow the O 2 gas into the gas supply pipe 330.
  • the flow rate of the O 2 gas is adjusted by the MFC 332, and the O 2 gas is supplied from the gas supply holes 430 a of the nozzle 430 into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • O 2 gas is supplied to the wafer 200.
  • the valve 534 may be simultaneously opened to flow an inert gas such as N 2 gas into the gas supply pipe 530.
  • the flow rate of the N 2 gas flowing in the gas supply pipe 530 is adjusted by the MFC 532, and is supplied into the processing chamber 201 together with the WF 6 gas and the H 2 gas, and exhausted from the exhaust pipe 231.
  • the valves 514 and 524 are opened to flow N 2 gas into the gas supply pipes 510 and 520.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to, for example, a pressure in the range of 1 to 399 Pa.
  • the supply amount of O 2 gas controlled by the MFC 332 is, for example, in the range of 0.1 to 30 slm.
  • the time for supplying the O 2 gas to the wafer 200, ie, the gas supply time (irradiation time) is, for example, a time within the range of 1 to 3600 seconds.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 is, for example, a temperature within the range of 300 to 600 ° C., preferably a temperature within the range of 350 to 500 ° C.
  • NF 3 gas supply (intermittent supply)
  • the NF 3 gas is intermittently (pulsed) supplied a plurality of times.
  • the valves 614, 624, 634 are opened to flow NF 3 gas into the gas supply pipes 610, 620, 630, respectively.
  • the flow rates of the NF 3 gas are adjusted by the MFCs 612, 622 and 632, respectively, supplied from the gas supply holes 410 a, 420 a and 430 a of the nozzles 410, 420 and 430 into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • O 2 gas and NF 3 gas are supplied to the wafer 200.
  • the N 2 gas is flowing in the gas supply pipes 510, 520, and 530
  • the N 2 gas is supplied into the processing chamber 201 together with the O 2 gas and the NF 3 gas and exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 while supplying the NF 3 gas to a pressure in the range of 1 to 3990 Pa, for example.
  • the supply amount of NF 3 gas controlled by the MFCs 612, 622, and 632 is, for example, in the range of 0.1 to 10 slm.
  • the time for supplying the NF 3 gas to the wafer 200, ie, the gas supply time (irradiation time) makes one pulse, for example, a time within the range of 0.1 to 60 seconds.
  • the cumulative irradiation time (total irradiation time) of the NF 3 gas is, for example, a time within the range of 0.1 to 3600 seconds.
  • the temperature of the heater 207 is set to be equal to the temperature at the O 2 supply step.
  • valves 614, 624, 634 are closed, the supply of the NF 3 gas is stopped, and finally, the above-described O 2 supply step is performed.
  • the N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530 and exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with the inert gas, and the gas and byproducts remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas substitution), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. Thereafter, the processed wafers 200 are taken out of the boat 217 (wafer discharging).
  • the Si wafer (bare wafer) for evaluation is housed in the boat 217 so as to be positioned near the center of the processing chamber 201.
  • SiO 2 / Si wafer was formed a SiO 2 film on the Si wafer.
  • a W / TiN / Si wafer in which a TiN film and a W film are sequentially formed on a Si wafer is accommodated, and in the lower part, a TiN / Si wafer in which a TiN film is formed on a Si wafer is accommodated. did.
  • a dummy wafer (Dummy) was accommodated in the upper stage of the SiO 2 / Si wafer and the lower stage of the TiN / Si wafer for evaluation.
  • FIG. 7 shows the result of XPS (X-ray Photoelection Spectroscopy) analysis of a Si wafer.
  • the evaluation in the case where the oxygen-containing gas was not used (not added) at the time of etch back is shown as a comparative example (dotted line) and shown in comparison with the evaluation (solid line) according to this embodiment.
  • the XPS spectrum of W4f is shown, the horizontal axis shows the binding energy (BE (eV)), and the vertical axis shows the intensity of tungsten (W4f). From these results, it can be understood that W adheres on Si when etching is performed using only NF 3 gas.
  • the O 2 gas supply (continuous supply) step in the above-described etch back process is performed, and the NF 3 gas is supplied once. That is, O 2 gas is flowed in the processing chamber 201 in a state where NF 3 gas is not flowing, supply of NF 3 gas is started after a predetermined time elapses, supply of NF 3 gas is stopped after a predetermined time elapse, and processing is performed again.
  • the O 2 gas is supplied into the processing chamber 201 in a state where the NF 3 gas is not flowing in the chamber 201.
  • the time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas. According to this modification, one or more effects of the effects of the above-described embodiment can be obtained.
  • the step of O 2 gas supply (continuous supply) in the above-described etch back process is performed, and NF 3 gas is supplied once. That is, in the processing chamber 201 begins to conduct NF 3 gas and O 2 gas at the same time, to stop the supply of the NF 3 gas after a predetermined time has elapsed, O 2 in a state where no NF 3 gas flows into the processing chamber 201 Gas is supplied into the processing chamber 201. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas.
  • the processing time can be shortened by starting to flow the etching gas at the same timing as the oxygen-containing gas.
  • the processing time can be shortened by stopping the supply of the etching gas and the oxygen-containing gas at the same timing.
  • the fourth modification is repeated n 2 times.
  • the residual gas in the processing chamber 201 is removed in the same procedure as the residual gas removing step in the W film forming process for each cycle. That is, O 2 gas is flowed in the processing chamber 201 in a state where NF 3 gas is not flowing, and supply of NF 3 gas is started after a predetermined time elapses, and after predetermined time elapses, supply of NF 3 gas and O 2 gas is the same. Stop at the timing. Then, after removing the residual gas in the processing chamber 201, the flow of the O 2 gas is started again while the NF 3 gas is not flowing in the processing chamber 201 again. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas.
  • the present invention is not limited thereto.
  • TaN film tantalum nitride film
  • Co film cobalt film
  • the present invention can also be applied to the case of etching a film containing a metal element such as a film or a metal carbide film.
  • oxygen-containing gas an example has been described using an O 2 gas, not limited to this, nitric oxide (NO), nitrous oxide (N 2 O), water (H 2 O), It is also possible to use ozone (O 3 ) or the like.
  • O 2 gas not limited to this, nitric oxide (NO), nitrous oxide (N 2 O), water (H 2 O), It is also possible to use ozone (O 3 ) or the like.
  • a fluorine-containing gas as the etching gas is not limited thereto, it is possible to use also other gases containing a halogen element.
  • a gas having a low etching rate to the oxide film is preferable.
  • the present invention is not limited to this, and can be applied to a word line electrode of MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the present invention it is possible to suppress the reaction of the etching gas with a film other than the film to be etched which has been exposed at the time of etch back.
  • controller 200 wafer (substrate) 201 processing room

Abstract

Problem: To suppress etching gas from reacting with films other than the etching target film that are exposed during etchback. Solution: A method involving: an etchback step in which an oxygen-containing gas and a fluorine-containing etching gas are supplied to a substrate, which comprises a first metal film formed on the surface and a second metal film embedded in an opening, to etch the second metal film; and a removal step in which the aforementioned oxygen-containing gas and the aforementioned fluorine-containing etching gas are removed.

Description

半導体装置の製造方法、基板処理装置およびプログラムSemiconductor device manufacturing method, substrate processing apparatus and program
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。 The present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
 3次元構造を持つNAND型Flushメモリのコントロールゲートや、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のワードライン向け電極には、一般的にはタングステン(W)膜が用いられる。このW膜は最終的に穴に埋め込まれた状態となるが、その成膜時には穴の中にWを完全に埋め込み塞ぎこむ。その際、不要な部分にもW膜は成膜されるため、W成膜工程の後、エッチバック工程を行い、所望の部分にのみW膜を残す。 In general, a tungsten (W) film is used as a control gate of a NAND-type flush memory having a three-dimensional structure or an electrode for a word line of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The W film is finally embedded in the hole, but at the time of film formation, the W film is completely embedded and closed in the hole. At this time, since the W film is formed on unnecessary portions, an etch back process is performed after the W film formation step to leave the W film only on the desired portion.
特開2015-109419号公報JP, 2015-109419, A
W膜のエッチバックには、従来、ウェット洗浄が主に用いられてきたが、近年、ドライエッチによるエッチバックが検討されている。しかし、たとえば、W膜をエッチバックする場合、エッチバックされるW膜の膜厚は、成膜したW膜の膜厚よりも多い(厚い)ため、W膜が埋め込まれていない部分では他の膜が剥き出しになる場合がある。剥き出しになった他の膜は、エッチングガスと反応して、削られてしまったり、異物を形成してしまったりすることがある。 Conventionally, wet cleaning has been mainly used for etching back W films, but in recent years, etching back by dry etching has been considered. However, for example, when the W film is etched back, the film thickness of the W film to be etched back is larger (thicker) than the film thickness of the W film formed, and therefore, in the portion where the W film is not embedded The membrane may be exposed. The other exposed film may react with the etching gas to be scraped or form foreign matter.
 本発明は、エッチバック時に剥き出しになったエッチング対象膜以外の膜と、エッチングガスが反応することを抑制することが可能な技術を提供することを目的とする。 An object of the present invention is to provide a technology capable of suppressing the reaction of the etching gas with a film other than the film to be etched which has been exposed during the etch back.
 本発明の一態様によれば、
 表面に第1の金属膜が形成された開口部に第2の金属膜が埋め込まれた基板に対して、酸素含有ガスおよびフッ素含有エッチングガスを供給して、前記第2の金属膜をエッチバックするエッチバック工程と、
前記酸素含有ガスおよび前記フッ素含有エッチングガスを除去する除去工程と、
を有する技術が提供される。
According to one aspect of the invention:
An oxygen-containing gas and a fluorine-containing etching gas are supplied to the substrate in which the second metal film is embedded in the opening in which the first metal film is formed on the surface, and the second metal film is etched back Etch back process,
Removing the oxygen-containing gas and the fluorine-containing etching gas;
Technology is provided.
 本発明によれば、エッチバック時に剥き出しになったエッチング対象膜以外の膜と、エッチングガスが反応することを抑制することができる。 According to the present invention, it is possible to suppress the reaction of the etching gas with a film other than the film to be etched which has been exposed at the time of etch back.
本発明の一実施形態におけるデバイスの概略を示す図である。FIG. 1 shows a schematic of a device in an embodiment of the present invention. 本発明の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in one Embodiment of this invention. 図2におけるA-A線概略横断面図である。FIG. 3 is a schematic cross-sectional view taken along line AA in FIG. 本発明の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus in one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. 本発明の一実施形態におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of gas supply in one Embodiment of this invention. 本発明の一実施形態による評価時における基板処理装置の処理室内に収容された基板の種類とそれぞれの基板の位置関係を示す図である。It is a figure which shows the positional relationship of the kind of board | substrate accommodated in the processing chamber of the substrate processing apparatus at the time of evaluation by one Embodiment of this invention, and each board | substrate. 本発明の一実施形態による評価(SiウエハのXPS分析)の結果を示す図である。It is a figure which shows the result of evaluation (XPS analysis of Si wafer) by one Embodiment of this invention. 本発明の一実施形態のガス供給のタイミングの変形例を示す図であり、(A)は変形例1を示す図であり、(B)は変形例2を示す図であり、(C)は変形例3を示す図であり、(D)は変形例4を示す図であり、(E)は変形例5を示す図であり、(F)は変形例6を示す図である。It is a figure which shows the modification of the timing of gas supply of one Embodiment of this invention, (A) is a figure which shows modification 1, (B) is a figure which shows modification 2, (C) is a figure. It is a figure which shows the modification 3, (D) is a figure which shows the modification 4, (E) is a figure which shows the modification 5, (F) is a figure which shows the modification 6. FIG.
 たとえば、NAND型Flushメモリでは、上述のように、W膜をエッチバックする場合、W膜が埋め込まれていない部分では他の膜が剥き出しになる場合がある。他の膜としては、たとえば、シリコン膜(Si膜)やシリコン酸化膜(SiO膜)、シリコン窒化膜(SiN膜)、アルミニウム酸化膜(AlO膜)などが挙げられる。また、基板の裏面等、最初から剥き出しとなっている部分もある。たとえば、シリコン(Si)基板の場合、裏面にはSiが剥き出しになっている。なお、Si基板の場合は、シリコン601がSi基板に相当する。たとえば、図1に示すように、シリコン604の上に、アルミニウム酸化膜603、チタン窒化膜602が形成されており、タングステン601を埋め込む場合がある。 For example, in the NAND-type flush memory, as described above, when the W film is etched back, the other film may be exposed at the portion where the W film is not embedded. As another film, for example, a silicon film (Si film), a silicon oxide film (SiO film), a silicon nitride film (SiN film), an aluminum oxide film (AlO film), etc. may be mentioned. In addition, there is also a portion that is exposed from the beginning, such as the back surface of the substrate. For example, in the case of a silicon (Si) substrate, Si is exposed on the back surface. In the case of a Si substrate, silicon 601 corresponds to the Si substrate. For example, as shown in FIG. 1, an aluminum oxide film 603 and a titanium nitride film 602 are formed on silicon 604, and tungsten 601 may be embedded.
たとえば、Siが剥き出しになっている場合、エッチングガスと反応してSiが削られてしまったり、エッチングされたWとSiが反応し、Si中にWが入り込んでしまうことがある。たとえば、AlOが剥き出しになっている場合、エッチングガスに含まれる元素と反応して異物を形成し、その異物がAlO内に残留することがある。エッチングガスとしてハロゲン系エッチングガスを用いる場合、異物は主にAlとハロゲン元素で構成される。たとえば、エッチングガスとしてフッ素含有ガスである三フッ化窒素(NF)ガスを用いた場合、AlとFが反応してAlFが形成される。AlFは蒸気圧が低いため固体としてAlO内に残留する可能性がある。 For example, when Si is exposed, it may react with the etching gas to scrape Si, or the etched W may react with Si and W may enter Si. For example, when AlO is exposed, it may react with elements contained in the etching gas to form foreign matter, and the foreign matter may remain in the AlO. When a halogen-based etching gas is used as the etching gas, the foreign matter is mainly composed of Al and a halogen element. For example, when nitrogen trifluoride (NF 3 ) gas, which is a fluorine-containing gas, is used as the etching gas, Al reacts with F to form AlF. Since AlF has a low vapor pressure, it may remain in AlO as a solid.
そこで、発明者らは鋭意研究を行い、エッチバック時にエッチングガスと同時に酸素含有ガスを流すことを考えた。たとえば、酸素含有ガスを流すことで、Siが剥き出しになった部分はSiとOを反応させてSiOを形成することで、エッチングガスとの反応を抑えてSiが削られてしまうことを抑制し、エッチングされたWとSiが反応し、Si中にWが入り込んでしまうことを抑制することができる。これは、SiはWと反応してタングステンシリコン膜(タングステンシリサイド、WSi)を形成するが、SiOはWと反応しないことに起因する。また、AlOがエッチングガスと反応することを抑制し、エッチングガスに含まれる元素と反応して異物を形成することを抑制することができる。以下に詳細を説明する。 Therefore, the inventors conducted earnest studies and considered flowing an oxygen-containing gas simultaneously with the etching gas at the time of etch back. For example, by flowing an oxygen-containing gas, Si and O react with each other at the exposed portion of Si to form SiO, thereby suppressing the reaction with the etching gas and suppressing the removal of Si. It is possible to suppress the reaction between the etched W and Si, and the entry of W into Si. This is because Si reacts with W to form a tungsten silicon film (tungsten silicide, WSi), but SiO does not react with W. In addition, the reaction of AlO with the etching gas can be suppressed, and the formation of foreign matter can be suppressed by reacting with the elements contained in the etching gas. Details will be described below.
<本発明の一実施形態>
 以下、本発明の一実施形態について、図2~4を参照しながら説明する。基板処理装10は半導体装置の製造工程において使用される装置の一例として構成されている。
<One embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The substrate processing apparatus 10 is configured as an example of an apparatus used in a manufacturing process of a semiconductor device.
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
(1) Configuration of Substrate Processing Apparatus The substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、たとえば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、たとえばステンレス(SUS)などの金属からなり、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。 Inside the heater 207, an outer tube 203 which constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed. The outer tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open. Below the outer tube 203, a manifold (inlet flange) 209 is disposed concentrically with the outer tube 203. The manifold 209 is made of, for example, a metal such as stainless steel (SUS), and is formed in a cylindrical shape whose upper and lower ends are open. Between the upper end portion of the manifold 209 and the outer tube 203, an O-ring 220a as a sealing member is provided. By supporting the manifold 209 on the heater base, the outer tube 203 is placed vertically.
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、たとえば石英(SiO2)、炭化シリコン(SiC)などの耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。 The inner tube 204 which comprises a reaction container is arrange | positioned inside the outer tube 203. As shown in FIG. The inner tube 204 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open. A processing vessel (reaction vessel) is mainly configured by the outer tube 203, the inner tube 204, and the manifold 209. A processing chamber 201 is formed in a cylindrical hollow portion (inner side of the inner tube 204) of the processing container.
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。 The processing chamber 201 is configured to be able to accommodate the wafers 200 as a substrate in a state in which the wafers 200 are horizontally arranged in multiple stages in the vertical posture by a boat 217 described later.
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給ラインとしてのガス供給管310,320,330が、それぞれ接続されている。このように、基板処理装置10には3本のノズル410,420,430と、3本のガス供給管310,320,330とが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。 In the processing chamber 201, nozzles 410, 420, 430 are provided to penetrate the side wall of the manifold 209 and the inner tube 204. Gas supply pipes 310, 320, and 330 as gas supply lines are connected to the nozzles 410, 420, and 430, respectively. As described above, the substrate processing apparatus 10 is provided with the three nozzles 410, 420, 430 and the three gas supply pipes 310, 320, 330, and supplies a plurality of types of gas into the processing chamber 201. It is configured to be able to. However, the processing furnace 202 of this embodiment is not limited to the above-mentioned form.
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であマスフローコントローラ(MFC)312,322,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、エッチングガスを供給するガス供給管610,620,630がそれぞれ接続されている。ガス供給管610,620,630には、上流側から順に、流量制御器(流量制御部)であるMFC612,622,632及び開閉弁であるバルブ614,624,634がそれぞれ設けられている。また、ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532及び開閉弁であるバルブ514,524,534がそれぞれ設けられている。 Mass flow controllers (MFC) 312, 322, and 332, which are flow controllers (flow control units), are provided in the gas supply pipes 310, 320, and 330 sequentially from the upstream side. In addition, valves 314, 324 and 334, which are on-off valves, are provided in the gas supply pipes 310, 320 and 330, respectively. Gas supply pipes 610, 620, 630 for supplying an etching gas are connected to the downstream side of the valves 314, 324, 334 of the gas supply pipes 310, 320, 330, respectively. In the gas supply pipes 610, 620, and 630, MFCs 612, 622, and 632 as flow controllers (flow control units) and valves 614, 624, and 634 as on-off valves are provided in this order from the upstream side. Further, gas supply pipes 510, 520, and 530 for supplying an inert gas are connected to the downstream side of the valves 314, 324, and 334 of the gas supply pipes 310, 320, and 330, respectively. The gas supply pipes 510, 520, and 530 are provided with MFCs 512, 522, and 532 as flow controllers (flow control units) and valves 514, 524, and 534 as on-off valves in this order from the upstream side.
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。 Nozzles 410, 420, and 430 are connected to and connected to tip ends of the gas supply pipes 310, 320, and 330, respectively. The nozzles 410, 420, 430 are configured as L-shaped nozzles, and the horizontal portion thereof is provided to penetrate the side wall of the manifold 209 and the inner tube 204. Vertical portions of the nozzles 410, 420, 430 are provided inside a channel-shaped (groove-shaped) preliminary chamber 201a which is formed to project radially outward of the inner tube 204 and extend in the vertical direction. It is provided upward along the inner wall of the inner tube 204 in the preparatory chamber 201a (upward in the arrangement direction of the wafers 200).
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。たとえば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。 The nozzles 410, 420, 430 are provided to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410 a, 420 a, 430 a are provided at positions facing the wafer 200. Is provided. Thereby, the processing gas is supplied to the wafer 200 from the gas supply holes 410 a, 420 a, 430 a of the nozzles 410, 420, 430 respectively. A plurality of gas supply holes 410a, 420a, 430a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch. However, the gas supply holes 410a, 420a, 430a are not limited to the above-mentioned form. For example, the opening area may be gradually increased from the lower portion to the upper portion of the inner tube 204. This makes it possible to further equalize the flow rate of the gas supplied from the gas supply holes 410a, 420a and 430a.
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200、すなわちボート217に収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。 A plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at heights from the lower portion to the upper portion of the boat 217 described later. Therefore, the processing gas supplied from the gas supply holes 410 a, 420 a, 430 a of the nozzles 410, 420, 430 into the processing chamber 201 is stored in the wafer 200 stored from the lower part to the upper part of the boat 217, ie, the boat 217. The entire area of the wafer 200 is supplied. The nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend near the ceiling of the boat 217.
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス、原料ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。原料としては、たとえば金属元素としてのタングステン(W)を含み、ハロゲン系原料(ハロゲン化物)であってフッ素含有原料ガスとしての六フッ化タングステン(WF6)が用いられる。 From the gas supply pipe 310, a source gas (metal-containing gas, source gas) containing a metal element is supplied as a processing gas into the processing chamber 201 via the MFC 312, the valve 314, and the nozzle 410. As a raw material, for example, tungsten (W) as a metal element is used, and a halogen-based raw material (halide) and tungsten hexafluoride (WF 6 ) as a fluorine-containing raw material gas are used.
 ガス供給管320からは、還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。還元ガスとしては、たとえば水素元素(H)を含むH含有ガスとして水素(H)ガスを用いることができる。 The reducing gas is supplied from the gas supply pipe 320 into the processing chamber 201 through the MFC 322, the valve 324, and the nozzle 420. For example, hydrogen (H 2 ) gas can be used as the H-containing gas containing hydrogen (H) as the reducing gas.
 ガス供給管330からは、酸化ガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。酸化ガスとしては、たとえば酸素元素(O)を含むO含有ガスとして酸素(O)ガスを用いることができる。 An oxidizing gas is supplied from the gas supply pipe 330 into the processing chamber 201 via the MFC 332, the valve 334 and the nozzle 430. As the oxidizing gas, oxygen (O 2 ) gas can be used, for example, as an O-containing gas containing oxygen (O).
 ガス供給管510,520,530からは、不活性ガスとして、たとえば窒素(N2)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。なお、以下、不活性ガスとしてN2ガスを用いる例について説明するが、不活性ガスとしては、N2ガス以外に、たとえば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。 As an inert gas, for example, nitrogen (N 2 ) gas from the gas supply pipes 510, 520, and 530 is, for example, a processing chamber via the MFCs 512, 522 and 532, valves 514, 524 and 534, and nozzles 410, 420 and 430, respectively. 201 is supplied. The following is a description of an example of using the N 2 gas as the inert gas, the inert gas, in addition to N 2 gas, for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas Or a rare gas such as xenon (Xe) gas.
 ガス供給管610,620,630からは、エッチングガスが、それぞれMFC612,622,632、バルブ614,624,634、ノズル410,420,430を介して処理室201内に供給される。エッチングガスとしては、たとえば、ハロゲン元素を含むハロゲン系エッチングガスであってフッ素元素を含むフッ素含有エッチングガスとしての三フッ化窒素(NF)を用いることができる。 The etching gas is supplied from the gas supply pipes 610, 620, and 630 into the processing chamber 201 through the MFCs 612, 622, and 632, the valves 614, 624, and 634, and the nozzles 410, 420, and 430, respectively. As the etching gas, for example, nitrogen trifluoride (NF 3 ) as a fluorine-containing etching gas that is a halogen-based etching gas containing a halogen element and contains a fluorine element can be used.
 主に、ガス供給管310,320,330, 610,620,630、MFC312,322,332,612,622,632、バルブ314,324,334,614,624,634、ノズル410,420,430によりガス供給系が構成されるが、ノズル410,420,430のみをガス供給系と考えてもよい。ガス供給管310,330から原料ガスを流す場合、主に、ガス供給管310,330、MFC312,332、バルブ314,334により原料ガス供給系が構成されるが、ノズル410,430を原料ガス供給系に含めて考えてもよい。ガス供給管320から還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により還元ガス供給系が構成されるが、ノズル420を還元ガス供給系に含めて考えてもよい。ガス供給管610,620,630からエッチングガスを流す場合、主に、ガス供給管610,620,630、MFC612,622,632、バルブ614,624,634によりエッチングガス供給系が構成されるが、ノズル410,420,430をエッチングガス供給系に含めて考えてもよい。主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、希釈ガス供給系、或いは、キャリアガス供給系と称することもできる。 Mainly by gas supply pipes 310, 320, 330, 610, 620, 630, MFCs 312, 322, 332, 612, 622, 623, valves 314, 324, 334, 614, 624, 634 and nozzles 410, 420, 430 Although the gas supply system is configured, only the nozzles 410, 420, and 430 may be considered as the gas supply system. When the raw material gas is allowed to flow from the gas supply pipes 310 and 330, the raw material gas supply system mainly includes the gas supply pipes 310 and 330, the MFCs 312 and 332, and the valves 314 and 334. It may be considered in the system. When the reducing gas flows from the gas supply pipe 320, the reducing gas supply system is mainly configured by the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system. When the etching gas flows from the gas supply pipes 610, 620, 630, the etching gas supply system is mainly configured by the gas supply pipes 610, 620, 630, the MFCs 612, 622, 623, and the valves 614, 624, 634. The nozzles 410, 420 and 430 may be included in the etching gas supply system. The inert gas supply system is mainly configured by the gas supply pipes 510, 520, 530, the MFCs 512, 522, 532, and the valves 514, 524, 534. The inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内、すなわち、円筒状の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a及びノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向、すなわち水平方向に向かって原料ガス等を噴出させている。 The gas supply method according to the present embodiment is performed in the annular longitudinal space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in the cylindrical space. The gas is conveyed via the nozzles 410, 420, 430 arranged in the Then, the gas is ejected from the plurality of gas supply holes 410 a, 420 a, 430 a provided at positions facing the wafer of the nozzles 410, 420, 430 into the inner tube 204. More specifically, the source gas or the like is ejected in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction by the gas supply holes 410a of the nozzle 410, the gas supply holes 420a of the nozzle 420, and the gas supply holes 430a of the nozzle 430. ing.
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置、すなわち予備室201aとは180度反対側の位置に形成された貫通孔であり、たとえば、鉛直方向に細長く開設されたスリット状の貫通孔である。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガス、すなわち、残留するガス(残ガス)は、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間からなる排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。 The exhaust hole (exhaust port) 204a is a side wall of the inner tube 204 and is a through hole formed at a position facing the nozzles 410, 420, 430, that is, a position opposite to the preparatory chamber 201a by 180 degrees. The slit-like through holes are elongated in the vertical direction. Therefore, the gas supplied from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 into the processing chamber 201 and flowing over the surface of the wafer 200, that is, the remaining gas (residual gas) is an exhaust hole 204a. Flow into the exhaust passage 206 formed of a gap formed between the inner tube 204 and the outer tube 203. Then, the gas that has flowed into the exhaust path 206 flows into the exhaust pipe 231 and is exhausted out of the processing furnace 202.
 排気孔204aは、複数のウエハ200と対向する位置(好ましくはボート217の上部から下部と対向する位置)に設けられており、ガス供給孔410a、420a、430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。すなわち、処理室201に残留するガスは、排気孔204aを介してウエハ200の主面に対して平行に排気される。なお、排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。 The exhaust holes 204a are provided at positions facing the plurality of wafers 200 (preferably, positions facing the lower and upper portions of the boat 217), and the gas supply holes 410a, 420a, and 430a are provided for the wafers 200 in the processing chamber 201. The gas supplied to the vicinity flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then flows into the exhaust path 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted parallel to the main surface of the wafer 200 through the exhaust hole 204 a. The exhaust hole 204a is not limited to a slit-like through hole, and may be constituted by a plurality of holes.
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。 The manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. In the exhaust pipe 231, a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201, an APC (Auto Pressure Controller) valve 243, and a vacuum pump as an evacuation device in order from the upstream side. 246 are connected. The APC valve 243 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, the valve in a state where the vacuum pump 246 is operated. The pressure in the process chamber 201 can be adjusted by adjusting the opening degree. An exhaust system, that is, an exhaust line is mainly configured by the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、たとえばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。 Below the manifold 209, a seal cap 219 is provided as a furnace port that can close the lower end opening of the manifold 209 in an airtight manner. The seal cap 219 is configured to abut on the lower end of the manifold 209 from the lower side in the vertical direction. The seal cap 219 is made of metal such as SUS, for example, and formed in a disk shape. On the top surface of the seal cap 219, an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209. On the opposite side of the processing chamber 201 in the seal cap 219, a rotation mechanism 267 for rotating a boat 217 containing the wafer 200 is installed. The rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting and lowering mechanism installed vertically on the outside of the outer tube 203. The boat elevator 115 is configured to be able to carry the boat 217 into and out of the processing chamber 201 by moving the seal cap 219 up and down. The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 stored in the boat 217 into and out of the processing chamber 201.
 基板支持具としてのボート217は、複数枚、たとえば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、たとえば石英やSiC等の耐熱性材料からなる。ボート217の下部には、たとえば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。たとえば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。 The boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal position and in a vertical direction with their centers aligned with one another, that is, It is configured to arrange at intervals. The boat 217 is made of, for example, a heat resistant material such as quartz or SiC. At the lower part of the boat 217, a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported by multiple stages (not shown) in a horizontal posture. This configuration makes it difficult for the heat from the heater 207 to be transmitted to the seal cap 219 side. However, this embodiment is not limited to the above-mentioned form. For example, without providing the heat insulating plate 218 in the lower part of the boat 217, a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
 図3に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420及び430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。 As shown in FIG. 3, a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the amount of current supplied to the heater 207 based on the temperature information detected by the temperature sensor 263, The temperature in the processing chamber 201 is configured to have a desired temperature distribution. The temperature sensor 263 is L-shaped similarly to the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
 図4に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、たとえばタッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 4, the controller 121, which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus. An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
 記憶装置121cは、たとえばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like. The storage device 121c readably stores a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure and conditions of a method of manufacturing a semiconductor device described later are described. The process recipe is a combination of processes so as to cause the controller 121 to execute each step (each step) in a method of manufacturing a semiconductor device to be described later so as to obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program and the like are generically referred to simply as a program. When the term "program" is used in the present specification, when only the process recipe alone is included, the case where only the control program alone is included, or a combination of the process recipe and the control program may be included. The RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
 I/Oポート121dは、上述のMFC312,322,332,512,522,532,612,622,632、バルブ314,324,334,514,524,534,614,624,634、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121 d may be any of the above-mentioned MFCs 312, 322, 332, 512, 522, 522, 612, 622, 632, valves 314, 324, 334, 514, 534, 614, 624, 634, pressure sensors 245, It is connected to the APC valve 243, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115 and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532,612,622,632による各種ガスの流量調整動作、バルブ314,324,334,514,524,534,614,624,634の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, 532, 612, 622, and 632, and the valves 314, 324, 334, 514, 524, and 534 so as to conform to the contents of the read recipe. , 614, 624, 634, opening / closing operation of the APC valve 243 and pressure adjustment operation based on the pressure sensor 245 by the APC valve 243, temperature adjustment operation of the heater 207 based on the temperature sensor 263, start and stop of the vacuum pump 246, It is configured to control the rotation and rotational speed adjustment operation of the boat 217 by the rotation mechanism 267, the elevation operation of the boat 217 by the boat elevator 115, the accommodation operation of the wafer 200 in the boat 217, and the like.
 コントローラ121は、外部記憶装置(たとえば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 is stored in an external storage device (for example, a magnetic tape, a magnetic disk such as a flexible disk or hard disk, an optical disk such as a CD or DVD, a magnetooptical disk such as MO, a semiconductor memory such as a USB memory or memory card) The above-described program can be configured by installing it on a computer. The storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media. In the present specification, the recording medium may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程
 半導体装置(デバイス)の製造工程の一工程として、シリコン基板としてのウエハ200上に設けられたパターンであって、表面にAlO膜、チタン窒化膜(TiN膜)が順に形成されたパターンの穴にW膜を埋め込むW成膜工程およびW膜をエッチバックするエッチバック工程の一例について、図5を用いて説明する。W成膜工程およびエッチバック工程は上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
(2) Substrate Processing Process As one process of manufacturing process of semiconductor device (device), it is a pattern provided on wafer 200 as a silicon substrate, and an AlO film and a titanium nitride film (TiN film) are formed in order on the surface An example of a W film formation step of embedding a W film in the hole of the pattern and an etch back step of etching back the W film will be described with reference to FIG. The W film forming step and the etch back step are performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
 本実施形態による半導体装置の製造工程(基板処理工程)は、
表面に第1の金属膜(たとえばTiN膜)が形成された開口部(穴)に第2の金属膜(たとえばW膜)が埋め込まれたウエハ200に対して、酸素含有ガス(たとえばOガス)およびフッ素含有ガス(たとえばNFガス)を供給して、W膜をエッチバックするエッチバック工程と、
ガスおよびNFガスを除去する除去工程と、
を含む。
The manufacturing process (substrate processing process) of the semiconductor device according to the present embodiment is as follows.
For a wafer 200 in which a second metal film (for example, a W film) is embedded in an opening (a hole) in which a first metal film (for example, a TiN film) is formed on the surface, oxygen containing gas (for example, O 2 gas) And fluorine-containing gas (e.g., NF 3 gas) to etch back the W film;
A removal step of removing O 2 gas and NF 3 gas;
including.
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 In the present specification, when the word "wafer" is used, it means "wafer itself" or "laminate (aggregate) of a wafer and a predetermined layer or film or the like formed on the surface". (That is, when a predetermined layer or film formed on the surface is referred to as a wafer). In addition, when the term "surface of wafer" is used in this specification, it means "surface (exposed surface) of wafer itself" or "surface of a predetermined layer or film or the like formed on a wafer" That is, it may mean "the outermost surface of the wafer as a laminate". In addition, when the word "substrate" is used in this specification, it is synonymous with the case where the word "wafer" is used.
(ウエハ搬入)
 複数枚の表面にAlO膜、チタン窒化膜(TiN膜)が順に形成されたパターンの穴を有するウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(Wafer loading)
As shown in FIG. 1, when a wafer 200 having holes of a pattern in which an AlO film and a titanium nitride film (TiN film) are sequentially formed on a plurality of sheets is loaded on a boat 217 (wafer charging), The boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat loading). In this state, the seal cap 219 closes the lower end opening of the reaction tube 203 via the O-ring 220.
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The vacuum pump 246 evacuates the processing chamber 201 to a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at all times at least until the processing on the wafer 200 is completed. The heater 207 heats the inside of the processing chamber 201 to a desired temperature. At this time, the amount of current supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 (temperature adjustment) so that the interior of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until processing of the wafer 200 is completed.
[W成膜工程(W deposition)]
 W膜を形成するステップを実行する。
[W deposition process (W deposition)]
Perform the step of forming a W film.
(WFガスおよびHガス供給)
 バルブ314,324を開き、ガス供給管310,320内にそれぞれWFガス、Hガスを流す。WFガス、Hガスは、MFC312,324によりそれぞれ流量調整され、ノズル410,420のガス供給孔410a,420aからそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWFガスおよびHガスが供給されることとなる。このとき同時にバルブ514,524を開き、ガス供給管510,520内にN2ガス等の不活性ガスを流してもよい。ガス供給管510,520内を流れたN2ガスは、MFC512,522により流量調整され、WFガス、Hガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル430内へのWFガスおよびHガスの侵入を防止するために、バルブ534を開き、ガス供給530内にN2ガスを流す。N2ガスは、ガス供給管330、ノズル430を介して処理室201内に供給され、排気管231から排気される。
(WF 6 gas and H 2 gas supply)
The valves 314 and 324 are opened to flow the WF 6 gas and the H 2 gas into the gas supply pipes 310 and 320, respectively. The flow rates of the WF 6 gas and the H 2 gas are adjusted by the MFCs 312 and 324, respectively, supplied from the gas supply holes 410a and 420a of the nozzles 410 and 420 into the processing chamber 201, and exhausted from the exhaust pipe 231. At this time, WF 6 gas and H 2 gas are supplied to the wafer 200. At this time, the valves 514 and 524 may be simultaneously opened to flow an inert gas such as N 2 gas into the gas supply pipes 510 and 520. The flow rate of the N 2 gas flowing in the gas supply pipes 510 and 520 is adjusted by the MFCs 512 and 522, and is supplied together with the WF 6 gas and the H 2 gas into the processing chamber 201 and exhausted from the exhaust pipe 231. At this time, the valve 534 is opened to flow the N 2 gas into the gas supply 530 in order to prevent the WF 6 gas and the H 2 gas from intruding into the nozzle 430. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 330 and the nozzle 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、たとえば10~6630Paの範囲内の圧力とする。MFC312で制御するWFガスの供給量は、たとえば0.01~5slmの範囲内の供給量とし、MFC322で制御するHガスの供給流量は、たとえば0.1~50slmの範囲内の流量とするが、所望の膜厚に応じて決定してもよい。WFガスおよびHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、所望の膜厚に応じて決定する。このときヒータ207の温度は、ウエハ200の温度が、たとえば100℃~500℃の範囲内の温度であって、好ましくは150~450℃の範囲内の温度となるような温度に設定する。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to, for example, a pressure in the range of 10 to 6630 Pa. The supply amount of WF 6 gas controlled by MFC 312 is, for example, the supply amount in the range of 0.01 to 5 slm, and the supply flow rate of H 2 gas controlled by MFC 322 is, for example, the flow rate in the range of 0.1 to 50 slm. However, it may be determined according to the desired film thickness. The time for supplying the WF 6 gas and the H 2 gas to the wafer 200, that is, the gas supply time (irradiation time) is determined according to the desired film thickness. At this time, the temperature of the heater 207 is set such that the temperature of the wafer 200 is, for example, a temperature within a range of 100 ° C. to 500 ° C., preferably a temperature within a range of 150 to 450 ° C.
 処理室201内に流しているWFガスおよびHガスは、気相中で反応(気相反応)もしくは基板表面で反応(表面反応)し、ウエハ200上にW膜が形成される。このとき、ウエハ200上に形成された穴の中にはW膜が埋め込まれ、さらに、ウエハ200の表面に形成されたTiN膜の上にもW膜が形成される。 The WF 6 gas and the H 2 gas flowing into the processing chamber 201 react (gas phase reaction) in the gas phase or react (surface reaction) on the substrate surface, and a W film is formed on the wafer 200. At this time, the W film is embedded in the hole formed on the wafer 200, and the W film is also formed on the TiN film formed on the surface of the wafer 200.
(残留ガス除去)
 所定膜厚のW膜が形成された後、バルブ314,324を閉じ、WFガスおよびHガスの供給を停止する。このとき、APCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留するWFガスおよびHガスを処理室201から排除する。このときバルブ514,524,534は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、処理室201内に残留する未反応もしくはW膜の形成に寄与した後のWFガスおよびHガスを処理室201から排除する効果を高めることができる。
(Remaining gas removal)
After the W film having a predetermined film thickness is formed, the valves 314 and 324 are closed to stop the supply of the WF 6 gas and the H 2 gas. At this time, with the APC valve 243 kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the WF 6 gas and the H 2 gas remaining in the processing chamber 201 are removed from the processing chamber 201. At this time, the valves 514, 524 and 534 are kept open to maintain the supply of N 2 gas into the processing chamber 201. The N 2 gas acts as a purge gas, and the effect of removing WF 6 gas and H 2 gas from the processing chamber 201 after contributing to the formation of unreacted or W film remaining in the processing chamber 201 can be enhanced.
[エッチバック工程(Etch back)]
 続いて、W膜をエッチバックするステップを実行する。
[Etch back process]
Subsequently, the step of etching back the W film is performed.
(Oガス供給(連続供給))
 バルブ334を開き、ガス供給管330内にOガスを流す。Oガスは、MFC332により流量調整され、ノズル430のガス供給孔430aからそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してOガスが供給されることとなる。このとき同時にバルブ534を開き、ガス供給管530内にNガス等の不活性ガスを流してもよい。ガス供給管530内を流れたNガスは、MFC532により流量調整され、WFガス、Hガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル430内へのWFガスおよびHガスの侵入を防止するために、バルブ514,524を開き、ガス供給管510,520内にNガスを流す。Nガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。
(O 2 gas supply (continuous supply))
The valve 334 is opened to flow the O 2 gas into the gas supply pipe 330. The flow rate of the O 2 gas is adjusted by the MFC 332, and the O 2 gas is supplied from the gas supply holes 430 a of the nozzle 430 into the processing chamber 201 and exhausted from the exhaust pipe 231. At this time, O 2 gas is supplied to the wafer 200. At this time, the valve 534 may be simultaneously opened to flow an inert gas such as N 2 gas into the gas supply pipe 530. The flow rate of the N 2 gas flowing in the gas supply pipe 530 is adjusted by the MFC 532, and is supplied into the processing chamber 201 together with the WF 6 gas and the H 2 gas, and exhausted from the exhaust pipe 231. At this time, in order to prevent WF 6 gas and H 2 gas from entering the nozzle 430, the valves 514 and 524 are opened to flow N 2 gas into the gas supply pipes 510 and 520. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、処理室201内の圧力を、たとえば1~399Paの範囲内の圧力とする。MFC332で制御するOガスの供給量は、たとえば0.1~30slmの範囲内の供給量とする。Oガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、たとえば1~3600秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、たとえば300~600℃の範囲内の温度であって、好ましくは350~500℃の範囲内の温度となるような温度に設定する。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to, for example, a pressure in the range of 1 to 399 Pa. The supply amount of O 2 gas controlled by the MFC 332 is, for example, in the range of 0.1 to 30 slm. The time for supplying the O 2 gas to the wafer 200, ie, the gas supply time (irradiation time) is, for example, a time within the range of 1 to 3600 seconds. At this time, the temperature of the heater 207 is set such that the temperature of the wafer 200 is, for example, a temperature within the range of 300 to 600 ° C., preferably a temperature within the range of 350 to 500 ° C.
(NFガス供給(断続供給))
 Oガスを流した状態で、NFガスを断続的(パルス的)に複数回供給する。具体的には、バルブ614,624,634を開き、ガス供給管610,620,630内にそれぞれNFガスを流す。NFガスは、MFC612,622,632によりそれぞれ流量調整され、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれ処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してOガスおよびNFガスが供給されることとなる。このとき、ガス供給管510,520,530内にNガスが流れている場合は、OガスおよびNFガスと一緒に処理室201内に供給され、排気管231から排気される。
(NF 3 gas supply (intermittent supply))
While flowing the O 2 gas, the NF 3 gas is intermittently (pulsed) supplied a plurality of times. Specifically, the valves 614, 624, 634 are opened to flow NF 3 gas into the gas supply pipes 610, 620, 630, respectively. The flow rates of the NF 3 gas are adjusted by the MFCs 612, 622 and 632, respectively, supplied from the gas supply holes 410 a, 420 a and 430 a of the nozzles 410, 420 and 430 into the processing chamber 201 and exhausted from the exhaust pipe 231. At this time, O 2 gas and NF 3 gas are supplied to the wafer 200. At this time, when the N 2 gas is flowing in the gas supply pipes 510, 520, and 530, the N 2 gas is supplied into the processing chamber 201 together with the O 2 gas and the NF 3 gas and exhausted from the exhaust pipe 231.
 このときAPCバルブ243を調整して、NFガスを供給している間の処理室201内の圧力を、たとえば1~3990Paの範囲内の圧力とする。MFC612,622,632で制御するNFガスの供給量は、たとえば0.1~10slmの範囲内の供給量とする。NFガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、1回のパルスを、たとえば0.1~60秒の範囲内の時間とする。また、NFガスの累積照射時間(トータル照射時間)はたとえば0.1~3600秒の範囲内の時間とする。このときヒータ207の温度は、O供給ステップと同等の温度となるよう設定する。 At this time, the APC valve 243 is adjusted to set the pressure in the processing chamber 201 while supplying the NF 3 gas to a pressure in the range of 1 to 3990 Pa, for example. The supply amount of NF 3 gas controlled by the MFCs 612, 622, and 632 is, for example, in the range of 0.1 to 10 slm. The time for supplying the NF 3 gas to the wafer 200, ie, the gas supply time (irradiation time), makes one pulse, for example, a time within the range of 0.1 to 60 seconds. Further, the cumulative irradiation time (total irradiation time) of the NF 3 gas is, for example, a time within the range of 0.1 to 3600 seconds. At this time, the temperature of the heater 207 is set to be equal to the temperature at the O 2 supply step.
 所定の膜厚のエッチバックが完了したら、バルブ614,624,634を閉じ、NFガスの供給を停止して、最後に、上述のO供給ステップを行う。 When the etch back of the predetermined film thickness is completed, the valves 614, 624, 634 are closed, the supply of the NF 3 gas is stopped, and finally, the above-described O 2 supply step is performed.
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(After purge and return to atmospheric pressure)
The N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510, 520, and 530 and exhausted from the exhaust pipe 231. The N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with the inert gas, and the gas and byproducts remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas substitution), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(Wafer unloading)
Thereafter, the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. Thereafter, the processed wafers 200 are taken out of the boat 217 (wafer discharging).
 図6,7を用いて、評価の結果を説明する。図6に示すように、本実施形態による評価では、評価用のSiウエハ(ベアウエハ)を処理室201のセンター付近に位置するようボート217に収容した。Siウエハの上段には、Siウエハ上にSiO膜を形成したSiO/Siウエハを収容した。Siウエハの下段には、Siウエハ上にTiN膜、W膜を順に形成したW/TiN/Siウエハを収容し、さらにその下段に、Siウエハ上にTiN膜を形成したTiN/Siウエハを収容した。SiO/Siウエハより上段およびTiN/Siウエハより下段には、ダミーウエハ(Dummy)を収容して、評価を行った。 The results of the evaluation will be described using FIGS. As shown in FIG. 6, in the evaluation according to the present embodiment, the Si wafer (bare wafer) for evaluation is housed in the boat 217 so as to be positioned near the center of the processing chamber 201. In the upper part of the Si wafer were housed SiO 2 / Si wafer was formed a SiO 2 film on the Si wafer. In the lower part of the Si wafer, a W / TiN / Si wafer in which a TiN film and a W film are sequentially formed on a Si wafer is accommodated, and in the lower part, a TiN / Si wafer in which a TiN film is formed on a Si wafer is accommodated. did. A dummy wafer (Dummy) was accommodated in the upper stage of the SiO 2 / Si wafer and the lower stage of the TiN / Si wafer for evaluation.
 図7はSiウエハのXPS(X-ray Photoelection Spectroscopy)分析結果である。エッチバック時に酸素含有ガスを用いなかった(添加しなかった)場合の評価を比較例として示し(点線)、本実施形態による評価(実線)と比較して示した。W4fのXPSスペクトルを表しており、横軸は結合エネルギー(B.E.(eV))を示し、縦軸はタングステン(W4f)の強度(intensity)を示す。これらの結果から、NFガスのみでエッチングした場合、Si上にはWが付着していることがわかる。これは、W/TiN/Siウエハがエッチングされてガス化したW含有物(W系ガス)が、剥き出しになったSiと反応し、Si上にWが付着したことを意味する。一方、本実施形態における評価(NFガス)にOガスを添加した場合は、Si上でWは検出されなかった。これは、添加したOガスによりSiが酸化されてSiOとなったことで、上述のガス化したW含有物との反応が抑制されたためと考えられる。このように、エッチングガスに酸素含有ガスを添加することでエッチングガスと反応してガス化したW含有物が、剥き出しになった他の膜と反応してしまうことを抑えることができる。 FIG. 7 shows the result of XPS (X-ray Photoelection Spectroscopy) analysis of a Si wafer. The evaluation in the case where the oxygen-containing gas was not used (not added) at the time of etch back is shown as a comparative example (dotted line) and shown in comparison with the evaluation (solid line) according to this embodiment. The XPS spectrum of W4f is shown, the horizontal axis shows the binding energy (BE (eV)), and the vertical axis shows the intensity of tungsten (W4f). From these results, it can be understood that W adheres on Si when etching is performed using only NF 3 gas. This means that the W-containing substance (W-based gas) obtained by etching and gasifying the W / TiN / Si wafer reacts with the exposed Si, and W adheres on the Si. On the other hand, when O 2 gas was added to the evaluation (NF 3 gas) in the present embodiment, W was not detected on Si. This is considered to be because the reaction with the gasified W-containing substance described above was suppressed by the oxidation of Si by the added O 2 gas to form SiO. As described above, by adding the oxygen-containing gas to the etching gas, it is possible to suppress the reaction of the etching gas with the gas-containing W-containing substance from reacting with the other exposed film.
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)エッチングガスを供給する際、酸素含有ガスを添加することにより、エッチバック効率を向上させることが可能となり、スループットを向上させることが可能となる。
(b)エッチバック時に、Siが剥き出しになっている場合、SiとOを反応させてSiOを形成することで、エッチングガスとの反応を抑えてSiが削られてしまうことを抑制することができる。
(c)エッチバック時に、AlOが剥き出しになっている場合、AlOがエッチングガスと反応することを抑制し、エッチングガスに含まれる元素と反応して異物を形成することを抑制することができる。
(d)エッチバック時に、酸素含有ガスを連続供給することにより、エッチングガスにより、エッチング対象膜以外の膜が削られたとしても、すぐ酸化させることによりエッチングガスとの反応を最小限に抑制することができる。
(e)エッチバック時に、酸素含有ガスを供給することにより、高い安全性を得られることができる。
(f)エッチバック時に、酸素含有ガスを断続供給することにより、少しずつエッチングを行うことができるため、エッチングガスにより、エッチング対象膜以外の膜が削られたとしても、すぐ酸化させることによりエッチングガスとの反応を最小限に抑制することができる。
(g)エッチバックの開始時に、エッチングガスより先に処理室内に酸素含有ガスを供給することにより、剥き出しになっているSiを酸化させて、Wと反応しないSiOにさせることができ、エッチングガスの照射(供給)時に発生するW含有物(W、Wx、WF等)とSiが反応してしまうことを抑制することができる。
(h)エッチバックの終了時に、エッチングガスを止めた後、処理室内に酸素含有ガスを供給することにより、残留しているエッチングガスがWと反応してWFx(WF等)を形成し、そのWFxがSiと反応してしまうことを抑制するようにSiをSiOのまま維持させることができる。
(i)エッチングガスを、全てのノズルから処理室内に供給することにより、処理室内におけるエッチングガス分布の均一性を向上させることが可能となり、複数の基板を収容する処理炉においても、基板間でエッチバックの均一性を向上させることが可能となる。
(3) Effects of the Present Embodiment According to the present embodiment, one or more of the following effects can be obtained.
(A) By adding the oxygen-containing gas when supplying the etching gas, it is possible to improve the etch back efficiency and to improve the throughput.
(B) When Si is exposed at the time of etch back, by reacting Si with O to form SiO, the reaction with the etching gas is suppressed to suppress the etching of Si. it can.
(C) When AlO is exposed at the time of etch back, it is possible to suppress the reaction of AlO with the etching gas, and to suppress the formation of foreign matter by reacting with the elements contained in the etching gas.
(D) By continuously supplying an oxygen-containing gas at the time of etch back, even if a film other than the film to be etched is scraped by the etching gas, the reaction with the etching gas is minimized by immediately oxidizing it. be able to.
(E) High safety can be obtained by supplying an oxygen-containing gas at the time of etch back.
(F) Since etching can be performed little by little by intermittently supplying an oxygen-containing gas at the time of etch back, even if a film other than the film to be etched is scraped by the etching gas, etching is performed immediately by oxidation. Reaction with gas can be minimized.
(G) By supplying an oxygen-containing gas into the processing chamber prior to the etching gas at the start of etch back, the exposed Si can be oxidized to SiO that does not react with W, and the etching gas it can be of irradiation (supply) during generated W inclusions (W, Wx, WF 6, etc.) and Si can be suppressed that reacts.
(H) At the end of etch back, after stopping the etching gas, by supplying an oxygen-containing gas into the processing chamber, the remaining etching gas reacts with W to form WFx (WF 6 or the like), Si can be maintained as SiO so as to suppress the reaction of WF x with Si.
(I) By supplying the etching gas into the processing chamber from all the nozzles, it becomes possible to improve the uniformity of the etching gas distribution in the processing chamber, and even in the processing furnace accommodating a plurality of substrates, between the substrates It is possible to improve the etch back uniformity.
 以下に、上述した実施形態の変形例について説明する。上述した実施形態と同様の箇所は詳細を省き、異なる部分について記載する。 Below, the modification of embodiment mentioned above is demonstrated. The same parts as the above-described embodiment will be omitted in detail and different parts will be described.
<変形例1>
 上述した実施形態の変形例1では、図8(A)に示すように、上述したエッチバック工程におけるOガス供給(連続供給)ステップを行うと共に、NFガスを1回供給する。すなわち、処理室201内にNFガスが流れていない状態でOガスを流し、所定時間経過後にNFガスを供給し始め、所定時間経過後、NFガスの供給を止めて、再び処理室201内にNFガスが流れていない状態でOガスを処理室201内に供給する。NFガスを流す時間は、Oガスを流す時間より短い。本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができる。
<Modification 1>
In the first modification of the above-described embodiment, as shown in FIG. 8A, the O 2 gas supply (continuous supply) step in the above-described etch back process is performed, and the NF 3 gas is supplied once. That is, O 2 gas is flowed in the processing chamber 201 in a state where NF 3 gas is not flowing, supply of NF 3 gas is started after a predetermined time elapses, supply of NF 3 gas is stopped after a predetermined time elapse, and processing is performed again The O 2 gas is supplied into the processing chamber 201 in a state where the NF 3 gas is not flowing in the chamber 201. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas. According to this modification, one or more effects of the effects of the above-described embodiment can be obtained.
<変形例2>
 上述した実施形態の変形例2では、図8(B)に示すように、上述したエッチバック工程におけるOガス供給(連続供給)ステップを行うと共に、NFガスを1回供給する。すなわち、処理室201内にNFガスとOガスを同じタイミングで流し始め、所定時間経過後にNFガスの供給を止めて、処理室201内にNFガスが流れていない状態でOガスを処理室201内に供給する。NFガスを流す時間は、Oガスを流す時間より短い。
<Modification 2>
In the second modification of the above-described embodiment, as shown in FIG. 8B, the step of O 2 gas supply (continuous supply) in the above-described etch back process is performed, and NF 3 gas is supplied once. That is, in the processing chamber 201 begins to conduct NF 3 gas and O 2 gas at the same time, to stop the supply of the NF 3 gas after a predetermined time has elapsed, O 2 in a state where no NF 3 gas flows into the processing chamber 201 Gas is supplied into the processing chamber 201. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas.
本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができると共に、さらに、次の効果を得ることができる。
(j)エッチングガスを酸素含有ガスと同じタイミングで流し始めることにより、処理時間を短くすることができる。
According to this modification, one or more of the effects of the above-described embodiment can be obtained, and further, the following effects can be obtained.
(J) The processing time can be shortened by starting to flow the etching gas at the same timing as the oxygen-containing gas.
<変形例3>
 上述した実施形態の変形例3では、図8(C)に示すように、Oガスの供給と、NFガスの供給を交互にn回繰り返す。その際、各ガスの供給の間は、W成膜工程における残留ガス除去ステップと同様の手順で、処理室201内の残留ガスを除去する。すなわち、OガスとNFガスとを互いに混合しないよう断続供給する。
<Modification 3>
In the third modification of the above-described embodiment, as shown in FIG. 8C, the supply of O 2 gas and the supply of NF 3 gas are alternately repeated n 1 times. At that time, during the supply of each gas, the residual gas in the processing chamber 201 is removed in the same procedure as the residual gas removal step in the W film formation process. That is, the O 2 gas and the NF 3 gas are intermittently supplied so as not to be mixed with each other.
本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができると共に、さらに、次の効果を得ることができる。
(k)酸素含有ガスとエッチングガスとを断続供給することにより、酸素含有ガスが流れていない状態でエッチングガスが処理室201に流れているタイミングがあるため、よりエッチング効率を向上させることができる。
According to this modification, one or more of the effects of the above-described embodiment can be obtained, and further, the following effects can be obtained.
(K) By intermittently supplying the oxygen-containing gas and the etching gas, the etching gas can flow to the processing chamber 201 in a state where the oxygen-containing gas is not flowing, so that the etching efficiency can be further improved. .
<変形例4>
 上述した実施形態の変形例4では、図8(D)に示すように、上述したエッチバック工程におけるOガス供給(連続供給)ステップを行うと共に、NFガスを1回供給する。すなわち、処理室201内にNFガスが流れていない状態でOガスを流し、所定時間経過後にNFガスを供給し始め、所定時間経過後、NFガスとOガスの供給を同じタイミングで止める。NFガスを流す時間は、Oガスを流す時間より短い。
<Modification 4>
In the fourth modification of the embodiment described above, as shown in FIG. 8D, the step of supplying O 2 gas (continuous supply) in the above-described etch back step is performed, and NF 3 gas is supplied once. That is, O 2 gas is flowed in the processing chamber 201 in a state where NF 3 gas is not flowing, and supply of NF 3 gas is started after a predetermined time elapses, and after predetermined time elapses, supply of NF 3 gas and O 2 gas is the same. Stop at the timing. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas.
本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができると共に、さらに、次の効果を得ることができる。
(l)エッチングガスおよび酸素含有ガスの供給を同じタイミングで止めることにより、処理時間を短くすることができる。
According to this modification, one or more of the effects of the above-described embodiment can be obtained, and further, the following effects can be obtained.
(L) The processing time can be shortened by stopping the supply of the etching gas and the oxygen-containing gas at the same timing.
<変形例5>
 上述した実施形態の変形例5では、図8(E)に示すように、変形例4をn回繰り返す。その際、1回のサイクルごとに、W成膜工程における残留ガス除去ステップと同様の手順で、処理室201内の残留ガスを除去する。すなわち、処理室201内にNFガスが流れていない状態でOガスを流し、所定時間経過後にNFガスを供給し始め、所定時間経過後、NFガスとOガスの供給を同じタイミングで止める。そして、処理室201内の残留ガスを除去した後、再び処理室201内にNFガスが流れていない状態でOガスを流し始める。NFガスを流す時間は、Oガスを流す時間より短い。
<Modification 5>
In the fifth modification of the embodiment described above, as shown in FIG. 8E, the fourth modification is repeated n 2 times. At that time, the residual gas in the processing chamber 201 is removed in the same procedure as the residual gas removing step in the W film forming process for each cycle. That is, O 2 gas is flowed in the processing chamber 201 in a state where NF 3 gas is not flowing, and supply of NF 3 gas is started after a predetermined time elapses, and after predetermined time elapses, supply of NF 3 gas and O 2 gas is the same. Stop at the timing. Then, after removing the residual gas in the processing chamber 201, the flow of the O 2 gas is started again while the NF 3 gas is not flowing in the processing chamber 201 again. The time for flowing the NF 3 gas is shorter than the time for flowing the O 2 gas.
本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができると共に、さらに、次の効果を得ることができる。
(m)エッチングガスと反応して生成されたWFx(WF等)を効率よく排出することができる。
According to this modification, one or more of the effects of the above-described embodiment can be obtained, and further, the following effects can be obtained.
(M) the WFx produced by reacting with an etching gas (WF 6, etc.) can be efficiently discharged.
<変形例6>
 上述した実施形態の変形例6では、図8(F)に示すように、上述したエッチバック工程におけるOガス供給(連続供給)ステップを行うと共に、NFガスを連続供給する。すなわち、処理室201内にNFガスOガスを同じタイミングで流し始め、所定時間経過後、NFガスとOガスの供給を同じタイミングで止める。NFガスを流す時間とOガスを流す時間は同じ長さである。本変形例により、上述した実施形態の効果のうち1つまたは複数の効果を得ることができる。
<Modification 6>
In the sixth modification of the above-described embodiment, as shown in FIG. 8F, the O 2 gas supply (continuous supply) step in the above-described etch back process is performed, and the NF 3 gas is continuously supplied. That is, the flow starts to flow the NF 3 gas O 2 gas into the processing chamber 201 at the same timing, and after a predetermined time passes, the supply of the NF 3 gas and the O 2 gas is stopped at the same timing. The time for flowing the NF 3 gas and the time for flowing the O 2 gas are the same. According to this modification, one or more effects of the effects of the above-described embodiment can be obtained.
 上述の実施形態では、W膜をエッチバックする例について説明したが、これに限らず、TiN膜、タンタル窒化膜(TaN膜)、コバルト膜(Co膜)やその他の期の苦膜、金属窒化膜、金属炭化膜等の金属元素を含む膜をエッチングする場合にも、適用できる。 In the above-described embodiment, the example of etching back the W film has been described. However, the present invention is not limited thereto. For example, TiN film, tantalum nitride film (TaN film), cobalt film (Co film) The present invention can also be applied to the case of etching a film containing a metal element such as a film or a metal carbide film.
 上述の実施形態では、酸素含有ガスとして、Oガスを用いる例について説明したが、これに限らず、一酸化窒素(NO)、亜酸化窒素(NO)、水(HO)、オゾン(O)等を用いることも可能である。 In the above embodiment, as the oxygen-containing gas, an example has been described using an O 2 gas, not limited to this, nitric oxide (NO), nitrous oxide (N 2 O), water (H 2 O), It is also possible to use ozone (O 3 ) or the like.
 上述の実施形態では、エッチングガスとしてフッ素含有ガスであるNFガスを用いる例について説明したが、これに限らず、ハロゲン元素を含む他のガスも用いることが可能である。特に、酸化膜に対するエッチングレートが低いガスが好ましい。 In the above embodiment, an example has been described using the NF 3 gas is a fluorine-containing gas as the etching gas is not limited thereto, it is possible to use also other gases containing a halogen element. In particular, a gas having a low etching rate to the oxide film is preferable.
 また、上述の実施形態では、NAND型Flushメモリのコントロールゲートに適用する例について説明したが、これに限らず、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のワードライン向け電極等にも適用できる。 Further, although the example applied to the control gate of the NAND-type flush memory has been described in the above embodiment, the present invention is not limited to this, and can be applied to a word line electrode of MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
 以上、本発明の種々の典型的な実施形態および変形例を説明してきたが、本発明はそれらの実施形態及び実施例に限定されず、適宜組み合わせて用いることもできる。 While various typical embodiments and modifications of the present invention have been described above, the present invention is not limited to these embodiments and examples, and may be used in appropriate combination.
 本発明によれば、エッチバック時に剥き出しになったエッチング対象膜以外の膜と、エッチングガスが反応することを抑制することができる。 According to the present invention, it is possible to suppress the reaction of the etching gas with a film other than the film to be etched which has been exposed at the time of etch back.
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室
10 substrate processing apparatus 121 controller 200 wafer (substrate)
201 processing room

Claims (12)

  1.  表面に第1の金属膜が形成された開口部に第2の金属膜が埋め込まれた基板に対して、酸素含有ガスおよびフッ素含有エッチングガスを供給して、前記第2の金属膜をエッチバックするエッチバック工程と、
    前記酸素含有ガスおよび前記フッ素含有エッチングガスを除去する除去工程と、
    を有する半導体装置の製造方法。
    An oxygen-containing gas and a fluorine-containing etching gas are supplied to the substrate in which the second metal film is embedded in the opening in which the first metal film is formed on the surface, and the second metal film is etched back Etch back process,
    Removing the oxygen-containing gas and the fluorine-containing etching gas;
    And manufacturing a semiconductor device.
  2.  前記エッチバック工程では、前記基板に対して、前記酸素含有ガスを連続的に供給するとともに、前記フッ素含有エッチングガスを断続的に複数回供給する請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the oxygen-containing gas is continuously supplied to the substrate and the fluorine-containing etching gas is intermittently supplied plural times in the etch back step.
  3.  前記エッチバック工程は、
     前記基板に対して、前記酸素含有ガスを供給する工程と、
     前記基板に対して、前記酸素含有ガスおよび前記フッ素含有エッチングガスを同時に供給する工程と、
     前記基板に対して、前記酸素含有ガスを供給する工程と、
     を順に行う請求項1に記載の半導体装置の製造方法。
    The etch back process is
    Supplying the oxygen-containing gas to the substrate;
    Simultaneously supplying the oxygen-containing gas and the fluorine-containing etching gas to the substrate;
    Supplying the oxygen-containing gas to the substrate;
    The method for manufacturing a semiconductor device according to claim 1, wherein
  4.  前記エッチバック工程は、
    前記基板に対して、前記酸素含有ガスおよび前記フッ素含有エッチングガスを同時に供給する工程と、
     前記基板に対して、前記酸素含有ガスを供給する工程と、
     を順に行う請求項1に記載の半導体装置の製造方法。
    The etch back process is
    Simultaneously supplying the oxygen-containing gas and the fluorine-containing etching gas to the substrate;
    Supplying the oxygen-containing gas to the substrate;
    The method for manufacturing a semiconductor device according to claim 1, wherein
  5.  前記エッチバック工程は、
     前記基板に対して、前記酸素含有ガスを供給する工程と、
     前記酸素含有ガスを除去する工程と、
     前記基板に対して、前記フッ素含有エッチングガスを供給する工程と、
     前記フッ素含有エッチングガスを除去する工程と、
    を順に複数回繰り返し行う請求項1に記載の半導体装置の製造方法。
    The etch back process is
    Supplying the oxygen-containing gas to the substrate;
    Removing the oxygen-containing gas;
    Supplying the fluorine-containing etching gas to the substrate;
    Removing the fluorine-containing etching gas;
    The method of manufacturing a semiconductor device according to claim 1, wherein the process is repeated several times in order.
  6.  前記エッチバック工程は、
    前記基板に対して、前記酸素含有ガスを供給する工程と、
    前記基板に対して、前記酸素含有ガスおよび前記フッ素含有エッチングガスを同時に供給する工程と、
     を順に行う請求項1に記載の半導体装置の製造方法。
    The etch back process is
    Supplying the oxygen-containing gas to the substrate;
    Simultaneously supplying the oxygen-containing gas and the fluorine-containing etching gas to the substrate;
    The method for manufacturing a semiconductor device according to claim 1, wherein
  7.  前記エッチバック工程は、
    前記基板に対して、前記酸素含有ガスを供給する工程と、
    前記基板に対して、前記酸素含有ガスおよび前記フッ素含有エッチングガスを同時に供給する工程と、
     前記酸素含有ガスおよび前記フッ素含有エッチングガスを除去する工程と、
    を順に複数回繰り返し行う請求項1に記載の半導体装置の製造方法。
    The etch back process is
    Supplying the oxygen-containing gas to the substrate;
    Simultaneously supplying the oxygen-containing gas and the fluorine-containing etching gas to the substrate;
    Removing the oxygen-containing gas and the fluorine-containing etching gas;
    The method of manufacturing a semiconductor device according to claim 1, wherein the process is repeated several times in order.
  8.  前記基板はシリコン基板であり、前記エッチバック工程では、前記第1の金属膜および前記第2の金属膜が形成されていない前記基板の裏面でシリコン基板が酸化されてシリコン酸化膜が形成される請求項1~7のいずれかに記載の半導体装置の製造方法。 The substrate is a silicon substrate, and in the etch back step, the silicon substrate is oxidized on the back surface of the substrate where the first metal film and the second metal film are not formed to form a silicon oxide film. A method of manufacturing a semiconductor device according to any one of claims 1 to 7.
  9.  前記第1の金属膜はチタン窒化膜であり、前記第2の金属膜はタングステン膜である請求項1~8のいずれかに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 8, wherein the first metal film is a titanium nitride film, and the second metal film is a tungsten film.
  10.  前記酸素含有ガスは、酸素ガスであり、フッ素含有エッチングガスは三フッ化窒素ガスである請求項1~9のいずれかに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 9, wherein the oxygen-containing gas is oxygen gas, and the fluorine-containing etching gas is nitrogen trifluoride gas.
  11.  基板を収容する処理室と、
     前記処理室に、酸素含有ガスおよびフッ素含有エッチングガスを供給するガス供給系と、
     前記処理室を排気する排気系と、
     前記ガス供給系および前記排気系を制御して、表面に第1の金属膜が形成された開口部に第2の金属膜が埋め込まれた基板が収容された前記処理室に、前記酸素含有ガスおよび前記フッ素含有エッチングガスを供給して、前記第2の金属膜をエッチバックする処理と、前記酸素含有ガスおよび前記フッ素含有エッチングガスを除去する処理と、を行うよう構成される制御部と、
    を有する基板処理装置。
    A processing chamber for containing a substrate;
    A gas supply system for supplying an oxygen-containing gas and a fluorine-containing etching gas to the processing chamber;
    An exhaust system for exhausting the processing chamber;
    The oxygen-containing gas is accommodated in the processing chamber in which the substrate having the second metal film embedded in the opening formed with the first metal film formed on the surface is controlled by controlling the gas supply system and the exhaust system. And a control unit configured to perform a process of etching back the second metal film by supplying the fluorine-containing etching gas, and a process of removing the oxygen-containing gas and the fluorine-containing etching gas.
    Substrate processing apparatus having:
  12.  基板処理装置の処理室に収容された、表面に第1の金属膜が形成された開口部に第2の金属膜が埋め込まれた基板に対して、酸素含有ガスおよびフッ素含有エッチングガスを供給して、前記第2の金属膜をエッチバックする手順と、
    前記酸素含有ガスおよび前記フッ素含有エッチングガスを除去する手順と、
    をコンピュータにより前記基板処理装置に実行させるプログラム。

     
    An oxygen-containing gas and a fluorine-containing etching gas are supplied to a substrate having a first metal film formed on its surface and having a second metal film embedded in a processing chamber of a substrate processing apparatus. And etching back the second metal film;
    Removing the oxygen-containing gas and the fluorine-containing etching gas;
    A program that causes a computer to execute the substrate processing apparatus.

PCT/JP2017/034543 2017-09-25 2017-09-25 Manufacturing method of semiconductor device, substrate processing device and program WO2019058554A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/034543 WO2019058554A1 (en) 2017-09-25 2017-09-25 Manufacturing method of semiconductor device, substrate processing device and program
JP2019542952A JP6979463B2 (en) 2017-09-25 2017-09-25 Semiconductor device manufacturing methods, substrate processing devices and programs
SG11202001565UA SG11202001565UA (en) 2017-09-25 2017-09-25 Method of manufacturing semiconductor device, substrate processing apparatus, and program
CN201780094844.9A CN111095490B (en) 2017-09-25 2017-09-25 Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034543 WO2019058554A1 (en) 2017-09-25 2017-09-25 Manufacturing method of semiconductor device, substrate processing device and program

Publications (1)

Publication Number Publication Date
WO2019058554A1 true WO2019058554A1 (en) 2019-03-28

Family

ID=65810775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034543 WO2019058554A1 (en) 2017-09-25 2017-09-25 Manufacturing method of semiconductor device, substrate processing device and program

Country Status (4)

Country Link
JP (1) JP6979463B2 (en)
CN (1) CN111095490B (en)
SG (1) SG11202001565UA (en)
WO (1) WO2019058554A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226393A (en) * 1994-02-15 1995-08-22 Sony Corp Method and apparatus for dry-etching
JPH1022379A (en) * 1996-06-28 1998-01-23 Fujitsu Ltd Manufacture of semiconductor device
JP2001077193A (en) * 1999-08-31 2001-03-23 Matsushita Electronics Industry Corp Formation of contact
JP2003078034A (en) * 2001-09-06 2003-03-14 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device
US20130005140A1 (en) * 2011-06-30 2013-01-03 Novellus Systems, Inc. Systems and methods for controlling etch selectivity of various materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399313B (en) * 1997-12-12 2000-07-21 United Microelectronics Corp The method of improving the process of metal back-etching
KR20030021854A (en) * 2001-09-08 2003-03-15 삼성전자주식회사 Method for fabricating contact plugs of semiconductor device
TW559997B (en) * 2002-09-20 2003-11-01 Taiwan Semiconductor Mfg Method for manufacturing plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226393A (en) * 1994-02-15 1995-08-22 Sony Corp Method and apparatus for dry-etching
JPH1022379A (en) * 1996-06-28 1998-01-23 Fujitsu Ltd Manufacture of semiconductor device
JP2001077193A (en) * 1999-08-31 2001-03-23 Matsushita Electronics Industry Corp Formation of contact
JP2003078034A (en) * 2001-09-06 2003-03-14 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device
US20130005140A1 (en) * 2011-06-30 2013-01-03 Novellus Systems, Inc. Systems and methods for controlling etch selectivity of various materials

Also Published As

Publication number Publication date
JPWO2019058554A1 (en) 2020-11-26
CN111095490A (en) 2020-05-01
SG11202001565UA (en) 2020-03-30
CN111095490B (en) 2023-09-22
JP6979463B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP6980106B2 (en) Semiconductor device manufacturing method, substrate processing device, program and substrate processing method
JP2013229575A (en) Manufacturing method of semiconductor device, cleaning method, substrate processing apparatus, and recording medium
TWI693301B (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP2020057769A (en) Method of manufacturing semiconductor device, program and substrate processing apparatus
US20220208557A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
WO2018179251A1 (en) Method for producing semiconductor device
JP6979463B2 (en) Semiconductor device manufacturing methods, substrate processing devices and programs
JP7047117B2 (en) Manufacturing method of semiconductor device, substrate processing device and recording medium
JP6937332B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR20210124909A (en) Cleaning method and heat treatment apparatus
JP6639691B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP2020147833A6 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP7110468B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and substrate processing method.
WO2022064549A1 (en) Semiconductor device manufacturing method, recording medium, and substrate processing device
JP7179962B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
WO2018179354A1 (en) Production method for semiconductor device, substrate treatment device, and program
TWI757623B (en) Substrate processing apparatus, manufacturing method of semiconductor device, and recording medium
EP4209612A1 (en) Cleaning method, method of manufacturing semiconductor device, program, and substrate processing apparatus
WO2022059170A1 (en) Semiconductor device manufacturing method, recording medium, and substrate treatment device
JP2023179001A (en) Substrate processing method and substrate processing apparatus
JP2005197541A (en) Substrate processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019542952

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17926003

Country of ref document: EP

Kind code of ref document: A1