WO2019058531A1 - 熱源ユニットおよび防振体 - Google Patents

熱源ユニットおよび防振体 Download PDF

Info

Publication number
WO2019058531A1
WO2019058531A1 PCT/JP2017/034382 JP2017034382W WO2019058531A1 WO 2019058531 A1 WO2019058531 A1 WO 2019058531A1 JP 2017034382 W JP2017034382 W JP 2017034382W WO 2019058531 A1 WO2019058531 A1 WO 2019058531A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
proof rubber
rubber
proof
heat source
Prior art date
Application number
PCT/JP2017/034382
Other languages
English (en)
French (fr)
Inventor
雅也 市原
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2017/034382 priority Critical patent/WO2019058531A1/ja
Priority to CN201780090828.2A priority patent/CN110621877A/zh
Priority to JP2019542932A priority patent/JP6808845B2/ja
Publication of WO2019058531A1 publication Critical patent/WO2019058531A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof

Definitions

  • Embodiments of the present invention relate to a heat source unit having a hermetic compressor and a vibration isolator that elastically supports the hermetic compressor.
  • the vibration generated when the hermetic compressor compresses the refrigerant is transmitted to the refrigerant piping and the casing of the outdoor unit to cause noise. Therefore, in order to suppress noise during operation of the hermetic compressor, it is desirable to block as much as possible vibration transmitted from the hermetic compressor to the refrigerant pipe and the housing.
  • the vibration generated by the closed type compressor is smaller than that in the low speed range, so that the hard type vibration isolation rubber having a small vibration transmission rate is used to prevent the bottom plate of the case from vibrating It is necessary to firmly support the
  • the hermetic compressor and the casing are a vibration isolation body combining two types of vibration isolation rubbers having different vibration isolation performance. It is performed to intervene between the bottom plate and the bottom plate.
  • An object of the present invention is to obtain a high-silence heat source unit that can shut off vibration transmission between two types of vibration-proof rubbers having different vibration-proof performances and is excellent in the vibration-proof performance of a hermetic compressor. It is in.
  • the heat source unit includes a case having a bottom plate, a vertical closed type compressor mounted on the bottom plate and compressing a refrigerant, and interposed between the closed type compressor and the bottom plate. And an anti-vibration body.
  • the anti-vibration body is interposed between a first anti-vibration rubber that elastically supports the hermetic compressor, the first anti-vibration rubber and the bottom plate, and the first anti-vibration rubber It includes a second vibration-proof rubber supported from below and a partition member which divides the first vibration-proof rubber and the second vibration-proof rubber.
  • the partition member is formed of a material harder than the first vibration-proof rubber and the second vibration-proof rubber, and the dynamic magnification of the second vibration-proof rubber than the first vibration-proof rubber Is set small.
  • FIG. 1 is a perspective view schematically showing the structure of the outdoor unit according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the hermetic compressor installed on the bottom plate of the housing.
  • FIG. 3A is a cross-sectional view showing a state in which the vibration-damping body according to the first embodiment is interposed between the fixing bracket of the hermetic compressor and the bottom plate of the housing.
  • FIG. 3B is a cross-sectional view of the vibration-damping body according to the first embodiment.
  • FIG. 3C is a perspective view of the intermediate partition used in the first embodiment.
  • FIG. 4A is a cross-sectional view showing a state in which the vibration damping body according to the second embodiment is interposed between the fixing bracket of the hermetic type compressor and the bottom plate of the housing.
  • FIG. 4B is a cross-sectional view of a vibration-damping body according to a second embodiment.
  • FIG. 4C is a perspective view of an intermediate partition used in the second embodiment.
  • FIG. 5A is a cross-sectional view showing a state in which the vibration damping body according to the third embodiment is interposed between the fixing bracket of the hermetic type compressor and the bottom plate of the housing.
  • FIG. 5B is a cross-sectional view of a vibration-damping body according to a third embodiment.
  • FIG. 5C is a perspective view of an intermediate partition used in the third embodiment.
  • FIG. 1 shows an outdoor unit 1 of an air conditioner.
  • the outdoor unit 1 is an example of a heat source unit, and is connected to the indoor unit via a refrigerant pipe (not shown).
  • the outdoor unit 1 includes a box-shaped case 2.
  • the housing 2 is provided with a bottom plate 3 as a support plate, a partition plate 4, a fan guard 5 and a back plate 6 as main elements.
  • the partition plate 4 is erected from the bottom plate 3 and divides the inside of the housing 2 into two chambers of a heat exchange chamber 7 and a machine chamber 8.
  • the heat exchange chamber 7 is located on the left side of the partition plate 4 and the machine chamber 8 is located on the right side of the partition plate 4.
  • the fan guard 5 covers the heat exchange chamber 7 from the front of the housing 2.
  • the back plate 5 covers the machine room 8 from the back of the housing 2.
  • the air heat exchanger 10 and the blower 11 are accommodated in the heat exchange chamber 7.
  • the air heat exchanger 10 is erected along the left side surface from the back surface of the heat exchange chamber 7 and exposed to the outside of the housing 2.
  • the blower 11 is disposed between the air heat exchanger 10 and the fan guard 5.
  • a hermetic compressor 12 As shown in FIG. 1, a hermetic compressor 12, a connection piping 13 including an expansion valve, and an electric component box 14 are accommodated in a machine room 8.
  • the hermetic compressor 12 is a so-called vertical rotary compressor, and is mounted on the bottom plate 3 of the housing 2.
  • the electrical component box 14 is an element that controls the operation of the hermetic compressor 12 and is disposed above the machine room 8 so as to be located above the hermetic compressor 12.
  • the hermetic compressor 12 includes a hermetic container 15, a motor unit 16 and a compression mechanism unit 17 as main components.
  • the closed container 15 is erected along the vertical direction.
  • the discharge pipe 18 is connected to the upper end of the closed container 15.
  • the discharge pipe 18 is connected to the air heat exchanger 10 via a refrigerant pipe.
  • an oil reservoir 19 is provided at the bottom of the closed container 15. The oil reservoir 19 stores lubricating oil.
  • the motor unit 16 is accommodated in an intermediate portion of the sealed container 15.
  • the motor unit 16 includes a cylindrical stator 20 fixed to the inner peripheral surface of the closed container 15, and a rotor 21 surrounded by the stator 20.
  • the compression mechanism unit 17 is accommodated in the lower part of the closed container 15 so as to be located directly below the motor unit 16 and is immersed in the lubricating oil stored in the oil reservoir 19.
  • the compression mechanism portion 17 includes a cylinder 23, a first bearing 24, a second bearing 25, a rotating shaft 26, and a ring-shaped roller 27 as main components.
  • the cylinder 23 is horizontally fixed to the inner peripheral surface of the closed container 15.
  • the first bearing 24 is fixed to the upper surface of the cylinder 23.
  • the second bearing 25 is fixed to the lower surface of the cylinder 23.
  • the first bearing 24 and the second bearing 25 close the inner diameter portion of the cylinder 23. Therefore, the space surrounded by the inner diameter portion of the cylinder 23, the first bearing 24 and the second bearing 25 defines a cylinder chamber 28 for compressing the refrigerant.
  • the cylinder chamber 28 is connected to an accumulator 30 attached to the sealed container 15 via a suction pipe 29.
  • the rotating shaft 26 is rotatably supported by the first bearing 24 and the second bearing 25 so as to be coaxially positioned on a vertical line V1 passing through the center of the closed container 15.
  • the rotor 21 of the motor unit 16 is connected to the upper portion of the rotating shaft 26.
  • the rotating shaft 26 has a crank pin portion 31.
  • the crank pin portion 31 is eccentric to a vertical line V ⁇ b> 1 passing through the center of the closed container 15 and is accommodated in the cylinder chamber 28.
  • the roller 27 is fitted to the outer peripheral surface of the crank pin portion 31.
  • the roller 27 eccentrically rotates in the cylinder chamber 28 following the rotation shaft 26.
  • the vane provided in the vane groove of the cylinder 23 reciprocates while slidably contacting the outer peripheral surface of the roller 27, and divides the cylinder chamber 28 into a suction region and a compression region. Do.
  • the volumes of the suction area and the compression area formed in the cylinder chamber 28 change, and the refrigerant sucked from the suction pipe 29 into the cylinder chamber 28 is compressed.
  • the torque fluctuation generated during the compression operation causes vibrations in the hermetic compressor 12.
  • the vibrations generated in the hermetic compressor 12 tend to be large particularly in the low rotation range including the time of start-up.
  • the hermetic container 15 of the hermetic compressor 12 is supported on the bottom plate 3 of the housing 2 in an anti-vibration manner in a vertically standing posture.
  • the fixture 33 is attached to the bottom of the closed container 15.
  • the fixing fitting 33 has a plurality of legs 33 a that radially project toward the periphery of the sealed container 15.
  • a fitting hole 34 facing the bottom plate 3 is formed at the tip of the leg 33a.
  • the bottom plate 3 as a support plate has a plurality of seat portions 35 at positions corresponding to the legs 33 a of the fixtures 33.
  • the seat portion 35 protrudes upward of the bottom plate 3.
  • a flat support surface 35 a is formed at the projecting end of the seat portion 35.
  • An insertion hole 35b is formed at the center of the support surface 35a.
  • each vibration isolation body 37 includes a first vibration isolation rubber 38, a second vibration isolation rubber 39, and an intermediate partition plate 40.
  • the first vibration-proof rubber 38 is a cylindrical element, and has a fitting convex portion 41 fitted in the fitting hole 34 of the leg portion 33 a and a flat positioned opposite to the fitting convex portion 41. A lower surface 42 and a hollow portion 43 opened in the lower surface 42 are provided. The upper end of the hollow portion 43 is closed by the fitting protrusion 41.
  • the first vibration-proof rubber 38 of the present embodiment is formed of, for example, chloroprene rubber which is a diene-based rubber material.
  • the second vibration-proof rubber 39 is a cylindrical element having an outer diameter equal to that of the first vibration-proof rubber 38, and is coaxially positioned below the first vibration-proof rubber 38.
  • the second vibration-proof rubber 39 has a flat upper surface 44, a flat lower surface 45, and a hollow portion 46 opened in the upper surface 44 and the lower surface 45.
  • the second vibration-proof rubber 39 of the present embodiment is formed of, for example, natural rubber having a rubber hardness of 45 Hs (JIS A).
  • the dynamic magnification ⁇ is known as one of the important indexes indicating the vibration damping performance of a rubber material.
  • the dynamic magnification ⁇ is the ratio of the dynamic elastic modulus (Kd) representing the stiffness when the rubber material vibrates to the static elastic modulus (Ks) representing the stiffness when the rubber material is slowly deformed, ie, Kd / It can be defined by Ks.
  • the dynamic magnification ⁇ is proportional to the vibration transmission rate and vibration damping rate of the rubber material.
  • the dynamic magnification ⁇ of the first vibration damping rubber 38 is, for example, 1.5
  • the dynamic magnification ⁇ of the second vibration damping rubber 39 is, for example, 1.2.
  • the dynamic magnification ⁇ of the second vibration damping rubber 39 is smaller than that of the first vibration damping rubber 38.
  • the first vibration-proof rubber 38 is softer than the second vibration-proof rubber 39 and has a larger vibration damping rate
  • the second vibration-proof rubber 39 is harder than the first vibration-proof rubber 38 and vibrates. Transmission rate is small.
  • the inner diameter d1 of the hollow portion 43 of the first vibration isolation rubber 38 is the second vibration isolation It is larger than the inner diameter d2 of the hollow portion 46 of the rubber 39.
  • the first vibration-proof rubber 38 is more easily bent than the second vibration-proof rubber 39.
  • the intermediate partition plate 40 that constitutes the vibration isolation body 37 is an example of a partition member that partitions the space between the first vibration isolation rubber 38 and the second vibration isolation rubber 39.
  • the intermediate partition plate 40 is a flat disk-like element, and has an outer diameter equivalent to, for example, the first vibration-proof rubber 38 and the second vibration-proof rubber 39.
  • a through hole 47 is formed at the center of the intermediate partition plate 40. The through hole 47 is located between the hollow portion 43 of the first vibration isolation rubber 38 and the hollow portion 46 of the second vibration isolation rubber 39.
  • the inner diameter d3 of the through hole 47 is set to be equal to the inner diameter d2 of the hollow portion 46 of the second vibration-proof rubber 39.
  • the intermediate partition plate 40 is formed of a metal material harder than the first vibration-proof rubber 38 and the second vibration-proof rubber 39.
  • a metal material iron or aluminum alloy can be used, for example.
  • the material of the intermediate partition plate 40 is not limited to metal.
  • a synthetic resin material or a rubber material may be used as long as it is harder than the first vibration-proof rubber 38 and the second vibration-proof rubber 39 and can block the vibration.
  • the intermediate partition plate 40 is in close contact with the lower surface 42 of the first vibration-proof rubber 38 and the upper surface 44 of the second vibration-proof rubber 39 without gaps. It is sandwiched between the rubber 38 and the second rubber 39.
  • the intermediate partition plate 40 is accommodated in a mold for molding when the first vibration-proof rubber 38 and the second vibration-proof rubber 39 are molded, and the first vibration-proof rubber 38 and It is integrally molded with the second vibration damping rubber 39. For this reason, the three elements of the first vibration-proof rubber 38, the second vibration-proof rubber 39 and the intermediate partition plate 40 are assembled as a unitary structure connected so as not to disperse each other.
  • the three elements may be bonded to each other with an adhesive.
  • the first vibration-proof rubber 38 of the vibration-proof body 37 elastically receives the hermetic compressor 12 via the fixing fitting 33.
  • the second vibration-proof rubber 39 of the vibration-proof body 37 is interposed between the intermediate partition plate 40 and the support surface 35 a of the seat 35 and supports the first vibration-proof rubber 38 from below.
  • a bolt 50 as a fastener is inserted into the insertion hole 35 b of the seat portion 35 from below the bottom plate 3.
  • the bolt 50 penetrates the hollow portion 46 of the second vibration-proof rubber 39, the through hole 47 of the intermediate partition plate 40, the hollow portion 43 of the first vibration-proof rubber 38 and the fitting convex portion 41 to It is projected above.
  • a nut 51 is screwed into the projecting end of the bolt 50.
  • the rotary shaft 26 of the compression mechanism unit 17 rotates following the rotor 21 of the motor unit 16.
  • the roller 27 fitted on the outer peripheral surface of the crank pin portion 31 eccentrically rotates in the cylinder chamber 28, and the vane reciprocates while slidably contacting the outer peripheral surface of the roller 27 . Therefore, the volumes of the suction area and the compression area formed in the cylinder chamber 28 change, and the refrigerant sucked from the suction pipe 29 into the cylinder chamber 28 is compressed.
  • the torque applied to the roller 27 when the roller 27 makes one revolution greatly fluctuates along with the compression / discharge operation of the refrigerant, and the vibration of the hermetic compressor 12 Be promoted.
  • the vibration of the hermetic compressor 12 is first transmitted to the first anti-vibration rubber 38 of the anti-vibration body 37 through the leg 33 a of the fixing bracket 33.
  • the first vibration-proof rubber 38 is formed of a rubber material having a larger dynamic magnification ⁇ than the second vibration-proof rubber 39 supporting the first vibration-proof rubber 38 from below.
  • the first vibration-proof rubber 38 since the first vibration-proof rubber 38 is flexible and has a large vibration damping rate, it receives deformation of the hermetic compressor 12 and deforms to absorb the vibration.
  • the vibration of the hermetic compressor 12 is less likely to be transmitted to the discharge pipe 18 and the suction pipe 29 connected to the sealed container 15, and the noise accompanying the vibration of the discharge pipe 18 and the suction pipe 29 can be suppressed.
  • the hermetic compressor 12 when the hermetic compressor 12 reaches the high rotation range, the vibration generated by the hermetic compressor 12 is smaller than that in the low rotation range.
  • the 2nd vibration-proof rubber 39 which supports the 1st vibration-proof rubber 38 from the lower side is formed with the rubber material whose dynamic magnification (lambda) is smaller than the 1st vibration-proof rubber 38.
  • the second vibration-proof rubber 39 because the second vibration-proof rubber 39 is hard and has a low vibration transmission rate, it can firmly support the hermetic compressor 12 so that the hermetic compressor 12 does not swing.
  • the vibration which is going to be transmitted from the hermetic compressor 12 to the bottom plate 3 of the housing 2 can be blocked by the second vibration damping rubber 39, and the noise accompanying the vibration of the bottom plate 3 can be suppressed.
  • an intermediate partition plate 40 made of metal harder than the rubber material is interposed between the first vibration-proof rubber 38 and the second vibration-proof rubber 39 having different vibration-proof performance.
  • the middle partition plate 40 separates the first vibration-proof rubber 38 and the second vibration-proof rubber 39 to transmit vibration between the first vibration-proof rubber 38 and the second vibration-proof rubber 39. It is blocking.
  • the vibration proofing performance of the hermetic compressor 12 becomes good in all operation ranges from the low rotation range to the high rotation range, and it is possible to provide the outdoor unit 1 excellent in noise reduction.
  • the vibration-proof body 37 is assembled as an integral structure, the relative positional relationship between the first vibration-proof rubber 38, the second vibration-proof rubber 39 and the intermediate partition plate 40 is fixed. Therefore, when vibration caused by the operation of the hermetic compressor 12 acts on the vibration-proof body 37, the first vibration-proof rubber 38 and the second vibration-proof rubber 39 move relatively out of the normal position. It can prevent. Therefore, the anti-vibration performance of the first anti-vibration rubber 38 and the second anti-vibration rubber 39 is not impaired.
  • the three elements 38, 39, 40 can be prevented from shifting and dispersing, and the hermetic compressor 12 can be used as the bottom plate.
  • the workability at the time of anti-vibration support on 3 is improved.
  • the intermediate partition plate 40 is formed of a metal material, it is possible to correspond to the melting points of various rubber materials forming the first vibration-proof rubber 38 and the second vibration-proof rubber 39. Become. Therefore, it is advantageous in molding the vibration-proof body 37 using a molding die, and the integral molding of the vibration-proof body 37 becomes easy.
  • the material (specific gravity) of the intermediate partition plate 40 in accordance with the specifications of the casing 2 of the outdoor unit 1 or the hermetic compressor 12, for example, the first vibration-proof rubber 38 and the second vibration-proof rubber It is possible to optimize the vibration isolation performance of 39.
  • Second Embodiment 4A, 4B and 4C disclose a second embodiment.
  • the second embodiment is different from the first embodiment in matters relating to the middle partition plate 60 of the vibration isolation body 37, and the configuration of the other vibration isolation body 37 is the same as that of the first embodiment. . Therefore, in the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the middle partition plate 60 is formed of, for example, a metal material such as iron or aluminum alloy. As shown in FIGS. 4B and 4C, the intermediate partition plate 60 includes a disk-shaped base portion 61, a first engaging portion 62, and a second engaging portion 63 as main elements.
  • the base portion 61 is sandwiched between the lower surface 42 and the upper surface 44 so as to be in close contact with the lower surface 42 of the first vibration isolation rubber 38 and the upper surface 44 of the second vibration isolation rubber 39 without any gap.
  • a through hole 47 through which the bolt 50 passes is formed.
  • the first engagement portion 62 and the second engagement portion 63 are each an example of a positioning portion.
  • the first engaging portion 62 is formed in a cylindrical shape that is continuous in the circumferential direction of the base portion 61, and coaxially protrudes from the upper surface of the base portion 61 toward the first vibration-proof rubber 38 . Therefore, the first engagement portion 62 is integrally embedded in the first vibration-proof rubber 38.
  • the first vibration-proof rubber 38 has a ring-shaped fitting groove 64 opened in the lower surface 42 thereof, and the first engaging portion 62 is closely fitted in the fitting groove 64. .
  • the second engagement portion 63 is formed in a cylindrical shape that is continuous in the circumferential direction of the base portion 61 and coaxially protrudes from the lower surface of the base portion 61 toward the second vibration-proof rubber 39 . For this reason, the second engaging portion 63 is integrally embedded in the second vibration-proof rubber 39.
  • the second vibration-proof rubber 39 has a ring-shaped fitting groove 65 opened on the upper surface 44, and the second engaging portion 63 is closely fitted in the fitting groove 65. .
  • the first engaging portion 62 of the intermediate partition plate 60 is enclosed by the first vibration-proof rubber 38, and the second engaging portion 63 of the intermediate partition plate 60 is the second vibration-proof. It is kept in a state of being enclosed by the rubber 39.
  • the contact area of the intermediate partition plate 60 with the first vibration isolation rubber 38 and the second vibration isolation rubber 39 can be sufficiently secured, and the first vibration isolation rubber 38 and the second vibration isolation rubber 39 can be secured. And the three elements of the middle partition plate 60 can be more firmly coupled.
  • the first engaging portion 62 of the intermediate partition plate 60 bites into the first vibration-proof rubber 38
  • the second engaging portion 63 bites into the second vibration-proof rubber 39. Relative positioning of the first vibration isolation rubber 38 and the second vibration isolation rubber 39 with respect to the portion 61 is performed.
  • first vibration-proof rubber 38 and the second vibration-proof rubber 39 relatively shift from the normal position when the vibration accompanying the operation of the hermetic compressor 12 acts on the vibration-proof body 37. Can be avoided.
  • the vibration-proof body 37 is not limited to integral molding using a molding die.
  • the intermediate partition plate 60 may be individually formed in advance.
  • the first engagement portion 62 of the intermediate partition plate 60 is fitted into the fitting groove 64 of the first vibration isolation rubber 38, and the second engagement portion 63 of the intermediate partition plate 60 is The three elements of the first vibration-proof rubber 38, the second vibration-proof rubber 39, and the middle partition plate 60 are integrated by being fitted into the fitting groove 65 of the vibration-proof rubber 39 of FIG.
  • an adhesive may be used in combination when combining the three elements of the first vibration-proof rubber 38, the second vibration-proof rubber 39 and the intermediate partition plate 60.
  • first engaging portion 62 and the second engaging portion 63 are not limited to a cylindrical shape that is continuous in the circumferential direction of the base portion 61, and are spaced apart in the circumferential direction of the base portion 61. It is also good.
  • Third Embodiment 5A, 5B and 5C disclose a third embodiment.
  • the third embodiment is different from the first embodiment in matters relating to the intermediate partition plate 70 of the vibration isolation body 37, and the configuration of the other vibration isolation body 37 is the same as that of the first embodiment. . Therefore, in the third embodiment, the same components as in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the middle partition plate 70 is formed of, for example, a metal material such as iron or aluminum alloy. As shown in FIGS. 5B and 5C, the intermediate partition plate 70 includes a disk-shaped base portion 71 and an outer wall portion 72 as main components.
  • the base portion 71 is sandwiched between the lower surface 42 and the upper surface 44 so as to closely contact the lower surface 42 of the first vibration-proof rubber 38 and the upper surface 44 of the second vibration-proof rubber 39 without any gap.
  • a through hole 47 through which the bolt 50 passes is formed.
  • the outer wall portion 72 is an example of a positioning portion, and is formed in a cylindrical shape so as to surround the base portion 71.
  • the outer wall portion 72 faces the first wall portion 73 coaxially projecting from the upper surface of the base portion 71 toward the first vibration damping rubber 38, and the lower surface of the base portion 71 toward the second vibration damping rubber 39.
  • a second wall 74 coaxially protruded.
  • the first wall portion 73 is in close contact with the outer peripheral surface of the first vibration isolation rubber 38 so as to surround the first vibration isolation rubber 38.
  • the second wall 74 is in close contact with the outer peripheral surface of the second vibration-proof rubber 39 so as to surround the second vibration-proof rubber 39.
  • the first anti-vibration rubber 38 fits inside the first wall 73
  • the second anti-vibration rubber 39 fits inside the second wall 74.
  • the first vibration isolation rubber 38 and the second vibration isolation rubber 39 are kept surrounded by the outer wall portion 72 of the intermediate partition plate 70. Therefore, the contact area of the intermediate partition plate 70 with the first vibration isolation rubber 38 and the second vibration isolation rubber 39 can be sufficiently ensured, and the first vibration isolation rubber 38 and the second vibration isolation rubber 39 can be secured. And the three elements of the middle partition plate 70 can be more firmly coupled.
  • first vibration-proof rubber 38 and the second vibration-proof rubber 39 relatively shift from the normal position when the vibration accompanying the operation of the hermetic compressor 12 acts on the vibration-proof body 37. Can be avoided.
  • the vibration-proof body 37 is not limited to integral molding using a molding die.
  • the intermediate partition plate 70 may be formed separately beforehand.
  • the first anti-vibration rubber 38 is fitted into the inside of the first wall 73 of the outer wall 72
  • the second anti-vibration rubber 39 is inside the second wall 74 of the outer wall 72.
  • the three elements of the first vibration-proof rubber 38, the second vibration-proof rubber 39, and the middle partition plate 70 are integrated by being fitted into each other.
  • an adhesive may be used in combination when combining the three elements of the first vibration-proof rubber 38, the second vibration-proof rubber 39 and the intermediate partition plate 70.
  • first wall portion 73 and the second wall portion 74 of the outer wall portion 72 are not limited to a cylindrical shape that is continuous in the circumferential direction of the base portion 71, and are spaced apart in the circumferential direction of the base portion 71 It may be.
  • the materials of the first vibration-proof rubber, the second vibration-proof rubber and the intermediate partition plate can be appropriately changed according to the vibration-proof performance to be obtained, and the materials are not particularly limited.
  • the dynamic magnifications of the first vibration-proof rubber and the second vibration-proof rubber disclosed in the first embodiment are merely reference values, and the dynamic magnification is, for example, the use environment of the hermetic compressor. Appropriate changes can be made according to the situation.
  • the heat source unit is not limited to the outdoor unit of the air conditioner, and can be similarly applied to, for example, a heat source unit of a heat pump type water heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compressor (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

熱源ユニットは、筐体の底板の上に載置された縦形の密閉形圧縮機と、密閉形圧縮機と底板との間に介在された防振体と、を備えている。防振体は、密閉形圧縮機を弾性的に支持する第1の防振ゴムと、第1の防振ゴムと底板との間に介在され、第1の防振ゴムを下から支える第2の防振ゴムと、第1の防振ゴムと第2の防振ゴムとの間を仕切る仕切部材と、を含んでいる。仕切部材は、第1の防振ゴムおよび第2の防振ゴムよりも硬い材料で形成されているとともに、第1の防振ゴムよりも第2の防振ゴムの動倍率が小さく設定されている。

Description

熱源ユニットおよび防振体
 本発明の実施形態は、密閉形圧縮機を有する熱源ユニットおよび密閉形圧縮機を弾性的に支持する防振体に関する。
 密閉形圧縮機が冷媒を圧縮する際に生じる振動は、冷媒配管や室外ユニットの筐体に伝達されて騒音の要因となる。そのため、密閉形圧縮機の運転時の騒音を抑えるためには、密閉形圧縮機から冷媒配管や筐体に伝わる振動を可能な限り遮断することが望まれる。
 特に昨今の運転周波数可変形の密閉形圧縮機では、起動時を含む低回転域で増大する振動が冷媒配管に伝わるのを防止するため、振動減衰率が大きい柔軟な防振ゴムを密閉形圧縮機と筐体の底板との間に介在させ、当該防振ゴムで密閉形圧縮機の振動を吸収することが必要となる。
 一方、高回転域では、密閉形圧縮機が発する振動が低回転域よりも減少するので、筐体の底板を振動させないように振動伝達率が小さい硬質な防振ゴムを用いて密閉形圧縮機をしっかりと支えることが必要となる。
 このため、従来では、密閉形圧縮機の低回転域および高回転域の双方の振動対策として、防振性能が異なる二種類の防振ゴムを組み合わせた防振体を密閉形圧縮機と筐体の底板との間に介在させることが行なわれている。
特開2007-292021号公報 特開2008-31882号公報
 従来の防振体は、二種類の防振ゴムが密閉形圧縮機と底板との間で上下方向に重なるように直接接触しているので、上側の防振ゴムが振動する際の周波数成分と下側の防振ゴムが振動する際の周波数成分とが複合されることがあり得る。
 この結果、個々の防振ゴムが有する本来の防振性能が損なわれてしまい、所望の防振効果を得る上で今一歩改善の余地が残されている。
 本発明の目的は、防振性能が異なる二種類の防振ゴムの間での振動伝達を遮断することができ、密閉形圧縮機の防振性能に優れた静音性の高い熱源ユニットを得ることにある。
 本実施形態の熱源ユニットは、底板を有する筐体と、前記底板の上に載置され、冷媒を圧縮する縦形の密閉形圧縮機と、前記密閉形圧縮機と前記底板との間に介在された防振体と、を備えている。 
 前記防振体は、前記密閉形圧縮機を弾性的に支持する第1の防振ゴムと、前記第1の防振ゴムと前記底板との間に介在され、前記第1の防振ゴムを下から支える第2の防振ゴムと、前記第1の防振ゴムと前記第2の防振ゴムとの間を仕切る仕切部材と、を含んでいる。前記仕切部材は、前記第1の防振ゴムおよび前記第2の防振ゴムよりも硬い材料で形成されているとともに、前記第1の防振ゴムよりも前記第2の防振ゴムの動倍率が小さく設定されている。
図1は、第1の実施形態に係る室外ユニットの構造を概略的に示す斜視図である。 図2は、筐体の底板の上に密閉形圧縮機を据え付けた状態を示す断面図である。 図3Aは、第1の実施形態に係る防振体を密閉形圧縮機の固定金具と筐体の底板との間に介在させた状態を示す断面図である。 図3Bは、第1の実施形態に係る防振体の断面図である。 図3Cは、第1の実施形態で用いる中間仕切り板の斜視図である。 図4Aは、第2の実施形態に係る防振体を密閉形圧縮機の固定金具と筐体の底板との間に介在させた状態を示す断面図である。 図4Bは、第2の実施形態に係る防振体の断面図である。 図4Cは、第2の実施形態で用いる中間仕切り板の斜視図である。 図5Aは、第3の実施形態に係る防振体を密閉形圧縮機の固定金具と筐体の底板との間に介在させた状態を示す断面図である。 図5Bは、第3の実施形態に係る防振体の断面図である。 図5Cは、第3の実施形態で用いる中間仕切り板の斜視図である。
[第1の実施形態]
 以下、第1の実施形態について図面を参照して説明する。
 図1は、空気調和機の室外ユニット1を示している。室外ユニット1は、熱源ユニットの一例であって、図示しない冷媒配管を介して室内ユニットに接続されている。
 図1に示すように、室外ユニット1は、箱状の筐体2を備えている。筐体2は、支持板としての底板3、仕切り板4、ファンガード5および背面板6を主要な要素として備えている。
 仕切り板4は、底板3から起立されて筐体2の内部を熱交換室7と機械室8との二室に区画している。図1に示すように筐体2を正面の方向から見た時に、熱交換室7は仕切り板4の左側に位置され、機械室8は仕切り板4の右側に位置されている。ファンガード5は、熱交換室7を筐体2の前方から覆っている。背面板5は、機械室8を筐体2の背後から覆っている。
 空気熱交換器10および送風機11が熱交換室7に収容されている。空気熱交換器10は、熱交換室7の背面から左側面に沿うように起立されて、筐体2の外側に露出されている。送風機11は、空気熱交換器10とファンガード5との間に配置されている。
 図1に示すように、密閉形圧縮機12、膨張弁を含む接続配管類13および電気部品箱14が機械室8に収容されている。密閉形圧縮機12は、いわゆる縦型のロータリーコンプレッサであって、筐体2の底板3の上に載置されている。電気部品箱14は、密閉型圧縮機12の運転を司る要素であって、密閉形圧縮機12の上方に位置するように機械室8の上部に配置されている。
 図2に示すように、密閉形圧縮機12は、密閉容器15、電動機部16および圧縮機構部17を主要な要素として備えている。密閉容器15は、鉛直方向に沿うように起立されている。密閉容器15の上端には、吐出管18が接続されている。吐出管18は、冷媒配管を介して空気熱交換器10に接続されている。さらに、油溜め部19が密閉容器15の底部に設けられている。油溜め部19には、潤滑油が貯溜されている。
 電動機部16は、密閉容器15の中間部に収容されている。電動機部16は、密閉容器15の内周面に固定された円筒状の固定子20と、固定子20で取り囲まれた回転子21を、を備えている。
 圧縮機構部17は、電動機部16の真下に位置するように密閉容器15の下部に収容され、油溜め部19に貯溜された潤滑油の中に浸漬されている。圧縮機構部17は、シリンダ23、第1の軸受24、第2の軸受25、回転軸26およびリング状のローラ27を主要な要素として備えている。
 シリンダ23は、密閉容器15の内周面に水平に固定されている。第1の軸受24は、シリンダ23の上面に固定されている。第2の軸受25は、シリンダ23の下面に固定されている。第1の軸受24および第2の軸受25は、シリンダ23の内径部を閉塞している。そのため、シリンダ23の内径部、第1の軸受24および第2の軸受25で囲まれた空間は、冷媒を圧縮するシリンダ室28を規定している。シリンダ室28は、吸込管29を介して密閉容器15に付設されたアキュームレータ30に接続されている。
 回転軸26は、密閉容器15の中心を通る鉛直線V1の上に同軸状に位置するように、第1の軸受24および第2の軸受25により回転自在に支持されている。回転軸26の上部には、電動機部16の回転子21が連結されている。
 さらに、回転軸26は、クランクピン部31を有している。クランクピン部31は、密閉容器15の中心を通る鉛直線V1に対し偏心しているとともに、シリンダ室28に収容されている。
 ローラ27は、クランクピン部31の外周面に嵌合されている。ローラ27は、回転軸26に追従してシリンダ室28内で偏心回転する。ローラ27の偏心回転に伴い、シリンダ23のベーン溝内に設けられたベーンが、ローラ27の外周面に摺動可能に当接しながら往復運動し、シリンダ室28内を吸入領域および圧縮領域に区画する。これにより、シリンダ室28内に形成された吸入領域および圧縮領域の容積が変化し、吸入管29からシリンダ室28に吸い込まれた冷媒が圧縮される。
 この圧縮運転時に生じるトルク変動により、密閉形圧縮機12に振動が生じる。密閉形圧縮機12に生じる振動は、特に起動時を含む低回転域において大きくなる傾向にある。
 図2に示すように、密閉形圧縮機12の密閉容器15は、垂直に起立した姿勢で筐体2の底板3の上に防振支持されている。具体的に述べると、固定金具33が密閉容器15の底部に取り付けられている。固定金具33は、密閉容器15の周囲に向けて放射状に張り出す複数の脚部33aを有している。脚部33aの先端部には、底板3と向かい合う嵌合孔34が形成されている。
 支持板としての底板3は、固定金具33の脚部33aに対応する位置に複数の座部35を有している。座部35は、底板3の上方に向けて張り出している。図3Aに示すように、座部35の張り出し端にフラットな支持面35aが形成されている。支持面35aの中央部には、挿通孔35bが形成されている。
 筒状の防振体37が各脚部33aの先端部と座部35の支持面35aとの間に介在されている。図3Aおよび図3Bに示すように、各防振体37は、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板40を備えている。
 第1の防振ゴム38は、円筒状の要素であって、脚部33aの嵌合孔34に嵌め込まれた嵌合凸部41と、嵌合凸部41の反対側に位置されたフラットな下面42と、下面42に開口された中空部43と、を有している。中空部43の上端は、嵌合凸部41で閉鎖されている。本実施形態の第1の防振ゴム38は、例えばジエン系のゴム材料であるクロロプレンゴムで形成されている。 
 第2の防振ゴム39は、第1の防振ゴム38と同等の外径を有する円筒状の要素であって、第1の防振ゴム38の下方に同軸状に位置されている。第2の防振ゴム39は、フラットな上面44と、フラットな下面45と、上面44および下面45に開口された中空部46と、を有している。本実施形態の第2の防振ゴム39は、例えばゴム硬さが45Hs(JIS A)の天然ゴムで形成されている。
 さらに、第1の防振ゴム38と第2の防振ゴム39とでは、防振性能が互いに異なっている。ゴム材料の防振性能を示す重要な指標の一つとして動倍率λが知られている。動倍率λは、ゴム材料が振動した時の剛性を表す動的弾性率(Kd)と、ゴム材料がゆっくり変形した時の剛性を表す静的弾性率(Ks)との比、すなわち、Kd/Ksで定義することができる。動倍率λは、ゴム材料の振動伝達率および振動減衰率に比例する。
 本実施形態によると、第1の防振ゴム38の動倍率λは、例えば1.5であるのに対し、第2の防振ゴム39の動倍率λは、例えば1.2であり、第1の防振ゴム38よりも第2の防振ゴム39の動倍率λの方が小さくなっている。言い換えると、第1の防振ゴム38は、第2の防振ゴム39よりも柔軟で振動減衰率が大きく、第2の防振ゴム39は、第1の防振ゴム38よりも硬くて振動伝達率が小さい。
 さらに、第1の防振ゴム38および第2の防振ゴム39は、外径が同等であるにも拘らず、第1の防振ゴム38の中空部43の内径d1が第2の防振ゴム39の中空部46の内径d2よりも大きい。これにより、第1の防振ゴム38が第2の防振ゴム39に比べてより一層撓み易くなっている。
 防振体37を構成する前記中間仕切り板40は、第1の防振ゴム38と第2の防振ゴム39との間を仕切る仕切部材の一例である。図3Cに示すように、中間仕切り板40は、フラットな円盤状の要素であって、例えば第1の防振ゴム38および第2の防振ゴム39と同等の外径を有している。中間仕切り板40の中心部に貫通孔47が形成されている。貫通孔47は、第1の防振ゴム38の中空部43と第2の防振ゴム39の中空部46との間に位置されている。貫通孔47の内径d3は、第2の防振ゴム39の中空部46の内径d2と同等に設定されている。
 さらに、中間仕切り板40は、第1の防振ゴム38および第2の防振ゴム39よりも硬質な金属材料で形成されている。金属材料としては、例えば鉄あるいはアルミニウム合金を用いることができる。中間仕切り板40の材質は金属に限らず、例えば第1の防振ゴム38および第2の防振ゴム39よりも硬くて振動を遮断できれば、例えば合成樹脂材料あるいはゴム材料を用いてもよい。
 図3Aおよび図3Bに示すように、中間仕切り板40は、第1の防振ゴム38の下面42および第2の防振ゴム39の上面44に隙間なく密着するように、第1の防振ゴム38と第2のゴム39との間で挟み込まれている。
 本実施形態によると、中間仕切り板40は、第1の防振ゴム38および第2の防振ゴム39を成形する際に、成形用の金型に収容されて第1の防振ゴム38および第2の防振ゴム39と一体成形されている。このため、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板40の三つの要素は、互いに分散しないように結合された一体構造物として組み立てられている。
 さらに、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板40を一体構造物として組み立てるに当たっては、当該三つの要素を接着剤で互いに接合するようにしてもよい。
 図2および図3Aに示すように、防振体37の第1の防振ゴム38は、固定金具33を介して密閉形圧縮機12を弾性的に受け止めている。防振体37の第2の防振ゴム39は、中間仕切り板40と座部35の支持面35aとの間に介在されているとともに、第1の防振ゴム38を下から支えている。
 締結具としてのボルト50が底板3の下方から座部35の挿通孔35bに挿入されている。ボルト50は、第2の防振ゴム39の中空部46、中間仕切り板40の貫通孔47、第1の防振ゴム38の中空部43および嵌合凸部41を貫通して防振体37の上方に突出されている。ボルト50の突出端には、ナット51がねじ込まれている。このねじ込みにより、第1の防振ゴム38および第2の防振ゴム39が固定金具33の脚部33aと底板3の座部35との間で適度に圧縮され、密閉形圧縮機12の底部を底板3の上に弾性的に保持している。
 第1の実施形態において、密閉形圧縮機12が運転を開始すると、圧縮機構部17の回転軸26が電動機部16の回転子21に追従して回転する。回転軸26の回転に伴い、クランクピン部31の外周面に嵌合されたローラ27がシリンダ室28内で偏心回転し、ベーンがローラ27の外周面に摺動可能に当接しながら往復運動する。そのため、シリンダ室28内に形成された吸入領域および圧縮領域の容積が変化し、吸入管29からシリンダ室28に吸い込まれた冷媒が圧縮される。
 密閉形圧縮機12の起動時を含む低回転域では、ローラ27が1回転する際にローラ27に加わるトルクが冷媒の圧縮・吐出動作に伴って大きく変動し、密閉形圧縮機12の振動が助長される。
 密閉形圧縮機12の振動は、固定金具33の脚部33aを通じて最初に防振体37の第1の防振ゴム38に伝わる。第1の防振ゴム38は、当該第1の防振ゴム38を下から支える第2の防振ゴム39よりも動倍率λが大きいゴム材料で形成されている。言い換えると、第1の防振ゴム38は、柔軟で振動減衰率が大きいために、密閉形圧縮機12の振動を受けた時に、当該振動を吸収するように変形する。
 したがって、密閉形圧縮機12の振動が密閉容器15に接続された吐出管18および吸入管29に伝わり難くなり、吐出管18および吸入管29の振動に伴う騒音を抑制できる。
 一方、密閉形圧縮機12が高回転域に達すると、密閉形圧縮機12が発する振動が低回転域よりも減少する。この際、第1の防振ゴム38を下から支える第2の防振ゴム39は、第1の防振ゴム38よりも動倍率λが小さいゴム材料で形成されている。言い換えると、第2の防振ゴム39は、硬質で振動伝達率が小さいために、密閉形圧縮機12が揺れ動かないように当該密閉形圧縮機12をしっかりと支えることができる。
 このため、密閉形圧縮機12から筐体2の底板3に伝わろうとする振動を第2の防振ゴム39で遮ることができ、底板3の振動に伴う騒音を抑制できる。
 第1の実施形態では、防振性能が異なる第1の防振ゴム38と第2の防振ゴム39との間に、ゴム材料よりも硬い金属製の中間仕切り板40が介在されている。中間仕切り板40は、第1の防振ゴム38と第2の防振ゴム39とを切り離すことで、第1の防振ゴム38および第2の防振ゴム39の相互間で振動の伝達を遮断している。
 このため、第1の防振ゴム38が振動する際の周波数成分と第2の防振ゴム39が振動する際の周波数成分とが複合するのを回避でき、第1の防振ゴム38および第2の防振ゴム39が有する本来の防振性能を充分に発揮させることができる。
 よって、密閉形圧縮機12の防振性能が低回転域から高回転域に至る全ての運転域において良好となり、静音性に優れた室外ユニット1を提供することが可能となる。
 加えて、防振体37が一体構造物として組み立てられているので、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板40の相対的な位置関係が定まっている。このため、密閉形圧縮機12の運転に伴う振動が防振体37に作用した時に、第1の防振ゴム38および第2の防振ゴム39が正規の位置から相対的にずれ動くのを防止できる。したがって、第1の防振ゴム38および第2の防振ゴム39の防振性能が損なわれずに済む。
 それとともに、防振体37を固定金具33と底板3との間に介在させる際に、三つの要素38,39,40がずれ動いたり、分散するのを回避でき、密閉形圧縮機12を底板3の上に防振支持する際の作業性が向上する。
 本実施形態では、中間仕切り板40が金属材料で形成されているので、第1の防振ゴム38および第2の防振ゴム39を形成する様々なゴム材料の融点に対応することが可能となる。よって、成形用の金型を用いて防振体37を成形する上で有利となり、防振体37の一体成形が容易となる。
 さらに、例えば室外ユニット1の筐体2あるいは密閉形圧縮機12の仕様に合わせて中間仕切り板40の材質(比重)を選択することで、第1の防振ゴム38および第2の防振ゴム39の防振性能の最適化を図ることが可能となる。
[第2の実施形態]
 図4A、図4Bおよび図4Cは、第2の実施形態を開示している。
 第2の実施形態は、防振体37の中間仕切り板60に関する事項が第1の実施形態と相違しており、それ以外の防振体37の構成は、第1の実施形態と同様である。そのため、第2の実施形態において、第1の実施形態と同一の構成部分には同一の参照符号を付して、その説明を省略する。
 中間仕切り板60は、例えば鉄あるいはアルミニウム合金のような金属材料で形成されている。図4Bおよび図4Cに示すように、中間仕切り板60は、円盤状のベース部61、第1の係合部62および第2の係合部63を主要な要素として備えている。
 ベース部61は、第1の防振ゴム38の下面42および第2の防振ゴム39の上面44に隙間なく密着するように、下面42と上面44との間で挟み込まれている。ベース部61の中央部には、ボルト50が貫通する貫通孔47が形成されている。
 第1の係合部62および第2の係合部63は、夫々位置決め部の一例である。第1の係合部62は、ベース部61の周方向に連続する円筒状に形成されているとともに、ベース部61の上面から第1の防振ゴム38に向けて同軸状に突出されている。そのため、第1の係合部62は、第1の防振ゴム38に一体的に埋め込まれている。言い換えると、第1の防振ゴム38は、その下面42に開口されたリング状の嵌合溝64を有し、当該嵌合溝64に第1の係合部62が密に嵌め込まれている。
 第2の係合部63は、ベース部61の周方向に連続する円筒状に形成されているとともに、ベース部61の下面から第2の防振ゴム39に向けて同軸状に突出されている。このため、第2の係合部63は、第2の防振ゴム39に一体的に埋め込まれている。言い換えると、第2の防振ゴム39は、その上面44に開口されたリング状の嵌合溝65を有し、当該嵌合溝65に第2の係合部63が密に嵌め込まれている。
 第2の実施形態によると、中間仕切り板60の第1の係合部62が第1の防振ゴム38によって包み込まれ、中間仕切り板60の第2の係合部63が第2の防振ゴム39によって包み込まれた状態に保たれている。
 このため、第1の防振ゴム38および第2の防振ゴム39に対する中間仕切り板60の接触面積を十分に確保することができ、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板60の三つの要素をより一層強固に結合することができる。
 しかも、見掛け上、中間仕切り板60の第1の係合部62が第1の防振ゴム38に食い込み、第2の係合部63が第2の防振ゴム39に食い込んでいるので、ベース部61に対する第1の防振ゴム38および第2の防振ゴム39の相対的な位置決めがなされる。
 よって、密閉形圧縮機12の運転に伴う振動が防振体37に作用した時に、第1の防振ゴム38および第2の防振ゴム39が正規の位置から相対的にずれ動くのを確実に回避できる。
 第2の実施形態において、防振体37は、成形用の金型を用いて一体成形することに限定されるものではない、例えば、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板60を予め個別に形成しておいてもよい。
 この場合には、中間仕切り板60の第1の係合部62を第1の防振ゴム38の嵌合溝64に嵌め込むとともに、中間仕切り板60の第2の係合部63を第2の防振ゴム39の嵌合溝65に嵌め込むことで、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板60の三つの要素を一体化させる。
 さらに、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板60の三つの要素を組み合わせる際に接着剤を併用してもよい。
 加えて、第1の係合部62および第2の係合部63は、ベース部61の周方向に連続する円筒状に限らず、ベース部61の周方向に間隔を存して並んでいてもよい。
[第3の実施形態]
 図5A、図5Bおよび図5Cは、第3の実施形態を開示している。
 第3の実施形態は、防振体37の中間仕切り板70に関する事項が第1の実施形態と相違しており、それ以外の防振体37の構成は、第1の実施形態と同様である。そのため、第3の実施形態において、第1の実施形態と同一の構成部分には同一の参照符号を付して、その説明を省略する。
 中間仕切り板70は、例えば鉄あるいはアルミニウム合金のような金属材料で形成されている。図5Bおよび図5Cに示すように、中間仕切り板70は、円盤状のベース部71および外壁部72を主要な要素として備えている。
 ベース部71は、第1の防振ゴム38の下面42および第2の防振ゴム39の上面44に隙間なく密着するように、下面42と上面44との間で挟み込まれている。ベース部71の中央部には、ボルト50が貫通する貫通孔47が形成されている。
 外壁部72は、位置決め部の一例であって、ベース部71を取り囲むような円筒状に形成されている。外壁部72は、ベース部71の上面から第1の防振ゴム38に向けて同軸状に突出された第1の壁部73と、ベース部71の下面から第2の防振ゴム39に向けて同軸状に突出された第2の壁部74と、を備えている。
 第1の壁部73は、第1の防振ゴム38を取り囲むように第1の防振ゴム38の外周面に隙間なく接している。第2の壁部74は、第2の防振ゴム39を取り囲むように第2の防振ゴム39の外周面に隙間なく接している。言い換えると、第1の防振ゴム38が第1の壁部73の内側に嵌り込み、第2の防振ゴム39が第2の壁部74の内側に嵌り込んでいる。
 第3の実施形態によると、第1の防振ゴム38および第2の防振ゴム39が中間仕切り板70の外壁部72によって取り囲まれた状態に保たれている。このため、第1の防振ゴム38および第2の防振ゴム39に対する中間仕切り板70の接触面積を十分に確保することができ、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板70の三つの要素をより一層強固に結合することができる。
 それとともに、中間仕切り板70に外壁部72を設けたことで、ベース部71に対する第1の防振ゴム38および第2の防振ゴム39の径方向に沿う移動が制限され、ベース部61、第1の防振ゴム38および第2の防振ゴム39の相対的な位置決めがなされる。
 よって、密閉形圧縮機12の運転に伴う振動が防振体37に作用した時に、第1の防振ゴム38および第2の防振ゴム39が正規の位置から相対的にずれ動くのを確実に回避できる。
 第3の実施形態において、防振体37は、成形用の金型を用いて一体成形することに限定されるものではない、例えば、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板70を予め個別に形成しておいてもよい。
 この場合には、第1の防振ゴム38を外壁部72の第1の壁部73の内側に嵌め込むとともに、第2の防振ゴム39を外壁部72の第2の壁部74の内側に嵌め込むことで、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板70の三つの要素を一体化させる。
 さらに、第1の防振ゴム38、第2の防振ゴム39および中間仕切り板70の三つの要素を組み合わせる際に接着剤を併用してもよい。
 加えて、外壁部72の第1の壁部73および第2の壁部74は、ベース部71の周方向に連続する円筒状に限らず、ベース部71の周方向に間隔を存して並んでいてもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、第1の防振ゴム、第2の防振ゴムおよび中間仕切り板の材質は、得ようとする防振性能に応じて適宜変更が可能であり、材質に特に制約はない。
 加えて、第1の実施形態に開示された第1の防振ゴムおよび第2の防振ゴムの動倍率は、あくまで参考値であって、当該動倍率は、例えば密閉形圧縮機の使用環境等に応じて適宜変更が可能である。
 さらに、熱源ユニットは、空気調和機の室外ユニットに特定されるものではなく、例えばヒートポンプ式給湯器の熱源機にも同様に適用が可能である。
 1…熱源ユニット(室外ユニット)、2…筐体、3…底板(支持板)、12…密閉形圧縮機、37…防振体、38…第1の防振ゴム、39…第2の防振ゴム、40…仕切部材(中間仕切り板)。

Claims (8)

  1.  底板を有する筐体と、
     前記底板の上に載置され、冷媒を圧縮する縦形の密閉形圧縮機と、
     前記密閉形圧縮機と前記底板との間に介在された防振体と、を備え、
     前記防振体は、
       前記密閉形圧縮機を弾性的に支持する第1の防振ゴムと、
       前記第1の防振ゴムと前記底板との間に介在され、前記第1の防振ゴムを下から支える第2の防振ゴムと、
       前記第1の防振ゴムと前記第2の防振ゴムとの間を仕切る仕切部材と、を含み、
     前記仕切部材が前記第1の防振ゴムおよび前記第2の防振ゴムよりも硬い材料で形成されているとともに、前記第1の防振ゴムよりも前記第2の防振ゴムの動倍率が小さい熱源ユニット。
  2.  前記第1の防振ゴム、前記第2の防振ゴムおよび前記仕切部材が一体構造物として組み立てられた請求項1に記載の熱源ユニット。
  3.  前記仕切部材は、前記第1の防振ゴムと前記第2の防振ゴムとで挟まれたベース部と、前記ベース部に設けられ、前記ベース部に対する前記第1の防振ゴムおよび前記第2の防振ゴムの相対的な位置関係を定める位置決め部と、を備えた請求項1に記載の熱源ユニット。
  4.  前記位置決め部は、前記ベース部から前記第1の防振ゴムに向けて突出され、当該第1の防振ゴムに埋め込まれた第1の係合部と、前記ベース部から前記第2の防振ゴムに向けて突出され、当該第2の防振ゴムに埋め込まれた第2の係合部である請求項3に記載の熱源ユニット。
  5.  前記位置決め部は、前記ベース部に設けられ、前記第1の防振ゴムの外周面および第2の防振ゴムの外周面に接触する外壁部である請求項3に記載の熱源ユニット。
  6.  前記第1の防振ゴムおよび前記第2の防振ゴムは、夫々中空部を有する筒状に形成され、前記第1の防振ゴムの前記中空部の内径が前記第2の防振ゴムの前記中空部の内径よりも大きい請求項1に記載の熱源ユニット。
  7.  前記仕切部材が金属材料で形成された請求項1ないし請求項6のいずれか一項に記載の熱源ユニット。
  8.  支持板の上に載置された密閉形圧縮機を弾性的に支持する第1の防振ゴムと、
     前記第1の防振ゴムと前記支持板との間に介在され、前記第1の防振ゴムを下から支える第2の防振ゴムと、
     前記第1の防振ゴムと前記第2の防振ゴムとの間を仕切る仕切部材と、を含み、
     前記仕切部材が前記第1の防振ゴムおよび前記第2の防振ゴムよりも硬い材料で形成されているとともに、前記第1の防振ゴムよりも前記第2の防振ゴムの動倍率が小さい防振体。
PCT/JP2017/034382 2017-09-22 2017-09-22 熱源ユニットおよび防振体 WO2019058531A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/034382 WO2019058531A1 (ja) 2017-09-22 2017-09-22 熱源ユニットおよび防振体
CN201780090828.2A CN110621877A (zh) 2017-09-22 2017-09-22 热源单元以及隔振体
JP2019542932A JP6808845B2 (ja) 2017-09-22 2017-09-22 熱源ユニットおよび防振体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034382 WO2019058531A1 (ja) 2017-09-22 2017-09-22 熱源ユニットおよび防振体

Publications (1)

Publication Number Publication Date
WO2019058531A1 true WO2019058531A1 (ja) 2019-03-28

Family

ID=65810219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034382 WO2019058531A1 (ja) 2017-09-22 2017-09-22 熱源ユニットおよび防振体

Country Status (3)

Country Link
JP (1) JP6808845B2 (ja)
CN (1) CN110621877A (ja)
WO (1) WO2019058531A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167525B (zh) * 2018-12-06 2023-07-14 伊莱克斯电器股份公司 具有压缩机的冷藏柜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213838A (ja) * 1985-07-10 1987-01-22 Honda Motor Co Ltd 防振ゴム
JPH03110228U (ja) * 1990-02-27 1991-11-12
JPH0487049U (ja) * 1990-12-05 1992-07-29
JPH11323042A (ja) * 1998-05-11 1999-11-26 Mitsui Chem Inc 防振ゴム組成物
JP2007292021A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 圧縮機の支持装置
JP2010534808A (ja) * 2007-08-01 2010-11-11 黄潭城 弾性体
JP2014047822A (ja) * 2012-08-30 2014-03-17 Hitachi Automotive Systems Ltd 防振装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637150Y2 (ja) * 1978-04-27 1981-09-01
US8939437B2 (en) * 2008-10-09 2015-01-27 Bridgestone Corporation Anti-vibration device
WO2014199418A1 (ja) * 2013-06-13 2014-12-18 住友理工株式会社 防振装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213838A (ja) * 1985-07-10 1987-01-22 Honda Motor Co Ltd 防振ゴム
JPH03110228U (ja) * 1990-02-27 1991-11-12
JPH0487049U (ja) * 1990-12-05 1992-07-29
JPH11323042A (ja) * 1998-05-11 1999-11-26 Mitsui Chem Inc 防振ゴム組成物
JP2007292021A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 圧縮機の支持装置
JP2010534808A (ja) * 2007-08-01 2010-11-11 黄潭城 弾性体
JP2014047822A (ja) * 2012-08-30 2014-03-17 Hitachi Automotive Systems Ltd 防振装置

Also Published As

Publication number Publication date
JP6808845B2 (ja) 2021-01-06
CN110621877A (zh) 2019-12-27
JPWO2019058531A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
US20200300247A1 (en) Compact low noise rotary compressor
JP6020148B2 (ja) 電動圧縮機
US8062005B2 (en) Linear compressor with spring arrangement for vibration suppression
JP5488557B2 (ja) 回転機器の制振装置
JP2012189043A (ja) 車両用スクロール型圧縮機
CN111765087B (zh) 电动压缩机
EP3364130B1 (en) Accumulator having multiple pipes, and compressor
JP6094497B2 (ja) 電動圧縮機、及び電動圧縮機の製造方法
US9145890B2 (en) Rotary compressor with dual eccentric portion
CN110023624B (zh) 致冷剂压缩机
JP6808845B2 (ja) 熱源ユニットおよび防振体
JP3464446B2 (ja) 密閉型圧縮機
CN106979138B (zh) 密闭型制冷剂压缩机和制冷装置
JP2011196244A (ja) 圧縮機
US20080159887A1 (en) Housing of a Refrigerant Compressor
JP2020067037A (ja) 圧縮機
KR101810239B1 (ko) 압축기
JP2011196212A (ja) 圧縮機
JP4343712B2 (ja) 往復動型圧縮機
JPH0968165A (ja) 往復動圧縮機
JP2017066943A (ja) 圧縮機
JP6686994B2 (ja) スクロール圧縮機
KR20190068782A (ko) 압축기
JP6637863B2 (ja) 密閉型圧縮機及びこれを搭載した機器
WO2017018137A1 (ja) 圧縮機本体の防振構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925979

Country of ref document: EP

Kind code of ref document: A1