WO2019058469A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2019058469A1
WO2019058469A1 PCT/JP2017/034000 JP2017034000W WO2019058469A1 WO 2019058469 A1 WO2019058469 A1 WO 2019058469A1 JP 2017034000 W JP2017034000 W JP 2017034000W WO 2019058469 A1 WO2019058469 A1 WO 2019058469A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
container
heat
heating element
phase refrigerant
Prior art date
Application number
PCT/JP2017/034000
Other languages
French (fr)
Japanese (ja)
Inventor
真弘 蜂矢
邦彦 石原
水季 和田
吉川 実
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/034000 priority Critical patent/WO2019058469A1/en
Priority to JP2019542878A priority patent/JP6856131B2/en
Publication of WO2019058469A1 publication Critical patent/WO2019058469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to an electronic device, for example, an electronic device for cooling a heating element immersed in liquid phase refrigerant or the like.
  • Patent Document 1 discloses a technique for cooling the air.
  • a sealed container is configured by bonding a ceramic circuit board and a heat dissipation member.
  • liquid phase refrigerant is stored in the container.
  • the plurality of heating elements are immersed in the liquid phase refrigerant stored in the container.
  • the heat generating body When the heat generating body generates heat, the liquid phase refrigerant in the container is changed in phase to a gas phase refrigerant by the heat of the heat generating body on the surface of the heat generating body.
  • the heat (latent heat) generated by this phase change dissipates the heat generated by the heating element. Thereby, the heating element is cooled.
  • the gas phase refrigerant rises in the container along the vertical direction, and when it is cooled by coming into contact with the inner wall surface of the container, it changes in phase again to a liquid phase refrigerant.
  • This liquid-phase refrigerant descends in the container along the vertical direction, and is again used to cool the heating element.
  • the heat-generating body is cooled by circulating the liquid-phase refrigerant and the gas-phase refrigerant that undergo phase change in the container.
  • the partition walls (fins) extend downward in the vertical direction from the inner surface of the upper wall of the container (the inner surface of the heat dissipation member) among the plurality of heat generating members, It is provided.
  • the partition between the plurality of heating elements the gas-phase refrigerant generated by the heat generation of each of the plurality of heating elements is surrounded by the partition and the inner wall of the container. Can be cooled separately.
  • the partition wall is provided in accordance with the size of the plurality of heating elements disposed in the container. Therefore, when the sizes of the plurality of heating elements are equal to each other, the surface area where the gas phase refrigerant generated by the heat of each of the plurality of heating elements contacts the container and the partition is approximately the same.
  • each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the small heat generating element, the air generated by the large heat generating element The phase refrigerant is not sufficiently cooled.
  • each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container is larger than when set. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. Thus, when the surface area is set to match the heating element with a large calorific value, the container becomes larger than necessary.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide an electron which can efficiently cool each of a plurality of heating elements with a simple configuration even if the amount of heat generation differs among the plurality of heating elements. It is providing a device.
  • the electronic device has a heat conductivity, a container for sealing a refrigerant that changes in phase between a liquid phase refrigerant and a gas phase refrigerant, and a first one of the inner surfaces of the container.
  • a first main surface facing the inner surface of the container, the substrate provided in the container, the first heat generating member outer surface, the first heat generating member outer surface and the first container inner surface The plurality of heating elements attached to the first main surface so as to face each other and immersed in the liquid phase refrigerant, and the outer peripheral portions of the plurality of heating elements are directed toward the inner surface side of the first container
  • one or more straightening vanes provided so as to extend, wherein an end side of the one or more straightening vanes on the first vessel inner face side of the one or more straightening vanes is disposed on the first vessel inner face
  • each of the plurality of heating elements can be efficiently cooled with a simple configuration even if the amount of heat generation differs among the plurality of heating elements.
  • FIG. 2 is a side transparent view showing the configuration of the electronic device according to the first embodiment of the present invention. It is a figure which shows a heat receiving area. It is a figure for demonstrating the baffle plate in the 1st modification of the electronic device in the 1st Embodiment of this invention. It is a front transparent view which shows the structure of the electronic device in the 2nd modification in the 1st Embodiment of this invention. It is a front transparent view which shows the structure of the electronic device in the 2nd Embodiment of this invention. It is a figure showing a straightening member.
  • FIG. 1 is a front transparent view showing the configuration of the electronic device 100.
  • FIG. 2 is a transparent side view showing the configuration of the electronic device 100.
  • FIG. 2 is a transparent view when the electronic device 100 is viewed in the direction of arrow a1 in FIG.
  • FIG. 3 is a figure which shows heat receiving area
  • the electronic device 100 can be used as a communication device such as a mobile phone base station or a server.
  • the vertical direction G is shown in FIG.1 and FIG.2 for convenience of explanation.
  • the electronic device 100 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
  • a heating element 130 when it is not necessary to distinguish each of the plurality of heating elements 130a to 130c, each of the plurality of heating elements 130a to 130c is referred to as a heating element 130.
  • a flow straightening plate 141 when it is not necessary to distinguish each of the plurality of flow straightening plates 141a to 141c, each of the plurality of flow straightening plates 141a to 141c is referred to as a flow straightening plate 141.
  • the container 110 will be described. As shown in FIGS. 1 and 2, the container 110 is formed in a rectangular shape. The inside of the container 110 is hollow. In addition, inside the container 110, the substrate 120, the heating element 130, and the current plate 141 are disposed. Further, inside the container 110, a refrigerant described later (Coolant: hereinafter referred to as COO) is sealed.
  • the container 110 has thermal conductivity.
  • a heat conductive member such as stainless steel or aluminum alloy can be used as a material of the container 110.
  • the inner surface of the container 110 includes a first container inner surface 115.
  • the first container inner surface 115 will be described.
  • the first container inner surface 115 is one of the inner surfaces of the container 110. More specifically, the first container inner surface 115 refers to the inner surface of the upper plate of the container 110 (the upper plate in the vertical direction G in FIGS. 1 and 2). Further, heat receiving areas A1 to A3 described later are set on the first container inner surface 115. The details of the heat receiving areas A1 to A3 will be described later. In the following description, when it is not necessary to distinguish the heat receiving areas A1 to A3, the heat receiving areas A1 to A3 are collectively referred to as the heat receiving area A.
  • the container 110 is provided with a lid.
  • the lid is a plate that constitutes one surface of the container 110 (for example, the first container inner surface 115) and is removable.
  • the container 110 is completed by combining the lid and the container 110 main body.
  • the lid is fixed to the main body of the container 110 by, for example, screwing.
  • a rubber-like packing or the like is interposed between the lid and the container 110 main body.
  • the refrigerant COO can be prevented from leaking from between the lid and the container 110 main body.
  • the refrigerant COO a material which changes its phase between a liquid-phase refrigerant (Liquid-Phase Coolant: hereinafter referred to as LP-COO) and a gas-phase refrigerant (Gas-Phase Coolant: hereinafter referred to as GP-COO) Is used.
  • LP-COO liquid-phase refrigerant
  • GP-COO gas-phase refrigerant
  • the refrigerant COO is confined in a sealed state in the container 110. More specifically, the inside of the container 110 is always maintained at the saturated vapor pressure of the refrigerant by injecting the liquid phase refrigerant LP-COO into the container 110 and thereafter evacuating.
  • FIG. 1 and 2 show a gas phase refrigerant GP-COO and a liquid phase refrigerant LP-COO enclosed in a container 110.
  • the gas phase refrigerant GP-COO is located in the gas phase space formed above the liquid surface of the liquid phase refrigerant LP-COO.
  • bubbles of the gas phase refrigerant GP-COO are generated around the heat generating body 130 by the phase change of the liquid phase refrigerant LP-COO to the gas phase refrigerant GP-COO by the heat of the heat generating body 130 described later.
  • the refrigerant COO includes all liquid phase refrigerant LP-COO and all gas phase refrigerant GP-COO in the container 110.
  • hydrofluorocarbon Hydro Fluorocarbon
  • HFE Hydro Fluoroether
  • the substrate 120 includes a first major surface 125.
  • the first main surface 125 is a surface that faces the first container inner surface 115 among surfaces constituting the outer shape of the substrate 120.
  • the substrate 120 is provided in the container 110.
  • the substrate 120 is disposed on a rib (not shown) in the container 110 and fixed in the container 110 by screwing or the like.
  • a plurality of heating elements 130a to 130c are attached to the first major surface 125.
  • the substrate 120 is, for example, a printed wiring board.
  • the printed wiring board is configured by laminating a plurality of insulating substrate and conductor wiring.
  • conductive pads for mounting electronic components are formed on the front and back surfaces of the printed wiring board.
  • the electronic component is fixed to the pad by soldering.
  • glass epoxy resin is used as a material of the substrate of the insulator.
  • the conductor wiring and the pad are formed of, for example, a copper foil.
  • each of the plurality of heating elements 130a, 130b, 130c includes a first heating element outer surface 131a, 131b, 131c.
  • first heating element outer surface 131a, 131b, 131c is used as the first heating element outer surface 131. It is called.
  • the outer peripheral shape of the first heat generating body outer surface 131 is a square shape. Irregularities may be formed on the first heat generating body outer surface.
  • a plurality of heating elements 130 are attached to the substrate 120.
  • the plurality of heating elements 130 are attached to the substrate 120 such that the first heating element outer surface 131 and the first container inner surface 115 face each other.
  • the plurality of heating elements 130a, 130b and 130c are attached to the first major surface 125 by soldering or the like.
  • the plurality of heating elements 130a, 130b and 130c are immersed in the liquid phase refrigerant LP-COO.
  • the calorific value of each of the plurality of heating elements 130a, 130b and 130c may be the same or different.
  • the heating element 130 is an electronic component that emits heat when operated, and is, for example, a central processing unit (CPU) or an integrated circuit (MCM).
  • the heating element 130 is a cooling target of the electronic device 100.
  • the rectifying plate 141 will be described.
  • the straightening vane 141 is a flat plate.
  • the baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side.
  • the first container is provided from both ends of each heating element 130 in a direction parallel to the first main surface 125 of the substrate 120 as shown in FIG. It is provided to extend toward the inner surface 115 side.
  • the rectifying plate 141 is attached to the heating element 130 by, for example, an adhesive. Further, the current plate 141 is disposed along the outer periphery of the first heat generating body outer surface 131.
  • the straightening vanes 141 are disposed along at least sides of the outer periphery of the first heat generating body outer surface 131 facing each other. Further, the straightening vane 141 has rigidity to such an extent that it does not bend due to the flow of the refrigerant COO.
  • the rectifying plate 141 is an example of a first rectifying plate.
  • each of the flow control plates 141 has an end portion on the first container inner surface 115 side (the upper plate in the vertical direction G in FIGS. 1 and 2) It is disposed close to the one container inner surface 115.
  • the end on the first container inner surface 115 side of the rectifying plate 141 is disposed close to the first container inner surface 115, for example, from the end on the first container inner surface 115 side of the rectifying plate 141.
  • the shortest length to the inner surface 115 of the container is a few mm to a few cm.
  • Examples of the material of the rectifying plate 141 include resin materials (for example, acrylonitrile butadiene styrene (referred to as Acrylonitrile Butadiene Styrene) copolymer synthetic resin (referred to as ABS resin)) and metal materials (for example, aluminum and aluminum alloy). Used.
  • resin materials for example, acrylonitrile butadiene styrene (referred to as Acrylonitrile Butadiene Styrene) copolymer synthetic resin (referred to as ABS resin)
  • metal materials for example, aluminum and aluminum alloy.
  • the rectifying plate 141 can receive the heat of the heating element 130 and transfer it to the liquid phase refrigerant LP-COO.
  • FIG. 3 is a view showing a plurality of heat receiving areas A1 to A3 set on the first container inner surface 115. As shown in FIG. More specifically, FIG. 3 is a view showing the heat receiving areas A1, A2 and A3 on the first container inner surface 115. As shown in FIG. As shown in FIG. 3, each of the heat receiving areas A1 to A3 is an area set on the first container inner surface 115. Further, each of the plurality of heat receiving areas A1 to A3 is provided separately from each other.
  • Each of the heat receiving areas A1 to A3 has an end on the first container inner surface 115 side of the rectifying plate 141 provided on the same heating element 130 among the inner surfaces of the container 110 perpendicular to the first container inner surface 115 It is the area
  • the heat receiving area A1 will be specifically described with reference to FIG.
  • the side C1 and the side C2 are projected in the direction perpendicular to the first container inner surface 115 of the end side on the first container inner surface 115 side of each of the pair of rectifying plates 141a provided on the same heating element 130a. It is a projection line that appears on the first container inner surface 115 at the same time.
  • M1 and M2 indicate the end of the side C1.
  • N1 and N2 indicate the end of the side C2.
  • the connecting line D1 is a line connecting M1 and N1
  • the connecting line D2 is a line connecting M2 and N2.
  • the heat receiving area A1 is an area surrounded by the sides C1 and C2 and the connecting lines D1 and D2. That is, when the heat receiving area A1 is projected in the direction perpendicular to the first container inner surface 115, the end side on the first container inner surface 115 side of each of the pair of flow straightening plates 141a provided in the heating element 130a. It is a region inside the figure formed by connecting the projection lines (sides C1, C2) appearing on the first container inner surface 115 with M1, M2, N1, N2 at the shortest distance.
  • the heat receiving area A1 projects the end side of each of the pair of flow straightening plates 141a provided on the heating element 130a on the first container inner surface 115 side in a direction perpendicular to the first container inner surface 115 It is an area sandwiched between projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the time.
  • the heat receiving areas A2 and A3 are also set similarly to the heat receiving area A1.
  • the end side on the first container inner surface 115 side of each of the plurality of rectifying plates 141 provided in the heating element 130 is projected in the direction perpendicular to the first container inner surface 115 It is an area inside the figure formed by connecting the projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the shortest distance.
  • the heat receiving area A projects the end side on the first container inner surface 115 side of each of the pair of flow straightening plates 141 provided in the heating element 130 in the direction perpendicular to the first container inner surface 115 It is an area sandwiched between projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the time.
  • the end side on the first container inner surface 115 side of the rectifying plate 141 provided on the same heating element 130 is the first container An area surrounded by an encircling line (a line connecting M 1, M 2, N 1, N 2) set along a projection line appearing on the first container inner surface 115 when projected in a direction perpendicular to the inner surface 115 It is an example.
  • Each heat receiving area A is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130.
  • the heat receiving areas A1, A2 and A3 shown in FIG. 3 are set to receive the heat of the heating elements 130a, 130b and 130c, respectively.
  • the areas S1, S2 and S3 of the heat receiving areas A1, A2 and A3 are set in accordance with the amounts of heat generation of the plurality of heating elements 130a, 130b and 130c, respectively.
  • the area of the heat receiving region S1 is set to be larger as the amount of heat generation of the heating element 130a shown in FIG. 3 is larger.
  • the smaller the calorific value of the heat generating body 130a the smaller the area of the heat receiving region S1. The details of the setting of the area of the heat receiving area will be described in the description of the method of assembling the electronic device 100 described later.
  • the configuration of the electronic device 100 has been described above.
  • the container 110, the substrate 120, the plurality of heating elements 130a to 130c, the pair of rectifying plates 141a to 141c, and the refrigerant COO are prepared.
  • the substrate 120, the heat generating members 130a to 130c, and the pair of flow regulating plates 141a to 141c are not disposed inside the container 110. Further, the refrigerant COO is not enclosed in the container 110.
  • the heating elements 130a to 130c are attached to the substrate 120 by soldering or the like.
  • the calorific value of each of the heating elements 130a to 130c in a unit time is previously determined for each heating element 130.
  • the calorific value of the heating element 130 is the calorific value at the rating of the heating element 130 (hereinafter referred to as the rated calorific value).
  • the pair of rectifying plates 141 is attached to the heating element 130 and the rectifying plate 141 fixes the substrate 120 attached to the heating element 130 to the container.
  • the pair of flow straightening plates 141 are attached to the outer peripheral portion of the heat generating body 130 by adhesion with an adhesive or the like.
  • the direction attached to each heat generating body 130 of a pair of flow straightening plates 141 is determined based on the emitted-heat amount of the heat generating body 130 as follows.
  • the calorific value of the heating elements 130a, 130b and 130c is H1, H2 and H3.
  • the areas of the heat receiving areas A1, A2 and A3 are S1, S2 and S3.
  • each of the areas S1, S2, and S3 is referred to as S.
  • the ratio of the areas S1, S2 and S3 is set to be equal to the ratio of H1, H2 and H3.
  • the relationship between the calorific value of each of the plurality of heating elements 130 and the area of each of the plurality of heat receiving regions A is a linear proportional relationship.
  • the area of each of the plurality of heat receiving areas A is set to increase in accordance with the increase in the amount of heat generation of each of the plurality of heat generating members 130.
  • the actual heat receiving area area (SA) was determined from the ratio to the above-mentioned heat generation amount due to the displacement of the mounting angle of the straightening vane 141, the deviation of the length of the straightening vane 141 from the design value, etc. It may fluctuate from the area (S) of the heat receiving area.
  • the value of SA is preferably 90 to 110% of the value of S. That is, the relationship between the area (SA) of the heat receiving area and the area (S) of the heat receiving area determined from the ratio of the actual heat receiving area to the area of the heat receiving area It is preferable that it is a real number between
  • the length of the width of the rectifying plates 141a to 141c (the length of the rectifying plate 141 in the direction perpendicular to the vertical direction G in FIG. 2) is equal.
  • the lengths of the projection lines corresponding to the flow regulating plates 141a to 141c provided in each of the heating elements 130a to 130c are equal to one another. Therefore, if the areas S1, S2 and S3 of the thermal areas A1, A2 and A3 are determined, L1, L2 and L3 (the distance between the projection line of the pair of rectifying plates 141 and the first container inner surface 115 shown in FIG. The length of) is decided.
  • the mounting direction of the pair of rectifying plates 141a to 141c with respect to the heating element 130 can be determined. More specifically, the angles (referred to as attachment angles) at which each of the pair of current plates 141a to 141c is attached to each of the heat generating members 130a to 130c can be determined in accordance with L1, L2, and L3.
  • each of the pair of rectifying plates 141a to 141c is adjusted to each of the heating elements 130a to 130c.
  • the substrate 120 having the rectifying plate 141 attached to the heating element 130 is fixed in the container 110 by screwing or the like. Then, the container 110 is covered. Thereby, the inside of the container 110 becomes an enclosed space.
  • the lid of the container 110 is formed with a hole for injecting the refrigerant COO (not shown).
  • the liquid phase refrigerant LP-COO is injected into the inside of the container 110 through the hole for injecting the refrigerant COO in the container 110.
  • the liquid phase refrigerant LP-COO is injected into the container 110 until the heating element 130 is immersed in the refrigerant LP-COO.
  • the liquid phase refrigerant LP-COO is injected into the container 110 and then evacuated using a pump (not shown) or the like to maintain the inside of the container 110 always at the saturated vapor pressure of the refrigerant.
  • the hole for injecting the refrigerant COO is closed.
  • the refrigerant COO is sealed in the container 110.
  • the pressure in the container 110 becomes equal to the saturated vapor pressure of the refrigerant COO, and the boiling point of the refrigerant COO sealed in the container 110 becomes around room temperature.
  • the refrigerant COO, the substrate 120, the plurality of heating elements 130a to 130c, and the rectifying plates 141a to 141c are disposed in the container 110.
  • FIGS. 1 to 3 the operation of the electronic device 100 will be described using FIGS. 1 to 3.
  • the refrigerant COO the refrigerant COO
  • the substrate 120 the plurality of heating elements 130a to 130c
  • the plurality of heating elements 130a to 130c and in the container 110 as shown in FIGS. It is assumed that the rectifying plates 141a to 141c are disposed.
  • the heating element 130 When the electronic device 100 is activated, the heating element 130 starts operating. Thereby, the heating element 130 generates heat. When the heating element 130 generates heat, the heat of the heating element 130 is transferred to the liquid phase refrigerant LP-COO. Due to the heat from each of the heat generating members 130a to 130c, a part of the liquid-phase refrigerant LP-COO in contact with each of the heat generating members 130a to 130c undergoes a phase change to a gas phase refrigerant GP-COO. In this manner, latent heat exchange is performed around the surface of the heat generating element 130, and as shown in FIG. 1, the bubbles of the gas phase refrigerant GP-COO are generated. Note that FIG.
  • the heat (latent heat) generated by this phase change dissipates the heat generated by the heating element 130. Thereby, the heating element 130 is cooled.
  • the bubbles of the gas phase refrigerant GP-COO are generated in the vicinity of the heating element 130 and then go upward in the vertical direction G, pass through the liquid surface of the liquid phase refrigerant LP-COO, and go further upward in the vertical direction G .
  • the bubbles increase as the water surface is approached.
  • the gas-phase refrigerant GP-COO which has undergone a phase change from the liquid-phase refrigerant LP-COO by the heat of the heating element 130 is cooled by coming into contact with the inner wall surface of the container 110, the phase is changed again to the liquid-phase refrigerant LP-COO. Change.
  • the liquid-phase refrigerant LP-COO descends in the container 110 downward in the vertical direction G, accumulates on the lower side of the container 110 in the vertical direction G, and is used again to cool the heating element 130.
  • a pair of rectifying plates 141 a, 141 b and 141 c are attached to the respective heating elements 130 a, 130 b and 130 c. Therefore, the gas-phase refrigerant GP-COO changed in phase from the liquid-phase refrigerant LP-COO by the heat of the heating elements 130a, 130b, 130c is applied to the pair of rectifying plates 141a, 141b, 141c provided for each heating element 130. Ascend in the sandwiched space. For example, the gas-phase refrigerant GP-COO generated on the surface of the heating element 130a ascends in the space sandwiched by the pair of flow straightening plates 141a. The same applies to the gas-phase refrigerant GP-COO generated on the surfaces of the heating elements 130b and 130c.
  • the heat receiving areas A1, A2 and A3 are areas surrounded by the encircling lines set along the projection lines of the pair of rectifying plates 141a, 141b and 141c and the first container inner surface 115 as described above. .
  • the gas phase refrigerant GP-COO generated in each of the plurality of heating elements 130a, 130b and 130c rises in the space sandwiched by the pair of rectifying plates 141a, 141b and 141c, and then receives the heat receiving area A1. , A2 and A3 respectively.
  • the heat generated in each of the heating elements 130 is transferred to the vessel 110 within the range of each of the heat receiving areas A and is cooled.
  • the gas-phase refrigerant GP-COO containing the heat generated by the heating element 130a is transferred to the vessel 110 and cooled within the range of the heat receiving area A1.
  • the gas phase refrigerant GP-COO generated in each of the plurality of heat generating members 130 is phase-changed to liquid phase refrigerant LP-COO by being cooled by the container 110 as described above. Then, the phase-changed liquid-phase refrigerant LP-COO descends in the direction in which the liquid-phase refrigerant LP-COO is stored (downward in the vertical direction G in FIGS. 1 and 2), and the heating element 130 again Used for cooling.
  • the outer peripheral shape of the first heat generating body outer surface 131 is square.
  • the outer peripheral shape of the first heat generating body outer surface 131 may be a circle, an ellipse, or a convex polygon other than a square.
  • the straightening vane 141 may be disposed along the entire circumference of the outer periphery of the first heat generating body outer surface 131.
  • the heat receiving area A at this time is an area inside the figure surrounded by the projection line.
  • the shape of the heat receiving area A is a shape similar to the outer peripheral shape of the first heat generating body outer surface 131.
  • the shape of the heat receiving region A corresponding to the heat generating body 130 is similar to the outer peripheral shape of the first heat generating body outer surface 131 It is elliptical.
  • the heat receiving area A may have the same area as the figure surrounded by the projection line, and may not have a shape similar to the outer peripheral shape of the first heat generating body outer surface 131. That is, the heat receiving area A may have the same area as the figure surrounded by the projection line, and may have a shape whose aspect ratio is different from the shape of the first heat generating body outer surface 131.
  • the flow straightening plates 141 are plural and the outer periphery of the first heat generating body outer surface 131 It may be provided along only a part.
  • the plurality of straightening vanes 141 are provided along 50% or more of the outer circumference of the first heat generating body outer surface 131, and the outer circumference of the gap between any two straightening vanes 141 adjacent on the outer circumference. It is necessary to be arranged so that the lengths measured along are substantially equal to each other.
  • each of the three first straightening vanes 141 is spaced apart from each other by one side of the regular hexagon.
  • the side provided with the straightening vane 141 and the side not provided with the straightening vane 141 are alternately set.
  • the heat receiving area A can be the area formed inside the figure obtained by connecting the ends of the projection lines by the shortest distance.
  • the heat receiving area A is an area inside the figure formed by connecting the ends of the arcs at the shortest distance. , Heat receiving area A.
  • the heat receiving area A can be the area inside the circle including a plurality of arcs.
  • the electronic device 100 includes the container 110, the substrate 120, the plurality of heating elements 130, and the rectifying plate 141.
  • the container 110 has thermal conductivity, and encloses the refrigerant COO which changes phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO.
  • the first substrate 120 has a first major surface 125 facing the first container inner surface 115 which is one of the inner surfaces of the container 110.
  • the first substrate 120 is provided in the container 110.
  • Each of the plurality of heating elements 130 has a first heating element outer surface 131.
  • the plurality of heat generating members 130 are attached to the first main surface 125 so that the first heat generating member outer surface 131 and the first container inner surface 115 face each other, and are immersed in the liquid phase refrigerant LP-COO.
  • the baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. Further, the number of the straightening vanes 141 is one or more.
  • the area of each of the heat receiving areas which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130, increases the calorific value of each of the plurality of heating elements 130 It is set to increase according to.
  • the heat receiving area is the first when the end side of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115. Is an area surrounded by an encircling line set along a projection line appearing on the inner surface 115 of the container.
  • the area of each of the heat receiving areas A which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130 It is set to increase as the amount of heat generation increases. Therefore, according to each calorific value of a plurality of heating elements 130, a plurality of heat receiving areas A can be set. Thereby, the area of each of the plurality of heat receiving areas A can be set so that the heat generated by each heating element 130 can be received without excess or deficiency. Therefore, the total area of the plurality of heat receiving areas A can be adjusted to the necessary minimum. Therefore, since the area of the container inner surface 115 can be set to the necessary minimum, the size of the container 110 can be adjusted to the minimum required size.
  • each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container will be larger than in the case of setting. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. As described above, when each of the surface areas is set according to the heating element having a large calorific value, there is a problem that the container becomes larger than necessary.
  • each of the plurality of heat receiving areas A can be set according to each amount of heat generation of the plurality of heat generating members 130
  • the area of the heat receiving area A set in the body 130 can be set smaller for each heating element 130 according to the amount of heat generation.
  • the area of the heat receiving area A set for the heating element 130 with a large amount of heat can be set large for each heating element 130 according to the amount of heat generation.
  • the heat receiving region A can be set for each heating element 130. Therefore, as described above, the area of the first container inner surface 115 in which the heat receiving area A is set can be set to the necessary minimum. As a result, the size of the container 110 can be adjusted to the necessary minimum size.
  • the plurality of heat receiving regions A can be set respectively in accordance with the respective calorific values of the plurality of heating elements 130, and the area of the first container inner surface 115 is set to the necessary minimum.
  • the size of the container 110 can be adjusted to the necessary minimum size. Therefore, the plurality of heating elements 130 can be efficiently cooled with the container 110 of the minimum necessary size.
  • the current plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. That is, the current plate 141 is provided to the heat generating body 130.
  • the configuration (partition wall) related to the rectifying plate 141 is provided to the configuration (heat dissipation member) related to the container 110. For this reason, unless the structure (heat dissipation member) related to the container 110 is reworked, the arrangement place and the like of the heating element on the ceramic circuit board can not be changed.
  • the rectifying plate 141 is provided to the heating element 130. Therefore, the arrangement location and the like of the heating element 130 on the substrate 120 can be changed without recreating the container 110. For this reason, compared with the technique of patent document 1, it can be set as a simple structure.
  • the electronic device 100 has a plurality of heating elements 130 with a simple configuration even if the amount of heat generation differs among the plurality of heating elements 130. Can be cooled efficiently.
  • the plurality of heat receiving areas are provided apart from one another.
  • the heat contained in the specific heat receiving area is suppressed from moving to the adjacent heat receiving area. Therefore, the amount of heat contained in each of the plurality of heat receiving regions corresponds to the amount of heat generation of each of the plurality of heat generating members 130. As a result, the electronic device 100 can cool each of the plurality of heating elements 130 more efficiently.
  • the end on the first container inner surface 115 side of at least a part of the one or more rectifying plates 141 is disposed close to the first container inner surface 115 Ru.
  • the end on the first container inner surface 115 side of the rectifying plate 141 being disposed close to the first container inner surface 115 means, for example, the end portion on the first container inner surface 115 side of the rectifying plate 141
  • the first container inner surface 115 has a shortest length of several mm to several cm.
  • the gas-phase refrigerant GP-COO generated from the heating element 130 flows along the rectifying plate 141 to a position closer to the first container inner surface 115. For this reason, the gas phase refrigerant GP-COO generated from the heating element 130 more reliably contacts the heat receiving region set on the first container inner surface 115. Therefore, the amount of heat contained in each of the plurality of heat receiving regions corresponds to the amount of heat generation of each of the plurality of heat generating members 130. As a result, the electronic device 100 can cool each of the plurality of heating elements 130 more efficiently.
  • FIG. 4 is a diagram for explaining the electronic device 100A.
  • the electronic device 100A includes a container 110, a substrate 120, a plurality of heating elements 130a, 130b, and 130c, and a plurality of rectifying plates 141a, 141b, and 141c.
  • the configuration of the electronic device 100A and the electronic device 100 will be compared.
  • the plurality of straightening vanes 141 have the rigidity to such an extent that they do not bend due to the flow of the refrigerant COO.
  • the electronic device 100A is different from the electronic device 100 in that the plurality of straightening vanes 141 are formed of elastic members and have elasticity so as to be bent by the flow of the refrigerant COO. The above is the description of the configuration of the electronic device 100A.
  • the operation of the electronic device 100A is equivalent to the operation of the electronic device 100.
  • the operation is different when the gas-phase refrigerant GP-COO generated in the vicinity of the heating element 130 ascends the inside of the pair of rectifying plates 141.
  • each of the pair of straightening vanes 141 is a bubble or liquid phase of gas-phase refrigerant GP-COO generated in the vicinity of the heating element 130.
  • each of the pair of flow straightening plates 141 is bent in the direction of the arrow p1 in FIG. 4 (the direction from the central portion of the heat generating member 130 toward the outer peripheral portion of the heat generating member 130).
  • the length L of the interval of the straightening vanes 141 provided on the same heat generating body 130 is further increased by the amount of deflection of the straightening vanes 141 ( ⁇ shown in FIG. 4). That is, the flow straightening plate 141 can be bent in the direction to widen the heat receiving region A according to the amount of air bubbles of the gas phase refrigerant GP-COO.
  • each of several heat receiving area A mutually overlaps. It is set not to.
  • the amount of bubbles of the gas-phase refrigerant GP-COO increases as the amount of heat generation of the heating element 130 increases. Further, as the amount of bubbles of the gas phase refrigerant GP-COO increases, the force of the bubbles of the gas phase refrigerant GP-COO and the flow of the liquid phase refrigerant LP-COO acting on the rectifying plate 141 increases. That is, as the amount of heat generation of the heating element 130 increases, the force of the gas phase refrigerant GP-COO acting on the rectifying plate 141 increases, and the above-mentioned ⁇ becomes longer.
  • the rectifying plate 141 is formed of an elastic member. For this reason, it is possible to bend the straightening vane 141 in the direction to widen the heat receiving region A according to the bubble amount of the gas phase refrigerant GP-COO. As a result, the heat receiving region A can be expanded according to the amount of bubbles of the gas phase refrigerant GP-COO.
  • FIG. 5 is a schematic view showing the configuration of the electronic device 100B.
  • the components equivalent to the components shown in FIGS. 1 to 4 are given the same reference numerals as the symbols shown in FIGS. 1 to 4.
  • the electronic device 100B includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
  • the electronic device 100B and the electronic device 100 are compared.
  • the rectifying plate 141 is directly attached to the heating element 130.
  • the rectifying plate 141 is different from the electronic device 100 in that the rectifying plate 141 is attached to the heating element 130 via the base portion 142.
  • the electronic device 100B includes rectifying members 140a to 140c having rectifying plates 141a to 141c and base portions 142a to 142c.
  • the rectifying members 140a to 140c are referred to as the rectifying member 140 when it is not necessary to distinguish them.
  • the base portions 142a to 142c are referred to as the base portion 142.
  • the base portion 142 will be described. As shown in FIG. 5, the base portion 142 is provided on a surface of the outer surface of the heating element 130 facing the first container inner surface 115.
  • the base portion 142 is fixed on the heating element 130 by, for example, an adhesive.
  • a rectifying plate 141 is attached to the base portion 142.
  • the straightening vane 141 is fixed to the base portion 142 by an adhesive.
  • the base portion 142 may be integrally formed with the one or more rectifying plates 141.
  • the base portion 142 may have thermal conductivity. Thus, the heat of the heating element 130 can be received by the base portion 142 to cool it.
  • a resin material for example, an ABS resin
  • a metal material for example, aluminum or an aluminum alloy
  • the rectifying plate 141 is directly fixed to the heating element 130 with an adhesive, but in the electronic device 100B, the base portion 142 of the rectifying member 140 is fixed to the heating element 130 with an adhesive.
  • the operation of the electronic device 100B is similar to the operation of the electronic device 100.
  • FIG. 6 is a front transparent view showing the configuration of the electronic device 200.
  • FIG. 7 is a figure which shows the structure of 140 A of flow adjustment members mentioned later.
  • the electronic device 200 includes a container 110, a substrate 120, a plurality of heating elements 130a, 130b, 130c, and a plurality of rectifying members 140Aa, 140Ab, 140Ac.
  • the electronic device 100 ⁇ / b> B and the electronic device 200 are compared with reference to FIGS. 5, 6 and 7.
  • the rectifying members 140a to 140c include rectifying plates 141a to 141c and base portions 142a to 142c.
  • the rectifying members 140Aa to 140Ac include rectifying plates 141a to 141c, base portions 142a to 142c, and hinges 143a to 143c.
  • the rectifying plates 141a to 141c are connected to the base portions 142a to 142c via the hinges 143a to 143c.
  • the electronic device 100B and the electronic device 200 are different from each other in these points.
  • each of the flow regulating members 140Aa to 140Ac is referred to as a flow regulating member 140A.
  • each of the hinges 143a to 143c is referred to as a hinge 143.
  • the hinge 143 will be described. As shown in FIGS. 6 and 7, the hinge 143 is attached between the base portion 142 and the straightening vane 141.
  • the hinge 143 holds the straightening vane 141 such that the straightening vane 141 can rotate around the connection portion between the hinge 143 and the straightening vane 141. More specifically, the hinge 143 connects the straightening vane 141 and the base portion 142 so that the straightening vane 141 can rotate. At this time, the current plate 141 can rotate around the hinge 143. Further, the hinge 143 holds the straightening vane 141 while maintaining the angle of the straightening vane 141 with respect to the base portion 142 when the rotation of the straightening vane 141 is stopped.
  • a hinge of free stop specification can be used.
  • the hinge of a free stop specification means the hinge which can fix and fix the angle between the members connected with the said hinge to arbitrary angles.
  • the angle between the current plate 141 and the base portion 142 can be fixed to an arbitrary angle, and the current plate 141 can be held on the base portion 142.
  • a material of the hinge 143 for example, a metal material (for example, aluminum, aluminum alloy, stainless steel) is used.
  • LAMP torque hinge HG-TS type manufactured by Sugatsune Industrial Co., Ltd. can be used as the hinge of the free stop specification.
  • the electronic device 200 has been described above.
  • the method of manufacturing the electronic device 200 is the same as the sealing procedure (second manufacturing procedure) of the refrigerant COO of the electronic device 100.
  • the method of manufacturing the electronic device 200 differs in the method of manufacturing the electronic device 100 and the mounting procedure (first manufacturing procedure).
  • the pair of rectifying plates 141a to 141c are mounted on the heating elements 130a to 130c.
  • the following procedure (the first modified example of the mounting procedure) is performed instead of the above procedure (the mounting procedure of the rectifying plate 141).
  • the flow straightening member 141 prepares the flow straightening member 140A connected to the base portion 142 by the hinge 143. Thereafter, when the end side of the pair of flow straightening plates 141 on the first container inner surface 115 side is projected in the direction perpendicular to the first container inner surface 115, the distance L between the projection lines appearing on the first container inner surface 115 The flow straightener 141 connected to each of the hinges 143 is rotated about the hinges 143 in accordance with the mounting angle set accordingly.
  • the rectifying plate 141 can be set such that the ratio of each of the areas S1 to S3 of the regions A1 to A3 surrounded by the surrounding lines is equal to the ratio of H1, H2 and H3.
  • the straightening vane 141 at the time when the hinge 143 is attached to the heating element 130 is a straightening vane 141 'shown by a dotted line in FIG. Further, it is assumed that the length of the side D of the heat receiving area A is L shown in FIG.
  • the flow straightening plate 141 is a projection line that appears on the first container inner surface 115 when the end of the flow straightening plate 141 on the first container inner surface 115 side is projected in the direction perpendicular to the first container inner surface 115. 7 is rotated from the position of the straightening vane 141 ′ shown in FIG.
  • the rectifying plate 141 is rotatably provided centering on the connection portion between the rectifying plate 141 and the hinge 143 so that the area of the heat receiving area can be changed.
  • both the flow straightening plates 141 provided in the heat generating body 130 are rotated, at least one of the flow straightening plates 141 may be rotated.
  • the operation of the electronic device 200 is the same as the description of the electronic device 100.
  • the electronic device 200 is provided such that at least a part of one or more rectifying plates can change the area of the heat receiving area A within a predetermined range.
  • the area of the heat receiving area A can be easily changed.
  • the calorific value of the heat generating body 130 changes after the manufacture of the electronic device 200 due to a change in the use mode assumed at the time of the manufacture of the electronic device 200, for example In the electronic device 200, the area of the heat receiving area A can be changed without removing the rectifying plate 141 from the heating element 130.
  • the electronic device 200A includes a container 110, a substrate 120, a plurality of heating elements 130, and a plurality of flow control members 140.
  • the electronic device 200A and the electronic device 200 are compared. As illustrated in FIG. 8, the electronic device 200 ⁇ / b> A differs from the electronic device 200 in that the electronic device 200 ⁇ / b> A further includes a temperature measurement unit 151, a drive control unit 152, and a motor 153.
  • the temperature measurement unit 151 will be described. As shown in FIG. 8, the temperature measurement unit 151 is attached to the heating element 130. In addition, the temperature measurement unit 151 is electrically connected to the drive control unit 152. The temperature measurement unit 151 measures the temperature of the heating element 130, and outputs information indicating the measurement result to the drive control unit 152. In addition, the temperature measurement unit 151 is attached to each of the plurality of heating elements 130. For example, a small temperature sensor or the like can be used for the temperature measurement unit 151.
  • the drive control unit 152 is electrically connected to the temperature measurement unit 151 and the motor 153.
  • the drive control unit 152 is provided outside the container 110. However, the drive control unit 152 may be provided in the container 110.
  • the drive control unit 152 can control the drive of the motor 153. More specifically, the drive control unit 152 controls the drive of the motor 153 based on the information indicating the measurement result from the temperature measurement unit 151.
  • the rated temperature corresponding to each of the plurality of heating elements 130 is stored in advance.
  • the rated temperature here is a temperature corresponding to the rated calorific value. Specifically, the rated temperature is obtained by dividing the heat capacity of the heat generating body 130 from the rated heat generation amount of the heat generating body 130.
  • the configuration of the electronic device 200A has been described above.
  • the temperature measurement unit 151 and the drive control unit 152 are attached. Further, after fixing the substrate 120 to the container 110, the connection wiring between the temperature measurement unit 151 and the motor 153 and the drive control unit 152 is drawn out from the inside of the container 110, and the temperature measurement unit 151 and the drive control unit 152 Between the drive control unit 152 and the motor 153 are electrically connected. In addition, in order to draw out the connection wiring between the temperature measurement unit 151, the motor 153, and the drive control unit 152 from the inside of the container 110 to the outside, fine holes are formed in the container 110 in advance. This hole is sealed using a sealing member (for example, epoxy resin) before the refrigerant COO is sealed after the temperature measurement unit 151, the motor 153, and the drive control unit 152 are disposed in the container 110.
  • a sealing member for example, epoxy resin
  • the operation of the electronic device 200A is basically the same as that of the electronic device 100 and the electronic device 200.
  • the electronic device 200A is different in that the rectifying plate 141 is rotated by the driving force of the motor 153 during operation.
  • the temperature measurement unit 151 outputs information indicating the temperature (measurement result) of each of the plurality of heating elements 130 to the drive control unit 152 after each of the plurality of heating elements 130 is operated.
  • the drive control unit 152 rotates the rectifying plate 141 based on the measurement result of the temperature measurement unit 151. That is, first, when the measured temperature of the heating element 130 exceeds each rated temperature, the drive control unit 152 first calculates the value (temperature increase value) of the measured temperature exceeding the rated temperature. The drive control unit 152 multiplies the temperature increase value by the heat capacity of the heating element 130 to calculate the increase amount of the calorific value. The drive control unit 152 resets the area of the heat receiving area based on the sum of the rated heat generation amount and the increase amount of the heat generation amount. The drive control unit 152 rotates the rectifying plate 141 in accordance with the area of the heat receiving area A after resetting.
  • the drive control unit 152 resets the heat receiving area A of the pair of rectifying plates 141 in a direction (p3 in FIG. 8) to widen the distance between the tips of the pair of rectifying plates 141 via the motor 153. Rotate to fit the area. Thereby, the area of the heat receiving area A corresponding to the heating element 130 operating above the rated temperature can be enlarged based on the measurement result of the temperature measuring unit 151.
  • Each of the plurality of heat receiving regions A is set so as not to overlap each other even if the length L of the interval between the straightening plates 141 provided on the same heating element 130 becomes long by rotating the straightening vanes 141. ing.
  • the area of the heat receiving region A in contact with the gas-phase refrigerant GP-COO generated from the vicinity of the heat generating element 130 whose heat generation amount has rapidly increased is increased. That is, since the gas phase refrigerant GP-COO generated by the heat of the heating element 130 whose temperature has rapidly risen can be received in the wider heat receiving region A, the gas phase refrigerant GP generated by the heat of the heating element 130 whose temperature is rapidly rising. -COO can be cooled more quickly.
  • the rotation angles at this time are set in advance so as not to overlap each other among the plurality of heat receiving regions A.
  • the drive control unit 152 When the measured temperature of the heating element 130 does not exceed each rated temperature, the drive control unit 152 outputs, to the motor 153, an instruction signal to drive the rectifying plate 141 to return to the original position.
  • the motor 153 rotates the pair of rectifying plates 141 by a predetermined angle in a direction (a reverse direction of p3 in FIG. 8) to narrow the distance between the tip portions of the pair of rectifying plates 141 according to an instruction signal of the drive control unit 152. Let Thereby, the baffle plate 141 returns to the original position.
  • the drive control unit 152 is shown to rotate both of the pair of rectifying plates 141, but only one rectifying plate 141 may be rotated.
  • the electronic device 200A includes the temperature measurement unit 151 and the drive control unit 152.
  • the temperature measurement unit 151 measures the temperatures of the plurality of heating elements 130.
  • the drive control unit 152 rotates at least a part of the one or more rectifying plates 141 around the end on the heating element 130 side. Further, the drive control unit 152 rotates each part of the rectifying plate 141 based on the measurement result of the temperature measurement unit 151.
  • each part of the rectifying plate 141 is rotated based on the measurement result of the temperature measurement unit 151. For this reason, even if the calorific value of the heat generating element 130 changes temporarily temporarily, the area of the heat receiving area can be temporarily changed. As a result, in the electronic device 200A, even when the calorific value of the heating element 130 changes temporarily and rapidly, the plurality of heating elements 130 having different temperatures can be efficiently cooled.
  • FIG. 9 is a front transparent view showing the configuration of the electronic device 300.
  • FIG. 10 is a perspective view showing a configuration of a flow control member 140C described later.
  • the electronic device 300 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying members 140Ca to 140Cc.
  • a flow regulating member 140C when it is not necessary to distinguish the flow regulating members 140Ca to 140Cc, each of the flow regulating members 140Ca to 140Cc is referred to as a flow regulating member 140C.
  • the electronic device 300 and the electronic device 100 are compared.
  • the electronic device 300 differs from the electronic device 100 in that it includes rectifying members 140Ca to 140Cc instead of the rectifying plates 141a to 141c.
  • FIG. 10 is a perspective view showing the configuration of the rectifying member 140C.
  • the straightening member 140C includes a straightening vane 141 and a connection plate 147.
  • the rectifying plate 141 in the electronic device 200 has the same configuration, connection relation, and function as the rectifying plate 141 in the electronic device 100.
  • connection plate 147 will be described.
  • the connection plate 147 is an example of a second straightening vane.
  • the connecting plate 147 is provided so as to face each other between the pair of flow regulating plates 141 as shown in FIG. Further, the connecting plate 147 is provided along the outer periphery of the first heat generating body outer surface 131 of the heat generating body 130, and connects the opposite sides of each of the pair of flow straightening plates 141. Further, as shown in FIG. 10, the connection plate 147 is attached to the outer peripheral portion of the heat generating body 130 in the same manner as the flow control plate 141.
  • the outer peripheral shape of the heat generating body 130 is, for example, a rectangular shape such as a rectangle or a square.
  • the heat receiving area A is the area inside the square.
  • the end side of the straightening plate 141 provided on the same heat generating member 130 on the first container inner surface 115 side is perpendicular to the first container inner surface 115. It is an example of the area
  • connection plate 147 for example, a resin material (for example, an ABS resin) or a metal material (for example, aluminum or an aluminum alloy) is used as in the case of the rectifying plate 141.
  • a resin material for example, an ABS resin
  • a metal material for example, aluminum or an aluminum alloy
  • the configuration of the electronic device 300 has been described above.
  • connection plates 147 In addition, in attachment of the baffle plate 141, as shown in FIG. 10, between the end parts of the baffle plate 141 is connected with an adhesive agent by two connection plates 147. After the flow straightening plate 141 and the connection plate 147 were correctly attached to the heating element 130, the flow straightening plate 141 and the connection plate 147 were attached to the heating element 130. The substrate 120 is fixed in the container 110. The subsequent steps are the same as the method of manufacturing the electronic device 100.
  • the operation of the electronic device 300 will be described.
  • the operation of the electronic device 300 and the operation of the electronic device 100 are compared.
  • the gas-phase refrigerant GP-COO rises in the space between the pair of rectifying plates 141 after being generated in the vicinity of the heating element 130.
  • the gas-phase refrigerant GP-COO ascends in the space enclosed by the rectifying plate 141 and the connecting plate 147.
  • the electronic device 300 further includes the second rectifying plate (connection plate 147).
  • the second straightening vanes (connection plate 147) are provided so as to face each other between the pair of first straightening vanes (straightening vanes 141), and the outside of each of the pair of first straightening vanes (straightening vanes 141) is provided.
  • opposite sides facing in a direction parallel to the pair of projection lines are connected in a direction perpendicular to the pair of projection lines.
  • each of the first straightening vane (straightening vane 141) and the second straightening vane (connection plate 147) on the first container inner surface 115 side is perpendicular to the first container inner face 115.
  • Each of the projection lines appearing on the first facilitator inner surface 115 when projected onto each other intersect each other to form a figure surrounded by the projection lines.
  • the heat receiving area A is an area inside the figure surrounded by the projection line.
  • the end of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is perpendicular to the first container inner surface 115 It is an example of a region surrounded by an encircling line set along one or more projection lines appearing on the first container inner surface 115 when projected in a certain direction.
  • the second current plates (connection plate 147) are opposite sides facing each other in the direction parallel to the pair of projection lines.
  • the points are connected in a direction perpendicular to the pair of projection lines.
  • the gas-phase refrigerant GP-COO ascends in the space enclosed by the rectifying plate 141 and the connecting plate 147. Therefore, compared to the electronic device 100, the gas phase refrigerant GP-COO generated by the heat of each heating element 130 can be prevented from leaking out between the pair of rectifying plates 141.
  • the gas-phase refrigerant GP-COO generated from each heating element 130 more reliably contacts each heat receiving area set for each heating element 130 on the first container inner surface 115. Therefore, the amount of heat received by each of the plurality of heat receiving regions is more in accordance with the calorific value of each of the plurality of heating elements 130. As a result, the electronic device 300 can cool each of the plurality of heating elements 130 more efficiently.
  • FIG. 11 is a front transparent view showing the configuration of the electronic device 400. As shown in FIG. 11
  • the electronic device 400 includes a container 110, a substrate 120, a plurality of heat generating members 130a to 130c, a plurality of rectifying plates 141a to 141c, and a partition plate 149.
  • the electronic device 400 and the electronic device 100 are compared using FIG. 1 and FIG. 11.
  • the electronic device 400 is different from the electronic device 100 in that the electronic device 400 further includes a plurality of partition plates 149.
  • the partition plate 149 will be described.
  • the divider plate 149 is an example of a third straightening vane.
  • the partition plate 149 is a flat plate. However, the partition plate 149 may be formed in a curved shape or a wave shape.
  • each of the partition plates 149 is provided between the pair of flow regulating plates 141.
  • the partition plate 149 is provided so as to extend from the surface of the heat generating body 130 toward the first container inner surface 115 side.
  • four partition plates 149 are provided between each of the pair of flow straightening plates 141a to 141c.
  • one to three or five or more partition plates 149 may be provided between each of the pair of flow straightening plates 141a to 141c.
  • the configuration of the electronic device 400 has been described above.
  • a method of manufacturing the electronic device 400 will be described.
  • the method of manufacturing the electronic device 400 is the same in performing the mounting procedure (first manufacturing procedure) and the sealing procedure (second manufacturing procedure) of the pair of rectifying plates 141 in the method of manufacturing the electronic device 100.
  • the method will be described later between the mounting procedure (first manufacturing procedure) and the sealing procedure (second manufacturing procedure) of the pair of rectifying plates 141 in the method of manufacturing the electronic device 100.
  • the mounting procedure of the partition plate 149 is further performed.
  • the partition plate 149 is attached between each of the pair of flow guide plates 141 using, for example, an adhesive.
  • the gas-phase refrigerant GP-COO rises in the space sandwiched by the straightening vanes 141 after being generated in the vicinity of the heating element 130, as in the electronic device 100.
  • the gas-phase refrigerant GP-COO ascends along the divider plates 149 between the divider plates 149.
  • one or more first rectifying plates are provided with one or more first rectifying plates provided between the pair of first rectifying plates (rectifying plate 141).
  • 3 further includes a baffle plate (partition plate 149).
  • the third straightening vane (partition plate 149) is provided between the pair of first straightening vanes (straightening vane 141).
  • the gas phase refrigerant GP-COO can be raised along the straightening vane 141 and the third straightening vane (partition plate 149).
  • the gas-phase refrigerant GP-COO generated from the heating element 130 contacts the heat receiving area set on the first container inner surface 115 more evenly. Therefore, the heat received in each of the plurality of heat receiving regions is uniformly cooled within the heat receiving region without being biased to a partial region of each of the heat receiving regions.
  • the electronic device 400 can cool each of the plurality of heating elements 130 more efficiently.
  • FIG. 12 is a front transparent view showing the configuration of the electronic device 500.
  • FIG. 13 is a transparent side view showing the configuration of the electronic device 500.
  • FIG. 13 is a transparent view when the electronic device 500 is viewed in the direction of arrow a2 in FIG.
  • the electronic device 500 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, a plurality of rectifying plates 141a to 141c, and a heat radiating portion 510.
  • the electronic device 500 and the electronic device 100 are compared using FIG. 1 and FIG. 12.
  • the electronic device 500 is different from the electronic device 100 in that the electronic device 500 further includes a heat dissipation unit 510.
  • the heat dissipation unit 510 will be described. As shown in FIG. 12 and FIG. 13, the heat dissipation unit 510 is formed in a plate shape. Further, as shown in FIG. 12, the plurality of heat radiation parts 510 are provided on the outer surface corresponding to the first container inner surface 115 of the container 110 at a predetermined interval. The plurality of heat radiation portions 510 are provided at least in the portion corresponding to the plurality of heat receiving areas A of the outer surface of the container 110. In addition, the heat radiating portion 510 may be provided on the entire outer surface of the container 110. The heat radiating portion 510 is a member for radiating the heat received in the plurality of heat receiving areas.
  • fins for heat dissipation can be used for the heat dissipation unit 510.
  • a heat conductive member for example, aluminum, an aluminum alloy, or the like
  • the heat dissipation unit 510 may be integrally attached to the container 110 or may be separate from the container 110.
  • the heat radiating portion 510 is fixed to the outer surface of the container 110 by, for example, an adhesive.
  • the electronic device 500 further includes the heat radiating portion 510 for radiating the heat received in the plurality of heat receiving regions A in the region corresponding to the plurality of heat receiving regions A in the outer surface of the container 110.
  • the heat of the heat generating body 130 can be dissipated using the outer surface of the container 110 and the heat radiating portion 510, heat is received as compared with the case where the heat of the heat generating body 130 is dissipated only from the outer surface of the container 110.
  • the heat received in the region A can be dissipated efficiently.
  • the plurality of heating elements 130 can be cooled efficiently.
  • FIG. 14 is a front transparent view showing the configuration of the electronic device 500A.
  • components equivalent to the components shown in FIG. 1 are given the same reference symbols as the reference symbols shown in FIG. 1.
  • the electronic device 500A includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, a plurality of rectifying plates 141a to 141c, and a cooling unit 520.
  • the electronic device 500A and the electronic device 100 are compared using FIG. 1 and FIG.
  • the electronic device 500A is different from the electronic device 100 in that the electronic device 500A further includes a cooling unit 520.
  • the cooling unit 520 will be described. As shown in FIG. 14, the cooling unit 520 is attached to the outer surface of the container 110. More specifically, the cooling unit 520 is attached to the surface of the container 110 corresponding to the first container inner surface 115. In addition, the cooling unit 520 is attached to a portion of the first container inner surface 115 corresponding to at least a plurality of heat receiving areas A. Further, for example, the cooling unit 520 may be attached to all the surfaces constituting the outer shape of the container 110. For the cooling unit 520, for example, a water-cooled heat sink (Kawaso Texel Co., Ltd., model number HS-C60) can be used.
  • a water-cooled heat sink Yamaso Texel Co., Ltd., model number HS-C60
  • the cooling unit 520 cools a portion corresponding to the heat receiving area via the outer surface of the container 110.
  • the operation of the electronic device 500A has been described above.
  • the electronic device 500 ⁇ / b> A includes the cooling unit 520 for cooling the heat receiving area A in the area corresponding to the plurality of heat receiving areas A in the outer surface of the container 110.
  • the plurality of heat receiving regions A are cooled by the cooling unit 520. For this reason, compared with the case where the heat receiving area A is not cooled, the difference in temperature between the gas phase refrigerant GP-COO and the heat receiving area A becomes large. As a result, the amount of heat transferred from the gas phase refrigerant GP-COO to the heat receiving region A is increased, so the amount of phase change from the gas phase refrigerant GP-COO to the liquid phase refrigerant LP-COO is increased. As a result, the heating element 130 is cooled by more liquid phase refrigerant LP-COO than in the case where the cooling unit 520 is not provided. Therefore, in the electronic device 500A, the plurality of heating elements can be cooled more efficiently.
  • FIG. 15 is a front transparent view showing the configuration of the electronic device 600.
  • the electronic device 600 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
  • the electronic device 600 and the electronic device 100 are compared using FIG. 1 and FIG. 15.
  • the first main surface 125 of the substrate 120 is provided in a direction perpendicular to the vertical direction G, whereas in the electronic device 600, the first main surface 125 of the substrate 120 is provided.
  • the first main surface 125 of the substrate 120 is provided.
  • the electronic device 600 and the electronic device 100 are different in this point.
  • each of the rectifying plates 141 a, 141 b and 141 c is disposed as close as possible to the first container inner surface 115. Disposed in close proximity means, for example, a state in which the shortest length from the end on the first container inner surface 115 side of the straightening vane 141 to the first container inner surface 115 is several mm to several cm. Show.
  • the electronic device 600 as in the electronic device 100, first, the substrate 120, the rectifying plate 141, and the heating element 130 are fixed to the electronic device 100, and the lid is put on. Next, as shown in FIG. 15, the electronic device 600 is mounted so that the first main surface 125 is parallel to the vertical direction G, and the refrigerant COO is supplied from the refrigerant sealing hole (not shown) on the vertically upward side. It encloses in the container 110 and closes this.
  • the operation of the electronic device 600 will be described.
  • the operation of the electronic device 600 is similar to the operation of the electronic device 100.
  • the operation of the electronic device 100 is different from the operation of the electronic device 600 in the following points.
  • the bubbles of the gas phase refrigerant GP-COO are generated in the vicinity of the heating element 130, and then move upward in the vertical direction G and pass through the liquid surface of the liquid phase refrigerant LP-COO By going upward in the vertical direction G, it is stated that the heat receiving area A is contacted.
  • the bubbles of the vapor-phase refrigerant GP-COO are generated in the vicinity of the heating element 130 and then move in the space sandwiched between the pair of rectifying plates 141. Contact.
  • the first main surface 125 and the first main surface 125 are arranged such that the air bubbles can contact the heat receiving area A of the first container inner surface 115 before the air bubbles of the gas phase refrigerant GP-COO move upward in the vertical direction G.
  • the distance of the container inner surface 115 is adjusted.
  • the first major surface 125 of the substrate 120 is provided in a direction parallel to the vertical direction G. Therefore, the electronic device 600 can be disposed in any direction with respect to the vertical direction G.
  • FIG. 16 is a front transparent view illustrating the configuration of the electronic device 700.
  • FIG. 17 is a side transparent view illustrating the configuration of the electronic device 700. Specifically, FIG. 17 is an example of a transparent view when the electronic device 700 is viewed in the direction of arrow a4 in FIG.
  • the electronic device 700 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
  • each of the plurality of heating elements 130a to 130c is referred to as a heating element 130.
  • each of the plurality of flow straightening plates 141a to 141c is referred to as a flow straightening plate 141.
  • the container 110 has thermal conductivity. Further, in the container 110, a refrigerant COO which changes in phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO is sealed. Further, as shown in FIGS. 16 and 17, one of the inner surfaces of the container 110 is taken as a first container inner surface 115.
  • the substrate 120 is provided in the container 110. Also, the substrate 120 has a first major surface 125 facing the first container inner surface 115.
  • the plurality of heating elements 130 have a first heating element outer surface 131.
  • the outer peripheral shape of the first heat generating body outer surface 131 is a convex polygonal shape, a circular shape or an elliptical shape.
  • the plurality of heating elements 130 are attached to the first major surface 125 such that the first heating element outer surface 131 faces the first container inner surface 115. Also, the plurality of heating elements 130 are immersed in the liquid phase refrigerant LP-COO.
  • the one or more rectifying plates 141 are provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side.
  • FIG. 18 is a view showing heat receiving areas A1 to A3 as an example of the heat receiving area A. As shown in FIG.
  • the heat receiving area A is set on the inner surface of the container 110. Specifically, in the heat receiving area A, the end side of the one or more rectifying plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115 It is an area surrounded by an encircling line set along the projection line which appears on the first container inner surface 115 at the time.
  • the area of each of the heat receiving regions A is set to increase in accordance with the increase in the calorific value of each of the plurality of heating elements 130.
  • the configuration of the electronic device 700 has been described above.
  • the manufacturing method and operation of the electronic device 700 conform to the electronic devices 100, 100A, 100B, 200, 200A, 300, 400, 500, and 600.
  • the electronic device 700 includes the container 110, the substrate 120, the plurality of heating elements 130, and the rectifying plate 141.
  • the container 110 has thermal conductivity, and encloses the refrigerant COO which changes phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO.
  • the first substrate 120 has a first major surface 125 facing the first container inner surface 115 which is one of the inner surfaces of the container 110.
  • the first substrate 120 is provided in the container 110.
  • Each of the plurality of heating elements 130 has a first heating element outer surface 131.
  • the plurality of heat generating members 130 are attached to the first main surface 125 so that the first heat generating member outer surface 131 and the first container inner surface 115 face each other, and are immersed in the liquid phase refrigerant LP-COO .
  • the baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side.
  • the number of the straightening vanes 141 is one or more.
  • the area of each of the heat receiving areas which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130, increases the calorific value of each of the plurality of heating elements 130 It is set to increase according to.
  • the heat receiving area is the first when the end side of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115. Is an area surrounded by an encircling line set along a projection line appearing on the inner surface 115 of the container.
  • the area of each of the heat receiving areas A which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130 It is set to increase as the amount of heat generation increases. Therefore, according to each calorific value of a plurality of heating elements 130, a plurality of heat receiving areas A can be set. Thereby, the area of each of the plurality of heat receiving areas A can be set so that the heat generated by each heating element 130 can be received without excess or deficiency. Therefore, the total area of the plurality of heat receiving areas A can be adjusted to the necessary minimum. Therefore, since the area of the container inner surface 115 can be set to the necessary minimum, the size of the container 110 can be adjusted to the minimum required size.
  • each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container will be larger than in the case of setting. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. As described above, when each of the surface areas is set according to the heating element having a large calorific value, there is a problem that the container becomes larger than necessary.
  • each of the plurality of heat receiving areas A can be set according to each amount of heat generation of the plurality of heat generating members 130
  • the area of the heat receiving area A set in the body 130 can be set smaller for each heating element 130 according to the amount of heat generation.
  • the area of the heat receiving area A set for the heating element 130 with a large amount of heat can be set large for each heating element 130 according to the amount of heat generation.
  • the heat receiving region A can be set for each heating element 130. Therefore, as described above, the area of the first container inner surface 115 in which the heat receiving area A is set can be set to the necessary minimum. As a result, the size of the container 110 can be adjusted to the necessary minimum size.
  • the plurality of heat receiving regions A can be set respectively in accordance with the respective calorific values of the plurality of heating elements 130, and the area of the first container inner surface 115 is set to the necessary minimum.
  • the size of the container 110 can be adjusted to the necessary minimum size. Therefore, the plurality of heating elements 130 can be efficiently cooled with the container 110 of the minimum necessary size.
  • a container having a thermal conductivity and enclosing a refrigerant that changes in phase between the liquid phase refrigerant and the gas phase refrigerant;
  • a substrate provided in the container, the substrate having a first main surface facing the first container inner surface which is one of the inner surfaces of the container;
  • a plurality of first heat generating body outer surfaces, the first heat generating body outer surface and the first container inner surface being attached to the first main surface so as to face each other, and immersed in the liquid phase refrigerant
  • At least one straightening vane provided to extend from the outer peripheral portion of each of the plurality of heat generating members toward the inner surface of the first container, Appears on the inner surface of the first container when the end side of the first container inner surface side of the one or more straightening vanes of the inner surface of the container is projected in a direction perpendicular to the inner surface of
  • the one or more rectifying plates extend from both ends of the plurality of heating elements in a direction parallel to the first main surface of the substrate toward the first container inner surface side.
  • a second straightening vane provided along the outer periphery of the first heat generating body outer surface, facing each other between the pair of first straightening vanes, for connecting the opposite sides of each of the pair of first straightening vanes
  • the electronic device according to Additional remark 9 wherein at least one of the one or more third rectifying plates is thermally connected to the heat generating body to dissipate heat of the heat generating body.
  • [Supplementary Note 14] [Claim 13] The electronic device according to supplementary note 13, wherein at least a part of the one or more rectifying plates is arranged such that an end portion on the inner surface side of the first container is disposed on a liquid surface of the liquid phase refrigerant.
  • [Supplementary Note 16] A base portion provided on a surface of the outer surface of the heating element facing the inner surface of the first container; The electronic device according to any one of appendices 1 to 15, wherein the one or more rectifying plates are attached to the base portion.
  • At least a portion of the one or more rectifying plates is a portion of the outer peripheral portion of the first heat generating body outer surface, both ends of the first heat generating body outer surface in a direction parallel to the first main surface of the substrate.
  • the electronic device according to any one of appendices 1 to 16, provided so as to extend from the part side toward the inner surface side of the first container.
  • At least a portion of the one or more rectifying plates is the first heat generation in the direction parallel to the first main surface of the substrate among the side surfaces of the heating element surrounding the first heating element outer surface
  • the electronic device according to any one of appendices 1 to 16, provided so as to extend from both end sides of the body outer surface toward the inner surface side of the first container.

Abstract

Provided is an electronic device in which a container 110 contains a refrigerant COO sealed therein which has thermal conductivity and experiences a phase change between a liquid-phase refrigerant LP-COO and a gas-phase refrigerant GP-COO. A rectification plate 141 extends from an outer peripheral portion of each of a plurality of heating bodies 130 toward a first container inner surface 115 of the container. In order to receive heat from each of the plurality of heating bodies, a heat receiving region is set for each of the plurality of heating bodies. The heat receiving region has an area which is set to increase in accordance with an increase in the amount of heat generated from each of the plurality of heating bodies. The heat receiving region is a region enclosed by an enclosing line which is set along a projected line that appears on the first container inner surface when the end side of the rectification plate on the first container inner surface side is projected in a direction perpendicular to the first container inner surface among inner surfaces of the container. In this way, even when the plurality of heating bodies have different amounts of heat generation, each of the plurality of heating bodies can be efficiently cooled using a simple configuration.

Description

電子装置Electronic device
 本発明は、電子装置に関し、例えば液相冷媒等に浸された発熱体を冷却する電子装置に関する。 The present invention relates to an electronic device, for example, an electronic device for cooling a heating element immersed in liquid phase refrigerant or the like.
 近年、塵や埃等が空気中に多く含まれている場所(例えば、沿岸地域や工場内等)に設置される電子機器(例えば、携帯電話の基地局やサーバ等)には、塵や埃等が電子機器内に入るのを防ぐために、密閉構造が採用されている。このため、密閉構造が採用された電子機器内部に熱がこもりやすく、電子機器内の発熱体の放熱を効率よく行うことが必要となっている。 In recent years, dust and dirt are deposited on electronic devices (for example, base stations and servers of mobile phones, etc.) installed in places where dust and dirt and the like are often contained in the air (for example, coastal areas and factories). A sealed structure is employed to prevent the like from entering the electronic device. For this reason, heat is easily accumulated inside the electronic device in which the sealed structure is adopted, and it is necessary to efficiently dissipate the heat of the heating element in the electronic device.
 このような密閉構造の冷却技術の1つとして、容器(筐体)内に貯留された液相冷媒に発熱体を浸して、液相冷媒および気相冷媒に相変化する冷媒を用いて発熱体を冷却する技術が、特許文献1に開示されている。 As one of such closed structure cooling techniques, a heating element is immersed in a liquid phase refrigerant stored in a container (casing), and the heating element is generated using a refrigerant that changes phase to liquid phase refrigerant and gas phase refrigerant. Patent Document 1 discloses a technique for cooling the air.
 特許文献1に記載の技術では、セラミック回路基板と放熱部材を接合することにより、密閉された容器を構成している。また容器内には液相冷媒が貯留されている。複数の発熱体は、容器内に貯留された液相冷媒に浸されている。発熱体が発熱すると、容器内の液相冷媒が発熱体の表面で発熱体の熱によって気相冷媒に相変化する。この相変化により生じる熱(潜熱)によって、発熱体で生じる熱を放熱する。これにより、発熱体が冷却される。気相冷媒は、容器内を鉛直方向に沿って上昇した後、容器の内壁面と接触することにより冷却されると、再び液相冷媒に相変化する。この液相冷媒は、容器内を鉛直方向に沿って下降し、発熱体の冷却に再び用いられる。このように、特許文献1に記載の技術では、相変化する液相冷媒および気相冷媒を容器内で循環させて、発熱体を冷却している。 In the technology described in Patent Document 1, a sealed container is configured by bonding a ceramic circuit board and a heat dissipation member. In addition, liquid phase refrigerant is stored in the container. The plurality of heating elements are immersed in the liquid phase refrigerant stored in the container. When the heat generating body generates heat, the liquid phase refrigerant in the container is changed in phase to a gas phase refrigerant by the heat of the heat generating body on the surface of the heat generating body. The heat (latent heat) generated by this phase change dissipates the heat generated by the heating element. Thereby, the heating element is cooled. The gas phase refrigerant rises in the container along the vertical direction, and when it is cooled by coming into contact with the inner wall surface of the container, it changes in phase again to a liquid phase refrigerant. This liquid-phase refrigerant descends in the container along the vertical direction, and is again used to cool the heating element. As described above, in the technique described in Patent Document 1, the heat-generating body is cooled by circulating the liquid-phase refrigerant and the gas-phase refrigerant that undergo phase change in the container.
 ここで、特許文献1に記載の発明では、隔壁(フィン)が、複数の発熱体の間に、容器の上壁の内面(放熱部材の内面)から鉛直方向の下方へ延出するように、設けられている。このように、複数の発熱体の間に隔壁を設けることにより、複数の発熱体の各々の発熱によって生じる気相冷媒を、隔壁および容器の内壁で囲われて形成される複数空間の各々の内側でそれぞれ冷却することができる。 Here, in the invention described in Patent Document 1, the partition walls (fins) extend downward in the vertical direction from the inner surface of the upper wall of the container (the inner surface of the heat dissipation member) among the plurality of heat generating members, It is provided. Thus, by providing the partition between the plurality of heating elements, the gas-phase refrigerant generated by the heat generation of each of the plurality of heating elements is surrounded by the partition and the inner wall of the container. Can be cooled separately.
実公昭57-154158号公報Japanese Utility Model Publication No. 57-154158
 しかしながら、特許文献1に記載の技術では、隔壁は容器内に配置された複数の発熱体の大きさに合わせて設けられている。したがって、複数の発熱体の大きさが互いに等しい場合、複数の発熱体の各々の熱によって生じる気相冷媒が容器および隔壁と接触する表面積はほぼ同じである。 However, in the technique described in Patent Document 1, the partition wall is provided in accordance with the size of the plurality of heating elements disposed in the container. Therefore, when the sizes of the plurality of heating elements are equal to each other, the surface area where the gas phase refrigerant generated by the heat of each of the plurality of heating elements contacts the container and the partition is approximately the same.
 例えば、特許文献1に記載の技術において、複数の発熱体各々の発熱量が異なる場合、より発熱量の大きい発熱体によって生じる気相冷媒が含む熱量は、より発熱量の小さい発熱体によって生じる気相冷媒が含む熱量よりも多くなる。一方で上述の通り特許文献1においては、複数の発熱体の大きさが互いに等しい場合、複数の発熱体の各々の熱によって生じる各々の気相冷媒が、容器および隔壁と接触する表面積が同じである。 For example, in the technology described in Patent Document 1, when the calorific value of each of the plurality of heating elements is different, the heat contained in the gas-phase refrigerant produced by the heating element having a larger calorific value is air produced by the heating element having a smaller calorific value It will be more than the amount of heat contained in the phase refrigerant. On the other hand, as described above, in Patent Document 1, when the sizes of the plurality of heating elements are equal to each other, the respective gas phase refrigerants generated by the heat of the plurality of heating elements have the same surface area in contact with the container and the partition wall. is there.
 このため、各々の気相冷媒が容器および隔壁と接触する表面積を、発熱量の小さい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の大きい発熱体によって生じる気相冷媒は十分に冷却されない。 Therefore, if the surface area of each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the small heat generating element, the air generated by the large heat generating element The phase refrigerant is not sufficiently cooled.
 また、各々の気相冷媒が容器および隔壁と接触する表面積を、発熱量の大きい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の小さい発熱体に合わせて面積を設定した場合に比べて容器が大きくなる。この際、発熱量の小さい発熱体によって生じる気相冷媒は、必要以上に大きな表面積で冷却されることとなる。このように、表面積の各々を発熱量の大きい発熱体に合わせて設定すると、容器が必要以上に大きくなる。 In addition, if the surface area of each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container is larger than when set. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. Thus, when the surface area is set to match the heating element with a large calorific value, the container becomes larger than necessary.
 以上のように、特許文献1に記載の技術に、発熱量が異なる複数の発熱体を適用した場合に、複数の発熱体を、各々の発熱量に応じて効率よく冷却できなかった。 As described above, when a plurality of heating elements having different amounts of heat generation are applied to the technique described in Patent Document 1, the plurality of heat generating elements can not be efficiently cooled according to the respective amounts of heat generation.
 また、特許文献1に記載の技術において、隔壁は、容器の内壁に設けられているため、発熱体の大きさや容器内の発熱体の配置場所を変更する必要がある場合には、容器を作り直さなければならないという問題があった。 Further, in the technology described in Patent Document 1, since the partition wall is provided on the inner wall of the container, the container can be rebuilt if it is necessary to change the size of the heating element and the arrangement position of the heating element in the container. There was a problem of having to
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的は、複数の発熱体間で発熱量が異なっても、簡単な構成で複数の発熱体の各々を効率よく冷却できる電子装置を提供することである。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide an electron which can efficiently cool each of a plurality of heating elements with a simple configuration even if the amount of heat generation differs among the plurality of heating elements. It is providing a device.
 本発明の電子装置は、熱伝導性を有し、液相冷媒および気相冷媒の間で相変化する冷媒を封入するための容器と、前記容器の内面のうちの一つの面である第1の容器内面と向かい合う第1の主面を有し、前記容器内に設けられた基板と、第1の発熱体外面を有し、前記第1の発熱体外面と前記第1の容器内面とが互いに向かい合うように前記第1の主面に取り付けられ、前記液相冷媒に浸される複数の発熱体と、前記複数の発熱体の各々の外周部から、前記第1の容器内面側へ向けて延出するように設けられた1以上の整流板と、を備え、前記容器の内面のうち、前記1以上の整流板の前記第1の容器内面側の端辺を前記第1の容器内面に対して垂直な方向に投影した際に前記第1の容器内面に表れる1以上の投影線に沿って設定される囲み線に囲まれた領域であって、前記複数の発熱体の各々の熱を受熱するために前記複数の発熱体の各々毎に設定される領域である受熱領域の各々の面積は、前記複数の発熱体各々の発熱量の増加に応じて増加するように設定されている。 The electronic device according to the present invention has a heat conductivity, a container for sealing a refrigerant that changes in phase between a liquid phase refrigerant and a gas phase refrigerant, and a first one of the inner surfaces of the container. A first main surface facing the inner surface of the container, the substrate provided in the container, the first heat generating member outer surface, the first heat generating member outer surface and the first container inner surface The plurality of heating elements attached to the first main surface so as to face each other and immersed in the liquid phase refrigerant, and the outer peripheral portions of the plurality of heating elements are directed toward the inner surface side of the first container And one or more straightening vanes provided so as to extend, wherein an end side of the one or more straightening vanes on the first vessel inner face side of the one or more straightening vanes is disposed on the first vessel inner face An enclosure set along one or more projection lines appearing on the inner surface of the first container when projected in a direction perpendicular to the above An area of each of the heat receiving areas which is an area surrounded by a line and is an area set for each of the plurality of heating elements to receive the heat of each of the plurality of heating elements is It is set to increase as the amount of heat generation of each heating element increases.
 本発明の電子装置によれば、複数の発熱体間で発熱量が異なっても、簡単な構成で複数の発熱体の各々を効率よく冷却できる。 According to the electronic device of the present invention, each of the plurality of heating elements can be efficiently cooled with a simple configuration even if the amount of heat generation differs among the plurality of heating elements.
本発明の第1の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 1st Embodiment of this invention. 本発明の第1の実施形態における電子装置の構成を示す側面透過図である。FIG. 2 is a side transparent view showing the configuration of the electronic device according to the first embodiment of the present invention. 受熱領域を示す図である。It is a figure which shows a heat receiving area. 本発明の第1の実施形態における電子装置の第1の変形例における整流板を説明する為の図である。It is a figure for demonstrating the baffle plate in the 1st modification of the electronic device in the 1st Embodiment of this invention. 本発明の第1の実施形態における第2の変形例における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 2nd modification in the 1st Embodiment of this invention. 本発明の第2の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 2nd Embodiment of this invention. 整流部材を示す図であるIt is a figure showing a straightening member. 本発明の第2の実施形態における電子装置の第1の変形例を説明する為の図である。It is a figure for demonstrating the 1st modification of the electronic device in the 2nd Embodiment of this invention. 本発明の第3の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 3rd Embodiment of this invention. 整流部材を示す図である。It is a figure which shows a rectification member. 本発明の第4の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 4th Embodiment of this invention. 本発明の第5の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 5th Embodiment of this invention. 本発明の第5の実施形態における電子装置の構成を示す側面透過図である。It is a side permeation | transmission figure which shows the structure of the electronic device in the 5th Embodiment of this invention. 本発明の第5の実施形態における第1の変形例における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 1st modification in the 5th Embodiment of this invention. 本発明の第6の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 6th Embodiment of this invention. 本発明の第7の実施形態における電子装置の構成を示す正面透過図である。It is a front transparent view which shows the structure of the electronic device in the 7th Embodiment of this invention. 本発明の第7の実施形態における電子装置の構成を示す側面透過図である。It is a side transparent view which shows the structure of the electronic device in the 7th Embodiment of this invention. 受熱領域を示す図である。It is a figure which shows a heat receiving area.
 <第1の実施の形態>
 第1の実施形態における電子装置100について、図に基づき説明する。図1は、電子装置100の構成を示す正面透過図である。また、図2は、電子装置100の構成を示す側面透過図である。具体的には、図2は、図1の矢視a1方向で電子装置100を見たときの透過図である。また、図3は、後述する受熱領域S1、S2及びS3を示す図である。例えば、電子装置100は、携帯電話の基地局等の通信機器やサーバ等に用いることが出来る。なお、説明の便宜上、図1及び図2には鉛直方向Gを示す。
First Embodiment
The electronic device 100 according to the first embodiment will be described based on the drawings. FIG. 1 is a front transparent view showing the configuration of the electronic device 100. As shown in FIG. FIG. 2 is a transparent side view showing the configuration of the electronic device 100. As shown in FIG. Specifically, FIG. 2 is a transparent view when the electronic device 100 is viewed in the direction of arrow a1 in FIG. Moreover, FIG. 3 is a figure which shows heat receiving area | region S1, S2, and S3 which are mentioned later. For example, the electronic device 100 can be used as a communication device such as a mobile phone base station or a server. In addition, the vertical direction G is shown in FIG.1 and FIG.2 for convenience of explanation.
 電子装置100の構成について説明する。図1及び図2に示されるように、電子装置100は、容器110、基板120、複数の発熱体130a~130c及び複数の整流板141a~141cを備える。なお、以下の説明では、複数の発熱体130a~130cの各々を区別する必要が無い場合、複数の発熱体130a~130cの各々を発熱体130と称する。また、以下の説明では、複数の整流板141a~141cの各々を区別する必要が無い場合、複数の整流板141a~141cの各々を整流板141と称する。 The configuration of the electronic device 100 will be described. As shown in FIGS. 1 and 2, the electronic device 100 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c. In the following description, when it is not necessary to distinguish each of the plurality of heating elements 130a to 130c, each of the plurality of heating elements 130a to 130c is referred to as a heating element 130. Further, in the following description, when it is not necessary to distinguish each of the plurality of flow straightening plates 141a to 141c, each of the plurality of flow straightening plates 141a to 141c is referred to as a flow straightening plate 141.
 容器110について説明する。図1及び図2に示されるように、容器110は、直方体状に形成されている。容器110の内部は、中空になっている。また、容器110の内部には、基板120、発熱体130及び整流板141が配置されている。また、容器110の内部には、後述する冷媒(Coolant:以下、COOと称する。)が封入されている。容器110は、熱伝導性を有している。例えば、容器110の材料には、ステンレス鋼やアルミニウム合金などの熱伝導性部材を用いることができる。 The container 110 will be described. As shown in FIGS. 1 and 2, the container 110 is formed in a rectangular shape. The inside of the container 110 is hollow. In addition, inside the container 110, the substrate 120, the heating element 130, and the current plate 141 are disposed. Further, inside the container 110, a refrigerant described later (Coolant: hereinafter referred to as COO) is sealed. The container 110 has thermal conductivity. For example, as a material of the container 110, a heat conductive member such as stainless steel or aluminum alloy can be used.
 図1及び図2に示されるように、容器110の内面は、第1の容器内面115を含んでいる。第1の容器内面115について説明する。図1及び図2に示されるように、第1の容器内面115は、容器110の内面のうちの一つの面である。より具体的には、第1の容器内面115は、容器110の上板(図1及び図2にて鉛直方向Gの上側の板)の内面をいう。また第1の容器内面115には、後述する受熱領域A1~A3が設定される。なお、受熱領域A1~A3の詳細については後述する。なお、以下の説明では、受熱領域A1~A3を区別する必要がない場合、受熱領域A1~A3の総称として、受熱領域Aと示す。 As shown in FIGS. 1 and 2, the inner surface of the container 110 includes a first container inner surface 115. The first container inner surface 115 will be described. As shown in FIGS. 1 and 2, the first container inner surface 115 is one of the inner surfaces of the container 110. More specifically, the first container inner surface 115 refers to the inner surface of the upper plate of the container 110 (the upper plate in the vertical direction G in FIGS. 1 and 2). Further, heat receiving areas A1 to A3 described later are set on the first container inner surface 115. The details of the heat receiving areas A1 to A3 will be described later. In the following description, when it is not necessary to distinguish the heat receiving areas A1 to A3, the heat receiving areas A1 to A3 are collectively referred to as the heat receiving area A.
 なお、容器110には、蓋が設けられる。この蓋は、容器110の一面(たとえば、第1の容器内面115)を構成する板であって、取り外し可能になっている。ここでは、蓋と容器110本体が組み合わさることにより、容器110が完成するものとする。蓋は、たとえば、ネジ止めなどにより、容器110本体に固定される。このとき、蓋と容器110本体の間には、ゴム状のパッキン等が介在される。これにより、蓋と容器110本体の間から、冷媒COOが漏れることを抑止できる。 The container 110 is provided with a lid. The lid is a plate that constitutes one surface of the container 110 (for example, the first container inner surface 115) and is removable. Here, it is assumed that the container 110 is completed by combining the lid and the container 110 main body. The lid is fixed to the main body of the container 110 by, for example, screwing. At this time, a rubber-like packing or the like is interposed between the lid and the container 110 main body. Thus, the refrigerant COO can be prevented from leaking from between the lid and the container 110 main body.
 冷媒COOの詳細について説明する。この冷媒COOには、液相冷媒(Liquid-Phase Coolant:以下、LP-COOと称する。)および気相冷媒(Gas-Phase Coolant:以下、GP-COOと称する。)の間で相変化する材料が用いられる。図1及び図2に示されるように、冷媒COOは、容器110内に密閉された状態で閉じこめられる。より詳細には、容器110に液相冷媒LP-COOを注入した後に真空排気することにより、容器110の内部を常に冷媒の飽和蒸気圧に維持する。図1及び図2は、容器110に封入されている気相冷媒GP-COOと液相冷媒LP-COOを示す。液相冷媒LP-COOの液面上部に形成される気相空間に気相冷媒GP-COOが位置する。また、気相冷媒GP-COOの気泡が、液相冷媒LP-COOが後述の発熱体130の熱により気相冷媒GP-COOに相変化することによって、発熱体130の周辺に発生する。冷媒COOは、容器110内の全ての液相冷媒LP-COOと全ての気相冷媒GP-COOを含む。 The details of the refrigerant COO will be described. In this refrigerant COO, a material which changes its phase between a liquid-phase refrigerant (Liquid-Phase Coolant: hereinafter referred to as LP-COO) and a gas-phase refrigerant (Gas-Phase Coolant: hereinafter referred to as GP-COO) Is used. As shown in FIG. 1 and FIG. 2, the refrigerant COO is confined in a sealed state in the container 110. More specifically, the inside of the container 110 is always maintained at the saturated vapor pressure of the refrigerant by injecting the liquid phase refrigerant LP-COO into the container 110 and thereafter evacuating. 1 and 2 show a gas phase refrigerant GP-COO and a liquid phase refrigerant LP-COO enclosed in a container 110. The gas phase refrigerant GP-COO is located in the gas phase space formed above the liquid surface of the liquid phase refrigerant LP-COO. In addition, bubbles of the gas phase refrigerant GP-COO are generated around the heat generating body 130 by the phase change of the liquid phase refrigerant LP-COO to the gas phase refrigerant GP-COO by the heat of the heat generating body 130 described later. The refrigerant COO includes all liquid phase refrigerant LP-COO and all gas phase refrigerant GP-COO in the container 110.
 冷媒COOには、低沸点の冷媒として、例えば、ハイドロフルオロカーボン(HFC:Hydro Fluorocarbon)やハイドロフルオロエーテル(HFE:Hydro Fluoroether)などを用いることができる。 As the refrigerant COO, for example, hydrofluorocarbon (HFC: Hydro Fluorocarbon) or hydrofluoroether (HFE: Hydro Fluoroether) can be used as a low boiling point refrigerant.
 基板120について説明する。図1及び図2に示されるように、基板120は、第1の主面125を含んでいる。第1の主面125は、基板120の外形を構成する面のうち、第1の容器内面115と向かい合う面である。基板120は、容器110内に設けられている。例えば、基板120は、容器110内の不図示のリブ上に配置され、ネジ止めなどにより容器110内に固定される。また、図1及び図2を参照すると、第1の主面125には、複数の発熱体130a~130cが取り付けられている。 The substrate 120 will be described. As shown in FIGS. 1 and 2, the substrate 120 includes a first major surface 125. The first main surface 125 is a surface that faces the first container inner surface 115 among surfaces constituting the outer shape of the substrate 120. The substrate 120 is provided in the container 110. For example, the substrate 120 is disposed on a rib (not shown) in the container 110 and fixed in the container 110 by screwing or the like. Further, referring to FIGS. 1 and 2, a plurality of heating elements 130a to 130c are attached to the first major surface 125.
 基板120は、たとえば、プリント配線基板である。プリント配線基板は、複数の絶縁体の基板および導体配線が積層されて構成されている。また、プリント配線基板の表面および裏面には、電子部品を実装するための導電性のパッドが形成されている。電子部品は、はんだ付けにより、パッドに固定される。絶縁体の基板の材料には、たとえば、ガラスエポキシ樹脂が用いられる。導体配線やパッドは、たとえば銅箔により形成されている。 The substrate 120 is, for example, a printed wiring board. The printed wiring board is configured by laminating a plurality of insulating substrate and conductor wiring. In addition, conductive pads for mounting electronic components are formed on the front and back surfaces of the printed wiring board. The electronic component is fixed to the pad by soldering. For example, glass epoxy resin is used as a material of the substrate of the insulator. The conductor wiring and the pad are formed of, for example, a copper foil.
 発熱体130について説明する。図1に示されるように、複数の発熱体130a、130b、130cの各々は、第1の発熱体外面131a、131b、131cを含む。なお、以下の説明において、第1の発熱体外面131a、131b、131cの各々を区別する必要が無い場合、第1の発熱体外面131a、131b、131cの各々を第1の発熱体外面131と称する。第1の発熱体外面131の外周形状は、四角形状である。第1の発熱体外面には、凹凸が形成されていても良い。複数の発熱体130が、基板120に取り付けられている。より具体的には、第1の発熱体外面131と第1の容器内面115とが向かい合うように、複数の発熱体130が基板120に取り付けられている。例えば、図1及び図2を参照すると、複数の発熱体130a、130b及び130cは、はんだ付け等により第1の主面125に取り付けられている。また、複数の発熱体130a、130b及び130cは、液相冷媒LP-COOに浸されている。また、複数の発熱体130a、130b及び130cの各々の発熱量は、同じであっても、違っていても良い。 The heating element 130 will be described. As shown in FIG. 1, each of the plurality of heating elements 130a, 130b, 130c includes a first heating element outer surface 131a, 131b, 131c. In the following description, when it is not necessary to distinguish each of the first heating element outer surfaces 131a, 131b, and 131c, each of the first heating element outer surfaces 131a, 131b, and 131c is used as the first heating element outer surface 131. It is called. The outer peripheral shape of the first heat generating body outer surface 131 is a square shape. Irregularities may be formed on the first heat generating body outer surface. A plurality of heating elements 130 are attached to the substrate 120. More specifically, the plurality of heating elements 130 are attached to the substrate 120 such that the first heating element outer surface 131 and the first container inner surface 115 face each other. For example, referring to FIGS. 1 and 2, the plurality of heating elements 130a, 130b and 130c are attached to the first major surface 125 by soldering or the like. Also, the plurality of heating elements 130a, 130b and 130c are immersed in the liquid phase refrigerant LP-COO. The calorific value of each of the plurality of heating elements 130a, 130b and 130c may be the same or different.
 なお、発熱体130は、稼働すると熱を発する電子部品であって、たとえば中央演算処理装置(Central Processing Unit:CPU)や集積回路(Multi-chip Module:MCM)などである。発熱体130は、電子装置100の冷却対象である。 The heating element 130 is an electronic component that emits heat when operated, and is, for example, a central processing unit (CPU) or an integrated circuit (MCM). The heating element 130 is a cooling target of the electronic device 100.
 整流板141について説明する。整流板141は、平板状の板である。整流板141は複数の発熱体130の各々の外周部から、第1の容器内面115側へ向けて延出するように設けられている。具体的には、例えば図1に示されるように、一対の整流板141が、基板120の第1の主面125に対して平行な方向における各発熱体130の両端部から、第1の容器内面115側へ向けて延出するように設けられている。なお、整流板141は、例えば接着剤により発熱体130に取り付けられている。また、整流板141は、第1の発熱体外面131の外周に沿って配置される。より具体的には、整流板141は、第1の発熱体外面131の外周のうち少なくとも、互いに対向する辺に沿って配置される。また、整流板141は、冷媒COOの流動によって撓んだりしない程度の剛性を有するものとする。なお、整流板141は、第1の整流板の一例である。 The rectifying plate 141 will be described. The straightening vane 141 is a flat plate. The baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. Specifically, for example, as shown in FIG. 1, the first container is provided from both ends of each heating element 130 in a direction parallel to the first main surface 125 of the substrate 120 as shown in FIG. It is provided to extend toward the inner surface 115 side. The rectifying plate 141 is attached to the heating element 130 by, for example, an adhesive. Further, the current plate 141 is disposed along the outer periphery of the first heat generating body outer surface 131. More specifically, the straightening vanes 141 are disposed along at least sides of the outer periphery of the first heat generating body outer surface 131 facing each other. Further, the straightening vane 141 has rigidity to such an extent that it does not bend due to the flow of the refrigerant COO. The rectifying plate 141 is an example of a first rectifying plate.
 また好ましくは、図1及び図2に示されるように、整流板141の各々は、第1の容器内面115側(図1及び図2にて鉛直方向Gの上側の板)の端部が第1の容器内面115に近接して配置される。整流板141の第1の容器内面115側の端部が第1の容器内面115に近接して配置されるとは、例えば、整流板141の第1の容器内面115側の端部から第1の容器内面115までの間の最短の長さが数mm~数cmである状態を示す。 Preferably, as shown in FIGS. 1 and 2, each of the flow control plates 141 has an end portion on the first container inner surface 115 side (the upper plate in the vertical direction G in FIGS. 1 and 2) It is disposed close to the one container inner surface 115. The end on the first container inner surface 115 side of the rectifying plate 141 is disposed close to the first container inner surface 115, for example, from the end on the first container inner surface 115 side of the rectifying plate 141. The shortest length to the inner surface 115 of the container is a few mm to a few cm.
 整流板141の材料には、たとえば、樹脂材料(たとえば、アクリロニトリル ブタジエン スチレン(Acrylonitrile Butadiene Styrene)共重合合成樹脂(ABS樹脂を称される。))や金属材料(たとえば、アルミニウムや、アルミニウム合金)が用いられる。 Examples of the material of the rectifying plate 141 include resin materials (for example, acrylonitrile butadiene styrene (referred to as Acrylonitrile Butadiene Styrene) copolymer synthetic resin (referred to as ABS resin)) and metal materials (for example, aluminum and aluminum alloy). Used.
 整流板141に金属材料等の熱伝導性部材を用いることにより、整流板141は、発熱体130の熱を受け取り、液相冷媒LP―COOへ伝達することができる。 By using a heat conductive member such as a metal material for the rectifying plate 141, the rectifying plate 141 can receive the heat of the heating element 130 and transfer it to the liquid phase refrigerant LP-COO.
 ここで、受熱領域A1~A3の詳細について説明する。図3は、第1の容器内面115に設定された複数の受熱領域A1~A3を示す図である。より具体的には、図3は受熱領域A1、A2及びA3を第1の容器内面115に示す図である。図3に示されるように、受熱領域A1~A3の各々は、第1の容器内面115に設定された領域である。また、複数の受熱領域A1~A3の各々は、互いに離間して設けられている。受熱領域A1~A3の各々は、容器110の内面のうち、同一の発熱体130に設けられた整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる1以上の投影線に沿って設定される囲み線に囲まれた領域である。 Here, the details of the heat receiving areas A1 to A3 will be described. FIG. 3 is a view showing a plurality of heat receiving areas A1 to A3 set on the first container inner surface 115. As shown in FIG. More specifically, FIG. 3 is a view showing the heat receiving areas A1, A2 and A3 on the first container inner surface 115. As shown in FIG. As shown in FIG. 3, each of the heat receiving areas A1 to A3 is an area set on the first container inner surface 115. Further, each of the plurality of heat receiving areas A1 to A3 is provided separately from each other. Each of the heat receiving areas A1 to A3 has an end on the first container inner surface 115 side of the rectifying plate 141 provided on the same heating element 130 among the inner surfaces of the container 110 perpendicular to the first container inner surface 115 It is the area | region enclosed by the encircling line set along the one or more projection lines which appear on the 1st container inner surface 115, when it projects in a certain direction.
 図3を用いて、受熱領域A1を具体的について説明する。辺C1及び辺C2は、同一の発熱体130aに設けられた一対の整流板141aの各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線である。また、M1、M2は、辺C1の端部を示す。N1、N2は、辺C2の端部を示す。結び線D1は、M1、N1を接続した線であり、結び線D2は、M2、N2を接続した線である。 The heat receiving area A1 will be specifically described with reference to FIG. The side C1 and the side C2 are projected in the direction perpendicular to the first container inner surface 115 of the end side on the first container inner surface 115 side of each of the pair of rectifying plates 141a provided on the same heating element 130a. It is a projection line that appears on the first container inner surface 115 at the same time. Further, M1 and M2 indicate the end of the side C1. N1 and N2 indicate the end of the side C2. The connecting line D1 is a line connecting M1 and N1, and the connecting line D2 is a line connecting M2 and N2.
 ここで、受熱領域A1は、図3に示されるように、辺C1、C2と、結び線D1、D2によって囲まれる領域である。すなわち、受熱領域A1は、発熱体130aに設けられた一対の整流板141aの各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線(辺C1、C2)をM1、M2、N1、N2にて最短距離で結んで形成される図形の内側の領域である。また、言い換えれば、受熱領域A1は、発熱体130aに設けられた一対の整流板141aの各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線(辺C1、C2)の間で挟まれた領域である。受熱領域A2、A3も、受熱領域A1と同様に、設定される。 Here, as shown in FIG. 3, the heat receiving area A1 is an area surrounded by the sides C1 and C2 and the connecting lines D1 and D2. That is, when the heat receiving area A1 is projected in the direction perpendicular to the first container inner surface 115, the end side on the first container inner surface 115 side of each of the pair of flow straightening plates 141a provided in the heating element 130a. It is a region inside the figure formed by connecting the projection lines (sides C1, C2) appearing on the first container inner surface 115 with M1, M2, N1, N2 at the shortest distance. In other words, the heat receiving area A1 projects the end side of each of the pair of flow straightening plates 141a provided on the heating element 130a on the first container inner surface 115 side in a direction perpendicular to the first container inner surface 115 It is an area sandwiched between projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the time. The heat receiving areas A2 and A3 are also set similarly to the heat receiving area A1.
 このように、受熱領域Aは、発熱体130に設けられた複数の整流板141の各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線(辺C1、C2)を最短距離で結んで形成される図形の内側の領域である。また、言い換えれば、受熱領域Aは、発熱体130に設けられた一対の整流板141の各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線(辺C1、C2)の間で挟まれた領域である。 As described above, in the heat receiving area A, the end side on the first container inner surface 115 side of each of the plurality of rectifying plates 141 provided in the heating element 130 is projected in the direction perpendicular to the first container inner surface 115 It is an area inside the figure formed by connecting the projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the shortest distance. Further, in other words, the heat receiving area A projects the end side on the first container inner surface 115 side of each of the pair of flow straightening plates 141 provided in the heating element 130 in the direction perpendicular to the first container inner surface 115 It is an area sandwiched between projection lines (sides C1 and C2) appearing on the first container inner surface 115 at the time.
 ここで記載した受熱領域Aの設定例のいずれもが、容器110の内面のうち、同一の発熱体130に設けられた整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線に沿って設定される囲み線(M1、M2、N1、N2を結んだ線)に囲まれた領域の一例である。 In any of the setting examples of the heat receiving area A described here, of the inner surface of the container 110, the end side on the first container inner surface 115 side of the rectifying plate 141 provided on the same heating element 130 is the first container An area surrounded by an encircling line (a line connecting M 1, M 2, N 1, N 2) set along a projection line appearing on the first container inner surface 115 when projected in a direction perpendicular to the inner surface 115 It is an example.
 また、各受熱領域Aは、複数の発熱体130の各々の熱を受熱するために複数の発熱体130の各々毎に設定される領域である。図3に示される受熱領域A1、A2およびA3は、発熱体130a、130bおよび130cの熱をそれぞれ受熱するために設定されている。 Each heat receiving area A is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130. The heat receiving areas A1, A2 and A3 shown in FIG. 3 are set to receive the heat of the heating elements 130a, 130b and 130c, respectively.
 また、受熱領域A1、A2およびA3の各々の面積S1、S2およびS3は、複数の発熱体130a、130bおよび130cの各々の発熱量に応じて設定されている。例えば、図3に示される発熱体130aの発熱量が大きいほど、受熱領域S1の面積は大きく設定される。一方で、発熱体130aの発熱量が小さいほど、受熱領域S1の面積は小さく設定される。受熱領域の面積の設定の詳細については、後述の電子装置100の組立方法の説明において述べる。 Further, the areas S1, S2 and S3 of the heat receiving areas A1, A2 and A3 are set in accordance with the amounts of heat generation of the plurality of heating elements 130a, 130b and 130c, respectively. For example, the area of the heat receiving region S1 is set to be larger as the amount of heat generation of the heating element 130a shown in FIG. 3 is larger. On the other hand, the smaller the calorific value of the heat generating body 130a, the smaller the area of the heat receiving region S1. The details of the setting of the area of the heat receiving area will be described in the description of the method of assembling the electronic device 100 described later.
 以上、電子装置100の構成について説明した。 The configuration of the electronic device 100 has been described above.
 次に図1~図3を用いて、電子装置100の製造方法を説明する。 Next, a method of manufacturing the electronic device 100 will be described using FIGS. 1 to 3.
 まず、容器110、基板120、複数の発熱体130a~130c、一対の整流板141a~141c及び冷媒COOを準備する。電子装置100の製造前においては、容器110の内側には、基板120、発熱体130a~130c及び一対の整流板141a~141cが配置されていない。また、容器110には、冷媒COOが封入されていない。なお、基板120には、図1に示されるように、発熱体130a~130cが、はんだづけ等により取り付けられていることを前提とする。また、単位時間における発熱体130a~130cの各々の発熱量が、発熱体130ごとに予め求められているとする。例えば、発熱体130の発熱量は、発熱体130の定格での発熱量(以下、定格発熱量とする)である。 First, the container 110, the substrate 120, the plurality of heating elements 130a to 130c, the pair of rectifying plates 141a to 141c, and the refrigerant COO are prepared. Before the manufacturing of the electronic device 100, the substrate 120, the heat generating members 130a to 130c, and the pair of flow regulating plates 141a to 141c are not disposed inside the container 110. Further, the refrigerant COO is not enclosed in the container 110. As shown in FIG. 1, it is assumed that the heating elements 130a to 130c are attached to the substrate 120 by soldering or the like. Further, it is assumed that the calorific value of each of the heating elements 130a to 130c in a unit time is previously determined for each heating element 130. For example, the calorific value of the heating element 130 is the calorific value at the rating of the heating element 130 (hereinafter referred to as the rated calorific value).
 次に、一対の整流板141を発熱体130に取り付け、整流板141が発熱体130に取り付けられた基板120を容器に固定する取付手順(第1の製造手順)について説明する。図3に示されるように、一対の整流板141を接着剤による接着等により、発熱体130の外周部に取り付ける。 Next, a mounting procedure (first manufacturing procedure) will be described in which the pair of rectifying plates 141 is attached to the heating element 130 and the rectifying plate 141 fixes the substrate 120 attached to the heating element 130 to the container. As shown in FIG. 3, the pair of flow straightening plates 141 are attached to the outer peripheral portion of the heat generating body 130 by adhesion with an adhesive or the like.
 この際、一対の整流板141の各々の発熱体130に取り付けられる方向は、以下のように発熱体130の発熱量に基づいて決められる。発熱体130a、130b及び130cの発熱量をH1、H2及びH3とする。また、受熱領域A1、A2及びA3の面積をS1、S2及びS3とする。また、以下の説明において、面積S1、S2、S3を区別する必要が無い場合、面積S1、S2、S3の各々を、Sと称する。このとき、面積S1、S2及びS3の比率をH1、H2及びH3の比率と等しくなるように設定する。すなわち、H1:H2:H3=S1:S2:S3になるように受熱領域A1、A2及びA3の各々の面積を設定する。言い換えると、複数の発熱体130の各々の発熱量と複数の受熱領域Aの各々の面積との関係は、線形比例の関係である。これにより、複数の受熱領域Aの各々の面積は、複数の発熱体130の各々の発熱量の増加に応じて増加するように設定されている。 Under the present circumstances, the direction attached to each heat generating body 130 of a pair of flow straightening plates 141 is determined based on the emitted-heat amount of the heat generating body 130 as follows. The calorific value of the heating elements 130a, 130b and 130c is H1, H2 and H3. Further, the areas of the heat receiving areas A1, A2 and A3 are S1, S2 and S3. In the following description, when it is not necessary to distinguish the areas S1, S2, and S3, each of the areas S1, S2, and S3 is referred to as S. At this time, the ratio of the areas S1, S2 and S3 is set to be equal to the ratio of H1, H2 and H3. That is, the area of each of the heat receiving regions A1, A2 and A3 is set so that H1: H2: H3 = S1: S2: S3. In other words, the relationship between the calorific value of each of the plurality of heating elements 130 and the area of each of the plurality of heat receiving regions A is a linear proportional relationship. Thus, the area of each of the plurality of heat receiving areas A is set to increase in accordance with the increase in the amount of heat generation of each of the plurality of heat generating members 130.
 なお、整流板141の取付角度のズレや、整流板141の長さが設計値からずれる等の理由により、実際の受熱領域の面積(SA)が、上記の発熱量との比率から求められた受熱領域の面積(S)から変動する場合がある。この際、SAの値は、Sの値の90~110%であることが好ましい。すなわち、実際の受熱領域の面積(SA)と、発熱量との比率から求められた受熱領域の面積(S)との関係は、SA=S・a(aは、0.9~1.1の間の実数)であることが好ましい。 Note that the actual heat receiving area area (SA) was determined from the ratio to the above-mentioned heat generation amount due to the displacement of the mounting angle of the straightening vane 141, the deviation of the length of the straightening vane 141 from the design value, etc. It may fluctuate from the area (S) of the heat receiving area. At this time, the value of SA is preferably 90 to 110% of the value of S. That is, the relationship between the area (SA) of the heat receiving area and the area (S) of the heat receiving area determined from the ratio of the actual heat receiving area to the area of the heat receiving area It is preferable that it is a real number between
 ここでは、整流板141a~141cの幅の長さ(図2にて鉛直方向Gに対して垂直な方向における整流板141の長さ)が等しいものとする。この場合、図3に示されるように、発熱体130a~130cの各々に設けられている整流板141a~141cに対応する投影線の長さは、互いに等しい。このため、熱領域A1、A2及びA3の面積S1、S2及びS3が決まれば、図3に示されるL1、L2及びL3(一対の整流板141と第1の容器内面115の投影線間の距離)の長さが決まる。この結果、L1、L2及びL3に合わせて、一対の整流板141a~141cの発熱体130に対する取付方向を決めることができる。より具体的には、一対の整流板141a~141cの各々が発熱体130a~130cの各々に取り付けられる角度(取り付け角度とする)を、L1、L2及びL3に合わせて、決めることができる。 Here, it is assumed that the length of the width of the rectifying plates 141a to 141c (the length of the rectifying plate 141 in the direction perpendicular to the vertical direction G in FIG. 2) is equal. In this case, as shown in FIG. 3, the lengths of the projection lines corresponding to the flow regulating plates 141a to 141c provided in each of the heating elements 130a to 130c are equal to one another. Therefore, if the areas S1, S2 and S3 of the thermal areas A1, A2 and A3 are determined, L1, L2 and L3 (the distance between the projection line of the pair of rectifying plates 141 and the first container inner surface 115 shown in FIG. The length of) is decided. As a result, in accordance with L1, L2 and L3, the mounting direction of the pair of rectifying plates 141a to 141c with respect to the heating element 130 can be determined. More specifically, the angles (referred to as attachment angles) at which each of the pair of current plates 141a to 141c is attached to each of the heat generating members 130a to 130c can be determined in accordance with L1, L2, and L3.
 そして、L1、L2及びL3に合わせて、一対の整流板141a~141cの発熱体130a~130cへの取り付け角度を調整しながら、一対の整流板141a~141cの各々を発熱体130a~130cの各々に取り付ける。この際、第1の容器内面115において、領域A1~A3の各々が重ならないように、取り付け角度を調整しながら、一対の整流板141a~141cを発熱体130a~130cに取り付ける。その後、ねじ止め等により、整流板141が発熱体130に取り付けられた基板120を、容器110内に固定する。そして、容器110の蓋をする。これにより、容器110内が密閉空間となる。 Then, while adjusting the attachment angles of the pair of rectifying plates 141a to 141c to the heating elements 130a to 130c in accordance with L1, L2 and L3, each of the pair of rectifying plates 141a to 141c is adjusted to each of the heating elements 130a to 130c. Attach to At this time, on the first container inner surface 115, the pair of flow regulating plates 141a to 141c are attached to the heating elements 130a to 130c while adjusting the attachment angle so that each of the regions A1 to A3 does not overlap. After that, the substrate 120 having the rectifying plate 141 attached to the heating element 130 is fixed in the container 110 by screwing or the like. Then, the container 110 is covered. Thereby, the inside of the container 110 becomes an enclosed space.
 次に、冷媒COOの封入手順(第2の製造手順)について説明する。容器110の蓋には、不図示の冷媒COO注入用の孔が形成されている。容器110の冷媒COO注入用の孔を介して、液相冷媒LP-COOを容器110の内側へ注入する。この際、発熱体130が冷媒LP-COOに浸されるまで、液相冷媒LP-COOを容器110内に注入する。次に、容器110に液相冷媒LP-COOを注入した後にポンプ(不図示)などを用いて真空排気することにより、容器110の内部を常に冷媒の飽和蒸気圧に維持する。そして、冷媒COO注入用の孔を閉じる。このようにして、冷媒COOが容器110内に封入される。また、容器110内の圧力が冷媒COOの飽和蒸気圧と等しくなり、容器110内に密閉された冷媒COOの沸点が室温近傍となる。 Next, the sealing procedure (second manufacturing procedure) of the refrigerant COO will be described. The lid of the container 110 is formed with a hole for injecting the refrigerant COO (not shown). The liquid phase refrigerant LP-COO is injected into the inside of the container 110 through the hole for injecting the refrigerant COO in the container 110. At this time, the liquid phase refrigerant LP-COO is injected into the container 110 until the heating element 130 is immersed in the refrigerant LP-COO. Next, the liquid phase refrigerant LP-COO is injected into the container 110 and then evacuated using a pump (not shown) or the like to maintain the inside of the container 110 always at the saturated vapor pressure of the refrigerant. Then, the hole for injecting the refrigerant COO is closed. Thus, the refrigerant COO is sealed in the container 110. Further, the pressure in the container 110 becomes equal to the saturated vapor pressure of the refrigerant COO, and the boiling point of the refrigerant COO sealed in the container 110 becomes around room temperature.
 以上の工程を経て、図1に示されるように、容器110内に、冷媒COO、基板120、複数の発熱体130a~130c、及び整流板141a~141cが配置される。 Through the above steps, as shown in FIG. 1, the refrigerant COO, the substrate 120, the plurality of heating elements 130a to 130c, and the rectifying plates 141a to 141c are disposed in the container 110.
 以上、電子装置100の製造方法について説明した。 The method of manufacturing the electronic device 100 has been described above.
 次に、図1~図3を用いて電子装置100の動作について説明する。電子装置100の冷却方法の説明においては、前述の電子装置100の組立方法により、図1及び図2に示されるように容器110内に、冷媒COO、基板120、複数の発熱体130a~130c及び整流板141a~141cが配置されていることを前提とする。 Next, the operation of the electronic device 100 will be described using FIGS. 1 to 3. In the description of the method of cooling the electronic device 100, the refrigerant COO, the substrate 120, the plurality of heating elements 130a to 130c, and the plurality of heating elements 130a to 130c and in the container 110 as shown in FIGS. It is assumed that the rectifying plates 141a to 141c are disposed.
 電子装置100を起動すると、発熱体130が動作を開始する。これにより、発熱体130が発熱する。発熱体130が発熱すると、発熱体130の熱は液相冷媒LP-COOに伝達される。発熱体130a~130cの各々からの熱によって、発熱体130a~130cの各々に接している液相冷媒LP-COOの一部は、気相冷媒GP-COOへと相変化する。このようにして、発熱体130の表面の周辺では、潜熱交換が行われ、図1に示されるように、気相冷媒GP-COOの気泡が発生する。なお、図2には、図面表示の便宜上、気相冷媒GP-COOの気泡を示していない。この相変化により生じる熱(潜熱)によって、発熱体130で生じる熱が放熱される。これにより、発熱体130が冷却される。 When the electronic device 100 is activated, the heating element 130 starts operating. Thereby, the heating element 130 generates heat. When the heating element 130 generates heat, the heat of the heating element 130 is transferred to the liquid phase refrigerant LP-COO. Due to the heat from each of the heat generating members 130a to 130c, a part of the liquid-phase refrigerant LP-COO in contact with each of the heat generating members 130a to 130c undergoes a phase change to a gas phase refrigerant GP-COO. In this manner, latent heat exchange is performed around the surface of the heat generating element 130, and as shown in FIG. 1, the bubbles of the gas phase refrigerant GP-COO are generated. Note that FIG. 2 does not show the bubbles of the gas phase refrigerant GP-COO for the convenience of drawing display. The heat (latent heat) generated by this phase change dissipates the heat generated by the heating element 130. Thereby, the heating element 130 is cooled.
 気相冷媒GP-COOの気泡は、発熱体130の近傍で生じた後、鉛直方向Gの上方側へ向かい、液相冷媒LP-COOの液面を抜けて、さらに鉛直方向Gの上方へ向かう。なお、水面に近づくにつれて液圧が小さくなるので、気泡は水面に近づくにつれて大きくなる。そして、発熱体130の熱によって液相冷媒LP-COOから相変化した気相冷媒GP-COOは、容器110の内壁面と接触することにより冷却されると、再び液相冷媒LP-COOに相変化する。この液相冷媒LP-COOは、容器110内を鉛直方向Gの下方へ下降し、容器110の鉛直方向Gの下方側に溜まり、発熱体130の冷却に再び用いられる。 The bubbles of the gas phase refrigerant GP-COO are generated in the vicinity of the heating element 130 and then go upward in the vertical direction G, pass through the liquid surface of the liquid phase refrigerant LP-COO, and go further upward in the vertical direction G . In addition, since the hydraulic pressure decreases as the water surface is approached, the bubbles increase as the water surface is approached. Then, when the gas-phase refrigerant GP-COO which has undergone a phase change from the liquid-phase refrigerant LP-COO by the heat of the heating element 130 is cooled by coming into contact with the inner wall surface of the container 110, the phase is changed again to the liquid-phase refrigerant LP-COO. Change. The liquid-phase refrigerant LP-COO descends in the container 110 downward in the vertical direction G, accumulates on the lower side of the container 110 in the vertical direction G, and is used again to cool the heating element 130.
 ここで、各発熱体130a、130b、130cには、図1に示されるように一対の整流板141a、141b、141cがそれぞれ取り付けられている。したがって、各発熱体130a、130b、130cの熱によって液相冷媒LP-COOから相変化した気相冷媒GP-COOは、発熱体130ごとに設けられている一対の整流板141a、141b、141cに挟まれた空間内を上昇する。例えば、発熱体130aの表面で生じた気相冷媒GP-COOは、一対の整流板141aに挟まれた空間を上昇する。発熱体130b、130cの表面で生じた気相冷媒GP-COOについても同様である。 Here, as shown in FIG. 1, a pair of rectifying plates 141 a, 141 b and 141 c are attached to the respective heating elements 130 a, 130 b and 130 c. Therefore, the gas-phase refrigerant GP-COO changed in phase from the liquid-phase refrigerant LP-COO by the heat of the heating elements 130a, 130b, 130c is applied to the pair of rectifying plates 141a, 141b, 141c provided for each heating element 130. Ascend in the sandwiched space. For example, the gas-phase refrigerant GP-COO generated on the surface of the heating element 130a ascends in the space sandwiched by the pair of flow straightening plates 141a. The same applies to the gas-phase refrigerant GP-COO generated on the surfaces of the heating elements 130b and 130c.
 ここで、受熱領域A1、A2及びA3は、上述の通り、一対の整流板141a、141b及び141cと第1の容器内面115の投影線に沿って設定される囲み線に囲まれた領域である。 Here, the heat receiving areas A1, A2 and A3 are areas surrounded by the encircling lines set along the projection lines of the pair of rectifying plates 141a, 141b and 141c and the first container inner surface 115 as described above. .
 このため、複数の発熱体130a、130b及び130cの各々で生じた気相冷媒GP-COOは、一対の整流板141a、141b及び141cの各々に挟まれた空間内を上昇した後、受熱領域A1、A2及びA3の各々に接触する。 For this reason, the gas phase refrigerant GP-COO generated in each of the plurality of heating elements 130a, 130b and 130c rises in the space sandwiched by the pair of rectifying plates 141a, 141b and 141c, and then receives the heat receiving area A1. , A2 and A3 respectively.
 これにより、発熱体130の各々で生じた熱は、受熱領域Aの各々の範囲内で、容器110へと伝達され、冷却される。例えば、発熱体130aで生じた熱を含む気相冷媒GP-COOは、受熱領域A1の範囲内で、容器110へ伝達され、冷却される。 Thus, the heat generated in each of the heating elements 130 is transferred to the vessel 110 within the range of each of the heat receiving areas A and is cooled. For example, the gas-phase refrigerant GP-COO containing the heat generated by the heating element 130a is transferred to the vessel 110 and cooled within the range of the heat receiving area A1.
 複数の発熱体130の各々で生じた気相冷媒GP-COOは、上記のように容器110で冷却されることによって、液相冷媒LP-COOへと相変化する。そして、相変化した液相冷媒LP-COOは、液相冷媒LP-COOが貯留されている方向(図1及び図2にて鉛直方向Gの下側)に向けて下降し、再び発熱体130を冷却に用いられる。 The gas phase refrigerant GP-COO generated in each of the plurality of heat generating members 130 is phase-changed to liquid phase refrigerant LP-COO by being cooled by the container 110 as described above. Then, the phase-changed liquid-phase refrigerant LP-COO descends in the direction in which the liquid-phase refrigerant LP-COO is stored (downward in the vertical direction G in FIGS. 1 and 2), and the heating element 130 again Used for cooling.
 以上、電子装置100の動作について説明した。 The operation of the electronic device 100 has been described above.
 なお、電子装置100の受熱領域Aの説明においては、第1の発熱体外面131の外周形状は、四角形状であるとした。 In the description of the heat receiving area A of the electronic device 100, the outer peripheral shape of the first heat generating body outer surface 131 is square.
 一方で、第1の発熱体外面131の外周形状は、円状、楕円状、又は四角形以外の凸多角形状であってもよい。この場合、整流板141は、第1の発熱体外面131の外周の全周に沿って配置されても良い。この際の受熱領域Aは、投影線に囲われた図形の内側の領域とする。なお、受熱領域Aの形状は、第1の発熱体外面131の外周形状に相似する形状である。例えば、発熱体130の第1の発熱体外面131の外周形状が楕円状である場合、該発熱体130に対応する受熱領域Aの形状は、第1の発熱体外面131の外周形状に相似する楕円状である。 On the other hand, the outer peripheral shape of the first heat generating body outer surface 131 may be a circle, an ellipse, or a convex polygon other than a square. In this case, the straightening vane 141 may be disposed along the entire circumference of the outer periphery of the first heat generating body outer surface 131. The heat receiving area A at this time is an area inside the figure surrounded by the projection line. The shape of the heat receiving area A is a shape similar to the outer peripheral shape of the first heat generating body outer surface 131. For example, when the outer peripheral shape of the first heat generating body outer surface 131 of the heat generating body 130 is elliptical, the shape of the heat receiving region A corresponding to the heat generating body 130 is similar to the outer peripheral shape of the first heat generating body outer surface 131 It is elliptical.
 一方で、例えば、上記の投影線に囲われた図形が第1の容器内面115の内側に収まらない場合、第1の発熱体外面131の外周形状に相似する形状の一部を変形して、第1の容器内面115に収まるように変形する。この場合、受熱領域Aは、投影線で囲われた図形と同じ面積であって、第1の発熱体外面131の外周形状に相似しない形状であってもよい。すなわち、受熱領域Aは、投影線で囲われた図形と同じ面積であって、縦横比が第1の発熱体外面131の形状と異なる形状であっても良い。 On the other hand, for example, when the figure enclosed by the projection line does not fit inside the first container inner surface 115, a part of the shape similar to the outer peripheral shape of the first heat generating member outer surface 131 is deformed, It deforms so as to fit on the first container inner surface 115. In this case, the heat receiving area A may have the same area as the figure surrounded by the projection line, and may not have a shape similar to the outer peripheral shape of the first heat generating body outer surface 131. That is, the heat receiving area A may have the same area as the figure surrounded by the projection line, and may have a shape whose aspect ratio is different from the shape of the first heat generating body outer surface 131.
 また、第1の発熱体外面131の外周形状が円状、楕円状又は四角形以外の凸多角形状である際に、整流板141は、複数であって、第1の発熱体外面131の外周の一部にのみ沿って設けられていても良い。この場合、複数の整流板141は、第1の発熱体外面131の外周のうちの50%以上に沿って設けられ、且つ外周上で隣接する任意の二つの整流板141の間の空隙の外周に沿って測った長さが互いにほぼ等しくなるように配置されている必要がある。例えば、第1の発熱体外面131の外周形状が正六角形状である場合、3つの第1の整流板141の各々は、各々の間に該正六角形の一辺の長さの間隔が空けられた上で、該正六角形の3辺の各々に設けられている。すなわち、該正六角形の外周において、整流板141が設けられている辺と整流板141が設けられていない辺とが、互い違いに設定される。 In addition, when the outer peripheral shape of the first heat generating body outer surface 131 is a circle, an oval, or a convex polygonal shape other than a quadrangle, the flow straightening plates 141 are plural and the outer periphery of the first heat generating body outer surface 131 It may be provided along only a part. In this case, the plurality of straightening vanes 141 are provided along 50% or more of the outer circumference of the first heat generating body outer surface 131, and the outer circumference of the gap between any two straightening vanes 141 adjacent on the outer circumference. It is necessary to be arranged so that the lengths measured along are substantially equal to each other. For example, when the outer peripheral shape of the first heat generating body outer surface 131 is a regular hexagonal shape, each of the three first straightening vanes 141 is spaced apart from each other by one side of the regular hexagon. Above, provided on each of the three sides of the regular hexagon. That is, on the outer periphery of the regular hexagon, the side provided with the straightening vane 141 and the side not provided with the straightening vane 141 are alternately set.
 整流板141が複数であって第1の発熱体外面131の外周の一部にのみ沿って設けられていている場合、各々の投影線が交わらないため、各々の投影線によって囲まれた領域が形成されない。この場合は、上述したように、各投影線の端部を最短距離で結んで得られる図形の内側に形成される領域を、受熱領域Aとすることができる。この場合において、例えば、投影線が中心点及び半径を同一とする複数の円弧である場合、受熱領域Aは、各円弧の端部間を最短距離で結んで形成される図形の内側の領域を、受熱領域Aとすることができる。このとき、複数の円弧の端部間を最短距離で結んで形成される図形の内側の面積と、複数の円弧を含む円の内側の面積とが互いに近似する場合(たとえば、両面積の差分値が円の内側の面積の5%以内の場合)、複数の円弧を含む円の内側の領域を受熱領域Aとすることができる。なお、ここでは、投影線が複数の円弧である場合を説明したが、投影線が楕円の一部の曲線である場合であっても、同様に近似できる。 When a plurality of rectifying plates 141 are provided along only a part of the outer periphery of the first heat generating body outer surface 131, the respective projection lines do not intersect, so the area surrounded by the respective projection lines is Not formed. In this case, as described above, the heat receiving area A can be the area formed inside the figure obtained by connecting the ends of the projection lines by the shortest distance. In this case, for example, when the projection line is a plurality of arcs having the same center point and radius, the heat receiving area A is an area inside the figure formed by connecting the ends of the arcs at the shortest distance. , Heat receiving area A. At this time, when the area inside the figure formed by connecting the ends of the plurality of arcs at the shortest distance and the area inside the circle including the plurality of arcs approximate each other (for example, the difference value between both areas) Is within 5% of the area inside the circle), the heat receiving area A can be the area inside the circle including a plurality of arcs. Although the case where the projection line is a plurality of arcs has been described here, similar approximation is possible even if the projection line is a partial curve of an ellipse.
 前述の通り、本発明の第1の実施形態における電子装置100は、容器110と、基板120と、複数の発熱体130と、整流板141とを備えている。容器110は、熱伝導性を有し、液相冷媒LP-COOおよび気相冷媒GP-COOの間で相変化する冷媒COOを封入する。第1の基板120は、容器110の内面のうちの一つの面である第1の容器内面115と向かい合う第1の主面125を有する。また、第1の基板120は、容器110内に設けられる。複数の発熱体130の各々は、第1の発熱体外面131を有する。また、複数の発熱体130は、第1の発熱体外面131と第1の容器内面115とが互いに向かい合うように第1の主面125に取り付けられ、液相冷媒LP-COOに浸される。整流板141は、複数の発熱体130各々の外周部から、第1の容器内面115側へ向けて延出するように設けられている。また、整流板141は、1以上である。また、複数の発熱体130の各々の熱を受熱するために複数の発熱体130の各々毎に設定される領域である受熱領域の各々の面積は、複数の発熱体130各々の発熱量の増加に応じて増加するように設定されている。また、受熱領域は、容器110の内面のうち、1以上の整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線に沿って設定される囲み線に囲まれた領域である。 As described above, the electronic device 100 according to the first embodiment of the present invention includes the container 110, the substrate 120, the plurality of heating elements 130, and the rectifying plate 141. The container 110 has thermal conductivity, and encloses the refrigerant COO which changes phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO. The first substrate 120 has a first major surface 125 facing the first container inner surface 115 which is one of the inner surfaces of the container 110. In addition, the first substrate 120 is provided in the container 110. Each of the plurality of heating elements 130 has a first heating element outer surface 131. The plurality of heat generating members 130 are attached to the first main surface 125 so that the first heat generating member outer surface 131 and the first container inner surface 115 face each other, and are immersed in the liquid phase refrigerant LP-COO. The baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. Further, the number of the straightening vanes 141 is one or more. In addition, the area of each of the heat receiving areas, which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130, increases the calorific value of each of the plurality of heating elements 130 It is set to increase according to. Further, the heat receiving area is the first when the end side of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115. Is an area surrounded by an encircling line set along a projection line appearing on the inner surface 115 of the container.
 このように、複数の発熱体130の各々の熱を受熱するために複数の発熱体130の各々毎に設定される領域である受熱領域Aの各々の面積は、複数の発熱体130の各々の発熱量の増加に応じて増加するように設定されている。したがって、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aを設定することができる。これにより、複数の受熱領域Aの各々の面積を、各発熱体130で発生した熱を過不足なく受熱できるように設定できる。このため、複数の受熱領域Aの合計面積を必要最小限に調整することができる。ゆえに、容器内面115の面積を必要最小限に設定できるので、容器110の大きさを必要最小限の大きさに調整することができる。 Thus, the area of each of the heat receiving areas A, which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130 It is set to increase as the amount of heat generation increases. Therefore, according to each calorific value of a plurality of heating elements 130, a plurality of heat receiving areas A can be set. Thereby, the area of each of the plurality of heat receiving areas A can be set so that the heat generated by each heating element 130 can be received without excess or deficiency. Therefore, the total area of the plurality of heat receiving areas A can be adjusted to the necessary minimum. Therefore, since the area of the container inner surface 115 can be set to the necessary minimum, the size of the container 110 can be adjusted to the minimum required size.
 前述の通り、特許文献1に記載の技術では、複数の発熱体の大きさが互いに等しい場合、複数の発熱体の各々の熱によって生じる各々の気相冷媒が、容器および隔壁と接触する表面積が同じである。この場合において、複数の発熱体から生じる各気相冷媒が容器および隔壁と接触する表面積を、発熱量の小さい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の大きい発熱体によって生じる気相冷媒は十分に冷却されないという問題があった。また、各々の気相冷媒が容器および隔壁と接触する表面積を、発熱量の大きい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の小さい発熱体に合わせて面積を設定した場合に比べて容器が大きくなってしまう。この際、発熱量の小さい発熱体によって生じる気相冷媒は、必要以上に大きな表面積で冷却されることとなる。このように、表面積の各々を発熱量の大きい発熱体に合わせて設定すると、容器が必要以上に大きくなるという問題があった。 As described above, in the technique described in Patent Document 1, when the sizes of the plurality of heating elements are equal to each other, the surface area where each gas phase refrigerant generated by the heat of each of the plurality of heating elements contacts the container and the partition It is the same. In this case, the surface area of each of the gas phase refrigerants generated from the plurality of heating elements in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the small heating element. There is a problem that the gas phase refrigerant generated by the large heating element is not sufficiently cooled. In addition, if the surface area of each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container will be larger than in the case of setting. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. As described above, when each of the surface areas is set according to the heating element having a large calorific value, there is a problem that the container becomes larger than necessary.
 一方、本発明の第1の実施の形態における電子装置100では、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aの各々を設定することができるので、発熱量の小さい発熱体130に設定される受熱領域Aの面積を、発熱体130毎に発熱量に応じて小さく設定することができる。逆に、熱量の大きい発熱体130に設定される受熱領域Aの面積を、発熱体130毎に発熱量に応じて大きく設定することができる。 On the other hand, in the electronic device 100 according to the first embodiment of the present invention, since each of the plurality of heat receiving areas A can be set according to each amount of heat generation of the plurality of heat generating members 130 The area of the heat receiving area A set in the body 130 can be set smaller for each heating element 130 according to the amount of heat generation. Conversely, the area of the heat receiving area A set for the heating element 130 with a large amount of heat can be set large for each heating element 130 according to the amount of heat generation.
 すなわち、複数の発熱体130に熱量の大きい発熱体130と熱量の小さい発熱体130が含まれていても、発熱体130毎に受熱領域Aを設定できる。したがって、前述の通り、受熱領域Aが設定される第1の容器内面115の面積を必要最小限に設定できる。この結果、容器110の大きさを必要最小限の大きさに調整できる。 That is, even if the plurality of heating elements 130 includes the heating element 130 having a large amount of heat and the heating element 130 having a small amount of heat, the heat receiving region A can be set for each heating element 130. Therefore, as described above, the area of the first container inner surface 115 in which the heat receiving area A is set can be set to the necessary minimum. As a result, the size of the container 110 can be adjusted to the necessary minimum size.
 このように、電子装置100においては、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aをそれぞれ設定することができ、第1の容器内面115の面積を必要最小限に設定できるので、容器110の大きさを必要最小限の大きさに調整することができる。したがって、必要最小限の大きさの容器110で、複数の発熱体130を効率よく冷却できる。 As described above, in the electronic device 100, the plurality of heat receiving regions A can be set respectively in accordance with the respective calorific values of the plurality of heating elements 130, and the area of the first container inner surface 115 is set to the necessary minimum. As it is possible, the size of the container 110 can be adjusted to the necessary minimum size. Therefore, the plurality of heating elements 130 can be efficiently cooled with the container 110 of the minimum necessary size.
 また、整流板141は、複数の発熱体130各々の外周部から、第1の容器内面115側へ向けて延出するように設けられている。すなわち、整流板141は、発熱体130に設けられている。なお、特許文献1に記載の技術では、整流板141に関連する構成(隔壁)は容器110に関連する構成(放熱部材)に設けられていた。このため、容器110に関連する構成(放熱部材)を作り直さなければ、発熱体のセラミック回路基板上における配置場所等が変更できなかった。一方で、本発明の第1の実施形態に係る電子装置100では、整流板141は、発熱体130に設けられている。そのため、容器110を作り直さずに、発熱体130の基板120上における配置場所等が変更できる。このため、特許文献1に記載の技術と比較して、簡単な構成とすることがきる。 Further, the current plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. That is, the current plate 141 is provided to the heat generating body 130. In the technique described in Patent Document 1, the configuration (partition wall) related to the rectifying plate 141 is provided to the configuration (heat dissipation member) related to the container 110. For this reason, unless the structure (heat dissipation member) related to the container 110 is reworked, the arrangement place and the like of the heating element on the ceramic circuit board can not be changed. On the other hand, in the electronic device 100 according to the first embodiment of the present invention, the rectifying plate 141 is provided to the heating element 130. Therefore, the arrangement location and the like of the heating element 130 on the substrate 120 can be changed without recreating the container 110. For this reason, compared with the technique of patent document 1, it can be set as a simple structure.
 以上のように、電子装置100は、本発明の第1の実施の形態における電子装置100によれば、複数の発熱体130間で発熱量が異なっても、簡単な構成で複数の発熱体130の各々を効率よく冷却できる。 As described above, according to the electronic device 100 according to the first embodiment of the present invention, the electronic device 100 has a plurality of heating elements 130 with a simple configuration even if the amount of heat generation differs among the plurality of heating elements 130. Can be cooled efficiently.
 本発明の第1の実施の形態における電子装置100において、複数の受熱領域は、互いに離間して設けられている。 In the electronic device 100 according to the first embodiment of the present invention, the plurality of heat receiving areas are provided apart from one another.
 これにより、特定の受熱領域からに含まれる熱が、隣接する受熱領域へ移動することが抑制される。したがって、複数の受熱領域の各々が含む熱の量は、複数の発熱体130各々の発熱量により応じたものとなる。この結果、電子装置100は、より効率よく複数の発熱体130の各々を冷却することが出来る。 Thereby, the heat contained in the specific heat receiving area is suppressed from moving to the adjacent heat receiving area. Therefore, the amount of heat contained in each of the plurality of heat receiving regions corresponds to the amount of heat generation of each of the plurality of heat generating members 130. As a result, the electronic device 100 can cool each of the plurality of heating elements 130 more efficiently.
 本発明の第1の実施の形態における電子装置100において、1以上の整流板141の少なくとも一部は、第1の容器内面115側の端部が第1の容器内面115に近接して配置される。ここで、整流板141の第1の容器内面115側の端部が第1の容器内面115に近接して配置されるとは、例えば、整流板141の第1の容器内面115側の端部から第1の容器内面115までの間の最短の長さが数mm~数cmである状態を示す。 In the electronic device 100 according to the first embodiment of the present invention, the end on the first container inner surface 115 side of at least a part of the one or more rectifying plates 141 is disposed close to the first container inner surface 115 Ru. Here, the end on the first container inner surface 115 side of the rectifying plate 141 being disposed close to the first container inner surface 115 means, for example, the end portion on the first container inner surface 115 side of the rectifying plate 141 And the first container inner surface 115 has a shortest length of several mm to several cm.
 これにより、発熱体130から生じた気相冷媒GP-COOは、より第1の容器内面115に近い位置まで、整流板141に沿って流れる。このため、発熱体130から生じた気相冷媒GP-COOは、第1の容器内面115に設定された受熱領域に、より確実に接触する。したがって、複数の受熱領域の各々が含む熱の量は、複数の発熱体130各々の発熱量により応じたものとなる。この結果、電子装置100は、より効率よく複数の発熱体130の各々を冷却することが出来る。 As a result, the gas-phase refrigerant GP-COO generated from the heating element 130 flows along the rectifying plate 141 to a position closer to the first container inner surface 115. For this reason, the gas phase refrigerant GP-COO generated from the heating element 130 more reliably contacts the heat receiving region set on the first container inner surface 115. Therefore, the amount of heat contained in each of the plurality of heat receiving regions corresponds to the amount of heat generation of each of the plurality of heat generating members 130. As a result, the electronic device 100 can cool each of the plurality of heating elements 130 more efficiently.
 <第1の実施形態の第1の変形例>
 次に、本発明の第1の実施形態の第1の変形例における電子装置100Aについて説明する。図4は、電子装置100Aを説明するための図である。
First Modified Example of First Embodiment
Next, an electronic device 100A according to a first modified example of the first embodiment of the present invention will be described. FIG. 4 is a diagram for explaining the electronic device 100A.
 電子装置100Aは、容器110、基板120、複数の発熱体130a、130b、130c、及び複数の整流板141a、141b、141cを備える。 The electronic device 100A includes a container 110, a substrate 120, a plurality of heating elements 130a, 130b, and 130c, and a plurality of rectifying plates 141a, 141b, and 141c.
 まず、電子装置100Aと電子装置100を構成について対比する。電子装置100では、複数の整流板141は、冷媒COOの流動によって撓んだりしない程度の剛性を有するものとしていた。一方で、電子装置100Aでは、複数の整流板141は、弾性部材により形成されており、冷媒COOの流動によって撓むように、弾性を有している点において、電子装置100と相違する。以上が、電子装置100Aの構成の説明である。 First, the configuration of the electronic device 100A and the electronic device 100 will be compared. In the electronic device 100, the plurality of straightening vanes 141 have the rigidity to such an extent that they do not bend due to the flow of the refrigerant COO. On the other hand, the electronic device 100A is different from the electronic device 100 in that the plurality of straightening vanes 141 are formed of elastic members and have elasticity so as to be bent by the flow of the refrigerant COO. The above is the description of the configuration of the electronic device 100A.
 また、電子装置100Aの製造方法は、電子装置100の製造方法と同等である。 Further, the method of manufacturing the electronic device 100A is equivalent to the method of manufacturing the electronic device 100.
 また、電子装置100Aの動作は、電子装置100の動作と同等である。しかし、電子装置100Aにおいては、発熱体130の近傍で生じた気相冷媒GP-COOが一対の整流板141の内側を上昇した際の動作において異なる。具体的には、図4に示されるように、一対の整流板141の近傍では、一対の整流板141の各々は、発熱体130の近傍により生じた気相冷媒GP-COOの気泡や液相冷媒LP-COOの流動によって、発熱体130の中央部から外周部に向かって押される。これにより、一対の整流板141の各々は、図4の矢印p1の方向(発熱体130の中央部から発熱体130の外周部に向かう方向)で撓む。この結果、同一の発熱体130に設けられた整流板141の間隔の長さLは、整流板141が撓んだ分(図4に示されるα)だけ更に長くなる。すなわち、気相冷媒GP-COOの気泡量に応じて、受熱領域Aを広げる方向に整流板141を撓ませることができる。この際、整流板141を撓ませることによって、同一の発熱体130に設けられた整流板141の間隔の長さLがαだけ長くなったとしても、複数の受熱領域Aの各々は、互いに重ならないように設定されている。なお、発熱体130の発熱量が増えるほど、気相冷媒GP-COOの気泡量が増える。また、気相冷媒GP-COOの気泡量が増えるほど、気相冷媒GP-COOの気泡や液相冷媒LP-COOの流動が整流板141に作用する力が大きくなる。すなわち、発熱体130の発熱量が増えるほど、気相冷媒GP-COOが整流板141に作用する力が大きくなり、前述のαが長くなる。 Also, the operation of the electronic device 100A is equivalent to the operation of the electronic device 100. However, in the electronic device 100A, the operation is different when the gas-phase refrigerant GP-COO generated in the vicinity of the heating element 130 ascends the inside of the pair of rectifying plates 141. Specifically, as shown in FIG. 4, in the vicinity of the pair of straightening vanes 141, each of the pair of straightening vanes 141 is a bubble or liquid phase of gas-phase refrigerant GP-COO generated in the vicinity of the heating element 130. By the flow of the refrigerant LP-COO, it is pushed from the central part of the heating element 130 toward the outer peripheral part. Thereby, each of the pair of flow straightening plates 141 is bent in the direction of the arrow p1 in FIG. 4 (the direction from the central portion of the heat generating member 130 toward the outer peripheral portion of the heat generating member 130). As a result, the length L of the interval of the straightening vanes 141 provided on the same heat generating body 130 is further increased by the amount of deflection of the straightening vanes 141 (α shown in FIG. 4). That is, the flow straightening plate 141 can be bent in the direction to widen the heat receiving region A according to the amount of air bubbles of the gas phase refrigerant GP-COO. Under the present circumstances, even if the length L of the space | interval of the baffle plate 141 provided in the same heat generating body 130 becomes long by (alpha) by bending the baffle plate 141, each of several heat receiving area A mutually overlaps. It is set not to. The amount of bubbles of the gas-phase refrigerant GP-COO increases as the amount of heat generation of the heating element 130 increases. Further, as the amount of bubbles of the gas phase refrigerant GP-COO increases, the force of the bubbles of the gas phase refrigerant GP-COO and the flow of the liquid phase refrigerant LP-COO acting on the rectifying plate 141 increases. That is, as the amount of heat generation of the heating element 130 increases, the force of the gas phase refrigerant GP-COO acting on the rectifying plate 141 increases, and the above-mentioned α becomes longer.
 このように、電子装置100Aでは、整流板141は弾性部材により形成されている。このため、気相冷媒GP-COOの気泡量に応じて、受熱領域Aを広げる方向に整流板141を撓ませることができる。この結果、気相冷媒GP-COOの気泡量に応じて、受熱領域Aを広げることができる。 As described above, in the electronic device 100A, the rectifying plate 141 is formed of an elastic member. For this reason, it is possible to bend the straightening vane 141 in the direction to widen the heat receiving region A according to the bubble amount of the gas phase refrigerant GP-COO. As a result, the heat receiving region A can be expanded according to the amount of bubbles of the gas phase refrigerant GP-COO.
 <第1の実施形態の第2変形例>
 次に本発明の第1の実施形態の第2の変形例における電子装置100Bについて説明する。図5は、電子装置100Bの構成を示す模式図である。図5では、図1~図4で示した各構成要素と同等の構成要素には、図1~図4に示した符号と同等の符号を付している。
Second Modification of First Embodiment
Next, an electronic device 100B according to a second modified example of the first embodiment of the present invention will be described. FIG. 5 is a schematic view showing the configuration of the electronic device 100B. In FIG. 5, the components equivalent to the components shown in FIGS. 1 to 4 are given the same reference numerals as the symbols shown in FIGS. 1 to 4.
 図5に示されるように、電子装置100Bは、容器110、基板120、複数の発熱体130a~130c及び複数の整流板141a~141cを備えている。 As shown in FIG. 5, the electronic device 100B includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
 ここで、電子装置100Bと電子装置100とを対比する。電子装置100では、整流板141は、発熱体130に直接取り付けられていた。一方で、電子装置100Bでは、整流板141は、土台部142を介して、発熱体130に取り付けられている点において電子装置100と相違する。 Here, the electronic device 100B and the electronic device 100 are compared. In the electronic device 100, the rectifying plate 141 is directly attached to the heating element 130. On the other hand, in the electronic device 100 </ b> B, the rectifying plate 141 is different from the electronic device 100 in that the rectifying plate 141 is attached to the heating element 130 via the base portion 142.
 図5に示されるように、電子装置100Bは、整流板141a~141c及び土台部142a~142cを有する整流部材140a~140cを備える。なお、以下の説明では、整流部材140a~140cを区別する必要が無い場合、整流部材140と称する。また、土台部142a~142cを区別する必要が無い場合、土台部142と称する。 As shown in FIG. 5, the electronic device 100B includes rectifying members 140a to 140c having rectifying plates 141a to 141c and base portions 142a to 142c. In the following description, the rectifying members 140a to 140c are referred to as the rectifying member 140 when it is not necessary to distinguish them. Further, when it is not necessary to distinguish the base portions 142a to 142c, the base portions 142a to 142c are referred to as the base portion 142.
 土台部142について説明する。図5に示されるように、土台部142は、発熱体130の外面のうち、第1の容器内面115と向かい合う面に設けられる。なお、土台部142は、例えば接着剤により発熱体130上に固定される。また、土台部142には、整流板141が取り付けられている。なお、例えば整流板141は、土台部142に接着剤により固定される。また、土台部142は、1以上の整流板141と一体に形成されていても良い。また、好ましくは、土台部142は、熱伝導性を有してもよい。これにより、土台部142で、発熱体130の熱を受けて、これを冷却することができる。 The base portion 142 will be described. As shown in FIG. 5, the base portion 142 is provided on a surface of the outer surface of the heating element 130 facing the first container inner surface 115. The base portion 142 is fixed on the heating element 130 by, for example, an adhesive. Further, a rectifying plate 141 is attached to the base portion 142. For example, the straightening vane 141 is fixed to the base portion 142 by an adhesive. In addition, the base portion 142 may be integrally formed with the one or more rectifying plates 141. Also, preferably, the base portion 142 may have thermal conductivity. Thus, the heat of the heating element 130 can be received by the base portion 142 to cool it.
 土台部142には、たとえば、樹脂材料(たとえば、ABS樹脂)や金属材料(たとえば、アルミニウムや、アルミニウム合金)が、用いられる。 For the base portion 142, for example, a resin material (for example, an ABS resin) or a metal material (for example, aluminum or an aluminum alloy) is used.
 なお、電子装置100では、整流板141を直接発熱体130に接着剤で固定していたが、電子装置100Bでは、整流部材140の土台部142を発熱体130に接着剤で固定している。 In the electronic device 100, the rectifying plate 141 is directly fixed to the heating element 130 with an adhesive, but in the electronic device 100B, the base portion 142 of the rectifying member 140 is fixed to the heating element 130 with an adhesive.
 また、電子装置100Bの動作は、電子装置100の動作と同様である。 Also, the operation of the electronic device 100B is similar to the operation of the electronic device 100.
 このように、電子装置100Bでは、一対の整流板141を1つの土台部142に取り付けているので、部品点数を少なくすることができる。 As described above, in the electronic device 100 </ b> B, since the pair of rectifying plates 141 is attached to one base portion 142, the number of parts can be reduced.
 <第2の実施形態>
 次に本発明の第2の実施形態における電子装置200について説明する。図6は、電子装置200の構成を示す正面透過図である。また図7は、後述する整流部材140Aの構成を示す図である。
Second Embodiment
Next, an electronic device 200 according to a second embodiment of the present invention will be described. FIG. 6 is a front transparent view showing the configuration of the electronic device 200. As shown in FIG. Moreover, FIG. 7 is a figure which shows the structure of 140 A of flow adjustment members mentioned later.
 電子装置200は、図6に示されるように、容器110、基板120、複数の発熱体130a、130b、130c、及び複数の整流部材140Aa、140Ab、140Acを備えている。 As shown in FIG. 6, the electronic device 200 includes a container 110, a substrate 120, a plurality of heating elements 130a, 130b, 130c, and a plurality of rectifying members 140Aa, 140Ab, 140Ac.
 図5、図6及び図7を用いて、電子装置100Bと電子装置200を対比する。電子装置200では、整流部材140a~140cは、整流板141a~141cと、土台部142a~142cとを備えている。一方で、電子装置200では、整流部材140Aa~140Acは、整流板141a~141cと、土台部142a~142cと、ヒンジ143a~143cを備えている。そして、整流板141a~141cは、ヒンジ143a~143cを介して、土台部142a~142cに接続されている。これらの点で、電子装置100Bと電子装置200は互いに相違する。 The electronic device 100 </ b> B and the electronic device 200 are compared with reference to FIGS. 5, 6 and 7. In the electronic device 200, the rectifying members 140a to 140c include rectifying plates 141a to 141c and base portions 142a to 142c. On the other hand, in the electronic device 200, the rectifying members 140Aa to 140Ac include rectifying plates 141a to 141c, base portions 142a to 142c, and hinges 143a to 143c. The rectifying plates 141a to 141c are connected to the base portions 142a to 142c via the hinges 143a to 143c. The electronic device 100B and the electronic device 200 are different from each other in these points.
 なお、以下の説明において、整流部材140Aa~140Acを区別する必要がない場合は、整流部材140Aa~140Acの各々を整流部材140Aと称する。また、ヒンジ143a~143cを区別する必要がない場合は、ヒンジ143a~143cの各々をヒンジ143と称する。 In the following description, when it is not necessary to distinguish the flow regulating members 140Aa to 140Ac, each of the flow regulating members 140Aa to 140Ac is referred to as a flow regulating member 140A. In addition, when the hinges 143a to 143c do not need to be distinguished, each of the hinges 143a to 143c is referred to as a hinge 143.
 ヒンジ143について説明する。図6及び図7に示されるように、ヒンジ143は、土台部142及び整流板141の間に取り付けられている。ヒンジ143は、ヒンジ143と整流板141の接続部を中心として整流板141が回転できるように、整流板141を保持する。より具体的には、ヒンジ143は、整流板141が回転できるように、整流板141および土台部142を連結する。このとき、整流板141は、ヒンジ143を中心に、回転することができる。また、ヒンジ143は、整流板141の回転が止められた時点での整流板141の土台部142に対する角度を保ったうえで、整流板141を保持する。 The hinge 143 will be described. As shown in FIGS. 6 and 7, the hinge 143 is attached between the base portion 142 and the straightening vane 141. The hinge 143 holds the straightening vane 141 such that the straightening vane 141 can rotate around the connection portion between the hinge 143 and the straightening vane 141. More specifically, the hinge 143 connects the straightening vane 141 and the base portion 142 so that the straightening vane 141 can rotate. At this time, the current plate 141 can rotate around the hinge 143. Further, the hinge 143 holds the straightening vane 141 while maintaining the angle of the straightening vane 141 with respect to the base portion 142 when the rotation of the straightening vane 141 is stopped.
 なお、このヒンジ143には、たとえば、フリーストップ仕様のヒンジを用いることができる。フリーストップ仕様のヒンジとは、当該ヒンジに連結される部材間の角度を任意の角度に固定して静止できるヒンジをいう。このフリーストップ仕様のヒンジを用いることで、整流板141と土台部142の間の角度を任意の角度に固定して整流板141を土台部142に保持することができる。ヒンジ143の材料には、たとえば、金属材料(たとえば、アルミニウムや、アルミニウム合金や、ステンレス鋼)が用いられる。なお、ヒンジ143には、フリーストップ仕様のヒンジとして、たとえば、スガツネ工業製LAMPトルクヒンジHG-TS型を用いることができる。 As the hinge 143, for example, a hinge of free stop specification can be used. The hinge of a free stop specification means the hinge which can fix and fix the angle between the members connected with the said hinge to arbitrary angles. By using the hinge of this free stop specification, the angle between the current plate 141 and the base portion 142 can be fixed to an arbitrary angle, and the current plate 141 can be held on the base portion 142. As a material of the hinge 143, for example, a metal material (for example, aluminum, aluminum alloy, stainless steel) is used. For the hinge 143, for example, LAMP torque hinge HG-TS type manufactured by Sugatsune Industrial Co., Ltd. can be used as the hinge of the free stop specification.
 以上、電子装置200について説明した。 The electronic device 200 has been described above.
 次に、電子装置200の製造方法について説明する。まず、電子装置200と電子装置100の製造方法を対比する。電子装置200の製造方法は、電子装置100の冷媒COOの封入手順(第2の製造手順)については同様である。一方で、電子装置200の製造方法は、電子装置100の製造方法と取付手順(第1の製造手順)において異なる。 Next, a method of manufacturing the electronic device 200 will be described. First, methods of manufacturing the electronic device 200 and the electronic device 100 will be compared. The method of manufacturing the electronic device 200 is the same as the sealing procedure (second manufacturing procedure) of the refrigerant COO of the electronic device 100. On the other hand, the method of manufacturing the electronic device 200 differs in the method of manufacturing the electronic device 100 and the mounting procedure (first manufacturing procedure).
 電子装置100の製造方法の取付手順(第1の製造手順)においては、一対の整流板141a~141cが発熱体130a~130cに取り付けられるとした。 In the mounting procedure (first manufacturing procedure) of the method of manufacturing the electronic device 100, the pair of rectifying plates 141a to 141c are mounted on the heating elements 130a to 130c.
 一方で、電子装置200の製造方法においては、上記の手順(整流板141の取付手順)に代えて、以下の手順(取付手順の第1変形例)を行う。取付手順の第1変形例においては、まず、整流板141がヒンジ143により土台部142に連結された整流部材140Aを準備する。その後、一対の整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線間の距離Lに応じて設定される取り付け角度に合せて、ヒンジ143の各々に接続されている整流板141を、ヒンジ143を中心に回転させる。これにより一対の整流板141の各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線に沿って設定される囲み線に囲まれた領域A1~A3の面積S1~S3の各々の比率が、H1、H2及びH3の比率と等しくなるように、整流板141を設定することができる。 On the other hand, in the method of manufacturing the electronic device 200, the following procedure (the first modified example of the mounting procedure) is performed instead of the above procedure (the mounting procedure of the rectifying plate 141). In the first modified example of the mounting procedure, first, the flow straightening member 141 prepares the flow straightening member 140A connected to the base portion 142 by the hinge 143. Thereafter, when the end side of the pair of flow straightening plates 141 on the first container inner surface 115 side is projected in the direction perpendicular to the first container inner surface 115, the distance L between the projection lines appearing on the first container inner surface 115 The flow straightener 141 connected to each of the hinges 143 is rotated about the hinges 143 in accordance with the mounting angle set accordingly. As a result, when the end side on the first container inner surface 115 side of each of the pair of flow straightening plates 141 is projected in the direction perpendicular to the first container inner surface 115, it follows the projection line appearing on the first container inner surface 115 The rectifying plate 141 can be set such that the ratio of each of the areas S1 to S3 of the regions A1 to A3 surrounded by the surrounding lines is equal to the ratio of H1, H2 and H3.
 例えば、ヒンジ143が発熱体130に取り付けられた時点における整流板141が、図7の点線で示される整流板141´であるとする。また、受熱領域Aの辺Dの長さが図7に示されるLであるとする。この場合、整流板141は、整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線間の距離がLになるように、図7に示される整流板141´の位置から整流板141の位置まで、p2の方向(発熱体130の中央部から外周部に向かう方向)に回転させる。このように、整流板141を回転させることで、第1の容器内面115に表れる投影線間の距離を変更することが出来る。このように、整流板141は、受熱領域の面積を変更できるように、整流板141とヒンジ143との接続部を中心として回転可能に設けられている。なお、図7においては、発熱体130に設けられた整流板141の双方を回転させることが示されているが、整流板141の少なくとも一方のみを回転させても良い。 For example, it is assumed that the straightening vane 141 at the time when the hinge 143 is attached to the heating element 130 is a straightening vane 141 'shown by a dotted line in FIG. Further, it is assumed that the length of the side D of the heat receiving area A is L shown in FIG. In this case, the flow straightening plate 141 is a projection line that appears on the first container inner surface 115 when the end of the flow straightening plate 141 on the first container inner surface 115 side is projected in the direction perpendicular to the first container inner surface 115. 7 is rotated from the position of the straightening vane 141 ′ shown in FIG. 7 to the position of the straightening vane 141 in the direction of p2 (the direction from the central portion of the heating element 130 toward the outer circumferential portion). Thus, by rotating the straightening vane 141, the distance between the projection lines appearing on the first container inner surface 115 can be changed. As described above, the rectifying plate 141 is rotatably provided centering on the connection portion between the rectifying plate 141 and the hinge 143 so that the area of the heat receiving area can be changed. In addition, although it is shown in FIG. 7 that both the flow straightening plates 141 provided in the heat generating body 130 are rotated, at least one of the flow straightening plates 141 may be rotated.
 以上、電子装置200の製造方法について説明した。 The method of manufacturing the electronic device 200 has been described above.
 また、電子装置200の動作は、電子装置100の説明と同様である。 Also, the operation of the electronic device 200 is the same as the description of the electronic device 100.
 前述の通り、本発明の第2の実施形態における電子装置200は、1以上の整流板の少なくとも一部が、受熱領域Aの面積を所定範囲内で変更できるように、設けられている。 As described above, the electronic device 200 according to the second embodiment of the present invention is provided such that at least a part of one or more rectifying plates can change the area of the heat receiving area A within a predetermined range.
 これにより、整流板141を発熱体130に設けた後であっても、受熱領域Aの面積を容易に変更することができる。この結果、電子装置200の製造時に想定された使用態様が変更される等の事情によって、電子装置200の製造の後に発熱体130の発熱量が変わる場合(例えば、発熱体130であるCPUの負荷の増大が見込まれた場合)、電子装置200において発熱体130から整流板141を取り外すことなく受熱領域Aの面積を変更できる。 Thereby, even after the rectifying plate 141 is provided on the heat generating member 130, the area of the heat receiving area A can be easily changed. As a result, when the calorific value of the heat generating body 130 changes after the manufacture of the electronic device 200 due to a change in the use mode assumed at the time of the manufacture of the electronic device 200, for example In the electronic device 200, the area of the heat receiving area A can be changed without removing the rectifying plate 141 from the heating element 130.
 <第2の実施の形態の第1の変形例>
 次に、図8を用いて、本発明の第2の実施形態の第1の変形例における電子装置200Aについて説明する。図8は、電子装置200Aを説明するための図である。また、図8においては、図面作成の便宜上、冷媒COOを示していない。
First Modified Example of Second Embodiment
Next, an electronic device 200A according to a first modified example of the second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a diagram for explaining the electronic device 200A. Moreover, in FIG. 8, the refrigerant | coolant COO is not shown for convenience of drawing preparation.
 電子装置200Aは、容器110、基板120、複数の発熱体130、及び複数の整流部材140を備えている。 The electronic device 200A includes a container 110, a substrate 120, a plurality of heating elements 130, and a plurality of flow control members 140.
 まず、電子装置200Aと電子装置200とを対比する。図8に示されるように、電子装置200Aでは、温度測定部151、駆動制御部152、及びモータ153をさらに備えている点において、電子装置200と相違する。 First, the electronic device 200A and the electronic device 200 are compared. As illustrated in FIG. 8, the electronic device 200 </ b> A differs from the electronic device 200 in that the electronic device 200 </ b> A further includes a temperature measurement unit 151, a drive control unit 152, and a motor 153.
 温度測定部151について説明する。図8に示されるように、温度測定部151は、発熱体130に取り付けられている。また、温度測定部151は、駆動制御部152に電気的に接続されている。温度測定部151は、発熱体130の温度を測定し、駆動制御部152に測定結果を示す情報を出力する。また、温度測定部151は、複数の発熱体130の各々に取り付けられている。例えば、温度測定部151には、小型の温度センサ等を用いることが出来る。 The temperature measurement unit 151 will be described. As shown in FIG. 8, the temperature measurement unit 151 is attached to the heating element 130. In addition, the temperature measurement unit 151 is electrically connected to the drive control unit 152. The temperature measurement unit 151 measures the temperature of the heating element 130, and outputs information indicating the measurement result to the drive control unit 152. In addition, the temperature measurement unit 151 is attached to each of the plurality of heating elements 130. For example, a small temperature sensor or the like can be used for the temperature measurement unit 151.
 駆動制御部152は、図8に示されるように、温度測定部151及びモータ153と電気的に接続されている。駆動制御部152は、容器110外に設けられている。ただし、駆動制御部152は、容器110内に設けられていても良い。駆動制御部152は、モータ153の駆動を制御することが出来る。より具体的には、駆動制御部152は、温度測定部151からの測定結果を示す情報に基づいて、モータ153の駆動を制御する。また、駆動制御部152には、予め、複数の発熱体130の各々に対応する定格温度が記憶されている。ここでの定格温度とは、定格発熱量に対応する温度である。具体的には、定格温度とは、発熱体130の定格発熱量から発熱体130の熱容量を除したものである。 As shown in FIG. 8, the drive control unit 152 is electrically connected to the temperature measurement unit 151 and the motor 153. The drive control unit 152 is provided outside the container 110. However, the drive control unit 152 may be provided in the container 110. The drive control unit 152 can control the drive of the motor 153. More specifically, the drive control unit 152 controls the drive of the motor 153 based on the information indicating the measurement result from the temperature measurement unit 151. Further, in the drive control unit 152, the rated temperature corresponding to each of the plurality of heating elements 130 is stored in advance. The rated temperature here is a temperature corresponding to the rated calorific value. Specifically, the rated temperature is obtained by dividing the heat capacity of the heat generating body 130 from the rated heat generation amount of the heat generating body 130.
 モータ153について説明する。モータ153は、駆動制御部152と電気的に接続されている。また、モータ153は、モータ153が駆動することによって、整流板141がヒンジ143の軸心を中心に回転できるように、整流部材140Aに取り付けられている。なお、モータ153内に冷媒COOが入らないように、モータ153は例えば樹脂によってモールドされている。モータ153は、駆動制御部152からの制御に従って、ヒンジ143の軸心にトルクを加えることによって、整流板141を回転させる。 The motor 153 will be described. The motor 153 is electrically connected to the drive control unit 152. Further, the motor 153 is attached to the rectifying member 140A so that the rectifying plate 141 can rotate around the axis of the hinge 143 by driving the motor 153. The motor 153 is molded with, for example, a resin so that the refrigerant COO does not enter the motor 153. The motor 153 rotates the rectifying plate 141 by applying torque to the shaft center of the hinge 143 according to control from the drive control unit 152.
 以上、電子装置200Aの構成について説明した。 The configuration of the electronic device 200A has been described above.
 なお、電子装置200Aに関しては、例えば基板120を容器110内に固定した後に、温度測定部151及び駆動制御部152を取り付ける。また、基板120を容器110に固定した後、温度測定部151、モータ153と駆動制御部152との間の接続配線を、容器110内から外へ引き出し、温度測定部151と駆動制御部152の間と、駆動制御部152とモータ153の間を電気的に接続する。なお、温度測定部151、モータ153と駆動制御部152との間の接続配線を、容器110内から外へ引き出すために、容器110には微細な孔が予めあけられている。この孔は、温度測定部151、モータ153と駆動制御部152を容器110内に配置した後、冷媒COOの封入前に封止部材(例えば、エポキシ樹脂)を用いて封止される。 In the electronic device 200A, for example, after the substrate 120 is fixed in the container 110, the temperature measurement unit 151 and the drive control unit 152 are attached. Further, after fixing the substrate 120 to the container 110, the connection wiring between the temperature measurement unit 151 and the motor 153 and the drive control unit 152 is drawn out from the inside of the container 110, and the temperature measurement unit 151 and the drive control unit 152 Between the drive control unit 152 and the motor 153 are electrically connected. In addition, in order to draw out the connection wiring between the temperature measurement unit 151, the motor 153, and the drive control unit 152 from the inside of the container 110 to the outside, fine holes are formed in the container 110 in advance. This hole is sealed using a sealing member (for example, epoxy resin) before the refrigerant COO is sealed after the temperature measurement unit 151, the motor 153, and the drive control unit 152 are disposed in the container 110.
 次に、電子装置200Aの動作について説明する。電子装置200Aの動作は、基本的には電子装置100や電子装置200と同様である。一方、電子装置200Aでは、稼働中に、整流板141がモータ153の駆動力によって回転する点で相違する。 Next, the operation of the electronic device 200A will be described. The operation of the electronic device 200A is basically the same as that of the electronic device 100 and the electronic device 200. On the other hand, the electronic device 200A is different in that the rectifying plate 141 is rotated by the driving force of the motor 153 during operation.
 整流板141の回転動作について説明する。まず、温度測定部151は、複数の発熱体130の各々が稼働した後、複数の発熱体130の各々の温度(測定結果)を示す情報を、駆動制御部152に出力する。 The rotation operation of the rectifying plate 141 will be described. First, the temperature measurement unit 151 outputs information indicating the temperature (measurement result) of each of the plurality of heating elements 130 to the drive control unit 152 after each of the plurality of heating elements 130 is operated.
 駆動制御部152は、温度測定部151の測定結果に基づいて、整流板141を回転させる。すなわち、まず駆動制御部152は、発熱体130の測定温度が各々の定格温度を超えた場合、定格温度を超えた分の測定温度の値(温度増加値)を算出する。駆動制御部152は、温度増加値に発熱体130の熱容量を乗じることにより、発熱量の増加量を算出する。駆動制御部152は、定格発熱量と発熱量の増加量との和に基づいて、受熱領域の面積を再設定する。駆動制御部152は、再設定後の受熱領域Aの面積に合わせて、整流板141を回転させる。すなわち、駆動制御部152は、モータ153を介して、一対の整流板141の先端部の間の距離を広げる方向(図8のp3)に、一対の整流板141を受熱領域Aの再設定された面積に合わせて、回転させる。これにより、定格温度を超えて稼働している発熱体130に対応する受熱領域Aの面積を、温度測定部151の測定結果に基づいて大きくすることができる。複数の受熱領域Aの各々は、整流板141を回転させることによって、同一の発熱体130に設けられた整流板141の間隔の長さLが長くなったとしても、互いに重ならないように設定されている。 The drive control unit 152 rotates the rectifying plate 141 based on the measurement result of the temperature measurement unit 151. That is, first, when the measured temperature of the heating element 130 exceeds each rated temperature, the drive control unit 152 first calculates the value (temperature increase value) of the measured temperature exceeding the rated temperature. The drive control unit 152 multiplies the temperature increase value by the heat capacity of the heating element 130 to calculate the increase amount of the calorific value. The drive control unit 152 resets the area of the heat receiving area based on the sum of the rated heat generation amount and the increase amount of the heat generation amount. The drive control unit 152 rotates the rectifying plate 141 in accordance with the area of the heat receiving area A after resetting. That is, the drive control unit 152 resets the heat receiving area A of the pair of rectifying plates 141 in a direction (p3 in FIG. 8) to widen the distance between the tips of the pair of rectifying plates 141 via the motor 153. Rotate to fit the area. Thereby, the area of the heat receiving area A corresponding to the heating element 130 operating above the rated temperature can be enlarged based on the measurement result of the temperature measuring unit 151. Each of the plurality of heat receiving regions A is set so as not to overlap each other even if the length L of the interval between the straightening plates 141 provided on the same heating element 130 becomes long by rotating the straightening vanes 141. ing.
 これによって、発熱量が急激に増大した発熱体130の近傍から発生する気相冷媒GP-COOが接触する受熱領域Aの面積が、増大する。すなわち、急激に温度上昇した発熱体130の熱により生じる気相冷媒GP-COOを、より広い受熱領域Aで受けることができるので、急激に温度上昇した発熱体130の熱により生じる気相冷媒GP-COOをより早く冷却することができる。なお、このときの回転角度は、複数の受熱領域Aの間で互いに重ならないように、予め設定されている。なお、発熱体130の測定温度が各々の定格温度を超えない場合、駆動制御部152は、モータ153に対して、整流板141を元の位置に戻す駆動をさせる指示信号を出力する。モータ153は、駆動制御部152の指示信号に従って、一対の整流板141の先端部の間の距離を狭める方向(図8のp3の逆方向)に、一対の整流板141を所定角度分だけ回転させる。これにより、整流板141が元の位置に戻る。また、図8では、駆動制御部152が、一対の整流板141の両方を回転するように示したが、一方の整流板141のみを回転させても良い。 As a result, the area of the heat receiving region A in contact with the gas-phase refrigerant GP-COO generated from the vicinity of the heat generating element 130 whose heat generation amount has rapidly increased is increased. That is, since the gas phase refrigerant GP-COO generated by the heat of the heating element 130 whose temperature has rapidly risen can be received in the wider heat receiving region A, the gas phase refrigerant GP generated by the heat of the heating element 130 whose temperature is rapidly rising. -COO can be cooled more quickly. The rotation angles at this time are set in advance so as not to overlap each other among the plurality of heat receiving regions A. When the measured temperature of the heating element 130 does not exceed each rated temperature, the drive control unit 152 outputs, to the motor 153, an instruction signal to drive the rectifying plate 141 to return to the original position. The motor 153 rotates the pair of rectifying plates 141 by a predetermined angle in a direction (a reverse direction of p3 in FIG. 8) to narrow the distance between the tip portions of the pair of rectifying plates 141 according to an instruction signal of the drive control unit 152. Let Thereby, the baffle plate 141 returns to the original position. Further, in FIG. 8, the drive control unit 152 is shown to rotate both of the pair of rectifying plates 141, but only one rectifying plate 141 may be rotated.
 以上、電子装置200Aの動作について説明した。 The operation of the electronic device 200A has been described above.
 前述の通り、電子装置200Aは、温度測定部151及び駆動制御部152を備えている。また、温度測定部151は、複数の発熱体130の温度を測定する。また、駆動制御部152は、1以上の整流板141の少なくとも一部を、発熱体130側の端部を中心に回転させる。また、駆動制御部152は、温度測定部151の測定結果に基づいて、整流板141の一部の各々を回転させる。 As described above, the electronic device 200A includes the temperature measurement unit 151 and the drive control unit 152. In addition, the temperature measurement unit 151 measures the temperatures of the plurality of heating elements 130. In addition, the drive control unit 152 rotates at least a part of the one or more rectifying plates 141 around the end on the heating element 130 side. Further, the drive control unit 152 rotates each part of the rectifying plate 141 based on the measurement result of the temperature measurement unit 151.
 このように、電子装置200Aにおいては、温度測定部151の測定結果に基づいて、整流板141の一部の各々を回転させる。このため、発熱体130の発熱量が一時的に急激に変化した場合であっても、受熱領域の面積を一時的に変更することが出来る。この結果、電子装置200Aにおいては、発熱体130の発熱量が一時的に急激に変化した場合であっても、効率よく温度の異なる複数の発熱体130を冷却することが出来る。 As described above, in the electronic device 200A, each part of the rectifying plate 141 is rotated based on the measurement result of the temperature measurement unit 151. For this reason, even if the calorific value of the heat generating element 130 changes temporarily temporarily, the area of the heat receiving area can be temporarily changed. As a result, in the electronic device 200A, even when the calorific value of the heating element 130 changes temporarily and rapidly, the plurality of heating elements 130 having different temperatures can be efficiently cooled.
 <第3の実施形態>
 次に本発明の第3の実施形態における電子装置300について説明する。図9は、電子装置300の構成を示す正面透過図である。また図10は、後述する整流部材140Cの構成を示す斜視図である。
Third Embodiment
Next, an electronic device 300 according to a third embodiment of the present invention will be described. FIG. 9 is a front transparent view showing the configuration of the electronic device 300. As shown in FIG. FIG. 10 is a perspective view showing a configuration of a flow control member 140C described later.
 図9に示されるように、電子装置300は、容器110と、基板120と、複数の発熱体130a~130cと、複数の整流部材140Ca~140Ccとを備えている。なお、以下の説明において、整流部材140Ca~140Ccを区別する必要がない場合は、整流部材140Ca~140Ccの各々を整流部材140Cと称する。 As shown in FIG. 9, the electronic device 300 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying members 140Ca to 140Cc. In the following description, when it is not necessary to distinguish the flow regulating members 140Ca to 140Cc, each of the flow regulating members 140Ca to 140Cc is referred to as a flow regulating member 140C.
 ここで、電子装置300と電子装置100とを対比する。 Here, the electronic device 300 and the electronic device 100 are compared.
 電子装置300は、整流板141a~141cに代えて、整流部材140Ca~140Ccを備えている点において、電子装置100と相違する。 The electronic device 300 differs from the electronic device 100 in that it includes rectifying members 140Ca to 140Cc instead of the rectifying plates 141a to 141c.
 整流部材140Cについて説明する。図10は、整流部材140Cの構成を示す斜視図である。図10に示されるように、整流部材140Cは、整流板141及び連結板147を備える。電子装置200における整流板141は、電子装置100における整流板141と同等の構成、接続関係及び機能を備える。 The rectifying member 140C will be described. FIG. 10 is a perspective view showing the configuration of the rectifying member 140C. As shown in FIG. 10, the straightening member 140C includes a straightening vane 141 and a connection plate 147. The rectifying plate 141 in the electronic device 200 has the same configuration, connection relation, and function as the rectifying plate 141 in the electronic device 100.
 連結板147について説明する。連結板147は、第2の整流板の一例である。連結板147は、図10に示されるように、一対の整流板141の間に互いに向かい合うように設けられている。また、連結板147は、発熱体130の第1の発熱体外面131の外周に沿って設けられ、一対の整流板141の各々の対辺間を連結する。また、図10に示されるように、連結板147は、整流板141と同様に、発熱体130の外周部分に取り付けられている。なお、具体的には、発熱体130の外周形状は、例えば、長方形や正方形等の四角形状である。 The connection plate 147 will be described. The connection plate 147 is an example of a second straightening vane. The connecting plate 147 is provided so as to face each other between the pair of flow regulating plates 141 as shown in FIG. Further, the connecting plate 147 is provided along the outer periphery of the first heat generating body outer surface 131 of the heat generating body 130, and connects the opposite sides of each of the pair of flow straightening plates 141. Further, as shown in FIG. 10, the connection plate 147 is attached to the outer peripheral portion of the heat generating body 130 in the same manner as the flow control plate 141. Specifically, the outer peripheral shape of the heat generating body 130 is, for example, a rectangular shape such as a rectangle or a square.
 ここで、整流板141及び連結板147の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容易器内面115に表れる投影線は、互いに交わり四角形を形成する。この四角形の内側の領域が受熱領域Aとなる。この受熱領域Aは、容器110の内面のうち、同一の発熱体130に設けられた整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容易器内面115に表れる投影線に沿って設定される囲み線に囲まれた領域の一例である。 Here, when the end side of the straightening vane 141 and the connecting plate 147 on the first container inner surface 115 side is projected in the direction perpendicular to the first container inner surface 115, a projection line appears on the first facilitator inner surface 115. And intersect each other to form a quadrangle. The heat receiving area A is the area inside the square. In the heat receiving area A, of the inner surface of the container 110, the end side of the straightening plate 141 provided on the same heat generating member 130 on the first container inner surface 115 side is perpendicular to the first container inner surface 115. It is an example of the area | region enclosed by the encircling line set along the projection line which appears on the 1st facilitator inner surface 115 when it projects.
 連結板147の材料には、整流板141と同様に、たとえば、樹脂材料(たとえば、ABS樹脂)や金属材料(たとえば、アルミニウムや、アルミニウム合金)が用いられる。 As the material of the connection plate 147, for example, a resin material (for example, an ABS resin) or a metal material (for example, aluminum or an aluminum alloy) is used as in the case of the rectifying plate 141.
 以上、電子装置300の構成について説明した。 The configuration of the electronic device 300 has been described above.
 なお、整流板141の取付では、図10に示されるように2枚の連結板147で整流板141の端部間を接着剤により接続する。整流板141、連結板147を正しく発熱体130に取り付けた後、整流板141、連結板147が発熱体130に取り付けられた。基板120を容器110内に固定する。これ以降は、電子装置100の製造方法と同じである。 In addition, in attachment of the baffle plate 141, as shown in FIG. 10, between the end parts of the baffle plate 141 is connected with an adhesive agent by two connection plates 147. After the flow straightening plate 141 and the connection plate 147 were correctly attached to the heating element 130, the flow straightening plate 141 and the connection plate 147 were attached to the heating element 130. The substrate 120 is fixed in the container 110. The subsequent steps are the same as the method of manufacturing the electronic device 100.
 以上、電子装置300の製造方法について説明した。 The method of manufacturing the electronic device 300 has been described above.
 電子装置300の動作について説明する。電子装置300の動作と電子装置100の動作とを対比する。電子装置100の動作においては、気相冷媒GP-COOは、発熱体130の近傍で生じた後、一対の整流板141の間の空間を上昇すると説明した。一方で、電子装置300の動作においては、気相冷媒GP-COOは、整流板141及び連結板147に囲われた空間を上昇する。 The operation of the electronic device 300 will be described. The operation of the electronic device 300 and the operation of the electronic device 100 are compared. In the operation of the electronic device 100, it has been described that the gas-phase refrigerant GP-COO rises in the space between the pair of rectifying plates 141 after being generated in the vicinity of the heating element 130. On the other hand, in the operation of the electronic device 300, the gas-phase refrigerant GP-COO ascends in the space enclosed by the rectifying plate 141 and the connecting plate 147.
 以上、電子装置300の動作について説明した。 The operation of the electronic device 300 has been described above.
 以上のように、電子装置300は、第2の整流板(連結板147)をさらに備える。第2の整流板(連結板147)は、一対の第1の整流板(整流板141)の間に互いに向かい合うように設けられ、一対の第1の整流板(整流板141)の各々の外周辺のうち、一対の投影線に対して平行な方向で向かい合う対辺間を、一対の投影線に対して垂直な方向で連結する。 As described above, the electronic device 300 further includes the second rectifying plate (connection plate 147). The second straightening vanes (connection plate 147) are provided so as to face each other between the pair of first straightening vanes (straightening vanes 141), and the outside of each of the pair of first straightening vanes (straightening vanes 141) is provided. Among the peripheries, opposite sides facing in a direction parallel to the pair of projection lines are connected in a direction perpendicular to the pair of projection lines.
 この場合、第1の整流板(整流板141)及び第2の整流板(連結板147)の各々の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容易器内面115に表れる投影線の各々は、互いに交わり、投影線によって囲われた図形が形成される。このとき、受熱領域Aは、投影線に囲われた図形の内側の領域である。なお、投影線に囲われた図形の内側の領域は、容器110の内面のうち、1以上の整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる1以上の投影線に沿って設定される囲み線に囲まれた領域の一例である。 In this case, the end side of each of the first straightening vane (straightening vane 141) and the second straightening vane (connection plate 147) on the first container inner surface 115 side is perpendicular to the first container inner face 115. Each of the projection lines appearing on the first facilitator inner surface 115 when projected onto each other intersect each other to form a figure surrounded by the projection lines. At this time, the heat receiving area A is an area inside the figure surrounded by the projection line. In the inner area of the figure surrounded by the projection line, the end of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is perpendicular to the first container inner surface 115 It is an example of a region surrounded by an encircling line set along one or more projection lines appearing on the first container inner surface 115 when projected in a certain direction.
 以上のように、第2の整流板(連結板147)は、一対の第1の整流板(整流板141)の各々の外周辺のうち、一対の投影線に対して平行な方向で向かい合う対辺間を、一対の投影線に対して垂直な方向で連結する。これにより、気相冷媒GP-COOは、整流板141及び連結板147に囲われた空間内を上昇する。このため、電子装置100と比較して、各発熱体130の熱により生じる気相冷媒GP-COOが一対の整流板141の間から漏れ出すことを抑制できる。したがって、各発熱体130から生じた気相冷媒GP-COOは、第1の容器内面115に発熱体130毎に設定された各受熱領域に、より確実に接触する。したがって、複数の受熱領域の各々が受ける熱の量は、複数の発熱体130各々の発熱量に、より応じたものとなる。この結果、電子装置300は、より効率よく複数の発熱体130の各々を冷却することが出来る。 As described above, of the outer peripheries of the pair of first current plates (current plate 141), the second current plates (connection plate 147) are opposite sides facing each other in the direction parallel to the pair of projection lines. The points are connected in a direction perpendicular to the pair of projection lines. Thus, the gas-phase refrigerant GP-COO ascends in the space enclosed by the rectifying plate 141 and the connecting plate 147. Therefore, compared to the electronic device 100, the gas phase refrigerant GP-COO generated by the heat of each heating element 130 can be prevented from leaking out between the pair of rectifying plates 141. Therefore, the gas-phase refrigerant GP-COO generated from each heating element 130 more reliably contacts each heat receiving area set for each heating element 130 on the first container inner surface 115. Therefore, the amount of heat received by each of the plurality of heat receiving regions is more in accordance with the calorific value of each of the plurality of heating elements 130. As a result, the electronic device 300 can cool each of the plurality of heating elements 130 more efficiently.
 <第4の実施形態>
 次に本発明の第4の実施形態における電子装置400について説明する。図11は、電子装置400の構成を示す正面透過図である。
Fourth Embodiment
Next, an electronic device 400 according to a fourth embodiment of the present invention will be described. FIG. 11 is a front transparent view showing the configuration of the electronic device 400. As shown in FIG.
 電子装置400の構成について説明する。図11に示されるように、電子装置400は、容器110と、基板120と、複数の発熱体130a~130cと、複数の整流板141a~141cと、仕切板149とを備えている。 The configuration of the electronic device 400 will be described. As shown in FIG. 11, the electronic device 400 includes a container 110, a substrate 120, a plurality of heat generating members 130a to 130c, a plurality of rectifying plates 141a to 141c, and a partition plate 149.
 ここで、図1及び図11を用いて、電子装置400と電子装置100とを対比する。電子装置400は、複数の仕切板149をさらに備えている点において、電子装置100と相違する。 Here, the electronic device 400 and the electronic device 100 are compared using FIG. 1 and FIG. 11. The electronic device 400 is different from the electronic device 100 in that the electronic device 400 further includes a plurality of partition plates 149.
 仕切板149について説明する。仕切板149は、第3の整流板の一例である。仕切板149は、平板状の板である。ただし、仕切板149は、曲面状や波状に形成されてもよい。図11に示されるように、仕切板149の各々は、一対の整流板141の間に設けられている。仕切板149は、発熱体130の表面から、第1の容器内面115側へ向けて延出するように設けられている。なお、図11では、一対の整流板141a~141cの各々の間には、4枚の仕切板149が設けられている。一方、仕切板149は、一対の整流板141a~141cの各々の間に、1~3枚または5枚以上設けられてもよい。 The partition plate 149 will be described. The divider plate 149 is an example of a third straightening vane. The partition plate 149 is a flat plate. However, the partition plate 149 may be formed in a curved shape or a wave shape. As shown in FIG. 11, each of the partition plates 149 is provided between the pair of flow regulating plates 141. The partition plate 149 is provided so as to extend from the surface of the heat generating body 130 toward the first container inner surface 115 side. In FIG. 11, four partition plates 149 are provided between each of the pair of flow straightening plates 141a to 141c. On the other hand, one to three or five or more partition plates 149 may be provided between each of the pair of flow straightening plates 141a to 141c.
 以上、電子装置400の構成について説明した。 The configuration of the electronic device 400 has been described above.
 電子装置400の製造方法について説明する。電子装置400の製造方法においては、電子装置100の製造方法における一対の整流板141の取付手順(第1の製造手順)と封入手順(第2の製造手順)を行うことにおいては同じである。一方で、電子装置400の製造方法においては、電子装置100の製造方法における一対の整流板141の取付手順(第1の製造手順)と封入手順(第2の製造手順)の間に、後述する仕切板149の取付手順をさらに行う。 A method of manufacturing the electronic device 400 will be described. The method of manufacturing the electronic device 400 is the same in performing the mounting procedure (first manufacturing procedure) and the sealing procedure (second manufacturing procedure) of the pair of rectifying plates 141 in the method of manufacturing the electronic device 100. On the other hand, in the method of manufacturing the electronic device 400, the method will be described later between the mounting procedure (first manufacturing procedure) and the sealing procedure (second manufacturing procedure) of the pair of rectifying plates 141 in the method of manufacturing the electronic device 100. The mounting procedure of the partition plate 149 is further performed.
 仕切板149の取付手順では、図11に示されるように、仕切板149を、一対の整流板141の各々の間にたとえば接着剤を用いて取り付ける。 In the attachment procedure of the partition plate 149, as shown in FIG. 11, the partition plate 149 is attached between each of the pair of flow guide plates 141 using, for example, an adhesive.
 以上、電子装置400の製造方法について説明した。 The method of manufacturing the electronic device 400 has been described above.
 電子装置400の動作について説明する。電子装置400では、電子装置100と同様に、気相冷媒GP-COOは、発熱体130の近傍で生じた後、整流板141に挟まれた空間内を上昇する。このとき、整流板141に挟まれた空間内では、気相冷媒GP-COOは、仕切板149の間を、仕切板149に沿って上昇する。 The operation of the electronic device 400 will be described. In the electronic device 400, the gas-phase refrigerant GP-COO rises in the space sandwiched by the straightening vanes 141 after being generated in the vicinity of the heating element 130, as in the electronic device 100. At this time, in the space sandwiched by the straightening vanes 141, the gas-phase refrigerant GP-COO ascends along the divider plates 149 between the divider plates 149.
 以上、電子装置400の動作について説明した。 The operation of the electronic device 400 has been described above.
 以上のように、本発明の第4の実施形態における電子装置400は、1以上の整流板には、前記一対の第1の整流板(整流板141)の間に設けられた1以上の第3の整流板(仕切板149)をさらに含む。 As described above, in the electronic device 400 according to the fourth embodiment of the present invention, one or more first rectifying plates are provided with one or more first rectifying plates provided between the pair of first rectifying plates (rectifying plate 141). 3 further includes a baffle plate (partition plate 149).
 このように、第3の整流板(仕切板149)は、一対の第1の整流板(整流板141)の間に設けられている。これにより、気相冷媒GP-COOを、整流板141及び第3の整流板(仕切板149)に沿って上昇させることができる。このため、発熱体130から生じた気相冷媒GP-COOは、第1の容器内面115に設定された受熱領域に、より均等に接触する。したがって、複数の受熱領域の各々で受ける熱は、各々受熱領域の一部の領域に偏ることなく、万遍なく、受熱領域内で冷却される。この結果、電子装置400は、より効率よく複数の発熱体130の各々を冷却することが出来る。 As described above, the third straightening vane (partition plate 149) is provided between the pair of first straightening vanes (straightening vane 141). Thus, the gas phase refrigerant GP-COO can be raised along the straightening vane 141 and the third straightening vane (partition plate 149). For this reason, the gas-phase refrigerant GP-COO generated from the heating element 130 contacts the heat receiving area set on the first container inner surface 115 more evenly. Therefore, the heat received in each of the plurality of heat receiving regions is uniformly cooled within the heat receiving region without being biased to a partial region of each of the heat receiving regions. As a result, the electronic device 400 can cool each of the plurality of heating elements 130 more efficiently.
 <第5の実施形態>
 次に本発明の第5の実施形態における電子装置500について説明する。図12は、電子装置500の構成を示す正面透過図である。図13は、電子装置500の構成を示す側面透過図である。具体的には、図13は、図12の矢視a2の方向で電子装置500を見たときの透過図である。
Fifth Embodiment
Next, an electronic device 500 according to a fifth embodiment of the present invention will be described. FIG. 12 is a front transparent view showing the configuration of the electronic device 500. As shown in FIG. FIG. 13 is a transparent side view showing the configuration of the electronic device 500. As shown in FIG. Specifically, FIG. 13 is a transparent view when the electronic device 500 is viewed in the direction of arrow a2 in FIG.
 電子装置500の構成について説明する。図12および図13を参照すると、電子装置500は、容器110と、基板120と、複数の発熱体130a~130cと、複数の整流板141a~141cと、放熱部510とを備えている。 The configuration of the electronic device 500 will be described. Referring to FIGS. 12 and 13, the electronic device 500 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, a plurality of rectifying plates 141a to 141c, and a heat radiating portion 510.
 ここで、図1及び図12を用いて、電子装置500と電子装置100とを対比する。電子装置500は、放熱部510をさらに備えている点において、電子装置100と相違する。 Here, the electronic device 500 and the electronic device 100 are compared using FIG. 1 and FIG. 12. The electronic device 500 is different from the electronic device 100 in that the electronic device 500 further includes a heat dissipation unit 510.
 放熱部510について説明する。図12及び図13に示されるように、放熱部510は、板状に形成されている。また、図12に示されるように、複数の放熱部510は、互いに所定の間隔をあけて、容器110の第1の容器内面115に対応する外面に設けられる。複数の放熱部510は、少なくとも容器110の外面のうち、複数の受熱領域Aに対応する部分に設けられている。また、放熱部510は、容器110の外面の全てに設けられていても良い。放熱部510は、複数の受熱領域で受熱される熱を放熱するための部材である。放熱部510には、例えば、放熱用のフィン等を用いることが出来る。放熱部510の材料には、熱伝導性部材(たとえば、アルミニウム、アルミニウム合金など)が用いられる。放熱部510は、容器110に一体に取り付けられてもよいし、容器110と別体であってもよい。放熱部510が容器110と別体で形成される場合、放熱部510はたとえば接着剤により容器110の外面に固定される。 The heat dissipation unit 510 will be described. As shown in FIG. 12 and FIG. 13, the heat dissipation unit 510 is formed in a plate shape. Further, as shown in FIG. 12, the plurality of heat radiation parts 510 are provided on the outer surface corresponding to the first container inner surface 115 of the container 110 at a predetermined interval. The plurality of heat radiation portions 510 are provided at least in the portion corresponding to the plurality of heat receiving areas A of the outer surface of the container 110. In addition, the heat radiating portion 510 may be provided on the entire outer surface of the container 110. The heat radiating portion 510 is a member for radiating the heat received in the plurality of heat receiving areas. For example, fins for heat dissipation can be used for the heat dissipation unit 510. A heat conductive member (for example, aluminum, an aluminum alloy, or the like) is used as a material of the heat dissipation unit 510. The heat dissipation unit 510 may be integrally attached to the container 110 or may be separate from the container 110. When the heat radiating portion 510 is formed separately from the container 110, the heat radiating portion 510 is fixed to the outer surface of the container 110 by, for example, an adhesive.
 以上のように、電子装置500は、容器110の外面のうち複数の受熱領域Aに対応する領域に、複数の受熱領域Aで受熱される熱を放熱するための放熱部510をさらに含む。 As described above, the electronic device 500 further includes the heat radiating portion 510 for radiating the heat received in the plurality of heat receiving regions A in the region corresponding to the plurality of heat receiving regions A in the outer surface of the container 110.
 これにより、電子装置500では、容器110の外面及び放熱部510を用いて、発熱体130の熱を放熱できるため、容器110の外面のみから発熱体130の熱を放熱する場合に比べて、受熱領域Aで受熱した熱を効率よく放熱することが出来る。この結果、電子装置500においては、効率よく複数の発熱体130を冷却することが出来る。 Thereby, in the electronic device 500, since the heat of the heat generating body 130 can be dissipated using the outer surface of the container 110 and the heat radiating portion 510, heat is received as compared with the case where the heat of the heat generating body 130 is dissipated only from the outer surface of the container 110. The heat received in the region A can be dissipated efficiently. As a result, in the electronic device 500, the plurality of heating elements 130 can be cooled efficiently.
 <第5の実施形態の第1の変形例>
 次に本発明の第5の実施形態の第1の変形例における電子装置500Aについて説明する。図14は、電子装置500Aの構成を示す正面透過図である。図14では、図1で示した各構成要素と同等の構成要素には、図1に示した符号と同等の符号を付している。
First Modified Example of Fifth Embodiment
Next, an electronic device 500A according to a first modified example of the fifth embodiment of the present invention will be described. FIG. 14 is a front transparent view showing the configuration of the electronic device 500A. In FIG. 14, components equivalent to the components shown in FIG. 1 are given the same reference symbols as the reference symbols shown in FIG. 1.
 図14に示されるように、電子装置500Aは、容器110と、基板120と、複数の発熱体130a~130cと、複数の整流板141a~141cと、冷却部520とを備えている。 As shown in FIG. 14, the electronic device 500A includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, a plurality of rectifying plates 141a to 141c, and a cooling unit 520.
 図1及び図14を用いて、電子装置500Aと電子装置100とを対比する。電子装置500Aは、冷却部520をさらに備えている点において、電子装置100と相違する。 The electronic device 500A and the electronic device 100 are compared using FIG. 1 and FIG. The electronic device 500A is different from the electronic device 100 in that the electronic device 500A further includes a cooling unit 520.
 冷却部520について説明する。図14に示されるように、冷却部520は、容器110の外面に取り付けられている。より具体的には、冷却部520は、容器110の外面のうち、第1の容器内面115に対応する面に取り付けられている。また、冷却部520は、第1の容器内面115のうち、少なくとも複数の受熱領域Aに対応する部分に取り付けられている。また例えば、冷却部520は、容器110の外形を構成する全ての面に取り付けられていても良い。冷却部520には、例えば水冷ヒートシンク(カワソーテクセル株式会社、型番HS―C60)を用いることが出来る。 The cooling unit 520 will be described. As shown in FIG. 14, the cooling unit 520 is attached to the outer surface of the container 110. More specifically, the cooling unit 520 is attached to the surface of the container 110 corresponding to the first container inner surface 115. In addition, the cooling unit 520 is attached to a portion of the first container inner surface 115 corresponding to at least a plurality of heat receiving areas A. Further, for example, the cooling unit 520 may be attached to all the surfaces constituting the outer shape of the container 110. For the cooling unit 520, for example, a water-cooled heat sink (Kawaso Texel Co., Ltd., model number HS-C60) can be used.
 電子装置500Aの動作について説明する。電子装置500Aの動作においては、冷却部520が、容器110の外面を介して、受熱領域に対応する部分を冷却する。以上、電子装置500Aの動作について説明した。 The operation of the electronic device 500A will be described. In the operation of the electronic device 500A, the cooling unit 520 cools a portion corresponding to the heat receiving area via the outer surface of the container 110. The operation of the electronic device 500A has been described above.
 以上のように、電子装置500Aは、容器110の外面のうち複数の受熱領域Aに対応する領域に、受熱領域Aを冷却するための冷却部520を備えている。 As described above, the electronic device 500 </ b> A includes the cooling unit 520 for cooling the heat receiving area A in the area corresponding to the plurality of heat receiving areas A in the outer surface of the container 110.
 このように、複数の受熱領域Aは、冷却部520によって冷却されている。このため、受熱領域Aが冷却されていない場合に比べて、気相冷媒GP-COOと受熱領域Aとの温度の差が大きくなる。これにより、気相冷媒GP-COOから受熱領域Aへと伝わる熱量が増えるため、気相冷媒GP-COOから液相冷媒LP-COOへと相変化する量が増える。この結果、発熱体130は、冷却部520が無い場合に比べて、より多くの液相冷媒LP-COOによって冷却される。したがって、電子装置500Aにおいては、複数の発熱体をより効率よく冷却することが出来る。 As described above, the plurality of heat receiving regions A are cooled by the cooling unit 520. For this reason, compared with the case where the heat receiving area A is not cooled, the difference in temperature between the gas phase refrigerant GP-COO and the heat receiving area A becomes large. As a result, the amount of heat transferred from the gas phase refrigerant GP-COO to the heat receiving region A is increased, so the amount of phase change from the gas phase refrigerant GP-COO to the liquid phase refrigerant LP-COO is increased. As a result, the heating element 130 is cooled by more liquid phase refrigerant LP-COO than in the case where the cooling unit 520 is not provided. Therefore, in the electronic device 500A, the plurality of heating elements can be cooled more efficiently.
 <第6の実施形態>
 次に本発明の第6の実施形態における電子装置600について説明する。図15は、電子装置600の構成を示す正面透過図である。図15に示されるように、電子装置600は、容器110、基板120、複数の発熱体130a~130c及び複数の整流板141a~141cを備える。
Sixth Embodiment
Next, an electronic device 600 according to a sixth embodiment of the present invention will be described. FIG. 15 is a front transparent view showing the configuration of the electronic device 600. As shown in FIG. As shown in FIG. 15, the electronic device 600 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c.
 まず、図1及び図15を用いて、電子装置600と電子装置100とを対比する。電子装置100においては、基板120の第1の主面125が鉛直方向Gに対して垂直な方向に設けられているのに対して、電子装置600においては、基板120の第1の主面125が鉛直方向Gに対して平行な方向に設けられている。この点で、電子装置600と電子装置100は相違する。 First, the electronic device 600 and the electronic device 100 are compared using FIG. 1 and FIG. 15. In the electronic device 100, the first main surface 125 of the substrate 120 is provided in a direction perpendicular to the vertical direction G, whereas in the electronic device 600, the first main surface 125 of the substrate 120 is provided. Are provided in a direction parallel to the vertical direction G. The electronic device 600 and the electronic device 100 are different in this point.
 また、好ましくは、整流板141a、141b及び141cの各々は、第1の容器内面115に可能な限り近接して配置されることが好ましい。近接して配置されるとは、例えば、整流板141の第1の容器内面115側の端部から第1の容器内面115までの間の最短の長さが数mm~数cmである状態を示す。 In addition, preferably, each of the rectifying plates 141 a, 141 b and 141 c is disposed as close as possible to the first container inner surface 115. Disposed in close proximity means, for example, a state in which the shortest length from the end on the first container inner surface 115 side of the straightening vane 141 to the first container inner surface 115 is several mm to several cm. Show.
 電子装置600に関して、電子装置100と同様に、まず基板120、整流板141、及び発熱体130を電子装置100に固定し、蓋をする。次に図15のように、第1の主面125が鉛直方向Gに対して平行になるように電子装置600を載置し、鉛直上方向側の冷媒封入孔(不図示)から冷媒COOを容器110内に封入しこれを閉じる。 Regarding the electronic device 600, as in the electronic device 100, first, the substrate 120, the rectifying plate 141, and the heating element 130 are fixed to the electronic device 100, and the lid is put on. Next, as shown in FIG. 15, the electronic device 600 is mounted so that the first main surface 125 is parallel to the vertical direction G, and the refrigerant COO is supplied from the refrigerant sealing hole (not shown) on the vertically upward side. It encloses in the container 110 and closes this.
 電子装置600の動作について説明する。電子装置600の動作は、電子装置100の動作と同様である。しかし、以下の点において、電子装置100の動作は、電子装置600の動作と相違する。 The operation of the electronic device 600 will be described. The operation of the electronic device 600 is similar to the operation of the electronic device 100. However, the operation of the electronic device 100 is different from the operation of the electronic device 600 in the following points.
 電子装置100の動作の説明においては、気相冷媒GP-COOの気泡は、発熱体130の近傍で生じた後、鉛直方向Gの上方へ向かい液相冷媒LP-COOの液面を抜けてさらに鉛直方向Gの上方へ向かうことで、受熱領域Aに接触すると述べた。一方で、電子装置600の動作においては、気相冷媒GP-COOの気泡は、発熱体130の近傍で生じた後、一対の整流板141に挟まれた空間内を移動し、受熱領域Aに接触する。ここでは、気相冷媒GP-COOの気泡が鉛直方向Gの上方へ向かう前に、気泡が第1の容器内面115の受熱領域Aに接触できるように、第1の主面125と第1の容器内面115の距離が調整されている。 In the description of the operation of the electronic device 100, the bubbles of the gas phase refrigerant GP-COO are generated in the vicinity of the heating element 130, and then move upward in the vertical direction G and pass through the liquid surface of the liquid phase refrigerant LP-COO By going upward in the vertical direction G, it is stated that the heat receiving area A is contacted. On the other hand, in the operation of the electronic device 600, the bubbles of the vapor-phase refrigerant GP-COO are generated in the vicinity of the heating element 130 and then move in the space sandwiched between the pair of rectifying plates 141. Contact. Here, the first main surface 125 and the first main surface 125 are arranged such that the air bubbles can contact the heat receiving area A of the first container inner surface 115 before the air bubbles of the gas phase refrigerant GP-COO move upward in the vertical direction G. The distance of the container inner surface 115 is adjusted.
 以上、電子装置600の動作について説明した。 The operation of the electronic device 600 has been described above.
 電子装置600においては、基板120の第1の主面125が鉛直方向Gに対して平行な方向に設けられる。そのため、電子装置600は、鉛直方向Gに対して自由な方向で配置することができる。 In the electronic device 600, the first major surface 125 of the substrate 120 is provided in a direction parallel to the vertical direction G. Therefore, the electronic device 600 can be disposed in any direction with respect to the vertical direction G.
 <第7の実施形態>
 次に本発明の第7の実施形態における電子装置700について説明する。上記の電子装置100、100A、100B、100C、200、200A、300、400、500、600は、電子装置700の一例である。図16は、電子装置700の構成を例示する正面透過図である。また、図17は、電子装置700の構成を例示する側面透過図である。具体的には、図17は、図16の矢視a4方向で電子装置700をみたときの透過図の一例である。図16及び図17を参照すると、電子装置700は、容器110、基板120、複数の発熱体130a~130c及び複数の整流板141a~141cを備える。以下の説明では、複数の発熱体130a~130cの各々を区別する必要が無い場合、複数の発熱体130a~130cの各々を発熱体130と称する。また、以下の説明では、複数の整流板141a~141cの各々を区別する必要が無い場合、複数の整流板141a~141cの各々を整流板141と称する。
Seventh Embodiment
Next, an electronic device 700 according to a seventh embodiment of the present invention will be described. The electronic devices 100, 100 A, 100 B, 100 C, 200, 200 A, 300, 400, 500, 600 are examples of the electronic device 700. FIG. 16 is a front transparent view illustrating the configuration of the electronic device 700. FIG. 17 is a side transparent view illustrating the configuration of the electronic device 700. Specifically, FIG. 17 is an example of a transparent view when the electronic device 700 is viewed in the direction of arrow a4 in FIG. Referring to FIGS. 16 and 17, the electronic device 700 includes a container 110, a substrate 120, a plurality of heating elements 130a to 130c, and a plurality of rectifying plates 141a to 141c. In the following description, when it is not necessary to distinguish each of the plurality of heating elements 130a to 130c, each of the plurality of heating elements 130a to 130c is referred to as a heating element 130. Further, in the following description, when it is not necessary to distinguish each of the plurality of flow straightening plates 141a to 141c, each of the plurality of flow straightening plates 141a to 141c is referred to as a flow straightening plate 141.
 容器110は、熱伝導性を有している。また、容器110には、液相冷媒LP-COOおよび気相冷媒GP-COOの間で相変化する冷媒COOが封入される。また、図16及び図17に示されるように、容器110の内面のうちの一つの面を第1の容器内面115とする。 The container 110 has thermal conductivity. Further, in the container 110, a refrigerant COO which changes in phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO is sealed. Further, as shown in FIGS. 16 and 17, one of the inner surfaces of the container 110 is taken as a first container inner surface 115.
 基板120は、容器110内に設けられている。また、基板120は、第1の容器内面115と向かい合う第1の主面125を有する。 The substrate 120 is provided in the container 110. Also, the substrate 120 has a first major surface 125 facing the first container inner surface 115.
 複数の発熱体130は、第1の発熱体外面131を有する。第1の発熱体外面131の外周形状は、凸多角形状、円状又は楕円状である。また、複数の発熱体130は、第1の発熱体外面131が第1の容器内面115に向かい合うように第1の主面125に取り付けられる。また、複数の発熱体130は、液相冷媒LP-COOに浸される。 The plurality of heating elements 130 have a first heating element outer surface 131. The outer peripheral shape of the first heat generating body outer surface 131 is a convex polygonal shape, a circular shape or an elliptical shape. In addition, the plurality of heating elements 130 are attached to the first major surface 125 such that the first heating element outer surface 131 faces the first container inner surface 115. Also, the plurality of heating elements 130 are immersed in the liquid phase refrigerant LP-COO.
 1以上の整流板141は、複数の発熱体130の各々の外周部から、第1の容器内面115側へ向けて延出するように設けられている。 The one or more rectifying plates 141 are provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side.
 また、受熱領域Aが、複数の発熱体130の各々の熱を受熱する為に、複数の発熱体130の各々毎に設定される。図18は、受熱領域Aの一例である受熱領域A1~A3を示す図である。 Further, the heat receiving area A is set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130. FIG. 18 is a view showing heat receiving areas A1 to A3 as an example of the heat receiving area A. As shown in FIG.
 受熱領域Aは、容器110の内面に設定されている。具体的には、受熱領域Aは、容器110の内面のうち、1以上の整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線に沿って設定される囲み線に囲まれた領域である。 The heat receiving area A is set on the inner surface of the container 110. Specifically, in the heat receiving area A, the end side of the one or more rectifying plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115 It is an area surrounded by an encircling line set along the projection line which appears on the first container inner surface 115 at the time.
 受熱領域Aの各々の面積は、複数の発熱体130の各々の発熱量の増加に応じて増加するように設定されている。 The area of each of the heat receiving regions A is set to increase in accordance with the increase in the calorific value of each of the plurality of heating elements 130.
 以上、電子装置700の構成について説明した。 The configuration of the electronic device 700 has been described above.
 なお、電子装置700の製造方法及び動作は、電子装置100、100A、100B、200、200A、300、400、500、600に準じる。 Note that the manufacturing method and operation of the electronic device 700 conform to the electronic devices 100, 100A, 100B, 200, 200A, 300, 400, 500, and 600.
 前述の通り、本発明の第1の実施形態における電子装置700は、容器110と、基板120と、複数の発熱体130と、整流板141とを備えている。容器110は、熱伝導性を有し、液相冷媒LP-COOおよび気相冷媒GP-COOの間で相変化する冷媒COOを封入する。第1の基板120は、容器110の内面のうちの一つの面である第1の容器内面115と向かい合う第1の主面125を有する。また、第1の基板120は、容器110内に設けられる。複数の発熱体130の各々は、第1の発熱体外面131を有する。また、複数の発熱体130は、第1の発熱体外面131と第1の容器内面115とが互いにに向かい合うように第1の主面125に取り付けられ、液相冷媒LP-COOに浸される。整流板141は、複数の発熱体130各々の外周部から、第1の容器内面115側へ向けて延出するように設けられている。また、整流板141は、1以上である。また、複数の発熱体130の各々の熱を受熱するために複数の発熱体130の各々毎に設定される領域である受熱領域の各々の面積は、複数の発熱体130各々の発熱量の増加に応じて増加するように設定されている。また、受熱領域は、容器110の内面のうち、1以上の整流板141の第1の容器内面115側の端辺を第1の容器内面115に対して垂直な方向に投影した際に第1の容器内面115に表れる投影線に沿って設定される囲み線に囲まれた領域である。 As described above, the electronic device 700 according to the first embodiment of the present invention includes the container 110, the substrate 120, the plurality of heating elements 130, and the rectifying plate 141. The container 110 has thermal conductivity, and encloses the refrigerant COO which changes phase between the liquid phase refrigerant LP-COO and the gas phase refrigerant GP-COO. The first substrate 120 has a first major surface 125 facing the first container inner surface 115 which is one of the inner surfaces of the container 110. In addition, the first substrate 120 is provided in the container 110. Each of the plurality of heating elements 130 has a first heating element outer surface 131. Further, the plurality of heat generating members 130 are attached to the first main surface 125 so that the first heat generating member outer surface 131 and the first container inner surface 115 face each other, and are immersed in the liquid phase refrigerant LP-COO . The baffle plate 141 is provided so as to extend from the outer peripheral portion of each of the plurality of heat generating members 130 toward the first container inner surface 115 side. Further, the number of the straightening vanes 141 is one or more. In addition, the area of each of the heat receiving areas, which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130, increases the calorific value of each of the plurality of heating elements 130 It is set to increase according to. Further, the heat receiving area is the first when the end side of the one or more flow straightening plates 141 on the first container inner surface 115 side of the inner surface of the container 110 is projected in the direction perpendicular to the first container inner surface 115. Is an area surrounded by an encircling line set along a projection line appearing on the inner surface 115 of the container.
 このように、複数の発熱体130の各々の熱を受熱するために複数の発熱体130の各々毎に設定される領域である受熱領域Aの各々の面積は、複数の発熱体130の各々の発熱量の増加に応じて増加するように設定されている。したがって、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aを設定することができる。これにより、複数の受熱領域Aの各々の面積を、各発熱体130で発生した熱を過不足なく受熱できるように設定できる。このため、複数の受熱領域Aの合計面積を必要最小限に調整することができる。ゆえに、容器内面115の面積を必要最小限に設定できるので、容器110の大きさを必要最小限の大きさに調整することができる。 Thus, the area of each of the heat receiving areas A, which is an area set for each of the plurality of heating elements 130 in order to receive the heat of each of the plurality of heating elements 130 It is set to increase as the amount of heat generation increases. Therefore, according to each calorific value of a plurality of heating elements 130, a plurality of heat receiving areas A can be set. Thereby, the area of each of the plurality of heat receiving areas A can be set so that the heat generated by each heating element 130 can be received without excess or deficiency. Therefore, the total area of the plurality of heat receiving areas A can be adjusted to the necessary minimum. Therefore, since the area of the container inner surface 115 can be set to the necessary minimum, the size of the container 110 can be adjusted to the minimum required size.
 前述の通り、特許文献1に記載の技術では、複数の発熱体の大きさが互いに等しい場合、複数の発熱体の各々の熱によって生じる各々の気相冷媒が、容器および隔壁と接触する表面積が同じである。この場合において、複数の発熱体から生じる各気相冷媒が容器および隔壁と接触する表面積を、発熱量の小さい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の大きい発熱体によって生じる気相冷媒は十分に冷却されないという問題があった。また、各々の気相冷媒が容器および隔壁と接触する表面積を、発熱量の大きい発熱体によって生じる気相冷媒が含む熱量に合わせて同じ面積に設定すると、発熱量の小さい発熱体に合わせて面積を設定した場合に比べて容器が大きくなってしまう。この際、発熱量の小さい発熱体によって生じる気相冷媒は、必要以上に大きな表面積で冷却されることとなる。このように、表面積の各々を発熱量の大きい発熱体に合わせて設定すると、容器が必要以上に大きくなるという問題があった。 As described above, in the technique described in Patent Document 1, when the sizes of the plurality of heating elements are equal to each other, the surface area where each gas phase refrigerant generated by the heat of each of the plurality of heating elements contacts the container and the partition It is the same. In this case, the surface area of each of the gas phase refrigerants generated from the plurality of heating elements in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the small heating element. There is a problem that the gas phase refrigerant generated by the large heating element is not sufficiently cooled. In addition, if the surface area of each gas phase refrigerant in contact with the container and the partition is set to the same area according to the amount of heat contained in the gas phase refrigerant generated by the heating element with a large calorific value, the area according to the heating element with a small calorific value The container will be larger than in the case of setting. At this time, the gas-phase refrigerant generated by the heat generating element with a small heat generation amount is cooled with a surface area larger than necessary. As described above, when each of the surface areas is set according to the heating element having a large calorific value, there is a problem that the container becomes larger than necessary.
 一方、本発明の第1の実施の形態における電子装置700では、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aの各々を設定することができるので、発熱量の小さい発熱体130に設定される受熱領域Aの面積を、発熱体130毎に発熱量に応じて小さく設定することができる。逆に、熱量の大きい発熱体130に設定される受熱領域Aの面積を、発熱体130毎に発熱量に応じて大きく設定することができる。 On the other hand, in the electronic device 700 according to the first embodiment of the present invention, since each of the plurality of heat receiving areas A can be set according to each amount of heat generation of the plurality of heat generating members 130 The area of the heat receiving area A set in the body 130 can be set smaller for each heating element 130 according to the amount of heat generation. Conversely, the area of the heat receiving area A set for the heating element 130 with a large amount of heat can be set large for each heating element 130 according to the amount of heat generation.
 すなわち、複数の発熱体130に熱量の大きい発熱体130と熱量の小さい発熱体130が含まれていても、発熱体130毎に受熱領域Aを設定できる。したがって、前述の通り、受熱領域Aが設定される第1の容器内面115の面積を必要最小限に設定できる。この結果、容器110の大きさを必要最小限の大きさに調整できる。 That is, even if the plurality of heating elements 130 includes the heating element 130 having a large amount of heat and the heating element 130 having a small amount of heat, the heat receiving region A can be set for each heating element 130. Therefore, as described above, the area of the first container inner surface 115 in which the heat receiving area A is set can be set to the necessary minimum. As a result, the size of the container 110 can be adjusted to the necessary minimum size.
 このように、電子装置700においては、複数の発熱体130の各発熱量に合わせて、複数の受熱領域Aをそれぞれ設定することができ、第1の容器内面115の面積を必要最小限に設定できるので、容器110の大きさを必要最小限の大きさに調整することができる。したがって、必要最小限の大きさの容器110で、複数の発熱体130を効率よく冷却できる。 As described above, in the electronic device 700, the plurality of heat receiving regions A can be set respectively in accordance with the respective calorific values of the plurality of heating elements 130, and the area of the first container inner surface 115 is set to the necessary minimum. As it is possible, the size of the container 110 can be adjusted to the necessary minimum size. Therefore, the plurality of heating elements 130 can be efficiently cooled with the container 110 of the minimum necessary size.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
 熱伝導性を有し、液相冷媒および気相冷媒の間で相変化する冷媒を封入するための容器と、
 前記容器の内面のうちの一つの面である第1の容器内面と向かい合う第1の主面を有し、前記容器内に設けられた基板と、
 第1の発熱体外面を有し、前記第1の発熱体外面と前記第1の容器内面とが互いに向かい合うように前記第1の主面に取り付けられ、前記液相冷媒に浸される複数の発熱体と、
 前記複数の発熱体の各々の外周部から、前記第1の容器内面側へ向けて延出するように設けられた1以上の整流板と、を備え、
 前記容器の内面のうち、前記1以上の整流板の前記第1の容器内面側の端辺を前記第1の容器内面に対して垂直な方向に投影した際に前記第1の容器内面に表れる1以上の投影線に沿って設定される囲み線に囲まれた領域であって、前記複数の発熱体の各々の熱を受熱するために前記複数の発熱体の各々毎に設定される領域である受熱領域の各々の面積は、前記複数の発熱体各々の発熱量の増加に応じて増加するように設定されている電子装置。
[付記2]
 前記複数の受熱領域は、互いに離間して設けられている付記1に記載の電子装置。
[付記3]
 前記1以上の整流板の少なくとも一部は、前記第1の容器内面側の端部が前記第1の容器内面に近接して配置される付記1または2に記載の電子装置。
[付記4]
 前記1以上の整流板の少なくとも一部は、前記受熱領域の面積を所定範囲内で変更できるように、設けられている付記1~3のいずれか1項に記載の電子装置。
[付記5]
 前記1以上の整流板の少なくとも一部は、前記発熱体側の端部を中心に、所定角度内で回転できるように、前記発熱体に保持されている付記4に記載の電子装置。
[付記6]
 前記複数の発熱体の温度を測定する温度測定部と、
 前記1以上の整流板の少なくとも一部を、前記発熱体側の端部を中心に回転させる駆動制御部と、を備え、
 前記駆動制御部は、前記温度測定部の測定結果に基づいて、前記整流板の一部の各々を回転させる付記5の電子装置。
[付記7]
 前記1以上の整流板は、前記基板の前記第1の主面に対して平行な方向における前記複数の発熱体の各々の両端部から前記第1の容器内面側へ向けて延出するように設けられた一対の第1の整流板を含む付記1~6の何れか1項に記載の電子装置。
[付記8]
 前記一対の第1の整流板の間に互いに向かい合うように、前記第1の発熱体外面の外周に沿って設けられ、前記一対の第1の整流板の各々の対辺間を連結する第2の整流板をさらに備える付記7に記載の電子装置。
[付記9]
 前記1以上の整流板は、前記一対の第1の整流板の間に設けられた1以上の第3の整流板をさらに含む付記7又は付記8に記載の電子装置。
[付記10]
 前記1以上の第3の整流板の少なくとも一つは、前記発熱体に熱的に接続され、前記発熱体の熱を放熱する付記9に記載の電子装置。
[付記11]
 前記1以上の整流板の少なくとも一部は、前記発熱体に熱的に接続され、前記発熱体の熱を放熱する付記1~10のいずれか1項に記載の電子装置。
[付記12]
 前記容器の外面のうち前記複数の受熱領域に対応する領域に、前記複数の受熱領域で受熱される熱を放熱するための放熱部、又は前記受熱領域を冷却するための冷却部が設けられている付記1~11のいずれか1項に記載の電子装置。
[付記13]
 前記基板は、前記第1の主面が鉛直方向に対して垂直な方向に沿うように設けられている付記1~12のいずれか1項に記載の電子装置。
[付記14]
 前記1以上の整流板の少なくとも一部は、前記第1の容器内面側の端部が前記液相冷媒の液面上に配置される付記13に記載の電子装置。
[付記15]
 前記基板は、前記第1の主面が鉛直方向に沿うように設けられている付記1~12のいずれか1項に記載の電子装置。
[付記16]
 前記発熱体の外面のうち、前記第1の容器内面と向かい合う面に設けられる土台部を備え、
 前記1以上の整流板は、前記土台部に取り付けられている付記1~15のいずれか1項に記載の電子装置。
[付記17]
 前記1以上の整流板の少なくとも一部は、前記第1の発熱体外面の外周部のうち、前記基板の前記第1の主面に対して平行な方向における前記第1の発熱体外面の両端部側から前記第1の容器内面側へ向けて延出するように設けられている付記1~16のいずれか1項に記載の電子装置。
[付記18]
 前記1以上の整流板の少なくとも一部は、前記第1の発熱体外面を囲う前記発熱体の側面のうち、前記基板の前記第1の主面に対して平行な方向における前記第1の発熱体外面の両端部側から前記第1の容器内面側へ向けて延出するように設けられている付記1~16のいずれか1項に記載の電子装置。
Some or all of the above embodiments may be described as in the following appendices, but are not limited to the following.
[Supplementary Note 1]
A container having a thermal conductivity and enclosing a refrigerant that changes in phase between the liquid phase refrigerant and the gas phase refrigerant;
A substrate provided in the container, the substrate having a first main surface facing the first container inner surface which is one of the inner surfaces of the container;
A plurality of first heat generating body outer surfaces, the first heat generating body outer surface and the first container inner surface being attached to the first main surface so as to face each other, and immersed in the liquid phase refrigerant A heating element,
And at least one straightening vane provided to extend from the outer peripheral portion of each of the plurality of heat generating members toward the inner surface of the first container,
Appears on the inner surface of the first container when the end side of the first container inner surface side of the one or more straightening vanes of the inner surface of the container is projected in a direction perpendicular to the inner surface of the first container An area surrounded by an encircling line set along one or more projection lines, the area set for each of the plurality of heating elements to receive heat of each of the plurality of heating elements An electronic device, wherein an area of each of the heat receiving regions is set to increase in accordance with an increase in calorific value of each of the plurality of heat generating members.
[Supplementary Note 2]
The electronic device according to appendix 1, wherein the plurality of heat receiving regions are provided apart from one another.
[Supplementary Note 3]
The electronic device according to Additional remark 1 or 2, wherein at least a part of the one or more straightening vanes is disposed such that an end portion on the inner surface side of the first container is close to an inner surface of the first container.
[Supplementary Note 4]
The electronic device according to any one of appendices 1 to 3, wherein at least a part of the one or more rectifying plates is provided such that the area of the heat receiving area can be changed within a predetermined range.
[Supplementary Note 5]
The electronic device according to claim 4, wherein at least a part of the one or more rectifying plates is held by the heating element so as to be rotatable within a predetermined angle around an end on the heating element side.
[Supplementary Note 6]
A temperature measurement unit that measures the temperatures of the plurality of heating elements;
A drive control unit configured to rotate at least a part of the one or more rectifying plates about an end on the heating element side;
The electronic device according to claim 5, wherein the drive control unit rotates each of a part of the rectifying plate based on a measurement result of the temperature measurement unit.
[Supplementary Note 7]
The one or more rectifying plates extend from both ends of the plurality of heating elements in a direction parallel to the first main surface of the substrate toward the first container inner surface side. 15. The electronic device according to any one of appendices 1 to 6, comprising a pair of provided first flow straighteners.
[Supplementary Note 8]
A second straightening vane, provided along the outer periphery of the first heat generating body outer surface, facing each other between the pair of first straightening vanes, for connecting the opposite sides of each of the pair of first straightening vanes The electronic device according to appendix 7, further comprising:
[Supplementary Note 9]
The electronic device according to Appendix 7 or 8, wherein the one or more rectifying plates further include one or more third rectifying plates provided between the pair of first rectifying plates.
[Supplementary Note 10]
The electronic device according to Additional remark 9, wherein at least one of the one or more third rectifying plates is thermally connected to the heat generating body to dissipate heat of the heat generating body.
[Supplementary Note 11]
The electronic device according to any one of appendices 1 to 10, wherein at least a part of the one or more rectifying plates is thermally connected to the heat generating body to dissipate heat of the heat generating body.
[Supplementary Note 12]
A heat radiating portion for radiating heat received in the plurality of heat receiving regions, or a cooling portion for cooling the heat receiving region is provided in a region corresponding to the plurality of heat receiving regions of the outer surface of the container The electronic device according to any one of appendices 1 to 11.
[Supplementary Note 13]
The electronic device according to any one of appendices 1 to 12, wherein the substrate is provided such that the first main surface is in a direction perpendicular to the vertical direction.
[Supplementary Note 14]
[Claim 13] The electronic device according to supplementary note 13, wherein at least a part of the one or more rectifying plates is arranged such that an end portion on the inner surface side of the first container is disposed on a liquid surface of the liquid phase refrigerant.
[Supplementary Note 15]
The electronic device according to any one of appendices 1 to 12, wherein the substrate is provided such that the first main surface is along the vertical direction.
[Supplementary Note 16]
A base portion provided on a surface of the outer surface of the heating element facing the inner surface of the first container;
The electronic device according to any one of appendices 1 to 15, wherein the one or more rectifying plates are attached to the base portion.
[Supplementary Note 17]
At least a portion of the one or more rectifying plates is a portion of the outer peripheral portion of the first heat generating body outer surface, both ends of the first heat generating body outer surface in a direction parallel to the first main surface of the substrate. The electronic device according to any one of appendices 1 to 16, provided so as to extend from the part side toward the inner surface side of the first container.
[Supplementary Note 18]
At least a portion of the one or more rectifying plates is the first heat generation in the direction parallel to the first main surface of the substrate among the side surfaces of the heating element surrounding the first heating element outer surface The electronic device according to any one of appendices 1 to 16, provided so as to extend from both end sides of the body outer surface toward the inner surface side of the first container.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments (and examples), but the present invention is not limited to the above embodiments (and examples). The configurations and details of the present invention can be modified in various ways that those skilled in the art can understand within the scope of the present invention.
100、100A、100B、200、200A、300、400、500、600、700 電子装置
110 容器
115 第1の容器内面
120 基板
125 第1の主面
130、130a、130b、130c 発熱体
131、131a、131b、131c 第1の発熱体外面
140、140a、140b、140c、140Aa、140Ab、140Ac、140B、140Ca、140Cb、140Cc 整流部材
141、141a、141b、141c 整流板
142 土台部
143 ヒンジ
147 連結板
149 仕切板
151 温度測定部
152 駆動制御部
153 モータ
510 放熱部
520 冷却部
100, 100A, 100B, 200, 200A, 300, 400, 500, 600, 700 electronic device 110 container 115 first container inner surface 120 substrate 125 first main surface 130, 130a, 130b, 130c heating element 131, 131a, 131b, 131c first heating element outer surface 140, 140a, 140b, 140c, 140Aa, 140Ab, 140Ac, 140B, 140Ca, 140Cb, 140Cc rectifying member 141, 141a, 141b, 141c rectifying plate 142 base portion 143 hinge 147 connecting plate 149 Partition plate 151 Temperature measurement unit 152 Drive control unit 153 Motor 510 Heat dissipation unit 520 Cooling unit

Claims (18)

  1.  熱伝導性を有し、液相冷媒および気相冷媒の間で相変化する冷媒を封入するための容器と、
     前記容器の内面のうちの一つの面である第1の容器内面と向かい合う第1の主面を有し、前記容器内に設けられた基板と、
     第1の発熱体外面を有し、前記第1の発熱体外面と前記第1の容器内面とが互いに向かい合うように前記第1の主面に取り付けられ、前記液相冷媒に浸される複数の発熱体と、
     前記複数の発熱体の各々の外周部から、前記第1の容器内面側へ向けて延出するように設けられた1以上の整流板と、を備え、
     前記容器の内面のうち、前記1以上の整流板の前記第1の容器内面側の端辺を前記第1の容器内面に対して垂直な方向に投影した際に前記第1の容器内面に表れる1以上の投影線に沿って設定される囲み線に囲まれた領域であって、前記複数の発熱体の各々の熱を受熱するために前記複数の発熱体の各々毎に設定される領域である受熱領域の各々の面積は、前記複数の発熱体各々の発熱量の増加に応じて増加するように設定されている電子装置。
    A container having a thermal conductivity and enclosing a refrigerant that changes in phase between the liquid phase refrigerant and the gas phase refrigerant;
    A substrate provided in the container, the substrate having a first main surface facing the first container inner surface which is one of the inner surfaces of the container;
    A plurality of first heat generating body outer surfaces, the first heat generating body outer surface and the first container inner surface being attached to the first main surface so as to face each other, and immersed in the liquid phase refrigerant A heating element,
    And at least one straightening vane provided to extend from the outer peripheral portion of each of the plurality of heat generating members toward the inner surface of the first container,
    Appears on the inner surface of the first container when the end side of the first container inner surface side of the one or more straightening vanes of the inner surface of the container is projected in a direction perpendicular to the inner surface of the first container An area surrounded by an encircling line set along one or more projection lines, the area set for each of the plurality of heating elements to receive heat of each of the plurality of heating elements An electronic device, wherein an area of each of the heat receiving regions is set to increase in accordance with an increase in calorific value of each of the plurality of heat generating members.
  2.  前記複数の受熱領域は、互いに離間して設けられている請求項1に記載の電子装置。 The electronic device according to claim 1, wherein the plurality of heat receiving areas are provided apart from one another.
  3.  前記1以上の整流板の少なくとも一部は、前記第1の容器内面側の端部が前記第1の容器内面に近接して配置される請求項1または2に記載の電子装置。 The electronic device according to claim 1, wherein at least a part of the one or more straightening vanes is disposed such that an end portion on the inner surface side of the first container is close to an inner surface of the first container.
  4.  前記1以上の整流板の少なくとも一部は、前記受熱領域の面積を所定範囲内で変更できるように、設けられている請求項1~3のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 3, wherein at least a part of the one or more rectifying plates is provided such that the area of the heat receiving area can be changed within a predetermined range.
  5.  前記1以上の整流板の少なくとも一部は、前記発熱体側の端部を中心に、所定角度内で回転できるように、前記発熱体に保持されている請求項4に記載の電子装置。 5. The electronic device according to claim 4, wherein at least a part of the one or more rectifying plates is held by the heating element such that it can rotate within a predetermined angle around an end on the heating element side.
  6.  前記複数の発熱体の温度を測定する温度測定部と、
     前記1以上の整流板の少なくとも一部を、前記発熱体側の端部を中心に回転させる駆動制御部と、を備え、
     前記駆動制御部は、前記温度測定部の測定結果に基づいて、前記整流板の一部の各々を回転させる請求項5の電子装置。
    A temperature measurement unit that measures the temperatures of the plurality of heating elements;
    A drive control unit configured to rotate at least a part of the one or more rectifying plates about an end on the heating element side;
    The electronic device according to claim 5, wherein the drive control unit rotates each part of the rectifying plate based on a measurement result of the temperature measurement unit.
  7.  前記1以上の整流板は、前記基板の前記第1の主面に対して平行な方向における前記複数の発熱体の各々の両端部から前記第1の容器内面側へ向けて延出するように設けられた一対の第1の整流板を含む請求項1~6の何れか1項に記載の電子装置。 The one or more rectifying plates extend from both ends of the plurality of heating elements in a direction parallel to the first main surface of the substrate toward the first container inner surface side. The electronic device according to any one of claims 1 to 6, which comprises a pair of first rectifying plates provided.
  8.  前記一対の第1の整流板の間に互いに向かい合うように、前記第1の発熱体外面の外周に沿って設けられ、前記一対の第1の整流板の各々の対辺間を連結する第2の整流板をさらに備える請求項7に記載の電子装置。 A second straightening vane, provided along the outer periphery of the first heat generating body outer surface, facing each other between the pair of first straightening vanes, for connecting the opposite sides of each of the pair of first straightening vanes The electronic device according to claim 7, further comprising:
  9.  前記1以上の整流板は、前記一対の第1の整流板の間に設けられた1以上の第3の整流板をさらに含む請求項7又は請求項8に記載の電子装置。 The electronic device according to claim 7, wherein the one or more rectifying plates further include one or more third rectifying plates provided between the pair of first rectifying plates.
  10.  前記1以上の第3の整流板の少なくとも一つは、前記発熱体に熱的に接続され、前記発熱体の熱を放熱する請求項9に記載の電子装置。 10. The electronic device according to claim 9, wherein at least one of the one or more third rectifying plates is thermally connected to the heat generating body to dissipate the heat of the heat generating body.
  11.  前記1以上の整流板の少なくとも一部は、前記発熱体に熱的に接続され、前記発熱体の熱を放熱する請求項1~10のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 10, wherein at least a part of the one or more rectifying plates is thermally connected to the heat generating body to radiate the heat of the heat generating body.
  12.  前記容器の外面のうち前記複数の受熱領域に対応する領域に、前記複数の受熱領域で受熱される熱を放熱するための放熱部、又は前記受熱領域を冷却するための冷却部が設けられている請求項1~11のいずれか1項に記載の電子装置。 A heat radiating portion for radiating heat received in the plurality of heat receiving regions, or a cooling portion for cooling the heat receiving region is provided in a region corresponding to the plurality of heat receiving regions of the outer surface of the container The electronic device according to any one of claims 1 to 11.
  13.  前記基板は、前記第1の主面が鉛直方向に対して垂直な方向に沿うように設けられている請求項1~12のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 12, wherein the substrate is provided such that the first main surface is in a direction perpendicular to the vertical direction.
  14.  前記1以上の整流板の少なくとも一部は、前記第1の容器内面側の端部が前記液相冷媒の液面上に配置される請求項13に記載の電子装置。 The electronic device according to claim 13, wherein an end portion of the first container inner surface side of at least a part of the one or more rectifying plates is disposed on a liquid surface of the liquid phase refrigerant.
  15.  前記基板は、前記第1の主面が鉛直方向に沿うように設けられている請求項1~12のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 12, wherein the substrate is provided such that the first main surface is along the vertical direction.
  16.  前記発熱体の外面のうち、前記第1の容器内面と向かい合う面に設けられる土台部を備え、
     前記1以上の整流板は、前記土台部に取り付けられている請求項1~15のいずれか1項に記載の電子装置。
    A base portion provided on a surface of the outer surface of the heating element facing the inner surface of the first container;
    The electronic device according to any one of claims 1 to 15, wherein the one or more rectifying plates are attached to the base portion.
  17.  前記1以上の整流板の少なくとも一部は、前記第1の発熱体外面の外周部のうち、前記基板の前記第1の主面に対して平行な方向における前記第1の発熱体外面の両端部側から前記第1の容器内面側へ向けて延出するように設けられている請求項1~16のいずれか1項に記載の電子装置。 At least a portion of the one or more rectifying plates is a portion of the outer peripheral portion of the first heat generating body outer surface, both ends of the first heat generating body outer surface in a direction parallel to the first main surface of the substrate. The electronic device according to any one of claims 1 to 16, wherein the electronic device is provided so as to extend from the part side toward the inner surface side of the first container.
  18.  前記1以上の整流板の少なくとも一部は、前記第1の発熱体外面を囲う前記発熱体の側面のうち、前記基板の前記第1の主面に対して平行な方向における前記第1の発熱体外面の両端部側から前記第1の容器内面側へ向けて延出するように設けられている請求項1~16のいずれか1項に記載の電子装置。 At least a portion of the one or more rectifying plates is the first heat generation in the direction parallel to the first main surface of the substrate among the side surfaces of the heating element surrounding the first heating element outer surface The electronic device according to any one of claims 1 to 16, wherein the electronic device is provided so as to extend from both end sides of an outer surface of the body toward the inner surface of the first container.
PCT/JP2017/034000 2017-09-21 2017-09-21 Electronic device WO2019058469A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/034000 WO2019058469A1 (en) 2017-09-21 2017-09-21 Electronic device
JP2019542878A JP6856131B2 (en) 2017-09-21 2017-09-21 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034000 WO2019058469A1 (en) 2017-09-21 2017-09-21 Electronic device

Publications (1)

Publication Number Publication Date
WO2019058469A1 true WO2019058469A1 (en) 2019-03-28

Family

ID=65809564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034000 WO2019058469A1 (en) 2017-09-21 2017-09-21 Electronic device

Country Status (2)

Country Link
JP (1) JP6856131B2 (en)
WO (1) WO2019058469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335391B2 (en) 2021-09-01 2023-08-29 廣達電腦股▲ふん▼有限公司 nucleate boiling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910247A (en) * 1982-07-09 1984-01-19 Mitsubishi Electric Corp Ebullition type cooling apparatus for semiconductor
JPH02114597A (en) * 1988-10-24 1990-04-26 Fujikura Ltd Method of cooling electronic device
JPH03129896A (en) * 1989-10-16 1991-06-03 Fujitsu Ltd Cooling device
JP2010040958A (en) * 2008-08-08 2010-02-18 Denso Corp Cooling device
JP2010139169A (en) * 2008-12-11 2010-06-24 Toyota Motor Corp Evaporative cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910247A (en) * 1982-07-09 1984-01-19 Mitsubishi Electric Corp Ebullition type cooling apparatus for semiconductor
JPH02114597A (en) * 1988-10-24 1990-04-26 Fujikura Ltd Method of cooling electronic device
JPH03129896A (en) * 1989-10-16 1991-06-03 Fujitsu Ltd Cooling device
JP2010040958A (en) * 2008-08-08 2010-02-18 Denso Corp Cooling device
JP2010139169A (en) * 2008-12-11 2010-06-24 Toyota Motor Corp Evaporative cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335391B2 (en) 2021-09-01 2023-08-29 廣達電腦股▲ふん▼有限公司 nucleate boiling device

Also Published As

Publication number Publication date
JP6856131B2 (en) 2021-04-07
JPWO2019058469A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US8159819B2 (en) Modular thermal management system for graphics processing units
JP5472955B2 (en) Heat dissipation module
US7782620B2 (en) Electronic apparatus
US20100246133A1 (en) Method and apparatus for distributing a thermal interface material
JP2010251756A (en) Heat dissipation device and method of manufacturing the same
US10431475B2 (en) Cold plate with dam isolation
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
JP2006278041A (en) Back panel of backlight module
JP2004047998A (en) Heat radiator having a plurality of fin types
JP2008098432A (en) Heat-dissipating device of electronic component
US20130094152A1 (en) Electronic device and heat sink employing the same
WO2019058469A1 (en) Electronic device
EP3518072A1 (en) Heat transferring module
CN102045988A (en) Radiating device
WO2019043835A1 (en) Electronic device
CN209420219U (en) Radiator and electronic equipment
JP2006332148A (en) Cooler
JP2008160029A (en) Cooling structure, and electronic equipment
US20070030657A1 (en) Circuit board with a cooling architecture
CN216566034U (en) Heat radiation structure
JP2008147525A (en) Heat radiating component, and heat radiating component mounting device
JP2018056350A (en) Heat radiation component and terminal apparatus including heat radiation component
WO2023071705A1 (en) Heat dissipation assembly, vehicle module, and vehicle
JP2014003059A (en) Radiator
CN217386073U (en) Graphene heat dissipation structure for display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926263

Country of ref document: EP

Kind code of ref document: A1