WO2019057624A1 - Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method - Google Patents

Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method Download PDF

Info

Publication number
WO2019057624A1
WO2019057624A1 PCT/EP2018/074882 EP2018074882W WO2019057624A1 WO 2019057624 A1 WO2019057624 A1 WO 2019057624A1 EP 2018074882 W EP2018074882 W EP 2018074882W WO 2019057624 A1 WO2019057624 A1 WO 2019057624A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
metal
open
semifinished product
powder
Prior art date
Application number
PCT/EP2018/074882
Other languages
German (de)
French (fr)
Inventor
Tilo BÜTTNER
Gunnar Walther
Hans-Dietrich BÖHM
Thomas WEISSGÄRBER
Bernd Kieback
Christian Immanuel Müller
Robin Kolvenbach
Lars Torkuhl
Original Assignee
Alantum Europe Gmbh
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alantum Europe Gmbh, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Alantum Europe Gmbh
Priority to US16/648,028 priority Critical patent/US20200263306A1/en
Priority to JP2020516562A priority patent/JP2020534433A/en
Priority to KR1020207011232A priority patent/KR20200127966A/en
Priority to CN201880060988.7A priority patent/CN111432961A/en
Priority to CA3076512A priority patent/CA3076512A1/en
Priority to RU2020111275A priority patent/RU2020111275A/en
Priority to EP18770004.2A priority patent/EP3684532A1/en
Publication of WO2019057624A1 publication Critical patent/WO2019057624A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/02Coating with metallic material
    • C23C20/04Coating with metallic material with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/06Coating with inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the invention relates to a method for producing an open-pore shaped body which is formed with a metal and a molded body produced by the method.
  • Claim 10 relates to a molded article produced by the method.
  • Advantageous embodiments and further developments can be realized with features described in the subordinate claims.
  • open-porous body made of a metallic material are used as semifinished product.
  • This may be a metal grid, a metal net, a metal mesh, a metal foam, a metal garbage or a semi-finished product formed with metallic fibers.
  • the semi-finished product may also be an open-pore shaped body in which a polymer material has been galvanically (electrochemically) coated with a metal.
  • a semifinished product produced in this way can be subjected to a thermal treatment in which the organic and volatile constituents of this polymer are removed as a result of pyrolysis.
  • this removal of the organic constituents of a polymer can also take place later with a simultaneous removal of other organic or volatile components, which will be discussed in more detail below.
  • a coating of the open-pore body with metallic particles of the same metal material from which the open-porous semi-finished product is made should also be introduced into the interior of the shaped body, that is to say into the pores or free spaces of the semifinished product.
  • particles of a chemical compound of the chemical element with which the open-porous shaped body is formed as semifinished product are coated.
  • the particles mentioned consist of a chemical compound which can be converted by chemical reduction, thermal or chemical decomposition in a thermal treatment in the respective chemical element with which the semifinished product is formed.
  • the metallic particles of the same metal material with which the open porous semi-finished product has been produced or the particles of a chemical compound of the chemical element which can be converted into the chemical element with which the open-porous shaped body is formed as a semi-finished product can be used for the process the coating can be used as a powder, as a powder mixture, as a suspension or as a dispersion.
  • the coating of the surface of the semifinished product with a powder, a powder mixture and / or a suspension / dispersion can be effected by dipping, spraying, pressure-assisted, electrostatic and / or magnetic.
  • the powders, powder mixtures, suspensions or dispersions used for the coating of the open-porous semifinished product may contain, in addition to metallic particles or particles of a chemical compound of a metal, an inorganic and / or organic binder which is the powder, the powder mixture, the suspension or dispersion is finely divided in the form of a solid powder, or dissolved in a liquid phase of a solution, a suspension / dispersion of metallic particles or particles of a chemical compound of a metal.
  • the coating of the surface of the semifinished product with a binder in the form of a solution or a suspension / dispersion can be carried out by dipping or Spraying done.
  • the binder-impregnated open-porous semi-finished product is subsequently coated with a powder or a powder mixture of metallic particles.
  • the application of particles as powder, powder mixture and / or suspension / dispersion can be repeated several times, preferably at least three times, more preferably five times. This also applies to the particular vibration to be performed and possibly the application of a binder.
  • the coating of the surface of the semifinished product can furthermore be carried out before the thermal treatment in which the organic constituents of the polymeric material with which the semifinished product has been produced are removed. Subsequent to the application of the particle-containing material, a thermal treatment is carried out in which organic and volatile constituents of the polymeric material, and at the same time any binder used, are removed.
  • sintering is carried out in which sintered bridges between the metal particles or after thermal or chemical decomposition, e.g. a chemical reduction, obtained metallic particles and the metallic surface of the open-porous metallic shaped body are formed.
  • the specific surface of the thus coated and sintered open-pore shaped body is to be increased to at least 30 m 2 / l, however, at least 5 times compared to the starting material of the uncoated metallic molded body as a semi-finished product.
  • the coating with particles can be carried out on different sides of the surface, in particular on surfaces of the semifinished product arranged opposite one another, with different amounts in order in each case to obtain a different porosity, pore size and / or specific surface area. This can be achieved, for example, by a different number of application of particles as powder, powder mixture or in suspension / dispersion, with or without binder use, on the surfaces arranged on different sides. Thus, a graded formation of a shaped article produced according to the invention can also be achieved.
  • the pore size within the applied particle layer of the coated and sintered open-pore shaped body should correspond to a maximum of 10,000 times the particle size used. This can be additionally influenced by the maximum height of the sintering temperature and its holding time, since with increasing temperature and holding time the diffusion-dependent mass transport and thus the sintering, which is accompanied by a reduction of the pore volume, is promoted.
  • the material with which the shaped body produced according to the invention is formed should contain not more than 3% by weight, preferably not more than 1% by weight of O 2 .
  • a suitable atmosphere should be chosen for the thermal treatment used.
  • This can be an inert atmosphere, for example an argon atmosphere, during thermal decomposition.
  • an atmosphere that is formed with hydrogen in a reduction, for example, one can use an atmosphere that is formed with hydrogen.
  • the oxygen, fluorine, chlorine, any mixtures of these gases as also contain any mixtures with inert gases, for example nitrogen, argon or krypton.
  • metal cations for the formation of elemental metals can be reduced.
  • the anion component can, however, be oxidized.
  • a chemical decomposition of a compound of noble metals in the elemental metals Au, Pt, Pd
  • Au, Pt, Pd gold
  • disproportionations modeled on the equation: 2 gel ⁇ -> Ge (s) + gel (g) are possible for aluminum, titanium, zirconium and chromium. It is also possible to use crystalline, organometallic complexes or salts thereof in which the metal center is already present in oxidation state 0.
  • Such an open-porous shaped body produced according to the invention can be used in the field of (i) filtration, as (ii) catalyst (for example in US Pat
  • Ethylene oxide synthesis - Ag-particle coated Ag foam catalyst as (iii) electrode material, or as (iv) carrier of a catalytic active substance.
  • Suitable metals for moldings produced according to the invention are: Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg. Consequently, in the method according to the invention for the coating of a semifinished product, particles of these elements, corresponding to the respective chemical element with which the semifinished product is formed, can be used.
  • chemical compounds of the metals Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi , Ce, Mg, V, which can be converted into particles of the respective metal by thermal or chemical decomposition in a thermal treatment, in particular their oxides, nitrides, hydrides, carbides, sulfides, sulfates, phosphates, fluorides, chlorides, bromides, iodides, azides, nitrates, amines, amides, organometallic complexes, salts of organometallic complexes or decomposable salts for the particle-formed material with which the surface of the present as a semi-finished open-porous molded body to be coated in the second alternative according to the invention are used.
  • Particularly suitable as chemical compounds are chemical compounds of: Ni, Fe, Ti, Mo, Co, Mn, W,
  • an atmosphere suitable for the decomposition which is inert, oxidizing or reducing, is present can, respected.
  • the thermal treatment which is to lead to the chemical reduction, may preferably be carried out at least temporarily until the chemical reduction has been carried out in a reducing atmosphere, in particular a hydrogen atmosphere.
  • Porosity, pore size and specific surface area can be significantly affected by the morphology of the particles used for the coating.
  • particles of small size and dendritic form e.g. Electrolyte powder, advantageous. Due to their irregular geometry, which allows no gap-free arrangement, adjacent particles form free spaces between contact points and particle bodies, which are partially connected to channels.
  • the use of particles of a chemical compound in thermal decomposition or chemical decomposition produces an additional microporous space left by the volatile component. The proportion of the microporous space in the total pore space is higher, the greater the proportion of the volatile component of the chemical compound.
  • the use of a high oxidation state oxide, and hence a high oxygen content is advantageous. Since the sintering activity of structures increases with an increase in the specific surface area, the substance-dependent sintering temperature is selected to be so high that the particles sinter themselves mechanically to one another and to the semifinished product, but the fine pores are not substantially compacted.
  • the semifinished product was an open-porous shaped body of silver, average pore size 450 ⁇ m, with a porosity of about 95%, the dimensions 70 mm ⁇ 63 mm, thickness 1.6 mm (produced by electrolytic deposition of Ag on polyurethane foam) is subjected to a thermal treatment subjected to a temperature of at least 400 ° C to the organic components, in particular to remove the polyurethane, carried out.
  • a metallic powder is used: - Ag metal powder with a particle size d 5 o in the range of 3 ⁇ m to 9 ⁇ m, with a total mass of 2 g.
  • ком ⁇ онент 1 For coating the surface of the metallic open-pore shaped body as semifinished product, 0.6 g of steramide wax having a particle size ⁇ 80 ⁇ m and a 1% strength aqueous solution of polyvinylpyrrolidone having a volume of 6 ml are used as binder.
  • the surface of the semi-finished product is sprayed with the binder solution in the interior of pores before the silver powder is applied to the surface coated with the binder.
  • Silver powder and the steramide wax were mixed for 10 minutes with a Turbula mixer.
  • the open-porous coated molded body was fixed in a vibration device and sprinkled with silver powder on both sides.
  • the vibration distributes the powder evenly throughout the open-porous network. The particles remain only at the
  • Debinding begins at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min.
  • the sintering process takes place in the temperature range from 550 ° C to 850 ° C with a holding time of 1 min to 60 min.
  • the Ag from the powder particles diffuses into the web material until the powder particles are firmly connected to the webs of the surface of the semifinished product via sintering necks or sinter bridges which form.
  • the open-porous shaped body consisted of 100% silver. The porosity was about 94%.
  • the surface of the webs is characterized by a high roughness.
  • the reason for this is that the applied powder particles are connected only via sintered necks or sintered bridges with the metallic carrier foam of the semifinished product, so that the original particle morphology is maintained.
  • the specific inner surface (measured by the BET method) of the finished open-pore molded article could be increased by the process from previously (uncoated state) from 10.8 m 2 / l to afterwards (coated state) 99.3 m 2 / l ,
  • the powdery binder was first dissolved in water and then added all other components and mixed in a speed mixer 2 x 30 s at 2000 rev / min to a suspension.
  • the semi-finished product was sprayed on both sides several times using a wet powder spray method with the prepared powder suspension.
  • the suspension sputtered on in a spraying device and applied on both surfaces on surfaces of the semifinished product. Due to the discharge pressure from the spray nozzle, the suspension is distributed evenly in the porous network of the semifinished product. In this case, the suspension only adheres to the web surface, so that the webs are completely covered with the suspension and the open porosity of the semifinished product is largely retained.
  • the thus-coated semi-finished product was then dried at room temperature in air.
  • a thermal treatment was carried out under a hydrogen atmosphere and then in an oven.
  • the oven is heated at a heating rate of 5K / min.
  • the reduction of the silver oxide begins even at below 100 ° C and is completed at 200 ° C and a holding time of about 30 minutes under hydrogen.
  • the remaining debinding and sintering process may then be carried out in an atmosphere containing oxygen, e.g. Air in the temperature range of 200 ° C to 800 ° C at a holding time of 1 min to 180 min to be performed.
  • the silver oxide was first reduced to metallic silver, which is nanocrystalline.
  • metallic silver which is nanocrystalline.
  • the porosity is about 93%.
  • the surface of the webs is characterized by a high roughness.
  • the reason for this is that the applied powder particles are only connected to the surfaces of the semifinished product via sintered necks / sintered bridges, so that the original particle morphology is retained.
  • the specific inner surface area (measured by the BET method) of the finished open-porous molded article could be determined by the previously performed process
  • the semifinished product was an open-pore shaped body made of copper, with an average pore size of 800 ⁇ m, with a porosity of about 95%, the dimensions 200 mm ⁇ SO mm, thickness 1.6 mm (produced by electrolytic deposition of Cu on PU foam used.
  • the binder used was a 1% strength aqueous solution of polyvinylpyrrolidone with a volume of 20 ml.
  • the semi-finished product formed from copper was sprayed on both sides with the binder solution. Subsequently, the binder-coated semi-finished product was fixed in a vibration device and sprinkled on both sides with the copper powder. The vibration distributes the powder in the porous network of the semifinished product. The binder and powder coating was repeated three times so that the pore space was completely filled.
  • Debinding and sintering was carried out under a thermal treatment under a hydrogen atmosphere.
  • the oven is heated at a heating rate of 5K / min.
  • the binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it is heated to a sintering temperature of 950 ° C and this temperature was maintained for 30 min.
  • the copper powder particles sinter to one another and to the web material until the powder particles are firmly bonded to the surface of the semifinished product via sintering necks or sinter bridges, whereby a high porosity is maintained and an increase in the specific surface area is achieved.
  • the porosity of the thus treated open-porous molded article is 54% and the specific surface 67 m 2 / l.
  • the semifinished product was an open-pore shaped body of cobalt, with an average pore size of 580 ⁇ m, with a porosity of about 95%, with the dimensions 70 mm ⁇ 65 mm, thickness 1.9 mm (produced by electrolytic deposition of Co on PU).
  • Foam, as a powder was co-metal powder with a mean particle size ⁇ 45 ⁇ and a mass of 10 g and
  • Steramidwachs with a particle size ⁇ 80 ⁇ a mass of 0.1 g and used as a binder, a 1% aqueous solution of polyvinylpyrrolidone with a volume of 6 ml.
  • Cobalt powder and steramide wax were mixed for 10 minutes with a Turbula mixer.
  • the semi-finished cobalt was sprayed on one side with the binder solution. Then it was fixed in a vibration device and sprinkled on both sides with the cobalt powder. The vibration distributes the powder evenly in the porous network of the semifinished product. The particles only adhere to the web surface, so that the webs are completely covered with powder particles and initially the open porosity of the foam is maintained.
  • the surface of the semifinished product is sprayed on a first side so strongly with binder solution that the previously open pores are closed by the binder on one side, being completely filled by the subsequent further powder application of the near-surface pore space.
  • the opposite side of the semifinished product only the webs are superficially coated. As a result, the powder charge and thus the porosity in the foam is graded from the first side to the opposite side of the semifinished product.
  • a thermal treatment was carried out in a hydrogen atmosphere.
  • the oven was heated at a heating rate of 5K / min.
  • the binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it is heated to a sintering temperature of 1300 ° C and held this temperature for 30 min.
  • the Co diffuses from the powder particles into the web material of the semifinished product until the powder particles are firmly bonded to one another via the sintering necks or sinter bridges forming themselves (in the completely filled regions).
  • Composition of the ready-made open-pore shaped body of Co was 100%.
  • the porosity is graded over the entire thickness of the molded body, starting from the first side to the opposite side arranged on this side and is about 54% on one side and about 93% on the other side foam.
  • the specific surface area of the finished open-pored shaped article is 69 m 2 / L
  • the semifinished product was an open-cell nickel expanded metal grid, with a cell size of about 0.7 mm ⁇ 2 mm, with the dimensions 75 mm ⁇ 75 mm, thickness about 1 mm (produced by ironing an original 0.25 mm thick slotted Ni sheet ), as powder Ni metal powder with a mean particle size ⁇ 10 ⁇ , with a mass of 8 g, a steramide wax with a middle
  • Powder and steramide wax were mixed for 10 minutes with a Turbula mixer.
  • the nickel expanded metal grid was sprayed from two opposite sides with the binder solution. Subsequently, the grid was fixed in a vibration device and sprinkled on both sides with the nickel powder. The vibration distributes the nickel powder evenly on the lattice network. The particles only adhere to the lattice web surface, so that the lattice webs are completely covered with powder particles and the open porosity of the expanded metal lattice is maintained. The process was repeated five times repeated.
  • Debinding and sintering were carried out under a hydrogen atmosphere in a thermal treatment.
  • the oven was heated at a heating rate of 5K / min.
  • the binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it was heated to a sintering temperature of 1280 ° C and held this temperature for 30 min.
  • the Ni diffuses from the powder particles into the grid web material until the powder particles are firmly connected to the grid webs via sintering necks or sinter bridges which form.
  • the resulting open-porous molded body was 100% nickel.
  • the surface of the webs is characterized by a high roughness, since the applied powder particles are connected only via sintered necks or sintered bridges with the carrier grid of the semifinished product and with each other, so that the original particle morphology is largely retained.
  • the applied highly porous nickel layer on the webs is between 1 ⁇ and 300 ⁇ thick. The porosity within the applied layer is 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a method for producing open-pore molded bodies which are made of a metal. The surface of an open-pore molded body which is made of a metal, said molded body being used as a semi-finished product, is coated with particles of the same metal with which the semi-finished product is also made or with particles of a chemical compound of the metal with which the semi-finished product is made, wherein the compound can be reduced or thermally or chemically decomposed in a thermal treatment, and particles of the respective metal are produced by means of the thermal treatment, said particles being obtained by means of a chemical reduction or a thermal or chemical decomposition. After the coating process, a thermal treatment is carried out, in which the particles are connected to the surface of the semi-finished product and/or adjacent particles such that the specific surface area of the obtained open-pore molded body is increased to at least 30 m²/l and/or at least by a factor of 5 in comparison to the starting material. During the thermal treatment of a coated open-pore molded body, a suitable atmosphere is maintained.

Description

Verfahren zur Herstellung eines offenporösen Formkörpers, der mit einem Metall gebildet ist und einen mit dem Verfahren hergestellten Formkörper  A process for producing an open-pore shaped body formed with a metal and a molded body produced by the process
Die Erfindung betrifft ein Verfahren zur Herstellung eines offenporösen Formkörpers, der mit einem Metall gebildet ist und einen mit dem Verfahren hergestellten Formkörper. The invention relates to a method for producing an open-pore shaped body which is formed with a metal and a molded body produced by the method.
Dabei ist es bekannt, metallische poröse Formkörper an ihrer Oberfläche zu beschichten, um insbesondere die Eigenschaften zu verbessern. Dazu werden üblicherweise pulverförmige Werkstoffe genutzt, die mittels eines Binders oder einer Suspension auf Oberflächen des Formkörpers aufgebracht und bei einer Wärmebehandlung organische Bestandteile entfernt und bei höheren Temperaturen dann an Oberflächen des Formkörpers eine Beschichtung oder ein Oberflächenbereich ausgebildet werden, die eine andere chemische Zusammensetzung als der Werkstoff, mit dem der Formkörper gebildet war, aufweisen. Mit diesen bekannten Möglichkeiten kann auch die spezifische Oberfläche eines Formkörpers vergrößert werden, was mit den bekannten Möglichkeiten aber nur begrenzt möglich war. It is known to coat metallic porous moldings on their surface, in particular to improve the properties. For this powdery materials are usually used, which are applied by means of a binder or suspension on surfaces of the molding and removed in a heat treatment organic components and then formed at higher temperatures on surfaces of the molding a coating or surface area, which has a different chemical composition than the Material with which the molding was formed have. With these known possibilities, the specific surface of a shaped body can be increased, but this was only possible to a limited extent with the known possibilities.
Für viele technische Anwendungen sind aber sehr große spezifische Oberflächen vorteilhaft, wie dies beispielsweise bei katalytisch unterstützten Prozessen, der Filtration oder auch bei Elektroden in elektrochemischen Anwendungen sehr wünschenswert ist. For many industrial applications, however, very large specific surfaces are advantageous, as is very desirable, for example, in catalytically assisted processes, filtration or even in electrodes in electrochemical applications.
Es ist daher Aufgabe der Erfindung offenporöse Formkörper aus einem metallischen Werkstoff zur Verfügung zu stellen, die eine vergrößerte spezifische Oberfläche aufweisen. It is therefore an object of the invention to provide open-porous moldings of a metallic material which have an increased specific surface area.
Erfindungsgemäß wird diese Aufgabe mit einem Verfahren, das die Merkmale des Anspruchs 1 aufweist, gelöst. Anspruch 10 betrifft einen mit dem Verfahren hergestellten Formkörper. Vorteilhafte Ausgestaltungen und Weiterbildungen können mit in untergeordneten Ansprüchen bezeichneten Merkmalen realisiert werden. According to the invention, this object is achieved by a method having the features of claim 1. Claim 10 relates to a molded article produced by the method. Advantageous embodiments and further developments can be realized with features described in the subordinate claims.
Bei der Erfindung werden offenporöse Körper aus einem metallischen Werkstoff als Halbzeug eingesetzt. Dabei kann es sich um ein Metallgitter, ein Metallnetz, ein Metallgewebe, einen Metallschaum, ein Metallgewöll oder ein mit metallischen Fasern gebildetes Halbzeug handeln. In the invention, open-porous body made of a metallic material are used as semifinished product. This may be a metal grid, a metal net, a metal mesh, a metal foam, a metal garbage or a semi-finished product formed with metallic fibers.
Es kann sich aber bei dem Halbzeug auch um einen offenporösen Formkörper handeln, bei dem ein Polymerwerkstoff galvanisch (elektrochemisch) mit einem Metall beschichtet worden ist. Ein so hergestelltes Halbzeug kann einer thermischen Behandlung unterzogen werden, bei der die organischen und flüchtigen Bestandteile dieses Polymers infolge Pyrolyse entfernt werden. Diese Entfernung der organischen Bestandteile eines Polymers kann aber auch später bei einer gleichzeitigen Entfernung anderer organischer oder flüchtiger Komponentenerfolgen, auf die nachfolgend noch näher eingegangen werden soll. However, the semi-finished product may also be an open-pore shaped body in which a polymer material has been galvanically (electrochemically) coated with a metal. A semifinished product produced in this way can be subjected to a thermal treatment in which the organic and volatile constituents of this polymer are removed as a result of pyrolysis. However, this removal of the organic constituents of a polymer can also take place later with a simultaneous removal of other organic or volatile components, which will be discussed in more detail below.
Vor oder nach dieser thermischen Behandlung erfolgt in einer erfindungsgemäßen Ausführungsform eine Beschichtung des offenporösen Körpers mit metallischen Partikeln aus dem gleichen Metallwerkstoff, aus dem das offenporöse Halbzeug hergestellt ist. Dabei sollen die Partikel auch in das Innere des Formkörpers, also in die Poren oder Freiräume des Halbzeugs eingebracht werden. Before or after this thermal treatment takes place In one embodiment of the invention, a coating of the open-pore body with metallic particles of the same metal material from which the open-porous semi-finished product is made. In this case, the particles should also be introduced into the interior of the shaped body, that is to say into the pores or free spaces of the semifinished product.
In einer weiteren erfindungsgemäßen Ausführungsform werden vor oder nach dieser thermischen Behandlung Partikel einer chemischen Verbindung des chemischen Elements, mit dem der offenporöse Formkörper als Halbzeug gebildet ist, beschichtet. Die genannten Partikel bestehen aus einer chemischen Verbindung, die bei einer thermischen Behandlung in das jeweilige chemische Element, mit dem das Halbzeug gebildet ist, durch chemische Reduktion, thermische oder chemische Zersetzung umgewandelt werden kann. In a further embodiment according to the invention, before or after this thermal treatment, particles of a chemical compound of the chemical element with which the open-porous shaped body is formed as semifinished product are coated. The particles mentioned consist of a chemical compound which can be converted by chemical reduction, thermal or chemical decomposition in a thermal treatment in the respective chemical element with which the semifinished product is formed.
Die metallischen Partikel aus dem gleichen Metallwerkstoff, mit dem das offenporöse Halbzeug hergestellt worden ist, oder die Partikel einer chemischen Verbindung des chemischen Elements, die in das chemische Element umgewandelt werden kann, mit dem der offenporöse Formkörper als Halbzeug gebildet ist, können für den Vorgang der Beschichtung als Pulver, als Pulvergemisch, als Suspension oder als Dispersion eingesetzt werden. Die Beschichtung der Oberfläche des Halbzeugs mit einem Pulver, einem Pulvergemisch und/oder einer Suspension/Dispersion kann durch Tauchen, Sprühen, druckunterstützt, elektrostatisch und/oder magnetisch erfolgen. The metallic particles of the same metal material with which the open porous semi-finished product has been produced or the particles of a chemical compound of the chemical element which can be converted into the chemical element with which the open-porous shaped body is formed as a semi-finished product can be used for the process the coating can be used as a powder, as a powder mixture, as a suspension or as a dispersion. The coating of the surface of the semifinished product with a powder, a powder mixture and / or a suspension / dispersion can be effected by dipping, spraying, pressure-assisted, electrostatic and / or magnetic.
In weiteren erfindungsgemäßen Alternativen können die für die Beschichtung des offenporösen Halbzeugs verwendeten Pulver, Pulvergemische, Suspensionen oder Dispersionen neben metallischen Partikeln oder Partikeln einer chemischen Verbindung eines Metalls einen anorganischen und/oder organischen Binder enthalten, der dem Pulver, dem Pulvergemisch, der Suspension oder Dispersion feinverteilt in Form eines festen Pulvers beigemengt ist, oder in einer flüssigen Phase einer Lösung, einer Suspension/Dispersion von metallischen Partikeln oder Partikeln einer chemischen Verbindung eines Metalls, gelöst vorliegt. In further alternatives according to the invention, the powders, powder mixtures, suspensions or dispersions used for the coating of the open-porous semifinished product may contain, in addition to metallic particles or particles of a chemical compound of a metal, an inorganic and / or organic binder which is the powder, the powder mixture, the suspension or dispersion is finely divided in the form of a solid powder, or dissolved in a liquid phase of a solution, a suspension / dispersion of metallic particles or particles of a chemical compound of a metal.
Die Beschichtung der Oberfläche des Halbzeugs mit einem Binder in Form einer Lösung oder einer Suspension/Dispersion kann durch Tauchen oder Sprühen erfolgen. Das mit Binder benetzte offenporöse Halbzeug wird nachfolgend mit einem Pulver oder einem Pulvergemisch von metallischen Partikeln beschichtet. The coating of the surface of the semifinished product with a binder in the form of a solution or a suspension / dispersion can be carried out by dipping or Spraying done. The binder-impregnated open-porous semi-finished product is subsequently coated with a powder or a powder mixture of metallic particles.
Durch Einwirkung mechanischer Energie, insbesondere einer Vibration kann die Verteilung von Pulverpartikeln auf mit dem flüssigen Binder benetzen Oberflächen sowie deren Haftung an der Oberfläche verbessert werden. By the action of mechanical energy, in particular a vibration, the distribution of powder particles on surfaces wetted with the liquid binder and their adhesion to the surface can be improved.
Der Auftrag von Partikeln als Pulver, Pulvergemisch und/oder Suspension/Dispersion kann mehrfach, bevorzugt mindestens dreifach, besonders bevorzugt fünffach wiederholt werden. Dies betrifft auch die jeweils durchzuführende Vibration und ggf. die Applikation eines Binders. The application of particles as powder, powder mixture and / or suspension / dispersion can be repeated several times, preferably at least three times, more preferably five times. This also applies to the particular vibration to be performed and possibly the application of a binder.
Die Beschichtung der Oberfläche des Halbzeugs kann weiterhin vor der thermischen Behandlung, bei der die organischen Bestandteile des polymeren Werkstoffs, mit dem das Halbzeug hergestellt worden ist, entfernt werden, durchgeführt werden. Im Anschluss an den Auftrag des partikelhaltigen Werkstoffs wird eine thermische Behandlung durchgeführt, bei der organische und flüchtige Bestandteile des polymeren Werkstoffs, und zugleich eines ggf. verwendeten Binders entfernt werden. The coating of the surface of the semifinished product can furthermore be carried out before the thermal treatment in which the organic constituents of the polymeric material with which the semifinished product has been produced are removed. Subsequent to the application of the particle-containing material, a thermal treatment is carried out in which organic and volatile constituents of the polymeric material, and at the same time any binder used, are removed.
Nach thermischer Behandlung und Partikelauftrag wird eine Sinterung durchgeführt, bei der Sinterhälse bzw. Sinterbrücken zwischen den Metallpartikeln oder von nach thermischer oder chemischer Zersetzung, z.B. einer chemischen Reduktion, erhaltenen metallischen Partikeln und der metallischen Oberfläche des offenporösen metallischen Formkörpers ausgebildet werden. After thermal treatment and particle deposition, sintering is carried out in which sintered bridges between the metal particles or after thermal or chemical decomposition, e.g. a chemical reduction, obtained metallic particles and the metallic surface of the open-porous metallic shaped body are formed.
Dabei soll die spezifische Oberfläche des so beschichteten und gesinterten offenporösen Formkörpers auf mindestens 30 m2/l jedoch mindestens um das 5-fache im Vergleich zum Ausgangswerkstoff des unbeschichteten metallischen Formkörpers als Halbzeug erhöht werden. In this case, the specific surface of the thus coated and sintered open-pore shaped body is to be increased to at least 30 m 2 / l, however, at least 5 times compared to the starting material of the uncoated metallic molded body as a semi-finished product.
Dabei sollte das poröse Grundgerüst mit einer Porengröße zwischen 450 pm und 6000 pm und einer spezifischen Oberfläche von 1 m2/l - 30 m2/l mit Partikeln (Partikelgröße d50 zwischen 0,1 μιη bis 250 μητι) je nach Anwendungsfall entweder ausgehend von einer Seite (Porositätsgradient) oder vollständig gefüllt oder die Stege des porösen metallischen Formkörpers oberflächlich beschichtet worden sein. In this case, the porous skeleton with a pore size between 450 pm and 6000 pm and a specific surface area of 1 m 2 / l - 30 m 2 / l with particles (particle size d 50 between 0.1 μιη to 250 μητι) depending on the application either starting from one side (porosity gradient) or completely filled or the webs of the porous metallic shaped body have been superficially coated.
Die Beschichtung mit Partikeln kann an unterschiedlichen Seiten der Oberfläche, insbesondere an sich gegenüberliegend angeordneten Oberflächen des Halbzeugs, mit unterschiedlicher Menge durchgeführt werden, um dort jeweils eine unterschiedliche Porosität, Porengröße und/oder spezifische Oberfläche zu erhalten. Dies kann beispielsweise durch eine unterschiedliche Anzahl des Auftrags von Partikeln als Pulver, Pulvergemisch oder in Suspension/Dispersion, mit oder ohne Bindereinsatz, an den an unterschiedlichen Seiten angeordneten Oberflächen erreicht werden. So kann auch eine gradierte Ausbildung eines erfindungsgemäß hergestellten Formkörpers erreicht werden. The coating with particles can be carried out on different sides of the surface, in particular on surfaces of the semifinished product arranged opposite one another, with different amounts in order in each case to obtain a different porosity, pore size and / or specific surface area. This can be achieved, for example, by a different number of application of particles as powder, powder mixture or in suspension / dispersion, with or without binder use, on the surfaces arranged on different sides. Thus, a graded formation of a shaped article produced according to the invention can also be achieved.
Die Porengröße innerhalb der aufgebrachten Partikelschicht des beschichteten und gesinterten offenporösen Formkörpers sollte dabei maximal dem 10.000-fachen der eingesetzten Partikelgröße entsprechen. Dies kann durch die maximale Höhe der Sintertemperatur und deren Haltezeit zusätzlich be- einflusst werden, da mit steigender Temperatur und Haltezeit der diffusionsbedingte Stofftransport und damit die Versinterung, welche mit einer Verringerung des Porenvolumens einhergeht, gefördert wird. The pore size within the applied particle layer of the coated and sintered open-pore shaped body should correspond to a maximum of 10,000 times the particle size used. This can be additionally influenced by the maximum height of the sintering temperature and its holding time, since with increasing temperature and holding time the diffusion-dependent mass transport and thus the sintering, which is accompanied by a reduction of the pore volume, is promoted.
Der Werkstoff, mit dem der erfindungsgemäß hergestellte Formkörper gebildet ist, sollte maximal 3 Masse-%, bevorzugt maximal 1 Masse-% 02 enthalten. Dazu wirkt sich bevorzugt eine inerte oder reduzierende Atmosphäre während der Durchführung der thermischen Behandlung für die Entfernung organischer Komponenten, der ggf. durchzuführenden chemischen Reduktion und/oder der Sinterung aus. The material with which the shaped body produced according to the invention is formed should contain not more than 3% by weight, preferably not more than 1% by weight of O 2 . For this purpose, preferably an inert or reducing atmosphere during the execution of the thermal treatment for the removal of organic components, the possibly carried out chemical reduction and / or sintering from affects.
Für eine thermische oder chemische Zersetzung sollte eine geeignete Atmosphäre bei der dazu genutzten thermischen Behandlung gewählt werden. Dies kann bei einer thermischen Zersetzung eine inerte Atmosphäre, beispielsweise eine Argonatmosphäre sein. Bei einer Reduktion kann man beispielsweise eine Atmosphäre nutzen, die mit Wasserstoff gebildet ist. For thermal or chemical decomposition, a suitable atmosphere should be chosen for the thermal treatment used. This can be an inert atmosphere, for example an argon atmosphere, during thermal decomposition. In a reduction, for example, one can use an atmosphere that is formed with hydrogen.
Für eine chemische Zersetzung mittels Oxidation sind besonders Atmosphären geeignet, die Sauerstoff, Fluor, Chlor, beliebige Mischungen dieser Gase als auch beliebige Mischungen mit inert Gasen, zum Beispiel Stickstoff, Argon oder Krypton enthalten. For a chemical decomposition by oxidation are particularly suitable atmospheres, the oxygen, fluorine, chlorine, any mixtures of these gases as also contain any mixtures with inert gases, for example nitrogen, argon or krypton.
Bei einer chemischen Zersetzung können Metallkationen für die Bildung elementarer Metalle reduziert werden. Der Anionenbestandteil kann aber oxi- diert werden. Eine chemische Zersetzung einer Verbindung edlerer Metalle in die elementaren Metalle (Au,Pt,Pd) ist auch unter Luft, also eher oxidierender Atmosphäre, denkbar. Auch Disproportionierungen nach dem Vorbild der Gleichung: 2 Gel <-> Ge (s) + Gel (g) sind für Aluminium, Titan, Zirkonium und Chrom möglich. Es können auch kristalline, metallorganische Komplexe oder deren Salze eingesetzt werden, bei denen das Metallzentrum bereits in Oxida- tionsstufe 0 vorliegt. In a chemical decomposition, metal cations for the formation of elemental metals can be reduced. The anion component can, however, be oxidized. A chemical decomposition of a compound of noble metals in the elemental metals (Au, Pt, Pd) is also conceivable under air, so rather oxidizing atmosphere. Also, disproportionations modeled on the equation: 2 gel <-> Ge (s) + gel (g) are possible for aluminum, titanium, zirconium and chromium. It is also possible to use crystalline, organometallic complexes or salts thereof in which the metal center is already present in oxidation state 0.
Anwendung kann ein solcher erfindungsgemäß hergestellter offenporöser Formkörper im Bereich der (i) Filtration, als (ii) Katalysator (z.B. bei Such an open-porous shaped body produced according to the invention can be used in the field of (i) filtration, as (ii) catalyst (for example in US Pat
Ethylenoxidsynthese - mit Ag-Partikeln beschichteter Ag-Schaumkatalysator), als (iii) Elektrodenmaterial oder als (iv) Träger einer katalytischen Aktivsubstanz finden. Ethylene oxide synthesis - Ag-particle coated Ag foam catalyst), as (iii) electrode material, or as (iv) carrier of a catalytic active substance.
Die Erhöhung der spezifischen Oberfläche führt bei Anwendung (i) zu einer besseren Filtrationsleistung, da Adsorptionsneigung und Aufnahmekapazität deutlich gesteigert werden. The increase in the specific surface area leads to better filtration performance in application (i), since the adsorption tendency and absorption capacity are significantly increased.
Bei Anwendung (ii) führt die Erhöhung der spezifischen Oberfläche zu einer überproportionalen Steigerung der katalytischen Aktivität, da nicht nur die Anzahl an aktiven Zentren steigt, sondern die Oberfläche eine deutlich facettiertere Struktur aufweist. Die dadurch erhöhte Oberflächenenergie führt zusätzlich zu einer signifikanten Steigerung der katalytischen Aktivität im Vergleich zu der unfacettierten Oberfläche des offenporösen Ausgangsformkörpers. In application (ii), increasing the specific surface area results in a disproportionate increase in catalytic activity, since not only does the number of active sites increase, but the surface has a much more faceted structure. The resulting increased surface energy additionally leads to a significant increase in the catalytic activity compared to the unfaceted surface of the open-pore starting molded article.
Im Anwendungsfall (iii) führt die Erhöhung der spezifischen Oberfläche ebenfalls zu einem Anstieg an aktiven Zentren, was in Kombination mit der facettierten Struktur der Oberfläche zu einer signifikanten Reduzierung der elektrischen Überspannung im Vergleich zu handelsüblichen Elektroden (z.B. Nickel oder Kohlenstoff) führt. Als spezieller Anwendungsfall sei weiterhin die Elekt- rolyse erwähnt - z.B. mit Ni-Partikeln oder Mo-Partikeln beschichteter Ni- oder Mo-Schaum. Insbesondere bei dieser Anwendung kann vorteilhaft auch ein einseitig mit metallischen Partikeln beschichteter, gesinterter metallischer offenporöser Formkörper eingesetzt werden, da hier die Gradierung der Porengröße eine gute Abführung der Gasblasen gewährleistet. In use case (iii), increasing the specific surface area also leads to an increase in active sites, which in combination with the faceted structure of the surface leads to a significant reduction of the electrical overvoltage compared to commercially available electrodes (eg nickel or carbon). As a special case of application, the electric mentioned - eg Ni or Mo foam coated with Ni particles or Mo particles. In particular, in this application can advantageously be used on one side coated with metallic particles, sintered metallic open-porous moldings, since the grading of the pore size ensures a good discharge of the gas bubbles.
Im Falle von Anwendung (iv) führt die Vergrößerung der spezifischen Oberfläche zu einer verbesserten Anhaftung der Aktivkomponente, z.B eines katalyti- schen Washcoats, an die Trägeroberfläche, welche die mechanische, thermische und chemische Beständigkeit eines Katalysatormaterials signifikant erhöht. In the case of application (iv), increasing the specific surface area leads to an improved adhesion of the active component, e.g. a catalytic washcoat, to the support surface, which significantly increases the mechanical, thermal and chemical resistance of a catalyst material.
Geeignete Metalle für erfindungsgemäß hergestellte Formkörper sind: Ni, Fe, Cr, AI, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce oder Mg. Es können demzufolge beim erfindungsgemäßen Verfahren für die Beschichtung eines Halbzeugs Partikel dieser Elemente, entsprechend dem jeweiligen chemischen Element, mit dem das Halbzeug gebildet ist, eingesetzt werden. Suitable metals for moldings produced according to the invention are: Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg. Consequently, in the method according to the invention for the coating of a semifinished product, particles of these elements, corresponding to the respective chemical element with which the semifinished product is formed, can be used.
Als chemische Verbindungen der Metalle Ni, Fe, Cr, AI, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce, Mg, V, die durch thermische oder chemische Zersetzung bei einer thermischen Behandlung in Partikel des jeweiligen Metalls umgewandelt werden können, können insbesondere deren Oxide,, Nitride, Hydride, Karbide, Sulfide, Sulfate,Phosphate, Fluoride, Chloride, Bromide, lodide, Azide, Nitrate, Amine, Amide, metallorganische Komplexe, Salze metallorganischer Komplexe oder zersetzbare Salze für den mit Partikel gebildeten Werkstoff, mit dem die Oberfläche des als Halbzeug vorliegenden offenporösen Formkörpers bei der zweiten erfindungsgemäßen Alternative beschichtet werden sollen, eingesetzt werden. Besonders geeignet als chemische Verbindungen sind sind chemische Verbindungen von: Ni, Fe, Ti, Mo, Co, Mn, W, Cu, Ag, Au, Pd oder Pt. As chemical compounds of the metals Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi , Ce, Mg, V, which can be converted into particles of the respective metal by thermal or chemical decomposition in a thermal treatment, in particular their oxides, nitrides, hydrides, carbides, sulfides, sulfates, phosphates, fluorides, chlorides, bromides, iodides, azides, nitrates, amines, amides, organometallic complexes, salts of organometallic complexes or decomposable salts for the particle-formed material with which the surface of the present as a semi-finished open-porous molded body to be coated in the second alternative according to the invention are used. Particularly suitable as chemical compounds are chemical compounds of: Ni, Fe, Ti, Mo, Co, Mn, W, Cu, Ag, Au, Pd or Pt.
Bei der thermischen oder chemischen Zersetzung einer chemischen Verbindung in das jeweilige Metall wird bis zur erfolgten thermischen oder chemischen Zersetzung der chemischen Verbindung in das Metall eine für die Zersetzung geeignete Atmosphäre, die inert, oxidierend oder reduzierend sein kann, eingehalten. Für die chemische Reduktion einer chemischen Verbindung in das jeweilige Metall kann bei der thermischen Behandlung, die zur chemischen Reduktion führen soll, die thermische Behandlung bevorzugt zumindest zeitweise, bis die chemische Reduktion durchgeführt worden ist, in einer reduzierenden Atmosphäre, insbesondere einer Wasserstoffatmosphäre durchgeführt werden. In the thermal or chemical decomposition of a chemical compound into the respective metal, until the thermal or chemical decomposition of the chemical compound into the metal has occurred, an atmosphere suitable for the decomposition, which is inert, oxidizing or reducing, is present can, respected. For the chemical reduction of a chemical compound into the respective metal, the thermal treatment, which is to lead to the chemical reduction, may preferably be carried out at least temporarily until the chemical reduction has been carried out in a reducing atmosphere, in particular a hydrogen atmosphere.
Porosität, Porengröße und spezifische Oberfläche können durch die Morphologie der für die Beschichtung verwendeten Partikel wesentlich beeinflusst werden. Für die Erzielung einer hohen spezifischen Oberfläche und einer feinporösen Struktur sind Partikel mit geringer Größe und dendritischer Form, z.B. Elektrolytpulver, vorteilhaft. Benachbarte Partikel bilden in Folge ihrer unregelmäßigen Geometrie, die keine lückenfreie Anordnung erlaubt, zwischen Kontaktstellen und Partikelkörper Freiräume, die teilweise zu Kanälen verbunden sind. Des Weiteren entsteht bei der Verwendung von Partikeln einer chemischen Verbindungbei der thermischen Zersetzung oder chemischen Zersetzung ein zusätzlicher Mikroporenraum, den die flüchtige Komponente hin- terlässt. Der Anteil des Mikroporenraums am Gesamtporenraum ist umso höher, je größer der Anteil der flüchtigen Komponente der chemischen Verbindung ist. Für die Beschichtung mit - Metalloxidpartikeln ist daher die Verwendung eines Oxides mit hoher Oxidationsstufe, und folglich einem hohen Sauerstoffanteil, von Vorteil. Da die Sinteraktivität von Strukturen mit Erhöhung der spezifischen Oberfläche zunimmt, wird die stoffabhängige Sintertemperatur nur so hoch gewählt, dass die Partikel untereinander und an das Halbzeug mechanisch stabil ansintern, aber die feinen Poren nicht wesentlich verdichtet werden. Porosity, pore size and specific surface area can be significantly affected by the morphology of the particles used for the coating. To obtain a high specific surface area and a fine porous structure, particles of small size and dendritic form, e.g. Electrolyte powder, advantageous. Due to their irregular geometry, which allows no gap-free arrangement, adjacent particles form free spaces between contact points and particle bodies, which are partially connected to channels. Furthermore, the use of particles of a chemical compound in thermal decomposition or chemical decomposition produces an additional microporous space left by the volatile component. The proportion of the microporous space in the total pore space is higher, the greater the proportion of the volatile component of the chemical compound. For coating with metal oxide particles, therefore, the use of a high oxidation state oxide, and hence a high oxygen content, is advantageous. Since the sintering activity of structures increases with an increase in the specific surface area, the substance-dependent sintering temperature is selected to be so high that the particles sinter themselves mechanically to one another and to the semifinished product, but the fine pores are not substantially compacted.
Nachfolgend soll die Erfindung anhand von Beispielen näher erläutert werden. Ausführungsbeispiel 1 The invention will be explained in more detail by way of examples. Embodiment 1
Als Halbzeug wurde ein offenporöser Formkörper aus Silber, mittlere Porengröße 450 pm, mit einer Porosität von ca. 95 %, den Abmaßen 70 mm x 63 mm, Dicke 1,6 mm (hergestellt durch elektrolytisches Abscheiden von Ag auf Polyurethanschaum) wird einer thermischen Behandlung bei einer Temperatur von mindestens 400 °C unterzogen, um die organischen Komponenten, insbesondere die des Polyurethans zu entfernen, durchgeführt. The semifinished product was an open-porous shaped body of silver, average pore size 450 μm, with a porosity of about 95%, the dimensions 70 mm × 63 mm, thickness 1.6 mm (produced by electrolytic deposition of Ag on polyurethane foam) is subjected to a thermal treatment subjected to a temperature of at least 400 ° C to the organic components, in particular to remove the polyurethane, carried out.
Zur Vergrößerung der spezifischen Oberfläche wird ein metallisches Pulver: - Ag-Metallpulver mit einer Partikelgröße d5o im Bereich 3 μιτι bis 9 μιη, mit einer Gesamtmasse von 2 g eingesetzt. To increase the specific surface area, a metallic powder is used: - Ag metal powder with a particle size d 5 o in the range of 3 μm to 9 μm, with a total mass of 2 g.
Für die Beschichtung der Oberfläche des metallischen offenporösen Formkörpers als Halbzeug werden 0,6 g Steramidwachs mit einer Partikelgröße < 80 μηι und eine 1 %-ige wässrige Lösung von Polyvinylpyrrolidon mit einem Vo- lumen von 6 ml als Binder eingesetzt. Die Oberfläche des Halbzeugs wird dabei mit der Binderlösung auch im Inneren von Poren besprüht, bevor das Silberpulver auf die mit dem Binder beschichtete Oberfläche aufgebracht wird. For coating the surface of the metallic open-pore shaped body as semifinished product, 0.6 g of steramide wax having a particle size <80 μm and a 1% strength aqueous solution of polyvinylpyrrolidone having a volume of 6 ml are used as binder. The surface of the semi-finished product is sprayed with the binder solution in the interior of pores before the silver powder is applied to the surface coated with the binder.
Silberpulver und das Steramidwachs wurden 10 min mit einem Turbula- Mischer gemischt. Silver powder and the steramide wax were mixed for 10 minutes with a Turbula mixer.
Anschließend an diese Beschichtung mit Binder wurde der offenporöse beschichtete Formkörper in einer Vibrationseinrichtung fixiert und beidseitig mit dem Silberpulver bestreut. Durch die Vibration wird das Pulver gleichmäßig in dem offenporösen Netzwerk verteilt. Dabei bleiben die Partikel nur an derSubsequent to this coating with binder, the open-porous coated molded body was fixed in a vibration device and sprinkled with silver powder on both sides. The vibration distributes the powder evenly throughout the open-porous network. The particles remain only at the
Stegoberfläche haften, so dass die Stege vollständig mit Pulverpartikeln bedeckt sind und die Offenporigkeit des Schaums erhalten bleibt. Der Vorgang wird viermal wiederholt. Im Anschluss daran wird eine weitere thermische Behandlung zur Stick web surface so that the webs are completely covered with powder particles and the open porosity of the foam is maintained. The process is repeated four times. Following this, another thermal treatment for
Entbinderung und Sinterung in einer Wasserstoffatmosphäre durchgeführt. Dazu wird der Ofen mit einer Aufheizrate von 5K/min aufgeheizt. Die  Debinding and sintering carried out in a hydrogen atmosphere. For this purpose, the oven is heated at a heating rate of 5K / min. The
Entbinderung beginnt bei ca. 300 °C und ist bei 600° C und einer Haltezeit von ca. 30 min abgeschlossen. Der Sinterprozess findet im Temperaturbereich von 550 °C bis 850 °C bei einer Haltezeit von 1 min bis 60 min statt. Debinding begins at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. The sintering process takes place in the temperature range from 550 ° C to 850 ° C with a holding time of 1 min to 60 min.
Während der weiteren thermischen Behandlung diffundiert das Ag aus den Pulverpartikeln in das Stegmaterial ein, bis die Pulverpartikel über sich ausbildende Sinterhälse oder Sinterbrücken fest mit den Stegen der Oberfläche des Halbzeugs verbunden sind. Nach der weiteren thermischen Behandlung Bestand der offenporöse Formkörper zu 100 % aus Silber. Die Porosität betrug ca. 94%. During the further thermal treatment, the Ag from the powder particles diffuses into the web material until the powder particles are firmly connected to the webs of the surface of the semifinished product via sintering necks or sinter bridges which form. After the further thermal treatment, the open-porous shaped body consisted of 100% silver. The porosity was about 94%.
Die Oberfläche der Stege ist durch eine hohe Rauheit geprägt. Ursache dafür ist, dass die aufgebrachten Pulverpartikel nur über Sinterhälse oder Sinterbrücken mit dem metallischen Trägerschaum des Halbzeugs verbunden sind, so dass die ursprüngliche Partikelmorphologie erhalten bleibt. Die spezifische innere Oberfläche (gemessen mit der BET-Methode) des fertig hergestellten offenporösen Formkörpers konnte durch den durchgeführten Prozess von vorher (unbeschichteter Zustand) 10,8 m2/l auf nachher (beschichteter Zustand) 99,3 m2/l erhöht werden. The surface of the webs is characterized by a high roughness. The reason for this is that the applied powder particles are connected only via sintered necks or sintered bridges with the metallic carrier foam of the semifinished product, so that the original particle morphology is maintained. The specific inner surface (measured by the BET method) of the finished open-pore molded article could be increased by the process from previously (uncoated state) from 10.8 m 2 / l to afterwards (coated state) 99.3 m 2 / l ,
Ausführungsbeispiel 2 Embodiment 2
Es wurde ein durch galvanische Beschichtung eines porösen Schaums aus Polyurethan erhaltener offenporöser Formkörper aus Silber als Halbzeug mit einer mittleren Porengröße von 450 μιη, einer Porosität von 95 %, den Abmaßen 70 mm x 63 mm, Dicke 1,6 mm einer thermischen Behandlung zum Entfernen der organischen Komponenten, wie beim Ausführungsbeispiell unterzogen. There was obtained by electroplating a porous foam made of polyurethane open-porous molded body made of silver as a semifinished product with a mean pore size of 450 μιη, a porosity of 95%, the dimensions 70 mm x 63 mm, thickness 1.6 mm of a thermal treatment for removal of the organic components as in the embodiment.
Anschließend erfolgte eine Beschichtung von Oberflächen des von organischen Komponenten befreiten Halbzeugs mit einer Suspension folgender Zusammensetzung: Subsequently, a coating of surfaces of the semi-finished product freed of organic components with a suspension of the following composition:
48% Ag20-Metalloxidpulver <5 μιτι, 48% Ag 2 0 metal oxide powder <5 μιτι,
1,5% Binder Polyvinylpyrrolidon (PVP)  1.5% binder polyvinylpyrrolidone (PVP)
49,5 % Lösemittel Wasser  49.5% solvent water
1 % Dispergiermittel  1% dispersing agent
durch Besprühen. by spraying.
Dazu wurde zunächst der pulverförmige Binder in Wasser gelöst und dann alle anderen Komponenten hinzugegeben und in einem Speedmixer2 x 30 s bei 2000 U/min zu einer Suspension gemischt. For this purpose, the powdery binder was first dissolved in water and then added all other components and mixed in a speed mixer 2 x 30 s at 2000 rev / min to a suspension.
Das Halbzeug wurde über ein Nasspulversprühverfahren mit der vorbereiteten Pulversuspension beidseitig mehrfach besprüht. Dabei wird die Suspensi- on in einer Sprühvorrichtung zerstäubt und auf Oberflächen des Halbzeugs beidseitig aufgetragen. Durch den Austrittsdruck aus der Sprühdüse wird die Suspension gleichmäßig in dem porösen Netzwerk des Halbzeugs verteilt. Dabei bleibt die Suspension nur an der Stegoberfläche haften, so dass die Stege vollständig mit der Suspension bedeckt sind und die Offenporigkeit des Halbzeugs weitgehend erhalten bleibt. Das so beschichtete Halbzeug wurde anschließend bei Raumtemperatur unter Luft getrocknet. The semi-finished product was sprayed on both sides several times using a wet powder spray method with the prepared powder suspension. In doing so, the suspension sputtered on in a spraying device and applied on both surfaces on surfaces of the semifinished product. Due to the discharge pressure from the spray nozzle, the suspension is distributed evenly in the porous network of the semifinished product. In this case, the suspension only adheres to the web surface, so that the webs are completely covered with the suspension and the open porosity of the semifinished product is largely retained. The thus-coated semi-finished product was then dried at room temperature in air.
Zur Entbinderung, Reduktion und Sinterung wurden unter Wasserstoffatmosphäre sowie anschließend in einem Ofen eine thermische Behandlung durchgeführt. Dazu wird der Ofen mit einer Aufheizrate von 5K/min aufgeheizt. Die Reduktion des Silberoxids beginnt schon bei unter 100 °C und ist bei 200° C und einer Haltezeit von ca. 30 min unter Wasserstoff abgeschlossen. Der noch verbleibende Entbinder- und Sinterprozess kann dann in einer Sauerstoff enthaltenden Atmosphäre, z.B. Luft im Temperaturbereich von 200 °C bis 800 °C bei einer Haltezeit von 1 min bis 180 min durchgeführt werden. For debinding, reduction and sintering, a thermal treatment was carried out under a hydrogen atmosphere and then in an oven. For this purpose, the oven is heated at a heating rate of 5K / min. The reduction of the silver oxide begins even at below 100 ° C and is completed at 200 ° C and a holding time of about 30 minutes under hydrogen. The remaining debinding and sintering process may then be carried out in an atmosphere containing oxygen, e.g. Air in the temperature range of 200 ° C to 800 ° C at a holding time of 1 min to 180 min to be performed.
Während der weiteren thermischen Behandlung wurde zunächst das Silberoxid zu metallischem Silber reduziert, das nanokristallin vorliegt. Durch die restliche Entbinderung und Ansinterung der dann metallischen Silberpartikel an die Silberschaumstege wachsen einerseits die Partikel zu größeren und grobkristallineren Konglomeraten, andererseits diffundiert das Ag aus den Pulverpartikeln auch in das Stegmaterial ein, bis die Pulverpartikel über sich ausbildende Sinterhälse bzw. Sinterbrücken fest mit den Stegen der Oberfläche des offenporösen Formkörpers verbunden sind. During the further thermal treatment, the silver oxide was first reduced to metallic silver, which is nanocrystalline. By the remaining debindering and sintering of the then metallic silver particles to the silver foam webs grow on the one hand, the particles to larger and coarser crystalline conglomerates, on the other hand, the Ag diffused from the powder particles in the web material until the powder particles on themselves forming Sinterhälse or Sinterbrücken fixed to the webs the surface of the open-pore shaped body are connected.
Nach der weiteren thermischen Behandlung liegt ein homogener offenporöser Formkörper vor, der mit 100% Silber gebildet ist.  After the further thermal treatment, there is a homogeneous open-pore shaped body which is formed with 100% silver.
Die Porosität beträgt ca. 93%. The porosity is about 93%.
Die Oberfläche der Stege ist durch eine hohe Rauheit geprägt. Ursache dafür ist, dass die aufgebrachten Pulverpartikel nur über Sinterhälse/Sinterbrücken mit den Oberflächen des Halbzeugs verbunden sind, so dass die ursprüngliche Partikelmorphologie erhalten bleibt. Die spezifische innere Oberfläche (gemessen mit der BET-Methode) des fertig hergestellten offenporösen Formkörpers konnte durch den durchgeführten Prozess von vorher  The surface of the webs is characterized by a high roughness. The reason for this is that the applied powder particles are only connected to the surfaces of the semifinished product via sintered necks / sintered bridges, so that the original particle morphology is retained. The specific inner surface area (measured by the BET method) of the finished open-porous molded article could be determined by the previously performed process
(unbeschichteter Zustand) 10,8 m2/l auf nachher (beschichteter Zustand) 82,5 m2/l erhöht werden. Ausführungsbeispiel 3 (uncoated condition) 10.8 m 2 / l to be subsequently increased (coated condition) to 82.5 m 2 / l. Embodiment 3
Als Halbzeug wurde ein offenporöser Formkörper aus Kupfer, mit einer mittleren Porengröße von 800 μιη, mit einer Porosität von ca. 95 %, den Abmaßen 200 mm x SO mm, Dicke 1,6 mm (hergestellt durch elektrolytisches Abscheiden von Cu auf PU-Schaum eingesetzt. The semifinished product was an open-pore shaped body made of copper, with an average pore size of 800 μm, with a porosity of about 95%, the dimensions 200 mm × SO mm, thickness 1.6 mm (produced by electrolytic deposition of Cu on PU foam used.
Als Pulver für die Beschichtung von Oberflächen des Halbzeugs wurde Elektrolytkupferpulver Typ FFL, mit dendritischer Form, einer mitteleren Partikelgröße < 63 μηι, einer Masse 20 g eingesetzt. As a powder for the coating of surfaces of the semifinished product electrolytic copper powder type FFL was used, with dendritic form, a mean particle size <63 μηι, a mass of 20 g.
Als Binder wurde eine 1 %-ige wässrige Lösung aus Polyvinylpyrrolidon mit einem Volumen von 20 ml eingesetzt. The binder used was a 1% strength aqueous solution of polyvinylpyrrolidone with a volume of 20 ml.
Das aus Kupfer gebildete Halbzeug wurde beidseitig mit der Binderlösung besprüht. Anschließend wurde das mit Binder beschichtete Halbzeug in einer Vibrationseinrichtung fixiert und beidseitig mit dem Kupferpulver bestreut. Durch die Vibration wird das Pulver in dem porösen Netzwerk des Halbzeugs verteilt. Die Binder- und Pulverbeschichtung wurde dreimal wiederholt, so dass der Porenraum vollständig gefüllt worden ist. The semi-finished product formed from copper was sprayed on both sides with the binder solution. Subsequently, the binder-coated semi-finished product was fixed in a vibration device and sprinkled on both sides with the copper powder. The vibration distributes the powder in the porous network of the semifinished product. The binder and powder coating was repeated three times so that the pore space was completely filled.
Entbinderung und Sinterung wurde bei einer thermischen Behandlung unter Wasserstoffatmosphäre durchgeführt. Dazu wird der Ofen mit einer Aufheizrate von 5K/min aufgeheizt. Die Entbinderung beginnt bei ca. 300 °C und ist bei 600 °C und einer Haltezeit von ca. 30 min abgeschlossen. Danach wird bis zu einer Sintertemperatur von 950 °C aufgeheizt und diese Temperatur wurde über 30 min gehalten. Debinding and sintering was carried out under a thermal treatment under a hydrogen atmosphere. For this purpose, the oven is heated at a heating rate of 5K / min. The binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it is heated to a sintering temperature of 950 ° C and this temperature was maintained for 30 min.
Während der thermischen Behandlung sintern die Pulverpartikel aus Kupfer untereinander und an das Stegmaterial an, bis die Pulverpartikel über sich ausbildende Sinterhälse oder Sinterbrücken fest mit der Oberfläche des Halbzeugs verbunden sind, wobei eine hohe Porosität erhalten bleibt und eine Erhöhung der spezifischen Oberfläche erreicht wird. Die Porosität des so behandelten offenporösen Formkörpers beträgt 54 % und die spezifische Oberfläche 67 m2/l. Ausführungsbeispiel 4 During the thermal treatment, the copper powder particles sinter to one another and to the web material until the powder particles are firmly bonded to the surface of the semifinished product via sintering necks or sinter bridges, whereby a high porosity is maintained and an increase in the specific surface area is achieved. The porosity of the thus treated open-porous molded article is 54% and the specific surface 67 m 2 / l. Embodiment 4
Als Halbzeug wurde ein offenporöser Formkörper aus Kobalt, mit einer mittleren Porengröße von 580 μιη, mit einer Porosität von ca. 95 %, mit den Abmaßen 70 mm x 65 mm, Dicke 1,9 mm (hergestellt durch elektrolytisches Abscheiden von Co auf PU-Schaum, als Pulver wurde Co-Metallpulver mit einer mittleren Partikelgröße < 45 μιη und einer Masse von 10 g sowie The semifinished product was an open-pore shaped body of cobalt, with an average pore size of 580 μm, with a porosity of about 95%, with the dimensions 70 mm × 65 mm, thickness 1.9 mm (produced by electrolytic deposition of Co on PU). Foam, as a powder was co-metal powder with a mean particle size <45 μιη and a mass of 10 g and
Steramidwachs mit einer Partikelgröße < 80 μηι einer Masse von 0,1 g und als Binder eine 1 %-ige wässrige Lösung aus Polyvinylpyrrolidon mit einem Volumen von 6 ml eingesetzt. Steramidwachs with a particle size <80 μηι a mass of 0.1 g and used as a binder, a 1% aqueous solution of polyvinylpyrrolidone with a volume of 6 ml.
Cobaltpulver und Steramidwachs wurden 10 min mit einem Turbula-Mischer gemischt. Cobalt powder and steramide wax were mixed for 10 minutes with a Turbula mixer.
Das Halbzeug aus Kobalt wurde einseitig mit der Binderlösung besprüht. Anschließend wurde es in einer Vibrationseinrichtung fixiert und beidseitig mit dem Kobaltpulver bestreut. Durch die Vibration wird das Pulver gleichmäßig in dem porösen Netzwerk des Halbzeugs verteilt. Dabei bleiben die Partikel nur an der Stegoberfläche haften, so dass die Stege vollständig mit Pulverpartikeln bedeckt sind und zunächst die Offenporigkeit des Schaums erhalten bleibt. In einem zweiten Schritt wird die Oberfläche des Halbzeugs an einer ersten Seite so stark mit Binderlösung besprüht, dass die vorher offenen Poren durch den Binder einseitig verschlossen werden, wobei durch den anschließenden weiteren Pulverauftrag der oberflächennahe Porenraum komplett verfüllt wird. An der gegenüberliegend angeordneten Seite des Halbzeugs sind nur die Stege oberflächlich beschichtet. Dadurch ist die Pulverbeladung und somit die Porosität im Schaum von der ersten Seite zur gegenüberliegend angeordneten Seite des Halbzeugs gradiert. The semi-finished cobalt was sprayed on one side with the binder solution. Then it was fixed in a vibration device and sprinkled on both sides with the cobalt powder. The vibration distributes the powder evenly in the porous network of the semifinished product. The particles only adhere to the web surface, so that the webs are completely covered with powder particles and initially the open porosity of the foam is maintained. In a second step, the surface of the semifinished product is sprayed on a first side so strongly with binder solution that the previously open pores are closed by the binder on one side, being completely filled by the subsequent further powder application of the near-surface pore space. At the opposite side of the semifinished product only the webs are superficially coated. As a result, the powder charge and thus the porosity in the foam is graded from the first side to the opposite side of the semifinished product.
Zur Entbinderung und Sinterung wurde in einer Wasserstoffatmosphäre eine thermische Behandlung durchgeführt. Dazu wurde der Ofen mit einer Aufheizrate von 5K/min aufgeheizt. Die Entbinderung beginnt bei ca. 300 °C und ist bei 600° C und einer Haltezeit von ca. 30 min abgeschlossen. Danach wird bis zu einer Sintertemperatur von 1300 °C aufgeheizt und diese Temperatur für 30 min gehalten. Während der thermischen Behandlung diffundiert das Co aus den Pulverpartikeln in das Stegmaterial des Halbzeugs ein, bis die Pulverpartikel über sich ausbildende Sinterhälse oder Sinterbrücken fest mit den Stegen aber auch (in den komplett verfüllten Bereichen) untereinander verbunden sind. For debindering and sintering, a thermal treatment was carried out in a hydrogen atmosphere. For this purpose, the oven was heated at a heating rate of 5K / min. The binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it is heated to a sintering temperature of 1300 ° C and held this temperature for 30 min. During the thermal treatment, the Co diffuses from the powder particles into the web material of the semifinished product until the powder particles are firmly bonded to one another via the sintering necks or sinter bridges forming themselves (in the completely filled regions).
Zusammensetzung des fertig hergestellten offenporösen Formkörpers an Co lag bei 100 %. Die Porosität ist über die gesamte Dicke des Formkörpers ausgehend von der ersten Seite bis zur dieser gegenüberliegend angeordneten Seite gradiert und beträgt auf der einen Seite ca. 54 % und auf der anderen Schaumseite ca. 93 %. Die spezifische Oberfläche des fertigen offenporösen Formkörpers beträgt 69 m2/L Composition of the ready-made open-pore shaped body of Co was 100%. The porosity is graded over the entire thickness of the molded body, starting from the first side to the opposite side arranged on this side and is about 54% on one side and about 93% on the other side foam. The specific surface area of the finished open-pored shaped article is 69 m 2 / L
Ausführungsbeispiel 5 (Ni-Streckgitter + Ni-Pulver - gleichmäßige Beschich- tung + sintern Exemplary Embodiment 5 (Ni Expanded Grid + Ni Powder - Uniform Coating + Sintering
1. Werkstoff 1. material
Als Halbzeug wurde ein offenzelliges Nickelstreckmetallgitter, mit einer Zellgröße von ca. 0,7 mm x 2 mm, mit den Abmaßen 75 mm x 75 mm, Dicke ca. 1 mm (hergestellt durch Streckziehen eines original 0,25 mm dicken geschlitzten Ni-Bleches), als Pulver Ni-Metallpulver mit einer mittleren Partikelgröße < 10 μηι, mit einer Masse von 8 g, ein Steramidwachs mit einer mittleren The semifinished product was an open-cell nickel expanded metal grid, with a cell size of about 0.7 mm × 2 mm, with the dimensions 75 mm × 75 mm, thickness about 1 mm (produced by ironing an original 0.25 mm thick slotted Ni sheet ), as powder Ni metal powder with a mean particle size <10 μηι, with a mass of 8 g, a steramide wax with a middle
Partikelgröße < 80 μιη, einer Masse von 0,2 g und als Binder eine 1 %-ige wässrige Lösung aus Polyvinylpyrrolidon mit einem Volumen von 4 ml eingesetzt. Particle size <80 μιη, a mass of 0.2 g and used as a binder, a 1% aqueous solution of polyvinylpyrrolidone with a volume of 4 ml.
Pulver und Steramidwachs wurden 10 min mit einem Turbula-Mischer gemischt. Powder and steramide wax were mixed for 10 minutes with a Turbula mixer.
Das Nickelstreckmetallgitter wurde von zwei gegenüberliegenden Seiten mit der Binderlösung besprüht. Anschließend wurde das Gitter in einer Vibrationseinrichtung fixiert und beidseitig mit dem Nickelpulver bestreut. Durch die Vibration wird das Nickelpulver gleichmäßig auf dem Gitternetzwerk verteilt. Dabei bleiben die Partikel nur an der Gitterstegoberfläche haften, so dass die Gitterstege vollständig mit Pulverpartikeln bedeckt sind und die Offenporig- keit des Streckmetallgitters erhalten bleibt. Der Vorgang wurde fünfmal wie- derholt. The nickel expanded metal grid was sprayed from two opposite sides with the binder solution. Subsequently, the grid was fixed in a vibration device and sprinkled on both sides with the nickel powder. The vibration distributes the nickel powder evenly on the lattice network. The particles only adhere to the lattice web surface, so that the lattice webs are completely covered with powder particles and the open porosity of the expanded metal lattice is maintained. The process was repeated five times repeated.
Die Entbinderung und Sinterung wurden unter Wasserstoffatmosphäre bei einer thermischen Behandlung durchgeführt. Dazu wurde der Ofen mit einer Aufheizrate von 5K/min aufgeheizt. Die Entbinderung beginnt bei ca. 300 °C und ist bei 600° C und einer Haltezeit von ca. 30 min abgeschlossen. Danach wurde bis zu einer Sintertemperatur von 1280 °C aufgeheizt und diese Temperatur für 30 min gehalten. Debinding and sintering were carried out under a hydrogen atmosphere in a thermal treatment. For this purpose, the oven was heated at a heating rate of 5K / min. The binder removal starts at about 300 ° C and is completed at 600 ° C and a holding time of about 30 min. Thereafter, it was heated to a sintering temperature of 1280 ° C and held this temperature for 30 min.
Während der thermischen Behandlung diffundiert das Ni aus den Pulverpartikeln in das Gitterstegmaterial ein, bis die Pulverpartikel über sich ausbildende Sinterhälse oder Sinterbrücken fest mit den Gitterstegen verbunden sind. During the thermal treatment, the Ni diffuses from the powder particles into the grid web material until the powder particles are firmly connected to the grid webs via sintering necks or sinter bridges which form.
Der so erhaltene offenporöse Formkörper bestand zu 100 % aus Nickel. The resulting open-porous molded body was 100% nickel.
Die Oberfläche der Stege ist durch eine hohe Rauheit geprägt, da die aufgebrachten Pulverpartikel nur über Sinterhälse oder Sinterbrücken mit dem Trägergitter des Halbzeugs und untereinander verbunden sind, so dass die ursprüngliche Partikelmorphologie weitgehend erhalten bleibt. Die aufgebrachte hochporöse Nickelschicht auf den Stegen ist zwischen 1 μιη und 300 μιη dick. Die Porosität innerhalb der aufgebrachten Schicht beträgt 40 %. The surface of the webs is characterized by a high roughness, since the applied powder particles are connected only via sintered necks or sintered bridges with the carrier grid of the semifinished product and with each other, so that the original particle morphology is largely retained. The applied highly porous nickel layer on the webs is between 1 μιη and 300 μιη thick. The porosity within the applied layer is 40%.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung offenporöser Formkörper, die mit einem1. A process for producing open-pore shaped bodies, which with a
Metall gebildet sind, bei dem ein mit einem Metall gebildeter offenporöser Formkörper als Halbzeug an seinen Oberflächen mit Partikeln des gleichen Metalls, mit dem auch das Halbzeug gebildet ist, oder mit Partikeln einer chemischen Verbindung des Metalls, mit dem das Halbzeug gebildet ist, die bei einer thermischen Behandlung reduziert, thermisch oder chemisch zersetzt werden kann und mit der durch chemische Reduktion oder thermischen oder chemischen Zersetzung erhaltene Partikel des jeweiligen Metalls gebildet werden, beschichtet wird; und nach der Beschichtung mindestens eine thermische Behandlung durchgeführt wird, bei der die Partikel mit der Oberfläche des Halbzeugs und/oder benachbarter Partikel über Sinterhälse oder Sinterbrücken verbunden werden, so dass die spezifische Oberfläche des erhaltenen offenporösen Formkörpers auf mindestens 30 m2/l und/oder mindestens um das 5-fache im Vergleich zum Ausgangswerkstoff des unbeschichteten metallischen Halbzeugs erhöht wird, wobei bei der thermischen Behandlung eines beschichteten offenporösen Formkörpers mit Partikeln einer reduzierbaren, thermisch oder chemisch zersetzbaren chemischen Verbindung des Metalls, mit dem das Halbzeug gebildet ist, zumindest bis zur erfolgten Reduktion oder thermischen oder chemischen Zersetzung der chemischen Verbindung in das Metall eine reduzierende oder eine für die Zersetzung geeignete Atmosphäre eingehalten wird. Metal are formed in which a formed with a metal open-porous moldings as semi-finished at its surfaces with particles of the same metal with which the semifinished product is formed, or with particles of a chemical compound of the metal with which the semifinished product formed in a thermal treatment can be reduced, thermally or chemically decomposed and are formed with the particles of the respective metal obtained by chemical reduction or thermal or chemical decomposition, is coated; and after the coating at least one thermal treatment is carried out, in which the particles are connected to the surface of the semifinished product and / or adjacent particles via sintered necks or sintered bridges, so that the specific surface area of the resulting open-pore shaped body is at least 30 m 2 / l and / or at least 5 times compared to the starting material of the uncoated metallic semifinished product, wherein in the thermal treatment of a coated open-pore shaped body with particles of a reducible, thermally or chemically decomposable chemical compound of the metal with which the semifinished product is formed, at least until for reducing or thermally or chemically decomposing the chemical compound into the metal, a reducing or decompressive atmosphere is maintained.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel eines Metalls oder die Partikel einer chemischen Verbindung des Metalls als Pulver, Pulvergemisch und/oder Suspension/Dispersion eingesetzt werden. 2. The method according to claim 1, characterized in that the particles of a metal or the particles of a chemical compound of the metal are used as powder, powder mixture and / or suspension / dispersion.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass das Aufbringen der Partikel des Metalls oder der Partikel der chemischen Verbindung des Metalls als Pulver, Pulvergemisch, Suspension und/oder Dispersion durch Tauchen, Sprühen, druckunterstützt, elektrostatisch und/oder magnetisch erfolgt. 3. The method according to claim 1 and 2, characterized in that the application of the particles of the metal or the particles of the chemical compound of the metal as a powder, powder mixture, suspension and / or dispersion by dipping, spraying, pressure-assisted, electrostatic and / or magnetic ,
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass ein organischer und/oder anorganischer Binder in Lösung, Suspension/Dispersion oder als Pulver zur Verbesserung der Anhaftung von Partikeln eingesetzt wird. 4. The method according to claim 1 to 3, characterized in that an organic and / or inorganic binder in solution, suspension / dispersion or as a powder for improving the adhesion of particles is used.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass das Aufbringen von Partikeln des Metalls oder Partikeln der genannten chemischen Verbindung des Metalls mehrfach, insbesondere mindestens dreifach wiederholt wird. 5. The method according to claim 1 to 4, characterized in that the application of particles of the metal or particles of said chemical compound of the metal is repeated several times, in particular at least three times.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass bei Mehrfachbeschichtung mit Partikeln des Metalls oder Partikeln der chemischen Verbindung des Metalls bei Anwendung eines Binders die Binderanwendung mehrfach, insbesondere mindestens dreifach wiederholt wird. 6. The method according to claim 1 to 5, characterized in that in the case of multiple coating with particles of the metal or particles of the chemical compound of the metal when using a binder, the binder application is repeated several times, in particular at least three times.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Anwendung eines Binders und das Aufbringen der Partikel des Metalls oder der Partikel der chemischen Verbindung des Metalls an unterschiedlichen Seiten der Oberfläche, insbesondere an sich gegenüberliegend angeordneten Oberflächen, das Halbzeugs mit unterschiedlicher Menge durchgeführt wird, um dort jeweils eine unterschiedliche Porosität, Porengröße und/oder spezifische Oberfläche zu erhalten. 7. The method according to claim 1 to 6, characterized in that the application of a binder and the application of the particles of the metal or the particles of the chemical compound of the metal on different sides of the surface, in particular on oppositely disposed surfaces, the semifinished product with a different amount is carried out to obtain there each a different porosity, pore size and / or specific surface area.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Metall für das Halbzeug und die aufzubringen- den Partikel Ni, Fe, Cr, AI, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce oder Mg oder als Metall für das Halbzeug und Partikel einer reduzierbaren, thermisch oder chemisch zersetzbaren Verbindung dieses Metalls eine chemische Verbindung von Ni, Fe, Cr, AI, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce oder Mg, insbesondere ein Salz, ein Oxid, ein Nitrid, ein Hydrid, ein Karbid, ein Sulfid, ein Sulfat, ein Fluorid, ein Chlorid, ein Bromid, ein lodid, ein Phosphat, ein Azid, ein Nitrat, ein Amin, ein Amid, ein metallorganischer Komplex oder ein Salz eines metallorganischen Komplexes eingesetzt wird. 8. The method according to any one of the preceding claims, characterized in that as metal for the semifinished product and the applied the particles Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La, W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg or as a metal for the semifinished product and particles of a reducible, thermally or chemically decomposable compound of this metal, a chemical compound of Ni, Fe, Cr, Al, Nb, Ta, Ti, Mo, Co, B, Zr, Mn, Si, La , W, Cu, Ag, Au, Pd, Pt, Zn, Sn, Bi, Ce or Mg, especially a salt, an oxide, a nitride, a hydride, a carbide, a sulfide, a sulfate, a fluoride, a chloride , a bromide, an iodide, a phosphate, an azide, a nitrate, an amine, an amide, an organometallic complex or a salt of an organometallic complex.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Halbzeug eingesetzt wird, das durch galvanische Beschichtung eines offenporösen Körpers eines polymeren Werkstoffs mit dem jeweiligen Metall erhalten worden ist. 9. The method according to any one of the preceding claims, characterized in that a semi-finished product is used, which has been obtained by electroplating an open-porous body of a polymeric material with the respective metal.
10. Offenporöser Formkörper hergestellt mit einem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper mit über Sinterhälse oder Sinterbrücken mit der Oberfläche des Halbzeugs und/oder der Oberfläche benachbarter Partikel verbundenen metallischen Partikeln eine spezifische Oberfläche von mindestens 30 m2/l aufweist. 10. Open porous molded body produced by a method according to one of the preceding claims, characterized in that the shaped body with sintered necks or sintered bridges with the surface of the semifinished product and / or the surface of adjacent particles associated metallic particles has a specific surface area of at least 30 m 2 / l having.
11. Formkörper nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Porengröße innerhalb des beschichteten und gesinterten offenporösen Formkörpers maximal dem 10.000-fachen der eingesetzten Partikelgröße entspricht. 11. Shaped body according to the preceding claim, characterized in that the pore size within the coated and sintered open-pore shaped body corresponds to a maximum of 10,000 times the particle size used.
12. Formkörper nach den zwei vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass im Werkstoff des Formkörpers maximal 3 Masse-%, bevorzugt maximal 1 Masse-% Sauerstoff enthalten sind. 12. Shaped body according to the two preceding claims, characterized in that in the material of the shaped body a maximum of 3% by mass, preferably at most 1% by mass of oxygen are contained.
PCT/EP2018/074882 2017-09-06 2018-09-14 Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method WO2019057624A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/648,028 US20200263306A1 (en) 2017-09-06 2018-09-14 Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
JP2020516562A JP2020534433A (en) 2017-09-19 2018-09-14 A method for manufacturing a metal perforated molded body, and a molded body manufactured by the method.
KR1020207011232A KR20200127966A (en) 2017-09-19 2018-09-14 Method for manufacturing an open pore molded article made of metal and a molded article manufactured using the method
CN201880060988.7A CN111432961A (en) 2017-09-19 2018-09-14 Method for producing open-porous molded bodies made of metal and molded body produced using said method
CA3076512A CA3076512A1 (en) 2017-09-19 2018-09-14 Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
RU2020111275A RU2020111275A (en) 2017-09-19 2018-09-14 A method for producing a molded body made of metal with open pores and a molded body obtained by the said method
EP18770004.2A EP3684532A1 (en) 2017-09-19 2018-09-14 Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017216569.3 2017-09-19
DE102017216569.3A DE102017216569A1 (en) 2017-09-19 2017-09-19 A process for producing an open-pore shaped body formed with a metal and a molded body produced by the process

Publications (1)

Publication Number Publication Date
WO2019057624A1 true WO2019057624A1 (en) 2019-03-28

Family

ID=63592734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/074882 WO2019057624A1 (en) 2017-09-06 2018-09-14 Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method

Country Status (9)

Country Link
US (1) US20200263306A1 (en)
EP (1) EP3684532A1 (en)
JP (1) JP2020534433A (en)
KR (1) KR20200127966A (en)
CN (1) CN111432961A (en)
CA (1) CA3076512A1 (en)
DE (1) DE102017216569A1 (en)
RU (1) RU2020111275A (en)
WO (1) WO2019057624A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112170862A (en) * 2020-09-30 2021-01-05 桂林金格电工电子材料科技有限公司 Preparation method of silver-tungsten contact material
CN113427002B (en) * 2021-06-25 2022-06-21 哈尔滨工业大学 Pressureless sintering preparation method of three-dimensional porous structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033192A2 (en) * 2001-10-11 2003-04-24 Inco Limited Process for the production of sintered porous bodies
US20050069648A1 (en) * 2001-12-18 2005-03-31 Mutsuhiro Maruyama Metal oxide dispersion
WO2005037467A2 (en) * 2003-09-30 2005-04-28 Inco Limited Method for manufacturing components with a nickel base alloy as well as components manufactured therewith
WO2006089761A1 (en) * 2005-02-28 2006-08-31 Cvrd Inco Limited A method for fabricating an open-porous metal foam body, a metal foam body fabricated this way as well as its applications
EP2764916A1 (en) * 2013-02-06 2014-08-13 Alantum Europe GmbH Surface modified metallic foam body, process for its production and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275457A (en) * 2000-06-22 2000-12-06 天津和平海湾电源集团有限公司 Metal strip coated with foamed nickel material and manufacturing method thereof
US7458991B2 (en) * 2002-02-08 2008-12-02 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
DE10301175B4 (en) * 2003-01-08 2006-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the powder metallurgical production of components
JP2004346358A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Method for producing metal sintered compact provided with micropore
DE102007027837A1 (en) * 2007-06-13 2008-12-18 Eads Deutschland Gmbh Method for producing a metallic microstructure for a microreactor
DE102009015176B4 (en) * 2009-03-20 2017-02-09 Alantum Corporation Process for producing open-pore metal foam bodies
DK2883632T3 (en) * 2013-12-10 2017-10-16 Alantum Europe Gmbh Metallic foam body with controlled grain size on the surface, method of production and use thereof
DE102014205623B4 (en) * 2014-03-26 2020-06-10 Glatt Gmbh METHOD FOR PRODUCING OPEN-CELLED BODIES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033192A2 (en) * 2001-10-11 2003-04-24 Inco Limited Process for the production of sintered porous bodies
US20050069648A1 (en) * 2001-12-18 2005-03-31 Mutsuhiro Maruyama Metal oxide dispersion
WO2005037467A2 (en) * 2003-09-30 2005-04-28 Inco Limited Method for manufacturing components with a nickel base alloy as well as components manufactured therewith
WO2006089761A1 (en) * 2005-02-28 2006-08-31 Cvrd Inco Limited A method for fabricating an open-porous metal foam body, a metal foam body fabricated this way as well as its applications
EP2764916A1 (en) * 2013-02-06 2014-08-13 Alantum Europe GmbH Surface modified metallic foam body, process for its production and use thereof

Also Published As

Publication number Publication date
EP3684532A1 (en) 2020-07-29
KR20200127966A (en) 2020-11-11
DE102017216569A1 (en) 2019-03-21
CN111432961A (en) 2020-07-17
JP2020534433A (en) 2020-11-26
CA3076512A1 (en) 2019-03-28
US20200263306A1 (en) 2020-08-20
RU2020111275A (en) 2021-10-20

Similar Documents

Publication Publication Date Title
EP1728896B1 (en) Method of manufacturing gas diffusion electrodes
DE69032540T2 (en) MIXED FIBER COMPOSITE: METHOD FOR THE PRODUCTION, ITEMS THEREOF AND APPLICATIONS THEREFOR
DE60222448T2 (en) PROCESS FOR PRODUCING SINTERED POROUS BODY
EP3797901B1 (en) Metal foam body and method for its production
EP2044230B1 (en) Method for the production of metal foams
EP3826789A1 (en) Metal foam element containing cobalt and method for producing same
EP1272300A1 (en) Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby
DE102004032089B3 (en) Process for producing open-pored metal foam bodies
EP3418429A1 (en) Gas diffusion electrode for reducing carbon dioxide
WO2019057624A1 (en) Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
EP3684531A1 (en) Method for producing an open-pore molded body which has a modified surface and which is made of a metal, and a molded body produced using said method
EP3823780B1 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
DE102009015176B4 (en) Process for producing open-pore metal foam bodies
DE102014209216B4 (en) Catalytically active porous element and process for its preparation
WO2017220082A1 (en) Cellular material and production thereof
RU2772522C2 (en) Method for producing an open-pore shaped body which has a modified surface and is made of metal, and a shaped body obtained by said method
DE102023209672B3 (en) electrode for electrochemical cells
DE1558463C (en) Process for improving the strength and gas permeability of porous sintered bodies made of nickel or a nickel alloy
DE102013214284A1 (en) Storage structure and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3076512

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020516562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770004

Country of ref document: EP

Effective date: 20200420