WO2019057028A1 - 充电方法、装置、存储介质及处理器 - Google Patents

充电方法、装置、存储介质及处理器 Download PDF

Info

Publication number
WO2019057028A1
WO2019057028A1 PCT/CN2018/106163 CN2018106163W WO2019057028A1 WO 2019057028 A1 WO2019057028 A1 WO 2019057028A1 CN 2018106163 W CN2018106163 W CN 2018106163W WO 2019057028 A1 WO2019057028 A1 WO 2019057028A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
voltage
output voltage
increased
Prior art date
Application number
PCT/CN2018/106163
Other languages
English (en)
French (fr)
Inventor
李九兴
宋斌
李启瑞
马焦栋
王飞
梁玉冰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019057028A1 publication Critical patent/WO2019057028A1/zh

Links

Images

Classifications

    • H02J7/0085
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0086
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of charging technology, for example, to a charging method, apparatus, storage medium, and processor.
  • Charging time is one of the important indicators when designing and debugging terminal products. In order to meet the charging time required by enterprise standards or certification indicators, it is necessary to consider a battery with a large charging current and a small capacity. However, the former increases the cost of the charger and the design cost of the board, and the latter reduces the endurance of the terminal.
  • the charging phase of the related art mainly includes a pre-charging phase and a fast charging phase.
  • the fast charging phase includes constant current charging and constant voltage charging. The charging current in the constant voltage phase of the latter part of the fast charging gradually becomes smaller as the power is gradually filled.
  • the constant voltage phase consumes a longer charging time, but the charge is not proportionally increased.
  • Embodiments of the present disclosure provide a charging method, apparatus, storage medium, and processor to reduce charging time.
  • the present disclosure provides a charging method, comprising: increasing an output voltage of a charging chip after determining that the battery enters a constant voltage charging phase during charging of the battery; and utilizing an increased output voltage of the charging chip The battery is charged.
  • the present disclosure also provides a charging apparatus, comprising: an adding module configured to increase an output voltage of a charging chip after determining that the battery enters a constant voltage charging phase in a process of charging the battery; charging module, setting The battery is charged to utilize the increased output voltage of the charging chip.
  • the present disclosure also provides a storage medium including a stored program that executes the charging method described above while the program is running.
  • the present disclosure also provides a processor configured to execute a program that executes the charging method described above while the program is running.
  • FIG. 1 is a schematic diagram showing a conventional charging of a terminal battery in the related art
  • FIG. 2 is a block diagram showing the hardware structure of a mobile terminal according to a charging method according to an embodiment
  • FIG. 3 is a flow chart of a charging method provided by an embodiment
  • FIG. 4 is a schematic diagram of the composition of a charging related module according to an embodiment
  • FIG. 5 is a flowchart of a fast charging control method according to an embodiment
  • Vout and Vchar_bat caused by impedance of a charging line according to an embodiment
  • FIG. 7 is a schematic diagram of an Rdc measurement model provided by an embodiment
  • FIG. 8 is a schematic diagram of a terminal battery charging curve according to an embodiment
  • FIG. 9 is a structural block diagram of a charging apparatus according to an embodiment.
  • FIG. 10 is a structural block diagram of an adding module of a charging device according to an embodiment.
  • FIG. 2 is a hardware structural block diagram of a mobile terminal according to a charging method according to an embodiment.
  • the mobile terminal 20 may include one or more (only one shown in FIG. 2) battery 202, a line 204 disposed to connect the battery 202 and the power supply unit 206, and a power supply unit configured to power the battery 202. 206.
  • the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 20 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the line 204 can be configured to connect one or more components in the mobile terminal 20, such as a program instruction/module corresponding to the charging method in the embodiment of the present disclosure, by operating the battery 202 in the mobile terminal 20 to perform power supply or charging, ie, Implement the above method.
  • the power supply unit 206 is configured to charge the battery 202 or to power other components.
  • power supply unit 206 can be a mobile power source or a fixed power source.
  • the method of the present disclosure may also be applied to a hardware device as shown in FIG. 3, including the following:
  • the battery supplies power to the electronics and stores the power supplied by the charging module.
  • a charging module configured to charge the battery and detect one or more parameters of the battery and to communicate with the control module.
  • the control module is configured to command control of the entire electronic product, including one or more commands and tasks such as input, output, storage, and data analysis. Other modules such as input, output, and storage are set up to implement other functions such as user interaction, data storage, and network communication for electronic products.
  • the charging line is the power transmission line between the charging module and the battery, including the signal wires and connectors on the electronic product, as well as the wiring, connectors and electrodes on the battery.
  • the battery detection feedback signal is used for battery identity information and other electrical parameter feedback. Includes battery temperature, battery manufacturer information, and other electrical data.
  • the control method or code operation for controlling battery charging may be located in the control module or in the charging module.
  • the operation of the control method can also be controlled by the user through the input device in a specific application scenario.
  • a charging method is provided, which is applied to the mobile terminal. As shown in FIG. 4, the method includes the following steps.
  • step 402 during the charging of the battery, after determining that the battery enters the constant voltage charging phase, the output voltage of the charging chip is increased.
  • step 404 the battery is charged using the increased output voltage of the charging chip.
  • the terminal since the terminal enters the constant voltage charging phase during the charging of the battery, the output voltage of the charging chip is increased; and the battery is charged by the output voltage of the increased charging chip. Therefore, in the final charging phase, the battery can not cause the charging index to fail to meet the standard due to the low charging voltage, resulting in a problem of long charging time, shortening the charging time of the battery, and achieving the effect of the charging index.
  • the execution body of the foregoing steps may be a terminal (such as a mobile phone, a computer, a tablet, etc.), but is not limited thereto.
  • the constant voltage charging phase described above refers to a phase in which the charging current of the battery is gradually reduced, that is, the amount of charge charged by the battery cannot be increased proportionally.
  • the charging voltage of the battery does not gradually decrease, so that the normal charging of the battery can be ensured, that is, the charging power and the charging time increase in proportion. It is possible to reduce the problem that the charging process takes a long time in the final stage of battery charging in the related art.
  • the increased battery voltage in the embodiment is not greater than the maximum safe voltage of the battery, that is, the voltage of the battery is increased to the normal charging voltage to ensure the safety of the battery when charging.
  • increasing the output voltage of the charging chip may include: detecting a battery power of the battery and a battery voltage after the battery enters the constant voltage charging phase, and determining whether the battery supports a charging voltage greater than a maximum operating voltage of the battery; The output voltage of the above charging chip is increased according to the detected battery power, the battery voltage, and the judgment result. In this embodiment, it is necessary to judge whether the battery enters the constant voltage charging phase, and perform charging-related operations on the battery when it is determined that the battery enters the constant voltage charging phase and the battery power is not full.
  • increasing the output voltage of the charging chip according to the detected battery power, the battery voltage, and the determination result may include one of: detecting that the battery power is less than a predetermined value, the battery voltage is less than a maximum operating voltage, and If the result of the determination is that the battery does not support the charging voltage greater than the maximum operating voltage, the maximum operating voltage is determined as the output voltage of the increased charging chip; and the charging chip is increased according to the determined output voltage of the increased charging chip.
  • the preset value of the battery power in the above may be 100% of the battery, or may be the set power value.
  • the battery voltage can be detected and fed back by setting a real-time detection feedback mechanism. Based on the feedback battery voltage, the output voltage is continuously increased until the maximum operating voltage is reached. And charging the battery according to the output voltage of the added charging chip.
  • charging the battery by using the increased output voltage of the charging chip may include one of the following: if the determination result is that the battery does not support a charging voltage greater than the maximum operating voltage, the calculation increases. a charging current of the charging chip of the output voltage; charging the battery by using the charging current and the output voltage of the increased charging chip; and in the case where the determination result is that the battery supports a charging voltage greater than the maximum operating voltage, The battery is charged by the voltage of the normal charging phase of the battery and the current of the normal charging phase of the battery.
  • the normal charging phase is a charging phase of the battery before entering the constant voltage charging phase. In this embodiment, in the stage of charging the battery, it is also necessary to ensure that the charging current of the battery is within a safe range.
  • the method may further include: one of the following: the determining result is that the battery does not support a charging voltage greater than the maximum operating voltage.
  • the first detection time for detecting the output voltage of the charging chip is calculated by using the charging current and the battery power, and the battery voltage and/or the battery power are periodically detected according to the first detection time;
  • the second detection time for detecting the output voltage of the charging chip is calculated by using the battery power and the current in the normal charging phase of the battery.
  • the second detection time periodically detects the above battery voltage and/or battery power.
  • the first detection time and the second detection time in the above are the time periods during which the battery is detected.
  • the method may further include: stopping the charging of the battery when determining that the battery is in a full state; determining that the battery voltage is greater than Or if the maximum operating voltage of the battery is equal to, the charging of the battery is stopped.
  • the above-described conditions for stopping the charging of the battery can be set according to the performance and needs of the battery.
  • the battery can be quickly charged, and the safety of the battery can be ensured, thereby increasing the user experience.
  • the charging of the battery of the electronic device (corresponding to the terminal or the mobile terminal in the above) is taken as an example: in this embodiment, the charging of the battery is reduced in the phase of the charging current of the electronic device.
  • the charging method provided in this embodiment includes the following content:
  • the setting of the charging voltage of the electronic device battery is combined with the battery power detected by the fuel gauge.
  • the constant voltage charging phase refers to the phase in which the charging current of the battery is gradually decreased. That is, the amount of charge charged by the battery cannot be increased proportionally.
  • the charging current in the final stage is increased, and the battery is checked by the fuel gauge and the actual voltage at the calculated (or feedback) cell reaches the maximum operating voltage as one of the conditions for stopping the charging.
  • the battery in this embodiment may be a dry battery, a lead storage battery, or a lithium battery.
  • a battery other than the above type on a terminal or other electronic device using a higher withstand voltage electrode material and an electrolyte material.
  • FIG. 5 is a flowchart of the fast charging control method in the embodiment. As shown in FIG. 5, the method provided in this embodiment includes the following steps.
  • step 1010 when the terminal charging chip output voltage Vout reaches the maximum battery operating voltage Vmax_bat for the first time, the voltage Vchar_bat actually added to the battery cell is definitely less than Vmax_bat, that is, the battery enters the constant voltage charging phase.
  • the above Vout is the maximum voltage for charging the terminal, and after entering the constant voltage charging phase, the charging voltage of the battery is continuously reduced.
  • the charging current is Ichar_temp at this time, since the charging line from the charging chip to the battery cell has a trace impedance and a connector contact resistance (the total impedance is Rdc), it is added to the battery cell.
  • the voltage is:
  • Vchar_bat Vout-Ichar_temp ⁇ Rdc (1-1)
  • the charging line impedance in Figure 6 causes Vout to be inconsistent with Vchar_bat.
  • Steps 1020 and 1030 are used to determine the state of the battery state and the state of the open circuit voltage (zero load voltage) to ensure that the battery continues to be charged.
  • the open circuit voltage zero load voltage
  • step 1040 the type of battery is determined, i.e., it is determined whether the voltage applied to the cell can exceed the maximum operating voltage of the cell, and if so, proceeds to step 1050, and if not, proceeds to step 1060.
  • the charging voltage of the battery it is also necessary to detect whether the charging voltage of the battery matches the type of the battery. Avoid exceeding the maximum charging voltage that different battery types can withstand. For example, a general-purpose lithium-ion battery, the voltage of the added cell should not exceed the maximum operating voltage Vmax_bat. For other newer batteries, there may be a voltage applied to the battery that can exceed Vmax_bat.
  • Step 1050 corresponds to the step of charging a new type of battery supporting high-voltage charging.
  • step 1050 according to the battery power C_bat and the battery voltage Vbat measured when the charging is stopped, it is calculated that the charging current Ichar0 is charged T0 time before being fully charged, correspondingly T0 is:
  • step 1020 After calculating T0, after Ichar0 charges T0/x (x ⁇ 1), the safety of the battery is detected again, that is, step 1020 is cycled.
  • the setting of x may be fixed or may be appropriately adjusted according to relevant parameters.
  • the relevant parameters include the performance of the battery or a change in voltage.
  • Step 1060 is a step of charging a battery such as lithium ion that does not support high voltage charging.
  • Rdc represents the trace impedance and contact impedance between the charging chip and the battery.
  • the voltage of the battery is not constant during the use of the user, and needs to be accurately calculated during charging.
  • Rdc's measurements are throughout the charging process, and real-time measurements are more tracking and correction, ensuring that the voltage applied across the battery is within safe limits.
  • the measurement interval of Rdc can be adjusted according to the actual situation.
  • Rbat represents the battery-related resistance, including the internal resistance of the battery and the damping of the charge due to the charging chemical reaction. Since each measurement of Rdc is short-lived, the variation of Rbat at different Vouts and during the measurement can be ignored.
  • Vout_1 Ichar_temp_1 ⁇ (Rdc+Rbat)
  • Vout_2 Ichar_temp_2 ⁇ (Rdc+Rbat)
  • Vout_N Ichar_temp_N ⁇ (Rdc+Rbat) (1-3)
  • Vout Ichar1 ⁇ Rdc+Vmax_bat (1-4)
  • Vout and Ichar1 reach the relationship of the formula (1-4), so that the voltage applied to the battery cell reaches Vmax_bat.
  • the charging chip output voltage is increased from Vmax_bat to Vmax_bat+Ichar1*Rdc; the corresponding voltage applied to the battery cell is increased from Vbat_char to Vmax_bat while still maintaining a safe voltage range.
  • the system error needs to be considered in practical applications, and the threshold is set to have a safety margin. That is, the actual increase in the output voltage of the charging chip should be Ichar1*Rdc- ⁇ V. Where ⁇ V is the voltage error introduced by the actual system error.
  • T1 (100%-C_bat)/Ichar1 (1-5)
  • Vout and Ichar1 constraint relationships in the calculations in this section can also be given directly by hardware.
  • real-time detection ensures that the voltage applied to the battery cell is Vmax_bat. In this way, we do not need complicated calculations, and directly give the corresponding Vout and Ichar1, and the corresponding T1 through real-time detection.
  • step 1060 After T1 is calculated by step 1060, T1/x (x ⁇ 1) time is charged by Ichar1, and then step 1020 is performed again.
  • the setting value of x can be larger.
  • the setting of x may be fixed or may be appropriately adjusted according to relevant parameters.
  • the actual set value will be smaller than the calculation here.
  • the magnitude of the value used herein is determined by the error caused by the application scenario of the electronic device used and the total error caused by the device errors used by the plurality of modules.
  • step 1070 charging is stopped.
  • the software execution code is monitored with a timer to ensure that the charging chip output voltage is within the battery safe voltage range when the timer expires (ie, when the software is not controlled).
  • the detection signal is additionally extracted in the battery core as a starting event for the charging safety stop.
  • the current reduction speed in the phase in which the charging current is gradually decreased is also slower and slower.
  • the speed at which the current reduction is set is constant.
  • Vout 4.3V
  • the electrolyte can maintain a charging current of 1 A before the voltage applied to the electrolyte reaches 4.3 V without considering electrolyte unevenness. Therefore, the average current of the entire charge can be calculated according to 1A, which is twice the average current of the above-mentioned charging current, and the charging time at this stage can be reduced by 50%.
  • the charging method using the present scheme takes 15% less time than the charging scheme in the related art.
  • the terminal battery charging curve is as shown in FIG. 8.
  • the right part of Fig. 8 shows the trend of the voltage and current changes of the battery terminal after using this scheme, and the time saved by the scheme used in the related art.
  • the above control method includes terminal battery charging control, but is not limited to the electronic product of the terminal, and any control device with charging intelligent control electronic device can adopt the control method proposed by the solution.
  • the present embodiment tracks and adjusts the charging parameters in real time by tracking the hardware status of the terminal or other electronic products, and reduces the charging time of the terminal or other electronic product battery in the final stage, thereby reducing the overall charging time of the battery.
  • the battery can be charged faster and the user experience can be improved without affecting the endurance ability and increasing the cost.
  • the technical solution of the embodiment will have greater technical advantages and commercial value.
  • the method according to the foregoing embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure can be embodied in the form of a software product stored in a storage medium (such as Read-Only Memory ROM/Random Access).
  • Memory, RAM, disk, or optical disk includes one or more instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the method described in any of the embodiments of the present disclosure.
  • a charging device is also provided, which is arranged to implement the above-described embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 9 is a structural block diagram of a charging apparatus according to an embodiment. As shown in FIG. 9, the apparatus includes an adding module 902 and a charging module 904, which will be described below.
  • the adding module 902 is configured to increase the output voltage of the charging chip after determining that the battery enters the constant voltage charging phase in the process of charging the battery; the charging module 904 is connected to the adding module 902 in the above, and is configured to utilize The increased output voltage of the above charging chip charges the battery.
  • FIG. 10 is a structural block diagram of an adding module of a charging device according to an embodiment.
  • the adding module 902 includes: a detecting unit 1002 and an adding unit 1004. The adding module 902 will be described below.
  • the detecting unit 1002 is configured to detect the power of the battery and the battery voltage after the battery enters the constant voltage charging phase; the determining module 1004 is configured to determine whether the battery supports a charging voltage greater than a maximum operating voltage of the battery; the adding unit 1006 is connected to The detecting unit 1002 and the determining unit 1004 described above are configured to increase the output voltage of the charging chip based on the detected battery power, the battery voltage, and the determination result.
  • the adding unit 1006 includes one of the following: a first adding subunit, configured to: when the detected battery power is less than a predetermined value, the battery voltage is less than the maximum operating voltage, and the determining result is that the battery is not Supporting a charging voltage greater than the maximum operating voltage, determining that the maximum operating voltage is an increased output voltage of the charging chip; increasing an output voltage of the charging chip according to the determined output voltage of the increased charging chip; The subunit is added, and the battery is normally charged when the detected battery power is less than a predetermined value, the battery voltage is less than the maximum operating voltage, and the determination result is that the battery supports a charging voltage greater than the maximum operating voltage.
  • the voltage of the phase is the output voltage of the increased charging chip; the output voltage of the charging chip is increased according to the determined output voltage of the increased charging chip.
  • the charging module 904 is configured to charge the battery by using the increased output voltage of the charging chip in one of the following manners: in the above determination, the battery does not support greater than the maximum operation. In the case of the charging voltage of the voltage, calculating a charging current of the charging chip to which the output voltage is increased; charging the battery by using the charging current and the output voltage of the increased charging chip; and in the above determination, the battery support is greater than the above In the case of the charging voltage of the maximum operating voltage, the battery is charged by the voltage of the normal charging phase of the battery and the current of the normal charging phase of the battery, wherein the normal charging phase is before the battery enters the constant voltage charging phase. Charging phase.
  • the apparatus may further include: a calculation module configured to: before the charging of the battery by using the increased output voltage of the charging chip, the determination result is that the battery does not support greater than the maximum operation.
  • the first detection time for detecting the output voltage of the charging chip is calculated by using the charging current and the battery power, and the battery voltage and/or the battery are periodically detected according to the first detection time.
  • the second detection for detecting the output voltage of the charging chip is calculated by using the battery power and the current in the normal charging phase of the battery. Time, periodically detecting the battery voltage and/or battery power according to the second detection time.
  • the apparatus further includes a first stopping module configured to stop charging the battery when determining that the battery is in a full state after the battery enters the constant voltage charging phase; or, in determining When the voltage of the battery is greater than or equal to the maximum operating voltage of the battery, charging of the battery is stopped.
  • a first stopping module configured to stop charging the battery when determining that the battery is in a full state after the battery enters the constant voltage charging phase; or, in determining When the voltage of the battery is greater than or equal to the maximum operating voltage of the battery, charging of the battery is stopped.
  • An embodiment of the present disclosure also provides a storage medium including a stored program that executes the above charging method while the program is running.
  • An embodiment of the present disclosure also provides a processor configured to execute a program, the program being executed to perform the charging method described above.
  • the one or more modules may be implemented by software or hardware, and the latter may be implemented by, but not limited to, one or more of the modules are located in the same processor; or one or more of the above The modules are located in different processors in any combination.
  • Embodiments of the present disclosure also provide a storage medium including a stored program, wherein the above-described charging method is executed while the program is running.
  • the above storage medium may be arranged to store program code for performing the above plurality of steps.
  • the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store a program code.
  • Embodiments of the present disclosure also provide a processor configured to execute a program that executes the charging method described above while the program is running.
  • the at least one module or at least one step of the above-described disclosure may be implemented by a general-purpose computing device, and the at least one module or at least one step may be centralized on a single computing device or distributed over a network of multiple computing devices. .
  • the at least one module or at least one step may be implemented by program code executable by the computing device, such that the at least one module or at least one step may be stored in the storage device to be executed by the computing device, and
  • the steps shown or described may be performed in an order different than that herein, or the at least one module or at least one of the steps described above may be separately fabricated into an integrated circuit module, or at least one or at least one of Multiple modules or steps in the steps are made as a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电方法、装置、存储介质及处理器,该方法包括:在对电池进行充电的过程中,在确定电池进入恒压充电阶段后,增加充电芯片的输出电压;利用增加后的充电芯片的输出电压对电池进行充电。

Description

充电方法、装置、存储介质及处理器
本公开要求申请日为2017年09月19日、申请号为201710845771.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及充电技术领域,例如涉及一种充电方法、装置、存储介质及处理器。
背景技术
终端产品在在设计和调试时,充电时间是重要指标之一。为了满足企业标准或认证指标要求的充电时间,不得不考虑采用较大充电电流和小容量的电池。但前者增加充电器成本和单板设计成本,后者会减少终端续航能力。
图1是相关技术中终端电池常规充电的曲线示意图。如图1所示,相关技术的充电阶段主要包括预充电阶段和快速充电阶段。快速充电阶段包含恒流充电和恒压充电。快速充电的后面一部分的恒压阶段充电电流会随着电量逐渐充满而逐渐变小。
恒压阶段耗费了较长的充电时间,但是充入的电量却不是成比例的增加。
发明内容
本公开实施例提供了一种充电方法、装置、存储介质及处理器,以减少充电时间。
本公开提供了一种充电方法,包括:在对电池进行充电的过程中,在确定所述电池进入恒压充电阶段后,增加充电芯片的输出电压;利用增加后的所述充电芯片的输出电压对所述电池进行充电。
本公开还提供一种充电装置,包括:增加模块,设置为在对所述电池进行充电的过程中,在确定所述电池进入恒压充电阶段后,增加充电芯片的输出电压;充电模块,设置为利用增加后的所述充电芯片的输出电压对所述电池进行充电。
本公开还提供了一种存储介质,所述存储介质包括存储的程序,所述程序运行时执行上述的充电方法。
本公开还提供了一种处理器,所述处理器设置为运行程序,所述程序运行时执行上述的充电方法。
附图说明
图1是相关技术中终端电池常规充电的曲线示意图;
图2是一实施例提供的一种充电方法的移动终端的硬件结构框图;
图3是一实施例提供的充电方法的流程图;
图4是一实施例提供的充电相关模块的组成示意图;
图5是一实施例提供的快速充电控制方法的流程图;
图6是一实施例提供的充电线路阻抗引起的Vout与Vchar_bat不一致的示意图;
图7是一实施例提供的的Rdc测量模型的示意图;
图8是一实施例提供的终端电池充电曲线的示意图;
图9是一实施例提供的充电装置的结构框图;
图10是一实施例提供的充电装置的增加模块的结构框图。
具体实施方式
下文中将参考附图说明本公开的实施例。
本公开的说明书和权利要求书及上述附图中的术语“第一”、或“第二”等是用于区别类似的对象,而不必用于描述指定的顺序或先后次序。
本公开实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是一实施例提供的一种充电方法的移动终端的硬件结构框图。如图2所示,移动终端20可以包括一个或多个(图2中仅示出一个)电池202、设置为连接电池202与电源装置206的线路204、以及设置为给电池202供电的电源装置206。本领域普通技术人员可以理解,图2所示的结构仅为示意,并不对上述电子装置的结构造成限定。例如,移动终端20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
线路204可设置为连接移动终端20中的一个或多个组件,如本公开实施例中的充电方法对应的程序指令/模块,电池202通过运行在移动终端20中,从而执行供电或者充电,即实现上述的方法。
电源装置206设置为给电池202充电或者是给其他部件供电。在一个实例中,电源装置206包括可以是移动电源或者固定电源。
在一实施例中,本公开的方法还可以应用在如图3中所示的硬件装置中,包括以下内容:
如图3所示,电池为电子产品供电和存储充电模块提供的电能。充电模块,设置为为电池充电和检测电池一项或多项参数,并与控制模块通信。控制模块设置为对整个电子产品进行指令控制,包括输入、输出、存储以及数据分析等一项或多项命令和任务。输入、输出和存储等其他模块,设置为实现电子产品的用户交互、数据存储以及网络通信等其他功能。充电线路为充电模块与电池之间的电能传输线路,包括电子产品上的信号走线和连接器,也包括电池上的走线、连接器和电极等。电池检测反馈信号用于电池身份信息及其他电气参数反馈。包括电池温度、电池厂家信息及其他电气数据等。
控制电池充电的控制方法或代码运行,可以位于控制模块,也可以位于充电模块。控制方法的运行也可以由用户在具体的应用场景中通过输入设备实现控制。
在本实施例中提供了一种充电方法,应用于上述移动终端,如图4所示,该方法包括如下步骤。
在步骤402中,在对电池进行充电的过程中,在确定电池进入恒压充电阶段后,增加充电芯片的输出电压。
在步骤404中,利用增加后的充电芯片的输出电压对电池进行充电。
通过上述步骤,由于终端在对电池进行充电的过程中,如果确定了电池进入恒压充电阶段,则增加充电芯片的输出电压;并利用增加后的充电芯片的输出电压对电池进行充电。因此,可以使电池在最后的充电阶段中,不会因为充电电压低而造成充电指标不达标,造成充电时间长的问题,达到缩短电池充电时间,以及充电指标达标的效果。
在一实施例中,上述步骤的执行主体可以为终端(比如手机、电脑或平板等),但不限于此。
在本实施例中,上述中的恒压充电阶段是指电池充电电流逐渐减少的阶段,即电池充入的电量不能成比例增加。本公开在增加充电电压之后,电池的充电电压不会逐渐降低,从而可以保证电池的正常充电,即充电电量与充电时间会成比例增加。可以减少相关技术中存在的电池充电的最后阶段,充电时间长的 问题。并且,本实施例中增加的电池电压不大于电池的最大安全电压,即将电池的电压增加到正常充电的电压即可,以保证电池充电时的安全性。
在一个实施例中,增加上述充电芯片的输出电压可以包括:检测电池的电池电量以及上述电池进入恒压充电阶段后的电池电压,并判断电池是否支持大于上述电池的最大工作电压的充电电压;根据检测到的电池电量、电池电压以及判断结果增加上述充电芯片的输出电压。在本实施例中,需要对电池是否进入恒压充电阶段进行判断,在确定电池进入恒压充电阶段,并且,电池的电量是没有充满的状态时,对电池执行充电相关操作。
在一个实施例中,根据检测到的上述电池电量、电池电压以及判断结果增加上述充电芯片的输出电压可以包括以下之一:在检测到的电池电量小于预定值、电池电压小于最大工作电压,且判断结果为上述电池不支持大于上述最大工作电压的充电电压的情况下,确定最大工作电压为增加后的充电芯片的输出电压;根据确定的上述增加后的充电芯片的输出电压增加上述充电芯片的输出电压;在上述检测到的电池电量小于预定值、电池电压小于上述最大工作电压,且上述判断结果为上述电池支持大于上述最大工作电压的充电电压的情况下,确定上述电池正常充电阶段的电压为增加后的充电芯片的输出电压;根据确定的上述增加后的充电芯片的输出电压增加上述充电芯片的输出电压。在本实施例中,上述中的电池电量的预设值可以是电池的100%,也可以是设定的电量值。并且,在对上述中的电池进行充电时,需要保证电池的电压处于安全的范围内,可以通过设置实时检测反馈机制对电池电压进行实施检测反馈。根据反馈的电池电压,不断增加输出电压,直到达到最大工作电压。并根据增加后的充电芯片的输出电压对电池进行充电。
在一个实施例中,利用增加后的上述充电芯片的输出电压对上述电池进行充电可以包括以下之一:在上述判断结果为上述电池不支持大于上述最大工作电压的充电电压的情况下,计算增加了输出电压的充电芯片的充电电流;利用上述充电电流和上述增加后的充电芯片的输出电压对上述电池进行充电;在上述判断结果为上述电池支持大于上述最大工作电压的充电电压的情况下,利用上述电池正常充电阶段的电压和上述电池正常充电阶段的电流对上述电池进行充电。在一实施例中,上述正常充电阶段为上述电池在进入上述恒压充电阶段之前的充电阶段。在本实施例中,在对电池进行充电的阶段中,也需要保证电池的充电电流处于安全的范围之内。
在一个实施例中,利用增加后的上述充电芯片的输出电压对上述电池进行充电时,上述方法还可以包括以下之一:在上述判断结果为上述电池不支持大于上述最大工作电压的充电电压的情况下,利用上述充电电流和上述电池电量计算出用于检测上述充电芯片的输出电压的第一检测时间,根据上述第一检测时间周期性地检测上述电池电压和/或电池电量;在上述判断结果为上述电池支持上述大于上述最大工作电压的充电电压的情况下,利用上述电池电量和上述电池正常充电阶段的电流计算出用于检测上述充电芯片的输出电压的第二检测时间,根据上述第二检测时间周期性地检测上述电池电压和/或电池电量。在本实施例中,在对电池进行充电的过程中,需要周期性地对电池电压进行检测,以保证电池的安全性。上述中的第一检测时间和第二检测时间即是对电池进行检测的时间周期。
在一个实施例中,在确定上述电池进入恒压充电阶段后,上述方法还可以包括以下之一:在确定电池电量为充满状态的情况下,停止对上述电池进行充电;在确定上述电池电压大于或者等于上述电池的最大工作电压的情况下,停止对上述电池进行充电。在本实施例中,上述中的对电池停止充电的条件可以根据电池的性能和需要进行设定。
综上,通过对电池最后阶段充电的管理,可以使得电池快速地充电,又可以保证电池的安全性,增加了用户体验。
下面结合实施例对本公开进行说明:
在符合本公开的一个实施例中:
下面以电子设备(对应上述中的终端或移动终端)的电池充电为例进行说明:本实施例是在电子设备电池充电电流逐渐减小阶段实现大电流充电,本实施例提供的充电方法包括以下内容:
电子设备电池的充电电压的设置结合电量计所检测的电池电量,在电池电量不满的情况下,即是在确定电池进入恒压充电阶段后(恒压充电阶段是指电池充电电流逐渐减少的阶段,即电池充入的电量不能成比例增加)继续增加电池的充电电压,而不限制在电池最大工作电压。从而增加最后阶段充电电流,通过电量计检测电池电量和计算(或反馈)的电芯处的真实电压是否达到最大工作电压,作为停止充电判断条件之一。本实施例中的电池可以是干电池、铅蓄电池或者锂电池。并且,在本实施例中,还可以在终端或其他电子设备上引入除上述类型之外的电池,采用更高耐压的电极材料和电解质材料。在电池充 电电流逐渐减少的阶段通过增加充电电压,保证电池接近充满时有足够的充电电流,减少充电时间。
图5是本实施例中的快速充电控制方法的流程图,如图5所示,本实施例提供的方法包括以下步骤。
在步骤1010中、终端充电芯片输出电压Vout第一次达到电池最大工作电压Vmax_bat时,实际加到电池电芯的电压Vchar_bat肯定小于Vmax_bat,即是电池进入了恒压充电阶段。上述中的Vout是用于给终端进行充电的最大电压,进入恒压充电阶段后,电池的充电电压会不断减小。
如图6所示,如果此时充电电流是Ichar_temp,则由于从充电芯片到电池电芯间充电线路有走线阻抗和连接器接触阻抗等(总的阻抗是Rdc),加到电池电芯的电压为:
Vchar_bat=Vout-Ichar_temp×Rdc         (1-1)
图6中充电线路阻抗引起Vout与Vchar_bat不一致。
在步骤1020中,读取用于测量电池电量的电量计,判断电池电量C_bat是否满足C_bat=100%,若满足则转入步骤1070,若不满足,则转入步骤1030。
在步骤1030中,暂时停止充电,并检测电池电压Vbat是否满足Vbat>=Vmax_bat,若满足则转入步骤1070,若不满足,则转入步骤1040。
步骤1020和步骤1030用于判断电池电量状态和开路电压(零负载电压)状态,确保电池继续充电是安全的。在电池的恒压充电阶段,需要不断地检测充电电压的安全,即需要保证在电池的整个充电阶段电池的性能是安全的。
在步骤1040中,判断电池种类,即判断加到电芯上的电压是否能超过电芯最大工作电压,如果能,则转入步骤1050,如果不能,则转入步骤1060。在检测电池的充电电压时,还需要检测电池的充电电压是否与电池的种类相匹配。避免超过不同的电池种类所能承受的最大充电电压。比如:通用的锂离子电池,加到的电芯的电压不能超过最大工作电压Vmax_bat。对于其他新型电池,则可能存在加到电池的电压可以超过Vmax_bat。
步骤1050对应支持高压充电的新型电池充电的步骤,在步骤1050中,根据电池电量C_bat和停止充电时测得的电池电压Vbat,计算得出按原充电电流Ichar0充电T0时间后才能充满,相应的T0为:
T0=(100%-C_bat)/Ichar0              (1-2)
计算得出T0后,在Ichar0充电T0/x(x≥1)时间后,再次对电池的安全性 进行检测,即步骤1020循环操作。为实现循环检测,使得电池的电量逼近充满状态,确保对电池充电电压控制的准确性和安全性,x的设定值可以更大。在一实施例中,x的设定可以是固定的,也可以是根据相关参数进行适当调整的。在一实施例中,相关参数包括电池的性能或者是电压的变化。
步骤1060是对应不支持高压充电的锂离子等电池进行充电的步骤。在步骤1060中,计算得出加到电池两端的电压Vchar_bat=Vmax_bat时的充电电流Ichar1,并计算得出采用Ichar1充电T1时间后才能充满。
首先Rdc表示充电芯片到电池间的走线阻抗和接触阻抗等,电池的电压被用户使用过程中不是恒定不变的,在充电时需精确计算。Rdc的测量是贯穿整个充电过程的,实时的测量更多是跟踪和修正,确保加到电池两端的电压是在安全范围之内的。Rdc的测量间隔可根据实际情况进行调整。
如图7所示,Rbat表示电池特性相关的电阻,包括电池内阻和由于充电化学反应对电荷的阻尼。由于Rdc每一次的测量是短暂的,Rbat在不同Vout下和测量过程中的变化可以忽略。
通过式(1-3)测量一系列不同Vout下的Ichar_temp,拟合得出Rdc:
Vout_1=Ichar_temp_1×(Rdc+Rbat)
Vout_2=Ichar_temp_2×(Rdc+Rbat)
Vout_N=Ichar_temp_N×(Rdc+Rbat)         (1-3)
在有了精确的Rdc后,可以计算得出加到电芯的电压Vchar_bat=Vmax_bat,充电芯片对应输出的电压Vout与Ichar1的约束关系为:
Vout=Ichar1×Rdc+Vmax_bat            (1-4)
通过调节充电芯片,使Vout和Ichar1达到式(1-4)的关系,这样就实现了加到电池电芯的电压达到Vmax_bat。
采用上述方法,在进入恒压充电阶段后,充电芯片输出电压从Vmax_bat增加到Vmax_bat+Ichar1*Rdc;相应的加到电池电芯的电压从Vbat_char增加到了Vmax_bat,而仍然保持在安全的电压范围。在一实施例中,在实际应用需要考虑到系统误差,阈值设定要留有安全余量。也就是充电芯片输出电压实际增加量应为Ichar1*Rdc-ΔV。其中,ΔV为实际系统误差引入的电压误差。
最后T1根据式(1-5)计算
T1=(100%-C_bat)/Ichar1              (1-5)
在一实施例中,本部分的计算中Vout和Ichar1约束关系也可以通过硬件手 段直接给出。比如我们可以在电芯的正负极处额外引出检测信号,在调节Vout时,实时检测确保加到电池电芯的电压为Vmax_bat。这样我们不用复杂的计算,通过实时检测直接给出相应的Vout和Ichar1,以及对应的T1。
通过步骤1060计算得出T1后,按Ichar1充电T1/x(x≥1)时间后,再次进行步骤1020循环。为实现循环检测,逐渐使电池的电量逼近充满状态,确保电池的充电电压控制的准确性和安全性,x的设定值可以更大。在一实施例中,x的设定可以是固定的,也可以是根据相关参数进行适当调整的。
考虑到计算误差和安全性问题,实际设置的值会比此处计算要小。在一实施例中,此处所采用值的大小决定于所用电子设备应用场景所带来的误差和多个模块所用器件误差综合得出的总误差大小。
在步骤1070中,停止充电。
在一实施例中,考虑到电池充电的安全性,防止在外界硬件参数突然变化而软件失控,需要增加保护手段。包括,用计时器对软件执行代码进行监控,确保在计时器超时(也就是软件不受控制时)充电芯片输出电压在电池安全电压范围以内。在一实施例中,也可以采用上述所说,在电芯额外引出检测信号,作为充电安全停止的出发事件。
在符合本公开的一个实施例中:
下面根据实际终端设计中的参数,给出本公开中对于锂离子电池充电方法中涉及的计算进行举例。在计算之前,为了便于定量计算,首先确定两个近似。
1)相关技术中,充电电流逐渐减少的阶段中电流减少速度也越来越慢,为计算线性减少的近似值,设定电流减少的速度是恒定的。
2)由于电池的电解质内部不是时刻均匀的,电解质在实际的充电中阻尼作用模型也是复杂变化的,下面定量计算中不考虑电解质阻尼作用的变化。但是实际算法中要在充电过程中时刻进行检测和计算,以确保充电参数(电池最大电压等)是可控的。
设定最大充电电流是Ichar_max=1安培(A),电池最大工作电压Vmax_bat=4.3伏特(V),从充电芯片到电池电极的整个走线电阻、接触电阻和串联期间电阻等总电阻为Rdc=100毫欧(mohm)。
相关技术的充电方案中,Vout=4.3V,Vchar_bat=4.3V-1A*100mohm=4.2V,充电电流开始减少,从充电电流开始减少到电池充满,平均充电电流Ichar_average=Ichar_max/2=500毫安(mA)。
采用本公开方案,达到上述电流逐渐减少状态时,根据Rdc值增加Vout,保证Vout=Vchar_bat+Ichar_temp*100mohm成立。在不考虑电解质不均匀的情况下,加到电解质两端电压达到4.3V之前电解质能维持吸收1A的充电电流。从而整个充电的平均电流能按照1A来计算,是上述的充电电流较少的阶段平均电流的2倍,这个阶段的充电时间可以减少50%。
如果从充电电流开始减少到电池充满的这段时间,占整个充电时间的30%,那么采用本方案的充电方法比相关技术中的充电方案花费的时间少15%。
采用本方案后,终端电池充电曲线如图8所示。图8右边部分,给出了采用本方案后电池端电压电流变化走向示意,以及相对相关技术中所采用方案所节省的时间部分。
以上所述控制方法包括终端电池充电控制,但不限制于终端的电子产品,任何具有充电智能控制电子设备都可以采用此方案所提出的控制方法。
综上所述,本实施例通过实时跟踪终端或其他电子产品硬件状态,校准调整充电参数,减少终端或其他电子产品电池最后阶段的充电时间,从而减少电池的整体充电时间。实现保证安全性前提下,不影响续航能力和不增加成本情况下实现电池更快充电,提升用户体验。在采用更高耐压材料的电池上面,采用本实施例的技术方案,将有更大的技术优势和商用价值。
通过以上的实施方式的描述,本领域的技术人员可以了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括一个或多个指令用以使得一台终端设备(可以是手机、计算机、服务器或者网络设备等)执行本公开任意实施例所述的方法。
在本实施例中还提供了一种充电装置,该装置设置为实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件、或者软件和硬件的组合的实现也是可能并被构想的。
图9是一实施例提供的充电装置的结构框图。如图9所示,该装置包括:增加模块902和充电模块904,下面对该装置进行说明。
增加模块902,设置为在对上述电池进行充电的过程中,在确定上述电池进入恒压充电阶段后,增加充电芯片的输出电压;充电模块904,连接至上述中的增加模块902,设置为利用增加后的上述充电芯片的输出电压对上述电池进行充电。
图10是一实施例提供的充电装置的增加模块的结构框图。如图10所示,在一实施例中,增加模块902包括:检测单元1002和增加单元1004,下面对增加模块902进行说明。
检测单元1002,设置为检测上述电池的电量以及上述电池进入恒压充电阶段后的电池电压;判断模块1004,设置为判断电池是否支持大于电池的最大工作电压的充电电压;增加单元1006,连接至上述中的检测单元1002以及判断单元1004,设置为根据检测到的上述电池电量、电池电压以及判断结果增加上述充电芯片的输出电压。
在一个实施例中,上述增加单元1006包括以下之一:第一增加子单元,设置为在上述检测到的电池电量小于预定值、电池电压小于上述最大工作电压,且上述判断结果为上述电池不支持大于上述最大工作电压的充电电压的情况下,确定上述最大工作电压为增加后的充电芯片的输出电压;根据确定的上述增加后的充电芯片的输出电压增加上述充电芯片的输出电压;第二增加子单元,设置为在上述检测到的电池电量小于预定值、电池电压小于上述最大工作电压,且上述判断结果为上述电池支持大于上述最大工作电压的充电电压的情况下,确定上述电池正常充电阶段的电压为增加后的充电芯片的输出电压;根据确定的上述增加后的充电芯片的输出电压增加上述充电芯片的输出电压。
在一个实施例中,上述中的充电模块904是设置为通过以下方式之一实现利用增加后的上述充电芯片的输出电压对上述电池进行充电:在上述判断结果为上述电池不支持大于上述最大工作电压的充电电压的情况下,计算增加了输出电压的充电芯片的充电电流;利用上述充电电流和上述增加后的充电芯片的输出电压对上述电池进行充电;在上述判断结果为上述电池支持大于上述最大工作电压的充电电压的情况下,利用上述电池正常充电阶段的电压和上述电池正常充电阶段的电流对上述电池进行充电,其中,上述正常充电阶段为上述电池在进入上述恒压充电阶段之前的充电阶段。
在一个实施例中,上述装置还可以包括以下之一:计算模块,设置为利用增加后的上述充电芯片的输出电压对上述电池进行充电之前,在上述判断结果 为上述电池不支持大于上述最大工作电压的充电电压的情况下,利用上述充电电流和上述电池电量计算出用于检测上述充电芯片的输出电压的第一检测时间,根据上述第一检测时间周期性地检测上述电池电压和/或电池电量;在上述判断结果为上述电池支持上述大于上述最大工作电压的充电电压的情况下,利用上述电池电量和上述电池正常充电阶段的电流计算出用于检测上述充电芯片的输出电压的第二检测时间,根据上述第二检测时间周期性地检测上述电池电压和/或电池电量。
在一个实施例中,上述装置还包括第一停止模块,设置为在确定上述电池进入恒压充电阶段后,在确定电池电量为充满状态的情况下,停止对上述电池进行充电;或者,在确定上述电池的电压大于或者等于上述电池的最大工作电压的情况下,停止对上述电池进行充电。
本公开的一个实施例,还提供了一种存储介质,上述存储介质包括存储的程序,上述程序运行时执行上述的充电方法。
本公开的一个实施例,还提供了一种处理器,上述处理器设置为运行程序,上述程序运行时执行上述的充电方法。
上述一个或多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述一个或多个模块均位于同一处理器中;或者,上述一个或多个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述的充电方法。在本实施例中,上述存储介质可以被设置为存储用于执行以上多个步骤的程序代码。
在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等可以存储程序代码的介质。
本公开的实施例还提供了一种处理器,该处理器设置为运行程序,该程序运行时执行上述的充电方法。
本实施例中的示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
上述的本公开的至少一个模块或至少一个步骤可以用通用的计算装置来实现,上述至少一个模块或至少一个步骤可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,上述至少一个模块或至少一个步骤可以用计算装置可执行的程序代码来实现,从而,可以将上述至少一 个模块或至少一个步骤存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将上述至少一个模块或至少一个步骤分别制作成一个集成电路模块,或者将上述至少一个模块或至少一个步骤中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的实施例而已,并不用于限制本公开。

Claims (11)

  1. 一种充电方法,包括:
    在对电池进行充电的过程中,在确定所述电池进入恒压充电阶段后,增加充电芯片的输出电压;
    利用增加后的所述充电芯片的输出电压对所述电池进行充电。
  2. 根据权利要求1所述的方法,其中,所述增加充电芯片的输出电压包括:
    检测所述电池的电池电量以及所述电池进入所述恒压充电阶段后的电池电压,并判断所述电池是否支持大于所述电池的最大工作电压的充电电压;
    根据检测到的所述电池电量、所述电池电压以及判断结果增加所述充电芯片的输出电压。
  3. 根据权利要求2所述的方法,其中,所述根据检测到的所述电池电量、所述电池电压以及判断结果增加所述充电芯片的输出电压包括以下之一:
    在检测到的所述电池电量小于预定值、所述电池电压小于所述最大工作电压,且所述判断结果为所述电池不支持大于所述最大工作电压的充电电压的情况下,确定所述最大工作电压为增加后的充电芯片的输出电压;根据确定的所述增加后的充电芯片的输出电压增加所述充电芯片的输出电压;
    在检测到的所述电池电量小于预定值、所述电池电压小于所述最大工作电压,且所述判断结果为所述电池支持大于所述最大工作电压的充电电压的情况下,确定所述电池正常充电阶段的电压为增加后的充电芯片的输出电压;根据确定的所述增加后的充电芯片的输出电压增加所述充电芯片的输出电压,其中,所述正常充电阶段为所述电池在进入所述恒压充电阶段之前的充电阶段。
  4. 根据权利要求3所述的方法,其中,所述利用增加后的充电芯片的输出电压对所述电池进行充电包括以下之一:
    在所述判断结果为所述电池不支持大于所述最大工作电压的充电电压的情况下,计算增加了输出电压的充电芯片的充电电流;利用所述充电电流和所述增加后的充电芯片的输出电压对所述电池进行充电;
    在所述判断结果为所述电池支持大于所述最大工作电压的充电电压时,利用所述电池正常充电阶段的电压和所述电池正常充电阶段的电流对所述电池进行充电。
  5. 根据权利要求4所述的方法,其中,在所述利用所述增加后的充电芯片的输出电压对所述电池进行充电的情况下,还包括以下之一:
    在所述判断结果为所述电池不支持大于所述最大工作电压的充电电压的情 况下,利用所述充电电流和所述电池电量计算出用于检测所述充电芯片的输出电压的第一检测时间,根据所述第一检测时间周期性地检测所述电池电压和电池电量中的至少一个;
    在所述判断结果为所述电池支持所述大于所述最大工作电压的充电电压时,利用所述电池电量和所述电池正常充电阶段的电流计算出用于检测所述充电芯片的输出电压的第二检测时间,根据所述第二检测时间周期性地检测所述电池电压和电池电量中的至少一个。
  6. 根据权利要求2-5任一项所述的方法,其中,在确定所述电池进入恒压充电阶段后,还包括以下之一:
    在确定所述电池电量为充满状态的情况下,停止对所述电池进行充电;
    在确定所述电池电压大于或者等于所述电池的最大工作电压的情况下,停止对所述电池进行充电。
  7. 一种充电装置,包括:
    增加模块,设置为在对电池进行充电的过程中,在确定所述电池进入恒压充电阶段后,增加充电芯片的输出电压;
    充电模块,设置为利用增加后的所述充电芯片的输出电压对所述电池进行充电。
  8. 根据权利要求7所述的装置,其中,所述增加模块包括:
    检测单元,设置为检测所述电池的电池电量以及所述电池进入所述恒压充电阶段后的电池电压;
    判断模块,设置为判断所述电池是否支持大于所述电池的最大工作电压的充电电压;
    增加单元,设置为根据检测到的所述电池电量、所述电池电压以及判断结果增加所述充电芯片的输出电压。
  9. 根据权利要求8所述的装置,其中,所述增加单元包括以下之一:
    第一增加子单元,设置为在检测到的所述电池电量小于预定值、所述电池电压小于所述最大工作电压,且所述判断结果为所述电池不支持大于所述最大工作电压的充电电压的情况下,确定所述最大工作电压为增加后的充电芯片的输出电压;根据确定的所述增加后的充电芯片的输出电压增加所述充电芯片的输出电压;
    第二增加子单元,设置为在检测到的所述电池电量小于预定值、所述电池 电压小于所述最大工作电压,且所述判断结果为所述电池支持大于所述最大工作电压的充电电压的情况下,确定所述电池正常充电阶段的电压为增加后的充电芯片的输出电压;根据确定的所述增加后的充电芯片的输出电压增加所述充电芯片的输出电压,其中,所述正常充电阶段为所述电池在进入所述恒压充电阶段之前的充电阶段。
  10. 一种存储介质,所述存储介质包括存储的程序,所述程序运行时执行权利要求1至6中任一项所述的充电方法。
  11. 一种处理器,所述处理器设置为运行程序,所述程序运行时执行权利要求1至6中任一项所述的充电方法。
PCT/CN2018/106163 2017-09-19 2018-09-18 充电方法、装置、存储介质及处理器 WO2019057028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710845771.4 2017-09-19
CN201710845771.4A CN109525003B (zh) 2017-09-19 2017-09-19 充电方法、装置、存储介质及处理器

Publications (1)

Publication Number Publication Date
WO2019057028A1 true WO2019057028A1 (zh) 2019-03-28

Family

ID=65768303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106163 WO2019057028A1 (zh) 2017-09-19 2018-09-18 充电方法、装置、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN109525003B (zh)
WO (1) WO2019057028A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289604A1 (en) * 2008-05-26 2009-11-26 Steve Carkner Remote battery charging system with dynamic voltage adjustment and method of use
CN106165237A (zh) * 2014-04-04 2016-11-23 索尼公司 充电装置、充电控制方法、蓄电装置、蓄能装置、动力系统以及电动车辆
CN106549465A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 充电控制方法、装置、系统和终端
CN106655396A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 充电控制方法、装置及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303155B2 (ja) * 1995-01-19 2002-07-15 京セラ株式会社 バッテリチャージャ
US8754614B2 (en) * 2009-07-17 2014-06-17 Tesla Motors, Inc. Fast charging of battery using adjustable voltage control
US20140253051A1 (en) * 2013-03-07 2014-09-11 Apple Inc. Charging a battery in a portable electronic device
CN104201727B (zh) * 2014-08-01 2017-04-12 惠州Tcl移动通信有限公司 一种快速充电方法及装置
TWI687021B (zh) * 2014-10-28 2020-03-01 瑞士商菲利浦莫里斯製品股份有限公司 適應性電池充電方法、充電裝置、電腦程式及電腦可讀取媒體
CN105939040A (zh) * 2016-06-20 2016-09-14 深圳天珑无线科技有限公司 一种电池的充电电路、充电方法及电子设备
CN106299512B (zh) * 2016-08-29 2019-01-18 北京小米移动软件有限公司 充电方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289604A1 (en) * 2008-05-26 2009-11-26 Steve Carkner Remote battery charging system with dynamic voltage adjustment and method of use
CN106165237A (zh) * 2014-04-04 2016-11-23 索尼公司 充电装置、充电控制方法、蓄电装置、蓄能装置、动力系统以及电动车辆
CN106549465A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 充电控制方法、装置、系统和终端
CN106655396A (zh) * 2017-01-13 2017-05-10 广东欧珀移动通信有限公司 充电控制方法、装置及终端

Also Published As

Publication number Publication date
CN109525003A (zh) 2019-03-26
CN109525003B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
EP2149958B1 (en) Battery pack, information processing apparatus, charge control system, charge control method by battery pack, and charge control method by charge control system
US10093198B2 (en) Maintaining a vehicle battery
CN103606716B (zh) 一种充电方法及装置
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
CN110729790B (zh) 充电方法、装置、计算机设备与存储介质
CN110546846B (zh) 包括双向充电调节器的混合电池组
CN106338690A (zh) 一种备用电池检测方法、装置、系统及供电方法
CN107437642B (zh) 一种智能充电方法及装置
WO2023125252A1 (zh) 充电控制方法、电子设备和计算机可读存储介质
CN112448434B (zh) 一种充电控制方法及充电控制装置
WO2022061517A1 (zh) 电池的保护电路、方法、电池及介质
CN113359043A (zh) 电芯自放电电流检测方法、装置、设备及计算机存储介质
US20140180614A1 (en) System And Method For Selective Estimation Of Battery State With Reference To Persistence Of Excitation And Current Magnitude
CN108919132B (zh) 跟踪电池过放电的方法和装置、芯片、电池及飞行器
CN105826959A (zh) 一种充电的方法、装置及移动终端
CN113741674A (zh) 笔记本电脑功耗控制方法、系统、终端及存储介质
CN112534675A (zh) 快速电池充电
WO2021169162A1 (zh) 电池备电单元监测方法、装置、服务器及可读存储介质
CN103208657B (zh) 基于握手技术通信的蓄电池组在线均衡活化装置
CN111130177B (zh) 一种bbu的管理方法、系统及装置
CN108023371B (zh) 锂电池的贮存处理装置及贮存处理方法
WO2019057028A1 (zh) 充电方法、装置、存储介质及处理器
CN116114137A (zh) 电子设备控制方法、电子设备及存储介质
CN107910909A (zh) 一种pos供电系统及其电量管理方法
TW471194B (en) Intelligent protection circuit and method for Li-ion battery set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18858832

Country of ref document: EP

Kind code of ref document: A1