WO2019057006A1 - 一种电池检测方法 - Google Patents

一种电池检测方法 Download PDF

Info

Publication number
WO2019057006A1
WO2019057006A1 PCT/CN2018/105973 CN2018105973W WO2019057006A1 WO 2019057006 A1 WO2019057006 A1 WO 2019057006A1 CN 2018105973 W CN2018105973 W CN 2018105973W WO 2019057006 A1 WO2019057006 A1 WO 2019057006A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charge
curve
value
voltage
Prior art date
Application number
PCT/CN2018/105973
Other languages
English (en)
French (fr)
Inventor
曾涛
Original Assignee
晶晨半导体(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶晨半导体(上海)股份有限公司 filed Critical 晶晨半导体(上海)股份有限公司
Priority to US16/652,582 priority Critical patent/US11215672B2/en
Publication of WO2019057006A1 publication Critical patent/WO2019057006A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to the field of battery detection technologies, and in particular, to a battery detection method.
  • PMU Power Management Unit
  • the PMU device is responsible for the charge and discharge management of the battery.
  • most PMUs have built-in coulomb counters, and the calculation of the battery power is also done by the coulomb counter.
  • Different batteries tend to have slightly different usage characteristics due to factors such as manufacturer, process, and materials.
  • each PMU manufacturer will often provide a development platform, put the battery sample on the platform, operate the PMU device through the host computer to control the battery charge and discharge, and then calculate the power characteristic curve and other related parameters.
  • the battery calibration platform provided by PMU device manufacturers has the following disadvantages: usually only individual battery samples can be calibrated, and the data is not universal.
  • the battery incoming materials are often not fixed during the production process, and there may be multiple suppliers.
  • the number of calibration platforms is often limited, often only one. It takes time to calibrate multiple batteries, which is time consuming and inefficient; battery characteristics, especially internal resistance parameters, are greatly affected by the actual printed circuit board layout of the hardware, since calibration is only provided by PMU manufacturers.
  • the battery parameters obtained by calibration are not applicable to the target operating platform; in the battery calibration scheme provided by the manufacturer, the charging and discharging efficiency of the battery is often not considered.
  • the present invention provides a battery detecting method, which includes:
  • Step S1 selecting a preset number of voltage calibration values within a preset voltage interval according to a rated parameter of the battery;
  • Step S2 performing a charge and discharge test on the battery, and recording a coulomb meter reading and a charge and discharge curve of the battery corresponding to each of the voltage calibration values;
  • step S3 the charge and discharge curve is calibrated according to the coulomb reading.
  • the preset number is 16.
  • the predetermined voltage interval is 3.0 to 4.2V.
  • the charge and discharge curve includes a charging curve and a discharging curve.
  • step S2 while recording the charging curve and the discharge curve, respectively extracting energy corresponding to each of the voltage calibration values in the charging curve and the discharging curve value.
  • step S2 an energy ratio value corresponding to each of the voltage calibration values in the charging curve and the discharge curve is separately extracted;
  • the energy ratio value is a ratio of the energy value to a nominal total energy value of the battery.
  • step S1 a zero power reference value and a full power reference value are set in the voltage calibration value.
  • the full charge reference value is 4.15V.
  • a battery detection method proposed by the present invention can obtain an accurate battery charge and discharge curve without acquiring data from a calibration platform provided by a manufacturer, and can adapt to various battery models, and has high reliability and real-time performance.
  • FIG. 1 is a flow chart showing the steps of a battery detecting method according to an embodiment of the present invention
  • FIG. 2 is a graph showing energy versus voltage of a battery detecting method according to an embodiment of the present invention
  • FIG. 3 is a graph showing charging, discharging, and the difference between the two in a battery detecting method according to an embodiment of the present invention.
  • a battery detection method which may include:
  • Step S1 selecting a preset number of voltage calibration values within a preset voltage interval according to a rated parameter of the battery;
  • Step S2 performing a charge and discharge test on the battery, and recording a coulomb meter reading and a charge and discharge curve corresponding to each voltage calibration value of the battery;
  • step S3 the charge and discharge curve is calibrated based on the coulomb reading.
  • the power P U*I, wherein U is a voltage, and I is a current.
  • U a voltage
  • I a current
  • C the change in the coulomb count.
  • the present invention can participate in the calculation of the battery curve parameters by taking the product of the change value of the coulomb count and the battery voltage as a result, and can avoid the error caused by calculating the battery curve parameter based only on the coulomb reading.
  • the preset number can be 16.
  • the preset voltage interval may be 3.0 to 4.2V.
  • the charge and discharge curve includes a charge curve and a discharge curve.
  • step S2 while the charging curve and the discharging curve are recorded, the energy values corresponding to each voltage calibration value in the charging curve and the discharging curve are also respectively extracted.
  • step S2 an energy ratio value corresponding to each voltage calibration value in the charging curve and the discharging curve is also separately extracted;
  • the energy ratio value is the ratio of the energy value to the rated total energy value of the battery.
  • the graph of the formed energy as a function of voltage can be as shown in FIG. 2 .
  • step S1 a zero power reference value and a full power reference value are set in the voltage calibration value.
  • the zero power reference value is 3.55V
  • the full charge reference value is 4.15V.
  • FIG. 3 is a percentage curve parameter obtained by using the 3.55V as the zero power reference value and 4.15V as the full power reference value on a certain type of battery.
  • the two groups of charge and discharge are discharged. Due to the internal resistance, the percentage of charge at the same voltage is higher than the percentage at the time of charging (the horizontal axis is the voltage and the vertical axis is the percentage value).
  • the (diff) curve is the difference between the two.
  • Vbat I ⁇ rdc+ocv.
  • I the charging current configured by the PMU
  • ocv the open circuit voltage of the battery.
  • I the charging current configured by the PMU
  • ocv the open circuit voltage of the battery.
  • Vbat Lo I Lo ⁇ rdc+ocv
  • Vbat Hi I Hi ⁇ rdc+ocv

Abstract

本发明涉及电池检测技术领域,尤其涉及一种电池检测方法,其中,包括:步骤S1,根据一电池的额定参数,在一预设电压区间内选取预设数量的电压标定值;步骤S2,对电池进行充放电测试,并记录电池对应每个电压标定值的库仑计读数以及充放电曲线;步骤S3,根据库仑计读数对充放电曲线进行校准;上述的技术方案能够获取精确的电池充放电曲线,不受厂商提供的校准平台的限制,能够适应各种电池型号,可靠性和实时性高。

Description

一种电池检测方法 技术领域
本发明涉及电池检测技术领域,尤其涉及一种电池检测方法。
背景技术
随着嵌入式和智能平台的普及,各种手持设备的出货量得到了爆发性的增长。在诸如平板电脑、智能手机等手持平台上,电池和PMU(Power Management Unit,电源管理单元)设备无疑是很重要的一个元器件。PMU设备负责对电池的充放电管理,目前大多数PMU都內建库仑计,对电池电量的计算也都是通过库仑计来完成。而不同的电池往往会由于厂商、工艺、材料等因素,在使用特性上略有差异。为了精确计算电池的电量,各PMU厂商往往会提供一个开发平台,将电池样品放在平台上,通过上位机操作PMU设备控制电池充放电,进而计算电量特性曲线以及其他相关参数。
PMU器件厂商提供的电池校准平台存在如下缺点:通常只能校准个别电池样品,结果数据并不具备普适性;生产过程中电池来料往往不固定,可能存在多家供货商,而厂商提供的校准平台数量往往有限,很多时候只有一个。要校准多个电池时得排队处理,这比较耗费时间,显得效率不高;电池特性,尤其是内阻参数,受硬件实际的印制电路板布局影响很大,由于校准只在PMU厂商提供的开发平台上进行,显然校准得到的电池部分参数并不适用于目标运行平台;厂商提供的电池校准方案中,往往没有考虑电池的充放电效率。由于充进去的电 量并不能100%的转换成能量储存到电池中,这就造成一段时间的误差积累之后,软件根据参数计算得到的电量百分比并不准确。这时候容易出现UI上显示电池电量还有100%,实际却很快关机的情况。
发明内容
针对上述问题,本发明提出了一种电池检测方法,其中,包括:
步骤S1,根据一电池的额定参数,在一预设电压区间内选取预设数量的电压标定值;
步骤S2,对所述电池进行充放电测试,并记录所述电池对应每个所述电压标定值的库仑计读数以及充放电曲线;
步骤S3,根据所述库仑计读数对所述充放电曲线进行校准。
上述的电池检测方法,其中,所述预设数量为16个。
上述的电池检测方法,其中,所述预设电压区间为3.0~4.2V。
上述的电池检测方法,其中,所述充放电曲线包括充电曲线和放电曲线。
上述的电池检测方法,其中,所述步骤S2中,记录所述充电曲线和所述放电曲线的同时,还分别提取所述充电曲线和所述放电曲线中对应每个所述电压标定值的能量值。
上述的电池检测方法,其中,所述步骤S2中,还分别提取所述充电曲线和所述放电曲线中对应每个所述电压标定值的能量比率值;
所述能量比率值为所述能量值占所述电池的额定总能量值的比率。
上述的电池检测方法,其中,所述步骤S1中,所述电压标定值中设定有一零电量参考值和一满电量参考值。
上述的电池检测方法,其中,所述零电量参考值为3.55V;
所述满电量参考值为4.15V。
有益效果:本发明提出的一种电池检测方法能够获取精确的电池充放电曲线,无需从厂商提供的校准平台获取数据,且能够适应各种电池型号,可靠性和实时性高。
附图说明
图1为本发明一实施例中电池检测方法的步骤流程图;
图2为本发明一实施例中电池检测方法的能量随电压的曲线图;
图3为本发明一实施例中电池检测方法的充电、放电及两者差值的曲线图。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
在一个较佳的实施例中,如图1所示,提出了一种电池检测方法,其中,可以包括:
步骤S1,根据一电池的额定参数,在一预设电压区间内选取预设数量的电压标定值;
步骤S2,对电池进行充放电测试,并记录电池对应每个电压标定值的库仑计读数以及充放电曲线;
步骤S3,根据库仑计读数对充放电曲线进行校准。
上述技术方案中,功率P=U*I,其中U为电压,I为电流,举例来说在电池电压为3.0v时给电池充进去1A的电流,和电池电压达到4V时候给电池充进去1A的电流,这两种情况下流入电池的功率是 不一样的。又有能量E=P*T=(U*I)*T=U*C。其中C为库仑计的变化值。本发明可以以库仑计的变化值和电池电压的乘积作为结果参与计算电池曲线参数,能够避免仅根据库仑计读数来计算电池曲线参数带来的误差。
在一个较佳的实施例中,预设数量可以为16个。
在一个较佳的实施例中,预设电压区间可以为3.0~4.2V。
在一个较佳的实施例中,充放电曲线包括充电曲线和放电曲线。
上述实施例中,优选地,步骤S2中,记录充电曲线和放电曲线的同时,还分别提取充电曲线和放电曲线中对应每个电压标定值的能量值。
上述实施例中,优选地,步骤S2中,还分别提取充电曲线和放电曲线中对应每个电压标定值的能量比率值;
能量比率值为能量值占电池的额定总能量值的比率。
上述技术方案中,所形成的能量随电压变化的曲线图可以如图2所示。
在一个较佳的实施例中,步骤S1中,电压标定值中设定有一零电量参考值和一满电量参考值。
上述实施例中,优选地,零电量参考值为3.55V;
满电量参考值为4.15V。
上述技术方案中,图3是本方案在某型号电池上,以3.55V作为零电量参考值,4.15V作为满电量参考值得到的百分比曲线参数。分充电(charge)和放电(discharge)两组曲线,由于内阻的作用,同等电压下放电时候的电量百分比要高于充电时候的百分比(横轴为电压,纵轴为百分比值),差值(diff)曲线为两者之差。
具体地,对于内阻的计算还可以采用以下方法:Vbat=I×rdc+ocv。其中,Vbat为PMU测得的电池电压,I为PMU配置的充电电流,ocv为电池开路电压。在充电过程中,短时间内ocv几乎不会变化,因此我们可以通过控制充电电流的高、低来计算内阻。先以较小的电流I Lo充电,记录下此时的I Lo和较小的电压Vbat Lo,然后再以较大的电流I Hi充电,再记录下此时的I Hi和较大的电压Vbat Hi,则有:
Vbat Lo=I Lo×rdc+ocv
Vbat Hi=I Hi×rdc+ocv
上面两个等式即可求得内阻rdc的值:
Figure PCTCN2018105973-appb-000001
通过说明和附图,给出了具体实施方式的特定结构的典型实施例,基于本发明精神,还可作其他的转换。尽管上述发明提出了现有的较佳实施例,然而,这些内容并不作为局限。
对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

Claims (8)

  1. 一种电池检测方法,其特征在于,包括:
    步骤S1,根据一电池的额定参数,在一预设电压区间内选取预设数量的电压标定值;
    步骤S2,对所述电池进行充放电测试,并记录所述电池对应每个所述电压标定值的库仑计读数以及充放电曲线;
    步骤S3,根据所述库仑计读数对所述充放电曲线进行校准。
  2. 根据权利要求1所述的电池检测方法,其特征在于,所述预设数量为16个。
  3. 根据权利要求1所述的电池检测方法,其特征在于,所述预设电压区间为3.0~4.2V。
  4. 根据权利要求1所述的电池检测方法,其特征在于,所述充放电曲线包括充电曲线和放电曲线。
  5. 根据权利要求4所述的电池检测方法,其特征在于,所述步骤S2中,记录所述充电曲线和所述放电曲线的同时,还分别提取所述充电曲线和所述放电曲线中对应每个所述电压标定值的能量值。
  6. 根据权利要求5所述的电池检测方法,其特征在于,所述步骤S2中,还分别提取所述充电曲线和所述放电曲线中对应每个所述电压标定值的能量比率值;
    所述能量比率值为所述能量值占所述电池的额定总能量值的比 率。
  7. 根据权利要求1所述的电池检测方法,其特征在于,所述步骤S1中,所述电压标定值中设定有一零电量参考值和一满电量参考值。
  8. 根据权利要求7所述的电池检测方法,其特征在于,所述零电量参考值为3.55V;
    所述满电量参考值为4.15V。
PCT/CN2018/105973 2017-09-21 2018-09-17 一种电池检测方法 WO2019057006A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,582 US11215672B2 (en) 2017-09-21 2018-09-17 Battery detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710861595.3 2017-09-21
CN201710861595.3A CN107741566B (zh) 2017-09-21 2017-09-21 一种电池检测方法

Publications (1)

Publication Number Publication Date
WO2019057006A1 true WO2019057006A1 (zh) 2019-03-28

Family

ID=61236126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105973 WO2019057006A1 (zh) 2017-09-21 2018-09-17 一种电池检测方法

Country Status (3)

Country Link
US (1) US11215672B2 (zh)
CN (1) CN107741566B (zh)
WO (1) WO2019057006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610449A (zh) * 2020-06-09 2020-09-01 深圳市亿道数码技术有限公司 一种基于mtk平台自制电池曲线数据方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
CN107741566B (zh) * 2017-09-21 2021-03-09 晶晨半导体(上海)股份有限公司 一种电池检测方法
CN111555389A (zh) * 2020-05-15 2020-08-18 歌尔智能科技有限公司 电池电量的计算方法、装置、设备及计算机可读存储介质
CN112185007B (zh) * 2020-09-07 2023-04-28 杭州协能科技股份有限公司 一种电池计费的控制方法及控制系统
CN112104028B (zh) * 2020-09-10 2022-05-10 歌尔科技有限公司 充电设备、无线耳机的电量修正方法和可读存储介质
CN112924875B (zh) * 2021-01-28 2024-01-09 维沃移动通信有限公司 电池检测方法、装置和电子设备
CN114865117B (zh) * 2022-05-27 2022-11-11 上海玫克生储能科技有限公司 锂离子电池电极嵌锂量检测方法、装置及电池管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262216A (zh) * 2010-05-29 2011-11-30 比亚迪股份有限公司 一种可充电电池的电量检控方法和装置
CN103091641A (zh) * 2012-01-20 2013-05-08 威盛电子股份有限公司 放电曲线的校正系统与电池的放电曲线的校正方法
CN103592508A (zh) * 2013-12-04 2014-02-19 珠海全志科技股份有限公司 一种用于库仑计量的电流检测装置
CN104991189A (zh) * 2015-04-13 2015-10-21 中国东方电气集团有限公司 一种电池荷电状态的在线校准方法
CN107741566A (zh) * 2017-09-21 2018-02-27 晶晨半导体(上海)股份有限公司 一种电池检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061965B2 (ja) * 2002-05-14 2008-03-19 ソニー株式会社 電池容量算出方法
CN101430366B (zh) * 2008-12-12 2012-02-15 苏州金百合电子科技有限公司 电池荷电状态检测方法
CN102759713B (zh) * 2011-04-29 2015-08-26 比亚迪股份有限公司 一种电池能量效率测试装置及其测试方法
CN103135056A (zh) * 2011-11-25 2013-06-05 新德科技股份有限公司 电池容量预测装置及其预测方法
US20150234028A1 (en) * 2014-02-19 2015-08-20 Energy Pass Incorporation State of Charge Gauge Device and State of Charge Gauge Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262216A (zh) * 2010-05-29 2011-11-30 比亚迪股份有限公司 一种可充电电池的电量检控方法和装置
CN103091641A (zh) * 2012-01-20 2013-05-08 威盛电子股份有限公司 放电曲线的校正系统与电池的放电曲线的校正方法
CN103592508A (zh) * 2013-12-04 2014-02-19 珠海全志科技股份有限公司 一种用于库仑计量的电流检测装置
CN104991189A (zh) * 2015-04-13 2015-10-21 中国东方电气集团有限公司 一种电池荷电状态的在线校准方法
CN107741566A (zh) * 2017-09-21 2018-02-27 晶晨半导体(上海)股份有限公司 一种电池检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610449A (zh) * 2020-06-09 2020-09-01 深圳市亿道数码技术有限公司 一种基于mtk平台自制电池曲线数据方法及系统
CN111610449B (zh) * 2020-06-09 2022-11-25 深圳市亿道数码技术有限公司 一种基于mtk平台自制电池曲线数据方法及系统

Also Published As

Publication number Publication date
CN107741566B (zh) 2021-03-09
US11215672B2 (en) 2022-01-04
US20200241076A1 (en) 2020-07-30
CN107741566A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2019057006A1 (zh) 一种电池检测方法
US10191118B2 (en) Battery DC impedance measurement
TWI641855B (zh) Battery and battery pack state detecting method and device
CN110709717B (zh) 基于松弛电压估计移动设备的电池健康的方法
US9063201B2 (en) Battery charge determination
CN106646256B (zh) 电池容量计算方法
TWI491901B (zh) Battery metering method, metering device and battery-powered equipment
CN110506215A (zh) 一种确定电池内短路的方法及装置
WO2019140956A1 (zh) 电量计量精度检测方法、其装置及计算机存储介质
CN109991545B (zh) 一种电池包电量检测方法、装置及终端设备
CN104833942B (zh) 电能表电池功耗自动监测仪及使用方法
CN106324510B (zh) 一种电池检测方法和装置
CN107037375B (zh) 电池直流内阻测量方法及装置
CN113359044A (zh) 测量电池剩余容量的方法、装置及设备
CN105738828B (zh) 一种电池容量精准测量方法
US20100063755A1 (en) Methods and systems for auto-calibrated power metering in portable information handling systems
WO2018170775A1 (zh) 电量计及其电流采集校准电路和校准方法
TWI636271B (zh) 電池模組的電量量測裝置及方法
CN110133528A (zh) 一种在线自学习锂电池的内阻测量装置及其测量方法
TWI505530B (zh) 電池容量檢測系統
TWI440279B (zh) 耗電量測裝置、耗電量測方法及其電腦可讀取記錄媒體
CN104698253A (zh) 一种锂电池开路电压的测定方法
CN107918102A (zh) 用于获取电池电量百分比的方法和电源管理装置
CN110133506A (zh) 一种用于计算锂电池剩余使用时间的装置及其计算方法
CN105372485A (zh) 一种电能表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858830

Country of ref document: EP

Kind code of ref document: A1