WO2019056920A1 - 一种微生物油脂及其制备方法 - Google Patents
一种微生物油脂及其制备方法 Download PDFInfo
- Publication number
- WO2019056920A1 WO2019056920A1 PCT/CN2018/102443 CN2018102443W WO2019056920A1 WO 2019056920 A1 WO2019056920 A1 WO 2019056920A1 CN 2018102443 W CN2018102443 W CN 2018102443W WO 2019056920 A1 WO2019056920 A1 WO 2019056920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- microbial
- microbial oil
- adsorption
- resin column
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/001—Refining fats or fatty oils by a combination of two or more of the means hereafter
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B1/00—Production of fats or fatty oils from raw materials
- C11B1/10—Production of fats or fatty oils from raw materials by extracting
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/10—Refining fats or fatty oils by adsorption
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/12—Refining fats or fatty oils by distillation
Definitions
- the invention relates to a microbial oil preparation technology, and more particularly to a microbial oil and a preparation method thereof.
- Chloropropanol is a general term for a class of compounds in which hydroxy groups in glycerol are substituted by chlorine. Chloropropanol can be classified into two types: monochloropropanediol and dichloropropanol depending on the number and position of chlorine atoms. Among them, 3-chloro-l,2-propanediol (3-MCPD) has the effect of disturbing the balance of sex hormones in the human body, reducing the number of sperm and reducing the reproductive capacity of male animals. In addition, it has chronic toxicity, carcinogenicity and neurotoxicity.
- PAHs Polycyclic Aromatic Hydrocarbons
- organic matter such as coal, petroleum, wood, tobacco, and organic polymer compounds. They are important environmental and food contaminants. More than 200 PAHs have been found to date, and quite a few of them are carcinogenic, such as benzopyrene, benzopyrene and the like. PAHs are widely distributed in the environment and can be found in every corner of our lives. Polycyclic aromatic hydrocarbons are likely to be produced in any place where organic matter is processed, discarded, burned or used.
- Microbial oils and fats are prepared by using microorganisms such as yeast, mold, bacteria or algae under certain conditions, using carbohydrates, hydrocarbons or common fats and oils as carbon sources and nitrogen sources. Because of the advantages of high oil content, short production cycle, no seasonal influence, and no occupation of cultivated land, the preparation method has wide application fields and is also applied to the food field.
- glycidyl ester is an esterification product of glycidol and fatty acid, it has an epoxy structure and belongs to a kind of terminal epoxy ester.
- the epoxy group is chemically active and can be used. Intracellular nucleophile reaction. Therefore, in the course of preparation or subsequent consumption as a food, glycidyl ester is inevitably produced, and glycidyl ester is easily hydrolyzed to form chloropropanol. Therefore, in the process of preparing microbial oils, it is inevitable that the content of glycidyl ester, 3-MCPD and polycyclic aromatic hydrocarbons in the final microbial oil is high.
- the present invention provides a microbial oil and fat which overcomes the above problems or at least partially solves the above problems, and a preparation method thereof, to solve the technical problem of high content of glycidyl ester, chloropropanol and PAHs in edible microbial oil.
- a microbial oil or fat having a glycidyl ester content of ⁇ 0.01 ppm, a chloropropanol content of less than 0.1 ppm, and a total amount of polycyclic aromatic hydrocarbons (PAHs) of ⁇ 0.5 ⁇ g/kg.
- PAHs polycyclic aromatic hydrocarbons
- a method for preparing a microbial oil and fat wherein the prepared primary microbial oil is subjected to adsorption treatment through an adsorption resin column. Further, the resin in the adsorption resin column has an average pore diameter of 6.5 to 17 nm.
- the microbial primary microbial oil prepared by microbial fermentation may contain more glycidyl ester and chloropropanol.
- the treatment of the primary microbial oil through an adsorption resin column containing a resin having an average pore diameter of 6.5-17 nm can effectively reduce the content of glycidyl ester and chloropropanol and the total amount of PAHs in the primary microbial oil.
- the resin in the adsorption resin column is preferably a macroporous adsorption resin, and the resin having an average pore diameter of 6.5-17 nm can effectively adsorb and remove the glycidyl ester and the chloropropanol in the oil, but does not affect other beneficial components in the oil. causes a lot of adsorption. Therefore, after the primary microbial oil is adsorbed by the resin, the content of glycidyl ester and chloropropanol in the primary microbial oil can be effectively reduced, but the loss rate of the main beneficial components in the primary microbial oil, such as ARA, is small.
- the resin has an average pore diameter of from 10 to 10.5 nm.
- the pore diameter of the resin in the adsorption resin column is maintained in an appropriate range, and the glycidyl ester and chloropropanol content in the oil and fat can be effectively removed, and at the same time, the loss rate of the beneficial component in the fat and oil can be reduced.
- the temperature of the primary microbial grease entering the column of adsorbent resin is 45-60 ° C, preferably 50 ° C.
- the macroporous adsorption resin has a pore-like structure, and has a large specific surface area, and the temperature is too high or too low, which may change the structure of the resin and affect its adsorption effect.
- the temperature of the primary microbial oil entering the adsorption resin column is maintained in a suitable range, which can enhance the adsorption of the resin on the glycidyl ester, chloropropanol and PAHs in the primary microbial oil. ability.
- the adsorbent resin column has a diameter of 10 to 100 cm; and the adsorbent resin column has a packing height ratio of 1:7-1:9, preferably 1:8.
- the diameter-to-height ratio of the diameter of the adsorbent resin column is maintained in an appropriate range, which can improve the absorption efficiency of the resin on the glycidyl ester, chloropropanol and PAHs in the oil, and reduce the beneficial components. Loss rate such as ARA.
- the ratio of the aspect ratio of the adsorption resin column is too small, so that the primary microbial oil is repeatedly adsorbed in the adsorption resin column, which not only reduces the adsorption efficiency but also affects the primary microbial oil. Yield.
- the ratio of the aspect ratio of the adsorbent resin column is too large, and the primary microbial oil tends to form holes and break when passing through the adsorption resin column, resulting in unstable adsorption effect, damage to the resin itself, and reduction in service life. .
- the feed rate of the primary microbial grease of the adsorbent resin column is from 40 to 60 kg/h, preferably from 48 to 57 kg/h, more preferably 52 kg/h.
- the adsorption resin column in a certain diameter range, and in the range of the aspect ratio of 1:7-1:9, the flow rate of the primary microbial grease entering the adsorption resin column is controlled at 40-60 kg/h, It can significantly improve the adsorption effect and adsorption efficiency of the resin on the glycidyl ester and chloropropanol in the oil.
- the resin in the adsorption resin column is a polypropylene type macroporous adsorption resin or a styrene or divinylbenzene macroporous adsorption resin, preferably a polypropylene type macroporous adsorption resin.
- the primary microbial oil adsorbed by the adsorption resin column is subjected to molecular distillation treatment; the degree of vacuum of the molecular distillation treatment is 0-0.5 Pa, preferably 0.1-0.2 Pa.
- the glycidyl ester and chloropropanol molecules can be sufficiently separated from the active ingredients in the microbial oil, and the free-range glycidyl ester and chloropropanol molecules can be separated from the microbial oil. Go out to further reduce the glycidyl ester and chloropropanol content of the resulting microbial oil.
- the temperature of the molecular distillation is maintained at 150-200 ° C, preferably 180-190 ° C.
- the temperature range of the molecular distillation is kept within this range, and the glycidyl ester and the isopropanol can be in a gaseous state, and at the same time, the difference in the free radicals of the effective components in the microbial oil is utilized by using the glycidyl ester and the chloropropanol. More efficient separation of glycidyl esters and chloropropanol reduces glycidyl and chloropropanol levels in microbial oils.
- the content of glycidyl ester, chloropropanol and PAHs can be further reduced, but the production equipment and processes are increased.
- the microbial strain for preparing the primary microbial oil is fermented into: yeast, Schizophyllum, Dinoflagellate, Micrococco, Thraustochytrium, or Mortierella alpina.
- the primary microbial oil can be obtained by the above-mentioned microbial strains by fermentation, wall-breaking, degumming, alkali refining, and deodorization treatment processes. Since the prepared primary microbial oil is adsorbed by the adsorption resin column, the pigment in the primary microbial oil can be removed together, and the glycidyl ester, the chloropropanol and the PAHs in the microbial oil can be reduced, and the pigment can be removed. Reduce and simplify the process and increase processing efficiency.
- the fermentation temperature is maintained at 25-35 ° C, and the pH is maintained at 6-8.
- the medium may be a conventional medium, and contains nutrients such as nitrogen, phosphorus, and potassium.
- the fermentation liquid is sampled at intervals, or the sampling time is reasonably arranged according to the degree of fermentation, and various related indicators are detected to monitor the degree of fermentation.
- the relevant indicators may be the oil content of the bacteria in the fermentation broth, and the total sugar, reducing sugar, amino nitrogen or bacterial concentration in the fermentation broth.
- the microbial cells in the fermentation broth are subjected to wall breaking treatment, and the wall breaking treatment may be carried out by bio-enzymatic method or mechanical breaking.
- the wall breaking treatment may be carried out by bio-enzymatic method or mechanical breaking.
- an alkaline protease is added to the fermentation broth after the completion of the fermentation to perform a wall breaking treatment.
- the pH of the fermentation broth during the wall breaking treatment can be adjusted to a range of 7-10, and microscopic examination is performed to detect the breaking effect of the microbial cells in the fermentation broth, and the wall is broken until it is intact. So far.
- the organic solvent is added to the cells obtained by the filtration and drying treatment of the fermentation broth, and then the temperature is raised to 30-45 ° C, and then obtained by shearing, stirring, filtering and desolvation.
- Microbial hair oil Specifically, when the organic solvent is hexane or butane, the temperature after the temperature rise is 30 to 45 °C.
- the process belongs to the process of extracting microbial oil, that is, the process of extracting microbial oil by filtering, drying, adding organic solvent, heating, and shearing, stirring and desolvating. Obtain the extraction process of microbial oils.
- the fermentation broth is concentrated by a centrifuge to obtain a concentrated bacterial cell, and the concentrated bacteria are heated to 55-65 ° C, adjusted to a pH of 8.0-10.0, and added to the alkaline protease to break the wall and then The temperature was raised at 75-85 ° C and directly subjected to centrifugation to obtain microbial hair oil.
- centrifugal treatment after heating can simplify the process, save solvent recovery cost, and reduce environmental pollution.
- the primary microbial oil is treated by an adsorption resin column and then subjected to molecular distillation;
- the average pore diameter of the resin in the adsorption resin column is 10-10.5 nm; the diameter of the adsorption resin column is 10-100 cm, and the aspect ratio is 1:7-1:9; the feed rate of the primary microbial oil into the adsorption resin column is 50 kg / h; the temperature of the primary microbial oil entering the adsorption resin column is 40-50 ° C; the degree of vacuum of the molecular distillation treatment is 0.1-0.2 Pa; the temperature is 180-190 ° C.
- the obtained microbial oil is then subjected to refining and deodorization treatment in order to obtain microbial oils meeting the quality requirements.
- the refining process includes degumming and alkali refining treatment, and the conventional decoloring treatment process can be replaced by the later resin adsorption, thereby shortening the production man-hours and helping to improve the refining capacity.
- the above degumming, alkali refining, and deodorization processes are conventional.
- the treatment process can be processed.
- microbial primary microbial oils For example, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, and the like.
- the primary microbial oil is not limited to microbial fats, and can also be used for other fats and oils.
- the adsorption resin column can further enhance the glycidyl ester and chloropropanol in the primary microbial oil. Adsorption effect;
- the refining process conditions such as degumming, alkali refining, decolorization, and deodorization are the same.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil.
- the primary microbial oil is produced by acid degumming, alkali refining, deodorization and the like. Take 450kg of primary microbial oil and fat, pass the polypropylene type macroporous adsorption resin column at 40 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:8, and the average pore diameter of the resin is 10-10.5nm. The feed rate was 50 kg/h, the oil was obtained 437.8 kg, and the yield was 97.30%.
- the comparison data with the product oil not adsorbed through the resin column is shown in Table 1.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil.
- the primary microbial oil is produced by acid degumming, alkali refining, deodorization and the like. Take 500kg of primary microbial oil and fat, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:8, and the average pore diameter of the resin is 10-10.5nm. The feed rate was 50 kg/h, and the oil was obtained by 489 kg, and the yield was 97.8%. See Table 2 for comparison with the product oil that has not been adsorbed by the resin column.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil. After acidification degumming, alkali refining, deodorization and other refining processes, the primary microbial oil is produced, and 500 kg of primary microbial oil is taken. At 60 ° C, the polypropylene macroporous adsorption resin column is passed, and the diameter of the adsorption resin column is 50 cm, and the adsorption resin column is used.
- ARA eicosatetraenoic acid
- the aspect ratio is 1:8, wherein the average pore diameter of the resin is 10-10.5 nm, the feed rate is 50 kg/h, and the oil is 487 kg, and the yield is 97.40%.
- the comparison data with the product oil not adsorbed through the resin column is shown in Table 3.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil.
- the primary microbial oil is produced by acid degumming, alkali refining, deodorization and the like. Take 500kg of primary microbial oil and fat, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:9, and the average pore diameter of the resin is 10-10.5nm. The feed rate was 50 kg/h, and the oil was obtained 491 kg, and the yield was 98.2%.
- the comparison data with the product oil not adsorbed through the resin column is shown in Table 4.
- DHA docosahexaenoic acid
- the oil is produced by acidification, degumming, alkali refining, deodorization and the like. Take 400kg of refined oil, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:7, and the average pore diameter of the resin is 10-10.5nm. The feed rate was 50 kg/h, the oil was 386 kg, and the yield was 96.5%.
- Table 5 The comparison data with the product oil not adsorbed through the resin column is shown in Table 5.
- DHA docosahexaenoic acid
- the oil is produced by acidification, degumming, alkali refining, deodorization and the like. Take 400kg of refined oil, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:8, and the average pore diameter of the resin is 10-10.5nm. The feed rate was 40 kg/h, the oil was 388 kg, and the yield was 97.00%.
- Table 6 The comparison data with the product oil not adsorbed through the adsorption resin column is shown in Table 6.
- DHA docosahexaenoic acid
- the oil is produced by acidification degumming, alkali refining, deodorization and other processes, and 400kg of refined oil is taken.
- the polypropylene type macroporous adsorption resin column is passed at 50 ° C. The diameter of the adsorption resin column is 50 cm, and the diameter of the adsorption resin column is high.
- the ratio of 1:8, the average pore diameter of the resin is 10-10.5 nm, the feed rate is 60 kg/h, the oil is 394 kg, the yield is 98.5%, and the comparison data with the product oil not adsorbed through the resin column is shown in Table 7.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil.
- the primary microbial oil is produced by acid degumming, alkali refining, deodorization and the like. Take 500kg of primary microbial oil and fat, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:8, and the average pore diameter of the resin is 6.5-7.5nm. The feed rate was 50 kg/h, the oil was obtained 490 kg, and the yield was 98.0%.
- the comparison data with the product oil not adsorbed through the resin column is shown in Table 8.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil. After acid degumming, alkali refining, deodorization and other processes, the primary microbial oil is produced, 500 kg of primary microbial oil is taken, and the polypropylene macroporous adsorption resin column is passed at 50 ° C.
- ARA eicosatetraenoic acid
- the diameter of the adsorption resin column is 50 cm, and the diameter of the adsorption resin column is The height ratio is 1:8, and the average pore diameter of the resin is 12-17 nm, the feed rate is 50 kg/h, and the oil is obtained by 483 kg, and the yield is 96.6%.
- the comparison data with the product oil not adsorbed through the resin column is shown in Table 9.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil. After acid degumming, alkali refining, deodorization and other processes, the primary microbial oil is produced, 500 kg of primary microbial oil is taken, and the polypropylene macroporous adsorption resin column is passed at 50 ° C.
- ARA eicosatetraenoic acid
- the diameter of the adsorption resin column is 50 cm, and the diameter of the adsorption resin column is The ratio of high to 1:8, the average pore diameter of the resin is 10-10.5nm, the feed rate is 50kg/h, the oil is 489kg, the yield is 97.8%, and the adsorbed oil is subjected to molecular distillation, and the molecular distillation vacuum is 0.5Pa.
- the distillation temperature was 165 ° C, and 485 kg of oil was obtained, and the total yield was 97.0%.
- the comparison data with the resin adsorbed by the resin, the oil without molecular distillation and the oil which was not adsorbed by the resin column are shown in Table 10.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil. After acid degumming, alkali refining, deodorization and other processes, the primary microbial oil is produced, 500 kg of primary microbial oil is taken, and the polypropylene macroporous adsorption resin column is passed at 50 ° C.
- ARA eicosatetraenoic acid
- the diameter of the adsorption resin column is 50 cm, and the diameter of the adsorption resin column is The ratio of high to 1:8, the average pore diameter of the resin is 10-10.5nm, the feed rate is 50kg/h, the oil is 490kg, the yield is 98.0%, and the adsorbed oil is subjected to molecular distillation, and the molecular distillation vacuum is 0.1Pa.
- the distillation temperature was 185 ° C, and 484 kg of oil was obtained, and the total yield was 96.8%.
- Table 11 The comparison data with the resin adsorbed by the resin, the oil sample without molecular distillation, and the oil which was not adsorbed by the resin column are shown in Table 11.
- the mountain is covered with mold as the fermentation strain, and the fermentation liquid is filtered through the plate frame to obtain the concentrated bacteria. After the bacteria are dried, the solvent is added, and the mixture is sheared and stirred to obtain the eicosatetraenoic acid (ARA) hair oil.
- the primary microbial oil is produced by acid degumming, alkali refining, deodorization and the like. Take 500kg of primary microbial oil and fat, pass the polypropylene type macroporous adsorption resin column at 50 °C, the diameter of the adsorption resin column is 50cm, the diameter ratio of the adsorption resin column is 1:8, and the average pore diameter of the resin is 10-10.5nm.
- the feed rate is 50kg/h
- the oil is 491kg
- the yield is 98.2%.
- the adsorbed oil is subjected to molecular distillation, the molecular distillation vacuum is 0.3Pa, the molecular distillation temperature is 195°C, and the oil is 482kg, the total yield is 96.4%.
- the comparative data of the product oil adsorbed by the resin without the molecular distillation oil and adsorbed by the resin column are shown in Table 12.
- Microbial fats and oils were prepared in the same manner as in Example 1 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 1.
- Microbial fats and oils were prepared in the same manner as in Example 2 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 2.
- Microbial fats and oils were prepared in the same manner as in Example 3 except that the adsorption column adsorption treatment was not carried out.
- the content of the main components in the microbial oil is shown in Table 3.
- Microbial fats and oils were prepared in the same manner as in Example 4 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 4.
- Microbial fats and oils were prepared in the same manner as in Example 5 except that the adsorption column adsorption treatment was not carried out.
- the content of the main components in the microbial oil is shown in Table 5.
- Microbial fats and oils were prepared in the same manner as in Example 6 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 6.
- Microbial fats and oils were prepared in the same manner as in Example 7 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 7.
- Microbial fats and oils were prepared in the same manner as in Example 8 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 8.
- Microbial fats and oils were prepared in the same manner as in Example 9 except that the adsorption column adsorption treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 9.
- Microbial fats and oils were prepared in the same manner as in Example 10 except that the adsorption resin column adsorption treatment and the molecular distillation treatment were not performed.
- the contents of the main components in the microbial oil and fat are shown in Table 10.
- Microbial fats and oils were prepared in the same manner as in Example 11 except that the adsorption resin column adsorption treatment and the molecular distillation treatment were not performed.
- the content of the main components in the microbial oil is shown in Table 11.
- Microbial fats and oils were prepared in the same manner as in Example 12 except that the adsorption resin column adsorption treatment and the molecular distillation treatment were not performed.
- the main components in the microbial oil and fat are shown in Table 12.
- Microbial fats and oils were prepared in the same manner as in Example 10 except that the molecular distillation treatment was not carried out.
- the contents of the main components in the microbial oil and fat are shown in Table 10.
- Microbial oil was prepared in the same manner as in Example 11 except that the molecular distillation treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 11.
- Microbial oil was prepared in the same manner as in Example 12 except that the molecular distillation treatment was not carried out.
- the main components in the microbial oil and fat are shown in Table 12.
- Microbial fats and oils were prepared in the same manner as in Example 1 except that the average pore diameter of the resin in the adsorption resin column was 20 to 22 nm.
- the content of the main components in the microbial oil and fat was as follows: glycidyl ester was ⁇ 0.1 ppm, chloropropanol was 0.21 ppm, ARA was 49%, and PAHs was 1.73%.
- Microbial fats and oils were prepared in the same manner as in Example 12 except that the average pore diameter of the resin in the adsorption resin column was 18 to 21 nm.
- the content of the main components in the microbial oil and fat ⁇ 0.1 ppm for glycidyl ester, 0.17 ppm for chloropropanol, 48.5% for ARA, and 1.15% for PAHs.
- the invention provides a microbial oil and a preparation method thereof.
- the content of the glycidyl ester in the microbial oil and fat is less than 0.1 ppm, the chloropropanol content is less than 0.1 ppm, and the total amount of polycyclic aromatic hydrocarbons is less than 0.5 ⁇ g/kg.
- the preparation method comprises the steps of: adsorbing the primary microbial oil through the adsorption resin column, wherein The resin has an average pore diameter of 6.5 to 17 nm.
- the treatment process is cumbersome, and the chloropropanol content in the final product is still high, the microbial oil of the present invention and the preparation method thereof, the obtained microorganism
- the content of glycidyl ester, chloropropanol and PAHs in oil and fat is low, the treatment process is simple, and there is no need to change the existing microbial oil preparation process, which has good economic value and application prospect.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Fats And Perfumes (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Epoxy Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
一种微生物油脂及其制备方法,该微生物油脂中缩水甘油酯的含量<0.01ppm,氯丙醇含量<0.1ppm,多环芳烃总量<0.5μg/kg;其制备方法是将初级微生物油脂通过吸附树脂柱吸附处理,其中,树脂的平均孔径为6.5-17nm。
Description
交叉引用
本申请要求2017年9月25日提交的专利名称为“一种微生物油脂及其制备方法”的第201710874016.9号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
本发明涉及微生物油脂制备技术,更具体地,涉及一种微生物油脂及其制备方法。
氯丙醇是丙三醇中羟基被氯取代后形成的一类化合物的总称,根据氯原子取代的个数及位置不同,可将氯丙醇分为单氯丙二醇和双氯丙醇两类。其中,3-氯-l,2-丙二醇(3-MCPD)具有干扰人体内性激素平衡,使精子数量减少从而使雄性动物生殖能力减弱的作用。此外,还具有慢性毒性、致癌性和神经毒性。
多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并芘,苯并蒽等。PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃。
微生物油脂是采用酵母、霉菌、细菌或藻类等微生物在一定条件下,利用碳水化合物、碳氢化合物或普通油脂为碳源、氮源,以此制备微生物油脂。由于此种制备方法具有油脂含量高、生产周期短、不受季节影响、不占用耕地等诸多优点,其应用的领域较为广泛,也应用以食品领域。
在制备微生物油脂的过程中,由于缩水甘油酯(GEs)是缩水甘油和脂肪酸的酯化产物,它存在环氧基结构,属于一类末端环氧酯,环氧基的化 学性质活泼,可与细胞内亲核物质反应。因此,在制备过程中或后续作为食品的食用过程中,不可避免会产生缩水甘油酯,而缩水甘油酯极易水解而形成氯丙醇。因此,在制备微生物油脂的过程中,不可避免会使最终微生物油脂中的缩水甘油酯、3-MCPD和多环芳烃的含量较高。
发明内容
本发明提供一种克服上述问题或者至少部分地解决上述问题的微生物油脂及其制备方法,以解决食用微生物油脂中缩水甘油酯、氯丙醇和PAHs含量高的技术问题。
根据本发明的一个方面,提供一种微生物油脂,其缩水甘油酯的含量<0.01ppm,氯丙醇含量小于0.1ppm,多环芳烃(PAHs)总量<0.5μg/kg。
根据本发明的另外一个方面,还提供一种微生物油脂的制备方法,使制备好的初级微生物油脂流经吸附树脂柱吸附处理。进一步地,该吸附树脂柱中的树脂的平均孔径为6.5-17nm。
具体地,采用微生物发酵的方式制备的微生物初级微生物油脂中会含有较多的缩水甘油酯和氯丙醇。将初级微生物油脂经过含有平均孔径为6.5-17nm的树脂的吸附树脂柱处理,能够有效的同时降低初级微生物油脂中的缩水甘油酯和氯丙醇含量以及PAHs的总量。
具体地,吸附树脂柱中的树脂优选采用大孔吸附树脂,平均孔径为6.5-17nm的树脂能够有效的吸附去除油脂中的缩水甘油酯和氯丙醇,但不会对油脂中的其他有益成分造成大量的吸附。因此,初级微生物油脂经树脂吸附后,能够有效的降低初级微生物油脂中的缩水甘油酯和氯丙醇含量,但初级微生物油脂中的主要有益成分,如ARA等成分的损失率较小。
在一个具体的实施例中,所述树脂的平均孔径为10-10.5nm。吸附树脂柱中的树脂的孔径保持在合适的范围,能够有效去除油脂中的缩水甘油酯和氯丙醇含量,同时,能够降低油脂中的有益成分的损失率。
在另一个具体的实施例中,进入所述吸附树脂柱的初级微生物油脂的温度为45-60℃,优选为50℃。大孔吸附树脂为孔状结构,比表面积较大, 温度过高或过低都可能会改变树脂的结构而影响其吸附效果。而针对于微生物油脂降低缩水甘油酯和氯丙醇,进入吸附树脂柱中的初级微生物油脂的温度保持在合适的范围,能够增强树脂对初级微生物油脂中缩水甘油酯与氯丙醇以及PAHs的吸附能力。
同时,在制备微生物初级微生物油脂的过程中,在提炼或精炼过程中涉及到升温过程,并且,在初级微生物油脂中的缩水甘油酯与氯丙醇的吸附过程是一个放热过程。因此,合理地控制进入吸附树脂柱的初级微生物油脂的温度,能够合理地利用初级微生物油脂制备过程中的能量,并有效提高缩水甘油酯和氯丙醇以及PAHs吸附效果。
在另一个具体地实施例中,所述吸附树脂柱的直径为10-100cm;所述吸附树脂柱装填径高比为1:7-1:9,优选为1:8。在对初级微生物油脂进行吸附处理时,吸附树脂柱的直径与高度形成的径高比保持在合适的范围,能够提高树脂对油脂中缩水甘油酯、氯丙醇和PAHs的吸收效率,同时降低有益成分如ARA等的损失率。
具体地,在对初级微生物油脂进行吸附处理时,吸附树脂柱的径高比的比值过小,会使得初级微生物油脂在吸附树脂柱内反复吸附,不仅会降低吸附效率,还会影响初级微生物油脂的收率。而吸附树脂柱的径高比的比值过大,初级微生物油脂在通过吸附树脂柱的时候,容易形成空穴和断流,导致吸附效果不稳定,还会对树脂本身造成损害,降低其使用寿命。
在另一个具体的实施例中,所述吸附树脂柱的初级微生物油脂的进料速度为40-60kg/h,优选为48-57kg/h,更优选为52kg/h。具体地,在一定直径范围内的吸附树脂柱,并在其径高比为1:7-1:9的范围内,进入吸附树脂柱中的初级微生物油脂的流量控制在40-60kg/h,能够显著提高树脂对油脂中缩水甘油酯和氯丙醇的吸附效果和吸附效率。
当进入吸附树脂柱中的初级微生物油脂的流量过大,会导致物料与树脂接触反应时间不足,降低吸附效果;流速过慢会延长反应时间,影响工时成本,物料在柱体内会反复吸附,降低收率。
在另一个具体的实施例中,所述吸附树脂柱中的树脂采用聚丙烯型大孔吸附树脂或苯乙烯、二乙烯苯大孔吸附树脂,优选为聚丙烯型大孔吸附树脂。
在另一个具体的实施例中,经吸附树脂柱吸附后的初级微生物油脂再经分子蒸馏处理;所述分子蒸馏处理的真空度为0-0.5Pa,优选为0.1-0.2Pa。
具体地,在此真空度范围内,能够使缩水甘油酯和氯丙醇分子与微生物油脂中的有效成分充分的分离,使自由程较大的缩水甘油酯和氯丙醇分子从微生物油脂中分离出去,以进一步降低所得微生物油脂中的缩水甘油酯和氯丙醇含量。
在另一个具体的实施例中,分子蒸馏的温度保持在150-200℃,优选为180-190℃。具体地,分子蒸馏的温度范围保持在此范围内,能够使缩水甘油酯和异丙醇处于气体状态,同时,利用缩水甘油酯和氯丙醇与微生物油脂中有效组分的自由程的不同而更有效的分离缩水甘油酯和氯丙醇,降低微生物油脂中的缩水甘油酯和氯丙醇含量。
在吸附树脂柱吸附的基础上,再结合分子蒸馏处理,能够进一步降低缩水甘油酯、氯丙醇、PAHs的含量,但会增加生产设备及工序。
在另一个具体的实施例中,制备所述初级微生物油脂的微生物菌种发酵为:酵母、裂殖壶藻、双鞭甲藻、微球藻、破囊壶菌或高山被孢霉。
具体地,初级微生物油脂可以由上述微生物菌种经发酵、破壁提取、脱胶、碱炼和脱臭处理过程处理所得。由于制备得到的初级微生物油脂经吸附树脂柱吸附处理时,能够一并脱除初级微生物油脂中的色素,在降低微生物油脂中缩水甘油酯、氯丙醇和PAHs的同时,还能够脱除色素,能够缩短并简化工艺流程,提高处理效率。
具体地,在微生物菌种的发酵过程中,为使微生物菌种在培养基中的发酵效果更好,其发酵的温度保持在25-35℃,pH保持在6-8。具体地,培养基采用常规的培养基即可,需含有氮、磷、钾等营养元素。
具体地,在微生物菌种发酵过程中,每隔一段时间即对发酵液进行取样,或按照发酵程度的不同合理安排取样时间,并对其中的各项相关指标进行检测,以监控发酵的程度。各项相关指标可以是发酵液中的菌体的油脂含量,以及发酵液中总糖、还原糖、氨基氮或菌体浓度。
具体地,微生物菌种发酵完成后,即开始对发酵液中的微生物细胞进行破壁处理,破壁处理可采用生物酶解法或机械破壁。例如,向发酵完成后的发酵液中加入碱性蛋白酶进行破壁处理。在发酵过程完成后,可将破壁处理时的发酵液的pH调节至7-10的范围内,并通过显微镜镜检,以检测发酵液中微生物细胞的破壁效果,破壁至没有完整的细胞为止。
在另一个具体的实施例中,向所述发酵液经过过滤、烘干处理所得的菌体中加入有机溶剂,然后升温至30-45℃,再经剪切、搅拌、过滤和脱溶后得到微生物毛油。具体地,当采用有机溶剂为己烷或丁烷,其升温后的温度为30-45℃。具体地,此过程属于微生物油脂的提取过程,即发酵液经过滤、烘干,加入有机溶剂后,再升温,并经剪切、搅拌和脱溶的过程,是提取微生物毛油的过程,属于获取微生物油脂的提取过程。
在另一个具体的实施例中,将所述发酵液经过离心机浓缩得到浓缩菌体,浓缩菌体升温至55-65℃、调节pH为8.0-10.0、加入碱性蛋白酶酶解破壁后在线升温75-85℃,并直接进行离心分离处理,以得到微生物毛油。
具体地,对经过破壁处理的菌体直接升温处理后,无需再向菌体中添加有机溶剂,直接进行离心分离,即可达到提取的目的。采用升温后离心处理的方法,能够简化处理过程,节约溶剂回收成本,减少环境污染。
在另一个具体的实施例中,初级微生物油脂经吸附树脂柱处理后,再经分子蒸馏处理;
其中,吸附树脂柱中树脂的平均孔径为10-10.5nm;吸附树脂柱的直径为10-100cm,径高比为1:7-1:9;初级微生物油脂进入吸附树脂柱的进料速度为50kg/h;初级微生物油脂进入吸附树脂柱时的温度为40-50℃;分子蒸馏处理的真空度为0.1-0.2Pa;温度为180-190℃。
制备所得的微生物毛油再依次经精炼和脱臭处理,以获取符合质量要求的微生物油脂。具体地,精炼过程包括脱胶、碱炼处理,常规的脱色处理工艺可以被后期的树脂吸附取代,进而缩短了生产工时,有助于提升精炼产能,上述脱胶、碱炼、脱臭处理过程采用常规的处理工艺进行处理即可。
可以理解的是,采用不同的微生物菌种,该制备方法可用于制备多种微生物初级微生物油脂。例如,二十碳四烯酸、二十二碳六烯酸、二十碳五烯酸等。
可以理解的是,采用吸附树脂柱和/或分子蒸馏处理以降低油脂中的缩水甘油酯、氯丙醇含量和PAHs的方法,其初级微生物油脂不限于微生物油脂,也可用于其他油脂。
本发明的有益效果主要如下:
(1)将制备得到的初级微生物油脂经具有特定孔径的树脂吸附处理后,不仅能够有效的同时降低油脂中的缩水甘油酯和氯丙醇含量,而且,油脂中的有益成分如ARA等的损失率很低。
(2)通过对初级微生物油脂进入吸附树脂柱中的温度、进料速度,以及吸附树脂柱的径高比的控制,能够进一步增强吸附树脂柱对初级微生物油脂中缩水甘油酯和氯丙醇的吸附效果;
(3)在采用吸附树脂柱处理初级微生物油脂的基础上,再进一步采用分子蒸馏处理,能够有效的降低最终产品中的缩水甘油酯和氯丙醇含量。
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
以下实施例中,在制备初级微生物油脂的过程中,脱胶、碱炼、脱色、脱臭等精炼工艺条件相同。
实施例1
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取450kg初级微生物油脂,40℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂平均孔径10-10.5nm,进料速度50kg/h,得油437.8kg,收率97.30%,与未通过树脂柱吸附的成品油对比数据如下见表1。
表1经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.7%。
实施例2
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油489kg,收率97.8%。与未通过树脂柱吸附的成品油对比数据见表2。
表2经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.2%。
实施例3
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等精炼工艺后产出初级微生物油脂,取500kg初级微生物油脂,60℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油487kg,收率97.40%,与未通过树脂柱吸附的成品油对比数据见表3。
表3经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.6%。
实施例4
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:9,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油491kg,收率98.2%,与未通过树脂柱吸附的成品油对比数据见表4。
表4经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和 PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗1.8%。
实施例5
以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节pH后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(DHA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油。取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:7,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油386kg,收率96.5%,与未通过树脂柱吸附的成品油对比数据见表5。
表5经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对DHA的含量造成明显影响,油脂损耗3.5%。
实施例6
以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节pH后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(DHA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油。取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度40kg/h,得油388kg,收率97.00%,与未通过吸附树脂柱吸附的成品油对比数据见表6。
表6经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对DHA的含量造成明显影响,油脂损耗3.0%。
实施例7
以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节pH后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(DHA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油,取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度60kg/h,得油394kg,收率98.5%,与未通过树脂柱吸附的成品油对比数据见表7。
表7经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对DHA的含量造成明显影响,油脂损耗1.5%。
实施例8
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径6.5-7.5nm,进料速度50kg/h,得油490kg,收率98.0%,与未通过树脂柱吸附的成品油对比数据见表8。
表8经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.0%。
实施例9
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径12-17nm,进料速度50kg/h,得油483kg,收率96.6%,与未通过树脂柱吸附的成品油对比数据见表9。
表9经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗3.4%。
实施例10
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油489kg,收率97.8%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.5Pa,分子蒸馏温度165℃,得油485kg,总收率97.0%,与经树脂吸附、未经分子蒸馏油样以及未通过树脂柱吸附的成品油对比数据见表10。
表10经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇、PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.2%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影响,油脂损耗3.0%。
实施例11
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油490kg,收率98.0%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.1Pa,分子蒸馏温度185℃,得油484kg,总收率96.8%,与经树脂吸附、未经分子蒸馏油样,以及未通过树脂柱吸附的成品油对比数据见表11。
表11经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇和PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗2.0%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影 响,油脂损耗3.2%。
实施例12
以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ARA)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油491kg,收率98.2%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.3Pa,分子蒸馏温度195℃,得油482kg,总收率96.4%,与经树脂吸附未经分子蒸馏油样,以及未通过树脂柱吸附的成品油对比数据见表12。
表12经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量
由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇、PAHs的含量,且没有对ARA的含量造成明显影响,油脂损耗1.8%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影响,油脂损耗3.6%。
对比例1
以与实施例1中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表1。
对比例2
以与实施例2中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表2。
对比例3
以与实施例3中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表3。
对比例4
以与实施例4中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表4。
对比例5
以与实施例5中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表5。
对比例6
以与实施例6中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表6。
对比例7
以与实施例7中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表7。
对比例8
以与实施例8中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表8。
对比例9
以与实施例9中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表9。
对比例10
以与实施例10中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量见表10。
对比例11
以与实施例11中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量 见表11。
对比例12
以与实施例12中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量见表12。
由表1-12可以看出,经吸附树脂柱吸附处理后的微生物油脂中,其缩水甘油酯、氯丙醇、PAHs的含量明显降低,但有益成分如ARA或DHA的损失率很低。
对比例13
以与实施例10中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表10。
对比例14
以与实施例11中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表11。
对比例15
以与实施例12中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表12。
对比例16
以与实施例1中同样的方法制备微生物油脂,其区别仅在于:吸附树脂柱中树脂的平均孔径为20-22nm。该微生物油脂中的主要成分含量如下:缩水甘油酯为<0.1ppm、氯丙醇为0.21ppm、ARA为49%、PAHs为1.73%。
对比例17
以与实施例12中同样的方法制备微生物油脂,其区别仅在于:吸附树脂柱中树脂的平均孔径为18-21nm。该微生物油脂中的主要成分含量:缩水甘油酯为<0.1ppm、氯丙醇为0.17ppm、ARA为48.5%、PAHs为1.15%。
由表10-12可以看出,经吸附树脂柱处理后,再经分子蒸馏处理,能 够显著降低微生物油脂中的缩水甘油酯和氯丙醇含量。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明提供一种微生物油脂及其制备方法。所述微生物油脂中缩水甘油酯的含量<0.01ppm,氯丙醇含量小于0.1ppm,多环芳烃总量<0.5μg/kg;其制备方法是将初级微生物油脂通过吸附树脂柱吸附处理,其中,树脂的平均孔径为6.5-17nm。相比于现有技术中在降低缩水甘油酯和氯丙醇含量时,处理过程繁琐,且最终产物中氯丙醇含量依然较高的技术问题,本发明的微生物油脂及其制备方法,所得微生物油脂中缩水甘油酯、氯丙醇和PAHs含量低、处理工艺简单,且无需改变已有的微生物油脂制备过程,具有较好的经济价值和应用前景。
Claims (10)
- 一种微生物油脂,其特征在于,所述微生物油脂中,缩水甘油酯含量<0.01ppm,氯丙醇含量小于0.1ppm,多环芳烃总量<0.5μg/kg。
- 一种微生物油脂的制备方法,其特征在于:将初级微生物油脂通过吸附树脂柱;其中,所述吸附树脂柱中的树脂的平均孔径为6.5-17nm。
- 如权利要求2所述的一种微生物油脂的制备方法,其特征在于:所述树脂的平均孔径为10-10.5nm。
- 如权利要求2或3所述的一种微生物油脂的制备方法,其特征在于:进入所述吸附树脂柱的初级微生物油脂的温度为45-60℃,优选为50℃。
- 如权利要求2-4任一项所述的一种微生物油脂的制备方法,其特征在于:所述吸附树脂柱的直径为10-100cm;所述吸附树脂柱装填径高比为1:7-1:9,优选为1:8。
- 如权利要求5所述的一种微生物油脂的制备方法,其特征在于:所述吸附树脂柱的初级微生物油脂的进料速度为40-60kg/h,优选为48-57kg/h。
- 如权利要求2-6任一项所述的一种微生物油脂的制备方法,其特征在于,所述吸附树脂柱中的树脂采用聚丙烯型大孔吸附树脂或苯乙烯、二乙烯苯大孔吸附树脂;优选为聚丙烯型大孔吸附树脂。
- 如权利要求2-7任一项所述的一种微生物油脂的制备方法,其特征在于:经吸附树脂柱吸附后的初级微生物油脂再经分子蒸馏处理;所述分子蒸馏处理的真空度为0-0.5Pa,优选为0.1-0.2Pa。
- 如权利要求8所述的一种微生物油脂的制备方法,其特征在于:所述分子蒸馏处理的温度为160-200℃,优选为180-190℃。
- 如权利要求2-9任一项所述的一种微生物油脂的制备方法,其特征在于,制备所述初级微生物油脂的微生物菌种为:酵母、裂殖壶藻、双鞭甲藻、微球藻、破囊壶菌或高山被孢霉。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710874016.9A CN107460035B (zh) | 2017-09-25 | 2017-09-25 | 一种微生物油脂及其制备方法 |
CN201710874016.9 | 2017-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019056920A1 true WO2019056920A1 (zh) | 2019-03-28 |
Family
ID=60553651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/102443 WO2019056920A1 (zh) | 2017-09-25 | 2018-08-27 | 一种微生物油脂及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107460035B (zh) |
WO (1) | WO2019056920A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107460035B (zh) * | 2017-09-25 | 2020-05-08 | 嘉必优生物技术(武汉)股份有限公司 | 一种微生物油脂及其制备方法 |
CN115948484A (zh) * | 2022-12-19 | 2023-04-11 | 嘉必优生物技术(武汉)股份有限公司 | 一种降低花生四烯酸油脂中氯丙醇含量的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104531360A (zh) * | 2014-12-17 | 2015-04-22 | 谢振文 | 柠檬油的低温精制方法 |
CN104711118A (zh) * | 2013-12-16 | 2015-06-17 | 丰益(上海)生物技术研发中心有限公司 | 一种降低反式脂肪酸的方法 |
CN105623841A (zh) * | 2015-12-24 | 2016-06-01 | 华润三九(南昌)药业有限公司 | 鸦胆子油提取精制工艺 |
CN107083272A (zh) * | 2017-04-21 | 2017-08-22 | 蚌埠市九华油脂有限公司 | 一种石榴籽油的提取方法 |
CN107090353A (zh) * | 2017-05-04 | 2017-08-25 | 辽宁晟麦实业股份有限公司 | 一种降低精炼植物油脂中缩水甘油酯含量的方法 |
CN107460035A (zh) * | 2017-09-25 | 2017-12-12 | 嘉必优生物技术(武汉)股份有限公司 | 一种微生物油脂及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3401866C2 (de) * | 1984-01-20 | 1986-10-09 | Didier-Werke Ag, 6200 Wiesbaden | Verfahren zur Langzeitentfernung von chlorierten Biphenylen (PCB) aus Transformatorisolierflüssigkeiten |
CN102482614A (zh) * | 2009-07-21 | 2012-05-30 | 雀巢产品技术援助有限公司 | 含有低水平的结合mcpd的脱臭食用油或脂肪以及通过羧甲基纤维素和/或树脂纯化的制备方法 |
CN103525550B (zh) * | 2013-10-15 | 2015-03-18 | 江南大学 | 一种用于降低植物油中3-氯-1,2-丙二醇酯含量的脱臭方法 |
CN104673498B (zh) * | 2013-11-26 | 2020-02-07 | 丰益(上海)生物技术研发中心有限公司 | 一种吸附有油脂的吸附剂的处理方法 |
-
2017
- 2017-09-25 CN CN201710874016.9A patent/CN107460035B/zh active Active
-
2018
- 2018-08-27 WO PCT/CN2018/102443 patent/WO2019056920A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104711118A (zh) * | 2013-12-16 | 2015-06-17 | 丰益(上海)生物技术研发中心有限公司 | 一种降低反式脂肪酸的方法 |
CN104531360A (zh) * | 2014-12-17 | 2015-04-22 | 谢振文 | 柠檬油的低温精制方法 |
CN105623841A (zh) * | 2015-12-24 | 2016-06-01 | 华润三九(南昌)药业有限公司 | 鸦胆子油提取精制工艺 |
CN107083272A (zh) * | 2017-04-21 | 2017-08-22 | 蚌埠市九华油脂有限公司 | 一种石榴籽油的提取方法 |
CN107090353A (zh) * | 2017-05-04 | 2017-08-25 | 辽宁晟麦实业股份有限公司 | 一种降低精炼植物油脂中缩水甘油酯含量的方法 |
CN107460035A (zh) * | 2017-09-25 | 2017-12-12 | 嘉必优生物技术(武汉)股份有限公司 | 一种微生物油脂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107460035B (zh) | 2020-05-08 |
CN107460035A (zh) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102148333B1 (ko) | Dha의 에틸 에스테르로 미세 조류에 의해 생산되는 오일을 연속적으로 강화시키는 방법 | |
US11401540B2 (en) | Production of algae-derived polyunsaturated fatty acids | |
WO2019056919A1 (zh) | 一种低氯丙醇微生物油脂及其制备方法 | |
Bindea et al. | Valorification of crude glycerol for pure fractions of docosahexaenoic acid and β-carotene production by using Schizochytrium limacinum and Blakeslea trispora | |
EP2650356A1 (en) | Novel microorganism having high squalene-producing ability, and method for producing squalene by means of same | |
EP2838630A2 (fr) | Procédé de raffinage du squalène produit par microalgues | |
WO2019056920A1 (zh) | 一种微生物油脂及其制备方法 | |
WO2009063500A2 (en) | Novel methods of isolation of poly unsaturated fatty acids | |
CN103882071A (zh) | 一种微生物油及其制备方法 | |
CN108368524A (zh) | 3-氧代己二酸的制造方法 | |
KR102078257B1 (ko) | 헤마토코쿠스 플루비알리스의 생물학적 전처리 및 화학적 추출을 포함하는 아스타잔틴의 제조방법 | |
CN114574282A (zh) | 一种精炼微生物油及精炼方法 | |
WO2002059341A1 (fr) | Procede de purification de xanthophylles brutes | |
CN103787864B (zh) | 一种从海洋微藻发酵液中提取dha的方法 | |
KR20110116722A (ko) | 녹조류로부터 아스타잔틴 함유 추출물의 제조방법 | |
CN114196474A (zh) | 一种同步精炼油茶籽油和制备脂质体的方法 | |
CN102827892A (zh) | 一种尼泊司他汀生产工艺 | |
JP2021136959A (ja) | ナンノクロロプシス属藻類からオキシリピンを製造する方法 | |
Pang et al. | A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum | |
US20170198312A1 (en) | Non purified glycerol | |
EP3274433B1 (en) | Method of separating mannosylerythritol lipids | |
JP5948048B2 (ja) | 高級アルコールの製造方法 | |
Upadhyay et al. | Alpha linolenic acid | |
JP7561457B1 (ja) | 新規シリンドロテカ フシホルミス株 | |
CN109593606B (zh) | 一种高dha含量的深海鱼油及其加工工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18858344 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18858344 Country of ref document: EP Kind code of ref document: A1 |