WO2019056747A1 - 一种接地的方法及印制电路板的制图装置 - Google Patents
一种接地的方法及印制电路板的制图装置 Download PDFInfo
- Publication number
- WO2019056747A1 WO2019056747A1 PCT/CN2018/083186 CN2018083186W WO2019056747A1 WO 2019056747 A1 WO2019056747 A1 WO 2019056747A1 CN 2018083186 W CN2018083186 W CN 2018083186W WO 2019056747 A1 WO2019056747 A1 WO 2019056747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- module
- circuit board
- printed circuit
- radio frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0215—Grounding of printed circuits by connection to external grounding means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0005—Apparatus or processes for manufacturing printed circuits for designing circuits by computer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10098—Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
Definitions
- Embodiments of the present disclosure relate to, but are not limited to, the field of communication technologies, and in particular, to a grounding method and a graphics device for a printed circuit board.
- the most important part of the Terminal PCB (Printed Circuit Board) system is grounding, and how to ensure that the ground plane is the relative zero point of the system is the basis of the whole system.
- the maximum frequency is only 5 GHz.
- the parasitic parameters of the ground hole have an influence on the low frequency, so the grounding integrity is ensured, the ground return is smooth, and the DC ground is zero; but the millimeter wave terminal PCB system
- the parasitic parameters existing on the ground hole have high frequency loss up to 20 DB, which will cause power loss, phase shift, signal attenuation, noise, undesired coupling and interference of the terminal PCB system.
- Embodiments of the present disclosure provide a method of grounding and a drawing device for a printed circuit board.
- a method of grounding including:
- the length of the connected trace is an integer multiple of a half of the wavelength of the electromagnetic wave, and the wavelength of the electromagnetic wave is according to the radio frequency module The working frequency is obtained.
- a ground point on the printed circuit board other than the relative zero point is connected to the relative zero point by a surface microstrip line.
- the electromagnetic wave wavelength is obtained according to an operating frequency of the radio frequency module, including:
- the radio frequency module operates at a frequency range of 30 GHz to 300 GHz.
- a drawing device for a printed circuit board comprising:
- a selection module for selecting any ground point of the radio frequency module on the printed circuit board as a relative zero point of the AC ground plane
- a wiring module configured to connect other grounding points on the printed circuit board to the relative zero point, the length of the connected trace is an integral multiple of a half of a wavelength of the electromagnetic wave, and the wavelength of the electromagnetic wave is according to the radio frequency module The working frequency is obtained.
- the wiring module connects a ground point on the printed circuit board other than the relative zero point to the relative zero point by a surface microstrip line.
- the radio frequency module operates at a frequency range of 30 GHz to 300 GHz.
- the embodiments of the present disclosure provide a grounding method and a drawing device for a printed circuit board, which can solve the influence of the ground hole parasitic parameters on the AC ground zero point of the high frequency module.
- FIG. 1 is a schematic diagram of a typical ground-hole parasitic capacitance and inductance circuit
- Figure 2 shows the simulation results of a typical ground-hole parasitic capacitance and inductance circuit
- FIG. 3 is a flow chart of a method of grounding according to an embodiment of the present disclosure.
- FIG. 4 is a schematic view of a drawing device of a printed circuit board according to an embodiment of the present disclosure
- FIG. 5 is a schematic diagram of an application scenario according to an embodiment of the present disclosure.
- FIG. 6 is a flow chart of a method of grounding of an application example of the present disclosure.
- the typical ground hole parasitic capacitance and inductance circuit are shown in Figure 1.
- the typical values are shown in Figure 2.
- the presence of these parasitic parameters will raise the AC ground level in a certain frequency band at the grounding point, resulting in no ground plane. flat.
- the curve of parasitic parameters for signal loss at different frequency points can be obtained, as shown in Figure 2.
- Losses include dielectric loss, conductor loss, radiation loss, and leakage loss.
- the lowest point of the curve falls at 23 GHz, and the signal attenuation is nearly 30 DB; the frequency at the 5 GHz curve is less than 1 DB.
- the highest frequency of the terminal is 5 GHz of WIFI, and the parasitic capacitance and inductance generated by the ground hole have little influence on the AC ground plane zero point of the low frequency system.
- General grounding practice The chip is fully grounded, the number of ground holes is sufficient, and the interference source is avoided around to ensure the integrity of the ground plane below the chip.
- the currently known high-frequency grounding method is used in radar circuit design to radiate ground noise of a high-frequency module in a quarter-wavelength signal to attenuate noise on the ground plane.
- this method has a large limitation: the grounding position of each grounding point is different, and the parasitic parameters are also different, and the frequency of the final influence is also different. Therefore, the radiation wavelength of each grounding point should be separately calculated according to the parameters of the layout, and the calculation is performed. Large amount.
- FIG. 3 is a flowchart of a method for grounding according to an embodiment of the present disclosure. As shown in FIG. 3, the method in this embodiment includes the following steps:
- Step 11 Select any ground point of the radio frequency module on the printed circuit board as a relative zero point of the AC ground plane;
- Step 12 Connect other grounding points on the printed circuit board to the relative zero point, and the length of the connected wiring is an integral multiple of half of the wavelength of the electromagnetic wave, and the wavelength of the electromagnetic wave is obtained according to the operating frequency of the radio frequency module.
- the method of the embodiment can ensure that the AC ground plane of the millimeter wave terminal system radio frequency module is zero point.
- the radio frequency module in the terminal of this embodiment can work in the range of 30 GHz to 300 GHz, but the frequency range most likely to be applied in the communication field is 24 GHz to 100 GHz.
- the grounding point is the relative zero point of the AC ground plane, and the point is used as the reference zero point.
- the other grounding points take the surface microstrip line and connect with the reference point according to an integer multiple of half wavelength. Since the length of the trace is an integer multiple of half a wavelength, the AC point of each point falls to zero with respect to the reference point, and the other points also become zero with respect to the reference zero point, so that the entire system AC ground plane can be achieved. .
- the AC ground plane flatness of the PCB system is guaranteed to reduce signal loss and interference.
- the embodiment of the present disclosure provides a drawing device for a printed circuit board.
- the drawing device of the printed circuit board of the embodiment includes:
- a selection module configured to select any ground point of the radio frequency module as a relative zero point of the AC ground plane
- a wiring module configured to connect other grounding points on the printed circuit board to the relative zero point, the length of the connected wiring is an integral multiple of a half of a wavelength of the electromagnetic wave, and the wavelength of the electromagnetic wave is obtained according to an operating frequency of the radio frequency module of.
- the wiring module connects the other ground points on the printed circuit board to the relative zero point by a surface microstrip line.
- the operating frequency range of the radio frequency module ranges from 30 GHz to 300 GHz.
- the method of the embodiments of the present disclosure can be applied to the high-frequency circuit grounding of all millimeter wave terminal PCBs, which can ensure the ground plane flatness of the PCB system, and reduce signal loss and interference.
- FIG. 5 is a schematic diagram of an application scenario according to an embodiment of the present disclosure.
- the terminal in the application scenario is composed of the following components: a motherboard PCB 101, an application processor 102, a baseband module 103, a radio frequency coaxial cable 104, and a radio frequency module 105.
- A is the baseband module grounding point 107
- B is the RF module grounding point 106, which is used to ensure the grounding reliability of each module.
- the motherboard PCB 101 serves as a substrate for carrying each hardware module, and is used for layout, routing, and soldering of each module;
- the application processor 102 is the brain of the entire system, processes various user requirements, performs real-time analysis and processing on signals, and governs and regulates the cooperation of each module;
- the baseband module 103 and the application processor 102 perform high-speed digital signal transmission through a PCIe (Peripheral Component Interconnect Express) interface, and the internal digital-to-analog conversion module and the analog-to-digital conversion module convert the PCIe digital signal and the positive
- PCIe Peripheral Component Interconnect Express
- the intermodulation (IQ) signals are mutually converted, and the IQ signals are internally internally upconverted or downconverted and transmitted;
- the radio frequency cable 104 is a bridge connecting the baseband module 103 and the radio frequency module 105, wherein three kinds of signals are transmitted: one is a low frequency control signal for controlling the phase change of the modulation signal of the radio frequency module 105; the other is the local frequency of the second upconversion frequency The third is the bandwidth signal to be received and transmitted.
- the working process of the terminal is described by using the data behavior example.
- the user uploads a large-capacity file through the WIFI.
- the application processor 102 learns the user's request through the command, the file is transmitted to the baseband module 103 through the PCIe interface, and the baseband module 103 transmits the digital signal.
- the baseband module 103 After being converted into an analog IQ signal, after the IQ signal is up-converted, the baseband module 103 transmits the control signal, the local oscillator, and the bandwidth signal to be transmitted through the coaxial cable 104 to the network side through the second up-conversion.
- the flat ground plane is the basis for ensuring the stable transmission of the whole system. Since the frequency of the RF module 105 of this application example is as high as, for example, 60 GHz, the interference caused by parameters such as parasitic capacitance and inductance brought by the ground hole will fall within the useful frequency band, and the RF module is connected. The location 106 and the baseband module grounding point 107 are connected to the main ground, and only the DC ground plane of the system PCB is guaranteed to be zero.
- the length of the trace between the two points is an integer multiple of 2.5mm, so that the ground planes of the two points A and B are relative zeros to ensure the integrity of the ground plane of the system.
- the grounding method of the millimeter wave terminal PCB in this application scenario to realize zero grounding of the AC ground plane is as shown in FIG. 6, and includes the following steps:
- Step S01 First, the application processor 102, the baseband module 103, the radio frequency coaxial cable 104, the radio frequency module 105 and other modules are arranged on the main board PCB101;
- Step S02 Grounding is performed after the layout is completed.
- the grounding points of each module in the PCB system are reasonably allocated to the ground of the PCB according to the distribution of the grounding pins of each module.
- the grounding quasi-side of the low-frequency module (such as the baseband module and the application processor) requires reliable reflow, guarantees the integrity of the ground, and maximizes the grounding.
- the high-frequency module tries to single-point the main ground.
- the single-point ground hole is selected as the relative zero point of the AC ground plane of the whole system.
- Step S04 using the relative zero point of the selected AC ground platform as a reference, the grounding point of the high frequency module and the relative zero point, and the low frequency module grounding point and the relative zero point are used to trace the surface layer, and the length of the trace is ⁇ /2 integer. Double the connection.
- Step S05 the connection is completed, and the AC ground plane of each point reaches zero, ensuring the flatness of the ground plane of the system, and ensuring that the signal is not interfered and attenuated by noise on the ground.
- the grounding method in this application scenario mainly solves the problem that the ground plane of the high-frequency part of the terminal is not flat, and the signal integrity problem caused by the reason ensures that the system radio frequency index is normal.
- the embodiment of the present disclosure provides a grounding method and a drawing device for a printed circuit board, which can solve the influence of the ground hole parasitic parameter on the alternating ground zero point of the high frequency module.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Structure Of Printed Boards (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
公开了一种接地的方法,包括:选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;将所述印制电路板上的除所述相对零点外的接地点与所述相对零点连接,连接的走线长度为电磁波波长的一半的整数倍,所述电磁波波长是根据所述射频模块的工作频率获取的。还公开了印制电路板的制图装置。
Description
本公开实施例涉及但不限于通信技术领域,尤指一种接地的方法及印制电路板的制图装置。
无线传输增加传输速率大体上有两种方法,其一是增加频谱利用率,其二是增加频谱带宽。相对于提高频谱利用率,增加频谱带宽的方法显得更简单直接。但是现在常用的5GHz以下的频段已经非常拥挤,各大厂商不约而同想到的方法就是使用毫米波技术。毫米波频率为30GHz至300GHz,对应波长分别为10mm到1mm。在移动通信领域,通常把24GHz-100GHz称为5G毫米波,其为5G通讯中的重要技术。
终端PCB(Printed Circuit Board,印制电路板)系统中最重要的一环就是接地,而如何保证地平面为系统相对零点是整个系统的基础。终端PCB理想状态下的地平面满足直流电平和交流电平都为零电平:V
DC=0,V
AC=0。直流电平为零容易满足,只要将系统中各模块的地信号接到主地上即可。但是交流电平为零较难实现,因为PCB在layout(布局)过程中,地线、地孔难免会存在寄生电容、寄生电感等参数。
对于目前终端PCB系统,最高频率只有5GHz,地孔存在的寄生参数对于低频来说存在影响,所以做到接地完整性,保证地回流顺畅,直流地为零点即可;但是毫米波终端PCB系统中,地孔上存在的寄生参数对在高频损耗高达20DB,会造成终端PCB系统的功率损耗、相位偏移、信号衰减、噪声,不期望的耦合和干扰等问题。
发明内容
本公开实施例提供一种接地的方法及印制电路板的制图装置。
一种接地的方法,包括:
选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;
将所述印制电路板上的除所述相对零点外的接地点与所述相对零点连接,连接的走线长度为电磁波波长的一半的整数倍,所述电磁波波长是根据所述射频模块的工作频率获取的。
在示例性实施例中,所述印制电路板上的除所述相对零点外的接地点与所述相对零点采用表层微带线连接。
在示例性实施例中,所述电磁波波长是根据所述射频模块的工作频率获取的包括:
根据所述射频模块的工作频段获取中心频点F;
根据以下公式获取电磁波波长λ,
λ=C/F,其中C为常数300000Km/s。
在示例性实施例中,所述射频模块的工作频率范围为30GHz~300GHz。
一种印制电路板的制图装置,其中,包括:
选择模块,用于选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;
布线模块,用于将所述印制电路板上的其他接地点与所述相对零点连接,连接的走线长度为所述电磁波波长的一半的整数倍,所述电磁波波长是根据所述射频模块的工作频率获取的。
在示例性实施例中,所述布线模块,将所述印制电路板上的除所述相对零点外的接地点与所述相对零点采用表层微带线连接。
在示例性实施例中,所述电磁波波长是根据射频模块的工作频率获取的包括:根据所述射频模块的工作频段获取中心频点F;根据以下公式获取电磁波波长λ,λ=C/F,其中C为常数300000Km/s。
在示例性实施例中,所述射频模块的工作频率范围为30GHz~300GHz。
综上,本公开实施例提供一种接地的方法及印制电路板的制图装置,可以解决地孔寄生参数对高频模块交流地零点的影响。
图1为典型的地孔寄生电容、电感电路的示意图;
图2为典型的地孔寄生电容、电感电路的仿真结果;
图3为本公开实施例的一种接地的方法的流程图;
图4为本公开实施例的印制电路板的制图装置的示意图;
图5为本公开实施例的应用场景的示意图;
图6为本公开应用示例的接地的方法的流程图。
典型的地孔寄生电容、电感电路如图1所示,典型值如图2所示,这些寄生参数的存在,就会将所在接地点某频段内的交流地电平抬起,导致地平面不平坦。
通过仿真图1所示典型电路,可以得到寄生参数对不同频点信号损耗的曲线,如图2所示。损耗包括介质损耗、导体损耗、辐射损耗和泄露损耗等。曲线最低点落在23GHz,信号衰减近30DB;曲线5GHz所在频点,衰减不到1DB。
目前终端最高频率为WIFI的5GHz,地孔产生的寄生电容、电感对低频系统的交流地平面零点影响很小。一般的接地做法:芯片充分接地,地孔的数量足够,周围避让开干扰源,保证芯片下方地平面的完整性。也有单点接地方案,此方案虽然能够保证寄生电容和电感较小,但是较难保证接地的可靠性。
目前已知的高频接地方法是用在雷达电路设计中,将高频模块的地噪声,以四分之一波长信号的方式辐射出去,使地平面上噪声衰减。但是此方法局限性较大:每个接地点的地孔位置不同,那么寄生参数也不同,最终影响的频点也不同,所以每个接地点的辐射波长都要根据布局的参数单独计算,计算量较大。
下文中将结合附图对本公开的实施例进行详细说明。
图3为本公开实施例的一种接地的方法的流程图,如图3所示,本实施 例的方法包括以下步骤:
步骤11、选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;
步骤12、将印制电路板上的其他接地点与所述相对零点连接,连接的走线长度为所述电磁波波长的一半的整数倍,所述电磁波波长是根据射频模块的工作频率获取的。
通过本实施例的方法可以保证毫米波终端系统射频模块交流地平面为零点。
本实施例的终端中的射频模块可以工作在30GHz~300GHz范围内,但是最有可能在通讯领域中应用的频段范围是24GHz~100GHz。
本公开实施例中,毫米波PCB系统中,可以根据射频模块工作频段的中心频率F,由公式λ=C/F(C为常数300000Km/s)计算出波长;选取PCB系统的射频模块的某个接地点为交流地平面的相对零点,以该点作为基准零点,其它接地点走表层微带线,按照半波长整数倍和该基准点进行连接。由于走线长度为半波长的整数倍,各点的交流地点相对于基准点都落在零点,其它点相对于基准零点也变为零点,这样就可以达到的整个系统交流地平面为零点的要求。PCB系统的交流地平面平坦性得以保证,减少信号损耗以及干扰。
相应地,本公开实施例提供一种印制电路板的制图装置,如图4所示,本实施例的印制电路板的制图装置包括:
选择模块,用于选择所述射频模块的任一接地点作为交流地平面的相对零点;
布线模块,用于将印制电路板上的其他接地点与所述相对零点连接,连接的走线长度为所述电磁波波长的一半的整数倍,所述电磁波波长是根据射频模块的工作频率获取的。
在一实施例中,所述布线模块,将印制电路板上的其他接地点与所述相对零点采用表层微带线连接。
在一实施例中,所述电磁波波长是根据射频模块的工作频率获取的包括:根据射频模块的工作频段获取中心频点F;根据以下公式获取电磁波波 长λ,λ=C/F,其中C为常数300000Km/s。
其中,所述射频模块的工作频率范围为30GHz~300GHz。
本公开实施例的方法能够应用在所有的毫米波终端PCB的高频电路地线走线,可以使PCB系统的交流地平面平坦性得以保证,减少信号损耗以及干扰。
图5为本公开实施例的一应用场景的示意图,本应用场景中的终端由以下几个部分组成:主板PCB101,应用处理器102,基带模块103,射频同轴线缆104,射频模块105,A为基带模块接地点107,B为射频模块接地点106,用于保证各模块接地可靠性。
主板PCB101作为承载各硬件模块的基板,用于各模块布局、走线和焊接;
应用处理器102是整个系统的大脑,处理各种用户需求,对信号进行实时分析和处理,支配和调控各模块协同工作;
基带模块103和应用处理器102之间通过PCIe(Peripheral Component Interconnect express,高速串行计算机扩展总线标准)接口进行高速数字信号传输,内部的数模转换模块和模数转换模块将PCIe数字信号和正交调制(IQ)信号相互转换,IQ信号在内部做一次上变频或者下变频后传输;
射频线缆104是连接基带模块103和射频模块105的桥梁,其中传输三种信号:一是低频的控制信号,用于控制射频模块105调制信号相位变化;二是二次上变频的本振频率;三是要接收和发送的带宽信号。
以数据上行为例对上述终端工作过程进行说明,用户通过WIFI上传大容量文件,应用处理器102通过命令获悉用户的需求后,将文件通过PCIe接口传输给基带模块103,基带模块103将数字信号转换为模拟IQ信号,IQ信号经过一次上变频后,基带模块103通过同轴线缆104将控制信号、本振以及要发送的带宽信号,通过二次上变频后由天线发送至网络侧。
平坦的地平面是保证整个系统稳定传输的基础,由于本应用示例的射频模块105频率高达例如60GHZ,地孔带来的寄生电容电感等参数带来的干扰会落在有用频段内,射频模块接地点106和基带模块接地点107接到主地,只能保证系统PCB的直流地平面为零点。
本应用示例中,通过本实施例的方法可以按照60GHz的中心频率计算出半波长λ/2=2.5mm,将射频模块接地点106和基带模块接地点107用表层微带线连接,使A、B两点之间的走线长度为2.5mm的整数倍,即可实现A、B两点交流地平面为相对零点,保证系统地平面的完整性。
本应用场景中的毫米波终端PCB实现交流地平面为零点的接地方法如图6所示,包括以下步骤:
步骤S01:首先将应用处理器102,基带模块103,射频同轴线缆104,射频模块105等各模块在主板PCB101上进行合理布局;
步骤S02:布局完成后进行接地处理。
PCB系统中各模块接地点根据各模块接地管脚的分布来合理分配接PCB的大地,低频模块(如基带模块、应用处理器)接地准侧是要求回流可靠,保证地完整性,尽量多加地孔;而高频模块为了避免干扰,尽量单点下主地,本实施例中选择这个单点地孔为整个系统的交流地平面的相对零点。
步骤S03:根据射频模块的工作频段的中心频率点的频率F,由公式λ=C/F来计算电磁波波长λ,其中C为常数300000Km/s。根据计算所得到的波长λ,得知半波长λ/2长度。
步骤S04:以选择的交流地平台的相对零点为基准,高频模块的接地点与所述相对零点,及低频模块接地点与所述相对零点使用表层走线,走线长度为λ/2整数倍进行连接。
步骤S05:连接完成,各点的交流地平面达到零点,保证系统地平面的平坦性,保证信号不会被地上的噪声干扰和衰减。
本应用场景中的接地的方法主要解决终端高频部分地平面不平坦,由此原因带来的信号完整性问题,确保系统射频指标正常。
以上仅为本公开的示例性实施例,当然,本公开还可有其他多种实施例,在不背离本公开精神及其实质的情况下,熟悉本领域的技术人员当可根据本公开作出各种相应的改变和变形,但这些相应的改变和变形都应属于本公开所附的权利要求的保护范围。
本公开实施例提供一种接地的方法及印制电路板的制图装置,可以解决地孔寄生参数对高频模块交流地零点的影响。
Claims (8)
- 一种接地的方法,包括:选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;将所述印制电路板上的除所述相对零点外的接地点与所述相对零点连接,连接的走线长度为电磁波波长的一半的整数倍,所述电磁波波长是根据所述射频模块的工作频率获取的。
- 如权利要求1所述的方法,其中:所述印制电路板上的除所述相对零点外的接地点与所述相对零点采用表层微带线连接。
- 如权利要求1或2所述的方法,其中:根据所述射频模块的工作频率获取所述电磁波波长包括:根据所述射频模块的工作频段获取中心频点F;根据以下公式获取电磁波波长λ,λ=C/F,其中C为常数300000Km/s。
- 如权利要求1所述的方法,其中:所述射频模块的工作频率范围为30GHz~300GHz。
- 一种印制电路板的制图装置,包括:选择模块,用于选择印制电路板上的射频模块的任一接地点作为交流地平面的相对零点;布线模块,用于将所述印制电路板上的其他接地点与所述相对零点连接,连接的走线长度为所述电磁波波长的一半的整数倍,所述电磁波波长是根据所述射频模块的工作频率获取的。
- 如权利要求5所述的制图装置,其中:所述布线模块,将所述印制电路板上的除所述相对零点外的接地点与所述相对零点采用表层微带线连接。
- 如权利要求5或6所述的制图装置,其中:所述电磁波波长是根据射频模块的工作频率获取的包括:根据所述射频模块的工作频段获取中心频点F;根据以下公式获取电磁波波长λ,λ=C/F,其中C为常数300000Km/s。
- 如权利要求5所述的制图装置,其中:所述射频模块的工作频率范围为30GHz~300GHz。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710861629.9A CN109548266B (zh) | 2017-09-21 | 2017-09-21 | 一种接地的方法及印制电路板的制图装置 |
CN201710861629.9 | 2017-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019056747A1 true WO2019056747A1 (zh) | 2019-03-28 |
Family
ID=65810998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083186 WO2019056747A1 (zh) | 2017-09-21 | 2018-04-16 | 一种接地的方法及印制电路板的制图装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109548266B (zh) |
WO (1) | WO2019056747A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056245A (ja) * | 1996-06-04 | 1998-02-24 | Mitsubishi Electric Corp | プリント配線板 |
US6377225B1 (en) * | 2000-07-07 | 2002-04-23 | Texas Instruments Incorporated | Antenna for portable wireless devices |
WO2015113196A1 (zh) * | 2014-01-28 | 2015-08-06 | 华为技术有限公司 | 天线系统、小基站、终端和隔离两个天线的方法 |
CN105789844A (zh) * | 2016-04-12 | 2016-07-20 | 深圳市中易腾达科技股份有限公司 | 一种一体化金属边框天线 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0389605A (ja) * | 1989-08-31 | 1991-04-15 | Kyocera Corp | 高周波増幅回路 |
CN100441067C (zh) * | 2003-12-24 | 2008-12-03 | 上海贝岭股份有限公司 | 一种抑制电磁干扰的地线布图方法 |
CN201142814Y (zh) * | 2007-12-14 | 2008-10-29 | 福建星网锐捷网络有限公司 | 单板结构 |
CN104896655A (zh) * | 2015-03-30 | 2015-09-09 | 广东美的制冷设备有限公司 | 空调设备及其电路板 |
-
2017
- 2017-09-21 CN CN201710861629.9A patent/CN109548266B/zh active Active
-
2018
- 2018-04-16 WO PCT/CN2018/083186 patent/WO2019056747A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056245A (ja) * | 1996-06-04 | 1998-02-24 | Mitsubishi Electric Corp | プリント配線板 |
US6377225B1 (en) * | 2000-07-07 | 2002-04-23 | Texas Instruments Incorporated | Antenna for portable wireless devices |
WO2015113196A1 (zh) * | 2014-01-28 | 2015-08-06 | 华为技术有限公司 | 天线系统、小基站、终端和隔离两个天线的方法 |
CN105789844A (zh) * | 2016-04-12 | 2016-07-20 | 深圳市中易腾达科技股份有限公司 | 一种一体化金属边框天线 |
Also Published As
Publication number | Publication date |
---|---|
CN109548266A (zh) | 2019-03-29 |
CN109548266B (zh) | 2021-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11784611B2 (en) | Power amplifier antenna structure | |
US8385748B2 (en) | Printed circuit board and optical transmission device | |
US20130099006A1 (en) | Antenna-printed circuit board package | |
US11329686B2 (en) | Signal transceiver apparatus and base station | |
DE102020128651A1 (de) | Vorrichtung und system einer gedruckten schaltungsplatine (pcb), umfassend einen funkfrequenz-(rf) übergang | |
CN209747698U (zh) | 一种新型的sigw功率分配器 | |
US20200321699A1 (en) | Antenna and communications apparatus | |
CN104241749B (zh) | 一种传输零点可控的微带滤波器 | |
KR20190093189A (ko) | 반도체 패키지들 내의 기판 유전체 도파관들 | |
US10680336B2 (en) | Antenna device | |
US10971789B2 (en) | Transmission-line filtering with enhanced frequency response | |
WO2019215970A1 (ja) | フィルタ回路及び通信装置 | |
WO2019056747A1 (zh) | 一种接地的方法及印制电路板的制图装置 | |
Othman et al. | Millimeter-wave SPDT Discrete switch design with reconfigurable circle loaded dumbbell DGS | |
US9497054B1 (en) | Electronic devices having interconnect radiation mitigation capabilities | |
US20190123437A1 (en) | Tunable slot resonator etched at the edge of a printed circuit board | |
US20230361802A1 (en) | Distributed radiohead system | |
CN104051827A (zh) | 一种基于螺旋缺陷地的宽带带通滤波器 | |
Park et al. | 28 GHz RF transceiver module for 5G beam-forming system | |
EP3678458A1 (en) | Transmission apparatus for terminal device wifi circuit, and preparation method therefor | |
KR102342664B1 (ko) | 광 주파수 대역에 대해 실질적으로 일정한 위상 시프트를 하는 무선 주파수 신호 경로 | |
CN215418544U (zh) | 垂直过渡结构 | |
JP5661137B2 (ja) | プリント基板及び光伝送装置 | |
TWI802151B (zh) | 橋接電路板、毫米波天線裝置及電子裝置 | |
US11749893B2 (en) | Apparatus for antenna impedance-matching and associated methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18859441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18859441 Country of ref document: EP Kind code of ref document: A1 |