WO2019056378A1 - Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur - Google Patents

Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur Download PDF

Info

Publication number
WO2019056378A1
WO2019056378A1 PCT/CN2017/103198 CN2017103198W WO2019056378A1 WO 2019056378 A1 WO2019056378 A1 WO 2019056378A1 CN 2017103198 W CN2017103198 W CN 2017103198W WO 2019056378 A1 WO2019056378 A1 WO 2019056378A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
sectional area
cross
inlet
refrigerant
Prior art date
Application number
PCT/CN2017/103198
Other languages
English (en)
Inventor
Xiuping Su
Fang XUE
Andrew M. Welch
Cesar G. RODRIGUEZ
Original Assignee
Johnson Controls Technology Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Company filed Critical Johnson Controls Technology Company
Priority to PCT/CN2017/103198 priority Critical patent/WO2019056378A1/fr
Priority to CN201880074550.4A priority patent/CN111356892A/zh
Priority to PCT/US2018/052479 priority patent/WO2019060847A1/fr
Publication of WO2019056378A1 publication Critical patent/WO2019056378A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/046Condensers with refrigerant heat exchange tubes positioned inside or around a vessel containing water or pcm to cool the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers

Definitions

  • the present disclosure relates generally to a chiller assembly for use in a building heating, ventilation and air conditioning (HVAC) system, and more particularly to features configured to optimize the pressure of refrigerant vapor as it enters a condenser unit of a chiller assembly.
  • HVAC building heating, ventilation and air conditioning
  • FIG. 1 is a perspective view drawing of a chiller assembly, according to some embodiments.
  • FIG. 2 is a perspective view drawing of a condenser unit, according to some embodiments.
  • FIG. 3 is a side cross-sectional view of a condenser unit having a flared inlet pipe, according to some embodiments.
  • FIG. 4 is detail view of the flared inlet pipe of FIG. 3, according to some embodiments.
  • FIG. 5 is a graph of the refrigerant pressure recovery achievable by a straight inlet pipe and a flared inlet pipe, according to some embodiments.
  • FIG. 6 is a front elevation view of a condenser unit having conical inlet pipes, according to some embodiments.
  • FIG. 7 is a detail view of the conical inlet pipe of FIG. 6, according to some embodiments.
  • FIG. 8 is a graph of the refrigerant pressure recovery achievable by a straight inlet pipe having a boss flange and a conical inlet pipe, according to some embodiments.
  • a condenser unit for a chiller assembly with an inlet having geometric features configured to conserve and/or recover pressure of refrigerant vapor are shown. Minimization of any pressure drop in refrigerant as the refrigerant flows to the condenser unit can be important as low refrigerant pressure conditions can result in an overall degradation in the performance of the chiller assembly.
  • Chiller assembly 100 is shown to include a compressor 102 driven by a motor 104, a condenser 106, and an evaporator 108.
  • a refrigerant can be circulated through chiller assembly 100 in a vapor compression cycle.
  • Chiller assembly 100 can also include a control panel 114 to control operation of the vapor compression cycle within chiller assembly 100.
  • Motor 104 can be powered by a variable speed drive (VSD) 110.
  • VSD 110 receives alternating current (AC) power having a particular fixed line voltage and fixed line frequency from an AC power source (not shown) and provides power having a variable voltage and frequency to motor 104.
  • Motor 104 can be any type of electric motor than can be powered by a VSD 110.
  • motor 104 can be a high speed induction motor.
  • Compressor 102 is driven by motor 104 to compress a refrigerant vapor from evaporator 108 and deliver refrigerant vapor to condenser 106 through a discharge line 112.
  • Compressor 102 can be a centrifugal compressor, a screw compressor, a scroll compressor, a turbine compressor, or any other type of suitable compressor.
  • Evaporator 108 can include an internal tube bundle, a supply line 120 and a return line 122 for supplying and removing a process fluid to the internal tube bundle.
  • the supply line 120 and the return line 122 can be in fluid communication with a component within a HVAC system (e.g., an air handler) via conduits that that circulate the process fluid.
  • the process fluid is a chilled liquid for cooling a building and can be, but is not limited to, water, ethylene glycol, calcium chloride brine, sodium chloride brine, or any other suitable liquid.
  • Evaporator 108 is configured to lower the temperature of the process fluid as the process fluid passes through the tube bundle of evaporator 108 and exchanges heat with the refrigerant.
  • Refrigerant vapor is formed in evaporator 108 by the refrigerant liquid delivered to the evaporator 108 exchanging heat with the process fluid and undergoing a phase change to refrigerant vapor.
  • Refrigerant vapor delivered by compressor 102 to condenser 106 transfers heat to a fluid.
  • Refrigerant vapor condenses to refrigerant liquid in condenser 106 as a result of heat transfer with the fluid.
  • the refrigerant liquid from condenser 106 flows through an expansion device (not shown) and is returned to evaporator 108 to complete the refrigerant cycle of the chiller assembly 100.
  • Condenser 106 includes a supply line 116 and a return line 118 for circulating fluid between the condenser 106 and an external component of the HVAC system (e.g., a cooling tower) .
  • the fluid circulating through the condenser 106 can be water or any other suitable liquid.
  • Condenser unit 106 includes a shell 200 with a generally cylindrical geometry. Shell 200 is coupled to both an inlet 202 configured to receive refrigerant vapor 206 and an outlet 204 configured to discharge liquid refrigerant 208.
  • First tube bundle 210 is disposed within the shell 200 and includes tubes that exchange heat with the refrigerant vapor 206 entering the condenser unit 106, causing the refrigerant to condense to refrigerant liquid 208. However, before the refrigerant liquid 208 can exit the condenser unit 106, the refrigerant liquid can be further cooled, or subcooled, to a temperature below the saturation temperature of the refrigerant via tubes 212 located within subcooler component 220. Subcooler component 220 is submerged in a liquid reservoir 224 that has a liquid surface 226 above the subcooler component 220. Liquid refrigerant passes through subcooler inlets 222 and over tubes 212 via central channel 218 and outer channels 214 having bottom walls 216 before exiting the condenser unit via outlet 204.
  • FIG. 3 depicts a side cross-sectional view of a condenser unit 300 having a shell 302.
  • Shell 302 can include a tube bundle (not shown) that is identical or substantially similar to tube bundle 210 described above with reference to FIG. 2.
  • the shell 302 can be coupled to both a refrigerant inlet 304 that is configured to deliver refrigerant vapor to the condenser unit 300, and a refrigerant outlet 306 that is configured to remove liquid refrigerant from the condenser unit 300.
  • Refrigerant inlet 304 includes a flared end or lip 308, depicted in greater detail in FIG. 4. As shown, flared end 308 gradually increases the diameter of the inlet from a first diameter 310 to a second diameter 312. This increase in diameter smooths the flow of refrigerant vapor and causes some of the kinetic energy of the refrigerant vapor to be converted to pressure energy. These effects can be achieved even though the second diameter 312 is notsubstantially larger than the first diameter 310. For example, as shown in FIG. 4, the second diameter 312 is only approximately (e.g., +/-10%) 1.17 times as wide as the first diameter 310.
  • graph 500 depicts the performance of a flared pipe inlet, as described above with reference to FIGS. 3-4, and a comparable straight pipe inlet.
  • the x-axis 502 represents the dynamic pressure of the refrigerant vapor entering the condenser unit.
  • the y-axis 504 represents the pressure drop experienced by the refrigerant vapor in kilopascals (kPa) .
  • Plot 506 depicts the pressure drop experienced by a refrigerant vapor traveling through a straight pipe inlet to a condenser unit
  • plot 508 depicts the pressure drop experienced by refrigerant vapor traveling through a flared pipe inlet to a condenser unit.
  • refrigerant vapor passing through the two types of pipe inlets experience an opposite relationship between the dynamic pressure and the change in pressure experienced by the refrigerant vapor.
  • the dynamic pressure of refrigerant flowing through the straight pipe increases, the pressure drop experienced by the refrigerant correspondingly increases.
  • the dynamic pressure of refrigerant flowing through the flared pipe increases, the pressure recovered, instead of lost, by the refrigerant increases.
  • condenser unit 600 having conical inlet or discharge pipes is shown. Similar to the condenser unit 106 described above with reference to FIG. 2, condenser unit 600 is shown to include a shell 602 and a liquid refrigerant outlet 608. However, in contrast to condenser unit 106, condenser unit 600 is shown to include two refrigerant vapor inlets 604, each with a conical discharge portion or pipe 606.
  • FIG. 7 provides a sectional view of arefrigerant vapor inlet 604 and a conical discharge pipe 606 in greater detail.
  • the conical discharge pipe 606 acts to gradually increase the cross-sectional area of the flow path as the refrigerant vapor enters the shell 602 of the condenser unit 600.
  • the gradual increase in the cross-sectional area of the flow path acts to smoothly transition and gradually decelerate the flow of the refrigerant vapor, resulting in kinetic energy of the flow being converted into pressure energy.
  • the conical discharge pipe 606 has a substantially frustoconical shape and can be formed using any suitable method (e.g., welding of sheet metal) .
  • the conical discharge pipe 606 can be any dimensions necessary to achieve a desired amount of pressure energy recovery.
  • the cross-sectional area of the conical discharge portion 606 at the point at which the refrigerant exits to the shell 602 is approximately (e.g., +/-10%) double the cross-sectional area of the point at which the refrigerant transitions from the vapor inlet 604 to the conical discharge 606.
  • the angle 612 between the vertical and the slope of the conical discharge pipe 606 can be selected to optimize the pressure recovery of the refrigerant vapor. For example, as shown in FIG. 7, the angle 612 is approximately (e.g., +/-10%) 8°.
  • Baffle 610 is suspended beneath the conical discharge portion 606 and coupled to the shell 602 via any suitable type of fasteners. Baffle 610 is configured to obstruct refrigerant entering the condenser unit 600 from falling directly on the tube bundle disposed within the shell 602 and causing potentially destructive vibrations to the tube bundle.
  • baffle 610 includes a plate-like member with a plurality of holes extending through the plate member.
  • graph 800 depicts the performance of a conical discharge inlet, as described above with reference to FIGS. 6-7, and a comparable straight pipe inlet having a boss flange located within the condenser shell.
  • a boss flange is similar to the flared pipe described above, however, the boss flange requires large forged parts which are expensive and impede upon a greater portion of the interior of the condenser shell than the flared pipe design.
  • the x-axis 802 of graph 800 represents the dynamic pressure of the refrigerant vapor entering the condenser unit, while the y-axis 804 represents the pressure drop of the refrigerant vapor in kilopascals (kPa) .
  • Plot 806 depicts the pressure drop experienced by refrigerant vapor traveling through the straight pipe with the boss flange
  • plot 808 depicts the pressure drop experienced by refrigerant vapor traveling through the conical discharge inlet.
  • refrigerant vapor traveling through both the conical discharge inlet and the straight pipe inlet with the boss flangere covers more pressure as the dynamic pressure of the refrigerant increases, however, the effect is more pronounced with the conical discharge inlet, resulting in overall better chiller performance via use of the conical discharge inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne une unité de condenseur (300) pour un ensemble refroidisseur. L'unité de condenseur (300) comprend une coque (302) ayant une forme sensiblement cylindrique, un premier faisceau de tubes disposé à l'intérieur de la coque (302), et une entrée (304) et une sortie (306) couplée à la coque (302). L'entrée (304) est configurée pour recevoir un fluide frigorigène en phase gazeuse et la sortie (306) est configurée pour décharger un fluide frigorigène en phase liquide. L'entrée (304) comprend un tuyau sensiblement droit se terminant au niveau d'une lèvre évasée (308). La lèvre évasée (308) est configurée pour augmenter un trajet d'écoulement de fluide frigorigène en phase gazeuse de l'entrée d'une première zone de section transversale à une seconde zone de section transversale. L'augmentation de la première zone de section transversale à la seconde zone de section transversale provoque la conversion d'une partie de l'énergie cinétique du fluide frigorigène en phase gazeuse en énergie de pression.
PCT/CN2017/103198 2017-09-25 2017-09-25 Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur WO2019056378A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/103198 WO2019056378A1 (fr) 2017-09-25 2017-09-25 Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur
CN201880074550.4A CN111356892A (zh) 2017-09-25 2018-09-24 用于冷却器组件的冷凝器入口压力回收特征
PCT/US2018/052479 WO2019060847A1 (fr) 2017-09-25 2018-09-24 Éléments de récupération de pression d'entrée de condenseur d'ensemble refroidisseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103198 WO2019056378A1 (fr) 2017-09-25 2017-09-25 Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur

Publications (1)

Publication Number Publication Date
WO2019056378A1 true WO2019056378A1 (fr) 2019-03-28

Family

ID=63841053

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/103198 WO2019056378A1 (fr) 2017-09-25 2017-09-25 Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur
PCT/US2018/052479 WO2019060847A1 (fr) 2017-09-25 2018-09-24 Éléments de récupération de pression d'entrée de condenseur d'ensemble refroidisseur

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2018/052479 WO2019060847A1 (fr) 2017-09-25 2018-09-24 Éléments de récupération de pression d'entrée de condenseur d'ensemble refroidisseur

Country Status (2)

Country Link
CN (1) CN111356892A (fr)
WO (2) WO2019056378A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630329B (zh) * 2017-10-10 2022-12-02 江森自控科技公司 加热、通风、空调和制冷系统、冷凝器及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1578058A (en) * 1923-09-28 1926-03-23 Westinghouse Electric & Mfg Co Condenser
JP3491882B2 (ja) * 1999-09-01 2004-01-26 株式会社丸計 冷凍サイクル用チャ−ジパイプ
CN104748448A (zh) * 2013-12-27 2015-07-01 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN105466086A (zh) * 2014-09-09 2016-04-06 江森自控科技公司 热交换器
KR101620072B1 (ko) * 2016-02-05 2016-05-11 (주)삼원산업사 냉매 파이프 분배구조

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577989Y2 (fr) * 1977-07-12 1982-02-16
US20070028647A1 (en) * 2005-08-04 2007-02-08 York International Condenser inlet diffuser
CN2867225Y (zh) * 2005-12-19 2007-02-07 文辉安 冷却塔水蒸汽回收器
GB2503315A (en) * 2012-06-20 2013-12-25 New World Energy Entpr Ltd Air handling system using Venturi effect
CN203132227U (zh) * 2013-03-25 2013-08-14 新昌县丰亿电器有限公司 一种分配器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1578058A (en) * 1923-09-28 1926-03-23 Westinghouse Electric & Mfg Co Condenser
JP3491882B2 (ja) * 1999-09-01 2004-01-26 株式会社丸計 冷凍サイクル用チャ−ジパイプ
CN104748448A (zh) * 2013-12-27 2015-07-01 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN105466086A (zh) * 2014-09-09 2016-04-06 江森自控科技公司 热交换器
KR101620072B1 (ko) * 2016-02-05 2016-05-11 (주)삼원산업사 냉매 파이프 분배구조

Also Published As

Publication number Publication date
WO2019060847A1 (fr) 2019-03-28
CN111356892A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US20130125579A1 (en) Air-sending device of outdoor unit, outdoor unit, and refrigeration cycle apparatus
US9377226B2 (en) Evaporator and turbo chiller including the same
US10458687B2 (en) Vapor compression system
MX2007009254A (es) Control de modulacion por amplitud de impulsos o de velocidad variable de ventiladores en sistemas refrigerantes.
EP2971982B1 (fr) Serpentin modulaire pour refroidisseurs refroidis par air
US20170176063A1 (en) Heat exchanger for a vapor compression system
KR20180054621A (ko) 휴대용 공조기
US11022355B2 (en) Converging suction line for compressor
EP3322940B1 (fr) Climatiseur
WO2019056378A1 (fr) Caractéristiques de récupération de pression d'entrée de condenseur pour ensemble refroidisseur
KR102104893B1 (ko) 증발기 및 이를 포함하는 터보 냉동기
JP7469339B2 (ja) 暖房、換気、空調、および/または冷凍(hvac&r)システム
CN106338108A (zh) 厨房空调器
KR102047688B1 (ko) 증발기 및 이를 포함하는 터보 냉동기
KR20190121846A (ko) 압축기용 수집기
US20180094879A1 (en) Ultrasonic enhanced heat exchanger systems and methods
CN203771807U (zh) 换热装置及具有该换热装置的制冷循环装置
KR20130091009A (ko) 터보 냉동기
JP2014167377A (ja) エジェクタ式冷凍機
EP3196560B1 (fr) Unité intérieure de dispositif de climatisation et dispositif de climatisation
CN108954790A (zh) 中央空调双系统干式换热器
CN108954930A (zh) 中央空调扰流双系统干式蒸发器
CN108954928A (zh) 中央空调扰流管壳干式蒸发器
CN108954965A (zh) 冷水机组扰流双系统蒸发器
CN108954945A (zh) 中央空调扰流单系统管壳干式蒸发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926006

Country of ref document: EP

Kind code of ref document: A1