WO2019054359A1 - Eyepiece optical system, optical device, and method for producing eyepiece optical system - Google Patents

Eyepiece optical system, optical device, and method for producing eyepiece optical system Download PDF

Info

Publication number
WO2019054359A1
WO2019054359A1 PCT/JP2018/033570 JP2018033570W WO2019054359A1 WO 2019054359 A1 WO2019054359 A1 WO 2019054359A1 JP 2018033570 W JP2018033570 W JP 2018033570W WO 2019054359 A1 WO2019054359 A1 WO 2019054359A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
lens component
eyepiece optical
refractive power
Prior art date
Application number
PCT/JP2018/033570
Other languages
French (fr)
Japanese (ja)
Inventor
歩 槇田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2019542058A priority Critical patent/JP7037730B2/en
Publication of WO2019054359A1 publication Critical patent/WO2019054359A1/en
Priority to JP2022032904A priority patent/JP7280561B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses

Definitions

  • the present invention relates to an eyepiece optical system, an optical device, and a method of manufacturing the eyepiece optical system.
  • Patent Document 1 Conventionally, an eyepiece optical system having high imaging performance has been proposed (see, for example, Patent Document 1). However, Patent Document 1 has a problem that further improvement in optical performance is required.
  • the eyepiece optical system according to the first aspect of the present invention has a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power in order from the observation object side.
  • a third lens component and a fourth lens component having a positive refractive power are satisfied, and the condition of the following expression is satisfied. 1.38 ⁇ fe / f1 ⁇ 3.00
  • fe focal length of the whole system of the eyepiece optical system
  • f1 focal length of the first lens component "lens component" means a single lens or a cemented lens.
  • a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power are sequentially arranged from an observation object side.
  • a fourth lens component having a positive refractive power and the condition of the following equation is satisfied. 0.48 ⁇ fe / f12 ⁇ 3.00
  • fe focal length of the whole system of the eyepiece optical system
  • f12 combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
  • the first lens component having positive refractive power, the second lens component having negative refractive power, and the positive lens component in order from the observation object side It is a manufacturing method of the eyepiece optical system which has the 3rd lens component which has the following, and the 4th lens component which has positive refractive power, and it arranges so that the conditions of a following formula may be satisfied. 1.38 ⁇ fe / f1 ⁇ 3.00
  • fe focal length of the whole system of the eyepiece optical system
  • f1 focal length of the first lens component "lens component" means a single lens or a cemented lens.
  • a first lens component having positive refractive power, a second lens component having negative refractive power, and a positive lens component in order from the observation object side It is a manufacturing method of the eyepiece optical system which has the 3rd lens component which has the following, and the 4th lens component which has positive refractive power, and it arranges so that the conditions of a following formula may be satisfied. 0.48 ⁇ fe / f12 ⁇ 3.00
  • fe focal length of the whole system of the eyepiece optical system
  • f12 combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
  • FIG. 5 shows various aberrations of the eyepiece optical system according to the first example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 2nd Example.
  • FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the second example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 3rd Example.
  • FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the third example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 4th Example.
  • FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the fourth example.
  • FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the fifth example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 6th Example. FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the sixth example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 7th Example. FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the seventh example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 8th Example. FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the eighth example.
  • FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the ninth example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 10th Example. FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the tenth example. It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 11th Example. FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the eleventh example. It is a sectional view of a camera which carries the above-mentioned eyepiece optical system. It is a flowchart for demonstrating the manufacturing method of the said eyepiece optical system.
  • the eyepiece optical system EL includes, in order from an observation object side (also simply referred to as “object”), a first lens component G1 having positive refractive power and negative refractive power. And a third lens component G3 having a positive refractive power, and a fourth lens component G4 having a positive refractive power.
  • lens component refers to a single lens or a cemented lens.
  • lens element refers to each lens constituting a single lens or a cemented lens.
  • the “reference diopter” refers to a diopter of ⁇ 1 [1 / m].
  • diopter X [1 / m] is a state in which the image by the eyepiece optical system EL can be positioned at 1 / X [m (meters)] on the optical axis from the eye point (The sign is positive when the image is formed closer to the observer (eye point side) than the eyepiece optical system EL).
  • Conditional expression (1) defines the refractive power of the first lens component G1 closest to the object to be observed, in order to intensify the total refractive power of the eyepiece optical system EL while maintaining good spherical aberration and coma aberration. It is.
  • the first lens component G1 closest to the observation object side has the least influence on spherical aberration and coma.
  • the first lens component G1 greatly affects the deterioration of the field curvature, the field curvature generated by the positive refractive power of the first lens component G1 may be corrected by the negative refractive power of the second lens component G2. It is possible.
  • the first lens component G1 closest to the observation object a strong positive refractive power.
  • the positive refractive power of the first lens component G1 closest to the observation object becomes weak
  • the refractive power of the entire eyepiece optical system EL becomes weak
  • the observation magnification is increased. Is not preferable because it becomes difficult.
  • the upper limit value of the conditional expression (1) If the upper limit value of the conditional expression (1) is exceeded, the positive refractive power of the first lens component G1 closest to the observation object becomes strong, and the curvature of field generated in the first lens component G1 becomes large. The curvature of field can not be completely corrected by the lens component G2, which is not preferable.
  • fe Focal length of the whole system of the eyepiece optical system
  • EL f12 Synthetic focal length of the first lens component G1 and the second lens component G2
  • Conditional expression (2) defines the combined refractive power of the first lens component G1 and the second lens component G2 in order to increase the observation magnification and correct the field curvature well.
  • the refractive power of the first lens component G1 and the refractive power of the second lens component G2 greatly affect correction and generation of curvature of field. In order not to generate field curvature, it is desirable to weaken the combined refractive power of the first lens component G1 and the second lens component G2. However, if the combined refractive power of the first lens component G1 and the second lens component G2 is weakened, the refractive power of the entire eyepiece optical system EL is weakened, and it becomes difficult to increase the observation magnification.
  • the combined refractive power of the first lens component G1 and the second lens component G2 is weak, and if the observation magnification is increased excessively, the refractive powers of the third lens component G3 and the fourth lens component G4 become strong, and spherical aberration , Worsen coma. If the lower limit value of the conditional expression (2) is not reached, the synthetic refractive power of the first lens component G1 and the second lens component G2 becomes weak, and the observation magnification can not be increased. In addition, if the observation magnification is increased while the value is below the lower limit value of the conditional expression (2), the spherical aberration and the coma aberration are unfavorably deteriorated.
  • conditional expression (2) it is more desirable to set the lower limit value of the conditional expression (2) to 0.48, further 0.50, and further 0.55. If the upper limit value of the conditional expression (2) is exceeded, the combined refractive power of the first lens component G1 and the second lens component G2 becomes strong, and curvature of field occurs, which is not preferable. In order to secure the effect of the conditional expression (2), it is more desirable to set the upper limit value of the conditional expression (2) to 1.00 and further to 0.70.
  • the eyepiece optical system EL when the lens surface on the eye point side of the lens closest to the eye point is made convex to the eye point side, the light ray near the center of the observation object is the most eye The emission angle from the lens surface on the eye point side of the lens on the point side becomes small, and the amount of generation of spherical aberration can be suppressed. On the other hand, the exit angle of the light beam in the peripheral portion of the screen can be increased, and the coma aberration can be corrected.
  • the eyepiece optical system EL it is desirable that at least one of the lens elements constituting the second lens component G2 satisfy the conditional expression (3) shown below.
  • d d 2 Abbe number for the d-line of the medium of the lens element constituting the second lens component G 2
  • Conditional expression (3) defines the Abbe number of the lens element having the strongest negative refractive power among the lens elements constituting the second lens component G2 in order to correct the lateral chromatic aberration well.
  • the negative refractive power of the second lens component G2 is The power is smaller. Therefore, by increasing the dispersion of the lens element having the most negative refractive power among the second lens component G2, the lateral chromatic aberration can be corrected well even with the negative refractive power of the weak second lens component G2.
  • conditional expression (3) If the lower limit value of the conditional expression (3) is not reached, overcorrection of magnification chromatic aberration occurs and the magnification chromatic aberration is deteriorated. In order to secure the effect of the conditional expression (3), it is more desirable to set the lower limit value of the conditional expression (3) to 20 and further to 30. If the upper limit value of the conditional expression (3) is exceeded, it is not preferable because lateral chromatic aberration can not be corrected. In order to secure the effect of the conditional expression (3), it is desirable to set the upper limit value of the conditional expression (3) to 22.
  • fe Focal length of the whole system of the eyepiece optical system
  • EL f4 Focal length of the fourth lens component G4
  • Conditional expression (4) defines the refractive power of the lens closest to the eye point in order to correct spherical aberration and coma aberration well.
  • the fourth lens component G4 closest to the eye point has the largest influence on spherical aberration and coma. Therefore, if the upper limit value of the conditional expression (4) is exceeded, the positive refractive power of the fourth lens component G4 becomes strong, and the spherical aberration and the coma aberration are largely deteriorated.
  • the lower limit value of the conditional expression (4) If the lower limit value of the conditional expression (4) is not reached, it is difficult to intensify the refractive power (power) of the entire eyepiece optical system EL, and it is not preferable because the observation magnification can not be increased. Assuming that the refractive power of the fourth lens component G4 falls below the lower limit value of the conditional expression (4) and the observation magnification is increased, the positive refractive powers of the first lens component G1 and the third lens component G3 become extreme. Correction of curvature of field becomes difficult as the second lens component G2 becomes stronger or the negative refractive power of the second lens component G2 becomes weaker. In order to secure the effect of the conditional expression (4), it is more desirable to set the lower limit value of the conditional expression (4) to 0.10, further preferably 0.15.
  • G2R2 curvature radius of lens surface of second lens component G2 closest to eye point
  • G3R1 curvature radius of lens surface of third lens component G3 closest to observation object
  • Conditional expression (5) defines the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 in order to correct coma aberration well. It is a thing.
  • the lens surface closest to the eye point of the second lens component G2 and the lens surface closest to the observation object of the third lens component G3 greatly affect the generation or correction of coma. In order to correct coma aberration favorably, it is preferable to correct coma aberration generated on the lens surface closest to the eye point of the second lens component G2 with the lens surface closest to the observation object of the third lens component G3.
  • the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 are made similar. It is desirable to make coma aberration generated on the lens surface closest to the eye point of the two lens component G2 similar to coma aberration corrected on the lens surface closest to the observation object on the third lens component G3 to cancel coma aberration. Below the lower limit value of the conditional expression (5), the similarity between the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 collapses. It is not preferable because coma aberration occurs.
  • conditional expression (5) In order to secure the effect of the conditional expression (5), it is desirable to set the lower limit value of the conditional expression (5) to ⁇ 0.25. Further, when the upper limit value of the conditional expression (5) is exceeded, the similarity between the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 It is not preferable because it collapses and coma aberration occurs. In order to secure the effect of the conditional expression (5), it is more desirable to set the upper limit value of the conditional expression (5) to 0.25, further to ⁇ 0.20.
  • G1R1 The radius of curvature of the lens surface of the first lens component G1 closest to the observation object
  • G1R2 The radius of curvature of the lens surface closest to the eye point of the first lens component
  • Conditional expression (6) defines the shape of the first lens component G1 in order to increase the observation magnification and correct the curvature of field and distortion well.
  • the positive refractive power of the first lens component G1 generates a curvature of field, but the curvature of field generated by the negative refractive power of the second lens component G2 is corrected. If the refractive power of the lens surface closest to the eye point of the first lens component G1 is increased, the field curvature generated by the first lens component G1 becomes large, and the negative refractive power of the second lens component G2 is sufficient to correct It disappears.
  • the positive refractive power of the lens surface closest to the observation object of the first lens component G1 should be You have to make it bigger. However, if the positive refracting power of the lens surface closest to the observation object of the first lens component G1 is increased too much, distortion will be aggravated. If the upper limit value of the conditional expression (6) is exceeded, the refractive power of the first lens component G1 becomes too large, and the distortion is aggravated, which is not preferable. In order to secure the effect of the conditional expression (6), it is more desirable to set the upper limit value of the conditional expression (6) to ⁇ 0.20, further preferably ⁇ 0.30.
  • the refractive power of the first lens component G1 becomes weak, and the observation magnification can not be increased.
  • the observation magnification is increased while the lower limit value of conditional expression (6) is exceeded, the refractive power of the lens surface closest to the eye point of the first lens component G1 increases, and the field curvature is degraded. Not desirable.
  • the eyepiece optical system EL can correct distortion by setting the lens surface closest to the observation object of the first lens component G1 to be rotationally symmetric aspheric, so that the first lens component G1 can be corrected. This makes it possible to strengthen the refractive power of the lens surface closest to the observation object, which is advantageous for increasing the observation magnification.
  • fe Focal length of the whole system of the eyepiece optical system EL: Entrance pupil position of the eyepiece optical system EL at a reference diopter (the code is positive on the eye point side with respect to the surface of the observation object)
  • Conditional expression (7) defines the entrance pupil position in order to increase the observation magnification while keeping the eye point long.
  • By increasing the passing height of the chief ray of high image height in a region close to the observation object plane it becomes easy to increase the observation magnification while keeping the eye point long.
  • In order to increase the passing height of the chief ray having a high image height in a region close to the observation object plane it is effective to set the entrance pupil distance to a near distance opposite to the eye point side from the observation object plane. If the upper limit value of the conditional expression (7) is exceeded, the entrance pupil position is separated from the observation object, and it is not possible to increase the passing height of the chief ray of high image height. It is not preferable because it becomes impossible.
  • conditional expression (7) In order to secure the effect of the conditional expression (7), it is desirable to set the upper limit value of the conditional expression (7) to ⁇ 0.50. If the lower limit value of conditional expression (7) is not reached, the entrance pupil position approaches the observation object too much, so the chief ray ray passing height of the first lens component G1 at the high image height becomes high, and a large field curvature occurs. It is not preferable because it In order to secure the effect of the conditional expression (7), it is more desirable to set the lower limit value of the conditional expression (7) to ⁇ 0.70, further preferably ⁇ 0.65.
  • fe Focal length of the whole system of the eyepiece optical system
  • EL f23 Synthetic focal length of the second lens component G2 and the third lens component G3
  • the conditional expression (8) reduces the deterioration of the aberration performance when the optical axes of the second lens component G2 and the third lens component G3 are shifted, so the second lens component G2 and the third lens component G3 It defines the ratio of the combined focal length of the above and the focal length of the entire eyepiece optical system EL.
  • the second lens component G2 and the third lens component G3 are made of an optical resin. If the lower limit value of the conditional expression (8) is not reached, the negative combined refractive power of the second lens component G2 and the third lens component G3 becomes strong, and the deterioration of aberration performance due to manufacturing errors becomes large, which is not preferable. In order to secure the effect of the conditional expression (8), it is desirable to set the lower limit value of the conditional expression (8) to ⁇ 0.35.
  • the upper limit value of the conditional expression (8) If the upper limit value of the conditional expression (8) is exceeded, the negative refractive power of the second lens component G2 decreases, which is not preferable because the correction of curvature of field becomes insufficient. In order to secure the effect of the conditional expression (8), it is more desirable to set the upper limit value of the conditional expression (8) to ⁇ 0.20, further preferably ⁇ 0.25.
  • the conditional expression (9) corrects coma aberration well, so the air conversion distance from the observation object at the reference diopter to the lens surface closest to the observation object of the first lens component G1 and the focal distance of the first lens component G1 Defines the ratio of When the air conversion distance from the observation object to the lens surface closest to the observation object of the first lens component G1 at the reference diopter becomes large, the luminous flux emitted from one point on the observation surface passes high on the first lens component G1. Changes greatly.
  • the air conversion distance D1 from the observation object to the lens surface closest to the observation object of the first lens component G1 becomes large, the positive refractive power of the first lens component G1 causes a large coma aberration, so the first lens component It is necessary to reduce the refractive power of G1.
  • the first lens component G1 in order to increase the refractive power of the first lens component G1, in order to reduce the coma aberration generated in the first lens component G1, from the observation object to the lens surface closest to the observation object on the first lens component G1.
  • the refractive power of the first lens component G1 becomes stronger than the air conversion distance D1 from the observation object to the lens surface closest to the observation object of the first lens component G1. It is not preferable because the aberration is aggravated.
  • the total length of the eyepiece optical system EL is the distance on the optical axis from the observation object O to the lens surface closest to the eye point of the eyepiece optical system EL.
  • Conditional expression (10) defines the ratio of the total length of the eyepiece optical system EL to the focal length of the entire system in order to correct the field curvature. If the lower limit value of the conditional expression (10) is not reached, it is not preferable because the refractive power of the entire eyepiece optical system EL becomes weak and the observation magnification can not be increased. In order to secure the effect of the conditional expression (10), it is more desirable to set the lower limit value of the conditional expression (10) to 1.55, further preferably 1.60. If the upper limit value of the conditional expression (10) is exceeded, the curvature of field is deteriorated. In order to secure the effect of the conditional expression (10), it is desirable to set the upper limit value of the conditional expression (10) to 1.70.
  • the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (11) shown below.
  • the first lens component G1 is configured of a cemented lens and has a plurality of lens elements, at least one of the lens elements satisfies the conditional expression (11).
  • nd1 the refractive index to the d-line of the medium of the lens element constituting the first lens component G1
  • the conditional expression (11) defines the refractive index to the d-line of the medium of the lens element constituting the first lens component G1 in order to correct distortion and field curvature well. If the lower limit value of the conditional expression (11) is not reached, it is not preferable because the first lens component G1 can not have refracting power and it is difficult to maintain performance and achieve high magnification. In order to secure the effect of the conditional expression (11), it is more desirable to set the lower limit value of the conditional expression (11) to 1.600, further preferably 1.700. If the upper limit value of the conditional expression (11) is exceeded, distortion will deteriorate, which is not preferable. In order to secure the effect of the conditional expression (11), it is desirable to set the upper limit value of the conditional expression (11) to 1.850.
  • the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (12) shown below.
  • the second lens component G2 is formed of a cemented lens and has a plurality of lens elements, at least one of those lens elements satisfies the conditional expression (12).
  • nd2 the refractive index to the d-line of the medium of the lens element constituting the second lens component G2
  • the conditional expression (12) defines the refractive index to the d-line of the medium of the lens element constituting the second lens component G2 in order to correct the astigmatism well. If the lower limit value of the conditional expression (12) is not reached, the optical performance is deteriorated due to the decentering of the second lens component G2, which is not preferable. In order to secure the effect of the conditional expression (12), it is desirable to set the lower limit value of the conditional expression (12) to 1.650. If the upper limit value of the conditional expression (12) is exceeded, correction of astigmatism becomes difficult, which is not preferable. In order to secure the effect of the conditional expression (12), it is desirable to set the upper limit value of the conditional expression (12) to 1.750.
  • the first lens component G1, the second lens component G2, the third lens component G3, and the fourth lens component G4 are configured as single lenses, and are configured by four single lenses. However, sufficiently good aberration performance can be achieved.
  • the eyepiece optical system EL according to this embodiment can easily adjust the diopter by moving the entire eyepiece optical system in the optical axis direction.
  • the camera 1 is a so-called mirrorless camera of an interchangeable lens type provided with an objective lens (shooting lens) OL.
  • an object (object) (not shown) is collected by the objective lens OL, and is taken on the imaging surface of the imaging unit C via an OLPF (Optical Low Pass Filter) (not shown).
  • OLPF Optical Low Pass Filter
  • the electronic view finder EVF includes an image display element DP such as a liquid crystal display element and an eyepiece optical system EL for magnifying and observing an image displayed on a display surface (the observation object O described above) of the image display element DP. And is configured.
  • the photographer can observe the image of the object (subject) formed by the objective lens OL through the eyepiece optical system EL by positioning the eye at the eye point EP.
  • the image photoelectrically converted by the imaging unit C is stored in a memory (not shown). In this way, the photographer can shoot a subject with the main camera 1.
  • the eyepiece optical system EL according to the present embodiment is a single-lens reflex camera having a quick return mirror in the camera body and observing a subject with a finder optical system. Even when mounted, the same effect as the camera 1 can be obtained.
  • the eyepiece optical system EL according to the present embodiment is an optical system (eyepiece lens) for magnifying and observing an image.
  • the image is an intermediate image by an objective lens, or a display surface of an image display element such as a liquid crystal display element or an organic EL display, and particularly preferably a display surface of an organic EL display. Therefore, the eyepiece optical system EL according to the present embodiment is used, for example, as an electronic binocular for observing an image displayed on a display surface, a head mounted display, or an eyepiece lens of an internal or external electronic viewfinder of a camera. Suitable for
  • an optical member such as a cover glass or a prism is provided between the observation object O (display surface of the image display element DP shown in FIG. 23) and the first lens component G1. It may be arranged. Also, an optical member such as a cover glass may be disposed between the fourth lens component G4 and the eyepoint EP.
  • each lens is disposed, and a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, a third lens component G3 having positive refractive power, and positive refractive power
  • a fourth lens component having a force and G4 are prepared respectively (step S100). And it arranges so that the conditions by a predetermined conditional expression (for example, conditional expression (1) mentioned above and conditional expression (2)) may be satisfied (Step S200).
  • a predetermined conditional expression for example, conditional expression (1) mentioned above and conditional expression (2)
  • a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape in order from the observation object side.
  • Negative meniscus lens L11 is disposed as a first lens component G1, and a lens surface on the observation object side and a lens surface on the eye point side are formed in an aspheric shape, and a negative meniscus lens shape concave on the observation object side Is arranged as a second lens component G2, and the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape, and a positive meniscus lens shape having a concave surface facing the object side
  • FIG.1, FIG.3, FIG.5, FIG.7, FIG.9, FIG.11, FIG.13, FIG.15, FIG.17, FIG.19 and FIG. 21 is eyepiece optical system EL (EL1-EL11) which concerns on each Example. And the distribution of refractive power.
  • the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the distance along the optical axis from the tangent plane of the apex of each aspheric surface at height y to each aspheric surface (sag amount
  • S S
  • r the radius of curvature of the reference spherical surface (paraxial radius of curvature)
  • K the conic constant
  • K the nth-order aspheric coefficient
  • Ru the following equation (a) is Ru.
  • “E-n” indicates “ ⁇ 10 ⁇ n ”.
  • the second-order aspheric coefficient A2 is zero. Further, in the tables of the respective embodiments, the aspheric surface is marked with * on the right side of the surface number.
  • FIG. 1 is a view showing the arrangement of an eyepiece optical system EL1 according to the first embodiment.
  • the eyepiece optical system EL1 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done.
  • the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape
  • the third lens component G3 is constituted by an aspheric positive lens L31 having a positive meniscus lens shape concave on the object side.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL1 is performed by moving the entire eyepiece optical system EL1 in the optical axis direction.
  • Table 1 below presents values of specifications of the eyepiece optical system EL1.
  • fe shown in the overall specifications represents the focal length of the entire system
  • H represents the maximum object height
  • TL represents the value of the total length.
  • the first column m in the lens data shows the order (surface number) of the lens surface from the object side along the traveling direction of the light beam
  • the second column r shows the radius of curvature of each lens surface
  • the third column d is the distance on the optical axis from each optical surface to the next optical surface (spacing);
  • the radius of curvature ⁇ indicates a plane
  • the refractive index of air 0000 is omitted.
  • the object plane indicates the observation object O
  • the image plane indicates the eye point EP.
  • the focal length f (fOe, fEe, etc.), radius of curvature r, interplanar spacing d, and other units of length generally used in all the following specification values are generally "mm", but the optical system Is not limited to this, because the same optical performance can be obtained by proportional enlargement or reduction.
  • the explanation of these symbols and the explanation of the specification table are the same in the following embodiments.
  • the surface distance d is an air equivalent length.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 2 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals.
  • Table 3 below shows variable intervals and dioptric pupil positions for each diopter.
  • the diopter represents -1 [1 / m] as "-1 dpt", +2 [1 / m] as "+2 dpt", and -4 [1 / m] as "-4 dpt". The same applies to the following embodiments.
  • Table 4 shows values corresponding to the respective conditional expressions of the eyepiece optical system EL1.
  • the eyepiece optical system EL1 satisfies the conditional expressions (1) to (11).
  • FIG. 2 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter ( ⁇ 1 dpt) of this eyepiece optical system EL1.
  • the unit of the horizontal axis of the spherical aberration diagram and the astigmatism diagram is “1 / m”, and is indicated by “D” in the diagram.
  • the coma aberration diagram and the magnification chromatic aberration diagram show the components in angle units, and d and g in the diagram show the aberration curve at the d-line and the g-line.
  • the coma aberration diagram shows an aberration curve for each object height.
  • FIG. 3 is a view showing the arrangement of an eyepiece optical system EL2 according to the second embodiment.
  • the eyepiece optical system EL2 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done.
  • the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape
  • the third lens component G3 is constituted by an aspheric positive lens L31 having a positive meniscus lens shape concave on the object side.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL2 is performed by moving the entire eyepiece optical system EL2 in the optical axis direction.
  • Table 5 below presents values of specifications of the eyepiece optical system EL2.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 6 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 7 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 8 shows values corresponding to the respective conditional expressions of the eyepiece optical system EL2.
  • the eyepiece optical system EL2 satisfies the conditional expressions (1) to (10).
  • FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram and a coma aberration diagram of the eyepiece optical system EL2 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL2 achieves good aberration within the diopter adjustment range.
  • FIG. 5 is a view showing the arrangement of an eyepiece optical system EL3 according to the third embodiment.
  • the eyepiece optical system EL3 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of a biconcave negative lens-shaped aspheric negative lens L12 in which the lens surface on the observation object side is formed in an aspheric shape.
  • the third lens component G3 is composed of an aspheric positive lens L31 having a biconvex positive lens shape in which the lens surface on the eye point side is formed in an aspheric shape.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL3 is performed by moving the entire eyepiece optical system EL3 in the optical axis direction.
  • Table 9 presents values of specifications of the eyepiece optical system EL3.
  • the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 10 below shows data of aspheric surfaces, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 11 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 12 shows values corresponding to the respective conditional expressions of the eyepiece optical system EL3.
  • the eyepiece optical system EL3 satisfies the conditional expressions (1) to (11).
  • FIG. 6 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter ( ⁇ 1 dpt) of this eyepiece optical system EL3. From these aberration diagrams, it can be seen that this eyepiece optical system EL3 achieves good aberration within the diopter adjustment range.
  • FIG. 7 is a view showing the arrangement of an eyepiece optical system EL4 according to the fourth embodiment.
  • the eyepiece optical system EL4 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done.
  • the third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL4 is performed by moving the entire eyepiece optical system EL4 in the optical axis direction.
  • Table 13 below provides values of specifications of the eyepiece optical system EL4.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 14 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 15 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 16 shows values corresponding to the respective conditional expressions of the eyepiece optical system EL4.
  • the eyepiece optical system EL4 satisfies the conditional expressions (1) to (11).
  • FIG. 8 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram of the eyepiece optical system EL4 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL4 achieves good aberration within the diopter adjustment range.
  • FIG. 9 is a view showing the configuration of the eyepiece optical system EL5 according to the fifth example.
  • the eyepiece optical system EL5 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done.
  • the third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL5 is performed by moving the entire eyepiece optical system EL5 in the optical axis direction.
  • Table 17 below provides values of specifications of the eyepiece optical system EL5.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 18 below shows data of aspheric surfaces, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 19 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 20 shows the corresponding values to the conditional expressions of the eyepiece optical system EL5.
  • the eyepiece optical system EL5 satisfies the conditional expressions (1) to (10).
  • FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram of the eyepiece optical system EL5 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL5 achieves good aberration within the diopter adjustment range.
  • FIG. 11 is a diagram showing the configuration of an eyepiece optical system EL6 according to a sixth example.
  • the eyepiece optical system EL6 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done.
  • the third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done.
  • the fourth lens component G4 is composed of an aspheric positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the diopter adjustment in the eyepiece optical system EL6 is performed by moving the entire eyepiece optical system EL6 in the optical axis direction.
  • Table 21 below provides values of specifications of the eyepiece optical system EL6.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • the following Table 22 shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 23 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 24 shows the corresponding values to the conditional expressions of the eyepiece optical system EL6.
  • the eyepiece optical system EL6 satisfies the conditional expressions (1) to (10).
  • FIG. 12 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter ( ⁇ 1 dpt) of this eyepiece optical system EL6. From these aberration diagrams, it can be seen that this eyepiece optical system EL6 achieves good aberration within the diopter adjustment range.
  • FIG. 13 is a diagram showing the configuration of an eyepiece optical system EL7 according to a seventh example.
  • the eyepiece optical system EL7 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object.
  • the third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object.
  • the fourth lens component G4 is composed of an aspheric positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the diopter adjustment in the eyepiece optical system EL7 is performed by moving the entire eyepiece optical system EL7 in the optical axis direction.
  • Table 25 presents values of specifications of the eyepiece optical system EL7.
  • the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • the following Table 26 shows aspheric surface data, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 27 below shows variable intervals and dioptric pupil positions for each diopter.
  • Table 28 shows values corresponding to the respective conditional expressions of the eyepiece optical system EL7.
  • the eyepiece optical system EL7 satisfies the conditional expressions (1) to (11).
  • FIG. 14 shows a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram and a coma aberration diagram of the eyepiece optical system EL7 at a standard diopter ( ⁇ 1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL7 achieves good aberration within the diopter adjustment range.
  • FIG. 15 is a view showing the configuration of an eyepiece optical system EL8 according to an eighth example.
  • the eyepiece optical system EL8 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 has an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side is aspheric, and an aspheric lens surface on the eye point side And a cemented lens obtained by cementing a positive meniscus lens-shaped aspheric positive lens L12 having a concave surface facing the observation object.
  • the second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object.
  • the third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL8 is performed by moving the entire eyepiece optical system EL8 in the optical axis direction.
  • Table 29 below provides values of specifications of the eyepiece optical system EL8.
  • the first surface, the third surface, the fourth surface, the seventh surface, the eighth surface and the ninth surface are formed in an aspheric shape.
  • the following Table 30 shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 31 below shows variable intervals for each diopter and entrance pupil positions.
  • Table 32 below shows the corresponding values to the conditional expressions of the eyepiece optical system EL8.
  • the eyepiece optical system EL8 satisfies the conditional expressions (1) to (11).
  • the spherical aberration view, the astigmatism view, the distortion view and the coma view of the eyepiece optical system EL8 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that this eyepiece optical system EL8 achieves good aberration within the diopter adjustment range.
  • FIG. 17 is a view showing the configuration of an eyepiece optical system EL9 according to a ninth example.
  • the eyepiece optical system EL9 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object.
  • the third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL9 is performed by moving the entire eyepiece optical system EL9 in the optical axis direction.
  • Table 33 below provides values of specifications of the eyepiece optical system EL9.
  • the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • Table 34 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 35 below shows variable intervals and dioptric pupil positions for each diopter.
  • the eyepiece optical system EL9 satisfies the conditional expressions (1) to (12).
  • the spherical aberration view, the astigmatism view, the distortion view, and the coma view of the eyepiece optical system EL9 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that this eyepiece optical system EL9 achieves good aberration within the diopter adjustment range.
  • FIG. 19 is a diagram showing the configuration of an eyepiece optical system EL10 according to a tenth example.
  • the eyepiece optical system EL10 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
  • the second lens component G2 is configured of an aspheric negative lens L21 having a negative meniscus lens shape whose concave surface is directed to the observation object side, with the lens surface on the observation object side and the lens surface on the eye point side being aspheric. It is done.
  • the third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL10 is performed by moving the entire eyepiece optical system EL10 in the optical axis direction.
  • Table 37 below provides values of specifications of the eyepiece optical system EL10.
  • the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape.
  • the following Table 38 shows aspheric surface data, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 39 below shows variable intervals and dioptric pupil positions for each diopter.
  • the eyepiece optical system EL10 satisfies the conditional expressions (1) to (12).
  • the spherical aberration view, the astigmatism view, the distortion view and the coma view of the eyepiece optical system EL10 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that in this eyepiece optical system EL10, good aberration is achieved within the diopter adjustment range.
  • FIG. 21 is a diagram showing the configuration of an eyepiece optical system EL11 according to an eleventh example.
  • the eyepiece optical system EL11 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
  • the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which a lens surface on the observation object side is formed in an aspheric shape.
  • the second lens component G2 is a biconcave negative lens-shaped aspheric negative lens L21 in which the lens surface on the observation object side is aspheric, and a lens surface in the eyepoint side is aspheric. It is comprised with the cemented lens which joined the aspheric positive lens L22 of convex positive lens shape.
  • the third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object.
  • the fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
  • the diopter adjustment in the eyepiece optical system EL11 is performed by moving the entire eyepiece optical system EL11 in the optical axis direction.
  • Table 41 below provides values of specifications of the eyepiece optical system EL11.
  • the first surface, the third surface, the fifth surface, the seventh surface, the eighth surface and the ninth surface are formed in an aspheric shape.
  • the following Table 42 shows aspheric surface data, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
  • the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment.
  • the entrance pupil position EnP also changes with the change of these intervals. Table 43 below shows variable intervals and dioptric pupil positions for each diopter.
  • the eyepiece optical system EL10 satisfies the conditional expressions (1) to (11).
  • the spherical aberration view, the astigmatism view, the distortion view, and the coma view of the eyepiece optical system EL11 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that in this eyepiece optical system EL11, good aberration is achieved within the diopter adjustment range.
  • the thing of the composition of four lens components was shown as a numerical example of eyepiece optical system EL, it is applicable also to other lens composition, such as five lens components, for example. Further, the lens component may be added to the most object side or the lens component may be added to the most eye point side.
  • one or more lens components are moved so as to have a displacement component in the direction orthogonal to the optical axis, or rotationally moved (sway) in the in-plane direction including the optical axis to correct image blurring caused by camera shake. It is good also as an anti-vibration lens group.
  • the third lens component G3 it is preferable to use the third lens component G3 as a vibration reduction lens group.
  • the lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to lens processing and assembly adjustment errors can be prevented.
  • the image plane shifts it is preferable because there is little deterioration in the imaging performance.
  • the lens surface is aspheric, it is either aspheric by grinding, a glass mold aspheric obtained by molding glass into an aspheric shape, or a composite aspheric made by forming a resin provided on the surface of glass into an aspheric shape. May be.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment flare and ghost are reduced, and high contrast optical performance is achieved in a wide wavelength range.
  • An antireflective film having high transmittance may be provided.
  • the first lens component G1, the second lens component G2, the third lens component G3, and the fourth lens component G4 are integrated, or the entire eyepiece optical system EL is integrally moved.
  • the lens component on the eye point side is fixed most, and the entire lens component on the observation object side with respect to the lens component is integrally moved, or the first lens component G1 and the first lens component G1 are
  • the configuration may be such that at least a part of lens components of the two-lens component G2, the third lens component G3, and the fourth lens component G4 are moved.
  • the diopter adjustment lens group is preferably composed of a single lens.

Abstract

Provided are: an eyepiece optical system EL having favorable optical performance and a high observation magnification power; an optical device having this eyepiece optical system EL; and a method for producing an eyepiece optical system EL. This eyepiece optical system EL satisfies the following conditional expression, and has, in order from the observation object side: a first lens component having a positive refractive power; a second lens component having a negative refractive power; a third lens component having a positive refractive power; and a fourth lens component having a positive refractive power. 1.38<fe/f1<3.00; fe is the focal distance of the entire eyepiece optical system EL; f1 is the focal distance of the first lens component G1; and a "lens component" refers to a single lens or a cemented lens.

Description

接眼光学系、光学機器及び接眼光学系の製造方法Eyepiece optical system, optical apparatus, and method of manufacturing eyepiece optical system
 本発明は、接眼光学系、光学機器及び接眼光学系の製造方法に関する。 The present invention relates to an eyepiece optical system, an optical device, and a method of manufacturing the eyepiece optical system.
 従来、高い結像性能を有する接眼光学系が提案されている(例えば、特許文献1参照)。しかしながら、特許文献1は、さらなる光学性能の向上が要望されているという課題があった。 Conventionally, an eyepiece optical system having high imaging performance has been proposed (see, for example, Patent Document 1). However, Patent Document 1 has a problem that further improvement in optical performance is required.
特開2015-075713号公報JP, 2015-075713, A
 本発明の第一の態様に係る接眼光学系は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有し、次式の条件を満足する。
1.38 < fe/f1 < 3.00
 但し、
 fe:当該接眼光学系の全系の焦点距離
 f1:第1レンズ成分の焦点距離
 なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
The eyepiece optical system according to the first aspect of the present invention has a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power in order from the observation object side. A third lens component and a fourth lens component having a positive refractive power are satisfied, and the condition of the following expression is satisfied.
1.38 <fe / f1 <3.00
However,
fe: focal length of the whole system of the eyepiece optical system f1: focal length of the first lens component "lens component" means a single lens or a cemented lens.
 また、本発明の第二の態様に係る接眼光学系は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有し、次式の条件を満足する。
0.48 < fe/f12 < 3.00
 但し、
 fe:当該接眼光学系の全系の焦点距離
 f12:第1レンズ成分と第2レンズ成分との合成焦点距離
 なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
In the eyepiece optical system according to the second aspect of the present invention, a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power are sequentially arranged from an observation object side. And a fourth lens component having a positive refractive power, and the condition of the following equation is satisfied.
0.48 <fe / f12 <3.00
However,
fe: focal length of the whole system of the eyepiece optical system f12: combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
 また、本発明の第一の態様に係る接眼光学系の製造方法は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有する接眼光学系の製造方法であって、次式の条件を満足するように配置する。
1.38 < fe/f1 < 3.00
 但し、
 fe:当該接眼光学系の全系の焦点距離
 f1:第1レンズ成分の焦点距離
 なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
Further, in the manufacturing method of the eyepiece optical system according to the first aspect of the present invention, the first lens component having positive refractive power, the second lens component having negative refractive power, and the positive lens component in order from the observation object side It is a manufacturing method of the eyepiece optical system which has the 3rd lens component which has the following, and the 4th lens component which has positive refractive power, and it arranges so that the conditions of a following formula may be satisfied.
1.38 <fe / f1 <3.00
However,
fe: focal length of the whole system of the eyepiece optical system f1: focal length of the first lens component "lens component" means a single lens or a cemented lens.
 また、本発明の第二の態様に係る接眼光学系の製造方法は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有する接眼光学系の製造方法であって、次式の条件を満足するように配置する。
0.48 < fe/f12 < 3.00
 但し、
 fe:当該接眼光学系の全系の焦点距離
 f12:第1レンズ成分と第2レンズ成分との合成焦点距離
 なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
Further, in the method of manufacturing an eyepiece optical system according to the second aspect of the present invention, a first lens component having positive refractive power, a second lens component having negative refractive power, and a positive lens component in order from the observation object side It is a manufacturing method of the eyepiece optical system which has the 3rd lens component which has the following, and the 4th lens component which has positive refractive power, and it arranges so that the conditions of a following formula may be satisfied.
0.48 <fe / f12 <3.00
However,
fe: focal length of the whole system of the eyepiece optical system f12: combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
第1実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 1st Example. 第1実施例に係る接眼光学系の諸収差図である。FIG. 5 shows various aberrations of the eyepiece optical system according to the first example. 第2実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 2nd Example. 第2実施例に係る接眼光学系の諸収差図である。FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the second example. 第3実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 3rd Example. 第3実施例に係る接眼光学系の諸収差図である。FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the third example. 第4実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 4th Example. 第4実施例に係る接眼光学系の諸収差図である。FIG. 7 shows various aberrations that occurred in the eyepiece optical system according to the fourth example. 第5実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 5th Example. 第5実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the fifth example. 第6実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 6th Example. 第6実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the sixth example. 第7実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 7th Example. 第7実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the seventh example. 第8実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 8th Example. 第8実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the eighth example. 第9実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 9th Example. 第9実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the ninth example. 第10実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 10th Example. 第10実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the tenth example. 第11実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 11th Example. 第11実施例に係る接眼光学系の諸収差図である。FIG. 21 shows various aberrations that occur in the eyepiece optical system according to the eleventh example. 上記接眼光学系を搭載するカメラの断面図である。It is a sectional view of a camera which carries the above-mentioned eyepiece optical system. 上記接眼光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said eyepiece optical system.
 以下、好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る接眼光学系ELは、観察物体側(単に「物体」とも呼ぶ)から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有している。 Hereinafter, preferred embodiments will be described with reference to the drawings. As shown in FIG. 1, the eyepiece optical system EL according to this embodiment includes, in order from an observation object side (also simply referred to as “object”), a first lens component G1 having positive refractive power and negative refractive power. And a third lens component G3 having a positive refractive power, and a fourth lens component G4 having a positive refractive power.
 なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。また、「レンズ要素」とは単レンズ又は接合レンズを構成する各々のレンズのことをいう。また、「基準視度」とは、視度が-1[1/m]のときをいう。ここで、単位[1/m]について、視度X[1/m]とは、接眼光学系ELによる像がアイポイントから光軸上に1/X[m(メートル)]の位置にできる状態のことを示す(符号は像が接眼光学系ELより観察者側(アイポイント側)にできたときを正とする)。 The term "lens component" refers to a single lens or a cemented lens. Also, "lens element" refers to each lens constituting a single lens or a cemented lens. Also, the “reference diopter” refers to a diopter of −1 [1 / m]. Here, with regard to the unit [1 / m], diopter X [1 / m] is a state in which the image by the eyepiece optical system EL can be positioned at 1 / X [m (meters)] on the optical axis from the eye point (The sign is positive when the image is formed closer to the observer (eye point side) than the eyepiece optical system EL).
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(1)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (1) shown below.
1.38 < fe/f1 < 3.00           (1)
 但し、
 fe:当該接眼光学系ELの全系の焦点距離
 f1:第1レンズ成分G1の焦点距離
1.38 <fe / f1 <3.00 (1)
However,
fe: focal length of the entire eyepiece optical system EL f1: focal length of the first lens component G1
 条件式(1)は、球面収差、コマ収差を良好に保ちつつ、接眼光学系ELの全体の屈折力を強くするために、最も観察物体側の第1レンズ成分G1の屈折力を規定するものである。上記の、観察物体側から正、負、正、正の屈折力配置の接眼光学系ELでは、最も観察物体側の第1レンズ成分G1は、球面収差、コマ収差に最も影響を与えない。第1レンズ成分G1は像面湾曲の悪化に大きく影響するが、第1レンズ成分G1の正の屈折力で発生した像面湾曲は、第2レンズ成分G2の負の屈折力で補正することが可能である。そこで、球面収差、コマ収差を良好に保ちながら、接眼光学系ELの観察倍率を大きくするには、最も観察物体側の第1レンズ成分G1に強い正の屈折力を持たせることが必要となる。この条件式(1)の下限値を下回ると、最も観察物体側の第1レンズ成分G1の正の屈折力が弱くなり、接眼光学系EL全体の屈折力が弱くなり、観察倍率を大きくすることが困難となるため好ましくない。なお、この条件式(1)の効果を確実なものとするために、条件式(1)の下限値を1.45、更に1.48、更に1.50とすることがより望ましい。また、条件式(1)の上限値を上回ると、最も観察物体側の第1レンズ成分G1の正の屈折力が強くなり、第1レンズ成分G1で発生する像面湾曲が大きくなり、第2レンズ成分G2で像面湾曲が補正しきれなくなるため好ましくない。なお、この条件式(1)の効果を確実なものとするために、条件式(1)の上限値を2.00、更に1.65とすることがより望ましい。 Conditional expression (1) defines the refractive power of the first lens component G1 closest to the object to be observed, in order to intensify the total refractive power of the eyepiece optical system EL while maintaining good spherical aberration and coma aberration. It is. In the above-described eyepiece optical system EL having a positive, negative, positive, or positive refractive power arrangement from the observation object side, the first lens component G1 closest to the observation object side has the least influence on spherical aberration and coma. Although the first lens component G1 greatly affects the deterioration of the field curvature, the field curvature generated by the positive refractive power of the first lens component G1 may be corrected by the negative refractive power of the second lens component G2. It is possible. Therefore, in order to increase the observation magnification of the eyepiece optical system EL while maintaining good spherical aberration and coma aberration, it is necessary to give the first lens component G1 closest to the observation object a strong positive refractive power. . Below the lower limit of this conditional expression (1), the positive refractive power of the first lens component G1 closest to the observation object becomes weak, the refractive power of the entire eyepiece optical system EL becomes weak, and the observation magnification is increased. Is not preferable because it becomes difficult. In order to secure the effect of the conditional expression (1), it is more desirable to set the lower limit value of the conditional expression (1) to 1.45, further 1.48 and further 1.50. If the upper limit value of the conditional expression (1) is exceeded, the positive refractive power of the first lens component G1 closest to the observation object becomes strong, and the curvature of field generated in the first lens component G1 becomes large. The curvature of field can not be completely corrected by the lens component G2, which is not preferable. In order to secure the effect of the conditional expression (1), it is more desirable to set the upper limit value of the conditional expression (1) to 2.00, further preferably 1.65.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(2)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (2) shown below.
0.48 < fe/f12 < 3.00          (2)
 但し、
 fe:当該接眼光学系ELの全系の焦点距離
 f12:第1レンズ成分G1と第2レンズ成分G2との合成焦点距離
0.48 <fe / f12 <3.00 (2)
However,
fe: Focal length of the whole system of the eyepiece optical system EL f12: Synthetic focal length of the first lens component G1 and the second lens component G2
 条件式(2)は、観察倍率を大きくするとともに、像面湾曲を良好に補正するため、第1レンズ成分G1と第2レンズ成分G2の合成屈折力を規定するものである。第1レンズ成分G1の屈折力と第2レンズ成分G2の屈折力は、像面湾曲の補正、発生に大きく影響を与える。像面湾曲を発生させないためには、第1レンズ成分G1と第2レンズ成分G2の合成屈折力を弱くすることが望ましい。しかし一方で、第1レンズ成分G1と第2レンズ成分G2の合成屈折力を弱くすると、全接眼光学系ELの屈折力が弱くなり、観察倍率を大きくすることが困難となる。また、第1レンズ成分G1と第2レンズ成分G2の合成屈折力が弱く、観察倍率を無理に大きくしようとすると、第3レンズ成分G3、第4レンズ成分G4の屈折力が強くなり、球面収差、コマ収差を悪化させる。この条件式(2)の下限値を下回ると、第1レンズ成分G1と第2レンズ成分G2の合成屈折力が弱くなり、観察倍率を大きくすることができないため好ましくない。また、条件式(2)の下限値を下回った状態で観察倍率を大きくすると、球面収差、コマ収差が悪化するため好ましくない。なお、この条件式(2)の効果を確実なものとするために、条件式(2)の下限値を0.48、更に0.50、更に0.55とすることがより望ましい。また、条件式(2)の上限値を上回ると、第1レンズ成分G1と第2レンズ成分G2の合成屈折力が強くなり、像面湾曲が発生するため好ましくない。なお、この条件式(2)の効果を確実なものとするために、条件式(2)の上限値を1.00、更に0.70とすることがより望ましい。 Conditional expression (2) defines the combined refractive power of the first lens component G1 and the second lens component G2 in order to increase the observation magnification and correct the field curvature well. The refractive power of the first lens component G1 and the refractive power of the second lens component G2 greatly affect correction and generation of curvature of field. In order not to generate field curvature, it is desirable to weaken the combined refractive power of the first lens component G1 and the second lens component G2. However, if the combined refractive power of the first lens component G1 and the second lens component G2 is weakened, the refractive power of the entire eyepiece optical system EL is weakened, and it becomes difficult to increase the observation magnification. In addition, the combined refractive power of the first lens component G1 and the second lens component G2 is weak, and if the observation magnification is increased excessively, the refractive powers of the third lens component G3 and the fourth lens component G4 become strong, and spherical aberration , Worsen coma. If the lower limit value of the conditional expression (2) is not reached, the synthetic refractive power of the first lens component G1 and the second lens component G2 becomes weak, and the observation magnification can not be increased. In addition, if the observation magnification is increased while the value is below the lower limit value of the conditional expression (2), the spherical aberration and the coma aberration are unfavorably deteriorated. In order to secure the effect of the conditional expression (2), it is more desirable to set the lower limit value of the conditional expression (2) to 0.48, further 0.50, and further 0.55. If the upper limit value of the conditional expression (2) is exceeded, the combined refractive power of the first lens component G1 and the second lens component G2 becomes strong, and curvature of field occurs, which is not preferable. In order to secure the effect of the conditional expression (2), it is more desirable to set the upper limit value of the conditional expression (2) to 1.00 and further to 0.70.
 また、本実施形態に係る接眼光学系ELにおいて、最もアイポイント側のレンズのアイポイント側のレンズ面を、アイポイント側に凸の面形状にすると、観察物体の中心付近の光線は、最もアイポイント側のレンズのアイポイント側のレンズ面からの射出角が小さくなり、球面収差の発生量を抑えることができる。一方で、画面周辺部の光線の射出角を、大きくすることができ、コマ収差の補正が可能となる。 Further, in the eyepiece optical system EL according to the present embodiment, when the lens surface on the eye point side of the lens closest to the eye point is made convex to the eye point side, the light ray near the center of the observation object is the most eye The emission angle from the lens surface on the eye point side of the lens on the point side becomes small, and the amount of generation of spherical aberration can be suppressed. On the other hand, the exit angle of the light beam in the peripheral portion of the screen can be increased, and the coma aberration can be corrected.
 また、本実施形態に係る接眼光学系ELにおいて、第2レンズ成分G2を構成するレンズ要素の少なくとも1つは、以下に示す条件式(3)を満足することが望ましい。 Further, in the eyepiece optical system EL according to the present embodiment, it is desirable that at least one of the lens elements constituting the second lens component G2 satisfy the conditional expression (3) shown below.
15.0 < νd2 < 35.0             (3)
 但し、
 νd2:第2レンズ成分G2を構成するレンズ要素の媒質のd線に対するアッベ数
15.0 <d d2 <35.0 (3)
However,
d d 2: Abbe number for the d-line of the medium of the lens element constituting the second lens component G 2
 条件式(3)は、倍率色収差を良好に補正するため、第2レンズ成分G2を構成するレンズ要素の内、最も負の屈折力が強いレンズ要素のアッベ数を規定するものである。特に、上述した条件式(2)を満たすように、第1レンズ成分G1と第2レンズ成分G2の合成屈折力を、強い正の屈折力を持たせると、第2レンズ成分G2の負の屈折力は小さくなる。そこで、第2レンズ成分G2の内、最も負の屈折力が強いレンズ要素の分散を大きくすることで、弱い第2レンズ成分G2の負の屈折力でも、良好に倍率色収差を補正できるようにした。この条件式(3)の下限値を下回ると、倍率色収差の過補正が起き、倍率色収差が悪化するため好ましくない。なお、この条件式(3)の効果を確実なものとするために、条件式(3)の下限値を20、更に30とすることがより望ましい。また、条件式(3)の上限値を上回ると、倍率色収差が補正しきれないため好ましくない。なお、この条件式(3)の効果を確実なものとするために、条件式(3)の上限値を22とすることが望ましい。 Conditional expression (3) defines the Abbe number of the lens element having the strongest negative refractive power among the lens elements constituting the second lens component G2 in order to correct the lateral chromatic aberration well. In particular, when the combined refractive power of the first lens component G1 and the second lens component G2 is made to have strong positive refractive power so as to satisfy the conditional expression (2) described above, the negative refractive power of the second lens component G2 is The power is smaller. Therefore, by increasing the dispersion of the lens element having the most negative refractive power among the second lens component G2, the lateral chromatic aberration can be corrected well even with the negative refractive power of the weak second lens component G2. . If the lower limit value of the conditional expression (3) is not reached, overcorrection of magnification chromatic aberration occurs and the magnification chromatic aberration is deteriorated. In order to secure the effect of the conditional expression (3), it is more desirable to set the lower limit value of the conditional expression (3) to 20 and further to 30. If the upper limit value of the conditional expression (3) is exceeded, it is not preferable because lateral chromatic aberration can not be corrected. In order to secure the effect of the conditional expression (3), it is desirable to set the upper limit value of the conditional expression (3) to 22.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(4)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (4) shown below.
0.01 < fe/f4 < 0.33           (4)
 但し、
 fe:当該接眼光学系ELの全系の焦点距離
 f4:第4レンズ成分G4の焦点距離
0.01 <fe / f4 <0.33 (4)
However,
fe: Focal length of the whole system of the eyepiece optical system EL f4: Focal length of the fourth lens component G4
 条件式(4)は球面収差、コマ収差を良好に補正するため、最もアイポイント側のレンズの屈折力を規定するものである。最もアイポイント側の第4レンズ成分G4は、球面収差とコマ収差への影響が最も大きい。そのため、条件式(4)の上限値を上回ると、第4レンズ成分G4の持つ正の屈折力が強くなり、球面収差とコマ収差が大きく悪化するため好ましくない。なお、この条件式(4)の効果を確実なものとするために、条件式(4)の上限値を0.30、更に0.25、更に0.239とすることがより望ましい。また、条件式(4)の下限値を下回ると、接眼光学系ELの全体の屈折力(パワー)を強くすることが難しくなるため、観察倍率の高倍率化が不可能となるため好ましくない。仮に、第4レンズ成分G4の屈折力が条件式(4)の下限値を下回り、観察倍率を高倍率化したとすると、第1レンズ成分G1及び第3レンズ成分G3の正の屈折力が極端に強くなる、または、第2レンズ成分G2の負の屈折力が弱くなることにより、像面湾曲の補正が難しくなる。なお、この条件式(4)の効果を確実なものとするために、条件式(4)の下限値を0.10、更に0.15とすることがより望ましい。 Conditional expression (4) defines the refractive power of the lens closest to the eye point in order to correct spherical aberration and coma aberration well. The fourth lens component G4 closest to the eye point has the largest influence on spherical aberration and coma. Therefore, if the upper limit value of the conditional expression (4) is exceeded, the positive refractive power of the fourth lens component G4 becomes strong, and the spherical aberration and the coma aberration are largely deteriorated. In order to secure the effect of the conditional expression (4), it is more desirable to set the upper limit value of the conditional expression (4) to 0.30, further 0.25, further 0.239. If the lower limit value of the conditional expression (4) is not reached, it is difficult to intensify the refractive power (power) of the entire eyepiece optical system EL, and it is not preferable because the observation magnification can not be increased. Assuming that the refractive power of the fourth lens component G4 falls below the lower limit value of the conditional expression (4) and the observation magnification is increased, the positive refractive powers of the first lens component G1 and the third lens component G3 become extreme. Correction of curvature of field becomes difficult as the second lens component G2 becomes stronger or the negative refractive power of the second lens component G2 becomes weaker. In order to secure the effect of the conditional expression (4), it is more desirable to set the lower limit value of the conditional expression (4) to 0.10, further preferably 0.15.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(5)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (5) shown below.
-0.30<(G2R2-G3R1)/(G2R2+G3R1)<0.50 (5)
 但し、
 G2R2:第2レンズ成分G2の最もアイポイント側のレンズ面の曲率半径
 G3R1:第3レンズ成分G3の最も観察物体側のレンズ面の曲率半径
-0.30 <(G2R2-G3R1) / (G2R2 + G3R1) <0.50 (5)
However,
G2R2: curvature radius of lens surface of second lens component G2 closest to eye point G3R1: curvature radius of lens surface of third lens component G3 closest to observation object
 条件式(5)はコマ収差を良好に補正するため、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状を規定するものである。第2レンズ成分G2の最もアイポイント側のレンズ面と、第3レンズ成分G3の最も観察物体側のレンズ面は、コマ収差の発生または、補正に大きく影響する。コマ収差を良好に補正するには、第2レンズ成分G2の最もアイポイント側のレンズ面で発生したコマ収差を、第3レンズ成分G3の最も観察物体側のレンズ面で補正することが好ましい。また、コマ収差を良好に補正するには、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と第3レンズ成分G3の最も観察物体側のレンズ面の形状を類似させることにより、第2レンズ成分G2の最もアイポイント側のレンズ面で発生するコマ収差と第3レンズ成分G3の最も観察物体側のレンズ面で補正するコマ収差を類似させ、コマ収差を打ち消すことが望ましい。条件式(5)の下限値を下回ると、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状の類似性が崩れ、コマ収差が発生するため好ましくない。なお、条件式(5)の効果を確実なものとするために、条件式(5)の下限値を-0.25とすることが望ましい。また、条件式(5)の上限値を上回ると、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状の類似性が崩れ、コマ収差が発生するため好ましくない。なお、条件式(5)の効果を確実なものとするために、条件式(5)の上限値を0.25、更に-0.20とすることがより望ましい。 Conditional expression (5) defines the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 in order to correct coma aberration well. It is a thing. The lens surface closest to the eye point of the second lens component G2 and the lens surface closest to the observation object of the third lens component G3 greatly affect the generation or correction of coma. In order to correct coma aberration favorably, it is preferable to correct coma aberration generated on the lens surface closest to the eye point of the second lens component G2 with the lens surface closest to the observation object of the third lens component G3. In order to correct coma well, the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 are made similar. It is desirable to make coma aberration generated on the lens surface closest to the eye point of the two lens component G2 similar to coma aberration corrected on the lens surface closest to the observation object on the third lens component G3 to cancel coma aberration. Below the lower limit value of the conditional expression (5), the similarity between the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 collapses. It is not preferable because coma aberration occurs. In order to secure the effect of the conditional expression (5), it is desirable to set the lower limit value of the conditional expression (5) to −0.25. Further, when the upper limit value of the conditional expression (5) is exceeded, the similarity between the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observation object side of the third lens component G3 It is not preferable because it collapses and coma aberration occurs. In order to secure the effect of the conditional expression (5), it is more desirable to set the upper limit value of the conditional expression (5) to 0.25, further to −0.20.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(6)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (6) shown below.
-0.75<(G1R2+G1R1)/(G1R2-G1R1)<0.00 (6)
 但し、
 G1R1:第1レンズ成分G1の最も観察物体側のレンズ面の曲率半径
 G1R2:第1レンズ成分G1の最もアイポイント側のレンズ面の曲率半径
-0.75 <(G1R2 + G1R1) / (G1R2-G1R1) <0.00 (6)
However,
G1R1: The radius of curvature of the lens surface of the first lens component G1 closest to the observation object G1R2: The radius of curvature of the lens surface closest to the eye point of the first lens component G1
 条件式(6)は、観察倍率を大きくするとともに、像面湾曲と歪曲収差を良好に補正するため、第1レンズ成分G1の形状を規定するものである。第1レンズ成分G1の正の屈折力は、像面湾曲を発生させるが、第2レンズ成分G2の負の屈折力で発生した像面湾曲を補正する構造となっている。第1レンズ成分G1の最もアイポイント側のレンズ面の屈折力を強くすると、第1レンズ成分G1で発生する像面湾曲が大きくなるため、第2レンズ成分G2の負の屈折力では補正しきれなくなる。一方で、観察倍率を大きくするためには、第1レンズ成分G1の正の屈折力を大きくする必要があるため、第1レンズ成分G1の最も観察物体側のレンズ面の正の屈折力を適量に大きくしなければならない。但し、第1レンズ成分G1の最も観察物体側のレンズ面の正の屈折力を大きくしすぎると、歪曲収差が悪化する。条件式(6)の上限値を上回ると、第1レンズ成分G1の屈折力が大きくなりすぎるため、歪曲収差が悪化するので好ましくない。なお、条件式(6)の効果を確実なものとするために、条件式(6)の上限値を-0.20、更に-0.30とすることがより望ましい。また、条件式(6)の下限値を下回ると、第1レンズ成分G1の屈折力が弱くなり、観察倍率を大きくすることができない。また、条件式(6)の下限値を下回った状態で、観察倍率を大きくすると、第1レンズ成分G1の最もアイポイント側のレンズ面の屈折力が大きくなるため、像面湾曲が悪化するので好ましくない。なお、条件式(6)の効果を確実なものとするために、条件式(6)の下限値を-0.57、更に-0.56、更に-0.50とすることがより望ましい。 Conditional expression (6) defines the shape of the first lens component G1 in order to increase the observation magnification and correct the curvature of field and distortion well. The positive refractive power of the first lens component G1 generates a curvature of field, but the curvature of field generated by the negative refractive power of the second lens component G2 is corrected. If the refractive power of the lens surface closest to the eye point of the first lens component G1 is increased, the field curvature generated by the first lens component G1 becomes large, and the negative refractive power of the second lens component G2 is sufficient to correct It disappears. On the other hand, in order to increase the observation magnification, it is necessary to increase the positive refractive power of the first lens component G1. Therefore, the positive refractive power of the lens surface closest to the observation object of the first lens component G1 should be You have to make it bigger. However, if the positive refracting power of the lens surface closest to the observation object of the first lens component G1 is increased too much, distortion will be aggravated. If the upper limit value of the conditional expression (6) is exceeded, the refractive power of the first lens component G1 becomes too large, and the distortion is aggravated, which is not preferable. In order to secure the effect of the conditional expression (6), it is more desirable to set the upper limit value of the conditional expression (6) to −0.20, further preferably −0.30. If the lower limit value of the conditional expression (6) is not reached, the refractive power of the first lens component G1 becomes weak, and the observation magnification can not be increased. In addition, if the observation magnification is increased while the lower limit value of conditional expression (6) is exceeded, the refractive power of the lens surface closest to the eye point of the first lens component G1 increases, and the field curvature is degraded. Not desirable. In order to secure the effect of the conditional expression (6), it is more desirable to set the lower limit value of the conditional expression (6) to −0.57, further −0.56, and further −0.50.
 また、本実施形態に係る接眼光学系ELは、第1レンズ成分G1の最も観察物体側のレンズ面を回転対称非球面にすることにより、歪曲収差を補正することができ、第1レンズ成分G1の最も観察物体側のレンズ面の屈折力を強くすることが可能となり、観察倍率の高倍率化に有利になる。 The eyepiece optical system EL according to the present embodiment can correct distortion by setting the lens surface closest to the observation object of the first lens component G1 to be rotationally symmetric aspheric, so that the first lens component G1 can be corrected. This makes it possible to strengthen the refractive power of the lens surface closest to the observation object, which is advantageous for increasing the observation magnification.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(7)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (7) shown below.
-1.00 < fe/EnP < -0.48        (7)
 但し、
 fe:当該接眼光学系ELの全系の焦点距離
 EnP:基準視度における、当該接眼光学系ELの入射瞳位置(符号は、観察物体面を基準に、アイポイント側を正とする)
-1.00 <fe / EnP <-0.48 (7)
However,
fe: Focal length of the whole system of the eyepiece optical system EL: Entrance pupil position of the eyepiece optical system EL at a reference diopter (the code is positive on the eye point side with respect to the surface of the observation object)
 条件式(7)は、アイポイントを長く保ちつつ、観察倍率を大きくするため、入射瞳位置を規定するものである。高像高の主光線の通過高を観察物体面に近い領域で高くすることで、アイポイントを長く保ちつつ観察倍率を大きくすることが容易となる。観察物体面に近い領域で高像高の主光線の通過高を高くするためには、入射瞳距離を観察物体面からアイポイント側とは反対の近い距離に設定することが有効である。条件式(7)の上限値を上回ると、入射瞳位置が観察物体から離れるため、高像高の主光線の通過高を高くすることができなくなるため、アイポイントを長く保ちつつ高倍率化することが不可能となるため好ましくない。なお、条件式(7)の効果を確実なものとするために、条件式(7)の上限値を-0.50とすることが望ましい。また、条件式(7)の下限値を下回ると、入射瞳位置が観察物体に近づきすぎるため、第1レンズ成分G1の高像高の主光線通過高が高くなり、像面湾曲を大きく発生してしまうため好ましくない。なお、条件式(7)の効果を確実なものとするために、条件式(7)の下限値を-0.70、更に-0.65とすることがより望ましい。 Conditional expression (7) defines the entrance pupil position in order to increase the observation magnification while keeping the eye point long. By increasing the passing height of the chief ray of high image height in a region close to the observation object plane, it becomes easy to increase the observation magnification while keeping the eye point long. In order to increase the passing height of the chief ray having a high image height in a region close to the observation object plane, it is effective to set the entrance pupil distance to a near distance opposite to the eye point side from the observation object plane. If the upper limit value of the conditional expression (7) is exceeded, the entrance pupil position is separated from the observation object, and it is not possible to increase the passing height of the chief ray of high image height. It is not preferable because it becomes impossible. In order to secure the effect of the conditional expression (7), it is desirable to set the upper limit value of the conditional expression (7) to −0.50. If the lower limit value of conditional expression (7) is not reached, the entrance pupil position approaches the observation object too much, so the chief ray ray passing height of the first lens component G1 at the high image height becomes high, and a large field curvature occurs. It is not preferable because it In order to secure the effect of the conditional expression (7), it is more desirable to set the lower limit value of the conditional expression (7) to −0.70, further preferably −0.65.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(8)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (8) shown below.
-0.40 < fe/f23 < -0.15        (8)
 但し、
 fe:当該接眼光学系ELの全系の焦点距離
 f23:第2レンズ成分G2と第3レンズ成分G3との合成焦点距離
-0.40 <fe / f23 <-0.15 (8)
However,
fe: Focal length of the whole system of the eyepiece optical system EL f23: Synthetic focal length of the second lens component G2 and the third lens component G3
 条件式(8)は、第2レンズ成分G2と第3レンズ成分G3の光軸がずれて製造された場合に、収差性能の悪化を小さくするため、第2レンズ成分G2と第3レンズ成分G3の合成焦点距離と接眼光学系ELの全系の焦点距離との比を規定するものである。第2レンズ成分G2と第3レンズ成分G3の合成焦点距離を、接眼光学系ELの全系の焦点距離に対し小さくすることで、製造誤差により第2レンズ成分G2と第3レンズ成分G3の光軸がずれた場合でも収差性能の悪化を小さくすることができる。また、温度変化による第2レンズ成分G2と第3レンズ成分G3の屈折率または、曲率半径が変化した場合の光学性能の悪化を小さくすることが可能になる。特に、第2レンズ成分G2と第3レンズ成分G3が光学樹脂で構成されている場合、有効となる。この条件式(8)の下限値を下回ると、第2レンズ成分G2と第3レンズ成分G3の負の合成屈折力が強くなり、製造誤差における収差性能の悪化が大きくなるため好ましくない。なお、条件式(8)の効果を確実なものとするために、条件式(8)の下限値を-0.35とすることが望ましい。また、条件式(8)の上限値を上回ると、第2レンズ成分G2の負の屈折力が小さくなり、像面湾曲の補正が不十分となるため好ましくない。なお、条件式(8)の効果を確実なものとするために、条件式(8)の上限値を-0.20、更に-0.25とすることがより望ましい。 The conditional expression (8) reduces the deterioration of the aberration performance when the optical axes of the second lens component G2 and the third lens component G3 are shifted, so the second lens component G2 and the third lens component G3 It defines the ratio of the combined focal length of the above and the focal length of the entire eyepiece optical system EL. By making the combined focal length of the second lens component G2 and the third lens component G3 smaller than the focal length of the entire eyepiece optical system EL, the light of the second lens component G2 and the light of the third lens component G3 due to manufacturing errors Even when the axis deviates, the deterioration of the aberration performance can be reduced. Further, it is possible to reduce the deterioration of the optical performance when the refractive index of the second lens component G2 and the third lens component G3 or the curvature radius changes due to the temperature change. In particular, this is effective when the second lens component G2 and the third lens component G3 are made of an optical resin. If the lower limit value of the conditional expression (8) is not reached, the negative combined refractive power of the second lens component G2 and the third lens component G3 becomes strong, and the deterioration of aberration performance due to manufacturing errors becomes large, which is not preferable. In order to secure the effect of the conditional expression (8), it is desirable to set the lower limit value of the conditional expression (8) to −0.35. If the upper limit value of the conditional expression (8) is exceeded, the negative refractive power of the second lens component G2 decreases, which is not preferable because the correction of curvature of field becomes insufficient. In order to secure the effect of the conditional expression (8), it is more desirable to set the upper limit value of the conditional expression (8) to −0.20, further preferably −0.25.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(9)を満足することが望ましい。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (9) shown below.
0.58 < D1/f1 < 0.90           (9)
 但し、
 D1:基準視度における、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離
 f1:第1レンズ成分G1の焦点距離
0.58 <D1 / f1 <0.90 (9)
However,
D1: Air conversion distance from the observation object to the lens surface closest to the observation object of the first lens component G1 at the standard diopter f1: Focal distance of the first lens component G1
 条件式(9)は、コマ収差を良好に補正するため、基準視度における観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離と第1レンズ成分G1の焦点距離の比を規定するものである。基準視度における、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離が大きくなると、観察面上の一点から射出した光束は、第1レンズ成分G1上で通過高が大きく変化する。そのため、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1が大きくなると第1レンズ成分G1の正の屈折力によりコマ収差が大きく発生するため、第1レンズ成分G1の屈折力を小さくする必要がある。一方で、第1レンズ成分G1の屈折力を大きくするためには、第1レンズ成分G1で発生するコマ収差を小さくするため、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1を小さくする必要がある。条件式(9)の上限値を上回ると、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1に対し、第1レンズ成分G1の屈折力が強くなり、コマ収差が悪化するため好ましくない。なお、条件式(9)の効果を確実なものとするために、条件式(9)の上限値を0.71、更に0.68とすることがより望ましい。また、条件式(9)の下限値を下回ると、第1レンズ成分G1の正の屈折力が弱くなり、観察倍率の高倍率化が不可能となるため好ましくない。なお、条件式(9)の効果を確実なものとするために、条件式(9)の下限値を0.60、更に0.63とすることがより望ましい。 The conditional expression (9) corrects coma aberration well, so the air conversion distance from the observation object at the reference diopter to the lens surface closest to the observation object of the first lens component G1 and the focal distance of the first lens component G1 Defines the ratio of When the air conversion distance from the observation object to the lens surface closest to the observation object of the first lens component G1 at the reference diopter becomes large, the luminous flux emitted from one point on the observation surface passes high on the first lens component G1. Changes greatly. Therefore, if the air conversion distance D1 from the observation object to the lens surface closest to the observation object of the first lens component G1 becomes large, the positive refractive power of the first lens component G1 causes a large coma aberration, so the first lens component It is necessary to reduce the refractive power of G1. On the other hand, in order to increase the refractive power of the first lens component G1, in order to reduce the coma aberration generated in the first lens component G1, from the observation object to the lens surface closest to the observation object on the first lens component G1. It is necessary to reduce the air conversion distance D1 of If the upper limit value of the conditional expression (9) is exceeded, the refractive power of the first lens component G1 becomes stronger than the air conversion distance D1 from the observation object to the lens surface closest to the observation object of the first lens component G1. It is not preferable because the aberration is aggravated. In order to secure the effect of the conditional expression (9), it is more desirable to set the upper limit value of the conditional expression (9) to 0.71, further preferably 0.68. If the lower limit value of the conditional expression (9) is not reached, the positive refractive power of the first lens component G1 becomes weak, and it is not preferable because the observation magnification can not be increased. In order to secure the effect of the conditional expression (9), it is more desirable to set the lower limit value of the conditional expression (9) to 0.60 and further to 0.63.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(10)を満足することが望ましい。なお、当該接眼光学系ELの全長は、観察物体Oから当該接眼光学系ELの最もアイポイント側のレンズ面までの光軸上の距離である。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (10) shown below. The total length of the eyepiece optical system EL is the distance on the optical axis from the observation object O to the lens surface closest to the eye point of the eyepiece optical system EL.
1.50 < TL/fe < 1.80           (10)
 但し、
 TL:当該接眼光学系ELの全長
 fe:当該接眼光学系ELの全系の焦点距離
1.50 <TL / fe <1.80 (10)
However,
TL: total length fe of the eyepiece optical system EL: focal length of the whole system of the eyepiece optical system EL
 条件式(10)は、像面湾曲を補正するため、当該接眼光学系ELの全長と全系の焦点距離の比を規定するものである。条件式(10)の下限値を下回ると、当該接眼光学系ELの全体の屈折力が弱くなり観察倍率を上げられないため好ましくない。なお、この条件式(10)の効果を確実なものとするために、条件式(10)の下限値を1.55、更に1.60とすることがより望ましい。また、条件式(10)の上限値を上回ると、像面湾曲が悪化するため好ましくない。なお、この条件式(10)の効果を確実なものとするために、条件式(10)の上限値を1.70とすることが望ましい。 Conditional expression (10) defines the ratio of the total length of the eyepiece optical system EL to the focal length of the entire system in order to correct the field curvature. If the lower limit value of the conditional expression (10) is not reached, it is not preferable because the refractive power of the entire eyepiece optical system EL becomes weak and the observation magnification can not be increased. In order to secure the effect of the conditional expression (10), it is more desirable to set the lower limit value of the conditional expression (10) to 1.55, further preferably 1.60. If the upper limit value of the conditional expression (10) is exceeded, the curvature of field is deteriorated. In order to secure the effect of the conditional expression (10), it is desirable to set the upper limit value of the conditional expression (10) to 1.70.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(11)を満足することが望ましい。なお、第1レンズ成分G1が接合レンズで構成されていて、複数のレンズ要素を有するときは、それらのレンズ要素の少なくとも1つが条件式(11)を満足する。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (11) shown below. When the first lens component G1 is configured of a cemented lens and has a plurality of lens elements, at least one of the lens elements satisfies the conditional expression (11).
1.550 < nd1 < 1.800           (11)
 但し、
 nd1:第1レンズ成分G1を構成するレンズ要素の媒質のd線に対する屈折率
1.550 <nd1 <1.800 (11)
However,
nd1: the refractive index to the d-line of the medium of the lens element constituting the first lens component G1
 条件式(11)は、歪曲収差、像面湾曲を良好に補正するため、第1レンズ成分G1を構成するレンズ要素の媒質のd線に対する屈折率を規定するものである。条件式(11)の下限値を下回ると、第1レンズ成分G1に屈折力を持たすことができず、性能を維持して高倍率化をすることが難しいので好ましくない。なお、条件式(11)の効果を確実なものとするために、条件式(11)の下限値を1.600、更に1.700とすることがより望ましい。また、条件式(11)の上限値を上回ると、歪曲収差が悪化するため好ましくない。なお、条件式(11)の効果を確実なものとするために、条件式(11)の上限値を1.850とすることが望ましい。 The conditional expression (11) defines the refractive index to the d-line of the medium of the lens element constituting the first lens component G1 in order to correct distortion and field curvature well. If the lower limit value of the conditional expression (11) is not reached, it is not preferable because the first lens component G1 can not have refracting power and it is difficult to maintain performance and achieve high magnification. In order to secure the effect of the conditional expression (11), it is more desirable to set the lower limit value of the conditional expression (11) to 1.600, further preferably 1.700. If the upper limit value of the conditional expression (11) is exceeded, distortion will deteriorate, which is not preferable. In order to secure the effect of the conditional expression (11), it is desirable to set the upper limit value of the conditional expression (11) to 1.850.
 また、本実施形態に係る接眼光学系ELは、以下に示す条件式(12)を満足することが望ましい。なお、第2レンズ成分G2が接合レンズで構成されていて、複数のレンズ要素を有するときは、それらのレンズ要素の少なくとも1つが条件式(12)を満足する。 Moreover, as for the eyepiece optical system EL which concerns on this embodiment, it is desirable to satisfy the conditional expression (12) shown below. When the second lens component G2 is formed of a cemented lens and has a plurality of lens elements, at least one of those lens elements satisfies the conditional expression (12).
1.640 < nd2 < 1.800           (9)
 但し、
 nd2:第2レンズ成分G2を構成するレンズ要素の媒質のd線に対する屈折率
1.640 <nd2 <1.800 (9)
However,
nd2: the refractive index to the d-line of the medium of the lens element constituting the second lens component G2
 条件式(12)は、非点収差を良好に補正するため、第2レンズ成分G2を構成するレンズ要素の媒質のd線に対する屈折率を規定するものである。条件式(12)の下限値を下回ると、第2レンズ成分G2の偏芯により光学性能が劣化するため好ましくない。なお、条件式(12)の効果を確実なものとするために、条件式(12)の下限値を1.650とすることが望ましい。また、条件式(12)の上限値を上回ると、非点収差の補正が困難になるため好ましくない。なお、条件式(12)の効果を確実なものとするために、条件式(12)の上限値を1.750とすることが望ましい。 The conditional expression (12) defines the refractive index to the d-line of the medium of the lens element constituting the second lens component G2 in order to correct the astigmatism well. If the lower limit value of the conditional expression (12) is not reached, the optical performance is deteriorated due to the decentering of the second lens component G2, which is not preferable. In order to secure the effect of the conditional expression (12), it is desirable to set the lower limit value of the conditional expression (12) to 1.650. If the upper limit value of the conditional expression (12) is exceeded, correction of astigmatism becomes difficult, which is not preferable. In order to secure the effect of the conditional expression (12), it is desirable to set the upper limit value of the conditional expression (12) to 1.750.
 また、本実施形態に係る接眼光学系ELは、第1レンズ成分G1、第2レンズ成分G2、第3レンズ成分G3、第4レンズ成分G4を単レンズ構成にし、4枚の単レンズで構成しても十分に良好な収差性能を達成することができる。 In the eyepiece optical system EL according to the present embodiment, the first lens component G1, the second lens component G2, the third lens component G3, and the fourth lens component G4 are configured as single lenses, and are configured by four single lenses. However, sufficiently good aberration performance can be achieved.
 また、本実施形態に係る接眼光学系ELは、接眼光学系全体を光軸方向に移動させることにより視度調節を容易に行うことができる。 The eyepiece optical system EL according to this embodiment can easily adjust the diopter by moving the entire eyepiece optical system in the optical axis direction.
 なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述した効果を得ることが可能である。 Each of the conditions and configurations described above exerts the above-described effects, and is not limited to one satisfying all the conditions and configurations, and any one of the conditions or configurations, or any one It is possible to obtain the above-described effects even if the above conditions or combinations of configurations are satisfied.
 次に、本実施形態に係る接眼光学系ELを備えた光学機器であるカメラを図23に基づいて説明する。このカメラ1は、対物レンズ(撮影レンズ)OLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、対物レンズOLで集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部Cの撮像面上に被写体像を形成する。そして、撮像部Cに設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられた電子ビューファインダEVF(Electronic view finder)に表示される。ここで、電子ビューファインダEVFは、液晶表示素子等の画像表示素子DPと、この画像表示素子DPの表示面(上述した観察物体O)に表示された画像を拡大観察するための接眼光学系ELとを有して構成される。これにより撮影者は、アイポイントEPに眼を位置させることにより、接眼光学系ELを介して対物レンズOLにより形成される物体(被写体)の像を観察することができる。 Next, a camera which is an optical apparatus provided with the eyepiece optical system EL according to the present embodiment will be described based on FIG. The camera 1 is a so-called mirrorless camera of an interchangeable lens type provided with an objective lens (shooting lens) OL. In the camera 1, light from an object (object) (not shown) is collected by the objective lens OL, and is taken on the imaging surface of the imaging unit C via an OLPF (Optical Low Pass Filter) (not shown). Form an image of the subject. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit C to generate the image of the subject. This image is displayed on an electronic view finder (EVF) provided in the camera 1. Here, the electronic view finder EVF includes an image display element DP such as a liquid crystal display element and an eyepiece optical system EL for magnifying and observing an image displayed on a display surface (the observation object O described above) of the image display element DP. And is configured. Thus, the photographer can observe the image of the object (subject) formed by the objective lens OL through the eyepiece optical system EL by positioning the eye at the eye point EP.
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部Cにより光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る接眼光学系ELを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Further, when the photographer presses a release button (not shown), the image photoelectrically converted by the imaging unit C is stored in a memory (not shown). In this way, the photographer can shoot a subject with the main camera 1. In the present embodiment, an example of a mirrorless camera has been described, but the eyepiece optical system EL according to the present embodiment is a single-lens reflex camera having a quick return mirror in the camera body and observing a subject with a finder optical system. Even when mounted, the same effect as the camera 1 can be obtained.
 このように、本実施形態に係る接眼光学系ELは、像を拡大観察するための光学系(接眼レンズ)である。ここで像とは、対物レンズによる中間像、または液晶表示素子、有機ELディスプレイ等の画像表示素子の表示面であり、特に有機ELディスプレイの表示面であることが好ましい。したがって、本実施形態に係る接眼光学系ELは、例えば、表示面に表示された像を観察するための電子双眼鏡、ヘッドマウントディスプレイ、カメラの内臓又は外付けの電子ビューファインダの接眼レンズに用いることに適している。 Thus, the eyepiece optical system EL according to the present embodiment is an optical system (eyepiece lens) for magnifying and observing an image. Here, the image is an intermediate image by an objective lens, or a display surface of an image display element such as a liquid crystal display element or an organic EL display, and particularly preferably a display surface of an organic EL display. Therefore, the eyepiece optical system EL according to the present embodiment is used, for example, as an electronic binocular for observing an image displayed on a display surface, a head mounted display, or an eyepiece lens of an internal or external electronic viewfinder of a camera. Suitable for
 なお、図1等には図示していないが、観察物体O(図23に示す画像表示素子DPの表示面)と第1レンズ成分G1との間には、カバーガラス、プリズム等の光学部材が配置されていてもよい。また、第4レンズ成分G4とアイポイントEPとの間にも、カバーガラス等の光学部材が配置されていてもよい。 Although not shown in FIG. 1 etc., an optical member such as a cover glass or a prism is provided between the observation object O (display surface of the image display element DP shown in FIG. 23) and the first lens component G1. It may be arranged. Also, an optical member such as a cover glass may be disposed between the fourth lens component G4 and the eyepoint EP.
 以下、本実施形態に係る接眼光学系ELの製造方法の概略を、図24を参照して説明する。まず、各レンズを配置して、正の屈折力を有する第1レンズ成分G1、負の屈折力を有する第2レンズ成分G2、正の屈折力を有する第3レンズ成分G3、及び、正の屈折力を有する第4レンズ成分とG4をそれぞれ準備する(ステップS100)。そして、所定の条件式(例えば、上述した条件式(1)や条件式(2))による条件を満足するように配置する(ステップS200)。 Hereinafter, an outline of a method of manufacturing the eyepiece optical system EL according to the present embodiment will be described with reference to FIG. First, each lens is disposed, and a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, a third lens component G3 having positive refractive power, and positive refractive power A fourth lens component having a force and G4 are prepared respectively (step S100). And it arranges so that the conditions by a predetermined conditional expression (for example, conditional expression (1) mentioned above and conditional expression (2)) may be satisfied (Step S200).
 具体的には、本実施形態では、例えば図1に示すように、観察物体側から順に、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11を配置して第1レンズ成分G1とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12を配置して第2レンズ成分G2とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31を配置して第3レンズ成分G3とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41を配置して第4レンズ成分G4とする。このようにして準備した各レンズ成分を上述した手順で配置して接眼光学系ELを製造する。 Specifically, in the present embodiment, as shown in FIG. 1, for example, a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape in order from the observation object side. Negative meniscus lens L11 is disposed as a first lens component G1, and a lens surface on the observation object side and a lens surface on the eye point side are formed in an aspheric shape, and a negative meniscus lens shape concave on the observation object side Is arranged as a second lens component G2, and the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape, and a positive meniscus lens shape having a concave surface facing the object side A positive meniscus lens in which an aspheric positive lens L31 is disposed to form a third lens component G3, the lens surface on the observation object side and the lens surface on the eye point side are aspheric and the concave surface is directed to the observation object Place the aspherical positive lens L41 Surenzu shape and the fourth lens component G4 with. The lens components thus prepared are arranged in the above-described procedure to manufacture the eyepiece optical system EL.
 以上のような構成により、観察倍率が大きく、良好な光学性能を有する接眼光学系EL、この接眼光学系ELを有する光学機器及び接眼光学系ELの製造方法を提供することができる。 With the above-described configuration, it is possible to provide an eyepiece optical system EL having a large observation magnification and good optical performance, an optical apparatus having the eyepiece optical system EL, and a method of manufacturing the eyepiece optical system EL.
 以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図3、図5、図7、図9、図11、図13、図15、図17、図19及び図21は、各実施例に係る接眼光学系EL(EL1~EL11)の構成及び屈折力配分を示す断面図である。 Hereinafter, each example of the present application will be described based on the drawings. In addition, FIG.1, FIG.3, FIG.5, FIG.7, FIG.9, FIG.11, FIG.13, FIG.15, FIG.17, FIG.19 and FIG. 21 is eyepiece optical system EL (EL1-EL11) which concerns on each Example. And the distribution of refractive power.
 これらの実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E-n」は「×10-n」を示す。 In these embodiments, the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the distance along the optical axis from the tangent plane of the apex of each aspheric surface at height y to each aspheric surface (sag amount When S) is S (y), the radius of curvature of the reference spherical surface (paraxial radius of curvature) is r, the conic constant is K, and the nth-order aspheric coefficient is An, the following equation (a) is Ru. In the following examples, “E-n” indicates “× 10 −n ”.
S(y)=(y2/r)/{1+(1-K×y2/r21/2
     +A4×y4+A6×y6+A8×y8+A10×y10+A12×y12  (a)
S (y) = (y 2 / r) / {1+ (1−K × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12 (a)
 なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。 In each embodiment, the second-order aspheric coefficient A2 is zero. Further, in the tables of the respective embodiments, the aspheric surface is marked with * on the right side of the surface number.
[第1実施例]
 図1は、第1実施例に係る接眼光学系EL1の構成を示す図である。この接眼光学系EL1は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[First embodiment]
FIG. 1 is a view showing the arrangement of an eyepiece optical system EL1 according to the first embodiment. The eyepiece optical system EL1 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL1において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL1, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done. In the third lens component G3, the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape, and the third lens component G3 is constituted by an aspheric positive lens L31 having a positive meniscus lens shape concave on the object side. ing. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL1における視度調整は、接眼光学系EL1全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL1 is performed by moving the entire eyepiece optical system EL1 in the optical axis direction.
 以下の表1に、接眼光学系EL1の諸元の値を掲げる。この表1において、全体諸元に示すfeは全系の焦点距離、Hは最大物体高、TLは全長の値を示している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径∞は平面を示し、空気の屈折率1.00000は省略してある。また、物面が観察物体Oを示し、像面がアイポイントEPを示している。 Table 1 below presents values of specifications of the eyepiece optical system EL1. In Table 1, fe shown in the overall specifications represents the focal length of the entire system, H represents the maximum object height, and TL represents the value of the total length. The first column m in the lens data shows the order (surface number) of the lens surface from the object side along the traveling direction of the light beam, the second column r shows the radius of curvature of each lens surface, the third column d is the distance on the optical axis from each optical surface to the next optical surface (spacing); column 4 nd and column 5 ν d is the refractive index and Abbe number for d-line (λ = 587.6 nm) Is shown. Also, the radius of curvature 平面 indicates a plane, and the refractive index of air 0000 is omitted. Also, the object plane indicates the observation object O, and the image plane indicates the eye point EP.
 ここで、以下の全ての諸元値において掲載されている焦点距離f(fOe,fEe等)、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。 Here, the focal length f (fOe, fEe, etc.), radius of curvature r, interplanar spacing d, and other units of length generally used in all the following specification values are generally "mm", but the optical system Is not limited to this, because the same optical performance can be obtained by proportional enlargement or reduction. In addition, the explanation of these symbols and the explanation of the specification table are the same in the following embodiments.
 なお、上述したように、本実施例を含む以降の各実施例では図示していないが、観察物体Oと第1レンズ成分G1との間や、第4レンズ成分G4とアイポイントEPとの間に、カバーガラス、プリズム、表示カバーガラス等の光学部材が配置されている場合は、上記面間隔dは空気換算長とする。 As described above, although not shown in the following embodiments including the present embodiment, between the observation object O and the first lens component G1 or between the fourth lens component G4 and the eye point EP In the case where an optical member such as a cover glass, a prism, a display cover glass or the like is disposed, the surface distance d is an air equivalent length.
(表1)第1実施例
[全体諸元]
fe =  17.641
H  =  6.30
TL =  28.790

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   29.01673  6.95  1.77377  47.25
 2*   -11.37822  3.03
 3*   -6.74812  1.50  1.63550  23.89
 4*   -58.92577  1.25
 5*   -48.01803  5.40  1.53110  55.91
 6*   -10.14569  0.50
 7*  -1037.93340  2.75  1.53110  55.91
 8*   -42.12958  D2
像面   ∞
(Table 1) First Example [Overall Specifications]
fe = 17.641
H = 6.30
TL = 28.790

[Lens data]
m r d nd d d
Object ∞ D1
1 * 29.01673 6.95 1.77377 47.25
2 *-11.37822 3.03
3 * -6.74812 1.50 1.63552 23.89
4 *-58. 925 77 1.25
5 * -48.01803 5.40 1.53110 55.91
6 *-10.14569 0.50
7 * -1037.93340 2.75 1.53110 55.91
8 *-42.12958 D2
Image plane ∞
 この接眼光学系EL1において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL1, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 2 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表2)
[非球面データ]
第1面
  K=-1.0414
  A4 =-1.29144E-04  A6 =-4.67158E-07  A8 = 1.78024E-08
  A10=-1.65828E-10  A12= 6.30320E-13
第2面
  K=-2.2911
  A4 =-1.46042E-04  A6 = 1.05047E-06  A8 =-8.71894E-09
  A10= 3.48401E-11  A12= 0.00000E+00
第3面
  K=-0.2684
  A4 = 3.35859E-04  A6 =-4.37805E-06  A8 = 2.17895E-08
  A10=-4.94107E-11  A12= 0.00000E+00
第4面
  K= 5.9869
  A4 = 9.81668E-05  A6 =-1.20860E-06  A8 = 6.95819E-09
  A10=-1.72138E-11  A12= 0.00000E+00
第5面
  K=5.9905
  A4 = 2.82487E-05  A6 = 1.16190E-06  A8 =-1.23653E-08
  A10= 4.18910E-11  A12= 0.00000E+00
第6面
  K= 0.3916
  A4 = 1.91131E-04  A6 =-3.21702E-07  A8 =-3.26701E-09
  A10= 2.35655E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.52684E-04  A6 = 1.49017E-06  A8 =-1.20661E-08
  A10= 5.44999E-11  A12= 0.00000E+00
第8面
  K= 3.6084
  A4 =-2.40943E-04  A6 = 2.55221E-06  A8 =-1.68422E-08
  A10= 5.77483E-11  A12= 0.00000E+00
(Table 2)
[Aspheric surface data]
First plane K = -1.0414
A4 = -1.29144E-04 A6 = -4.67158E-07 A8 = 1.78024E-08
A10 = -1.65828 E-10 A12 = 6.30320 E-13
Second plane K =-2.2911
A4 = -1.46042E-04 A6 = 1.05047E-06 A8 = -8.71894E-09
A10 = 3.48401 E-11 A12 = 0.00000 E + 00
Third plane K = -0.2684
A4 = 3.35859E-04 A6 = -4.37805E-06 A8 = 2.17895E-08
A10 = -4.94107E-11 A12 = 0.00000E + 00
Fourth plane K = 5.9869
A4 = 9.81668E-05 A6 = -1.20860E-06 A8 = 6.95819E-09
A10 = -1.72138E-11 A12 = 0.00000E + 00
Fifth surface K = 5.9905
A4 = 2.82487E-05 A6 = 1.16190E-06 A8 = -1.23653E-08
A10 = 4.18910E-11 A12 = 0.00000E + 00
Sixth face K = 0.3916
A4 = 1.91131E-04 A6 =-3.21702E-07 A8 =-3.26701E-09
A10 = 2.35655E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.52684E-04 A6 = 1.49017E-06 A8 = -1.20661E-08
A10 = 5.44999E-11 A12 = 0.00000E + 00
Eighth plane K = 3.6084
A4 = -2.40943E-04 A6 = 2.55221E-06 A8 = -1.68422E-08
A10 = 5.77483E-11 A12 = 0.00000E + 00
 この接眼光学系EL1において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表3に、視度毎の可変間隔及び入射瞳位置を示す。なお、視度は、-1[1/m]を「-1dpt」とし、+2[1/m]を「+2dpt」とし、-4[1/m]を「-4dpt」として表している。以降の実施例においても同様である。 In this eyepiece optical system EL1, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 3 below shows variable intervals and dioptric pupil positions for each diopter. The diopter represents -1 [1 / m] as "-1 dpt", +2 [1 / m] as "+2 dpt", and -4 [1 / m] as "-4 dpt". The same applies to the following embodiments.
(表3)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.41      8.33      6.39
D2   20.60     19.68     21.62
EnP  -29.03270   -30.46513   -27.64176
(Table 3)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.41 8.33 6.39
D2 20.60 19.68 21.62
EnP-29.03270-30.46513-27.64176
 次の表4に、この接眼光学系EL1の各条件式対応値を示す。 Table 4 below shows values corresponding to the respective conditional expressions of the eyepiece optical system EL1.
(表4)
f4 = 82.602
f12= 28.790
f23=-63.706

[条件式対応値]
(1)fe/f1=1.545
(2)fe/f12=0.613
(3)νd2=23.89
(4)fe/f4=0.214
(5)(G2R2-G3R1)/(G2R2+G3R1)=-0.102
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.437
(7)fe/EnP=-0.608
(8)fe/f23=-0.277
(9)D1/f1=0.649
(10)TL/fe=1.632
(11)nd1=1.774
(12)nd2=1.636
(Table 4)
f4 = 82.602
f12 = 28.790
f23 = -63.706

[Conditional expression corresponding value]
(1) fe / f1 = 1.545
(2) fe / f12 = 0.613
(3) d d 2 = 23.89
(4) fe / f4 = 0.214
(5) (G2R2-G3R1) / (G2R2 + G3R1) =-0.102
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.437
(7) fe / EnP = -0.608
(8) fe / f23 = -0.277
(9) D1 / f1 = 0.649
(10) TL / fe = 1.632
(11) nd1 = 1. 774
(12) nd2 = 1.636
 このように、この接眼光学系EL1は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL1 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL1の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図2に示す。なお、球面収差図と非点収差図の横軸の単位は「1/m」であり、図では「D」で示す。また、コマ収差図と倍率色収差図は角度単位の分を示し、図中のd、gはd線、g線での収差曲線を示している。また、コマ収差図は各物体高に対する収差曲線を示している。これらの説明は以降の実施例においても同様である。これらの各収差図より、この接眼光学系EL1は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 2 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter (−1 dpt) of this eyepiece optical system EL1. The unit of the horizontal axis of the spherical aberration diagram and the astigmatism diagram is “1 / m”, and is indicated by “D” in the diagram. Further, the coma aberration diagram and the magnification chromatic aberration diagram show the components in angle units, and d and g in the diagram show the aberration curve at the d-line and the g-line. Further, the coma aberration diagram shows an aberration curve for each object height. These descriptions also apply to the following embodiments. From these aberration diagrams, it can be seen that this eyepiece optical system EL1 achieves good aberration within the diopter adjustment range.
[第2実施例]
 図3は、第2実施例に係る接眼光学系EL2の構成を示す図である。この接眼光学系EL2は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Second Embodiment
FIG. 3 is a view showing the arrangement of an eyepiece optical system EL2 according to the second embodiment. The eyepiece optical system EL2 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL2において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL2, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done. In the third lens component G3, the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspheric shape, and the third lens component G3 is constituted by an aspheric positive lens L31 having a positive meniscus lens shape concave on the object side. ing. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL2における視度調整は、接眼光学系EL2全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL2 is performed by moving the entire eyepiece optical system EL2 in the optical axis direction.
 以下の表5に、接眼光学系EL2の諸元の値を掲げる。 Table 5 below presents values of specifications of the eyepiece optical system EL2.
(表5)第2実施例
[全体諸元]
fe =  18.135
H  =  6.30
TL =  28.100

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   18.29768  7.45  1.53110  55.91
 2*   -8.02783  2.40
 3*   -5.08738  2.15  1.63550  23.89
 4*   -16.13188  0.50
 5*   -46.53675  5.00  1.53110  55.91
 6*   -9.74321  0.50
 7*   -62.07807  2.30  1.53110  55.91
 8*   -36.52997  D2
像面   ∞
(Table 5) Second Example [Overall Specifications]
fe = 18.135
H = 6.30
TL = 28.100

[Lens data]
m r d nd d d
Object ∞ D1
1 * 18.29768 7.45 1.53110 55.91
2 *-8.02783 2.40
3 *-5.08738 2.15 1.6355 23.89
4 * -16.13188 0.50
5 *-46.53675 5.00 1.53110 55.91
6 *-9.94321 0.50
7 * -62.80707 2.30 1.53110 55.91
8 *-36.52997 D2
Image plane ∞
 この接眼光学系EL2において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL2, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 6 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表6)
[非球面データ]
第1面
  K= 0.4135
  A4 =-1.67471E-04  A6 =-2.55937E-06  A8 =4.54261E-08
  A10=-3.19957E-10  A12= 1.06400E-12
第2面
  K=-2.0545
  A4 =-3.02431E-04  A6 = 3.45590E-06  A8 =-3.41508E-08
  A10= 1.41269E-10  A12= 0.00000E+00
第3面
  K=-0.3061
  A4 = 5.48726E-04  A6 =-5.11105E-06  A8 =-4.02571E-10
  A10= 6.06422E-11  A12= 0.00000E+00
第4面
  K=-3.9720
  A4 = 1.64809E-04  A6 =-6.23672E-07  A8 =-3.44304E-09
  A10= 4.26001E-12  A12= 0.00000E+00
第5面
  K= 5.8883
  A4 =-5.24409E-05  A6 = 5.07414E-07  A8 = 3.77890E-09
  A10=-1.41672E-11  A12= 0.00000E+00
第6面
  K= 0.4195
  A4 = 2.57996E-04  A6 =-1.85757E-06  A8 = 2.18453E-09
  A10= 5.57891E-11  A12= 0.00000E+00
第7面
  K= 4.9451
  A4 =-8.67424E-05  A6 = 9.74736E-07  A8 = 5.79036E-09
  A10=-6.53413E-11  A12= 0.00000E+00
第8面
  K= 5.7525
  A4 =-2.08333E-04  A6 = 2.55741E-06  A8 =-6.33475E-09
  A10=-2.34517E-11  A12= 0.00000E+00
(Table 6)
[Aspheric surface data]
First plane K = 0.4135
A4 = -1.67471E-04 A6 = -2.55937E-06 A8 = 4.54261E-08
A10 = -3.19957E-10 A12 = 1.06400E-12
Second plane K = -2.0545
A4 = -3.02431E-04 A6 = 3.45590E-06 A8 = -3.41508E-08
A10 = 1.41269E-10 A12 = 0.00000E + 00
Third plane K = -0.3061
A4 = 5.48726E-04 A6 = -5.11105E-06 A8 = -4.02571E-10
A10 = 6.06422 E-11 A12 = 0.00000 E + 00
Fourth plane K = -3.9720
A4 = 1.64809E-04 A6 = -6.23672E-07 A8 = -3.44304E-09
A10 = 4.26001E-12 A12 = 0.00000E + 00
Fifth surface K = 5.8883
A4 = -5.24409E-05 A6 = 5.07414E-07 A8 = 3.77890E-09
A10 = -1.41672E-11 A12 = 0.00000E + 00
Sixth face K = 0.4195
A4 = 2.57996E-04 A6 = -1.85757E-06 A8 = 2.18453E-09
A10 = 5.57891E-11 A12 = 0.00000E + 00
Seventh plane K = 4.451
A4 = -8.67424E-05 A6 = 9.74736E-07 A8 = 5.79036E-09
A10 = -6.53413E-11 A12 = 0.00000E + 00
Eighth side K = 5.7525
A4 = -2.08333E-04 A6 = 2.55741E-06 A8 = -6.33475E-09
A10 = -2.34517E-11 A12 = 0.00000E + 00
 この接眼光学系EL2において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表7に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL2, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 7 below shows variable intervals and dioptric pupil positions for each diopter.
(表7)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.80      8.77      6.74
D2   20.60     19.63     21.66
EnP  -34.92593   -37.22500   -32.79600
(Table 7)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.80 8.77 6.74
D2 20.60 19.63 21.66
EnP-34.92593-37.22500-32.79600
 次の表8に、この接眼光学系EL2の各条件式対応値を示す。 Table 8 below shows values corresponding to the respective conditional expressions of the eyepiece optical system EL2.
(表8)
f4 =162.068
f12= 33.567
f23=-93.824

[条件式対応値]
(1)fe/f1=1.557
(2)fe/f12=0.540
(3)νd2=23.89
(4)fe/f4=0.112
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.485
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.390
(7)fe/EnP=-0.519
(8)fe/f23=-0.193
(9)D1/f1=0.670
(10)TL/fe=1.550
(11)nd1=1.531
(12)nd2=1.636
(Table 8)
f4 = 162.068
f12 = 33.567
f23 = -93.824

[Conditional expression corresponding value]
(1) fe / f1 = 1.557
(2) fe / f12 = 0.540
(3) d d 2 = 23.89
(4) fe / f4 = 0.112
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.485
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.390
(7) fe / EnP = -0.519
(8) fe / f23 = -0.193
(9) D1 / f1 = 0.670
(10) TL / fe = 1.550
(11) nd1 = 1.531
(12) nd2 = 1.636
 このように、この接眼光学系EL2は、上記条件式(1)~(10)を満足している。 Thus, the eyepiece optical system EL2 satisfies the conditional expressions (1) to (10).
 この接眼光学系EL2の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図4に示す。これらの各収差図より、この接眼光学系EL2は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram and a coma aberration diagram of the eyepiece optical system EL2 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL2 achieves good aberration within the diopter adjustment range.
[第3実施例]
 図5は、第3実施例に係る接眼光学系EL3の構成を示す図である。この接眼光学系EL3は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Third Embodiment
FIG. 5 is a view showing the arrangement of an eyepiece optical system EL3 according to the third embodiment. The eyepiece optical system EL3 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL3において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成された両凹負レンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL3, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of a biconcave negative lens-shaped aspheric negative lens L12 in which the lens surface on the observation object side is formed in an aspheric shape. The third lens component G3 is composed of an aspheric positive lens L31 having a biconvex positive lens shape in which the lens surface on the eye point side is formed in an aspheric shape. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL3における視度調整は、接眼光学系EL3全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL3 is performed by moving the entire eyepiece optical system EL3 in the optical axis direction.
 以下の表9に、接眼光学系EL3の諸元の値を掲げる。 Table 9 below presents values of specifications of the eyepiece optical system EL3.
(表9)第3実施例
[全体諸元]
fe =  17.654
H  =  6.30
TL =  29.118

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   37.20780  7.34  1.82098  42.50
 2*   -10.78310  2.69
 3*   -6.86450  1.58  1.63550  23.89
 4   403.03380  0.98
 5   365.51190  5.94  1.53110  55.91
 6*   -10.45160  0.50
 7*   -40.06410  2.69  1.53110  55.91
 8*   -25.10660  D2
像面   ∞
(Table 9) Third Example [Overall Specifications]
fe = 17.654
H = 6.30
TL = 29.118

[Lens data]
m r d nd d d
Object ∞ D1
1 * 37.20780 7.34 1.82098 42.50
2 *-10.78310 2.69
3 *-6.86450 1.58 1.63550 23.89
4 403.03380 0.98
5 365.51190 5.94 1.53110 55.91
6 *-10.45160 0.50
7 *-40.06410 2.69 1.53110 55.91
8 *-25.10660 D2
Image plane ∞
 この接眼光学系EL3において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL3, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 10 below shows data of aspheric surfaces, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
(表10)
[非球面データ]
第1面
  K= 3.5010
  A4 =-1.08770E-04  A6 =-7.76264E-07  A8 = 1.84546E-08
  A10=-1.13779E-10  A12= 3.71750E-13
第2面
  K=-2.3099
  A4 =-1.29893E-04  A6 =9.59335E-07  A8 =-7.24273E-09
  A10= 3.52620E-11  A12= 0.00000E+00
第3面
  K=-0.1511
  A4 = 4.02440E-04  A6 =-4.00609E-06  A8 = 2.11556E-08
  A10=-1.51294E-10  A12= 0.00000E+00
第6面
  K= 0.5856
  A4 = 2.62266E-04  A6 =-6.94589E-07  A8 =-3.75126E-09
  A10= 2.70416E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.21897E-04  A6 = 1.25808E-06  A8 =-5.29696E-09
  A10= 4.01375E-11  A12= 0.00000E+00
第8面
  K= 0.9506
  A4 =-2.35090E-04  A6 = 2.42051E-06  A8 =-1.44574E-08
  A10= 7.36171E-11  A12= 0.00000E+00
(Table 10)
[Aspheric surface data]
First plane K = 3.5010
A4 = -1.08770E-04 A6 = -7.76264E-07 A8 = 1.84546E-08
A10 = -1.13779E-10 A12 = 3.71750E-13
Second plane K = -2.3099
A4 = -1.29893E-04 A6 = 9.59335E-07 A8 = -7.24273E-09
A10 = 3.52620E-11 A12 = 0.00000E + 00
Third plane K = -0.1511
A4 = 4.02440E-04 A6 = -4.00609E-06 A8 = 2.11556E-08
A10 = -1.51294E-10 A12 = 0.00000E + 00
Sixth plane K = 0.5856
A4 = 2.62266E-04 A6 = -6.94589E-07 A8 = -3.75126E-09
A10 = 2.70416E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.21897E-04 A6 = 1.25808E-06 A8 = -5.29696E-09
A10 = 4.01375E-11 A12 = 0.00000E + 00
Eighth plane K = 0.9506
A4 = -2.35090E-04 A6 = 2.42051E-06 A8 = -1.44574E-08
A10 = 7.36171 E-11 A12 = 0.00000 E + 00
 この接眼光学系EL3において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表11に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL3, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 11 below shows variable intervals and dioptric pupil positions for each diopter.
(表11)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.41      8.34      6.40
D2   20.60     19.67     21.61
EnP  -30.17343   -31.78442   -28.65171
(Table 11)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.41 8.34 6.40
D2 20.60 19.67 21.61
EnP -30.17343 -31.78442 -28.65171
 次の表12に、この接眼光学系EL3の各条件式対応値を示す。 Table 12 below shows values corresponding to the respective conditional expressions of the eyepiece optical system EL3.
(表12)
f4 =119.198
f12= 34.675
f23=-70.015

[条件式対応値]
(1)fe/f1=1.614
(2)fe/f12=0.509
(3)νd2=23.89
(4)fe/f4=0.148
(5)(G2R2-G3R1)/(G2R2+G3R1)=-0.049
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.551
(7)fe/EnP=-0.585
(8)fe/f23=-0.252
(9)D1/f1=0.678
(10)TL/fe=1.649
(11)nd1=1.821
(12)nd2=1.636
(Table 12)
f4 = 119.198
f12 = 34.675
f23 = -70.015

[Conditional expression corresponding value]
(1) fe / f1 = 1.614
(2) fe / f12 = 0.509
(3) d d 2 = 23.89
(4) fe / f4 = 0.148
(5) (G2R2-G3R1) / (G2R2 + G3R1) =-0.049
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.551
(7) fe / EnP = -0.585
(8) fe / f23 = -0.252
(9) D1 / f1 = 0.678
(10) TL / fe = 1.649
(11) nd 1 = 1.821
(12) nd2 = 1.636
 このように、この接眼光学系EL3は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL3 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL3の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図6に示す。これらの各収差図より、この接眼光学系EL3は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 6 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter (−1 dpt) of this eyepiece optical system EL3. From these aberration diagrams, it can be seen that this eyepiece optical system EL3 achieves good aberration within the diopter adjustment range.
[第4実施例]
 図7は、第4実施例に係る接眼光学系EL4の構成を示す図である。この接眼光学系EL4は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Fourth Embodiment
FIG. 7 is a view showing the arrangement of an eyepiece optical system EL4 according to the fourth embodiment. The eyepiece optical system EL4 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL4において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL4, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done. The third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL4における視度調整は、接眼光学系EL4全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL4 is performed by moving the entire eyepiece optical system EL4 in the optical axis direction.
 以下の表13に、接眼光学系EL4の諸元の値を掲げる。 Table 13 below provides values of specifications of the eyepiece optical system EL4.
(表13)第4実施例
[全体諸元]
fe =  17.636
H  =  6.30
TL =  29.262

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   24.08699  7.78  1.77377  47.25
 2*   -11.23946  2.66
 3*   -6.16897  1.50  1.63550  23.89
 4*   -35.90996  1.64
 5*   -30.97534  4.55  1.53110  55.91
 6*   -9.95862  0.50
 7*  -2317.28230  2.89  1.53110  55.91
 8*   -41.10583  D2
像面   ∞
(Table 13) Fourth Example [Overall Specifications]
fe = 17.636
H = 6.30
TL = 29.262

[Lens data]
m r d nd d d
Object ∞ D1
1 * 24.08699 7.78 1.77377 47.25
2 *-11.23946 2.66
3 *-6.16897 1.50 1.63550 23.89
4 * -35.90996 1.64
5 * -30.97534 4.55 1.53110 55.91
6 * -9.95862 0.50
7 * -2317.28230 2.89 1.53110 55.91
8 *-41.10583 D2
Image plane ∞
 この接眼光学系EL4において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表14に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this eyepiece optical system EL4, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 14 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表14)
[非球面データ]
第1面
  K= 2.7110
  A4 =-1.01182E-04  A6 =-1.33523E-06  A8 = 1.97743E-08
  A10=-1.25195E-10  A12= 4.06080E-13
第2面
  K=-2.9040
  A4 =-1.58180E-04  A6 = 1.29335E-06  A8 =-1.01444E-08
  A10= 4.38226E-11  A12= 0.00000E+00
第3面
  K=-0.4456
  A4 = 4.04109E-04  A6 =-4.62087E-06  A8 = 2.20818E-08
  A10=-6.21510E-11  A12= 0.00000E+00
第4面
  K=-3.9080
  A4 = 1.79698E-04  A6 =-1.03102E-06  A8 =-1.74072E-09
  A10= 1.01196E-11  A12= 0.00000E+00
第5面
  K= 3.7707
  A4 =-3.78236E-06  A6 = 1.16143E-06  A8 =-5.58959E-09
  A10= 1.44702E-12  A12= 0.00000E+00
第6面
  K= 0.6581
  A4 = 2.55240E-04  A6 =-5.27043E-07  A8 =-3.06199E-10
  A10= 4.00895E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.20441E-04  A6 = 1.18792E-06  A8 =-6.17544E-09
  A10= 2.72498E-11  A12= 0.00000E+00
第8面
  K=-2.5146
  A4 =-2.41805E-04  A6 = 2.45866E-06  A8 =-1.44853E-08
  A10= 5.06379E-11  A12= 0.00000E+00
(Table 14)
[Aspheric surface data]
First plane K = 2.7110
A4 = -1.01182E-04 A6 = -1.33523E-06 A8 = 1.97743E-08
A10 = -1.25195E-10 A12 = 4.06080E-13
Second plane K = -2.9040
A4 = -1.58180E-04 A6 = 1.29335E-06 A8 = -1.01444E-08
A10 = 4.38226E-11 A12 = 0.00000E + 00
Third plane K = -0.4456
A4 = 4.04109E-04 A6 = -4.62087E-06 A8 = 2.20818E-08
A10 = -6.21510E-11 A12 = 0.00000E + 00
Fourth plane K = -3.9080
A4 = 1.79698E-04 A6 = -1.03102E-06 A8 =-1.74072E-09
A10 = 1.01196E-11 A12 = 0.00000E + 00
Fifth aspect K = 3.7707
A4 = -3.78236E-06 A6 = 1.16143E-06 A8 = -5.58959E-09
A10 = 1.44702E-12 A12 = 0.00000E + 00
Sixth face K = 0.6581
A4 = 2.55240E-04 A6 = -5.27043E-07 A8 = -3.06199E-10
A10 = 4.00895E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.20441E-04 A6 = 1.18792E-06 A8 = -6.17544E-09
A10 = 2.72498E-11 A12 = 0.00000E + 00
Eighth plane K = -2.5146
A4 = -2.41805E-04 A6 = 2.45866E-06 A8 = -1.44853E-08
A10 = 5.06379E-11 A12 = 0.00000E + 00
 この接眼光学系EL4において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表15に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL4, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 15 below shows variable intervals and dioptric pupil positions for each diopter.
(表15)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.75      8.68      6.74
D2   20.60     19.67     21.61
EnP  -28.77738   -30.14404   -27.47277
(Table 15)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.75 8.68 6.74
D2 20.60 19.67 21.61
EnP -28.77738 -30.14404 -27.47277
 次の表16に、この接眼光学系EL4の各条件式対応値を示す。 Table 16 below shows values corresponding to the respective conditional expressions of the eyepiece optical system EL4.
(表16)
f4 = 78.761
f12= 26.175
f23=-44.512

[条件式対応値]
(1)fe/f1=1.610
(2)fe/f12=0.674
(3)νd2=23.89
(4)fe/f4=0.224
(5)(G2R2-G3R1)/(G2R2+G3R1)=-0.074
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.364
(7)fe/EnP=-0.613
(8)fe/f23=-0.396
(9)D1/f1=0.707
(10)TL/fe=1.659
(11)nd1=1.774
(12)nd2=1.636
(Table 16)
f4 = 78.761
f12 = 26.175
f23 = -44.512

[Conditional expression corresponding value]
(1) fe / f1 = 1.610
(2) fe / f12 = 0.674
(3) d d 2 = 23.89
(4) fe / f4 = 0.224
(5) (G2R2-G3R1) / (G2R2 + G3R1) =-0.074
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.364
(7) fe / EnP = -0.613
(8) fe / f23 = -0.396
(9) D1 / f1 = 0.707
(10) TL / fe = 1.659
(11) nd1 = 1. 774
(12) nd2 = 1.636
 このように、この接眼光学系EL4は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL4 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL4の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図8に示す。これらの各収差図より、この接眼光学系EL4は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 8 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram of the eyepiece optical system EL4 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL4 achieves good aberration within the diopter adjustment range.
[第5実施例]
 図9は、第5実施例に係る接眼光学系EL5の構成を示す図である。この接眼光学系EL5は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Fifth Embodiment
FIG. 9 is a view showing the configuration of the eyepiece optical system EL5 according to the fifth example. The eyepiece optical system EL5 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL5において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL5, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done. The third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL5における視度調整は、接眼光学系EL5全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL5 is performed by moving the entire eyepiece optical system EL5 in the optical axis direction.
 以下の表17に、接眼光学系EL5の諸元の値を掲げる。 Table 17 below provides values of specifications of the eyepiece optical system EL5.
(表17)第5実施例
[全体諸元]
fe =  18.132
H  =  6.30
TL =  27.900

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   18.12430  7.15  1.54392  55.90
 2*   -8.93740  2.70
 3*   -5.25010  2.10  1.63550  23.89
 4*   -15.01890  0.55
 5*   -24.00760  4.55  1.54392  55.90
 6*   -9.36770  0.55
 7*  -2317.28230  2.50  1.54392  55.90
 8*   -51.99250  D2
像面   ∞
(Table 17) Fifth Example [Overall Specifications]
fe = 18.132
H = 6.30
TL = 27.900

[Lens data]
m r d nd d d
Object ∞ D1
1 * 18.12430 7.15 1.54392 55.90
2 *-8.93740 2.70
3 * -5.25010 2.10 1.63550 23.89
4 * -15.01890 0.55
5 * -24.00760 4.55 1.54392 55.90
6 *-9.36770 0.55
7 * -2317.28230 2.50 1.54392 55.90
8 * -51.99250 D2
Image plane ∞
 この接眼光学系EL5において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表18に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In this eyepiece optical system EL5, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 18 below shows data of aspheric surfaces, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
(表18)
[非球面データ]
第1面
  K= 1.5721
  A4 =-1.48925E-04  A6 =-2.27684E-06  A8 = 2.76091E-08
  A10=-7.95927E-11  A12= 1.93700E-15
第2面
  K=-2.1582
  A4 =-2.07700E-04  A6 = 1.44079E-06  A8 =-1.32371E-08
  A10= 7.80799E-11  A12= 0.00000E+00
第3面
  K=-0.3642
  A4 = 4.11218E-04  A6 =-4.53688E-06  A8 = 1.52134E-08
  A10=-5.51553E-11  A12= 0.00000E+00
第4面
  K=-2.1105
  A4 = 1.75549E-04  A6 =-6.55035E-07  A8 =-1.17880E-09
  A10=-1.10549E-11  A12= 0.00000E+00
第5面
  K=-2.6173
  A4 = 3.84318E-05  A6 = 5.26426E-07  A8 =-3.63630E-09
  A10= 1.31408E-11  A12= 0.00000E+00
第6面
  K= 0.5270
  A4 = 3.06334E-04  A6 =-1.20258E-06  A8 =-2.58312E-09
  A10= 7.29168E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.44498E-04  A6 = 6.56846E-07  A8 = 4.58887E-09
  A10=-2.74632E-11  A12= 0.00000E+00
第8面
  K= 3.4680
  A4 =-2.80056E-04  A6 = 2.69450E-06  A8 =-1.10674E-08
  A10= 1.88829E-11  A12= 0.00000E+00
(Table 18)
[Aspheric surface data]
First plane K = 1.5721
A4 = -1.48925E-04 A6 = -2.27684E-06 A8 = 2.76091E-08
A10 = -7.95927E-11 A12 = 1.93700E-15
Second plane K =-2.1582
A4 = -2.07700E-04 A6 = 1.44079E-06 A8 =-1.32371E-08
A10 = 7.80799 E-11 A12 = 0.00000 E + 00
Third plane K = -0.3642
A4 = 4.11218E-04 A6 = -4.53688E-06 A8 = 1.52134E-08
A10 = -5.51553E-11 A12 = 0.00000 E + 00
Fourth plane K = -2.1105
A4 = 1.75549E-04 A6 = -6.55035E-07 A8 = -1.17880E-09
A10 = -1.10549E-11 A12 = 0.00000E + 00
Fifth side K =-2.6173
A4 = 3.84318E-05 A6 = 520.426E-07 A8 = -3.63630E-09
A10 = 1.31408 E-11 A12 = 0.00000 E + 00
Sixth face K = 0.5270
A4 = 3.06334E-04 A6 = -1.20258E-06 A8 = -2.58312E-09
A10 = 7.29168E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.44498E-04 A6 = 6.56846E-07 A8 = 4.58887E-09
A10 = -2.74632 E-11 A12 = 0.00000 E + 00
Eighth plane K = 3.4680
A4 = -2.80056E-04 A6 = 2.69450E-06 A8 = -1.10674E-08
A10 = 1.88829E-11 A12 = 0.00000E + 00
 この接眼光学系EL5において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表19に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL5, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 19 below shows variable intervals and dioptric pupil positions for each diopter.
(表19)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.80      8.78      6.74
D2   20.70     19.72     21.76
EnP  -34.42818   -36.66472   -32.37294
(Table 19)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.80 8.78 6.74
D2 20.70 19.72 21.76
EnP-34.42818 -36.66472 -32.37294
 次の表20に、この接眼光学系EL5の各条件式対応値を示す。 The following Table 20 shows the corresponding values to the conditional expressions of the eyepiece optical system EL5.
(表20)
f4 = 97.744
f12= 31.386
f23=-77.761

[条件式対応値]
(1)fe/f1=1.494
(2)fe/f12=0.578
(3)νd2=23.89
(4)fe/f4=0.186
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.230
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.339
(7)fe/EnP=-0.527
(8)fe/f23=-0.233
(9)D1/f1=0.643
(10)TL/fe=1.539
(11)nd1=1.544
(12)nd2=1.636
(Table 20)
f4 = 97.744
f12 = 31.386
f23 = -77.761

[Conditional expression corresponding value]
(1) fe / f1 = 1.494
(2) fe / f12 = 0.578
(3) d d 2 = 23.89
(4) fe / f4 = 0.186
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.230
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.339
(7) fe / EnP = -0.527
(8) fe / f23 = -0.233
(9) D1 / f1 = 0.643
(10) TL / fe = 1.539
(11) nd 1 = 1.544
(12) nd2 = 1.636
 このように、この接眼光学系EL5は、上記条件式(1)~(10)を満足している。 Thus, the eyepiece optical system EL5 satisfies the conditional expressions (1) to (10).
 この接眼光学系EL5の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図10に示す。これらの各収差図より、この接眼光学系EL5は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram of the eyepiece optical system EL5 at a standard diopter (-1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL5 achieves good aberration within the diopter adjustment range.
[第6実施例]
 図11は、第6実施例に係る接眼光学系EL6の構成を示す図である。この接眼光学系EL6は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Sixth Embodiment
FIG. 11 is a diagram showing the configuration of an eyepiece optical system EL6 according to a sixth example. The eyepiece optical system EL6 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL6において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL6, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 in the shape of a negative meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed aspheric and having a concave surface facing the observation object It is done. The third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done. The fourth lens component G4 is composed of an aspheric positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
 この接眼光学系EL6における視度調整は、接眼光学系EL6全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL6 is performed by moving the entire eyepiece optical system EL6 in the optical axis direction.
 以下の表21に、接眼光学系EL6の諸元の値を掲げる。 Table 21 below provides values of specifications of the eyepiece optical system EL6.
(表21)第6実施例
[全体諸元]
fe =  18.123
H  =  6.30
TL =  28.139

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   16.56700  7.54  1.53110  55.91
 2*   -8.36450  2.40
 3*   -5.15230  2.11  1.63550  23.89
 4*   -15.20140  0.72
 5*   -23.94520  4.46  1.53110  55.91
 6*   -9.83340  0.50
 7*   153.86920  2.57  1.53110  55.91
 8*   -57.12010  D2
像面   ∞
(Table 21) Sixth embodiment [overall specifications]
fe = 18.123
H = 6.30
TL = 28.139

[Lens data]
m r d nd d d
Object ∞ D1
1 * 16.56700 7.54 1.53110 55.91
2 * -8.36450 2.40
3 * -5.15230 2.11 1.63550 23.89
4 * -15.20140 0.72
5 *-23.94520 4.46 1.53110 55.91
6 * -9.83340 0.50
7 * 153.86920 2.57 1.53110 55.91
8 *-57.12010 D2
Image plane ∞
 この接眼光学系EL6において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表22に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL6, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. The following Table 22 shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表22)
[非球面データ]
第1面
  K= 0.7228
  A4 =-1.63997E-04  A6 =-2.61921E-06  A8 = 3.31813E-08
  A10=-1.23005E-10  A12= 1.44200E-13
第2面
  K=-2.0402
  A4 =-2.39241E-04  A6 = 1.88690E-06  A8 =-1.74329E-08
  A10= 7.72117E-11  A12= 0.00000E+00
第3面
  K=-0.4513
  A4 = 4.08176E-04  A6 =-4.24658E-06  A8 = 1.05383E-08
  A10=-4.81073E-11  A12= 0.00000E+00
第4面
  K=-2.0834
  A4 = 1.95661E-04  A6 =-5.64298E-07  A8 =-2.58247E-09
  A10=-1.66041E-11  A12= 0.00000E+00
第5面
  K=-3.9899
  A4 = 7.61468E-06  A6 = 4.89100E-07  A8 = 5.08311E-10
  A10=-5.69059E-12  A12= 0.00000E+00
第6面
  K= 0.4497
  A4 = 2.70507E-04  A6 =-1.61737E-06  A8 =-1.10795E-09
  A10= 7.33076E-11  A12= 0.00000E+00
第7面
  K=-4.0000
  A4 =-1.50783E-04  A6 = 6.32142E-07  A8 = 8.23469E-09
  A10=-5.41717E-11  A12= 0.00000E+00
第8面
  K= 4.7540
  A4 =-2.61403E-04  A6 = 2.68176E-06  A8 =-9.54981E-09
  A10= 4.35054E-12  A12= 0.00000E+00
(Table 22)
[Aspheric surface data]
First plane K = 0.7228
A4 = -1.63997E-04 A6 = -2.61921E-06 A8 = 3.31813E-08
A10 = -1.23005E-10 A12 = 1.44200E-13
Second plane K = -2.0402
A4 = -2.39241E-04 A6 = 1.88690E-06 A8 =-1.74329E-08
A10 = 7.72117 E-11 A12 = 0.00000 E + 00
Third plane K = -0.4513
A4 = 4.08176E-04 A6 = -4.24658E-06 A8 = 1.05383E-08
A10 = -4.81073E-11 A12 = 0.00000E + 00
Fourth plane K = -2.0834
A4 = 1.95661E-04 A6 = -5.64298E-07 A8 = -2.58247E-09
A10 = -1.66041E-11 A12 = 0.00000E + 00
Fifth surface K = -3.9899
A4 = 7.61468E-06 A6 = 4.89100E-07 A8 = 5.08311E-10
A10 = -5.69059E-12 A12 = 0.00000E + 00
Sixth face K = 0.4497
A4 = 2.70507E-04 A6 = -1.61737E-06 A8 = -1.10795E-09
A10 = 7.33076E-11 A12 = 0.00000E + 00
Seventh plane K =-4.0000
A4 = -1.50783E-04 A6 = 6.32142E-07 A8 = 8.23469E-09
A10 = -5.41717E-11 A12 = 0.00000E + 00
Eighth plane K = 4.7540
A4 = -2.61403E-04 A6 = 2.68176E-06 A8 = -9.54981E-09
A10 = 4.35054E-12 A12 = 0.00000E + 00
 この接眼光学系EL6において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表23に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL6, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 23 below shows variable intervals and dioptric pupil positions for each diopter.
(表23)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.84      8.82      6.78
D2   20.60     19.62     21.66
EnP  -34.03960   -36.20254   -32.04697
(Table 23)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.84 8.82 6.78
D2 20.60 19.62 21.66
EnP-34.03960-36.20254-32.04697
 次の表24に、この接眼光学系EL6の各条件式対応値を示す。 Table 24 below shows the corresponding values to the conditional expressions of the eyepiece optical system EL6.
(表24)
f4 = 78.767
f12= 30.113
f23=-49.345

[条件式対応値]
(1)fe/f1=1.550
(2)fe/f12=0.602
(3)νd2=23.89
(4)fe/f4=0.230
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.223
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.329
(7)fe/EnP=-0.532
(8)fe/f23=-0.367
(9)D1/f1=0.671
(10)TL/fe=1.553
(11)nd1=1.531
(12)nd2=1.636
(Table 24)
f4 = 78.767
f12 = 30.113
f23 = -49.345

[Conditional expression corresponding value]
(1) fe / f1 = 1.550
(2) fe / f12 = 0.602
(3) d d 2 = 23.89
(4) fe / f4 = 0.230
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.223
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.329
(7) fe / EnP = -0.532
(8) fe / f23 = -0.367
(9) D1 / f1 = 0.671
(10) TL / fe = 1.553
(11) nd1 = 1.531
(12) nd2 = 1.636
 このように、この接眼光学系EL6は、上記条件式(1)~(10)を満足している。 Thus, the eyepiece optical system EL6 satisfies the conditional expressions (1) to (10).
 この接眼光学系EL6の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図12に示す。これらの各収差図より、この接眼光学系EL6は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 12 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a standard diopter (−1 dpt) of this eyepiece optical system EL6. From these aberration diagrams, it can be seen that this eyepiece optical system EL6 achieves good aberration within the diopter adjustment range.
[第7実施例]
 図13は、第7実施例に係る接眼光学系EL7の構成を示す図である。この接眼光学系EL7は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Seventh Embodiment
FIG. 13 is a diagram showing the configuration of an eyepiece optical system EL7 according to a seventh example. The eyepiece optical system EL7 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL7において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL7, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object. The third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object. The fourth lens component G4 is composed of an aspheric positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric.
 この接眼光学系EL7における視度調整は、接眼光学系EL7全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL7 is performed by moving the entire eyepiece optical system EL7 in the optical axis direction.
 以下の表25に、接眼光学系EL7の諸元の値を掲げる。 Table 25 below presents values of specifications of the eyepiece optical system EL7.
(表25)第7実施例
[全体諸元]
fe =  17.662
H  =  6.30
TL =  28.320

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   28.07266  7.30  1.74400  44.80
 2*   -10.67758  2.70
 3*   -6.63855  1.55  1.63550  23.89
 4   -144.14719  1.00
 5   -167.66045  5.95  1.53110  55.91
 6*   -11.29042  0.50
 7*  1712.67070  2.70  1.53110  55.91
 8*   -31.84183  D2
像面   ∞
(Table 25) Seventh Example [Overall Specifications]
fe = 17.662
H = 6.30
TL = 28.320

[Lens data]
m r d nd d d
Object ∞ D1
1 * 28.07266 7.30 1.74400 44.80
2 *-10. 67758 2. 70
3 * -6.63855 1.55 1.63550 23.89
4 -144.14719 1.00
5 -167.660045 5.95 1.53110 55.91
6 *-11.29042 0.50
7 * 1712.67070 2.70 1.53110 55.91
8 *-31.84183 D2
Image plane ∞
 この接眼光学系EL7において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表26に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL7, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. The following Table 26 shows aspheric surface data, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表26)
[非球面データ]
第1面
  K=-2.0140
  A4 =-1.26801E-04  A6 =-7.92018E-07  A8 = 1.72033E-08
  A10=-1.32394E-10  A12= 5.48090E-13
第2面
  K=-2.1884
  A4 =-1.51405E-04  A6 = 8.63584E-07  A8 =-7.98722E-09
  A10= 2.78537E-11  A12= 0.00000E+00
第3面
  K=-0.1010
  A4 = 3.80395E-04  A6 =-4.01258E-06  A8 = 2.22431E-08
  A10=-1.81820E-10  A12= 0.00000E+00
第6面
  K= 0.6429
  A4 = 2.44680E-04  A6 =-7.34170E-07  A8 =-4.17875E-09
  A10= 2.11837E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.23377E-04  A6 = 1.23089E-06  A8 =-5.34263E-09
  A10= 3.90858E-11  A12= 0.00000E+00
第8面
  K=-0.0905
  A4 =-2.34359E-04  A6 = 2.48218E-06  A8 =-1.41661E-08
  A10= 7.75465E-11  A12= 0.00000E+00
(Table 26)
[Aspheric surface data]
First plane K = -2.0140
A4 = -1.26801E-04 A6 = -7.92018E-07 A8 = 1.72033E-08
A10 = −1.32394E-10 A12 = 5.48090E-13
Second plane K = -2.1884
A4 = -1.51405E-04 A6 = 8.63584E-07 A8 = -7.98722E-09
A10 = 2.78537E-11 A12 = 0.00000E + 00
Third plane K = -0.1010
A4 = 3.80395E-04 A6 = -4.01258E-06 A8 = 2.22431E-08
A10 = -1.81820E-10 A12 = 0.00000E + 00
Sixth face K = 0.6429
A4 = 2.44680E-04 A6 = -7.34170E-07 A8 = -4.17875E-09
A10 = 2.11837E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.23377E-04 A6 = 1.23089E-06 A8 = -5.342263E-09
A10 = 3.90858E-11 A12 = 0.00000E + 00
Eighth plane K = -0.0905
A4 = -2.34359E-04 A6 = 2.48218E-06 A8 = -1.41661E-08
A10 = 7.75465 E-11 A12 = 0.00000 E + 00
 この接眼光学系EL7において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表27に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL7, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 27 below shows variable intervals and dioptric pupil positions for each diopter.
(表27)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    6.62      7.55      5.61
D2   20.10     19.17     21.11
EnP  -30.15672   -31.88364   -28.53315
(Table 27)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 6.62 7.55 5.61
D2 20.10 19.17 21.11
EnP-30.15672-31.88364-28.53315
 次の表28に、この接眼光学系EL7の各条件式対応値を示す。 Table 28 below shows values corresponding to the respective conditional expressions of the eyepiece optical system EL7.
(表28)
f4 = 58.892
f12= 34.529
f23=-45.926

[条件式対応値]
(1)fe/f1=1.562
(2)fe/f12=0.512
(3)νd2=23.89
(4)fe/f4=0.300
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.075
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.449
(7)fe/EnP=-0.586
(8)fe/f23=-0.385
(9)D1/f1=0.586
(10)TL/fe=1.603
(11)nd1=1.744
(12)nd2=1.636
(Table 28)
f4 = 58.892
f12 = 34.529
f23 = -45.926

[Conditional expression corresponding value]
(1) fe / f1 = 1.562
(2) fe / f12 = 0.512
(3) d d 2 = 23.89
(4) fe / f4 = 0.300
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.075
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.449
(7) fe / EnP = -0.586
(8) fe / f23 = -0.385
(9) D1 / f1 = 0.586
(10) TL / fe = 1.603
(11) nd1 = 1.744
(12) nd2 = 1.636
 このように、この接眼光学系EL7は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL7 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL7の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図14に示す。これらの各収差図より、この接眼光学系EL7は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 14 shows a spherical aberration diagram, an astigmatism diagram, a distortion aberration diagram and a coma aberration diagram of the eyepiece optical system EL7 at a standard diopter (−1 dpt). From these aberration diagrams, it can be seen that this eyepiece optical system EL7 achieves good aberration within the diopter adjustment range.
[第8実施例]
 図15は、第8実施例に係る接眼光学系EL8の構成を示す図である。この接眼光学系EL8は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Eighth Embodiment
FIG. 15 is a view showing the configuration of an eyepiece optical system EL8 according to an eighth example. The eyepiece optical system EL8 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL8において、第1レンズ成分G1は、観察物体側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11とアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL12とを接合した接合レンズで構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL8, the first lens component G1 has an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side is aspheric, and an aspheric lens surface on the eye point side And a cemented lens obtained by cementing a positive meniscus lens-shaped aspheric positive lens L12 having a concave surface facing the observation object. The second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object. The third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL8における視度調整は、接眼光学系EL8全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL8 is performed by moving the entire eyepiece optical system EL8 in the optical axis direction.
 以下の表29に、接眼光学系EL8の諸元の値を掲げる。 Table 29 below provides values of specifications of the eyepiece optical system EL8.
(表29)第8実施例
[全体諸元]
fe =  17.671
H  =  6.30
TL =  28.340

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   36.28535  1.50  1.75520  27.57
 2   -256.85195  5.55  1.74400  44.80
 3*   -9.58387  2.70
 4*   -6.33627  1.60  1.63550  23.89
 5   -309.22499  1.00
 6   -340.41004  5.95  1.53110  55.91
 7*   -10.20313  0.50
 8*  -118.11140  2.70  1.53110  55.91
 9*   -33.13998  D2
像面   ∞
(Table 29) Eighth Example [Overall Specifications]
fe = 17.671
H = 6.30
TL = 28.340

[Lens data]
m r d nd d d
Object ∞ D1
1 * 36.28535 1.50 1.75520 27.57
2 -256.85195 5.55 1.74400 44.80
3 *-9.58387 2.70
4 *-6.33627 1.60 1.63550 23.89
5 -309.22499 1.00
6-340.41004 5.95 1.53110 55.91
7 *-10.20313 0.50
8 * -118.11140 2.70 1.53110 55.91
9 * -33.13998 D2
Image plane ∞
 この接眼光学系EL8において、第1面、第3面、第4面、第7面、第8面及び第9面は非球面形状に形成されている。次の表30に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL8, the first surface, the third surface, the fourth surface, the seventh surface, the eighth surface and the ninth surface are formed in an aspheric shape. The following Table 30 shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表30)
[非球面データ]
第1面
  K=-2.0658
  A4 =-1.42501E-04  A6 =-8.76658E-07  A8 = 1.88394E-08
  A10=-1.09268E-10  A12= 3.68460E-13
第3面
  K=-1.7532
  A4 =-1.52859E-04  A6 = 8.23715E-07  A8 =-8.45101E-09
  A10= 3.67563E-11  A12= 0.00000E+00
第4面
  K=-0.2498
  A4 = 3.64026E-04  A6 =-4.01765E-06  A8 = 2.07275E-08
  A10=-1.61058E-10  A12= 0.00000E+00
第7面
  K= 0.5740
  A4 = 2.54149E-04  A6 =-6.32718E-07  A8 =-3.76424E-09
  A10= 2.73994E-11  A12= 0.00000E+00
第8面
  K= 1.0000
  A4 =-1.19587E-04  A6 = 1.18521E-06  A8 =-5.01478E-09
  A10= 4.10280E-11  A12= 0.00000E+00
第9面
  K= 1.4393
  A4 =-2.39375E-04  A6 = 2.51700E-06  A8 =-1.48286E-08
  A10= 7.54336E-11  A12= 0.00000E+00
(Table 30)
[Aspheric surface data]
First plane K =-2.0658
A4 = -1.42501E-04 A6 = -8.76658E-07 A8 = 1.88394E-08
A10 = -1.09268E-10 A12 = 3.68460E-13
Third plane K = -1.7532
A4 = -1.52859E-04 A6 = 8.23715E-07 A8 = -8.45101E-09
A10 = 3.67563E-11 A12 = 0.00000E + 00
Fourth plane K =-0.2498
A4 = 3.64026E-04 A6 = -4.01765E-06 A8 = 2.07275E-08
A10 = -1.61058E-10 A12 = 0.00000E + 00
Seventh plane K = 0.5740
A4 = 2.54149E-04 A6 = -6.232718E-07 A8 = -3.76424E-09
A10 = 2.73 994 E-11 A12 = 0.00000 E + 00
Eighth plane K = 1.0000
A4 = -1.19587E-04 A6 = 1.18521E-06 A8 = -5.01478E-09
A10 = 4.10280E-11 A12 = 0.00000E + 00
The ninth side K = 1.4393
A4 = -2.39375E-04 A6 = 2.51700E-06 A8 = -1.48286E-08
A10 = 7.54336 E-11 A12 = 0.00000 E + 00
 この接眼光学系EL8において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表31に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL8, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 31 below shows variable intervals for each diopter and entrance pupil positions.
(表31)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    6.84      7.77      5.83
D2   20.10     19.17     21.11
EnP  -31.23485   -33.09550   -29.49620
(Table 31)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 6.84 7.77 5.83
D2 20.10 19.17 21.11
EnP-31.23485-33.09550-29.49620
 次の表32に、この接眼光学系EL8の各条件式対応値を示す。 Table 32 below shows the corresponding values to the conditional expressions of the eyepiece optical system EL8.
(表32)
f4 = 85.790
f12= 37.994
f23=-57.363

[条件式対応値]
(1)fe/f1=1.625
(2)fe/f12=0.465
(3)νd2=23.89
(4)fe/f4=0.206
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.048
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.582
(7)fe/EnP=-0.566
(8)fe/f23=-0.308
(9)D1/f1=0.629
(10)TL/fe=1.604
(11)nd1=1.755
(12)nd2=1.636
(Table 32)
f4 = 85.790
f12 = 37.94
f23 = -57.363

[Conditional expression corresponding value]
(1) fe / f1 = 1.625
(2) fe / f12 = 0.465
(3) d d 2 = 23.89
(4) fe / f4 = 0.206
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.048
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.582
(7) fe / EnP = -0.566
(8) fe / f23 = -0.308
(9) D1 / f1 = 0.629
(10) TL / fe = 1.604
(11) nd1 = 1.755
(12) nd2 = 1.636
 このように、この接眼光学系EL8は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL8 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL8の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図16に示す。これらの各収差図より、この接眼光学系EL8は、視度調節範囲内にて良好な収差が達成されていることがわかる。 The spherical aberration view, the astigmatism view, the distortion view and the coma view of the eyepiece optical system EL8 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that this eyepiece optical system EL8 achieves good aberration within the diopter adjustment range.
[第9実施例]
 図17は、第9実施例に係る接眼光学系EL9の構成を示す図である。この接眼光学系EL9は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Ninth embodiment]
FIG. 17 is a view showing the configuration of an eyepiece optical system EL9 according to a ninth example. The eyepiece optical system EL9 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL9において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL9, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. The second lens component G2 is formed of an aspheric negative lens L12 having a negative meniscus lens shape with a concave surface facing the observation object. The third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL9における視度調整は、接眼光学系EL9全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL9 is performed by moving the entire eyepiece optical system EL9 in the optical axis direction.
 以下の表33に、接眼光学系EL9の諸元の値を掲げる。 Table 33 below provides values of specifications of the eyepiece optical system EL9.
(表33)第9実施例
[全体諸元]
fe =  17.664
H  =  6.30
TL =  28.440

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   30.06223  7.30  1.74300  49.25
 2*   -10.46380  2.70
 3*   -6.62848  1.55  1.65093  21.51
 4   -43.12860  1.00
 5   -44.49530  5.95  1.53110  55.91
 6*   -10.78420  0.50
 7*  -1133.34000  2.70  1.53110  55.91
 8*   -34.07780  D2
像面   ∞
(Table 33) Ninth Example [Overall Specifications]
fe = 17.664
H = 6.30
TL = 28.440

[Lens data]
m r d nd d d
Object ∞ D1
1 * 30.06223 7.30 1.74300 49.25
2 *-10.46380 2.70
3 * -6.62848 1.55 1.65093 21.51
4-43.12860 1.00
5 -44.49530 5.95 1.53110 55.91
6 *-10.78420 0.50
7 * -1133.34000 2.70 1.53110 55.91
8 * -34.07780 D2
Image plane ∞
 この接眼光学系EL9において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表34に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL9, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. Table 34 below shows data of aspheric surfaces, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表34)
[非球面データ]
第1面
  K=-1.3191
  A4 =-1.08297E-04  A6 =-5.23642E-07  A8 = 1.65142E-08
  A10=-1.39777E-10  A12= 5.22770E-13
第2面
  K=-2.1775
  A4 =-1.37725E-04  A6 = 9.31664E-07  A8 =-7.77285E-09
  A10= 2.31975E-11  A12= 0.00000E+00
第3面
  K=-0.0873
  A4 = 3.71838E-04  A6 =-4.12160E-06  A8 = 2.25930E-08
  A10=-1.98410E-10  A12= 0.00000E+00
第6面
  K= 0.6318
  A4 = 2.37664E-04  A6 =-7.12383E-07  A8 =-4.02440E-09
  A10= 2.46401E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.19476E-04  A6 = 1.21154E-06  A8 =-5.10047E-09
  A10= 4.12044E-11  A12= 0.00000E+00
第8面
  K=-0.6189
  A4 =-2.32309E-04  A6 = 2.50741E-06  A8 =-1.40702E-08
  A10= 7.88020E-11  A12= 0.00000E+00
(Table 34)
[Aspheric surface data]
First plane K = -1.3191
A4 = -1.08297E-04 A6 = -5.23642E-07 A8 = 1.65142E-08
A10 = -1.39777E-10 A12 = 5.22770E-13
Second plane K = -2.1775
A4 = -1.37725E-04 A6 = 9.31664E-07 A8 = -7.77285E-09
A10 = 2.31975E-11 A12 = 0.00000E + 00
Third plane K = -0.0873
A4 = 3.71838E-04 A6 = -4.12160E-06 A8 = 2.25930E-08
A10 = -1.98410E-10 A12 = 0.00000E + 00
Sixth face K = 0.6318
A4 = 2.37664E-04 A6 = -7.12383E-07 A8 = -4.02440E-09
A10 = 2.46401E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.19476E-04 A6 = 1.21154E-06 A8 = -5.10047E-09
A10 = 4.12044E-11 A12 = 0.00000E + 00
Eighth plane K =-0.6189
A4 = -2.332309E-04 A6 = 2.50741E-06 A8 = -1.40702E-08
A10 = 7.88020E-11 A12 = 0.00000E + 00
 この接眼光学系EL9において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表35に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL9, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 35 below shows variable intervals and dioptric pupil positions for each diopter.
(表35)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    6.74      7.67      5.73
D2   20.00     19.07     20.01
EnP  -31.17085   -32.51888   -29.03853
(Table 35)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 6.74 7.67 5.73
D2 20.00 19.07 20.01
EnP-31.17085-32. 51888-29.03853
 次の表36に、この接眼光学系EL9の各条件式対応値を示す。 The following Table 36 shows the corresponding values to the conditional expressions of the eyepiece optical system EL9.
(表36)
f4 = 66.097
f12= 29.977
f23=-51.032

[条件式対応値]
(1)fe/f1=1.561
(2)fe/f12=0.589
(3)νd2=21.51
(4)fe/f4=0.267
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.016
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.484
(7)fe/EnP=-0.567
(8)fe/f23=-0.346
(9)D1/f1=0.596
(10)TL/fe=1.610
(11)nd1=1.743
(12)nd2=1.651
(Table 36)
f4 = 66.097
f12 = 29.977
f23 = -51.032

[Conditional expression corresponding value]
(1) fe / f1 = 1.561
(2) fe / f12 = 0.589
(3) d d 2 = 21.51
(4) fe / f4 = 0.267
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.016
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.484
(7) fe / EnP = -0.567
(8) fe / f23 = -0.346
(9) D1 / f1 = 0.596
(10) TL / fe = 1.610
(11) nd1 = 1.743
(12) nd2 = 1.651
 このように、この接眼光学系EL9は、上記条件式(1)~(12)を満足している。 Thus, the eyepiece optical system EL9 satisfies the conditional expressions (1) to (12).
 この接眼光学系EL9の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図18に示す。これらの各収差図より、この接眼光学系EL9は、視度調節範囲内にて良好な収差が達成されていることがわかる。 The spherical aberration view, the astigmatism view, the distortion view, and the coma view of the eyepiece optical system EL9 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that this eyepiece optical system EL9 achieves good aberration within the diopter adjustment range.
[第10実施例]
 図19は、第10実施例に係る接眼光学系EL10の構成を示す図である。この接眼光学系EL10は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Tenth Embodiment
FIG. 19 is a diagram showing the configuration of an eyepiece optical system EL10 according to a tenth example. The eyepiece optical system EL10 includes, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL10において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL21で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL10, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are aspheric. There is. Further, the second lens component G2 is configured of an aspheric negative lens L21 having a negative meniscus lens shape whose concave surface is directed to the observation object side, with the lens surface on the observation object side and the lens surface on the eye point side being aspheric. It is done. The third lens component G3 is formed of an aspheric positive lens L31 in the shape of a positive meniscus lens whose lens surface on the observation object side and the lens surface on the eye point side are aspheric and whose concave surface is directed to the observation object It is done. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL10における視度調整は、接眼光学系EL10全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL10 is performed by moving the entire eyepiece optical system EL10 in the optical axis direction.
 以下の表37に、接眼光学系EL10の諸元の値を掲げる。 Table 37 below provides values of specifications of the eyepiece optical system EL10.
(表37)第10実施例
[全体諸元]
fe =  17.655
H  =  6.30
TL =  28.870

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   27.64520  7.35  1.74300  49.25
 2*   -10.59980  2.70
 3*   -6.62160  1.50  1.66133  20.35
 4*   -30.41490  1.00
 5*   -33.42740  5.95  1.53110  55.91
 6*   -11.06910  0.50
 7*  -447.12000  2.70  1.53110  55.91
 8*   -33.61500  D2
像面   ∞
(Table 37) Tenth Example [Overall Specifications]
fe = 17.655
H = 6.30
TL = 28.870

[Lens data]
m r d nd d d
Object ∞ D1
1 * 27.64520 7.35 1.74300 49.25
2 * -10.59980 2.70
3 * -6.62160 1.50 1.66133 20.35
4 *-30.14490 1.00
5 * -33.42740 5.95 1.53110 55.91
6 * -11.06910 0.50
7 *-447.12000 2.70 1.53110 55.91
8 * -33.61500 D2
Image plane ∞
 この接眼光学系EL10において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表38に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL10, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspheric shape. The following Table 38 shows aspheric surface data, that is, values of the conical constant K and the respective aspheric constants A4 to A12.
(表38)
[非球面データ]
第1面
  K= 1.8706
  A4 =-1.58806E-04  A6 =-6.47977E-07  A8 = 2.00513E-08
  A10=-1.19924E-10  A12= 3.39780E-13
第2面
  K=-2.5122
  A4 =-1.82235E-04  A6 = 1.26664E-06  A8 =-9.55146E-09
  A10= 4.41287E-11  A12= 0.00000E+00
第3面
  K=-0.1010
  A4 = 3.59553E-04  A6 =-3.81376E-06  A8 = 2.31702E-08
  A10=-1.65901E-10  A12= 0.00000E+00
第4面
  K= 1.2085
  A4 = 9.08220E-06  A6 = 4.92684E-09  A8 = 2.99069E-11
  A10= 0.00000E+00  A12= 0.00000E+00
第5面
  K=-0.6362
  A4 = 2.08532E-05  A6 = 3.39041E-08  A8 =-4.09295E-10
  A10= 0.00000E+00  A12= 0.00000E+00
第6面
  K= 0.5759
  A4 = 2.44689E-04  A6 =-6.87340E-07  A8 =-4.20734E-09
  A10= 2.20759E-11  A12= 0.00000E+00
第7面
  K= 1.0000
  A4 =-1.28197E-04  A6 = 1.23524E-06  A8 =-5.32987E-09
  A10= 3.98596E-11  A12= 0.00000E+00
第8面
  K= 0.3803
  A4 =-2.29306E-04  A6 = 2.47452E-06  A8 =-1.42769E-08
  A10= 7.86334E-11  A12= 0.00000E+00
(Table 38)
[Aspheric surface data]
First plane K = 1.8706
A4 = -1.58806E-04 A6 = -6.47977E-07 A8 = 2.00513E-08
A10 = -1.19924E-10 A12 = 3.39780E-13
Second plane K = -2.5122
A4 = -1.82235E-04 A6 = 1.26664E-06 A8 = -9.55146E-09
A10 = 4.41287E-11 A12 = 0.00000E + 00
Third plane K = -0.1010
A4 = 3.59553E-04 A6 = -3.81376E-06 A8 = 2.31702E-08
A10 = -1.65901E-10 A12 = 0.00000E + 00
Fourth plane K = 1.2085
A4 = 9.08220E-06 A6 = 4.92684E-09 A8 = 2.99069E-11
A10 = 0.00000E + 00 A12 = 0.00000E + 00
Fifth plane K = -0.6362
A4 = 2.08532E-05 A6 = 3.39041E-08 A8 = -4.09295E-10
A10 = 0.00000E + 00 A12 = 0.00000E + 00
Sixth face K = 0.5759
A4 = 2.44689E-04 A6 = -6.87340E-07 A8 = -4.20734E-09
A10 = 2.20759E-11 A12 = 0.00000E + 00
Seventh plane K = 1.0000
A4 = -1.28197E-04 A6 = 1.23524E-06 A8 = -5.32987E-09
A10 = 3.98596E-11 A12 = 0.00000E + 00
Eighth plane K = 0.3803
A4 = -2.29306E-04 A6 = 2.47452E-06 A8 = -1.42769E-08
A10 = 7.86334E-11 A12 = 0.00000E + 00
 この接眼光学系EL10において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表39に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL10, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 39 below shows variable intervals and dioptric pupil positions for each diopter.
(表39)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.17      8.10      6.16
D2   20.10     19.17     21.11
EnP  -30.13523   -31.77608   -28.58721
(Table 39)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.17 8.10 6.16
D2 20.10 19.17 21.11
EnP -30.13523 -31.77608 -28.58721
 次の表40に、この接眼光学系EL10の各条件式対応値を示す。 The following Table 40 shows the corresponding values to the conditional expressions of the eyepiece optical system EL10.
(表40)
f4 = 68.284
f12= 26.280
f23=-47.435

[条件式対応値]
(1)fe/f1=1.572
(2)fe/f12=0.672
(3)νd2=20.35
(4)fe/f4=0.259
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.047
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.446
(7)fe/EnP=-0.586
(8)fe/f23=-0.372
(9)D1/f1=0.638
(10)TL/fe=1.635
(11)nd1=1.743
(12)nd2=1.661
(Table 40)
f4 = 68.284
f12 = 26.280
f23 = -47.435

[Conditional expression corresponding value]
(1) fe / f1 = 1.572
(2) fe / f12 = 0.672
(3) d d 2 = 20.35
(4) fe / f4 = 0.259
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.047
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.446
(7) fe / EnP = -0.586
(8) fe / f23 = -0.372
(9) D1 / f1 = 0.638
(10) TL / fe = 1.635
(11) nd1 = 1.743
(12) nd2 = 1.661
 このように、この接眼光学系EL10は、上記条件式(1)~(12)を満足している。 Thus, the eyepiece optical system EL10 satisfies the conditional expressions (1) to (12).
 この接眼光学系EL10の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図20に示す。これらの各収差図より、この接眼光学系EL10は、視度調節範囲内にて良好な収差が達成されていることがわかる。 The spherical aberration view, the astigmatism view, the distortion view and the coma view of the eyepiece optical system EL10 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that in this eyepiece optical system EL10, good aberration is achieved within the diopter adjustment range.
[第11実施例]
 図21は、第11実施例に係る接眼光学系EL11の構成を示す図である。この接眼光学系EL11は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
Eleventh Embodiment
FIG. 21 is a diagram showing the configuration of an eyepiece optical system EL11 according to an eleventh example. The eyepiece optical system EL11 includes, in order from the observation object side, a first lens component G1 having positive refractive power, a second lens component G2 having negative refractive power, and a third lens component G3 having positive refractive power. And a fourth lens component G4 having a positive refractive power.
 この接眼光学系EL11において、第1レンズ成分G1は、観察物体側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成された両凹負レンズ形状の非球面負レンズL21とアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL22とを接合した接合レンズで構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In the eyepiece optical system EL11, the first lens component G1 is composed of an aspheric positive lens L11 having a biconvex positive lens shape in which a lens surface on the observation object side is formed in an aspheric shape. The second lens component G2 is a biconcave negative lens-shaped aspheric negative lens L21 in which the lens surface on the observation object side is aspheric, and a lens surface in the eyepoint side is aspheric. It is comprised with the cemented lens which joined the aspheric positive lens L22 of convex positive lens shape. The third lens component G3 is formed of an aspheric positive lens L31 having a positive meniscus lens shape with a concave surface facing the observation object. The fourth lens component G4 is formed of an aspheric positive lens L41 in the shape of a positive meniscus lens having a lens surface on the observation object side and a lens surface on the eye point side formed in an aspheric shape and having a concave surface facing the observation object It is done.
 この接眼光学系EL11における視度調整は、接眼光学系EL11全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL11 is performed by moving the entire eyepiece optical system EL11 in the optical axis direction.
 以下の表41、接眼光学系EL11の諸元の値を掲げる。 Table 41 below provides values of specifications of the eyepiece optical system EL11.
(表41)第11実施例
[全体諸元]
fe =  17.623
H  =  6.30
TL =  30.240

[レンズデータ]
m    r     d   nd   νd
物面   ∞     D1
 1*   28.78836  7.35  1.82098  42.50
 2   -11.25246  2.70
 3*   -7.11620  1.50  1.63550  23.89
 4   564.01019  1.48  1.53110  55.91
 5*  -165.33547  1.00
 6   -397.01843  5.95  1.53110  55.91
 7*   -11.70908  0.5
 8*   -87.51711  2.70  1.53110  55.91
 9*   -33.70935  D2
像面   ∞
(Table 41) Eleventh embodiment [overall specifications]
fe = 17.623
H = 6.30
TL = 30.240

[Lens data]
m r d nd d d
Object ∞ D1
1 * 28.78836 7.35 1.82098 42.50
2-11.25246 2.70
3 *-7.11620 1.50 1.63552 23.89
4 564.01019 1.48 1.53110 55.91
5 * -165.33547 1.00
6-397.01843 5.95 1.53110 55.91
7 * -11.70908 0.5
8 * -87.51711 2.70 1.53110 55.91
9 * -33.70935 D2
Image plane ∞
 この接眼光学系EL11において、第1面、第3面、第5面、第7面、第8面及び第9面は非球面形状に形成されている。次の表42に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4~A12の値を示す。 In the eyepiece optical system EL11, the first surface, the third surface, the fifth surface, the seventh surface, the eighth surface and the ninth surface are formed in an aspheric shape. The following Table 42 shows aspheric surface data, that is, the values of the conical constant K and the respective aspheric constants A4 to A12.
(表42)
[非球面データ]
第1面
  K= 4.9064
  A4 =-1.05219E-04  A6 =-6.21990E-07  A8 = 1.81446E-08
  A10=-1.14918E-10  A12= 3.47790E-13
第3面
  K=-2.7141
  A4 =-1.22865E-04  A6 = 1.06684E-06  A8 =-6.77704E-09
  A10= 4.48572E-11  A12= 0.00000E+00
第5面
  K=-0.1268
  A4 = 3.96618E-04  A6 =-3.89261E-06  A8 = 2.32375E-08
  A10=-1.45358E-10  A12= 0.00000E+00
第7面
  K= 0.5892
  A4 = 2.52841E-04  A6 =-6.99186E-07  A8 =-4.09567E-09
  A10= 2.38163E-11  A12= 0.00000E+00
第8面
  K= 1.0000
  A4 =-1.15871E-04  A6 = 1.20055E-06  A8 =-5.20908E-09
  A10= 4.32497E-11  A12= 0.00000E+00
第9面
  K= 2.7036
  A4 =-2.43083E-04  A6 = 2.51325E-06  A8 =-1.39088E-08
  A10= 7.50477E-11  A12= 0.00000E+00
(Table 42)
[Aspheric surface data]
First plane K = 4.9064
A4 = -1.05219E-04 A6 = -6.2 1990E-07 A8 = 1.81446E-08
A10 = -1. 14918E-10 A12 = 3.47790E-13
Third plane K = -2.7141
A4 = -1.22865E-04 A6 = 1.06684E-06 A8 = -6.77704E-09
A10 = 4.48572E-11 A12 = 0.00000E + 00
Fifth plane K = -0.1268
A4 = 3.96618E-04 A6 = -3.89261E-06 A8 = 2.32375E-08
A10 = -1.45358E-10 A12 = 0.00000E + 00
Seventh plane K = 0.5892
A4 = 2.52841E-04 A6 = -6.99186E-07 A8 = -4.09567E-09
A10 = 2.38163E-11 A12 = 0.00000E + 00
Eighth plane K = 1.0000
A4 = -1.15871E-04 A6 = 1.20055E-06 A8 = -5.20908E-09
A10 = 4.32497E-11 A12 = 0.00000E + 00
The ninth side K = 2.7036
A4 = -2.43083E-04 A6 = 2.51325E-06 A8 = -1.39088E-08
A10 = 7.50477E-11 A12 = 0.00000E + 00
 この接眼光学系EL11において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表43に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL11, the on-axis air gap D1 between the observation object and the first lens component G1 and the on-axis air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. In addition, the entrance pupil position EnP also changes with the change of these intervals. Table 43 below shows variable intervals and dioptric pupil positions for each diopter.
(表43)
[可変間隔データ]
視度  -1dpt  +2dpt  -4dpt
D1    7.06      7.98      6.04
D2   20.10     19.18     21.12
EnP  -27.40929   -28.67303   -26.17269
(Table 43)
[Variable interval data]
Diopter -1 dpt +2 dpt -4 dpt
D1 7.06 7.98 6.04
D2 20.10 19.18 21.12
EnP-27.40929-28.67303-26.17269
 次の表44に、この接眼光学系EL11の各条件式対応値を示す。 The following Table 44 shows the corresponding values to the conditional expressions of the eyepiece optical system EL11.
(表44)
f4 =101.468
f12= 26.176
f23=-66.090

[条件式対応値]
(1)fe/f1=1.640
(2)fe/f12=0.673
(3)νd2=23.89
(4)fe/f4=0.174
(5)(G2R2-G3R1)/(G2R2+G3R1)= 0.412
(6)(G1R2+G1R1)/(G1R2-G1R1)=-0.438
(7)fe/EnP=-0.643
(8)fe/f23=-0.267
(9)D1/f1=0.657
(10)TL/fe=1.716
(11)nd1=1.821
(12)nd2=1.636
(Table 44)
f4 = 101.468
f12 = 26.176
f23 = -66.090

[Conditional expression corresponding value]
(1) fe / f1 = 1.640
(2) fe / f12 = 0.673
(3) d d 2 = 23.89
(4) fe / f4 = 0.174
(5) (G2R2-G3R1) / (G2R2 + G3R1) = 0.412
(6) (G1R2 + G1R1) / (G1R2-G1R1) =-0.438
(7) fe / EnP = -0.643
(8) fe / f23 = -0.267
(9) D1 / f1 = 0.657
(10) TL / fe = 1.716
(11) nd 1 = 1.821
(12) nd2 = 1.636
 このように、この接眼光学系EL10は、上記条件式(1)~(11)を満足している。 Thus, the eyepiece optical system EL10 satisfies the conditional expressions (1) to (11).
 この接眼光学系EL11の、基準視度(-1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図22に示す。これらの各収差図より、この接眼光学系EL11は、視度調節範囲内にて良好な収差が達成されていることがわかる。 The spherical aberration view, the astigmatism view, the distortion view, and the coma view of the eyepiece optical system EL11 at a standard diopter (-1 dpt) are shown in FIG. From these aberration diagrams, it can be seen that in this eyepiece optical system EL11, good aberration is achieved within the diopter adjustment range.
 なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 In addition, the content described below can be suitably employ | adopted in the range which does not impair optical performance.
 本実施形態では、接眼光学系ELの数値実施例として4つのレンズ成分の構成のものを示したが、例えば5つのレンズ成分等の他のレンズ構成にも適用可能である。また、最も物体側にレンズ成分を追加した構成や、最もアイポイント側にレンズ成分を追加した構成でも構わない。 In this embodiment, although the thing of the composition of four lens components was shown as a numerical example of eyepiece optical system EL, it is applicable also to other lens composition, such as five lens components, for example. Further, the lens component may be added to the most object side or the lens component may be added to the most eye point side.
 また、単独又は複数のレンズ成分を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ成分G3を防振レンズ群とするのが好ましい。 In addition, one or more lens components are moved so as to have a displacement component in the direction orthogonal to the optical axis, or rotationally moved (sway) in the in-plane direction including the optical axis to correct image blurring caused by camera shake. It is good also as an anti-vibration lens group. In particular, it is preferable to use the third lens component G3 as a vibration reduction lens group.
 また、本実施形態の接眼光学系ELを構成するレンズ(レンズ成分、レンズ要素)のレンズ面は、球面または平面としてもよく、或いは非球面としてもよい。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防げるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラスの表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to lens processing and assembly adjustment errors can be prevented. In addition, even when the image plane shifts, it is preferable because there is little deterioration in the imaging performance. When the lens surface is aspheric, it is either aspheric by grinding, a glass mold aspheric obtained by molding glass into an aspheric shape, or a composite aspheric made by forming a resin provided on the surface of glass into an aspheric shape. May be. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 また、本実施形態の接眼光学系ELを構成するレンズ(レンズ成分、レンズ要素)のレンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。 In addition, in the lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment, flare and ghost are reduced, and high contrast optical performance is achieved in a wide wavelength range. An antireflective film having high transmittance may be provided.
 また、本実施形態の接眼光学系ELは、第1レンズ成分G1と第2レンズ成分G2と第3レンズ成分G3と第4レンズ成分G4とが一体で、又は接眼光学系EL全体が一体で移動して視度調整を行う構成を示したが、最もアイポイント側のレンズ成分を固定し、当該レンズ成分よりも観察物体側のレンズ成分全体を一体で移動したり、第1レンズ成分G1と第2レンズ成分G2と第3レンズ成分G3と第4レンズ成分G4との少なくとも一部のレンズ成分を移動したりする構成でも構わない。特に、第1レンズ成分G1を移動させ、その他のレンズ成分は視度調整時に像面に対する位置を固定とするのが好ましい。視度調整レンズ群は単レンズから構成するのが好ましい。 In the eyepiece optical system EL of the present embodiment, the first lens component G1, the second lens component G2, the third lens component G3, and the fourth lens component G4 are integrated, or the entire eyepiece optical system EL is integrally moved. The lens component on the eye point side is fixed most, and the entire lens component on the observation object side with respect to the lens component is integrally moved, or the first lens component G1 and the first lens component G1 are The configuration may be such that at least a part of lens components of the two-lens component G2, the third lens component G3, and the fourth lens component G4 are moved. In particular, it is preferable to move the first lens component G1 and to fix the position of the other lens components with respect to the image plane at the time of diopter adjustment. The diopter adjustment lens group is preferably composed of a single lens.
EL(EL1~EL11) 接眼光学系
G1 第1レンズ成分  G2 第2レンズ成分
G3 第3レンズ成分  G4 第4レンズ成分
1 カメラ(光学機器)
EL (EL1 to EL11) Eyepiece optical system G1 first lens component G2 second lens component G3 third lens component G4 fourth lens component 1 camera (optical apparatus)

Claims (18)

  1.  観察物体側から順に、
     正の屈折力を有する第1レンズ成分と、
     負の屈折力を有する第2レンズ成分と、
     正の屈折力を有する第3レンズ成分と、
     正の屈折力を有する第4レンズ成分と、を有し、
     次式の条件を満足する接眼光学系。
    1.38 < fe/f1 < 3.00
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f1:前記第1レンズ成分の焦点距離
     なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
    From the observation object side,
    A first lens component having a positive refractive power;
    A second lens component having a negative refractive power,
    A third lens component having a positive refractive power;
    And a fourth lens component having a positive refractive power,
    Eyepiece optical system that satisfies the condition of the following equation.
    1.38 <fe / f1 <3.00
    However,
    fe: focal length of the whole system of the eyepiece optical system f1: focal length of the first lens component "lens component" means a single lens or a cemented lens.
  2.  観察物体側から順に、
     正の屈折力を有する第1レンズ成分と、
     負の屈折力を有する第2レンズ成分と、
     正の屈折力を有する第3レンズ成分と、
     正の屈折力を有する第4レンズ成分と、を有し、
     次式の条件を満足する接眼光学系。
    0.48 < fe/f12 < 3.00
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f12:前記第1レンズ成分と前記第2レンズ成分との合成焦点距離
     なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
    From the observation object side,
    A first lens component having a positive refractive power;
    A second lens component having a negative refractive power,
    A third lens component having a positive refractive power;
    And a fourth lens component having a positive refractive power,
    Eyepiece optical system that satisfies the condition of the following equation.
    0.48 <fe / f12 <3.00
    However,
    fe: focal length of the whole system of the eyepiece optical system f12: combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
  3.  次式の条件を満足する請求項1に記載の接眼光学系。
    0.48 < fe/f12 < 3.00
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f12:前記第1レンズ成分と前記第2レンズ成分との合成焦点距離
    The eyepiece optical system according to claim 1, which satisfies the condition of the following formula.
    0.48 <fe / f12 <3.00
    However,
    fe: focal length of the whole system of the eyepiece optical system f12: combined focal length of the first lens component and the second lens component
  4.  最もアイポイント側のレンズのアイポイント側のレンズ面はアイポイント側に凸である請求項1~3の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 3, wherein the lens surface on the eye point side of the lens closest to the eye point is convex on the eye point side.
  5.  前記第2レンズ成分を構成するレンズ要素の少なくとも1つは、次式の条件を満足する請求項1~4の何れか一項に記載の接眼光学系。
    15.0 < νd2 < 35.0
     但し、
     νd2:前記第2レンズ成分を構成するレンズ要素の媒質のd線に対するアッベ数
    The eyepiece optical system according to any one of claims 1 to 4, wherein at least one of the lens elements constituting the second lens component satisfies the following condition.
    15.0 <d d2 <35.0
    However,
    d d2: Abbe number to the d-line of the medium of the lens element constituting the second lens component
  6.  次式の条件を満足する請求項1~5の何れか一項に記載の接眼光学系。
    0.01 < fe/f4 < 0.33
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f4:前記第4レンズ成分の焦点距離
    The eyepiece optical system according to any one of claims 1 to 5, which satisfies the following condition.
    0.01 <fe / f4 <0.33
    However,
    fe: Focal length of the whole system of the eyepiece optical system f4: Focal length of the fourth lens component
  7.  次式の条件を満足する請求項1~6の何れか一項に記載の接眼光学系。
    -0.30 < (G2R2-G3R1)/(G2R2+G3R1) < 0.50
     但し、
     G2R2:前記第2レンズ成分の最もアイポイント側のレンズ面の曲率半径
     G3R1:前記第3レンズ成分の最も観察物体側のレンズ面の曲率半径
    The eyepiece optical system according to any one of claims 1 to 6, which satisfies the condition of the following formula.
    -0.30 <(G2R2-G3R1) / (G2R2 + G3R1) <0.50
    However,
    G2R2: Radius of curvature of lens surface closest to the eye point of the second lens component G3R1: Radius of curvature of lens surface closest to the observation object of the third lens component
  8.  次式の条件を満足する請求項1~7のいずれか一項に記載の接眼光学系。
    -0.75 < (G1R2+G1R1)/(G1R2-G1R1) < 0.00
     但し、
     G1R1:前記第1レンズ成分の最も観察物体側のレンズ面の曲率半径
     G1R2:前記第1レンズ成分の最もアイポイント側のレンズ面の曲率半径
    The eyepiece optical system according to any one of claims 1 to 7, which satisfies the condition of the following formula.
    -0.75 <(G1R2 + G1R1) / (G1R2-G1R1) <0.00
    However,
    G1R1: The radius of curvature of the lens surface closest to the observation object on the first lens component G1R2: The radius of curvature of the lens surface closest to the eyepoint on the first lens component
  9.  次式の条件を満足する請求項1~8の何れか一項に記載の接眼光学系。
    -1.00 < fe/EnP < -0.48
     但し、
     fe:当該接眼光学系の全系の焦点距離
     EnP:基準視度における、当該接眼光学系の入射瞳位置(符号は、観察物体面を基準に、アイポイント側を正とする)
    The eyepiece optical system according to any one of claims 1 to 8, which satisfies the following condition.
    -1.00 <fe / EnP <-0.48
    However,
    fe: Focal length of the whole system of the eyepiece optical system EnP: Entrance pupil position of the eyepiece optical system at a reference diopter (the code is positive on the eye point side with respect to the observation object surface)
  10.  次式の条件を満足する請求項1~9の何れか一項に記載の接眼光学系。
    -0.40 < fe/f23 < -0.15
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f23:前記第2レンズ成分と前記第3レンズ成分との合成焦点距離
    The eyepiece optical system according to any one of claims 1 to 9, which satisfies the following condition.
    -0.40 <fe / f23 <-0.15
    However,
    fe: focal length of the whole system of the eyepiece optical system f23: combined focal length of the second lens component and the third lens component
  11.  次式の条件を満足する請求項1~10の何れか一項に記載の接眼光学系。
    0.58 < D1/f1 < 0.90
     但し、
     D1:基準視度における、前記観察物体から前記第1レンズ成分の最も観察物体側のレンズ面までの空気換算距離
     f1:前記第1レンズ成分の焦点距離
    The eyepiece optical system according to any one of claims 1 to 10, which satisfies the condition of the following formula.
    0.58 <D1 / f1 <0.90
    However,
    D1: Air conversion distance from the observation object to the lens surface closest to the observation object in the reference diopter f1: Focal distance of the first lens component
  12.  次式の条件を満足する請求項1~11の何れか一項に記載の接眼光学系。
    1.50 < TL/fe < 1.80
     但し、
     TL:当該接眼光学系の全長
     fe:当該接眼光学系の全系の焦点距離
    The eyepiece optical system according to any one of claims 1 to 11, which satisfies the following condition.
    1.50 <TL / fe <1.80
    However,
    TL: total length of the eyepiece optical system fe: focal length of the entire eyepiece optical system
  13.  次式の条件を満足する請求項1~12の何れか一項に記載の接眼光学系。
    1.550 < nd1 < 1.800
     但し、
     nd1:前記第1レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
    The eyepiece optical system according to any one of claims 1 to 12, which satisfies the following condition.
    1.550 <nd 1 <1.800
    However,
    nd1: the refractive index to the d-line of the medium of the lens element constituting the first lens component
  14.  次式の条件を満足する請求項1~13の何れか一項に記載の接眼光学系。
    1.640 < nd2 < 1.800
     但し、
     nd2:前記第2レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
    The eyepiece optical system according to any one of claims 1 to 13, which satisfies the following condition.
    1.640 <nd 2 <1.800
    However,
    nd 2: refractive index to the d-line of the medium of the lens element constituting the second lens component
  15.  当該接眼光学系全体を光軸方向に移動させることにより視度調節を行う請求項1~14の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 14, wherein diopter adjustment is performed by moving the entire eyepiece optical system in the optical axis direction.
  16.  請求項1~15の何れか一項に記載の接眼光学系を有する光学機器。 An optical apparatus comprising the eyepiece optical system according to any one of claims 1 to 15.
  17.  観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有する接眼光学系の製造方法であって、
     次式の条件を満足するように配置する接眼光学系の製造方法。
    1.38 < fe/f1 < 3.00
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f1:前記第1レンズ成分の焦点距離
     なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
    In order from the observation object side, a first lens component having a positive refractive power, a second lens component having a negative refractive power, a third lens component having a positive refractive power, and a fourth lens component having a positive refractive power A method of manufacturing an eyepiece optical system having a lens component, comprising:
    The manufacturing method of the eyepiece optical system arrange | positioned so that the conditions of following Formula may be satisfied.
    1.38 <fe / f1 <3.00
    However,
    fe: focal length of the whole system of the eyepiece optical system f1: focal length of the first lens component "lens component" means a single lens or a cemented lens.
  18.  観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分と、を有する接眼光学系の製造方法であって、
     次式の条件を満足するように配置する接眼光学系の製造方法。
    0.48 < fe/f12 < 3.00
     但し、
     fe:当該接眼光学系の全系の焦点距離
     f12:前記第1レンズ成分と前記第2レンズ成分との合成焦点距離
     なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
    In order from the observation object side, a first lens component having a positive refractive power, a second lens component having a negative refractive power, a third lens component having a positive refractive power, and a fourth lens component having a positive refractive power A method of manufacturing an eyepiece optical system having a lens component, comprising:
    The manufacturing method of the eyepiece optical system arrange | positioned so that the conditions of following Formula may be satisfied.
    0.48 <fe / f12 <3.00
    However,
    fe: focal length of the whole system of the eyepiece optical system f12: combined focal length of the first lens component and the second lens component "lens component" means a single lens or a cemented lens.
PCT/JP2018/033570 2017-09-15 2018-09-11 Eyepiece optical system, optical device, and method for producing eyepiece optical system WO2019054359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019542058A JP7037730B2 (en) 2017-09-15 2018-09-11 Eyepiece optical system and optical equipment
JP2022032904A JP7280561B2 (en) 2017-09-15 2022-03-03 Eyepiece optical system and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177426 2017-09-15
JP2017-177426 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054359A1 true WO2019054359A1 (en) 2019-03-21

Family

ID=65722696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033570 WO2019054359A1 (en) 2017-09-15 2018-09-11 Eyepiece optical system, optical device, and method for producing eyepiece optical system

Country Status (2)

Country Link
JP (3) JP7037730B2 (en)
WO (1) WO2019054359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694147A (en) * 2020-06-24 2020-09-22 深圳珑璟光电技术有限公司 Eyepiece lens and eyepiece optical system
JP2022066386A (en) * 2017-09-15 2022-04-28 株式会社ニコン Ocular optical system and image capturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630974A (en) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 Large-field-angle eyepiece optical system and head-mounted display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174345A (en) * 1997-12-08 1999-07-02 Fuji Photo Optical Co Ltd Wide visual field ocular
JP2001066522A (en) * 1999-08-31 2001-03-16 Fuji Photo Optical Co Ltd Ocular for picture display device
JP2002048985A (en) * 2000-08-02 2002-02-15 Minolta Co Ltd Eyepiece optical system
JP2013088632A (en) * 2011-10-18 2013-05-13 Ricoh Opt Ind Co Ltd Eyepiece lens system, view finder, image viewing apparatus, and image pickup apparatus
WO2013115127A1 (en) * 2012-01-30 2013-08-08 株式会社ニコン Eyepiece optical system and optical device
JP2015075713A (en) * 2013-10-11 2015-04-20 ソニー株式会社 Eyepiece optical system and electronic apparatus
JP2016224239A (en) * 2015-05-29 2016-12-28 株式会社ニコン Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method
JP2017068129A (en) * 2015-09-30 2017-04-06 株式会社ニコン Ocular lens, optical device, and method of manufacturing ocular lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313073A (en) * 1991-04-16 1993-11-26 Olympus Optical Co Ltd Eyepiece for endoscope
JP6615068B2 (en) 2016-08-19 2019-12-04 富士フイルム株式会社 Eyepiece and imaging device
WO2019054359A1 (en) * 2017-09-15 2019-03-21 株式会社ニコン Eyepiece optical system, optical device, and method for producing eyepiece optical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174345A (en) * 1997-12-08 1999-07-02 Fuji Photo Optical Co Ltd Wide visual field ocular
JP2001066522A (en) * 1999-08-31 2001-03-16 Fuji Photo Optical Co Ltd Ocular for picture display device
JP2002048985A (en) * 2000-08-02 2002-02-15 Minolta Co Ltd Eyepiece optical system
JP2013088632A (en) * 2011-10-18 2013-05-13 Ricoh Opt Ind Co Ltd Eyepiece lens system, view finder, image viewing apparatus, and image pickup apparatus
WO2013115127A1 (en) * 2012-01-30 2013-08-08 株式会社ニコン Eyepiece optical system and optical device
JP2015075713A (en) * 2013-10-11 2015-04-20 ソニー株式会社 Eyepiece optical system and electronic apparatus
JP2016224239A (en) * 2015-05-29 2016-12-28 株式会社ニコン Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method
JP2017068129A (en) * 2015-09-30 2017-04-06 株式会社ニコン Ocular lens, optical device, and method of manufacturing ocular lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066386A (en) * 2017-09-15 2022-04-28 株式会社ニコン Ocular optical system and image capturing device
CN111694147A (en) * 2020-06-24 2020-09-22 深圳珑璟光电技术有限公司 Eyepiece lens and eyepiece optical system
CN111694147B (en) * 2020-06-24 2023-12-08 深圳珑璟光电科技有限公司 Eyepiece lens and eyepiece optical system

Also Published As

Publication number Publication date
JPWO2019054359A1 (en) 2020-10-01
JP2023083485A (en) 2023-06-15
JP7280561B2 (en) 2023-05-24
JP7037730B2 (en) 2022-03-17
JP2022066386A (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6979160B2 (en) Eyepiece optical system and optical equipment
JP6634767B2 (en) Eyepieces and optics
JP7280561B2 (en) Eyepiece optical system and imaging device
JP2018010217A (en) Eyepiece optical system, optical instrument, and eyepiece optical system manufacturing method
US5493446A (en) Projection lens
JP2018010218A (en) Eyepiece optical system, optical instrument, and eyepiece optical system manufacturing method
JP2020016852A (en) Rear converter lens, optical device, and manufacturing method for rear converter lens
JPH05297274A (en) Kepler type zoom finder optical system
JP4997845B2 (en) Viewfinder optical system and optical apparatus having the same
JP2011076021A (en) Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
US7102827B2 (en) Eyepiece lens
JP2009020220A (en) Finder optical system, optical equipment including it, and observation method using it
JP2018060041A (en) Eyepiece optical system, optical apparatus and method for manufacturing eyepiece optical system
JP2003057537A (en) Observation optical system provided with image blurring correcting system
JP2017156431A (en) Optical system, optical apparatus, and method for manufacturing optical system
US5615051A (en) Bright triplet
JP6701831B2 (en) Optical system and optical equipment
JPH0772388A (en) Small-sized zoom lens
US6259569B1 (en) Zoom optical system
JP2984506B2 (en) Viewfinder optical system
WO2022215380A1 (en) Optical system, optical device, and method for manufacturing optical system
JPH04214517A (en) Keplerian type zoom finder optical system
US5889616A (en) Eyepiece for a camera
JP2017161849A (en) Optical system, optical instrument and method for manufacturing optical system
JP2017156429A (en) Optical system, optical apparatus, and method for manufacturing optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855244

Country of ref document: EP

Kind code of ref document: A1