JP6979160B2 - Eyepiece optical system and optical equipment - Google Patents

Eyepiece optical system and optical equipment Download PDF

Info

Publication number
JP6979160B2
JP6979160B2 JP2019542057A JP2019542057A JP6979160B2 JP 6979160 B2 JP6979160 B2 JP 6979160B2 JP 2019542057 A JP2019542057 A JP 2019542057A JP 2019542057 A JP2019542057 A JP 2019542057A JP 6979160 B2 JP6979160 B2 JP 6979160B2
Authority
JP
Japan
Prior art keywords
lens
optical system
lens component
eyepiece optical
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019542057A
Other languages
Japanese (ja)
Other versions
JPWO2019054358A1 (en
Inventor
歩 槇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2019054358A1 publication Critical patent/JPWO2019054358A1/en
Application granted granted Critical
Publication of JP6979160B2 publication Critical patent/JP6979160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、接眼光学系及び光学機器に関する。The present invention relates to an eyepiece optical system and an optical device.

従来、高い結像性能を有する接眼光学系が提案されている(例えば、特許文献1参照)。しかしながら、特許文献1は、さらなる光学性能の向上が要望されているという課題があった。 Conventionally, an eyepiece optical system having high imaging performance has been proposed (see, for example, Patent Document 1). However, Patent Document 1 has a problem that further improvement in optical performance is required.

特開2015−075713号公報Japanese Unexamined Patent Publication No. 2015-07513

本発明の第一の態様に係る接眼光学系は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、次式の条件を満足する。
0.01 < fe/f4 < 0.33
0.58 < D1/f1 < 0.90
但し、
fe:当該接眼光学系の全系の焦点距離
f4:第4レンズ成分の焦点距離
D1:基準視度における、観察物体から前記第1レンズ成分の最も観察物体側のレンズ 面までの空気換算距離
f1:第1レンズ成分の焦点距離
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
The eyepiece optical system according to the first aspect of the present invention has a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power in order from the observation object side. It is composed of substantially four lens components, that is, a third lens component and a fourth lens component having a positive refractive power, and satisfies the condition of the following equation.
0.01 <fe / f4 <0.33
0.58 <D1 / f1 <0.90
However,
fe: Focal length of the entire eyepiece optical system f4: Focal length of the fourth lens component
D1: Air conversion distance from the observation object to the lens surface on the observation object side of the first lens component in the reference diopter.
f1: Focal length of the first lens component The "lens component" means a single lens or a junction lens.

本発明の第二の態様に係る接眼光学系は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、次式の条件を満足する。
0.01 < fe/f4 < 0.33
−0.40 < fe/f23 < −0.15
但し、
fe:当該接眼光学系の全系の焦点距離
f4:第4レンズ成分の焦点距離
f23:第2レンズ成分と第3レンズ成分との合成焦点距離
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
本発明の第三の態様に係る接眼光学系は、観察物体側から順に、正の屈折力を有する第1レンズ成分と、負の屈折力を有する第2レンズ成分と、正の屈折力を有する第3レンズ成分と、正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、第2レンズ成分は、単レンズであり、次式の条件を満足する。
0.259 ≦ fe/f4 < 0.33
1.651 ≦ nd2 < 1.800
但し、
fe:当該接眼光学系の全系の焦点距離
f4:第4レンズ成分の焦点距離
nd2:第2レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
The eyepiece optical system according to the second aspect of the present invention has a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power in order from the observation object side. It is composed of substantially four lens components, that is, a third lens component and a fourth lens component having a positive refractive power, and satisfies the condition of the following equation.
0.01 <fe / f4 <0.33
-0.40 <fe / f23 <-0.15
However,
fe: Focal length of the entire eyepiece optical system f4: Focal length of the 4th lens component f23: Combined focal length of the 2nd lens component and the 3rd lens component The "lens component" is a single lens or a junction lens. It means that.
The eyepiece optical system according to the third aspect of the present invention has a first lens component having a positive refractive power, a second lens component having a negative refractive power, and a positive refractive power in order from the observation object side. It is composed of substantially four lens components, that is, a third lens component and a fourth lens component having a positive refractive power, and the second lens component is a single lens and satisfies the condition of the following equation.
0.259 ≤ fe / f4 <0.33
1.651 ≤ nd2 <1.80
However,
fe: Focal length of the entire system of the eyepiece optical system f4: Focal length of the fourth lens component nd2: Refraction coefficient of the lens element constituting the second lens component with respect to the d line The "lens component" is a single lens. Or it refers to a bonded lens.

第1実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 1st Example. 第1実施例に係る接眼光学系の諸収差図である。It is a figure of various aberrations of the eyepiece optical system which concerns on 1st Example. 第2実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 2nd Example. 第2実施例に係る接眼光学系の諸収差図である。It is a figure of various aberrations of the eyepiece optical system which concerns on 2nd Example. 第3実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 3rd Example. 第3実施例に係る接眼光学系の諸収差図である。It is a figure of various aberrations of the eyepiece optical system which concerns on 3rd Example. 第4実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 4th Embodiment. 第4実施例に係る接眼光学系の諸収差図である。It is a figure of various aberrations of the eyepiece optical system which concerns on 4th Embodiment. 第5実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 5th Embodiment. 第5実施例に係る接眼光学系の諸収差図である。5 is a diagram of various aberrations of the eyepiece optical system according to the fifth embodiment. 第6実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 6th Embodiment. 第6実施例に係る接眼光学系の諸収差図である。6 is a diagram of various aberrations of the eyepiece optical system according to the sixth embodiment. 第7実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 7th Embodiment. 第7実施例に係る接眼光学系の諸収差図である。It is a diagram of various aberrations of an eyepiece optical system according to a seventh embodiment. 第8実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 8th Embodiment. 第8実施例に係る接眼光学系の諸収差図である。It is a figure of various aberrations of the eyepiece optical system which concerns on 8th Embodiment. 第9実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 9th Embodiment. 第9実施例に係る接眼光学系の諸収差図である。9 is a diagram of various aberrations of the eyepiece optical system according to the ninth embodiment. 第10実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on 10th Embodiment. 第10実施例に係る接眼光学系の諸収差図である。It is a diagram of various aberrations of an eyepiece optical system according to a tenth embodiment. 第11実施例に係る接眼光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the eyepiece optical system which concerns on eleventh embodiment. 第11実施例に係る接眼光学系の諸収差図である。11 is a diagram of various aberrations of the eyepiece optical system according to the eleventh embodiment. 上記接眼光学系を搭載するカメラの断面図である。It is sectional drawing of the camera equipped with the said eyepiece optical system. 上記接眼光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said eyepiece optical system.

以下、好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る接眼光学系ELは、観察物体側(単に「物体」とも呼ぶ)から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有している。 Hereinafter, preferred embodiments will be described with reference to the drawings. As shown in FIG. 1, the eyepiece optical system EL according to the present embodiment has a first lens component G1 having a positive refractive power and a negative refractive power in order from the observation object side (also simply referred to as an “object”). It has a second lens component G2 having a positive refractive power, a third lens component G3 having a positive refractive power, and a fourth lens component G4 having a positive refractive power.

なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。また、「レンズ要素」とは単レンズ又は接合レンズを構成する各々のレンズのことをいう。また、「基準視度」とは、視度が−1[1/m]のときをいう。ここで、単位[1/m]について、視度X[1/m]とは、接眼光学系ELによる像がアイポイントから光軸上に1/X[m(メートル)]の位置にできる状態のことを示す(符号は像が接眼光学系ELより観察者側(アイポイント側)にできたときを正とする)。 The "lens component" means a single lens or a junction lens. Further, the "lens element" refers to each lens constituting a single lens or a junction lens. Further, the "reference diopter" means when the diopter is -1 [1 / m]. Here, with respect to the unit [1 / m], the diopter X [1 / m] is a state in which an image produced by the eyepiece optical system EL can be formed at a position of 1 / X [m (meter)] on the optical axis from the eye point. (The code is positive when the image is formed on the observer side (eye point side) from the eyepiece optical system EL).

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(1)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (1) shown below.

0.01 < fe/f4 < 0.33 (1)
但し、
fe:当該接眼光学系ELの全系の焦点距離
f4:第4レンズ成分G4の焦点距離
0.01 <fe / f4 <0.33 (1)
However,
fe: Focal length of the entire system of the eyepiece optical system EL f4: Focal length of the fourth lens component G4

条件式(1)は球面収差、コマ収差を良好に補正するため、最もアイポイント側のレンズの屈折力を規定するものである。最もアイポイント側の第4レンズ成分G4は、球面収差とコマ収差への影響が最も大きい。そのため、条件式(1)の上限値を上回ると、第4レンズ成分G4の持つ正の屈折力が強くなり、球面収差とコマ収差が大きく悪化するため好ましくない。なお、この条件式(1)の効果を確実なものとするために、条件式(1)の上限値を0.30、更に0.25、更に0.239とすることがより望ましい。また、条件式(1)の下限値を下回ると、接眼光学系ELの全体の屈折力(パワー)を強くすることが難しくなるため、観察倍率の高倍率化が不可能となるため好ましくない。仮に、第4レンズ成分G4の屈折力が条件式(1)の下限値を下回り、観察倍率を高倍率化したとすると、第1レンズ成分G1及び第3レンズ成分G3の正の屈折力が極端に強くなる、または、第2レンズ成分G2の負の屈折力が弱くなることにより、像面湾曲の補正が難しくなる。なお、この条件式(1)の効果を確実なものとするために、条件式(1)の下限値を0.10、更に0.15とすることがより望ましい。 The conditional expression (1) defines the refractive power of the lens closest to the eye point in order to satisfactorily correct spherical aberration and coma. The fourth lens component G4 on the most eye point side has the greatest effect on spherical aberration and coma. Therefore, if the upper limit of the conditional expression (1) is exceeded, the positive refractive power of the fourth lens component G4 becomes stronger, and spherical aberration and coma are greatly deteriorated, which is not preferable. In order to ensure the effect of the conditional expression (1), it is more desirable to set the upper limit value of the conditional expression (1) to 0.30, further 0.25, and further 0.239. Further, if it is less than the lower limit of the conditional expression (1), it becomes difficult to increase the overall refractive power (power) of the eyepiece optical system EL, and it becomes impossible to increase the observation magnification, which is not preferable. Assuming that the refractive power of the fourth lens component G4 is lower than the lower limit of the conditional expression (1) and the observation magnification is increased, the positive refractive powers of the first lens component G1 and the third lens component G3 are extreme. However, the negative refractive power of the second lens component G2 becomes weaker, which makes it difficult to correct the curvature of field. In order to ensure the effect of the conditional expression (1), it is more desirable to set the lower limit value of the conditional expression (1) to 0.10 and further to 0.15.

また、本実施形態に係る接眼光学系ELにおいて、第2レンズ成分G2を単レンズとすると、第2レンズ群G2の中心厚を薄くすることが可能となり、第2レンズ群G2のアイポイント側への光線入射高を低くすることが可能となり、球面収差を良好に補正することが可能となる。 Further, in the eyepiece optical system EL according to the present embodiment, if the second lens component G2 is a single lens, the center thickness of the second lens group G2 can be reduced, and the center thickness of the second lens group G2 can be reduced to the eye point side of the second lens group G2. It is possible to reduce the incident height of the light beam, and it is possible to satisfactorily correct the spherical aberration.

また、本実施形態に係る接眼光学系ELにおいて、最もアイポイント側のレンズのアイポイント側のレンズ面を、アイポイント側に凸の面形状にすると、観察物体の中心付近の光線は、最もアイポイント側のレンズのアイポイント側のレンズ面からの射出角が小さくなり、球面収差の発生量を抑えることができる。一方で、画面周辺部の光線の射出角を、大きくすることができ、コマ収差の補正が可能となる。 Further, in the eyepiece optical system EL according to the present embodiment, when the lens surface on the eyepoint side of the lens on the eyepoint side is formed into a convex surface shape on the eyepoint side, the light beam near the center of the observation object is the most eye. The ejection angle from the lens surface on the eye point side of the lens on the point side becomes small, and the amount of spherical aberration generated can be suppressed. On the other hand, the emission angle of the light beam in the peripheral portion of the screen can be increased, and coma aberration can be corrected.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(2)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (2) shown below.

−0.30<(G2R2−G3R1)/(G2R2+G3R1)<0.50 (2)
但し、
G2R2:第2レンズ成分G2の最もアイポイント側のレンズ面の曲率半径
G3R1:第3レンズ成分G3の最も観察物体側のレンズ面の曲率半径
−0.30 <(G2R2-G3R1) / (G2R2 + G3R1) <0.50 (2)
However,
G2R2: Radius of curvature of the lens surface on the most eye point side of the second lens component G2 G3R1: Radius of curvature of the lens surface on the most observed object side of the third lens component G3

条件式(2)はコマ収差を良好に補正するため、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状を規定するものである。第2レンズ成分G2の最もアイポイント側のレンズ面と、第3レンズ成分G3の最も観察物体側のレンズ面は、コマ収差の発生または、補正に大きく影響する。コマ収差を良好に補正するには、第2レンズ成分G2の最もアイポイント側のレンズ面で発生したコマ収差を、第3レンズ成分G3の最も観察物体側のレンズ面で補正することが好ましい。また、コマ収差を良好に補正するには、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と第3レンズ成分G3の最も観察物体側のレンズ面の形状を類似させることにより、第2レンズ成分G2の最もアイポイント側のレンズ面で発生するコマ収差と第3レンズ成分G3の最も観察物体側のレンズ面で補正するコマ収差を類似させ、コマ収差を打ち消すことが望ましい。条件式(2)の下限値を下回ると、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状の類似性が崩れ、コマ収差が発生するため好ましくない。なお、条件式(2)の効果を確実なものとするために、条件式(2)の下限値を−0.25とすることが望ましい。また、条件式(2)の上限値を上回ると、第2レンズ成分G2の最もアイポイント側のレンズ面の形状と、第3レンズ成分G3の最も観察物体側のレンズ面の形状の類似性が崩れ、コマ収差が発生するため好ましくない。なお、条件式(2)の効果を確実なものとするために、条件式(2)の上限値を0.25、更に−0.20とすることがより望ましい。 Conditional expression (2) defines the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observed object side of the third lens component G3 in order to satisfactorily correct coma. It is a thing. The lens surface on the most eye point side of the second lens component G2 and the lens surface on the most observed object side of the third lens component G3 greatly affect the generation or correction of coma aberration. In order to satisfactorily correct the coma aberration, it is preferable to correct the coma aberration generated on the lens surface on the most eye point side of the second lens component G2 on the lens surface on the most observed object side of the third lens component G3. Further, in order to satisfactorily correct the coma, the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observed object side of the third lens component G3 are made similar to each other. It is desirable to make the coma generated on the lens surface on the most eye point side of the two lens components G2 similar to the coma corrected on the lens surface on the most observed object side of the third lens component G3 to cancel the coma. When it falls below the lower limit of the conditional expression (2), the similarity between the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observed object side of the third lens component G3 is broken. This is not preferable because coma aberration occurs. In order to ensure the effect of the conditional expression (2), it is desirable to set the lower limit value of the conditional expression (2) to −0.25. Further, when the upper limit of the conditional expression (2) is exceeded, the shape of the lens surface on the most eye point side of the second lens component G2 and the shape of the lens surface on the most observed object side of the third lens component G3 become similar. It is not preferable because it collapses and coma aberration occurs. In order to ensure the effect of the conditional expression (2), it is more desirable to set the upper limit value of the conditional expression (2) to 0.25 and further to −0.20.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(3)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (3) shown below.

−0.75<(G1R2+G1R1)/(G1R2−G1R1)<0.00 (3)
但し、
G1R1:第1レンズ成分G1の最も観察物体側のレンズ面の曲率半径
G1R2:第1レンズ成分G1の最もアイポイント側のレンズ面の曲率半径
-0.75 <(G1R2 + G1R1) / (G1R2-G1R1) <0.00 (3)
However,
G1R1: Radius of curvature of the lens surface on the most observed object side of the first lens component G1 G1R2: Radius of curvature of the lens surface on the most eye point side of the first lens component G1

条件式(3)は、観察倍率を大きくするとともに、像面湾曲と歪曲収差を良好に補正するため、第1レンズ成分G1の形状を規定するものである。第1レンズ成分G1の正の屈折力は、像面湾曲を発生させるが、第2レンズ成分G2の負の屈折力で発生した像面湾曲を補正する構造となっている。第1レンズ成分G1の最もアイポイント側のレンズ面の屈折力を強くすると、第1レンズ成分G1で発生する像面湾曲が大きくなるため、第2レンズ成分G2の負の屈折力では補正しきれなくなる。一方で、観察倍率を大きくするためには、第1レンズ成分G1の正の屈折力を大きくする必要があるため、第1レンズ成分G1の最も観察物体側のレンズ面の正の屈折力を適量に大きくしなければならない。但し、第1レンズ成分G1の最も観察物体側のレンズ面の正の屈折力を大きくしすぎると、歪曲収差が悪化する。条件式(3)の上限値を上回ると、第1レンズ成分G1の屈折力が大きくなりすぎるため、歪曲収差が悪化するので好ましくない。なお、条件式(3)の効果を確実なものとするために、条件式(3)の上限値を−0.20、更に−0.30とすることがより望ましい。また、条件式(3)の下限値を下回ると、第1レンズ成分G1の屈折力が弱くなり、観察倍率を大きくすることができない。また、条件式(3)の下限値を下回った状態で、観察倍率を大きくすると、第1レンズ成分G1の最もアイポイント側のレンズ面の屈折力が大きくなるため、像面湾曲が悪化するので好ましくない。なお、条件式(3)の効果を確実なものとするために、条件式(3)の下限値を−0.57、更に−0.56、更に−0.50とすることがより望ましい。 The conditional expression (3) defines the shape of the first lens component G1 in order to increase the observation magnification and satisfactorily correct curvature of field and distortion. The positive refractive power of the first lens component G1 causes curvature of field, but the structure corrects the curvature of field generated by the negative refractive power of the second lens component G2. When the refractive power of the lens surface on the most eye point side of the first lens component G1 is increased, the curvature of field generated by the first lens component G1 becomes large, so that the negative refractive power of the second lens component G2 cannot be corrected. It disappears. On the other hand, in order to increase the observation magnification, it is necessary to increase the positive refractive power of the first lens component G1. Therefore, an appropriate amount of the positive refractive power of the lens surface of the first lens component G1 on the observation object side is appropriate. Must be large. However, if the positive refractive power of the lens surface of the first lens component G1 on the side of the most observed object is made too large, the distortion will be aggravated. If the upper limit of the conditional expression (3) is exceeded, the refractive power of the first lens component G1 becomes too large, and the distortion aberration worsens, which is not preferable. In order to ensure the effect of the conditional expression (3), it is more desirable to set the upper limit value of the conditional expression (3) to −0.20 and further to −0.30. Further, when the value is lower than the lower limit of the conditional expression (3), the refractive power of the first lens component G1 becomes weak and the observation magnification cannot be increased. Further, if the observation magnification is increased while the value is below the lower limit of the conditional expression (3), the refractive power of the lens surface on the most eye point side of the first lens component G1 becomes large, and the curvature of field deteriorates. Not preferred. In order to ensure the effect of the conditional expression (3), it is more desirable to set the lower limit of the conditional expression (3) to -0.57, further to -0.56, and further to -0.50.

また、本実施形態に係る接眼光学系ELは、第1レンズ成分G1の最も観察物体側のレンズ面を回転対称非球面にすることにより、歪曲収差を補正することができ、第1レンズ成分G1の最も観察物体側のレンズ面の屈折力を強くすることが可能となり、観察倍率の高倍率化に有利になる。 Further, in the eyepiece optical system EL according to the present embodiment, distortion can be corrected by making the lens surface on the most observed object side of the first lens component G1 a rotationally symmetric aspherical surface, and the first lens component G1 can be corrected. It is possible to increase the refractive power of the lens surface on the side of the most observed object, which is advantageous for increasing the observation magnification.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(4)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (4) shown below.

−1.00 < fe/EnP < −0.48 (4)
但し、
fe:当該接眼光学系ELの全系の焦点距離
EnP:基準視度における、当該接眼光学系ELの入射瞳位置(符号は、観察物体面を基準に、アイポイント側を正とする)
-1.00 <fe / EnP <-0.48 (4)
However,
fe: Focal length of the entire system of the eyepiece optical system EL EnP: Entrance pupil position of the eyepiece optical system EL at the reference diopter (the reference numeral is positive on the eye point side with respect to the observation object surface).

条件式(4)は、アイポイントを長く保ちつつ、観察倍率を大きくするため、入射瞳位置を規定するものである。高像高の主光線の通過高を観察物体面に近い領域で高くすることで、アイポイントを長く保ちつつ観察倍率を大きくすることが容易となる。観察物体面に近い領域で高像高の主光線の通過高を高くするためには、入射瞳距離を観察物体面からアイポイント側とは反対の近い距離に設定することが有効である。条件式(4)の上限値を上回ると、入射瞳位置が観察物体から離れるため、高像高の主光線の通過高を高くすることができなくなるため、アイポイントを長く保ちつつ高倍率化することが不可能となるため好ましくない。なお、条件式(4)の効果を確実なものとするために、条件式(4)の上限値を−0.50とすることが望ましい。また、条件式(4)の下限値を下回ると、入射瞳位置が観察物体に近づきすぎるため、第1レンズ成分G1の高像高の主光線通過高が高くなり、像面湾曲を大きく発生してしまうため好ましくない。なお、条件式(4)の効果を確実なものとするために、条件式(4)の下限値を−0.70、更に−0.65とすることがより望ましい。 The conditional expression (4) defines the position of the entrance pupil in order to increase the observation magnification while keeping the eye point long. By increasing the passing height of the main ray with a high image height in the region close to the observation object surface, it becomes easy to increase the observation magnification while keeping the eye point long. In order to increase the passing height of the high image height main ray in the region close to the observation object surface, it is effective to set the entrance pupil distance to a short distance opposite to the eye point side from the observation object surface. If the upper limit of the conditional expression (4) is exceeded, the position of the entrance pupil moves away from the observation object, and the passing height of the main ray having a high image height cannot be increased. It is not preferable because it becomes impossible. In order to ensure the effect of the conditional expression (4), it is desirable to set the upper limit value of the conditional expression (4) to −0.50. Further, when the value is lower than the lower limit of the conditional expression (4), the entrance pupil position is too close to the observation object, so that the main ray passing height of the high image height of the first lens component G1 becomes high and curvature of field is greatly generated. It is not preferable because it will end up. In order to ensure the effect of the conditional expression (4), it is more desirable to set the lower limit value of the conditional expression (4) to -0.70 and further to -0.65.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(5)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (5) shown below.

−0.40 < fe/f23 < −0.15 (5)
但し、
fe:当該接眼光学系ELの全系の焦点距離
f23:第2レンズ成分G2と第3レンズ成分G3との合成焦点距離
-0.40 <fe / f23 <-0.15 (5)
However,
fe: Focal length of the entire system of the eyepiece optical system EL f23: Combined focal length of the second lens component G2 and the third lens component G3

条件式(5)は、第2レンズ成分G2と第3レンズ成分G3の光軸がずれて製造された場合に、収差性能の悪化を小さくするため、第2レンズ成分G2と第3レンズ成分G3の合成焦点距離と接眼光学系ELの全系の焦点距離との比を規定するものである。第2レンズ成分G2と第3レンズ成分G3の合成焦点距離を、接眼光学系ELの全系の焦点距離に対し小さくすることで、製造誤差により第2レンズ成分G2と第3レンズ成分G3の光軸がずれた場合でも収差性能の悪化を小さくすることができる。また、温度変化による第2レンズ成分G2と第3レンズ成分G3の屈折率または、曲率半径が変化した場合の光学性能の悪化を小さくすることが可能になる。特に、第2レンズ成分G2と第3レンズ成分G3が光学樹脂で構成されている場合、有効となる。この条件式(5)の下限値を下回ると、第2レンズ成分G2と第3レンズ成分G3の負の合成屈折力が強くなり、製造誤差における収差性能の悪化が大きくなるため好ましくない。なお、条件式(5)の効果を確実なものとするために、条件式(5)の下限値を−0.35とすることが望ましい。また、条件式(5)の上限値を上回ると、第2レンズ成分G2の負の屈折力が小さくなり、像面湾曲の補正が不十分となるため好ましくない。なお、条件式(5)の効果を確実なものとするために、条件式(5)の上限値を−0.20、更に−0.25とすることがより望ましい。 In the conditional equation (5), the second lens component G2 and the third lens component G3 are manufactured in order to reduce the deterioration of the aberration performance when the optical axes of the second lens component G2 and the third lens component G3 are deviated from each other. It defines the ratio between the combined focal length of the lens and the focal length of the entire eyepiece optical system EL. By reducing the combined focal length of the second lens component G2 and the third lens component G3 with respect to the focal length of the entire eyepiece optical system EL, the light of the second lens component G2 and the third lens component G3 due to a manufacturing error. Even if the axis is deviated, the deterioration of aberration performance can be reduced. Further, it is possible to reduce the deterioration of the optical performance when the refractive index or the radius of curvature of the second lens component G2 and the third lens component G3 changes due to the temperature change. In particular, it is effective when the second lens component G2 and the third lens component G3 are composed of an optical resin. If it is less than the lower limit of the conditional expression (5), the negative combined refractive power of the second lens component G2 and the third lens component G3 becomes strong, and the deterioration of the aberration performance due to the manufacturing error becomes large, which is not preferable. In order to ensure the effect of the conditional expression (5), it is desirable to set the lower limit value of the conditional expression (5) to −0.35. Further, if the upper limit value of the conditional expression (5) is exceeded, the negative refractive power of the second lens component G2 becomes small, and the correction of the curvature of field becomes insufficient, which is not preferable. In order to ensure the effect of the conditional expression (5), it is more desirable to set the upper limit value of the conditional expression (5) to -0.20 and further to -0.25.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(6)を満足することが望ましい。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (6) shown below.

0.58 < D1/f1 < 0.90 (6)
但し、
D1:基準視度における、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離
f1:第1レンズ成分G1の焦点距離
0.58 <D1 / f1 <0.90 (6)
However,
D1: Air conversion distance from the observed object to the lens surface of the first lens component G1 on the most observed object side in the reference diopter f1: Focal length of the first lens component G1

条件式(6)は、コマ収差を良好に補正するため、基準視度における観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離と第1レンズ成分G1の焦点距離の比を規定するものである。基準視度における、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離が大きくなると、観察面上の一点から射出した光束は、第1レンズ成分G1上で通過高が大きく変化する。そのため、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1が大きくなると第1レンズ成分G1の正の屈折力によりコマ収差が大きく発生するため、第1レンズ成分G1の屈折力を小さくする必要がある。一方で、第1レンズ成分G1の屈折力を大きくするためには、第1レンズ成分G1で発生するコマ収差を小さくするため、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1を小さくする必要がある。条件式(6)の上限値を上回ると、観察物体から第1レンズ成分G1の最も観察物体側のレンズ面までの空気換算距離D1に対し、第1レンズ成分G1の屈折力が強くなり、コマ収差が悪化するため好ましくない。なお、条件式(6)の効果を確実なものとするために、条件式(6)の上限値を0.71、更に0.68とすることがより望ましい。また、条件式(6)の下限値を下回ると、第1レンズ成分G1の正の屈折力が弱くなり、観察倍率の高倍率化が不可能となるため好ましくない。なお、条件式(6)の効果を確実なものとするために、条件式(6)の下限値を0.60、更に0.63とすることがより望ましい。 In the conditional equation (6), in order to satisfactorily correct the coma aberration, the air conversion distance from the observation object at the reference diopter to the lens surface on the most observed object side of the first lens component G1 and the focal length of the first lens component G1. It defines the ratio of. When the air conversion distance from the observation object to the lens surface of the first lens component G1 on the observation object side in the reference diopter becomes large, the luminous flux emitted from one point on the observation surface passes through the first lens component G1. Changes greatly. Therefore, when the air conversion distance D1 from the observation object to the lens surface on the most observation object side of the first lens component G1 becomes large, coma aberration is greatly generated by the positive refractive power of the first lens component G1. It is necessary to reduce the refractive power of G1. On the other hand, in order to increase the refractive power of the first lens component G1 and to reduce the coma aberration generated by the first lens component G1, from the observation object to the lens surface of the first lens component G1 on the observation object side. It is necessary to reduce the air conversion distance D1 of. When the upper limit of the conditional expression (6) is exceeded, the refractive power of the first lens component G1 becomes stronger with respect to the air conversion distance D1 from the observation object to the lens surface on the most observed object side of the first lens component G1, and the coma becomes coma. It is not preferable because the aberration worsens. In order to ensure the effect of the conditional expression (6), it is more desirable to set the upper limit value of the conditional expression (6) to 0.71 and further to 0.68. Further, if it is less than the lower limit of the conditional expression (6), the positive refractive power of the first lens component G1 becomes weak and it becomes impossible to increase the observation magnification, which is not preferable. In order to ensure the effect of the conditional expression (6), it is more desirable to set the lower limit value of the conditional expression (6) to 0.60 and further to 0.63.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(7)を満足することが望ましい。なお、当該接眼光学系ELの全長は、観察物体Oから当該接眼光学系ELの最もアイポイント側のレンズ面までの光軸上の距離である。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (7) shown below. The total length of the eyepiece optical system EL is the distance on the optical axis from the observation object O to the lens surface on the most eyepoint side of the eyepiece optical system EL.

1.50 < TL/fe < 1.80 (7)
但し、
TL:当該接眼光学系ELの全長
fe:当該接眼光学系ELの全系の焦点距離
1.50 <TL / fe <1.80 (7)
However,
TL: Overall length of the eyepiece optical system EL fe: Focal length of the entire system of the eyepiece optical system EL

条件式(7)は、像面湾曲を良好に補正するため、当該接眼光学系ELの全長と全系の焦点距離の比を規定するものである。条件式(7)の下限値を下回ると、当該接眼光学系ELの全体の屈折力が弱くなり観察倍率を上げられないため好ましくない。なお、この条件式(7)の効果を確実なものとするために、条件式(7)の下限値を1.55、更に1.60とすることがより望ましい。また、条件式(7)の上限値を上回ると、像面湾曲が悪化するため好ましくない。なお、この条件式(7)の効果を確実なものとするために、条件式(7)の上限値を1.70とすることが望ましい。 The conditional expression (7) defines the ratio of the total length of the eyepiece optical system EL to the focal length of the entire system in order to satisfactorily correct the curvature of field. If it is less than the lower limit of the conditional expression (7), the overall refractive power of the eyepiece optical system EL becomes weak and the observation magnification cannot be increased, which is not preferable. In order to ensure the effect of the conditional expression (7), it is more desirable to set the lower limit value of the conditional expression (7) to 1.55 and further 1.60. Further, if the upper limit value of the conditional expression (7) is exceeded, the curvature of field deteriorates, which is not preferable. In order to ensure the effect of the conditional expression (7), it is desirable to set the upper limit value of the conditional expression (7) to 1.70.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(8)を満足することが望ましい。なお、第1レンズ成分G1が接合レンズで構成されていて、複数のレンズ要素を有するときは、それらのレンズ要素の少なくとも1つが条件式(8)を満足する。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (8) shown below. When the first lens component G1 is composed of a junction lens and has a plurality of lens elements, at least one of those lens elements satisfies the conditional expression (8).

1.550 < nd1 < 1.800 (8)
但し、
nd1:第1レンズ成分G1を構成するレンズ要素の媒質のd線に対する屈折率
1.550 <nd1 <1.80 (8)
However,
nd1: Refractive index of the lens element constituting the first lens component G1 with respect to the d-line of the medium.

条件式(8)は、歪曲収差、像面湾曲を良好に補正するため、第1レンズ成分G1を構成するレンズ要素の媒質のd線に対する屈折率を規定するものである。条件式(8)の下限値を下回ると、第1レンズ成分G1に屈折力を持たすことができず、性能を維持して高倍率化をすることが難しいので好ましくない。なお、条件式(8)の効果を確実なものとするために、条件式(8)の下限値を1.600、更に1.700とすることがより望ましい。また、条件式(8)の上限値を上回ると、歪曲収差が悪化するため好ましくない。なお、条件式(8)の効果を確実なものとするために、条件式(8)の上限値を1.850とすることが望ましい。 Conditional expression (8) defines the refractive index of the lens element constituting the first lens component G1 with respect to the d-line in order to satisfactorily correct distortion and curvature of field. If it is less than the lower limit of the conditional expression (8), the first lens component G1 cannot have a refractive power, and it is difficult to maintain the performance and increase the magnification, which is not preferable. In order to ensure the effect of the conditional expression (8), it is more desirable to set the lower limit value of the conditional expression (8) to 1.600 and further 1.700. Further, if the upper limit value of the conditional expression (8) is exceeded, the distortion aberration deteriorates, which is not preferable. In order to ensure the effect of the conditional expression (8), it is desirable to set the upper limit value of the conditional expression (8) to 1.850.

また、本実施形態に係る接眼光学系ELは、以下に示す条件式(9)を満足することが望ましい。なお、第2レンズ成分G2が接合レンズで構成されていて、複数のレンズ要素を有するときは、それらのレンズ要素の少なくとも1つが条件式(9)を満足する。 Further, it is desirable that the eyepiece optical system EL according to the present embodiment satisfies the conditional expression (9) shown below. When the second lens component G2 is composed of a junction lens and has a plurality of lens elements, at least one of those lens elements satisfies the conditional expression (9).

1.640 < nd2 < 1.800 (9)
但し、
nd2:第2レンズ成分G2を構成するレンズ要素の媒質のd線に対する屈折率
1.640 <nd2 <1.80 (9)
However,
nd2: Refractive index of the lens element constituting the second lens component G2 with respect to the d-line of the medium.

条件式(9)は、非点収差を良好に補正するため、第2レンズ成分G2を構成するレンズ要素の媒質のd線に対する屈折率を規定するものである。条件式(9)の下限値を下回ると、第2レンズ成分G2の偏芯により光学性能が劣化するため好ましくない。なお、条件式(9)の効果を確実なものとするために、条件式(9)の下限値を1.650とすることが望ましい。また、条件式(9)の上限値を上回ると、非点収差の補正が困難になるため好ましくない。なお、条件式(9)の効果を確実なものとするために、条件式(9)の上限値を1.750とすることが望ましい。 The conditional expression (9) defines the refractive index of the lens element constituting the second lens component G2 with respect to the d-line in order to satisfactorily correct astigmatism. If it is less than the lower limit of the conditional expression (9), the optical performance is deteriorated due to the eccentricity of the second lens component G2, which is not preferable. In order to ensure the effect of the conditional expression (9), it is desirable to set the lower limit value of the conditional expression (9) to 1.650. Further, if the upper limit of the conditional expression (9) is exceeded, it becomes difficult to correct astigmatism, which is not preferable. In order to ensure the effect of the conditional expression (9), it is desirable to set the upper limit value of the conditional expression (9) to 1.750.

また、本実施形態に係る接眼光学系ELは、第1レンズ成分G1、第3レンズ成分G3、第4レンズ成分G4を単レンズ構成にし、4枚の単レンズで構成しても十分に良好な収差性能を達成することができる。 Further, the eyepiece optical system EL according to the present embodiment is sufficiently good even if the first lens component G1, the third lens component G3, and the fourth lens component G4 are configured as a single lens and are composed of four single lenses. Aberration performance can be achieved.

また、本実施形態に係る接眼光学系ELは、接眼光学系全体を光軸方向に移動させることにより視度調節を容易に行うことができる。 Further, the eyepiece optical system EL according to the present embodiment can easily adjust the diopter by moving the entire eyepiece optical system in the optical axis direction.

なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述した効果を得ることが可能である。 It should be noted that the conditions and configurations described above are each exerting the above-mentioned effects, and are not limited to those satisfying all the conditions and configurations, and are any of the conditions or configurations, or any of them. It is possible to obtain the above-mentioned effects even if the combination of the above conditions or configurations is satisfied.

次に、本実施形態に係る接眼光学系ELを備えた光学機器であるカメラを図23に基づいて説明する。このカメラ1は、対物レンズ(撮影レンズ)OLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、対物レンズOLで集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部Cの撮像面上に被写体像を形成する。そして、撮像部Cに設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられた電子ビューファインダEVF(Electronic view finder)に表示される。ここで、電子ビューファインダEVFは、液晶表示素子等の画像表示素子DPと、この画像表示素子DPの表示面(上述した観察物体O)に表示された画像を拡大観察するための接眼光学系ELとを有して構成される。これにより撮影者は、アイポイントEPに眼を位置させることにより、接眼光学系ELを介して対物レンズOLにより形成される物体(被写体)の像を観察することができる。 Next, a camera, which is an optical device provided with the eyepiece optical system EL according to the present embodiment, will be described with reference to FIG. 23. The camera 1 is a so-called mirrorless camera with an interchangeable lens equipped with an objective lens (shooting lens) OL. In the present camera 1, the light from an object (subject) (not shown) is collected by the objective lens OL and passed through an OLPF (Optical low pass filter) (not shown) on the image pickup surface of the image pickup unit C. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit C, and the image of the subject is generated. This image is displayed on an electronic viewfinder (EVF) provided in the camera 1. Here, the electronic viewfinder EVF is an eyepiece optical system EL for magnifying and observing an image display element DP such as a liquid crystal display element and an image displayed on the display surface (observation object O described above) of the image display element DP. It is composed of and. Thereby, the photographer can observe the image of the object (subject) formed by the objective lens OL through the eyepiece optical system EL by positioning the eye at the eye point EP.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部Cにより光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る接眼光学系ELを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Further, when the photographer presses the release button (not shown), the image photoelectrically converted by the image pickup unit C is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1. Although an example of a mirrorless camera has been described in the present embodiment, the eyepiece optical system EL according to the present embodiment is used in a single-lens reflex type camera having a quick return mirror in the camera body and observing a subject by a finder optical system. Even when it is mounted, the same effect as that of the camera 1 can be obtained.

このように、本実施形態に係る接眼光学系ELは、像を拡大観察するための光学系(接眼レンズ)である。ここで像とは、対物レンズによる中間像、または液晶表示素子、有機ELディスプレイ等の画像表示素子の表示面であり、特に有機ELディスプレイの表示面であることが好ましい。したがって、本実施形態に係る接眼光学系ELは、例えば、表示面に表示された像を観察するための電子双眼鏡、ヘッドマウントディスプレイ、カメラの内臓又は外付けの電子ビューファインダの接眼レンズに用いることに適している。 As described above, the eyepiece optical system EL according to the present embodiment is an optical system (eyepiece) for magnifying and observing an image. Here, the image is an intermediate image by an objective lens, or a display surface of an image display element such as a liquid crystal display element or an organic EL display, and is particularly preferably a display surface of an organic EL display. Therefore, the eyepiece optical system EL according to the present embodiment is used, for example, as an eyepiece of an electronic binocular for observing an image displayed on a display surface, a head-mounted display, a built-in camera or an external electronic viewfinder. Suitable for.

なお、図1等には図示していないが、観察物体O(図23に示す画像表示素子DPの表示面)と第1レンズ成分G1との間には、カバーガラス、プリズム等の光学部材が配置されていてもよい。また、第4レンズ成分G4とアイポイントEPとの間にも、カバーガラス等の光学部材が配置されていてもよい。 Although not shown in FIG. 1, an optical member such as a cover glass or a prism is formed between the observation object O (the display surface of the image display element DP shown in FIG. 23) and the first lens component G1. It may be arranged. Further, an optical member such as a cover glass may be arranged between the fourth lens component G4 and the eye point EP.

以下、本実施形態に係る接眼光学系ELの製造方法の概略を、図24を参照して説明する。まず、各レンズを配置して、正の屈折力を有する第1レンズ成分G1、負の屈折力を有する第2レンズ成分G2、正の屈折力を有する第3レンズ成分G3、及び、正の屈折力を有する第4レンズ成分とG4をそれぞれ準備する(ステップS100)。そして、所定の条件式(例えば、上述した条件式(1))による条件を満足するように配置する(ステップS200)。 Hereinafter, an outline of a method for manufacturing the eyepiece optical system EL according to the present embodiment will be described with reference to FIG. 24. First, by arranging each lens, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, a third lens component G3 having a positive refractive power, and a positive refraction A fourth lens component having power and G4 are prepared respectively (step S100). Then, it is arranged so as to satisfy the condition according to the predetermined conditional expression (for example, the above-mentioned conditional expression (1)) (step S200).

具体的には、本実施形態では、例えば図1に示すように、観察物体側から順に、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11を配置して第1レンズ成分G1とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12を配置して第2レンズ成分G2とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31を配置して第3レンズ成分G3とし、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41を配置して第4レンズ成分G4とする。このようにして準備した各レンズ成分を上述した手順で配置して接眼光学系ELを製造する。 Specifically, in the present embodiment, for example, as shown in FIG. 1, a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape in order from the observation object side. The aspherical positive lens L11 is arranged as the first lens component G1, and the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape, and the negative meniscus lens shape with the concave surface facing the observation object side. The aspherical negative lens L12 is arranged as the second lens component G2, and the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape, and a positive meniscus lens shape with a concave surface facing the object side. The aspherical positive lens L31 is arranged as the third lens component G3, and the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape, and the lens surface has a positive meniscus lens shape with the concave surface facing the observation object side. The aspherical positive lens L41 is arranged to be a fourth lens component G4. Each lens component prepared in this way is arranged by the above-mentioned procedure to manufacture an eyepiece optical system EL.

以上のような構成により、観察倍率が大きく、良好な光学性能を有する接眼光学系EL、この接眼光学系ELを有する光学機器及び接眼光学系ELの製造方法を提供することができる。 With the above configuration, it is possible to provide an eyepiece optical system EL having a large observation magnification and good optical performance, an optical device having this eyepiece optical system EL, and a method for manufacturing the eyepiece optical system EL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図3、図5、図7、図9、図11、図13、図15、図17、図19及び図21は、各実施例に係る接眼光学系EL(EL1〜EL11)の構成及び屈折力配分を示す断面図である。 Hereinafter, each embodiment of the present application will be described with reference to the drawings. In addition, FIG. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG. 13, FIG. 15, FIG. 17, FIG. 19 and FIG. 21 are eyepiece optical systems EL (EL1 to EL11) according to each embodiment. It is sectional drawing which shows the structure and the refractive power distribution of.

これらの実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。In these examples, the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangent plane of the apex of each aspherical surface to each aspherical surface at the height y. ) Is S (y), the radius of curvature of the reference sphere (near-axis radius of curvature) is r, the conical constant is K, and the nth-order aspherical coefficient is An. To. In the following examples, "En" indicates " x10 -n".

S(y)=(y2/r)/{1+(1−K×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 (a)
S (y) = (y 2 / r) / {1+ (1-K × y 2 / r 2 ) 1/2 }
+ A4 x y 4 + A6 x y 6 + A8 x y 8 + A10 x y 10 + A12 x y 12 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。 In each embodiment, the second-order aspherical coefficient A2 is 0. Further, in the table of each embodiment, the aspherical surface is marked with * on the right side of the surface number.

[第1実施例]
図1は、第1実施例に係る接眼光学系EL1の構成を示す図である。この接眼光学系EL1は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[First Example]
FIG. 1 is a diagram showing a configuration of an eyepiece optical system EL1 according to the first embodiment. In this eyepiece optical system EL1, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL1において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL1, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed to the object side. ing. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL1における視度調整は、接眼光学系EL1全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL1 is performed by moving the entire eyepiece optical system EL1 in the optical axis direction.

以下の表1に、接眼光学系EL1の諸元の値を掲げる。この表1において、全体諸元に示すfeは全系の焦点距離、Hは最大物体高、TLは全長の値を示している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径∞は平面を示し、空気の屈折率1.00000は省略してある。また、物面が観察物体Oを示し、像面がアイポイントEPを示している。 Table 1 below lists the specifications of the eyepiece optical system EL1. In this Table 1, fe shown in the overall specifications indicates the focal length of the entire system, H indicates the maximum object height, and TL indicates the value of the total length. Further, in the first column m of the lens data, the order (plane number) of the lens surfaces from the object side along the traveling direction of the light beam is shown, and in the second column r, the refractive index of each lens plane is shown in the third column. d is the distance (plane spacing) on the optical axis from each optical surface to the next optical surface, and the fourth column nd and the fifth column νd are the refractive index and Abbe number with respect to the d line (λ = 587.6 nm). Is shown. The radius of curvature ∞ indicates a plane, and the refractive index of air 1.00000 is omitted. Further, the object surface indicates the observation object O, and the image surface indicates the eye point EP.

ここで、以下の全ての諸元値において掲載されている焦点距離f(fOe,fEe等)、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。 Here, "mm" is generally used as the unit of the focal length f (foe, fEe, etc.), the radius of curvature r, the surface spacing d, and other lengths listed in all the following specification values, but the optical system. Is not limited to this, because the same optical performance can be obtained even if the ratio is expanded or contracted. Further, the description of these reference numerals and the description of the specification table are the same in the following examples.

なお、上述したように、本実施例を含む以降の各実施例では図示していないが、観察物体Oと第1レンズ成分G1との間や、第4レンズ成分G4とアイポイントEPとの間に、カバーガラス、プリズム、表示カバーガラス等の光学部材が配置されている場合は、上記面間隔dは空気換算長とする。 As described above, although not shown in each of the subsequent examples including this embodiment, between the observation object O and the first lens component G1 and between the fourth lens component G4 and the eye point EP. When an optical member such as a cover glass, a prism, or a display cover glass is arranged, the surface spacing d is the air equivalent length.

(表1)第1実施例
[全体諸元]
fe = 17.641
H = 6.30
TL = 28.790

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 29.01673 6.95 1.77377 47.25
2* -11.37822 3.03
3* -6.74812 1.50 1.63550 23.89
4* -58.92577 1.25
5* -48.01803 5.40 1.53110 55.91
6* -10.14569 0.50
7* -1037.93340 2.75 1.53110 55.91
8* -42.12958 D2
像面 ∞
(Table 1) First Example [Overall Specifications]
fe = 17.641
H = 6.30
TL = 28.790

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 29.01673 6.95 1.77377 47.25
2 * -11.37822 3.03
3 * -6.74812 1.50 1.63550 23.89
4 * -58.92577 1.25
5 * -48.01803 5.40 1.53110 55.91
6 * -10.14569 0.50
7 * -1037.93340 2.75 1.53110 55.91
8 * -42.12958 D2
Image plane ∞

この接眼光学系EL1において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL1, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 2 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表2)
[非球面データ]
第1面
K=-1.0414
A4 =-1.29144E-04 A6 =-4.67158E-07 A8 = 1.78024E-08
A10=-1.65828E-10 A12= 6.30320E-13
第2面
K=-2.2911
A4 =-1.46042E-04 A6 = 1.05047E-06 A8 =-8.71894E-09
A10= 3.48401E-11 A12= 0.00000E+00
第3面
K=-0.2684
A4 = 3.35859E-04 A6 =-4.37805E-06 A8 = 2.17895E-08
A10=-4.94107E-11 A12= 0.00000E+00
第4面
K= 5.9869
A4 = 9.81668E-05 A6 =-1.20860E-06 A8 = 6.95819E-09
A10=-1.72138E-11 A12= 0.00000E+00
第5面
K=5.9905
A4 = 2.82487E-05 A6 = 1.16190E-06 A8 =-1.23653E-08
A10= 4.18910E-11 A12= 0.00000E+00
第6面
K= 0.3916
A4 = 1.91131E-04 A6 =-3.21702E-07 A8 =-3.26701E-09
A10= 2.35655E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.52684E-04 A6 = 1.49017E-06 A8 =-1.20661E-08
A10= 5.44999E-11 A12= 0.00000E+00
第8面
K= 3.6084
A4 =-2.40943E-04 A6 = 2.55221E-06 A8 =-1.68422E-08
A10= 5.77483E-11 A12= 0.00000E+00
(Table 2)
[Aspherical data]
First side K = -1.0414
A4 = -1.29144E-04 A6 = -4.67158E-07 A8 = 1.78024E-08
A10 = -1.65828E-10 A12 = 6.30320E-13
Second side K = -2.2911
A4 = -1.46042E-04 A6 = 1.05047E-06 A8 = -8.71894E-09
A10 = 3.48401E-11 A12 = 0.00000E + 00
Side 3 K = -0.2684
A4 = 3.35859E-04 A6 = -4.37805E-06 A8 = 2.17895E-08
A10 = -4.94107E-11 A12 = 0.00000E + 00
Side 4 K = 5.9869
A4 = 9.81668E-05 A6 = -1.20860E-06 A8 = 6.95819E-09
A10 = -1.72138E-11 A12 = 0.00000E + 00
Side 5 K = 5.9905
A4 = 2.82487E-05 A6 = 1.16190E-06 A8 = -1.23653E-08
A10 = 4.18910E-11 A12 = 0.00000E + 00
Side 6 K = 0.3916
A4 = 1.91131E-04 A6 = -3.21702E-07 A8 = -3.26701E-09
A10 = 2.35655E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.52684E-04 A6 = 1.49017E-06 A8 = -1.206061E-08
A10 = 5.44999E-11 A12 = 0.00000E + 00
Side 8 K = 3.6084
A4 = -2.40943E-04 A6 = 2.55221E-06 A8 = -1.68422E-08
A10 = 5.77483E-11 A12 = 0.00000E + 00

この接眼光学系EL1において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表3に、視度毎の可変間隔及び入射瞳位置を示す。なお、視度は、−1[1/m]を「−1dpt」とし、+2[1/m]を「+2dpt」とし、−4[1/m]を「−4dpt」として表している。以降の実施例においても同様である。 In this eyepiece optical system EL1, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 3 below shows the variable intervals and entrance pupil positions for each diopter. The diopter is represented by -1 [1 / m] as "-1 dpt", +2 [1 / m] as "+ 2 dpt", and -4 [1 / m] as "-4 dpt". The same applies to the following examples.

(表3)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.41 8.33 6.39
D2 20.60 19.68 21.62
EnP -29.03270 -30.46513 -27.64176
(Table 3)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.41 8.33 6.39
D2 20.60 19.68 21.62
EnP -29.03270 -30.46513 -27.64176

次の表4に、この接眼光学系EL1の各条件式対応値を示す。 Table 4 below shows the values corresponding to each conditional expression of the eyepiece optical system EL1.

(表4)
f4 = 82.602
f23=-63.706

[条件式対応値]
(1)fe/f4=0.214
(2)(G2R2−G3R1)/(G2R2+G3R1)= 0.102
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.437
(4)fe/EnP=-0.608
(5)fe/f23=-0.277
(6)D1/f1=0.649
(7)TL/fe=1.632
(8)nd1=1.774
(9)nd2=1.636
(Table 4)
f4 = 82.602
f23 = -63.706

[Conditional expression correspondence value]
(1) fe / f4 = 0.214
(2) (G2R2-G3R1) / (G2R2 + G3R1) = 0.102
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.437
(4) fe / EnP = -0.608
(5) fe / f23 = -0.277
(6) D1 / f1 = 0.649
(7) TL / fe = 1.632
(8) nd1 = 1.774
(9) nd2 = 1.636

このように、この接眼光学系EL1は、上記条件式(1)〜(8)を満足している。 As described above, the eyepiece optical system EL1 satisfies the above conditional expressions (1) to (8).

この接眼光学系EL1の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図2に示す。なお、球面収差図と非点収差図の横軸の単位は「1/m」であり、図では「D」で示す。また、コマ収差図と倍率色収差図は角度単位の分を示し、図中のd、gはd線、g線での収差曲線を示している。また、コマ収差図は各物体高に対する収差曲線を示している。これらの説明は以降の実施例においても同様である。これらの各収差図より、この接眼光学系EL1は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 2 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL1. The unit of the horizontal axis of the spherical aberration diagram and the astigmatism diagram is "1 / m", and is indicated by "D" in the figure. Further, the coma aberration diagram and the chromatic aberration of magnification diagram show the minute in the angle unit, and d and g in the figure show the aberration curves on the d line and the g line. In addition, the coma aberration diagram shows an aberration curve for each object height. These explanations are the same in the following examples. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL1 achieves good aberration within the diopter adjustment range.

[第2実施例]
図3は、第2実施例に係る接眼光学系EL2の構成を示す図である。この接眼光学系EL2は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Second Example]
FIG. 3 is a diagram showing the configuration of the eyepiece optical system EL2 according to the second embodiment. In this eyepiece optical system EL2, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL2において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL2, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed to the object side. ing. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL2における視度調整は、接眼光学系EL2全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL2 is performed by moving the entire eyepiece optical system EL2 in the optical axis direction.

以下の表5に、接眼光学系EL2の諸元の値を掲げる。 Table 5 below lists the specifications of the eyepiece optical system EL2.

(表5)第2実施例
[全体諸元]
fe = 18.135
H = 6.30
TL = 28.100

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 18.29768 7.45 1.53110 55.91
2* -8.02783 2.40
3* -5.08738 2.15 1.63550 23.89
4* -16.13188 0.50
5* -46.53675 5.00 1.53110 55.91
6* -9.74321 0.50
7* -62.07807 2.30 1.53110 55.91
8* -36.52997 D2
像面 ∞
(Table 5) Second Example [Overall specifications]
fe = 18.135
H = 6.30
TL = 28.100

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 18.29768 7.45 1.53110 55.91
2 * -8.02783 2.40
3 * -5.08738 2.15 1.63550 23.89
4 * -16.13188 0.50
5 * -46.53675 5.00 1.53110 55.91
6 * -9.74321 0.50
7 * -62.07807 2.30 1.53110 55.91
8 * -36.52997 D2
Image plane ∞

この接眼光学系EL2において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL2, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 6 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表6)
[非球面データ]
第1面
K= 0.4135
A4 =-1.67471E-04 A6 =-2.55937E-06 A8 =4.54261E-08
A10=-3.19957E-10 A12= 1.06400E-12
第2面
K=-2.0545
A4 =-3.02431E-04 A6 = 3.45590E-06 A8 =-3.41508E-08
A10= 1.41269E-10 A12= 0.00000E+00
第3面
K=-0.3061
A4 = 5.48726E-04 A6 =-5.11105E-06 A8 =-4.02571E-10
A10= 6.06422E-11 A12= 0.00000E+00
第4面
K=-3.9720
A4 = 1.64809E-04 A6 =-6.23672E-07 A8 =-3.44304E-09
A10= 4.26001E-12 A12= 0.00000E+00
第5面
K= 5.8883
A4 =-5.24409E-05 A6 = 5.07414E-07 A8 = 3.77890E-09
A10=-1.41672E-11 A12= 0.00000E+00
第6面
K= 0.4195
A4 = 2.57996E-04 A6 =-1.85757E-06 A8 = 2.18453E-09
A10= 5.57891E-11 A12= 0.00000E+00
第7面
K= 4.9451
A4 =-8.67424E-05 A6 = 9.74736E-07 A8 = 5.79036E-09
A10=-6.53413E-11 A12= 0.00000E+00
第8面
K= 5.7525
A4 =-2.08333E-04 A6 = 2.55741E-06 A8 =-6.33475E-09
A10=-2.34517E-11 A12= 0.00000E+00
(Table 6)
[Aspherical data]
First side K = 0.4135
A4 = -1.67471E-04 A6 = -2.55937E-06 A8 = 4.54261E-08
A10 = -3.19957E-10 A12 = 1.06400E-12
Second side K = -2.0545
A4 = -3.02431E-04 A6 = 3.45590E-06 A8 = -3.41508E-08
A10 = 1.41269E-10 A12 = 0.00000E + 00
Side 3 K = -0.361
A4 = 5.48726E-04 A6 = -5.11105E-06 A8 = -4.02571E-10
A10 = 6.06422E-11 A12 = 0.00000E + 00
Side 4 K = -3.9720
A4 = 1.64809E-04 A6 = -6.23672E-07 A8 = -3.44304E-09
A10 = 4.26001E-12 A12 = 0.00000E + 00
Side 5 K = 5.8883
A4 = -5.24409E-05 A6 = 5.07414E-07 A8 = 3.77890E-09
A10 = -1.41672E-11 A12 = 0.00000E + 00
Side 6 K = 0.4195
A4 = 2.57996E-04 A6 = -1.85757E-06 A8 = 2.18453E-09
A10 = 5.57891E-11 A12 = 0.00000E + 00
Side 7 K = 4.9451
A4 = -8.67424E-05 A6 = 9.74736E-07 A8 = 5.79036E-09
A10 = -6.53413E-11 A12 = 0.00000E + 00
Side 8 K = 5.7525
A4 = -2.08333E-04 A6 = 2.55741E-06 A8 = -6.33475E-09
A10 = -2.345117E-11 A12 = 0.00000E + 00

この接眼光学系EL2において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表7に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL2, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 7 below shows the variable intervals and entrance pupil positions for each diopter.

(表7)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.80 8.77 6.74
D2 20.60 19.63 21.66
EnP -34.92593 -37.22500 -32.79600
(Table 7)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.80 8.77 6.74
D2 20.60 19.63 21.66
EnP -34.92593 -37.22500 -32.79600

次の表8に、この接眼光学系EL2の各条件式対応値を示す。 Table 8 below shows the values corresponding to each conditional expression of the eyepiece optical system EL2.

(表8)
f4 =162.068
f23=-93.824

[条件式対応値]
(1)fe/f4=0.112
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.485
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.390
(4)fe/EnP=-0.519
(5)fe/f23=-0.193
(6)D1/f1=0.670
(7)TL/fe=1.550
(8)nd1=1.531
(9)nd2=1.636
(Table 8)
f4 = 162.068
f23 = -93.824

[Conditional expression correspondence value]
(1) fe / f4 = 0.112
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.485
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.390
(4) fe / EnP = -0.519
(5) fe / f23 = -0.193
(6) D1 / f1 = 0.670
(7) TL / fe = 1.550
(8) nd1 = 1.531
(9) nd2 = 1.636

このように、この接眼光学系EL2は、上記条件式(1)、(3)〜(7)を満足している。As described above, the eyepiece optical system EL2 satisfies the above conditional expressions (1), (3) to (7).

この接眼光学系EL2の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図4に示す。これらの各収差図より、この接眼光学系EL2は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL2. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL2 achieves good aberration within the diopter adjustment range.

[第3実施例]
図5は、第3実施例に係る接眼光学系EL3の構成を示す図である。この接眼光学系EL3は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Third Example]
FIG. 5 is a diagram showing the configuration of the eyepiece optical system EL3 according to the third embodiment. In this eyepiece optical system EL3, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL3において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成された両凹負レンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL3, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a biconcave negative lens shape in which the lens surface on the observation object side is formed into an aspherical shape. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a biconvex positive lens shape in which the lens surface on the eye point side is formed into an aspherical shape. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL3における視度調整は、接眼光学系EL3全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL3 is performed by moving the entire eyepiece optical system EL3 in the optical axis direction.

以下の表9に、接眼光学系EL3の諸元の値を掲げる。 Table 9 below lists the specifications of the eyepiece optical system EL3.

(表9)第3実施例
[全体諸元]
fe = 17.654
H = 6.30
TL = 29.118

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 37.20780 7.34 1.82098 42.50
2* -10.78310 2.69
3* -6.86450 1.58 1.63550 23.89
4 403.03380 0.98
5 365.51190 5.94 1.53110 55.91
6* -10.45160 0.50
7* -40.06410 2.69 1.53110 55.91
8* -25.10660 D2
像面 ∞
(Table 9) Third Example [Overall specifications]
fe = 17.654
H = 6.30
TL = 29.118

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 37.20780 7.34 1.82098 42.50
2 * -10.78310 2.69
3 * -6.86450 1.58 1.63550 23.89
4 403.03380 0.98
5 365.51190 5.94 1.53110 55.91
6 * -10.45160 0.50
7 * -40.06410 2.69 1.53110 55.91
8 * -25.10660 D2
Image plane ∞

この接眼光学系EL3において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL3, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 10 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表10)
[非球面データ]
第1面
K= 3.5010
A4 =-1.08770E-04 A6 =-7.76264E-07 A8 = 1.84546E-08
A10=-1.13779E-10 A12= 3.71750E-13
第2面
K=-2.3099
A4 =-1.29893E-04 A6 =9.59335E-07 A8 =-7.24273E-09
A10= 3.52620E-11 A12= 0.00000E+00
第3面
K=-0.1511
A4 = 4.02440E-04 A6 =-4.00609E-06 A8 = 2.11556E-08
A10=-1.51294E-10 A12= 0.00000E+00
第6面
K= 0.5856
A4 = 2.62266E-04 A6 =-6.94589E-07 A8 =-3.75126E-09
A10= 2.70416E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.21897E-04 A6 = 1.25808E-06 A8 =-5.29696E-09
A10= 4.01375E-11 A12= 0.00000E+00
第8面
K= 0.9506
A4 =-2.35090E-04 A6 = 2.42051E-06 A8 =-1.44574E-08
A10= 7.36171E-11 A12= 0.00000E+00
(Table 10)
[Aspherical data]
First side K = 3.5010
A4 = -1.08770E-04 A6 = -7.76264E-07 A8 = 1.84546E-08
A10 = -1.13779E-10 A12 = 3.71750E-13
Second side K = -2.3099
A4 = -1.29893E-04 A6 = 9.59335E-07 A8 = -7.24273E-09
A10 = 3.52620E-11 A12 = 0.00000E + 00
Side 3 K = -0.1511
A4 = 4.02440E-04 A6 = -4.06009E-06 A8 = 2.11556E-08
A10 = -1.51294E-10 A12 = 0.00000E + 00
Side 6 K = 0.5856
A4 = 2.62266E-04 A6 = -6.94589E-07 A8 = -3.75126E-09
A10 = 2.70416E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.21897E-04 A6 = 1.25808E-06 A8 = -5.29696E-09
A10 = 4.01375E-11 A12 = 0.00000E + 00
Side 8 K = 0.9506
A4 = -2.35090E-04 A6 = 2.42051E-06 A8 = -1.44574E-08
A10 = 7.36171E-11 A12 = 0.00000E + 00

この接眼光学系EL3において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表11に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL3, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 11 below shows the variable intervals and entrance pupil positions for each diopter.

(表11)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.41 8.34 6.40
D2 20.60 19.67 21.61
EnP -30.17343 -31.78442 -28.65171
(Table 11)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.41 8.34 6.40
D2 20.60 19.67 21.61
EnP -30.17343 -31.78442 -28.65171

次の表12に、この接眼光学系EL3の各条件式対応値を示す。 Table 12 below shows the values corresponding to each conditional expression of the eyepiece optical system EL3.

(表12)
f4 =119.198
f23=-70.015

[条件式対応値]
(1)fe/f4=0.148
(2)(G2R2−G3R1)/(G2R2+G3R1)= 0.049
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.551
(4)fe/EnP=-0.585
(5)fe/f23=-0.252
(6)D1/f1=0.678
(7)TL/fe=1.649
(8)nd1=1.821
(9)nd2=1.636
(Table 12)
f4 = 119.198
f23 = -70.015

[Conditional expression correspondence value]
(1) fe / f4 = 0.148
(2) (G2R2-G3R1) / (G2R2 + G3R1) = 0.049
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.551
(4) fe / EnP = -0.585
(5) fe / f23 = -0.252
(6) D1 / f1 = 0.678
(7) TL / fe = 1.649
(8) nd1 = 1.821
(9) nd2 = 1.636

このように、この接眼光学系EL3は、上記条件式(1)〜(8)を満足している。 As described above, the eyepiece optical system EL3 satisfies the above conditional expressions (1) to (8).

この接眼光学系EL3の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図6に示す。これらの各収差図より、この接眼光学系EL3は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 6 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL3. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL3 achieves good aberration within the diopter adjustment range.

[第4実施例]
図7は、第4実施例に係る接眼光学系EL4の構成を示す図である。この接眼光学系EL4は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Fourth Example]
FIG. 7 is a diagram showing the configuration of the eyepiece optical system EL4 according to the fourth embodiment. In this eyepiece optical system EL4, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL4において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL4, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL4における視度調整は、接眼光学系EL4全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL4 is performed by moving the entire eyepiece optical system EL4 in the optical axis direction.

以下の表13に、接眼光学系EL4の諸元の値を掲げる。 Table 13 below lists the specifications of the eyepiece optical system EL4.

(表13)第4実施例
[全体諸元]
fe = 17.636
H = 6.30
TL = 29.262

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 24.08699 7.78 1.77377 47.25
2* -11.23946 2.66
3* -6.16897 1.50 1.63550 23.89
4* -35.90996 1.64
5* -30.97534 4.55 1.53110 55.91
6* -9.95862 0.50
7* -2317.28230 2.89 1.53110 55.91
8* -41.10583 D2
像面 ∞
(Table 13) Fourth Example [Overall specifications]
fe = 17.636
H = 6.30
TL = 29.262

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 24.08699 7.78 1.77377 47.25
2 * -11.23946 2.66
3 * -6.16897 1.50 1.63550 23.89
4 * -35.90996 1.64
5 * -30.97534 4.55 1.53110 55.91
6 * -9.95862 0.50
7 * -2317.28230 2.89 1.53110 55.91
8 * -41.10583 D2
Image plane ∞

この接眼光学系EL4において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表14に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL4, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 14 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表14)
[非球面データ]
第1面
K= 2.7110
A4 =-1.01182E-04 A6 =-1.33523E-06 A8 = 1.97743E-08
A10=-1.25195E-10 A12= 4.06080E-13
第2面
K=-2.9040
A4 =-1.58180E-04 A6 = 1.29335E-06 A8 =-1.01444E-08
A10= 4.38226E-11 A12= 0.00000E+00
第3面
K=-0.4456
A4 = 4.04109E-04 A6 =-4.62087E-06 A8 = 2.20818E-08
A10=-6.21510E-11 A12= 0.00000E+00
第4面
K=-3.9080
A4 = 1.79698E-04 A6 =-1.03102E-06 A8 =-1.74072E-09
A10= 1.01196E-11 A12= 0.00000E+00
第5面
K= 3.7707
A4 =-3.78236E-06 A6 = 1.16143E-06 A8 =-5.58959E-09
A10= 1.44702E-12 A12= 0.00000E+00
第6面
K= 0.6581
A4 = 2.55240E-04 A6 =-5.27043E-07 A8 =-3.06199E-10
A10= 4.00895E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.20441E-04 A6 = 1.18792E-06 A8 =-6.17544E-09
A10= 2.72498E-11 A12= 0.00000E+00
第8面
K=-2.5146
A4 =-2.41805E-04 A6 = 2.45866E-06 A8 =-1.44853E-08
A10= 5.06379E-11 A12= 0.00000E+00
(Table 14)
[Aspherical data]
First side K = 2.7110
A4 = -1.01182E-04 A6 = -1.33523E-06 A8 = 1.97743E-08
A10 = -1.25195E-10 A12 = 4.06080E-13
Second side K = -2.9040
A4 = -1.58180E-04 A6 = 1.29335E-06 A8 = -1.01444E-08
A10 = 4.38226E-11 A12 = 0.00000E + 00
Side 3 K = -0.4456
A4 = 4.04109E-04 A6 = -4.62087E-06 A8 = 2.20818E-08
A10 = -6.21510E-11 A12 = 0.00000E + 00
Side 4 K = -3.9080
A4 = 1.79698E-04 A6 = -1.03102E-06 A8 = -1.74072E-09
A10 = 1.01196E-11 A12 = 0.00000E + 00
Side 5 K = 3.7707
A4 = -3.78236E-06 A6 = 1.16143E-06 A8 = -5.59859E-09
A10 = 1.44702E-12 A12 = 0.00000E + 00
Side 6 K = 0.6581
A4 = 2.55240E-04 A6 = -5.27043E-07 A8 = -3.06199E-10
A10 = 4.00895E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.2041E-04 A6 = 1.18792E-06 A8 = -6.17544E-09
A10 = 2.72498E-11 A12 = 0.00000E + 00
Side 8 K = -2.5146
A4 = -2.41805E-04 A6 = 2.45866E-06 A8 = -1.44483E-08
A10 = 5.06379E-11 A12 = 0.00000E + 00

この接眼光学系EL4において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表15に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL4, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 15 below shows the variable intervals and entrance pupil positions for each diopter.

(表15)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.75 8.68 6.74
D2 20.60 19.67 21.61
EnP -28.77738 -30.14404 -27.47277
(Table 15)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.75 8.68 6.74
D2 20.60 19.67 21.61
EnP -28.77738 -30.14404 -27.47277

次の表16に、この接眼光学系EL4の各条件式対応値を示す。 Table 16 below shows the values corresponding to each conditional expression of the eyepiece optical system EL4.

(表16)
f4 = 78.761
f23=-44.512

[条件式対応値]
(1)fe/f4=0.224
(2)(G2R2−G3R1)/(G2R2+G3R1)= 0.074
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.364
(4)fe/EnP=-0.613
(5)fe/f23=-0.396
(6)D1/f1=0.707
(7)TL/fe=1.659
(8)nd1=1.774
(9)nd2=1.636
(Table 16)
f4 = 78.761
f23 = -44.512

[Conditional expression correspondence value]
(1) fe / f4 = 0.224
(2) (G2R2-G3R1) / (G2R2 + G3R1) = 0.074
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.364
(4) fe / EnP = -0.613
(5) fe / f23 = -0.396
(6) D1 / f1 = 0.707
(7) TL / fe = 1.569
(8) nd1 = 1.774
(9) nd2 = 1.636

このように、この接眼光学系EL4は、上記条件式(1)〜(8)を満足している。 As described above, the eyepiece optical system EL4 satisfies the above conditional expressions (1) to (8).

この接眼光学系EL4の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図8に示す。これらの各収差図より、この接眼光学系EL4は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 8 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL4. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL4 achieves good aberration within the diopter adjustment range.

[第5実施例]
図9は、第5実施例に係る接眼光学系EL5の構成を示す図である。この接眼光学系EL5は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Fifth Example]
FIG. 9 is a diagram showing the configuration of the eyepiece optical system EL5 according to the fifth embodiment. In this eyepiece optical system EL5, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL5において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL5, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL5における視度調整は、接眼光学系EL5全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL5 is performed by moving the entire eyepiece optical system EL5 in the optical axis direction.

以下の表17に、接眼光学系EL5の諸元の値を掲げる。 Table 17 below lists the specifications of the eyepiece optical system EL5.

(表17)第5実施例
[全体諸元]
fe = 18.132
H = 6.30
TL = 27.900

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 18.12430 7.15 1.54392 55.90
2* -8.93740 2.70
3* -5.25010 2.10 1.63550 23.89
4* -15.01890 0.55
5* -24.00760 4.55 1.54392 55.90
6* -9.36770 0.55
7* -2317.28230 2.50 1.54392 55.90
8* -51.99250 D2
像面 ∞
(Table 17) Fifth Example [Overall Specifications]
fe = 18.132
H = 6.30
TL = 27.900

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 18.12430 7.15 1.54392 55.90
2 * -8.93740 2.70
3 * -5.25010 2.10 1.63550 23.89
4 * -15.01890 0.55
5 * -24.00760 4.55 1.54392 55.90
6 * -9.36770 0.55
7 * -2317.28230 2.50 1.54392 55.90
8 * -51.99250 D2
Image plane ∞

この接眼光学系EL5において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表18に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL5, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 18 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表18)
[非球面データ]
第1面
K= 1.5721
A4 =-1.48925E-04 A6 =-2.27684E-06 A8 = 2.76091E-08
A10=-7.95927E-11 A12= 1.93700E-15
第2面
K=-2.1582
A4 =-2.07700E-04 A6 = 1.44079E-06 A8 =-1.32371E-08
A10= 7.80799E-11 A12= 0.00000E+00
第3面
K=-0.3642
A4 = 4.11218E-04 A6 =-4.53688E-06 A8 = 1.52134E-08
A10=-5.51553E-11 A12= 0.00000E+00
第4面
K=-2.1105
A4 = 1.75549E-04 A6 =-6.55035E-07 A8 =-1.17880E-09
A10=-1.10549E-11 A12= 0.00000E+00
第5面
K=-2.6173
A4 = 3.84318E-05 A6 = 5.26426E-07 A8 =-3.63630E-09
A10= 1.31408E-11 A12= 0.00000E+00
第6面
K= 0.5270
A4 = 3.06334E-04 A6 =-1.20258E-06 A8 =-2.58312E-09
A10= 7.29168E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.44498E-04 A6 = 6.56846E-07 A8 = 4.58887E-09
A10=-2.74632E-11 A12= 0.00000E+00
第8面
K= 3.4680
A4 =-2.80056E-04 A6 = 2.69450E-06 A8 =-1.10674E-08
A10= 1.88829E-11 A12= 0.00000E+00
(Table 18)
[Aspherical data]
First side K = 1.5721
A4 = -1.48925E-04 A6 = -2.27684E-06 A8 = 2.76091E-08
A10 = -7.95927E-11 A12 = 1.93700E-15
Second side K = -2.1582
A4 = -2.07700E-04 A6 = 1.44079E-06 A8 = -1.32371E-08
A10 = 7.80799E-11 A12 = 0.00000E + 00
Side 3 K = -0.3642
A4 = 4.11218E-04 A6 = -4.53688E-06 A8 = 1.52134E-08
A10 = -5.51553E-11 A12 = 0.00000E + 00
Side 4 K = -2.1105
A4 = 1.75549E-04 A6 = -6.505035E-07 A8 = -1.17880E-09
A10 = -1.10549E-11 A12 = 0.00000E + 00
Side 5 K = -2.6173
A4 = 3.84318E-05 A6 = 5.26426E-07 A8 = -3.663630E-09
A10 = 1.31408E-11 A12 = 0.00000E + 00
Side 6 K = 0.5270
A4 = 3.06334E-04 A6 = -1.20258E-06 A8 = -2.58312E-09
A10 = 7.29168E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.444498E-04 A6 = 6.56846E-07 A8 = 4.58887E-09
A10 = -2.774632E-11 A12 = 0.00000E + 00
Side 8 K = 3.4680
A4 = -2.80056E-04 A6 = 2.69450E-06 A8 = -1.10674E-08
A10 = 1.88829E-11 A12 = 0.00000E + 00

この接眼光学系EL5において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表19に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL5, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 19 below shows the variable intervals and entrance pupil positions for each diopter.

(表19)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.80 8.78 6.74
D2 20.70 19.72 21.76
EnP -34.42818 -36.66472 -32.37294
(Table 19)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.80 8.78 6.74
D2 20.70 19.72 21.76
EnP -34.42818 -36.66472 -32.37294

次の表20に、この接眼光学系EL5の各条件式対応値を示す。 Table 20 below shows the values corresponding to each conditional expression of the eyepiece optical system EL5.

(表20)
f4 = 97.744
f23=-77.761

[条件式対応値]
(1)fe/f4=0.186
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.230
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.339
(4)fe/EnP=-0.527
(5)fe/f23=-0.233
(6)D1/f1=0.643
(7)TL/fe=1.539
(8)nd1=1.544
(9)nd2=1.636
(Table 20)
f4 = 97.744
f23 = -77.761

[Conditional expression correspondence value]
(1) fe / f4 = 0.186
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.230
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.339
(4) fe / EnP = -0.527
(5) fe / f23 = -0.233
(6) D1 / f1 = 0.643
(7) TL / fe = 1.539
(8) nd1 = 1.544
(9) nd2 = 1.636

このように、この接眼光学系EL5は、上記条件式(1)〜(7)を満足している。 As described above, the eyepiece optical system EL5 satisfies the above conditional expressions (1) to (7).

この接眼光学系EL5の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図10に示す。これらの各収差図より、この接眼光学系EL5は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL5. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL5 achieves good aberration within the diopter adjustment range.

[第6実施例]
図11は、第6実施例に係る接眼光学系EL6の構成を示す図である。この接眼光学系EL6は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Sixth Example]
FIG. 11 is a diagram showing the configuration of the eyepiece optical system EL6 according to the sixth embodiment. In this eyepiece optical system EL6, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL6において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL6, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape.

この接眼光学系EL6における視度調整は、接眼光学系EL6全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL6 is performed by moving the entire eyepiece optical system EL6 in the optical axis direction.

以下の表21に、接眼光学系EL6の諸元の値を掲げる。 Table 21 below lists the specifications of the eyepiece optical system EL6.

(表21)第6実施例
[全体諸元]
fe = 18.123
H = 6.30
TL = 28.139

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 16.56700 7.54 1.53110 55.91
2* -8.36450 2.40
3* -5.15230 2.11 1.63550 23.89
4* -15.20140 0.72
5* -23.94520 4.46 1.53110 55.91
6* -9.83340 0.50
7* 153.86920 2.57 1.53110 55.91
8* -57.12010 D2
像面 ∞
(Table 21) 6th Example [Overall specifications]
fe = 18.123
H = 6.30
TL = 28.139

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 16.56700 7.54 1.53110 55.91
2 * -8.36450 2.40
3 * -5.15230 2.11 1.63550 23.89
4 * -15.20140 0.72
5 * -23.94520 4.46 1.53110 55.91
6 * -9.83340 0.50
7 * 153.86920 2.57 1.53110 55.91
8 * -57.12010 D2
Image plane ∞

この接眼光学系EL6において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表22に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL6, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 22 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表22)
[非球面データ]
第1面
K= 0.7228
A4 =-1.63997E-04 A6 =-2.61921E-06 A8 = 3.31813E-08
A10=-1.23005E-10 A12= 1.44200E-13
第2面
K=-2.0402
A4 =-2.39241E-04 A6 = 1.88690E-06 A8 =-1.74329E-08
A10= 7.72117E-11 A12= 0.00000E+00
第3面
K=-0.4513
A4 = 4.08176E-04 A6 =-4.24658E-06 A8 = 1.05383E-08
A10=-4.81073E-11 A12= 0.00000E+00
第4面
K=-2.0834
A4 = 1.95661E-04 A6 =-5.64298E-07 A8 =-2.58247E-09
A10=-1.66041E-11 A12= 0.00000E+00
第5面
K=-3.9899
A4 = 7.61468E-06 A6 = 4.89100E-07 A8 = 5.08311E-10
A10=-5.69059E-12 A12= 0.00000E+00
第6面
K= 0.4497
A4 = 2.70507E-04 A6 =-1.61737E-06 A8 =-1.10795E-09
A10= 7.33076E-11 A12= 0.00000E+00
第7面
K=-4.0000
A4 =-1.50783E-04 A6 = 6.32142E-07 A8 = 8.23469E-09
A10=-5.41717E-11 A12= 0.00000E+00
第8面
K= 4.7540
A4 =-2.61403E-04 A6 = 2.68176E-06 A8 =-9.54981E-09
A10= 4.35054E-12 A12= 0.00000E+00
(Table 22)
[Aspherical data]
First side K = 0.7228
A4 = -1.63997E-04 A6 = -2.61921E-06 A8 = 3.31813E-08
A10 = -1.23005E-10 A12 = 1.44200E-13
Second side K = -2.0402
A4 = -2.39241E-04 A6 = 1.88690E-06 A8 = -1.74329E-08
A10 = 7.72117E-11 A12 = 0.00000E + 00
Side 3 K = -0.4513
A4 = 4.08176E-04 A6 = -4.24658E-06 A8 = 1.05383E-08
A10 = -4.81073E-11 A12 = 0.00000E + 00
Side 4 K = -2.0834
A4 = 1.95661E-04 A6 = -5.64298E-07 A8 = -2.58247E-09
A10 = -1.66041E-11 A12 = 0.00000E + 00
Side 5 K = -3.9899
A4 = 7.61468E-06 A6 = 4.89100E-07 A8 = 5.08311E-10
A10 = -5.69059E-12 A12 = 0.00000E + 00
Side 6 K = 0.4497
A4 = 2.70507E-04 A6 = -1.61737E-06 A8 = -1.10795E-09
A10 = 7.33076E-11 A12 = 0.00000E + 00
Side 7 K = -4.00
A4 = -1.50783E-04 A6 = 6.32142E-07 A8 = 8.23469E-09
A10 = -5.41717E-11 A12 = 0.00000E + 00
Side 8 K = 4.7540
A4 = -2.61403E-04 A6 = 2.68176E-06 A8 = -9.54981E-09
A10 = 4.35054E-12 A12 = 0.00000E + 00

この接眼光学系EL6において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表23に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL6, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 23 below shows the variable intervals and entrance pupil positions for each diopter.

(表23)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.84 8.82 6.78
D2 20.60 19.62 21.66
EnP -34.03960 -36.20254 -32.04697
(Table 23)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.84 8.82 6.78
D2 20.60 19.62 21.66
EnP -34.03960 -36.20254 -32.04697

次の表24に、この接眼光学系EL6の各条件式対応値を示す。 Table 24 below shows the values corresponding to each conditional expression of the eyepiece optical system EL6.

(表24)
f4 = 78.767
f23=-49.345

[条件式対応値]
(1)fe/f4=0.230
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.223
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.329
(4)fe/EnP=-0.532
(5)fe/f23=-0.367
(6)D1/f1=0.671
(7)TL/fe=1.553
(8)nd1=1.531
(9)nd2=1.636
(Table 24)
f4 = 78.767
f23 = -49.345

[Conditional expression correspondence value]
(1) fe / f4 = 0.230
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.223
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.329
(4) fe / EnP = -0.532
(5) fe / f23 = -0.367
(6) D1 / f1 = 0.671
(7) TL / fe = 1.553
(8) nd1 = 1.531
(9) nd2 = 1.636

このように、この接眼光学系EL6は、上記条件式(1)〜(7)を満足している。 As described above, the eyepiece optical system EL6 satisfies the above conditional expressions (1) to (7).

この接眼光学系EL6の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図12に示す。これらの各収差図より、この接眼光学系EL6は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 12 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL6. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL6 achieves good aberration within the diopter adjustment range.

[第7実施例]
図13は、第7実施例に係る接眼光学系EL7の構成を示す図である。この接眼光学系EL7は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[7th Example]
FIG. 13 is a diagram showing the configuration of the eyepiece optical system EL7 according to the seventh embodiment. In this eyepiece optical system EL7, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL7において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL7, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side is formed in an aspherical shape and the concave surface is directed toward the observation object side. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the eye point side is formed in an aspherical shape and the concave surface is directed to the observation object side. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape.

この接眼光学系EL7における視度調整は、接眼光学系EL7全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL7 is performed by moving the entire eyepiece optical system EL7 in the optical axis direction.

以下の表25に、接眼光学系EL7の諸元の値を掲げる。 Table 25 below lists the specifications of the eyepiece optical system EL7.

(表25)第7実施例
[全体諸元]
fe = 17.662
H = 6.30
TL = 28.320

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 28.07266 7.30 1.74400 44.80
2* -10.67758 2.70
3* -6.63855 1.55 1.63550 23.89
4 -144.14719 1.00
5 -167.66045 5.95 1.53110 55.91
6* -11.29042 0.50
7* 1712.67070 2.70 1.53110 55.91
8* -31.84183 D2
像面 ∞
(Table 25) Example 7 [Overall specifications]
fe = 17.662
H = 6.30
TL = 28.320

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 28.07266 7.30 1.74400 44.80
2 * -10.67758 2.70
3 * -6.63855 1.55 1.63550 23.89
4-144.14719 1.00
5 -167.66045 5.95 1.53110 55.91
6 * -11.29042 0.50
7 * 1712.67070 2.70 1.53110 55.91
8 * -31.84183 D2
Image plane ∞

この接眼光学系EL7において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表26に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL7, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 26 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表26)
[非球面データ]
第1面
K=-2.0140
A4 =-1.26801E-04 A6 =-7.92018E-07 A8 = 1.72033E-08
A10=-1.32394E-10 A12= 5.48090E-13
第2面
K=-2.1884
A4 =-1.51405E-04 A6 = 8.63584E-07 A8 =-7.98722E-09
A10= 2.78537E-11 A12= 0.00000E+00
第3面
K=-0.1010
A4 = 3.80395E-04 A6 =-4.01258E-06 A8 = 2.22431E-08
A10=-1.81820E-10 A12= 0.00000E+00
第6面
K= 0.6429
A4 = 2.44680E-04 A6 =-7.34170E-07 A8 =-4.17875E-09
A10= 2.11837E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.23377E-04 A6 = 1.23089E-06 A8 =-5.34263E-09
A10= 3.90858E-11 A12= 0.00000E+00
第8面
K=-0.0905
A4 =-2.34359E-04 A6 = 2.48218E-06 A8 =-1.41661E-08
A10= 7.75465E-11 A12= 0.00000E+00
(Table 26)
[Aspherical data]
First side K = -2.0140
A4 = -1.26801E-04 A6 = -7.92018E-07 A8 = 1.72033E-08
A10 = -1.32394E-10 A12 = 5.48090E-13
Second side K = -2.1884
A4 = -1.51405E-04 A6 = 8.63584E-07 A8 = -7.98722E-09
A10 = 2.78537E-11 A12 = 0.00000E + 00
Side 3 K = -0.1010
A4 = 3.80395E-04 A6 = -4.01258E-06 A8 = 2.22431E-08
A10 = -1.81820E-10 A12 = 0.00000E + 00
Side 6 K = 0.6429
A4 = 2.44680E-04 A6 = -7.34170E-07 A8 = -4.187875E-09
A10 = 2.11837E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.23377E-04 A6 = 1.23089E-06 A8 = -5.34263E-09
A10 = 3.90858E-11 A12 = 0.00000E + 00
Side 8 K = -0.0905
A4 = -2.34359E-04 A6 = 2.48218E-06 A8 = -1.41661E-08
A10 = 7.75465E-11 A12 = 0.00000E + 00

この接眼光学系EL7において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表27に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL7, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 27 below shows the variable intervals and entrance pupil positions for each diopter.

(表27)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 6.62 7.55 5.61
D2 20.10 19.17 21.11
EnP -30.15672 -31.88364 -28.53315
(Table 27)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 6.62 7.55 5.61
D2 20.10 19.17 21.11
EnP -30.15672 -31.88364 -28.53315

次の表28に、この接眼光学系EL7の各条件式対応値を示す。 Table 28 below shows the values corresponding to each conditional expression of the eyepiece optical system EL7.

(表28)
f4 = 58.892
f23=-45.926

[条件式対応値]
(1)fe/f4=0.300
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.075
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.449
(4)fe/EnP=-0.586
(5)fe/f23=-0.385
(6)D1/f1=0.586
(7)TL/fe=1.603
(8)nd1=1.744
(9)nd2=1.636
(Table 28)
f4 = 58.892
f23 = -45.926

[Conditional expression correspondence value]
(1) fe / f4 = 0.300
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.075
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.449
(4) fe / EnP = -0.586
(5) fe / f23 = -0.385
(6) D1 / f1 = 0.586
(7) TL / fe = 1.603
(8) nd1 = 1.744
(9) nd2 = 1.636

このように、この接眼光学系EL7は、上記条件式(1)〜(8)を満足している。 As described above, the eyepiece optical system EL7 satisfies the above conditional expressions (1) to (8).

この接眼光学系EL7の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図14に示す。これらの各収差図より、この接眼光学系EL7は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 14 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL7. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL7 achieves good aberration within the diopter adjustment range.

[第8実施例]
図15は、第8実施例に係る接眼光学系EL8の構成を示す図である。この接眼光学系EL8は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Eighth Example]
FIG. 15 is a diagram showing the configuration of the eyepiece optical system EL8 according to the eighth embodiment. In this eyepiece optical system EL8, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL8において、第1レンズ成分G1は、観察物体側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11とアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL12とを接合した接合レンズで構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL8, the first lens component G1 has an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side has an aspherical shape, and the lens surface on the eye point side having an aspherical shape. It is composed of a bonded lens formed by joining the aspherical positive lens L12 having a positive meniscus lens shape with a concave surface facing the observation object side. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side is formed in an aspherical shape and the concave surface is directed toward the observation object side. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the eye point side is formed in an aspherical shape and the concave surface is directed to the observation object side. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL8における視度調整は、接眼光学系EL8全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL8 is performed by moving the entire eyepiece optical system EL8 in the optical axis direction.

以下の表29に、接眼光学系EL8の諸元の値を掲げる。 Table 29 below lists the specifications of the eyepiece optical system EL8.

(表29)第8実施例
[全体諸元]
fe = 17.671
H = 6.30
TL = 28.340

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 36.28535 1.50 1.75520 27.57
2 -256.85195 5.55 1.74400 44.80
3* -9.58387 2.70
4* -6.33627 1.60 1.63550 23.89
5 -309.22499 1.00
6 -340.41004 5.95 1.53110 55.91
7* -10.20313 0.50
8* -118.11140 2.70 1.53110 55.91
9* -33.13998 D2
像面 ∞
(Table 29) Example 8 [Overall specifications]
fe = 17.671
H = 6.30
TL = 28.340

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 36.28535 1.50 1.75520 27.57
2-256.85195 5.55 1.74400 44.80
3 * -9.58387 2.70
4 * -6.33627 1.60 1.63550 23.89
5 -309.22499 1.00
6 -340.41004 5.95 1.53110 55.91
7 * -10.20313 0.50
8 * -118.11140 2.70 1.53110 55.91
9 * -33.13998 D2
Image plane ∞

この接眼光学系EL8において、第1面、第3面、第4面、第7面、第8面及び第9面は非球面形状に形成されている。次の表30に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL8, the first surface, the third surface, the fourth surface, the seventh surface, the eighth surface, and the ninth surface are formed in an aspherical shape. The following Table 30 shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表30)
[非球面データ]
第1面
K=-2.0658
A4 =-1.42501E-04 A6 =-8.76658E-07 A8 = 1.88394E-08
A10=-1.09268E-10 A12= 3.68460E-13
第3面
K=-1.7532
A4 =-1.52859E-04 A6 = 8.23715E-07 A8 =-8.45101E-09
A10= 3.67563E-11 A12= 0.00000E+00
第4面
K=-0.2498
A4 = 3.64026E-04 A6 =-4.01765E-06 A8 = 2.07275E-08
A10=-1.61058E-10 A12= 0.00000E+00
第7面
K= 0.5740
A4 = 2.54149E-04 A6 =-6.32718E-07 A8 =-3.76424E-09
A10= 2.73994E-11 A12= 0.00000E+00
第8面
K= 1.0000
A4 =-1.19587E-04 A6 = 1.18521E-06 A8 =-5.01478E-09
A10= 4.10280E-11 A12= 0.00000E+00
第9面
K= 1.4393
A4 =-2.39375E-04 A6 = 2.51700E-06 A8 =-1.48286E-08
A10= 7.54336E-11 A12= 0.00000E+00
(Table 30)
[Aspherical data]
First side K = -2.0658
A4 = -1.42501E-04 A6 = -8.76658E-07 A8 = 1.88394E-08
A10 = -1.09268E-10 A12 = 3.68460E-13
Side 3 K = -1.7532
A4 = -1.52859E-04 A6 = 8.23715E-07 A8 = -8.45101E-09
A10 = 3.67563E-11 A12 = 0.00000E + 00
4th side K = -0.2498
A4 = 3.64026E-04 A6 = -4.01765E-06 A8 = 2.07275E-08
A10 = -1.61058E-10 A12 = 0.00000E + 00
Side 7 K = 0.5740
A4 = 2.54149E-04 A6 = -6.372818E-07 A8 = -3.76424E-09
A10 = 2.73994E-11 A12 = 0.00000E + 00
Side 8 K = 1.0000
A4 = -1.19587E-04 A6 = 1.18521E-06 A8 = -5.01478E-09
A10 = 4.10280E-11 A12 = 0.00000E + 00
Side 9 K = 1.4393
A4 = -2.39375E-04 A6 = 2.51700E-06 A8 = -1.48286E-08
A10 = 7.54336E-11 A12 = 0.00000E + 00

この接眼光学系EL8において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表31に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL8, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 31 below shows the variable intervals and the entrance pupil positions for each diopter.

(表31)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 6.84 7.77 5.83
D2 20.10 19.17 21.11
EnP -31.23485 -33.09550 -29.49620
(Table 31)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 6.84 7.77 5.83
D2 20.10 19.17 21.11
EnP -31.23485 -33.09550 -29.49620

次の表32に、この接眼光学系EL8の各条件式対応値を示す。 Table 32 below shows the values corresponding to each conditional expression of the eyepiece optical system EL8.

(表32)
f4 = 85.790
f23=-57.363

[条件式対応値]
(1)fe/f4=0.206
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.048
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.582
(4)fe/EnP=-0.566
(5)fe/f23=-0.308
(6)D1/f1=0.629
(7)TL/fe=1.604
(8)nd1=1.755
(9)nd2=1.636
(Table 32)
f4 = 85.790
f23 = -57.363

[Conditional expression correspondence value]
(1) fe / f4 = 0.206
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.048
(3) (G1R2 + G1R1) / (G1R2-G1R1) = -0.582
(4) fe / EnP = -0.566
(5) fe / f23 = -0.308
(6) D1 / f1 = 0.629
(7) TL / fe = 1.604
(8) nd1 = 1.755
(9) nd2 = 1.636

このように、この接眼光学系EL8は、上記条件式(1)〜(8)を満足している。 As described above, the eyepiece optical system EL8 satisfies the above conditional expressions (1) to (8).

この接眼光学系EL8の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図16に示す。これらの各収差図より、この接眼光学系EL8は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 16 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL8. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL8 achieves good aberration within the diopter adjustment range.

[第9実施例]
図17は、第9実施例に係る接眼光学系EL9の構成を示す図である。この接眼光学系EL9は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[9th Example]
FIG. 17 is a diagram showing the configuration of the eyepiece optical system EL9 according to the ninth embodiment. In this eyepiece optical system EL9, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL9において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL12で構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL9, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L12 having a negative meniscus lens shape in which the lens surface on the observation object side is formed in an aspherical shape and the concave surface is directed toward the observation object side. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the eye point side is formed in an aspherical shape and the concave surface is directed to the observation object side. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL9における視度調整は、接眼光学系EL9全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL9 is performed by moving the entire eyepiece optical system EL9 in the optical axis direction.

以下の表33に、接眼光学系EL9の諸元の値を掲げる。 Table 33 below lists the specifications of the eyepiece optical system EL9.

(表33)第9実施例
[全体諸元]
fe = 17.664
H = 6.30
TL = 28.440

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 30.06223 7.30 1.74300 49.25
2* -10.46380 2.70
3* -6.62848 1.55 1.65093 21.51
4 -43.12860 1.00
5 -44.49530 5.95 1.53110 55.91
6* -10.78420 0.50
7* -1133.34000 2.70 1.53110 55.91
8* -34.07780 D2
像面 ∞
(Table 33) Example 9 [Overall specifications]
fe = 17.664
H = 6.30
TL = 28.440

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 30.06223 7.30 1.74300 49.25
2 * -10.46380 2.70
3 * -6.62848 1.55 1.65093 21.51
4-43.12860 1.00
5 -44.49530 5.95 1.53110 55.91
6 * -10.78420 0.50
7 * -1133.34000 2.70 1.53110 55.91
8 * -34.07780 D2
Image plane ∞

この接眼光学系EL9において、第1面、第2面、第3面、第6面、第7面及び第8面は非球面形状に形成されている。次の表34に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL9, the first surface, the second surface, the third surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 34 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表34)
[非球面データ]
第1面
K=-1.3191
A4 =-1.08297E-04 A6 =-5.23642E-07 A8 = 1.65142E-08
A10=-1.39777E-10 A12= 5.22770E-13
第2面
K=-2.1775
A4 =-1.37725E-04 A6 = 9.31664E-07 A8 =-7.77285E-09
A10= 2.31975E-11 A12= 0.00000E+00
第3面
K=-0.0873
A4 = 3.71838E-04 A6 =-4.12160E-06 A8 = 2.25930E-08
A10=-1.98410E-10 A12= 0.00000E+00
第6面
K= 0.6318
A4 = 2.37664E-04 A6 =-7.12383E-07 A8 =-4.02440E-09
A10= 2.46401E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.19476E-04 A6 = 1.21154E-06 A8 =-5.10047E-09
A10= 4.12044E-11 A12= 0.00000E+00
第8面
K=-0.6189
A4 =-2.32309E-04 A6 = 2.50741E-06 A8 =-1.40702E-08
A10= 7.88020E-11 A12= 0.00000E+00
(Table 34)
[Aspherical data]
First side K = -1.3191
A4 = -1.08297E-04 A6 = -5.223642E-07 A8 = 1.65142E-08
A10 = -1.39777E-10 A12 = 5.22770E-13
Second side K = -2.1775
A4 = -1.37725E-04 A6 = 9.31664E-07 A8 = -7.77285E-09
A10 = 2.31975E-11 A12 = 0.00000E + 00
Side 3 K = -0.0873
A4 = 3.71838E-04 A6 = -4.12160E-06 A8 = 2.25930E-08
A10 = -1.98410E-10 A12 = 0.00000E + 00
Side 6 K = 0.6318
A4 = 2.37664E-04 A6 = -7.12383E-07 A8 = -4.02440E-09
A10 = 2.46401E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.19476E-04 A6 = 1.21154E-06 A8 = -5.10047E-09
A10 = 4.12044E-11 A12 = 0.00000E + 00
Side 8 K = -0.6189
A4 = -2.32309E-04 A6 = 2.50741E-06 A8 = -1.40702E-08
A10 = 7.88020E-11 A12 = 0.00000E + 00

この接眼光学系EL9において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表35に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL9, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 35 below shows the variable intervals and entrance pupil positions for each diopter.

(表35)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 6.74 7.67 5.73
D2 20.00 19.07 20.01
EnP -31.17085 -32.51888 -29.03853
(Table 35)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 6.74 7.67 5.73
D2 20.00 19.07 20.01
EnP -31.17085 -32.51888 -29.03853

次の表36に、この接眼光学系EL9の各条件式対応値を示す。 Table 36 below shows the values corresponding to each conditional expression of the eyepiece optical system EL9.

(表36)
f4 = 66.097
f23=-51.032

[条件式対応値]
(1)fe/f4=0.267
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.016
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.484
(4)fe/EnP=-0.567
(5)fe/f23=-0.346
(6)D1/f1=0.596
(7)TL/fe=1.610
(8)nd1=1.743
(9)nd2=1.651
(Table 36)
f4 = 66.097
f23 = -51.032

[Conditional expression correspondence value]
(1) fe / f4 = 0.267
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.016
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.484
(4) fe / EnP = -0.567
(5) fe / f23 = -0.346
(6) D1 / f1 = 0.596
(7) TL / fe = 1.610
(8) nd1 = 1.473
(9) nd2 = 1.651

このように、この接眼光学系EL9は、上記条件式(1)〜(9)を満足している。 As described above, the eyepiece optical system EL9 satisfies the above conditional expressions (1) to (9).

この接眼光学系EL9の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図18に示す。これらの各収差図より、この接眼光学系EL9は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 18 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL9. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL9 achieves good aberration within the diopter adjustment range.

[第10実施例]
図19は、第10実施例に係る接眼光学系EL10の構成を示す図である。この接眼光学系EL10は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[10th Example]
FIG. 19 is a diagram showing the configuration of the eyepiece optical system EL10 according to the tenth embodiment. In this eyepiece optical system EL10, in order from the observation object side, a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL10において、第1レンズ成分G1は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた負メニスカスレンズ形状の非球面負レンズL21で構成されている。また、第3レンズ成分G3は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL10, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape. There is. Further, the second lens component G2 is composed of an aspherical negative lens L21 having a negative meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL10における視度調整は、接眼光学系EL10全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL10 is performed by moving the entire eyepiece optical system EL10 in the optical axis direction.

以下の表37に、接眼光学系EL10の諸元の値を掲げる。 Table 37 below lists the specifications of the eyepiece optical system EL10.

(表37)第10実施例
[全体諸元]
fe = 17.655
H = 6.30
TL = 28.870

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 27.64520 7.35 1.74300 49.25
2* -10.59980 2.70
3* -6.62160 1.50 1.66133 20.35
4* -30.41490 1.00
5* -33.42740 5.95 1.53110 55.91
6* -11.06910 0.50
7* -447.12000 2.70 1.53110 55.91
8* -33.61500 D2
像面 ∞
(Table 37) Example 10 [Overall specifications]
fe = 17.655
H = 6.30
TL = 28.870

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 27.64520 7.35 1.74300 49.25
2 * -10.59980 2.70
3 * -6.62160 1.50 1.66133 20.35
4 * -30.41490 1.00
5 * -33.42740 5.95 1.53110 55.91
6 * -11.06910 0.50
7 * -447.12000 2.70 1.53110 55.91
8 * -33.61500 D2
Image plane ∞

この接眼光学系EL10において、第1面、第2面、第3面、第4面、第5面、第6面、第7面及び第8面は非球面形状に形成されている。次の表38に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL10, the first surface, the second surface, the third surface, the fourth surface, the fifth surface, the sixth surface, the seventh surface, and the eighth surface are formed in an aspherical shape. Table 38 below shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表38)
[非球面データ]
第1面
K= 1.8706
A4 =-1.58806E-04 A6 =-6.47977E-07 A8 = 2.00513E-08
A10=-1.19924E-10 A12= 3.39780E-13
第2面
K=-2.5122
A4 =-1.82235E-04 A6 = 1.26664E-06 A8 =-9.55146E-09
A10= 4.41287E-11 A12= 0.00000E+00
第3面
K=-0.1010
A4 = 3.59553E-04 A6 =-3.81376E-06 A8 = 2.31702E-08
A10=-1.65901E-10 A12= 0.00000E+00
第4面
K= 1.2085
A4 = 9.08220E-06 A6 = 4.92684E-09 A8 = 2.99069E-11
A10= 0.00000E+00 A12= 0.00000E+00
第5面
K=-0.6362
A4 = 2.08532E-05 A6 = 3.39041E-08 A8 =-4.09295E-10
A10= 0.00000E+00 A12= 0.00000E+00
第6面
K= 0.5759
A4 = 2.44689E-04 A6 =-6.87340E-07 A8 =-4.20734E-09
A10= 2.20759E-11 A12= 0.00000E+00
第7面
K= 1.0000
A4 =-1.28197E-04 A6 = 1.23524E-06 A8 =-5.32987E-09
A10= 3.98596E-11 A12= 0.00000E+00
第8面
K= 0.3803
A4 =-2.29306E-04 A6 = 2.47452E-06 A8 =-1.42769E-08
A10= 7.86334E-11 A12= 0.00000E+00
(Table 38)
[Aspherical data]
First side K = 1.8706
A4 = -1.58806E-04 A6 = -6.47977E-07 A8 = 2.00513E-08
A10 = -1.19924E-10 A12 = 3.39780E-13
Second side K = -2.5122
A4 = -1.822335E-04 A6 = 1.26664E-06 A8 = -9.55146E-09
A10 = 4.41287E-11 A12 = 0.00000E + 00
Side 3 K = -0.1010
A4 = 3.59553E-04 A6 = -3.81376E-06 A8 = 2.31702E-08
A10 = -1.65901E-10 A12 = 0.00000E + 00
Side 4 K = 1.2085
A4 = 9.08220E-06 A6 = 4.92684E-09 A8 = 2.99069E-11
A10 = 0.00000E + 00 A12 = 0.00000E + 00
Side 5 K = -0.6362
A4 = 2.08532E-05 A6 = 3.39041E-08 A8 = -4.09295E-10
A10 = 0.00000E + 00 A12 = 0.00000E + 00
Side 6 K = 0.5759
A4 = 2.44689E-04 A6 = -6.87340E-07 A8 = -4.20734E-09
A10 = 2.20759E-11 A12 = 0.00000E + 00
Side 7 K = 1.0000
A4 = -1.28197E-04 A6 = 1.23524E-06 A8 = -5.32987E-09
A10 = 3.98596E-11 A12 = 0.00000E + 00
Side 8 K = 0.3803
A4 = -2.29306E-04 A6 = 2.47452E-06 A8 = -1.42769E-08
A10 = 7.86334E-11 A12 = 0.00000E + 00

この接眼光学系EL10において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表39に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL10, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 39 below shows the variable intervals and entrance pupil positions for each diopter.

(表39)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.17 8.10 6.16
D2 20.10 19.17 21.11
EnP -30.13523 -31.77608 -28.58721
(Table 39)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.17 8.10 6.16
D2 20.10 19.17 21.11
EnP -30.13523 -31.77608 -28.58721

次の表40に、この接眼光学系EL10の各条件式対応値を示す。 Table 40 below shows the values corresponding to each conditional expression of the eyepiece optical system EL10.

(表40)
f4 = 68.284
f23=-47.435

[条件式対応値]
(1)fe/f4=0.259
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.047
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.446
(4)fe/EnP=-0.586
(5)fe/f23=-0.372
(6)D1/f1=0.638
(7)TL/fe=1.635
(8)nd1=1.743
(9)nd2=1.661
(Table 40)
f4 = 68.284
f23 = -47.435

[Conditional expression correspondence value]
(1) fe / f4 = 0.259
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.047
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.446
(4) fe / EnP = -0.586
(5) fe / f23 = -0.372
(6) D1 / f1 = 0.638
(7) TL / fe = 1.635
(8) nd1 = 1.473
(9) nd2 = 1.661

このように、この接眼光学系EL10は、上記条件式(1)〜(9)を満足している。 As described above, the eyepiece optical system EL10 satisfies the above conditional expressions (1) to (9).

この接眼光学系EL10の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図20に示す。これらの各収差図より、この接眼光学系EL10は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 20 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of this eyepiece optical system EL10. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL10 achieves good aberration within the diopter adjustment range.

[第11実施例]
図21は、第11実施例に係る接眼光学系EL11の構成を示す図である。この接眼光学系EL11は、観察物体側から順に、正の屈折力を有する第1レンズ成分G1と、負の屈折力を有する第2レンズ成分G2と、正の屈折力を有する第3レンズ成分G3と、正の屈折力を有する第4レンズ成分G4と、を有して構成されている。
[Eleventh Example]
FIG. 21 is a diagram showing the configuration of the eyepiece optical system EL11 according to the eleventh embodiment. The eyepiece optical system EL11 has a first lens component G1 having a positive refractive power, a second lens component G2 having a negative refractive power, and a third lens component G3 having a positive refractive power in this order from the observation object side. And a fourth lens component G4 having a positive refractive power.

この接眼光学系EL11において、第1レンズ成分G1は、観察物体側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL11で構成されている。また、第2レンズ成分G2は、観察物体側のレンズ面が非球面形状に形成された両凹負レンズ形状の非球面負レンズL21とアイポイント側のレンズ面が非球面形状に形成された両凸正レンズ形状の非球面正レンズL22とを接合した接合レンズで構成されている。また、第3レンズ成分G3は、アイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL31で構成されている。また、第4レンズ成分G4は、観察物体側のレンズ面及びアイポイント側のレンズ面が非球面形状に形成され、観察物体側に凹面を向けた正メニスカスレンズ形状の非球面正レンズL41で構成されている。 In this eyepiece optical system EL11, the first lens component G1 is composed of an aspherical positive lens L11 having a biconvex positive lens shape in which the lens surface on the observation object side is formed into an aspherical shape. Further, in the second lens component G2, both the aspherical negative lens L21 having a biconcave negative lens shape in which the lens surface on the observation object side is formed in an aspherical shape and the lens surface on the eye point side being formed in an aspherical shape. It is composed of a bonded lens in which an aspherical positive lens L22 having a convex regular lens shape is bonded. Further, the third lens component G3 is composed of an aspherical positive lens L31 having a positive meniscus lens shape in which the lens surface on the eye point side is formed in an aspherical shape and the concave surface is directed to the observation object side. Further, the fourth lens component G4 is composed of an aspherical positive lens L41 having a positive meniscus lens shape in which the lens surface on the observation object side and the lens surface on the eye point side are formed in an aspherical shape and the concave surface is directed toward the observation object side. Has been done.

この接眼光学系EL11における視度調整は、接眼光学系EL11全体を光軸方向に移動させることにより行う。 The diopter adjustment in the eyepiece optical system EL11 is performed by moving the entire eyepiece optical system EL11 in the optical axis direction.

以下の表41、接眼光学系EL11の諸元の値を掲げる。 The values of the specifications of the eyepiece optical system EL11 are listed in Table 41 below.

(表41)第11実施例
[全体諸元]
fe = 17.623
H = 6.30
TL = 30.240

[レンズデータ]
m r d nd νd
物面 ∞ D1
1* 28.78836 7.35 1.82098 42.50
2 -11.25246 2.70
3* -7.11620 1.50 1.63550 23.89
4 564.01019 1.48 1.53110 55.91
5* -165.33547 1.00
6 -397.01843 5.95 1.53110 55.91
7* -11.70908 0.5
8* -87.51711 2.70 1.53110 55.91
9* -33.70935 D2
像面 ∞
(Table 41) 11th Example [Overall specifications]
fe = 17.623
H = 6.30
TL = 30.240

[Lens data]
m r d nd ν d
Paraboloid ∞ D1
1 * 28.78836 7.35 1.82098 42.50
2 -11.25246 2.70
3 * -7.11620 1.50 1.63550 23.89
4 564.01019 1.48 1.53110 55.91
5 * -165.33547 1.00
6 -397.01843 5.95 1.53110 55.91
7 * -11.70908 0.5
8 * -87.51711 2.70 1.53110 55.91
9 * -33.70935 D2
Image plane ∞

この接眼光学系EL11において、第1面、第3面、第5面、第7面、第8面及び第9面は非球面形状に形成されている。次の表42に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A12の値を示す。 In this eyepiece optical system EL11, the first surface, the third surface, the fifth surface, the seventh surface, the eighth surface, and the ninth surface are formed in an aspherical shape. The following Table 42 shows the aspherical data, that is, the conical constant K and the values of the aspherical constants A4 to A12.

(表42)
[非球面データ]
第1面
K= 4.9064
A4 =-1.05219E-04 A6 =-6.21990E-07 A8 = 1.81446E-08
A10=-1.14918E-10 A12= 3.47790E-13
第3面
K=-2.7141
A4 =-1.22865E-04 A6 = 1.06684E-06 A8 =-6.77704E-09
A10= 4.48572E-11 A12= 0.00000E+00
第5面
K=-0.1268
A4 = 3.96618E-04 A6 =-3.89261E-06 A8 = 2.32375E-08
A10=-1.45358E-10 A12= 0.00000E+00
第7面
K= 0.5892
A4 = 2.52841E-04 A6 =-6.99186E-07 A8 =-4.09567E-09
A10= 2.38163E-11 A12= 0.00000E+00
第8面
K= 1.0000
A4 =-1.15871E-04 A6 = 1.20055E-06 A8 =-5.20908E-09
A10= 4.32497E-11 A12= 0.00000E+00
第9面
K= 2.7036
A4 =-2.43083E-04 A6 = 2.51325E-06 A8 =-1.39088E-08
A10= 7.50477E-11 A12= 0.00000E+00
(Table 42)
[Aspherical data]
First side K = 4.9064
A4 = -1.05219E-04 A6 = -6.21990E-07 A8 = 1.81446E-08
A10 = -1.14918E-10 A12 = 3.47790E-13
Side 3 K = -2.7141
A4 = -1.22865E-04 A6 = 1.06684E-06 A8 = -6.777704E-09
A10 = 4.48572E-11 A12 = 0.00000E + 00
Side 5 K = -0.1268
A4 = 3.96618E-04 A6 = -3.89261E-06 A8 = 2.32375E-08
A10 = -1.45538E-10 A12 = 0.00000E + 00
Side 7 K = 0.5892
A4 = 2.52841E-04 A6 = -6.999186E-07 A8 = -4.09567E-09
A10 = 2.38163E-11 A12 = 0.00000E + 00
Side 8 K = 1.0000
A4 = -1.15871E-04 A6 = 1.20055E-06 A8 = -5.20908E-09
A10 = 4.32497E-11 A12 = 0.00000E + 00
Side 9 K = 2.7036
A4 = -2.43083E-04 A6 = 2.51325E-06 A8 = -1.39088E-08
A10 = 7.50477E-11 A12 = 0.00000E + 00

この接眼光学系EL11において、観察物体と第1レンズ成分G1との軸上空気間隔D1、及び、第4レンズ成分G4とアイポイントEPとの軸上空気間隔D2は視度調節時に変化する。また、これらの間隔の変化に伴い入射瞳位置EnPも変化する。次の表43に、視度毎の可変間隔及び入射瞳位置を示す。 In this eyepiece optical system EL11, the axial air gap D1 between the observation object and the first lens component G1 and the axial air gap D2 between the fourth lens component G4 and the eyepoint EP change during diopter adjustment. Further, the entrance pupil position EnP also changes with the change of these intervals. Table 43 below shows the variable intervals and entrance pupil positions for each diopter.

(表43)
[可変間隔データ]
視度 −1dpt +2dpt −4dpt
D1 7.06 7.98 6.04
D2 20.10 19.18 21.12
EnP -27.40929 -28.67303 -26.17269
(Table 43)
[Variable interval data]
Diopter -1dpt + 2dpt -4dpt
D1 7.06 7.98 6.04
D2 20.10 19.18 21.12
EnP -27.40929 -28.67303 -26.17269

次の表44に、この接眼光学系EL11の各条件式対応値を示す。 Table 44 below shows the values corresponding to each conditional expression of the eyepiece optical system EL11.

(表44)
f4 =101.468
f23=-66.090

[条件式対応値]
(1)fe/f4=0.174
(2)(G2R2−G3R1)/(G2R2+G3R1)=-0.412
(3)(G1R2+G1R1)/(G1R2−G1R1)=-0.438
(4)fe/EnP=-0.643
(5)fe/f23=-0.267
(6)D1/f1=0.657
(7)TL/fe=1.716
(8)nd1=1.821
(9)nd2=1.636
(Table 44)
f4 = 101.468
f23 = -66.090

[Conditional expression correspondence value]
(1) fe / f4 = 0.174
(2) (G2R2-G3R1) / (G2R2 + G3R1) = -0.412
(3) (G1R2 + G1R1) / (G1R2-G1R1) =-0.438
(4) fe / EnP = -0.643
(5) fe / f23 = -0.267
(6) D1 / f1 = 0.657
(7) TL / fe = 1.716
(8) nd1 = 1.821
(9) nd2 = 1.636

このように、この接眼光学系EL11は、上記条件式(1)、(3)〜(8)を満足している。As described above, the eyepiece optical system EL 11 satisfies the above conditional expressions (1) , (3) to (8).

この接眼光学系EL11の、基準視度(−1dpt)における球面収差図、非点収差図、歪曲収差図及びコマ収差図を図22に示す。これらの各収差図より、この接眼光学系EL11は、視度調節範囲内にて良好な収差が達成されていることがわかる。 FIG. 22 shows a spherical aberration diagram, an astigmatism diagram, a distortion diagram, and a coma aberration diagram at a reference diopter (-1 dpt) of the eyepiece optical system EL11. From each of these aberration diagrams, it can be seen that the eyepiece optical system EL11 achieves good aberration within the diopter adjustment range.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、接眼光学系ELの数値実施例として4つのレンズ成分の構成のものを示したが、例えば5つのレンズ成分等の他のレンズ構成にも適用可能である。また、最も物体側にレンズ成分を追加した構成や、最もアイポイント側にレンズ成分を追加した構成でも構わない。 In the present embodiment, the configuration of four lens components is shown as a numerical example of the eyepiece optical system EL, but it can also be applied to other lens configurations such as five lens components. Further, the configuration in which the lens component is added to the most object side or the configuration in which the lens component is added to the most eye point side may be used.

また、単独又は複数のレンズ成分を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ成分G3を防振レンズ群とするのが好ましい。 In addition, one or more lens components are moved so as to have a displacement component in the direction orthogonal to the optical axis, or rotationally moved (swing) in the in-plane direction including the optical axis to correct image shake caused by camera shake. It may be a group of anti-vibration lenses. In particular, it is preferable that the third lens component G3 is a vibration-proof lens group.

また、本実施形態の接眼光学系ELを構成するレンズ(レンズ成分、レンズ要素)のレンズ面は、球面または平面としてもよく、或いは非球面としてもよい。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防げるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラスの表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment may be a spherical surface or a flat surface, or may be an aspherical surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is an aspherical surface, it is either an aspherical surface formed by grinding, a glass mold aspherical surface formed by molding glass into an aspherical shape, or a composite aspherical surface formed by forming a resin provided on the surface of the glass into an aspherical shape. But it may be. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

また、本実施形態の接眼光学系ELを構成するレンズ(レンズ成分、レンズ要素)のレンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。 Further, on the lens surface of the lens (lens component, lens element) constituting the eyepiece optical system EL of the present embodiment, in order to reduce flare and ghost and achieve high optical performance with high contrast, in a wide wavelength range. An antireflection film having a high transmittance may be applied.

また、本実施形態の接眼光学系ELは、第1レンズ成分G1と第2レンズ成分G2と第3レンズ成分G3と第4レンズ成分G4とが一体で、又は接眼光学系EL全体が一体で移動して視度調整を行う構成を示したが、最もアイポイント側のレンズ成分を固定し、当該レンズ成分よりも観察物体側のレンズ成分全体を一体で移動したり、第1レンズ成分G1と第2レンズ成分G2と第3レンズ成分G3と第4レンズ成分G4との少なくとも一部のレンズ成分を移動したりする構成でも構わない。特に、第1レンズ成分G1を移動させ、その他のレンズ成分は視度調整時に像面に対する位置を固定とするのが好ましい。視度調整レンズ群は単レンズから構成するのが好ましい。 Further, in the eyepiece optical system EL of the present embodiment, the first lens component G1, the second lens component G2, the third lens component G3, and the fourth lens component G4 move integrally, or the entire eyepiece optical system EL moves integrally. The configuration for adjusting the diopter is shown, but the lens component on the most eye point side is fixed, and the entire lens component on the observation object side of the lens component is moved integrally, or the first lens component G1 and the first lens component are the first. At least a part of the lens components of the two lens component G2, the third lens component G3, and the fourth lens component G4 may be moved. In particular, it is preferable to move the first lens component G1 and fix the position of the other lens components with respect to the image plane at the time of diopter adjustment. The diopter adjustment lens group is preferably composed of a single lens.

EL(EL1〜EL11) 接眼光学系
G1 第1レンズ成分 G2 第2レンズ成分
G3 第3レンズ成分 G4 第4レンズ成分
1 カメラ(光学機器)
EL (EL1 to EL11) Eyepiece optical system G1 1st lens component G2 2nd lens component G3 3rd lens component G4 4th lens component 1 Camera (optical equipment)

Claims (16)

観察物体側から順に、
正の屈折力を有する第1レンズ成分と、
負の屈折力を有する第2レンズ成分と、
正の屈折力を有する第3レンズ成分と、
正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、
次式の条件を満足する接眼光学系。
0.01 < fe/f4 < 0.33
0.58 < D1/f1 < 0.90
但し、
fe:当該接眼光学系の全系の焦点距離
f4:前記第4レンズ成分の焦点距離
D1:基準視度における、前記観察物体から前記第1レンズ成分の最も観察物体側のレンズ面までの空気換算距離
f1:前記第1レンズ成分の焦点距離
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
From the observation object side,
The first lens component with positive refractive power and
A second lens component with negative refractive power,
A third lens component with positive refractive power,
It consists of substantially four lens components with a fourth lens component having a positive refractive power.
An eyepiece optical system that satisfies the following conditions.
0.01 <fe / f4 <0.33
0.58 <D1 / f1 <0.90
However,
fe: Focal length of the entire system of the eyepiece optical system f4: Focal length of the fourth lens component D1: Air conversion from the observed object to the lens surface of the first lens component on the most observed object side in the reference diopter. Distance f1: Focal length of the first lens component The "lens component" means a single lens or a junction lens.
観察物体側から順に、
正の屈折力を有する第1レンズ成分と、
負の屈折力を有する第2レンズ成分と、
正の屈折力を有する第3レンズ成分と、
正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、
次式の条件を満足する接眼光学系。
0.01 < fe/f4 < 0.33
−0.40 < fe/f23 < −0.15
但し、
fe:当該接眼光学系の全系の焦点距離
f4:前記第4レンズ成分の焦点距離
f23:前記第2レンズ成分と前記第3レンズ成分との合成焦点距離
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
From the observation object side,
The first lens component with positive refractive power and
A second lens component with negative refractive power,
A third lens component with positive refractive power,
It consists of substantially four lens components with a fourth lens component having a positive refractive power.
An eyepiece optical system that satisfies the following conditions.
0.01 <fe / f4 <0.33
-0.40 <fe / f23 <-0.15
However,
fe: Focal length of the entire system of the eyepiece optical system f4: Focal length of the fourth lens component f23: Composite focal length of the second lens component and the third lens component The "lens component" is a single lens. Or it refers to a bonded lens.
観察物体側から順に、
正の屈折力を有する第1レンズ成分と、
負の屈折力を有する第2レンズ成分と、
正の屈折力を有する第3レンズ成分と、
正の屈折力を有する第4レンズ成分との実質的に4個のレンズ成分からなり、
前記第2レンズ成分は、単レンズであり、
次式の条件を満足する接眼光学系。
0.259 ≦ fe/f4 < 0.33
1.651 ≦ nd2 < 1.800
但し、
fe:当該接眼光学系の全系の焦点距離
f4:前記第4レンズ成分の焦点距離
nd2:前記第2レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
なお、「レンズ成分」とは単レンズ又は接合レンズのことをいう。
From the observation object side,
The first lens component with positive refractive power and
A second lens component with negative refractive power,
A third lens component with positive refractive power,
It consists of substantially four lens components with a fourth lens component having a positive refractive power.
The second lens component is a single lens.
An eyepiece optical system that satisfies the following conditions.
0.259 ≤ fe / f4 <0.33
1.651 ≤ nd2 <1.80
However,
fe: Focal length of the entire system of the eyepiece optical system f4: Focal length of the fourth lens component nd2: Refraction coefficient of the lens element constituting the second lens component with respect to the d line The “lens component” is A single lens or a junction lens.
次式の条件を満足する請求項2に記載の接眼光学系。
0.58 < D1/f1 < 0.90
但し、
D1:基準視度における、前記観察物体から前記第1レンズ成分の最も観察物体側のレンズ面までの空気換算距離
f1:前記第1レンズ成分の焦点距離
The eyepiece optical system according to claim 2, which satisfies the conditions of the following equation.
0.58 <D1 / f1 <0.90
However,
D1: Air conversion distance from the observed object to the lens surface of the first lens component on the most observed object side in the reference diopter f1: Focal length of the first lens component
前記第2レンズ成分は、単レンズである請求項1、2、4のいずれか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1, 2 and 4, wherein the second lens component is a single lens. 次式の条件を満足する請求項1、2、4、5の何れか一項に記載の接眼光学系。
1.640 < nd2 < 1.800
但し、
nd2:前記第2レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
The eyepiece optical system according to any one of claims 1, 2, 4, and 5, which satisfies the conditions of the following equation.
1.640 <nd2 <1.80
However,
nd2: Refractive index of the lens element constituting the second lens component with respect to the d-line of the medium.
最もアイポイント側のレンズのアイポイント側のレンズ面はアイポイント側に凸である請求項1〜6の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 6, wherein the lens surface on the eyepoint side of the lens on the most eyepoint side is convex toward the eyepoint side. 次式の条件を満足する請求項1〜7の何れか一項に記載の接眼光学系。
−0.30 < (G2R2−G3R1)/(G2R2+G3R1) < 0.50
但し、
G2R2:前記第2レンズ成分の最もアイポイント側のレンズ面の曲率半径
G3R1:前記第3レンズ成分の最も観察物体側のレンズ面の曲率半径
The eyepiece optical system according to any one of claims 1 to 7, which satisfies the conditions of the following equation.
−0.30 <(G2R2-G3R1) / (G2R2 + G3R1) <0.50
However,
G2R2: Radius of curvature of the lens surface on the most eye point side of the second lens component G3R1: Radius of curvature of the lens surface on the most observed object side of the third lens component
次式の条件を満足する請求項1〜8のいずれか一項に記載の接眼光学系。
−0.75 < (G1R2+G1R1)/(G1R2−G1R1) < 0.00
但し、
G1R1:前記第1レンズ成分の最も観察物体側のレンズ面の曲率半径
G1R2:前記第1レンズ成分の最もアイポイント側のレンズ面の曲率半径
The eyepiece optical system according to any one of claims 1 to 8, which satisfies the conditions of the following equation.
-0.75 <(G1R2 + G1R1) / (G1R2-G1R1) <0.00
However,
G1R1: Radius of curvature of the lens surface on the most observed object side of the first lens component G1R2: Radius of curvature of the lens surface on the most eye point side of the first lens component
次式の条件を満足する請求項1〜9の何れか一項に記載の接眼光学系。
−1.00 < fe/EnP < −0.48
但し、
fe:当該接眼光学系の全系の焦点距離
EnP:基準視度における、当該接眼光学系の入射瞳位置(符号は、観察物体面を基準に、アイポイント側を正とする)
The eyepiece optical system according to any one of claims 1 to 9, which satisfies the conditions of the following equation.
-1.00 <fe / EnP <-0.48
However,
fe: Focal length of the entire system of the eyepiece optical system EnP: Entrance pupil position of the eyepiece optical system at the reference diopter (the sign is positive on the eye point side with respect to the observation object surface).
次式の条件を満足する請求項1〜10の何れか一項に記載の接眼光学系。
1.50 < TL/fe < 1.80
但し、
TL:当該接眼光学系の全長
fe:当該接眼光学系の全系の焦点距離
The eyepiece optical system according to any one of claims 1 to 10, which satisfies the conditions of the following equation.
1.50 <TL / fe <1.80
However,
TL: Overall length of the eyepiece optical system fe: Focal length of the entire system of the eyepiece optical system
次式の条件を満足する請求項1〜11の何れか一項に記載の接眼光学系。
1.550 < nd1 < 1.800
但し、
nd1:前記第1レンズ成分を構成するレンズ要素の媒質のd線に対する屈折率
The eyepiece optical system according to any one of claims 1 to 11, which satisfies the conditions of the following equation.
1.550 <nd1 <1.80
However,
nd1: Refractive index of the lens element constituting the first lens component with respect to the d-line of the medium.
前記第1レンズ成分、前記第3レンズ成分及び前記第4レンズ成分の各々は、単レンズである請求項1〜12の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 12, wherein each of the first lens component, the third lens component, and the fourth lens component is a single lens. 当該接眼光学系全体を光軸方向に移動させることにより視度調節を行う請求項1〜13の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 13, wherein the diopter is adjusted by moving the entire eyepiece optical system in the optical axis direction. 前記第2レンズ成分は、観察物体側に凹面を向けた負メニスカスレンズ形状である請求項1〜14の何れか一項に記載の接眼光学系。 The eyepiece optical system according to any one of claims 1 to 14, wherein the second lens component has a negative meniscus lens shape with a concave surface facing the observation object side. 請求項1〜15の何れか一項に記載の接眼光学系を有する光学機器。 An optical device having the eyepiece optical system according to any one of claims 1 to 15.
JP2019542057A 2017-09-15 2018-09-11 Eyepiece optical system and optical equipment Active JP6979160B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017177425 2017-09-15
JP2017177425 2017-09-15
PCT/JP2018/033569 WO2019054358A1 (en) 2017-09-15 2018-09-11 Eyepiece optical system, optical device, and method for producing eyepiece optical system

Publications (2)

Publication Number Publication Date
JPWO2019054358A1 JPWO2019054358A1 (en) 2020-10-01
JP6979160B2 true JP6979160B2 (en) 2021-12-08

Family

ID=65722695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542057A Active JP6979160B2 (en) 2017-09-15 2018-09-11 Eyepiece optical system and optical equipment

Country Status (2)

Country Link
JP (1) JP6979160B2 (en)
WO (1) WO2019054358A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7118653B2 (en) * 2018-01-26 2022-08-16 キヤノン株式会社 Observation device
JP7179598B2 (en) * 2018-12-04 2022-11-29 キヤノン株式会社 Observation device and imaging device having the same
JP7218472B2 (en) * 2018-12-04 2023-02-06 キヤノン株式会社 Observation device and imaging device having the same
JP7286379B2 (en) * 2019-04-01 2023-06-05 キヤノン株式会社 Finder optical system and observation device and imaging device having the same
CN112147758B (en) * 2019-06-26 2023-07-28 中强光电股份有限公司 Optical lens and head-mounted display device
CN112147782B (en) 2019-06-26 2022-09-30 中强光电股份有限公司 Optical lens and head-mounted display device
WO2022044675A1 (en) * 2020-08-27 2022-03-03 富士フイルム株式会社 Observation optical system and optical device
WO2022141408A1 (en) * 2020-12-31 2022-07-07 深圳纳德光学有限公司 Diopter-adjustable eyepiece optical system and head-mounted display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308957A (en) * 2004-04-20 2005-11-04 Olympus Corp Eyepiece
JP5851157B2 (en) * 2011-08-25 2016-02-03 リコー光学株式会社 Eyepiece lens system and image observation apparatus
JP5775418B2 (en) * 2011-10-18 2015-09-09 リコー光学株式会社 Eyepiece system, viewfinder, image observation apparatus, and image photographing apparatus
JP6079111B2 (en) * 2012-10-04 2017-02-15 株式会社ニコン Eyepiece optical system, optical equipment
JP6615068B2 (en) * 2016-08-19 2019-12-04 富士フイルム株式会社 Eyepiece and imaging device
JP6843697B2 (en) * 2017-04-28 2021-03-17 キヤノン株式会社 Observation device, imaging device

Also Published As

Publication number Publication date
WO2019054358A1 (en) 2019-03-21
JPWO2019054358A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6979160B2 (en) Eyepiece optical system and optical equipment
JP6634767B2 (en) Eyepieces and optics
JP7280561B2 (en) Eyepiece optical system and imaging device
WO2020105104A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2018010217A (en) Eyepiece optical system, optical instrument, and eyepiece optical system manufacturing method
JP2018010218A (en) Eyepiece optical system, optical instrument, and eyepiece optical system manufacturing method
JP2020016852A (en) Rear converter lens, optical device, and manufacturing method for rear converter lens
JPH05297274A (en) Kepler type zoom finder optical system
JP5434447B2 (en) Wide-angle lens and optical equipment
JP5333906B2 (en) Zoom lens and optical equipment
WO2013128882A1 (en) Optical system, optical device, and method for manufacturing optical system
JP2018060041A (en) Eyepiece optical system, optical apparatus and method for manufacturing eyepiece optical system
JP5423299B2 (en) Wide-angle lens and optical equipment
JP6784952B2 (en) Optical system and optical equipment
JP2008008981A (en) Finder optical system and optical apparatus with the same
JP6816370B2 (en) Optical system and optical equipment
JP6701831B2 (en) Optical system and optical equipment
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JPH0772388A (en) Small-sized zoom lens
JP5505770B2 (en) Zoom lens, optical equipment
JP4732479B2 (en) Viewfinder optical system
JP6784950B2 (en) Optical system and optical equipment
JP6938845B2 (en) Optical system and optical equipment
WO2022215380A1 (en) Optical system, optical device, and method for manufacturing optical system
JP5903937B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6979160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150