WO2019054325A1 - 質量分析方法と質量分析装置 - Google Patents

質量分析方法と質量分析装置 Download PDF

Info

Publication number
WO2019054325A1
WO2019054325A1 PCT/JP2018/033423 JP2018033423W WO2019054325A1 WO 2019054325 A1 WO2019054325 A1 WO 2019054325A1 JP 2018033423 W JP2018033423 W JP 2018033423W WO 2019054325 A1 WO2019054325 A1 WO 2019054325A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
mass
ions
target
interference
Prior art date
Application number
PCT/JP2018/033423
Other languages
English (en)
French (fr)
Inventor
彦北 朱
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019542040A priority Critical patent/JP6924511B2/ja
Publication of WO2019054325A1 publication Critical patent/WO2019054325A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the present invention relates to mass spectrometry, which is a type of chemical analysis technique.
  • Mass spectrometry is an analysis method based on the ratio of the mass number m of the target ion to be analyzed to the charge z, that is, the mass charge ratio m / z.
  • Non-target ions having the same mass-to-charge ratio as the target ions become interference ions.
  • the interference of non-target ions must be removed.
  • target ions can be separated from interfering ions.
  • the mass-to-charge ratio between the target ion and the interference ion is slightly different, it is difficult to separate them even using a high resolution mass spectrometer.
  • target ions can be separated from interference ions by reacting target ions or interference ions with reaction gas molecules to convert target ions or interference ions into another substance.
  • the target ion is 32 S + and the interference ion is 16 O 2 +
  • the mass to charge ratio is 32 in both cases. Therefore, in 32 S + and 16 O 2 + presence of, 32 S + and 16 of O 2 are reacted to convert the 32 S + in 32 S 16 O +. Then, if 32 S 16 O + is separated from 16 O 2 + based on the mass-to-charge ratio of 48 and 32, the target ion can be accurately analyzed.
  • Reaction cell technology provides a higher separation effect than high resolution mass spectrometers. However, reaction cell technology may not be able to obtain sufficient reactivity using existing reaction gases. For example, according to Non-Patent Document 1, Ba + and O 2 do not react.
  • the present invention has been made in view of such circumstances, in which an activated reaction gas is reacted with a target ion or an interference ion, and a target ion is separated from an interference ion to accurately analyze the target ion. It is an object of the present invention to provide a mass spectrometry method and mass spectrometer capable of
  • the target ion product generated by the reaction of the target ion with ozone in the reaction cell into which the target ion and the interference ion are introduced the ozone generation unit connected to the reaction cell, and the reaction cell
  • a measurement unit configured to measure a signal intensity of a target ion product separated by the mass separation unit according to the mass-to-charge ratio.
  • Another mass spectrometer is a reaction cell into which target ions and interference ions are introduced, an ozone generation unit connected to the reaction cell, and target ions according to the mass-to-charge ratio in the reaction cell.
  • the mass spectrometric method of the present invention supplies ozone to target ions and interference ions to obtain target ion products which are reaction products of target ions and ozone, and target ion products according to mass-to-charge ratio. And the measuring step of measuring the signal intensity of the target ion product separated in the mass separation step.
  • Another mass spectrometry method supplies ozone to the target ion and the interference ion, and obtains an interference ion product which is a reaction product of the interference ion and the ozone, and an interference according to the mass charge ratio. It has a mass separation process of separating an ion product from a target ion, and a measurement process of measuring the signal intensity of the interference ion product separated in the mass separation process.
  • target ions having mass-to-charge ratios similar to interference ions can be separated from interference ions with high accuracy.
  • FIG. 1 is a principle view of a mass spectrometer according to an embodiment of the present invention.
  • Graph showing signal intensity of Ba ion and Ba ion product with respect to mass to charge ratio (Example 1).
  • Graph showing the signal intensity of Cs ions and Cs ion products against mass to charge ratio (Example 2).
  • Graph showing the signal intensity of Sr ions and Sr ion products against mass to charge ratio Example 3
  • Graph showing the signal intensity of Rb ion and Rb ion product against mass to charge ratio (Example 4).
  • Graph showing the ratio of signal strength of MO + to signal strength of M + (Example 5).
  • FIG. 1 shows the principle of a mass spectrometer according to an embodiment of the present invention.
  • This mass spectrometer includes an ion lens, a first mass separation unit QMS1, a reaction cell, an ozone generator ozone generator, a second mass separation unit QMS2, and a measurement unit. It has a detector.
  • the ion lens focuses various ions and introduces them into the QMS 1.
  • the QMS 1 separates target ions and interference ions having similar mass-to-charge ratios from various ions according to the mass-to-charge ratio m / z, and introduces the ions into the reaction cell.
  • target ions and interference ions separated by QMS 1 are introduced.
  • the ozone generator is connected to the reaction cell, converts the taken-in oxygen gas O 2 into ozone O 3 and supplies it to the reaction cell.
  • the target ion reacts with O 3 to generate the target ion product.
  • the target ion product may contain the target ion and an element other than oxygen.
  • H and N which inevitably exist in the reaction cell can also be constituent elements of the target ion product.
  • the ozone generator may take in nitrogen gas N 2 and O 2 and supply NO x to the reaction cell. It is thought that NO x also reacts with one of the target ion and the interference ion to change the mass-to-charge ratio of the one ion.
  • Cs ions and Ba ions, Ba ions and Cs ions, Sr ions and Rb ions, Rb ions and Sr ions, and the like are exemplified as combinations of target ions and interference ions having similar mass-to-charge ratios.
  • target ion products are separated from interfering ions according to their mass to charge ratio.
  • the detector measures the signal intensity of the target ion product separated by the QMS 2.
  • the mass spectrometer according to the present embodiment may be manufactured by connecting an ozone generator to a reaction cell of an ordinary mass spectrometer.
  • target ions and interference ions having the same mass-to-charge ratio are present in a reaction cell, and target ions are reacted with O 3 in the reaction cell to obtain a target ion product. Then, the target ion, that is, the target ion product whose mass-to-charge ratio is significantly different from that of the interference ion is separated from the interference ion according to the mass-to-charge ratio, and the signal intensity of the target ion product separated Analyze the target ion.
  • the interference ion is reacted with O 3 in the reaction cell to obtain an interference ion product, and the interference ion product, that is, the interference ion product whose mass charge ratio is largely different from that of the target ion, is mass-charged
  • the target ions may be separated according to the ratio, and the separated target ions may be analyzed.
  • a reaction cell into which target ions and interference ions are introduced, an ozone generator which is an ozone generation unit for supplying ozone to the reaction cell, and target ions are Measurement that measures the signal intensity of the target ion separated by QMS2 and QMS2 which is a mass separation unit that is separated from the interference ion product generated by the interference ion reacting with ozone in the reaction cell according to the mass-to-charge ratio Having a detector.
  • the mass spectrometry method according to the embodiment of the present invention may or may not use the mass spectrometer of each embodiment.
  • the mass spectrometry method of the present embodiment includes a reaction step, a mass separation step, and a measurement step.
  • ozone is supplied to the target ion and the interference ion to obtain a target ion product which is a reaction product of the target ion and the ozone.
  • the target ion product is separated from the interference ions according to the mass-to-charge ratio.
  • the measurement step the signal intensity of the target ion product separated in the mass separation step is measured.
  • a reaction process, a mass separation process, and a measurement process are each performed by a reaction cell, QMS2, and a detector.
  • ozone is supplied to the target ion and the interference ion to obtain an interference ion product which is a reaction product of the interference ion and the ozone, and the target ion is obtained from the interference ion product according to the mass charge ratio.
  • the signal intensity of the separated target ions may be measured.
  • one of the target ion and the interference ion having the same mass-to-charge ratio is reacted with O 3 to largely change the mass-to-charge ratio of the one, so that the target ion is highly accurate from the interference ion. Can be separated by Therefore, it is possible to analyze the target ion in a state where the interference ion is hardly mixed in the target ion.
  • ICP-QMS / QMS inductively coupled plasma tandem quadrupole mass spectrometer
  • the sample solution was charged into this apparatus while supplying a reaction gas containing O 3 or O 2 at 1.0 mL / min to the reaction cell.
  • the reactive gas containing O 3 is one in which O 2 is supplied to the ozone generator to make the concentration of O 3 approximately 10 mass%. That is, a reaction gas containing O 3 is the O 3 of about 10% to about 90% by weight of a mixed gas of O 2.
  • a mixed gas of O 3 and O 2 hereinafter sometimes simply referred to as “O 3 ” in Examples 1 to 4) or O 2 in the reaction cell by switching the operation and non-operation of the ozone generator Only (which may be simply described as “O 2 ” in Examples 1 to 4 below) were supplied respectively.
  • 138 Ba + (m / z 138) introduced into the reaction cell reacted with O 3 to form a Ba ion product, and the mass-to-charge ratio changed significantly.
  • 138 Ba + ⁇ 138 Ba 16 O + (m / z 154)
  • 138 Ba + ⁇ 138 Ba 16 O 1 H + (m / z 155)
  • 138 Ba + ⁇ 138 Ba 14 N 16 O 3 + (m / z 200)
  • 138 Ba + ⁇ 138 Ba 14 N 16 O 5 1 H + (m / z 218)
  • Example 1 and Example 2 From Example 1 and Example 2, the Ba ion reacts with O 3 to become a Ba ion product and the mass-to-charge ratio largely changes, whereas the Cs ion hardly reacts with O 3 , but the mass charge The ratio did not change. Therefore, if O 3 is supplied to a reaction cell in which Ba ions and Cs ions having similar mass-to-charge ratios are mixed, the mass-to-charge ratio of Ba ions largely changes, and can be separated from Cs ions according to the mass-to-charge ratio. . By analyzing the separated Ba ion product, analysis results of Ba ion which hardly contains Cs ion can be obtained.
  • the Cs ion may be separated from the Ba ion product to obtain an analysis result of the Cs ion which contains almost no Ba ion. It was also confirmed that even if O 2 is supplied to the reaction cell, Ba ions and Cs ions can not be separated with high precision according to the mass-to-charge ratio.
  • the Rb ion may be separated from the Sr ion product to obtain the analysis result of the Rb ion which hardly contains the Sr ion. It has also been confirmed that even if O 2 is supplied to the reaction cell, Sr ions and Rb ions can not be separated with high precision according to the mass-to-charge ratio.
  • Example 5 An N 2 introduction pipe was connected to a reaction gas introduction pipe between the ozone generator of the mass spectrometer shown in FIG. 1 and the reaction cell.
  • the ozone generator was supplied with O 2 at a flow rate of 0.35 mL / min, and the reaction gas inlet tube was supplied with N 2 at a flow rate of 0.7 mL / min.
  • a mixed gas of O 3 , O 2 and N 2 (hereinafter sometimes simply referred to as “O 3 ” in this embodiment) is introduced into the reaction cell, and the ozone generator is When it did not operate, a mixed gas of O 2 and N 2 (hereinafter sometimes referred to simply as “O 2 ” in this example) was introduced into the reaction cell.
  • MO + / M + the ratio of the signal intensity of MO + to the measured M + signal intensity at the detector, i.e., wherein the MO + signal strength / M + signal strength (hereinafter simply "MO + / M +" Is shown in FIG. MO + indicates 52 Cr 16 O + , 55 Mn 16 O + , 56 Fe 16 O + , 59 Co 16 O + , 60 Ni 16 O + , 72 Ge 16 O + , or 77 Se 16 O + ing. As shown in FIG. 6, MO + / M + when O 3 was supplied to the reaction cell was about 2 to 8 times MO + / M + when O 2 was supplied to the reaction cell.
  • 52 Cr + , 55 Mn + , 56 Fe + , 59 Co + , 60 Ni + , 72 Ge + , or 77 Se + are analyzed by using the mass spectrometer or mass spectrometry method of the present invention.
  • These element ions can be separated from other element ions having the same mass-to-charge ratio as those element ions. That is, by using the mass spectrometer or mass spectrometry method of the present invention, 2 Cr +, 55 Mn + , 56 Fe +, 59 Co +, 60 Ni +, 72 Ge +, or improvement of 77 Se + analytical sensitivity of Can be expected.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

質量電荷比m/zが同程度の目的イオンと干渉イオンが簡易に分離できる質量分析装置を提供する。質量分析装置は、質量電荷比に応じて、各種イオンから質量電荷比が同程度の目的イオンおよび干渉イオンを分離して反応セルに導入するQMS1と、目的イオンと干渉イオンが導入される反応セルと、反応セルにオゾンを供給するオゾン発生器と、反応セルで目的イオンがオゾンと反応して生じた目的イオン生成物が、質量電荷比に応じて、干渉イオンから分離されるQMS2と、QMS2で分離された目的イオン生成物の信号強度を計測する検出器を有する。

Description

質量分析方法と質量分析装置
 本発明は、化学分析手法の一種である質量分析法に関するものである。
 質量分析法は、分析対象である目的イオンの質量数mと電荷zの比、すなわち質量電荷比m/zに基づいて分析する手法である。目的イオンと同程度の質量電荷比を有する非目的イオンは干渉イオンとなる。目的イオンを正確に分析するためには、非目的イオンの干渉を除去しなければならない。高分解能質量分析計を用いれば、目的イオンを干渉イオンから分離できる。しかし、目的イオンと干渉イオンの質量電荷比がわずかに違う場合では、高分解能質量分析計を用いても、これらの分離が困難である。
 反応セル技術または衝突セル技術では、目的イオンまたは干渉イオンと反応ガス分子を反応させて、目的イオンまたは干渉イオンを別の物質に変換することによって、目的イオンを干渉イオンから分離できる。例えば、目的イオンが32で干渉イオンが16 の場合、どちらも質量電荷比が32である。そこで、3216 の共存下で、3216を反応させて、323216に変換する。そして、質量電荷比が48と32に基づいて321616 から分離すれば、目的イオンが正確に分析できる。反応セル技術では、高分解能質量分析計よりも高い分離効果が得られる。しかしながら、反応セル技術では、既存の反応ガスを利用して十分な反応性が得られない場合がある。例えば、非特許文献1によるとBaとOは反応しない。
Gas-phase ion-molecule reactions for resolution of atomic isobars: AMS and ICP-MS perspectives, International Journal of Mass Spectrometry, 2006, 255-256, p.312-327
 本発明は、このような事情に鑑みてなされたものであり、活性化された反応ガスを目的イオンまたは干渉イオンと反応させ、目的イオンを干渉イオンから分離して、目的イオンの正確な分析ができる質量分析方法と質量分析装置を提供することを目的とする。
 本発明の質量分析装置は、目的イオンと干渉イオンが導入される反応セルと、反応セルに接続されたオゾン発生部と、反応セルで目的イオンがオゾンと反応して生じた目的イオン生成物が、質量電荷比に応じて、干渉イオンから分離される質量分離部と、質量分離部で分離された目的イオン生成物の信号強度を計測する計測部とを有する。
 本発明の他の質量分析装置は、目的イオンと干渉イオンが導入される反応セルと、反応セルに接続されたオゾン発生部と、目的イオンが、質量電荷比に応じて、反応セルで干渉イオンがオゾンと反応して生じた干渉イオン生成物から分離される質量分離部と、質量分離部で分離された目的イオンの信号強度を計測する計測部とを有する。
 本発明の質量分析方法は、目的イオンおよび干渉イオンにオゾンを供給し、目的イオンとオゾンの反応生成物である目的イオン生成物を得る反応工程と、質量電荷比に応じて、目的イオン生成物を干渉イオンから分離する質量分離工程と、質量分離工程で分離された目的イオン生成物の信号強度を計測する計測工程とを有する。
 本発明の他の質量分析方法は、目的イオンおよび干渉イオンにオゾンを供給し、干渉イオンとオゾンとの反応生成物である干渉イオン生成物を得る反応工程と、質量電荷比に応じて、干渉イオン生成物を目的イオンから分離する質量分離工程と、質量分離工程で分離された干渉イオン生成物の信号強度を計測する計測工程とを有する。
 本発明によれば、質量分析法において、質量電荷比が干渉イオンと同程度の目的イオンを、干渉イオンから高精度で分離できる。
本発明の実施形態に係る質量分析装置の原理図。 質量電荷比に対するBaイオンおよびBaイオン生成物の信号強度を示すグラフ(実施例1)。 質量電荷比に対するCsイオンおよびCsイオン生成物の信号強度を示すグラフ(実施例2)。 質量電荷比に対するSrイオンおよびSrイオン生成物の信号強度を示すグラフ(実施例3)。 質量電荷比に対するRbイオンおよびRbイオン生成物の信号強度を示すグラフ(実施例4)。 の信号強度に対するMOの信号強度の比を示すグラフ(実施例5)。
 図1は、本発明の実施形態に係る質量分析装置の原理を示している。この質量分析装置は、イオンレンズと、第一の質量分離部であるQMS1と、反応セルと、オゾン発生部であるオゾン発生器と、第二の質量分離部であるQMS2と、計測部を備える検出器を有している。イオンレンズは、各種イオンを収束して、QMS1に導入する。QMS1は、質量電荷比m/zに応じて、質量電荷比が同程度の目的イオンおよび干渉イオンを、各種イオンから分離して反応セルに導入する。
 反応セルは、QMS1で分離された目的イオンと干渉イオンが導入される。オゾン発生器は反応セルに接続されており、取り込んだ酸素ガスOをオゾンOに変換して反応セルに供給する。反応セルでは、目的イオンがOと反応して目的イオン生成物が生じる。なお、目的イオン生成物は、目的イオンと酸素以外の元素を含んでいてもよい。例えば、目的イオン138Ba(m/z=138)がOと反応すると、138Ba16(m/z=155)や138Ba1416 (m/z=200)等の目的イオン生成物が得られる。このように、反応セルに不可避的に存在するHやNも目的イオン生成物の構成元素となり得る。
 反応セルにOを供給しても目的イオンとほとんど反応しない場合でも、反応セルにOを供給することによって、目的イオンがOと反応して目的イオン生成物が得られる。なお、オゾン発生器が窒素ガスNとOを取り込んで、NOを反応セルに供給してもよい。NOも目的イオンと干渉イオンの一方と反応して、その一方のイオンの質量電荷比を変化させると考えられる。質量電荷比が同程度の目的イオンと干渉イオンの組み合わせとして、CsイオンとBaイオン、BaイオンとCsイオン、SrイオンとRbイオン、およびRbイオンとSrイオン等がそれぞれ例示される。QMS2では、目的イオン生成物が、質量電荷比に応じて、干渉イオンから分離される。検出器では、QMS2で分離された目的イオン生成物の信号強度を計測する。本実施形態に係る質量分析装置は、通常の質量分析装置の反応セルにオゾン発生器を接続して作製してもよい。
 なお、本実施形態では、質量電荷比が同程度の目的イオンと干渉イオンを反応セルに存在させ、反応セルで目的イオンをOと反応させて目的イオン生成物を得る。そして、目的イオン、すなわち干渉イオンと質量電荷比が大きく異なるようになった目的イオン生成物を、質量電荷比に応じて干渉イオンから分離し、分離された目的イオン生成物の信号強度を計測することで目的イオンを分析する。これに代えて、反応セルで干渉イオンをOと反応させて干渉イオン生成物を得て、干渉イオン、すなわち目的イオンと質量電荷比が大きく異なるようになった干渉イオン生成物から、質量電荷比に応じて目的イオンを分離し、分離された目的イオンを分析してもよい。
 すなわち、本発明の他の実施形態に係る質量分析装置は、目的イオンと干渉イオンが導入される反応セルと、反応セルにオゾンを供給するオゾン発生部であるオゾン発生器と、目的イオンが、質量電荷比に応じて、反応セルで干渉イオンがオゾンと反応して生じた干渉イオン生成物から分離される質量分離部であるQMS2と、QMS2で分離された目的イオンの信号強度を計測する計測部を備える検出器を有する。
 本発明の実施形態に係る質量分析方法は、各実施形態の質量分析装置を使用してもよいし、使用しなくてもよい。本実施形態の質量分析方法は、反応工程と、質量分離工程と、計測工程とを備えている。反応工程では、目的イオンおよび干渉イオンにオゾンを供給し、目的イオンとオゾンの反応生成物である目的イオン生成物を得る。質量分離工程では、質量電荷比に応じて、目的イオン生成物を干渉イオンから分離する。計測工程では、質量分離工程で分離された目的イオン生成物の信号強度を計測する。なお、各実施形態の質量分析装置を使用する場合、反応工程、質量分離工程、および計測工程は、反応セル、QMS2、および検出器でそれぞれ行われる。
 この方法に代えて、目的イオンおよび干渉イオンにオゾンを供給し、干渉イオンとオゾンとの反応生成物である干渉イオン生成物を得て、質量電荷比に応じて目的イオンを干渉イオン生成物から分離し、分離された目的イオンの信号強度を計測してもよい。本実施形態の質量分析方法では、質量電荷比が同程度の目的イオンと干渉イオンの一方をOと反応させて、この一方の質量電荷比を大きく変えるので、目的イオンを干渉イオンから高精度で分離できる。このため、目的イオンに干渉イオンがほとんど混入していない状態で、目的イオンの分析が可能となる。
実施例1
 図1に示すような誘導結合プラズマタンデム四重極質量分析計(ICP-QMS/QMS)(アジレント社、Agilent-8800型ICP-QMS/QMS装置)の反応セルにOを供給できるようにして、以下のようにして元素分析を行った。m/z=138のイオンが通過するようにQMS1を、m/z=2~260のイオンが通過するようにQMS2をそれぞれ設定した。質量分析用のバリウム標準液と硝酸を混合して、バリウムが1mg/kg、硝酸が2質量%となるような試料液を作製した。
 反応セルにOを含む反応ガスまたはOを1.0mL/分で供給しながら、この試料液をこの装置に投入した。なお、Oを含む反応ガスは、オゾン発生器にOを供給して、Oの濃度を約10質量%にしたものである。すなわち、Oを含む反応ガスは、約10質量%のOと約90質量%のOの混合ガスである。オゾン発生器の稼働と非稼働を切り替えることによって、反応セルにOとOの混合ガス(以下、実施例1から実施例4で単に「O」と記載することがある)またはOのみ(以下、実施例1から実施例4で単に「O」と記載することがある)をそれぞれ供給した。
 検出部で計測した信号強度を図2に示す。なお、図2では、2質量%硝酸水溶液の信号強度を引いた値を示している。また、図2では、m/z=2~260のうち、信号強度が高いm/zを選択して示している。これらは、実施例2から実施例4でも同様である。図2に示すように、Oを供給した場合では、138Ba(m/z=138)の高い信号強度が観測された。これに対して、Oを供給した場合では、138Ba(m/z=138)の信号強度がかなり減少した。Oが高い反応性を備えているからだと考えられる。
 なお、下記に示すように、反応セルに導入された138Ba(m/z=138)は、Oと反応をしてBaイオン生成物を生成し、質量電荷比が大きく変化した。
 138Ba → 138Ba16 (m/z=154)
 138Ba → 138Ba16 (m/z=155)
 138Ba → 138Ba1416  (m/z=200)
 138Ba → 138Ba1416  (m/z=218)
実施例2
 m/z=133のイオンが通過するようにQMS1を設定したことを除いて、実施例1と同様にして、セシウム標準液を含有する試料液の元素分析を行った。その結果を図3に示す。図3に示すように、OとOのいずれを供給した場合でも、133Cs(m/z=133)の高い信号強度が観測された。一方、他の質量電荷比では、信号強度が極めて低かった。
 実施例1と実施例2より、BaイオンはOと反応してBaイオン生成物となって質量電荷比が大きく変化したのに対して、CsイオンはOとほとんど反応せずに質量電荷比が変化しなかった。したがって、質量電荷比が同程度のBaイオンとCsイオンが混在する反応セルにOを供給すれば、Baイオンの質量電荷比が大きく変化し、質量電荷比に応じて、Csイオンから分離できる。分離されたBaイオン生成物を分析することによって、Csイオンをほとんど含まないBaイオンの分析結果が得られる。これに代えて、CsイオンをBaイオン生成物から分離して、Baイオンをほとんど含まないCsイオンの分析結果を得てもよい。また、反応セルにOを供給しても、BaイオンとCsイオンを質量電荷比に応じて精度よく分離できないことも確認できた。
実施例3
 m/z=88のイオンが通過するようにQMS1を設定したことを除いて、実施例1と同様にして、ストロンチウム標準液を含有する試料液の元素分析を行った。その結果を図4に示す。図4に示すように、Oを供給した場合では、88Sr(m/z=88)の高い信号強度が観測された。これに対して、Oを供給した場合では、88Sr(m/z=88)の信号強度がかなり減少した。88SrがOと反応して、Srイオン生成物となって質量電荷比が大きく変化したことがわかった。
実施例4
 m/z=85のイオンが通過するようにQMS1を設定したことを除いて、実施例1と同様にして、ルビジウム標準液を含有する試料液の元素分析を行った。その結果を図5に示す。図5に示すように、OとOのいずれを供給した場合でも、85Rb(m/z=85)の高い信号強度が観測された。一方、他の質量電荷比では、信号強度が極めて低かった。
 実施例3と実施例4より、SrイオンはOと反応してSrイオン生成物となって質量電荷比が大きく変化したのに対して、RbイオンはOとほとんど反応せずに質量電荷比が変化しなかった。したがって、質量電荷比が同程度のSrイオンとRbイオンが混在する反応セルにOを供給すれば、Srイオンの質量電荷比が大きく変化し、質量電荷比に応じて、Rbイオンから分離できる。分離されたSrイオン生成物を分析することによって、Rbイオンをほとんど含まないSrイオンの分析結果が得られる。なお、RbイオンをSrイオン生成物から分離して、Srイオンをほとんど含まないRbイオンの分析結果を得てもよい。また、反応セルにOを供給しても、SrイオンとRbイオンを質量電荷比に応じて精度よく分離できないことも確認できた。
実施例5
 図1に示す質量分析計のオゾン発生器と反応セルの間の反応ガス導入管にN導入管を接続した。オゾン発生器に流量0.35mL/分でOを供給し、反応ガス導入管に流量0.7mL/分でNを供給した。オゾン発生器を稼働したときには、O、O、およびNの混合ガス(以下、本実施例で単に「O」と記載することがある)が反応セルに導入され、オゾン発生器を稼働しなかったときには、OとNの混合ガス(以下、本実施例で単に「O」と記載することがある)が反応セルに導入された。
 反応セルにOまたはOを供給しながら、52Cr55Mn56Fe59Co60Ni72Ge、または77Seの各元素イオンMを含む試料液をこの装置に投入し、QMS1経由で反応セルにMをそれぞれ導入した。反応セルにOとOのどちらを供給したときでも、反応セルでMの一部が酸化物イオンMOとなった。すなわち、例えば52Crの一部が52Cr16となった。そして、QMS2を通過したMとMOの信号強度を検出器でそれぞれ計測した。
 各元素Mについて、検出器で測定されたMの信号強度に対するMOの信号強度の比、つまり、MOの信号強度/Mの信号強度(以下単に「MO/M」と記載することがある)を図6に示す。なお、MOは、52Cr1655Mn1656Fe1659Co1660Ni1672Ge16、または77Se16を示している。図6に示すように、反応セルにOを供給したときのMO/Mは、反応セルにOを供給したときのMO/Mの約2倍~8倍だった。
 これらの結果から、本発明の質量分析装置または質量分析方法を用いることによって、52Cr55Mn56Fe59Co60Ni72Ge、または77Seを分析するときに、これらの各元素イオンと、これらの各元素イオンと同程度の質量電荷比を有する他の元素イオンを分離できる。すなわち、本発明の質量分析装置または質量分析方法を用いることによって、Cr55Mn56Fe59Co60Ni72Ge、または77Seの分析感度の向上が期待できる。

Claims (7)

  1.  目的イオンと干渉イオンが導入される反応セルと、
     前記反応セルに接続されたオゾン発生部と、
     前記反応セルで前記目的イオンがオゾンと反応して生じた目的イオン生成物が、質量電荷比に応じて、前記干渉イオンから分離される質量分離部と、
     前記質量分離部で分離された前記目的イオン生成物の信号強度を計測する計測部と、
     を有する質量分析装置。
  2.  目的イオンと干渉イオンが導入される反応セルと、
     前記反応セルに接続されたオゾン発生部と、
     前記目的イオンが、質量電荷比に応じて、前記反応セルで前記干渉イオンがオゾンと反応して生じた干渉イオン生成物から分離される質量分離部と、
     前記質量分離部で分離された前記目的イオンの信号強度を計測する計測部と、
     を有する質量分析装置。
  3.  請求項1または2において、
     質量電荷比に応じて、前記目的イオンおよび前記干渉イオンを各種イオンから分離して前記前記反応セルに導入する他の質量分離部をさらに有する質量分析装置。
  4.  目的イオンおよび干渉イオンにオゾンを供給し、前記目的イオンとオゾンの反応生成物である目的イオン生成物を得る反応工程と、
     質量電荷比に応じて、前記目的イオン生成物を前記干渉イオンから分離する質量分離工程と、
     前記質量分離工程で分離された前記目的イオン生成物の信号強度を計測する計測工程と、
     を有する質量分析方法。
  5.  目的イオンおよび干渉イオンにオゾンを供給し、前記干渉イオンとオゾンとの反応生成物である干渉イオン生成物を得る反応工程と、
     質量電荷比に応じて、前記干渉イオン生成物を前記目的イオンから分離する質量分離工程と、
     前記質量分離工程で分離された前記干渉イオン生成物の信号強度を計測する計測工程と、
     を有する質量分析方法。
  6.  請求項4または5において、
     前記目的イオンがCsイオンとBaイオンの一方で、前記干渉イオンがCsイオンとBaイオンの他方である質量分析方法。
  7.  請求項4または5において、
     前記目的イオンがSrイオンとRbイオンの一方で、前記干渉イオンがSrイオンとRbイオンの他方である質量分析方法。
PCT/JP2018/033423 2017-09-15 2018-09-10 質量分析方法と質量分析装置 WO2019054325A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019542040A JP6924511B2 (ja) 2017-09-15 2018-09-10 質量分析方法と質量分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177729 2017-09-15
JP2017-177729 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054325A1 true WO2019054325A1 (ja) 2019-03-21

Family

ID=65722833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033423 WO2019054325A1 (ja) 2017-09-15 2018-09-10 質量分析方法と質量分析装置

Country Status (2)

Country Link
JP (1) JP6924511B2 (ja)
WO (1) WO2019054325A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249431A (ja) * 2002-02-25 2003-09-05 Hitachi Ltd アッシング装置
JP2010054423A (ja) * 2008-08-29 2010-03-11 Nomura Micro Sci Co Ltd レジスト洗浄剤中の金属の定量方法
JP2015052561A (ja) * 2013-09-09 2015-03-19 富士通株式会社 二次イオン質量分析装置
US20150260684A1 (en) * 2012-11-16 2015-09-17 Dh Technologies Development Pte. Ltd. Method and apparatus for ion mobility spectrometry
WO2015173911A1 (ja) * 2014-05-14 2015-11-19 株式会社島津製作所 イオン輸送装置及び該装置を用いた質量分析装置
JP2017026620A (ja) * 2015-07-27 2017-02-02 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 有機試料の元素分析

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013003813T5 (de) * 2012-07-31 2015-05-13 Leco Corporation Ionenmobilitätsspektrometer mit hohem Durchsatz
JP2016507151A (ja) * 2013-02-18 2016-03-07 マイクロマス ユーケー リミテッド 自動排出イオントラップを用いた質量分析器における、気相反応の改善された効率および精密制御

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249431A (ja) * 2002-02-25 2003-09-05 Hitachi Ltd アッシング装置
JP2010054423A (ja) * 2008-08-29 2010-03-11 Nomura Micro Sci Co Ltd レジスト洗浄剤中の金属の定量方法
US20150260684A1 (en) * 2012-11-16 2015-09-17 Dh Technologies Development Pte. Ltd. Method and apparatus for ion mobility spectrometry
JP2015052561A (ja) * 2013-09-09 2015-03-19 富士通株式会社 二次イオン質量分析装置
WO2015173911A1 (ja) * 2014-05-14 2015-11-19 株式会社島津製作所 イオン輸送装置及び該装置を用いた質量分析装置
JP2017026620A (ja) * 2015-07-27 2017-02-02 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー 有機試料の元素分析

Also Published As

Publication number Publication date
JP6924511B2 (ja) 2021-08-25
JPWO2019054325A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
US10573503B2 (en) Systems and methods for detection and quantification of selenium and silicon in samples
Tanimizu et al. Determination of ultra-low 236 U/238 U isotope ratios by tandem quadrupole ICP-MS/MS
US10056241B2 (en) Addition of reactive species to ICP source in a mass spectrometer
US11328915B2 (en) Methods in mass spectrometry using collision gas as ion source
Böting et al. First experimental proof of asymmetric charge transfer in ICP-MS/MS (ICP-QQQ-MS) through isotopically enriched oxygen as cell gas
Hanousek et al. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34 S/32 S isotope ratio measurements
CN108206125B (zh) 质谱仪中同量异位干扰的确定
Manard et al. Exploration of ICP platforms for measuring elemental impurities in uranium ore concentrates
US9188564B2 (en) Ionisation method for a universal gas analyzer
US6992281B2 (en) Mass spectrometer
JP6924511B2 (ja) 質量分析方法と質量分析装置
ITMI20002830A1 (it) Metodo per la misura della concentrazione di impurezze in azoto idrogeno e ossigeno mediante spettroscopia di mobilita' ionica
US11239068B2 (en) Inductively coupled plasma mass spectrometer with mass correction
Lesniewski et al. Atmospheric pressure plasma assisted reaction chemical ionization for analysis of chlorinated compounds separated by liquid chromatography
Hirata et al. A reaction cell as a sample introduction portal for detection of gaseous components in ICP-MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856759

Country of ref document: EP

Kind code of ref document: A1