WO2019053925A1 - 半導体装置の製造方法、基板処理装置及びプログラム - Google Patents

半導体装置の製造方法、基板処理装置及びプログラム Download PDF

Info

Publication number
WO2019053925A1
WO2019053925A1 PCT/JP2018/009964 JP2018009964W WO2019053925A1 WO 2019053925 A1 WO2019053925 A1 WO 2019053925A1 JP 2018009964 W JP2018009964 W JP 2018009964W WO 2019053925 A1 WO2019053925 A1 WO 2019053925A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
reactor
nitrogen
oxygen gas
Prior art date
Application number
PCT/JP2018/009964
Other languages
English (en)
French (fr)
Inventor
雅則 中山
克典 舟木
上田 立志
康寿 坪田
雄一郎 竹島
博登 井川
寺崎 正
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Publication of WO2019053925A1 publication Critical patent/WO2019053925A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
  • a step of performing predetermined treatment such as oxidation treatment or nitridation treatment on a substrate may be performed as one step of a manufacturing process.
  • Patent Document 1 discloses that a pattern surface formed on a substrate is reformed using a plasma-excited processing gas.
  • etching may often occur on the inner surface of the reactor due to plasma during oxidation processing on the substrate or the like.
  • the particles generated by this etching and the components detached from the inner surface of the reaction furnace by etching may cause the quality of the semiconductor device to deteriorate.
  • a step of supplying oxygen gas into a reactor in which at least a part of the inner wall is made of quartz a step of plasma exciting the oxygen gas supplied into the reactor, A first step of removing hydroxyl groups from the exposed surface of the inner wall made of quartz by plasma-excited oxygen gas, and supplying nitrogen gas into the reactor, a first step of reforming the surface layer of the exposed surface
  • a step of plasma-exciting the nitrogen gas supplied into the reactor a surface layer of the exposed surface reformed by the plasma-excited oxygen gas with the plasma-excited nitrogen gas from silicon dioxide to silicon nitride
  • a second step of reforming into a layer of the semiconductor device a step of supplying oxygen gas into a reactor in which at least a part of the inner wall is made of quartz
  • (A) is a figure explaining the state of the inner wall surface of a reaction furnace when not performing an oxygen seasoning treatment
  • (B) explains the state of the inner wall surface of a reaction furnace when performing an oxygen seasoning treatment It is a figure to do. It is a figure which compares the number of the particles adhering to the substrate surface at the time of performing substrate processing, when performing substrate processing, without performing oxygen seasoning processing, and performing oxygen seasoning processing.
  • (A) is a figure explaining a mode that a nitrogen seasoning process is performed with respect to the inner wall surface of a reactor
  • (B) is a state where the inner wall surface of a reactor was coated with a SiN layer by a nitrogen seasoning process. It is a figure explaining.
  • the substrate processing apparatus according to the first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
  • the substrate processing apparatus according to the present embodiment is configured to mainly perform oxidation processing on a film formed on a substrate surface.
  • the substrate processing apparatus 100 includes a reaction furnace 202 for plasma processing the wafer 200.
  • a processing container 203 which constitutes the processing chamber 201 is provided.
  • the processing container 203 is configured of a dome-shaped upper container 210 which is a first container and a bowl-shaped lower container 211 which is a second container.
  • the processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
  • the upper container 210 is formed of quartz (SiO 2 ) which is a nonmetal material
  • the lower container 211 is formed of, for example, aluminum (Al). That is, the inner side wall of the upper container 210 which constitutes a part of the inner side wall of the reaction furnace 202 is made of quartz.
  • a loading / unloading port 245 of the wafer 200 and a gate valve 244 are provided on the lower side wall of the lower container 211.
  • the processing chamber 201 includes a plasma generation space 201 a around which a resonant coil 212 is provided, and a substrate processing space 201 b which communicates with the plasma generation space 201 a and in which the wafer 200 is processed.
  • the plasma generation space 201 a is a space in the processing chamber above the lower end of the resonant coil 212 and below the upper end of the resonant coil 212.
  • the substrate processing space 201 b is a space where the substrate is processed using plasma, and refers to a space below the lower end of the resonant coil 212.
  • a susceptor 217 As a substrate placement unit on which the wafer 200 is placed is disposed.
  • the susceptor 217 is formed of, for example, a nonmetallic material such as aluminum nitride, ceramic, quartz or the like.
  • a heater 217b as a heating mechanism is embedded.
  • the heater 217 b is configured to be able to heat the surface of the wafer 200 to, for example, about 25 ° C. to about 750 ° C. when power is supplied.
  • the impedance adjustment electrode 217 c is provided inside the susceptor 217, and is grounded via the impedance variable mechanism 275.
  • the potential of the wafer 200 can be controlled by changing the impedance of the variable impedance mechanism 275 within a predetermined range.
  • the susceptor 217 is provided with a susceptor elevating mechanism 268 including a drive mechanism for moving the susceptor up and down.
  • a wafer push-up pin 266 is provided on the bottom of the lower container 211, and is configured to pierce through the through hole 217a when the susceptor 217 is lowered.
  • the susceptor 217, the heater 217b, and the electrode 217c mainly constitute a substrate placement unit according to the present embodiment.
  • a gas supply head 236 is provided at the top of the upper container 210.
  • the gas supply head 236 includes a cap-like lid 233, a gas inlet 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239.
  • the gas inlet 234 has a downstream end of an oxygen gas supply pipe 232a for supplying oxygen (O 2 ) gas, a downstream end of a hydrogen gas supply pipe 232b for supplying hydrogen (H 2 ) gas, and an inert gas.
  • An inert gas supply pipe 232 c for supplying argon (Ar) gas is connected so as to be merged.
  • the oxygen gas supply pipe 232a is provided with an O 2 gas supply source 250a, a mass flow controller (MFC) 252a as a flow rate control device, and a valve 253a as an open / close valve.
  • An H 2 gas supply source 250 b, an MFC 252 b, and a valve 253 b are provided in the hydrogen gas supply pipe 232 b.
  • An Ar gas supply source 250c, an MFC 252c, and a valve 253c are provided in the inert gas supply pipe 232c.
  • a valve 243 a is provided on the downstream side where the oxygen gas supply pipe 232 a, the hydrogen gas supply pipe 232 b and the inert gas supply pipe 232 c merge, and is connected to the upstream end of the gas introduction port 234.
  • By adjusting the flow rate of each gas by the MFC 252a, 252b, 252c by opening and closing the valves 253a, 253b, 253c, 243a, O 2 gas, H 2 gas, etc. through the gas supply pipes 232a, 232b, 232c
  • a processing gas such as an inert gas can be supplied into the processing chamber 201.
  • the gas supply according to this embodiment is mainly performed by the gas supply head 236, the oxygen gas supply pipe 232a, the hydrogen gas supply pipe 232b, the inert gas supply pipe 232c, the MFCs 252a, 252b, 252c, and the valves 253a, 253b, 253c, 243a.
  • a system gas supply unit
  • the gas supply head 236, the oxygen gas supply pipe 232a, the MFC 252a, and the valve 253a constitute an oxygen gas supply system (oxygen gas supply unit) according to the present embodiment.
  • a gas exhaust port 235 for exhausting an atmosphere such as a reaction gas from the inside of the processing chamber 201 is provided on the side wall of the lower container 211.
  • the upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235.
  • the gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) valve 242 as a pressure regulator (pressure regulator), a valve 243 b as an open / close valve, and a vacuum pump 246 as an evacuation device.
  • An exhaust unit according to this embodiment is mainly configured by the gas exhaust port 235, the gas exhaust pipe 231, the APC valve 242, and the valve 243b.
  • the vacuum pump 246 may be included in the exhaust unit.
  • a helical resonant coil 212 as a first electrode is provided on the outer periphery of the processing chamber 201, that is, on the outside of the side wall of the upper container 210 so as to surround the processing chamber 201.
  • the resonant coil 212 is provided to be wound around the outer periphery of the plasma generation space 201a, and constitutes an inductive coupling structure.
  • Connected to the resonance coil 212 are an RF sensor 272, a high frequency power supply 273, and a matching unit 274 for matching the impedance and output frequency of the high frequency power supply 273.
  • the high frequency power supply 273 supplies high frequency power to the resonant coil 212.
  • the RF sensor 272 is provided on the output side of the high frequency power supply 273 and monitors information of the supplied high frequency traveling wave or reflected wave. The reflected wave power monitored by the RF sensor 272 is input to the matching unit 274.
  • the resonance coil 212 has a winding diameter, a winding pitch, and a number of windings set so as to resonate at a constant wavelength. That is, the electrical length of the resonant coil 212 is set to a length corresponding to an integral multiple of one wavelength at a predetermined frequency of the high frequency power supplied from the high frequency power supply 273.
  • the resonance coil 212 has an effective cross-sectional area of 50 to 300 mm 2 so that a magnetic field of about 0.01 to 10 gauss can be generated by high frequency power of, for example, 800 kHz to 50 MHz and 0.5 to 5 KW. It is wound about 2 to 60 times around the outer periphery of 210.
  • the frequency of the high frequency power is set to 27.12 MHz
  • the electrical length of the resonant coil 212 is set to a length of one wavelength.
  • Both ends of the resonant coil 212 are electrically grounded, and are grounded via the movable tap 213.
  • Reference numeral 214 in FIG. 1 denotes the other fixed ground.
  • the position of the movable tap 213 is adjusted so as to make the resonance characteristic of the resonance coil 212 substantially equal to that of the high frequency power supply 273.
  • the movable tap 215 constitutes a feed unit between both ends of the resonant coil 212.
  • the shielding plate 223 shields the electric field outside the resonant coil 212 and forms a capacitive component necessary for constructing a resonant circuit with the resonant coil 212.
  • a plasma generation unit according to the present embodiment is mainly configured by the resonance coil 212, the RF sensor 272, and the matching unit 274.
  • a high frequency power supply 273 may be included as a plasma generation unit.
  • the principle of plasma generation of the apparatus according to the present embodiment and the nature of the generated plasma will be described with reference to FIG.
  • the reflected wave power from the resonance coil 212 at the time of plasma generation is detected by the RF sensor 272 and detected.
  • the matching unit 274 corrects the output of the high frequency power source 273 based on the reflected wave power.
  • the matching unit 274 increases or decreases the impedance or the output frequency of the high frequency power source 273 so that the reflected wave power from the resonant coil 212 when the plasma detected in the RF sensor 272 is generated is minimized.
  • the matching unit 274 is configured by a variable capacitor control circuit that corrects the preset impedance, and when controlling the frequency, the matching unit 274 corrects the oscillating frequency of the high frequency power supply 273 set in advance.
  • the resonance coil 212 in the present embodiment high frequency power is supplied at the actual resonance frequency of the resonance coil including plasma (or matching to the actual impedance of the resonance coil including plasma). Since high frequency power is supplied, a standing wave is formed in which the phase voltage and the antiphase voltage are always canceled, and the highest phase current is generated at the electrical midpoint of the coil (node where the voltage is zero). Ru. Therefore, near the electrical midpoint, there is almost no capacitive coupling with the processing chamber wall or the susceptor 217, and a toroidal inductive plasma with a very low electrical potential is formed.
  • the controller 221 as a control unit is configured to control each of the connected components through the signal lines A to F shown in FIG.
  • the controller 221 which is a control unit (control means), is configured as a computer including a CPU 221a, a RAM 221b, a storage device 221c, and an I / O port 221d.
  • the RAM 221b, the storage device 221c, and the I / O port 221d are configured to be able to exchange data with the CPU 221a via the internal bus 221e.
  • the controller 221 is connected to an input / output device 222 configured as, for example, a touch panel or a display.
  • the storage device 221 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
  • the storage device 221c readably stores a control program for controlling the operation of the substrate processing apparatus, and a program recipe in which procedures and conditions of processing steps to be described later are described.
  • the program recipe causes the controller 221 to execute each procedure in the processing steps to be described later and is combined to obtain a predetermined result, and functions as a program.
  • the program recipe, the control program and the like are collectively referred to simply as a program.
  • the term "program" is used in the present specification, when only the program recipe alone is included, only the control program alone may be included, or both of them may be included.
  • the RAM 221 b is configured as a memory area in which a program or data read by the CPU 221 a is temporarily stored.
  • the I / O port 221 d connects the controller 221 and the components constituting the substrate processing apparatus 100 via signal lines A to F.
  • the CPU 221a is configured to read out and execute a control program from the storage device 221c, and to read out a process recipe from the storage device 221c in response to an input of an operation command from the input / output device 222 or the like.
  • the CPU 221a adjusts the opening degree of the APC valve 242, opens / closes the valve 243b, and starts / stops the vacuum pump 246 through the I / O port 221d and the signal line A in accordance with the contents of the read process recipe.
  • the controller 221 installs the above program stored in an external storage device (for example, magnetic tape, magnetic disk such as HDD, optical disk such as CD, magneto-optical disk such as MO, semiconductor memory such as flash memory) 223 into a computer Can be configured by
  • the storage device 221 c and the external storage device 223 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium when the term "recording medium" is used, there may be a case where only the storage device 221c alone is included, a case where only the external storage device 223 alone is included, or both of them.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 223.
  • a first pretreatment process oxygen seasoning process
  • This processing step is performed by the substrate processing apparatus 100 as one step of manufacturing a semiconductor device such as a flash memory, for example.
  • oxidation plasma processing as modification processing to form a silicon oxide film.
  • the oxidation plasma processing step includes a substrate loading step S310 shown in FIG. 5, a temperature raising / evacuation step S320, a reaction gas supply step S330, a plasma processing step S340, a vacuum evacuation step S350, and a substrate unloading step S360.
  • the susceptor lifting mechanism 268 lowers the susceptor 217 so that the wafer push-up pin 266 protrudes beyond the surface of the susceptor 217. Subsequently, the wafer 200 is transferred from the vacuum transfer chamber adjacent to the processing chamber 201 onto the wafer push-up pin 266 using the wafer transfer mechanism. Thereafter, the susceptor lifting mechanism 268 lifts the susceptor 217 to support (mount) the wafer 200 on the upper surface of the susceptor 217.
  • the heater 217 b is preheated, and heats the wafer 200 on the susceptor 217 to a predetermined value within the range of 150 to 750 ° C., for example. Further, while the temperature of the wafer 200 is raised, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the pressure inside the processing chamber 201 is set to a predetermined value. The vacuum pump 246 is operated at least until the substrate unloading step S360 described later is completed.
  • reaction gas supply process S330 Next, supply of a mixed gas of O 2 gas and H 2 gas, which are oxygen-containing gases, into the processing chamber 201 is started as a reaction gas. Specifically, O 2 gas and H 2 gas are supplied into the processing chamber 201 while controlling the flow rate by the MFCs 252 a and 252 b. Further, the opening degree of the APC 242 is adjusted so that the pressure in the processing chamber 201 becomes a predetermined pressure in the range of, for example, 50 to 200 Pa. In this manner, the supply of the O 2 gas and the H 2 gas is continued until the end of the plasma processing step S 340 described later.
  • the high frequency power supplied to the resonant coil 212 is, for example, a predetermined power in the range of 100 to 5000 W. In order to generate plasma discharge stably, it is desirable to be 1000 W or more, and when the power is lower than 100 W, it is difficult to generate plasma discharge stably.
  • Plasma-like O 2 gas and H 2 gas are dissociated to generate reactive species such as oxygen radicals containing oxygen (oxygen active species), oxygen ions, hydrogen radicals containing hydrogen (hydrogen active species), hydrogen ions, etc. .
  • Radicals generated by the induction plasma and ions in a non-accelerated state are supplied to the surface of the wafer 200 held on the susceptor 217.
  • the supplied radicals and ions react with the Si film formed on the surface of the wafer 200 to reform the surface of the Si film into a silicon oxide layer.
  • the power output from the high frequency power supply 273 is stopped, and the plasma discharge in the processing chamber 201 is stopped. Further, the supply of the O 2 gas and the H 2 gas into the processing chamber 201 is stopped.
  • a first pre-treatment step S100 as an oxygen seasoning treatment step in the present embodiment will be described.
  • the oxidation plasma treatment step as the main treatment step S300 particles from the inner wall surface of the treatment vessel 203 of the reaction furnace 202 constituting the treatment chamber 201, particularly the upper vessel 210 formed of quartz.
  • this step is performed at a stage prior to the oxidation plasma processing step which is the main processing step S300.
  • the oxygen seasoning process has not been performed on the substrate processing apparatus 100, or when a predetermined time has elapsed since the previous execution of the oxygen seasoning process, or when the upper container 210 is replaced or cleaned, etc.
  • the inner wall surface of the upper container 210 is in a state in which particles and gas are easily generated by etching with plasma in the main processing step S300, it is desirable to perform as a pre-processing step. More specifically, for example, at the time of start-up or maintenance of the substrate processing apparatus 100, after replacing or cleaning the upper container 210, and the like.
  • the first pre-processing step S100 may be performed as
  • the first pre-processing step S100 includes steps S110 to S160 shown in FIG.
  • the first pre-processing step S100 may be performed in a state where the wafer 200 as a dummy substrate is mounted on the susceptor 217, but an example in which no dummy substrate is used will be particularly described here.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the pressure in the processing chamber 201 is set to a predetermined value.
  • the vacuum pump 246 is operated at least until the substrate unloading step S360 is completed. Further, while the vacuum evacuation is performed, the inside of the processing chamber 201 is heated by supplying power to the heater 217b, thereby enhancing the effect of reforming the inner wall surface of the upper container 210 by plasma processing described later, etc. Can be shortened. As the temperature in the processing chamber 201 is higher, improvement in reforming effect and shortening of processing time can be expected. For example, it is more desirable to set the heater 217 b to a temperature of 600 ° C. or more.
  • O 2 gas as a processing gas is supplied into the processing chamber 201.
  • a gas other than the O 2 gas such as the H 2 gas or the inert gas is not supplied.
  • opening the valve 253a while the flow rates were controlled by MFC252a, it starts supplying O 2 gas into the processing chamber 201.
  • the flow rate of the O 2 gas is set to, for example, a predetermined value within the range of 20 to 2000 sccm, preferably 20 to 1000 sccm. As a more preferable example, it is preferable to set the flow rate of O 2 gas to 1000 sccm.
  • the pressure of the APC valve 242 is set so that the pressure in the processing chamber 201 is lower than the pressure in the main processing step S300, for example, a predetermined pressure in the range of 10 to 300 Pa, preferably 50 to 200 Pa, more preferably about 100 Pa. Adjust the opening degree. If the pressure is lower than 10 Pa, damage may occur due to the etching action of the plasma on the inner wall surface of the upper container 210 in plasma processing step S130 described later. When the pressure exceeds 300 Pa, it is practically difficult to obtain a sufficient effect such as reforming the inner wall surface of the upper container 210 in the plasma processing step S130 described later. As described above, the exhaust of the processing chamber 201 is maintained so as to maintain the predetermined pressure, and the supply of the O 2 gas is continued until the end of the plasma processing step S130 described later.
  • the high frequency power supplied to the resonant coil 212 may be different from the value of the high frequency power supplied in the plasma processing step S340 of the main processing step S300, and is a predetermined power within the range of 100 W or more. In order to enhance the effect such as modification to the inner wall surface made of quartz, for example, 5000 W or more may be used.
  • the O 2 gas supplied into the plasma generation space 201 a is plasma excited.
  • the plasma-like O 2 gas dissociates to form reactive species such as oxygen radicals (oxygen active species) and oxygen ions.
  • the generated reactive species containing oxygen react with the inner wall surface of the upper container 210 formed of quartz to reform the surface layer of the quartz.
  • the quartz on the inner wall surface of the upper container 210 before the first pretreatment step S100 is regularly ordered according to the stoichiometry of silicon dioxide (SiO 2 ) as illustrated in FIG. 7A. It does not have a molecular structure, and is terminated by a hydrogen atom (801), terminated by a hydroxyl group (OH group) (802), or the bond between atoms is lost (803), or an impurity is incorporated. In some cases (804), the bond is distorted (805).
  • the layer on the surface of the quartz is easily scraped off by the plasma treatment in the present treatment step S300, and the scraped quartz is As a particle, it adversely affects the substrate processing.
  • the quartz layer on the inner wall surface of the upper container 210 is in the state as shown in FIG. 7A, hydrogen atoms and OH from the layer on the quartz surface are obtained by plasma treatment in the main treatment step S300. Bases, moisture, impurities and the like are easily desorbed, and the desorbed components adversely affect the substrate processing.
  • the reactive species containing oxygen generated by plasma excitation react with the layer on the surface of the quartz forming the inner wall of the upper container 210, and the crystals thereof As well as improving the properties, reformation so as to remove hydrogen atom termination, OH group termination, impurities and the like. That is, the water on the inner wall surface of upper container 210 is removed, and the layer on the surface of quartz constituting the inner wall (the surface layer of the exposed surface of the inner wall made of quartz) is ordered according to the stoichiometric composition of SiO 2 The layer is reformed so as to have a crystalline structure.
  • removal of water includes removal of OH groups as well as removal of H 2 O.
  • the surface layer (that is, the layer of SiO 2 ) on the exposed surface of the inner wall thus modified is less likely to be scraped off by the plasma treatment in the main processing step S300 because the crystal state is stabilized and the crystal structure is strong. It is possible to suppress that the removed quartz adversely affects the substrate processing as particles. Further, since hydrogen atom termination, OH group termination, impurities and the like have been removed, hydrogen atoms, OH groups, moisture, and the like can be removed from the surface layer of the exposed inner wall surface in this way by plasma treatment in this processing step S300. It is possible to suppress the removal of impurities and the like.
  • Step S140 for determining the number of repetitions
  • the controller 221 determines whether the plasma processing step S130 has been performed a predetermined number of times (for example, 300 times). Here, if it is determined that the predetermined number of times has been performed, a vacuum evacuation step S160 described later is performed. If it is determined that the predetermined number of times has not been performed, the processing gas supply step S120 and the plasma processing step S130 are performed again after the purge step S150 described later is performed.
  • the inside of the processing chamber 201 is evacuated to a vacuum by the vacuum pump 246, and the O 2 gas in the processing chamber 201, the exhaust gas generated in the plasma processing step S130, particles and the like are exhausted (purged) out of the processing chamber 201.
  • the pressure in the process chamber 201 may be maintained at a predetermined value, and may be evacuated so as to lower the pressure during the purge step. Thereafter, when a predetermined purge time, for example, 1 to 2 minutes has elapsed, the processing gas supply step S120 and the plasma processing step S130 are performed again in order.
  • the cycle of executing the plasma discharge in the plasma processing step S130 for 1 to 2 minutes and executing the purge in the purge step S150 for 1 minute or more is repeatedly performed.
  • the plasma processing step S130 is performed until the accumulated time of the plasma discharge is equal to or more than a predetermined time.
  • the cumulative time of the plasma discharge be 10 hours or more.
  • the effect of the present embodiment will be described based on the verification result performed by the inventor in the first pre-processing step S100 using the substrate processing apparatus 100 according to the present embodiment.
  • the right side of FIG. 8 performs the pre-treatment step immediately after maintenance of the substrate processing apparatus 100 (that is, when the quartz layer on the inner wall surface of the upper container 210 is in the state as shown in FIG. 7A). It is a figure which shows distribution of the particle in the wafer surface formed by performing this process step S300 (oxidation plasma process), without being carried out.
  • a size of 0.065 ⁇ m or more and less than 0.080 ⁇ m on the surface of a wafer on which main processing step S300 is performed without performing first pre-processing step S100 immediately after maintenance of substrate processing apparatus 100 There were 1375 particles of particle size, 1195 particles of a size of 0.080 ⁇ m or more and less than 0.150 ⁇ m, and 644 particles of a particle size of 0.150 ⁇ m or more.
  • step S300 as the oxidizing plasma processing is performed after the first pre-processing step S100 has been described, but instead of the main processing step S300, the main processing as nitriding plasma processing described later.
  • step S400 that is, when a nitrogen-containing gas is used instead of the oxygen-containing gas as the reaction gas.
  • the plasma reforming process is performed on the substrate using another gas such as hydrogen or a rare gas as a reaction gas.
  • the substrate processing apparatus is mainly configured to perform a nitriding process on a film formed on the substrate surface.
  • the substrate processing apparatus 100 relates to the first embodiment in that the film formed mainly on the substrate surface is configured to be subjected to a nitriding treatment. It differs from the substrate processing apparatus 100. That is, in the first embodiment, an example in which O 2 gas and H 2 gas are plasma-excited and plasma processing of the substrate is shown as the main processing step S300, but in the main processing step S400 of the second embodiment, O Instead of the two gases, a nitrogen (N 2 ) gas is supplied into the processing chamber 201, and the N 2 gas and the H 2 gas are plasma-excited to perform the nitride plasma processing on the substrate. In this case, the substrate processing apparatus 100 including an N 2 gas supply source 250 a ′ is used instead of the O 2 gas supply source 250 a.
  • N 2 nitrogen
  • the processing step according to the present embodiment includes a second pre-processing step (nitrogen seasoning processing step) S200 and a main processing step (nitride processing substrate processing step) for nitriding the substrate for the second product And S400.
  • the processing steps according to the present embodiment are the same as in FIGS. 4 to 6 in the first embodiment, and in the present embodiment, only parts different from the first embodiment will be described below.
  • the Si film formed on the surface of the wafer 200 which is a substrate for the second product, is nitrided as a modification treatment to form a silicon nitride film (SiN film).
  • the main processing step S400 is a substrate loading step S310, a temperature raising / evacuating step S320, a reaction gas supply step S430, a plasma processing step S440, a vacuum evacuation step S350, and a substrate unloading step S360 shown in FIG. It consists of That is, the reaction gas supply step S430 and the plasma treatment step S440 are mainly different from the main treatment step S300.
  • the wafer 200 is carried into the processing chamber 201 (S310), the temperature of the wafer 200 carried into the processing chamber 201 is raised, and the inside of the processing chamber 201 is evacuated while the temperature of the wafer 200 is raised. (S320). However, in the temperature raising / evacuating step S320, the temperature is raised and exhausted so as to be the temperature and the pressure in the processing chamber in the following reaction gas supply step S430.
  • inductive plasma is excited in the plasma generation space 201a to which N 2 gas and H 2 gas are supplied.
  • Plasma-like N 2 gas and H 2 gas are dissociated to generate reactive species such as nitrogen radicals containing nitrogen (nitrogen active species), nitrogen ions, hydrogen radicals containing hydrogen (hydrogen activation species), hydrogen ions, etc. .
  • the radicals generated by the induction plasma and the ions in a non-accelerated state are supplied to the surface of the wafer 200, react with the silicon layer formed on the surface of the wafer 200, and modify the Si layer into a SiN layer.
  • the output of the power from the high frequency power supply 273 is stopped, and the plasma discharge in the processing chamber 201 is stopped. Further, the supply of N 2 gas and H 2 gas into the processing chamber 201 is stopped.
  • the inside of the processing chamber 201 is evacuated (S350), and when the pressure in the processing chamber 201 reaches a predetermined pressure, the wafer 200 is carried out of the processing chamber 201 (S360), and the nitriding plasma processing is performed as the main processing step S400. finish.
  • the second pre-processing step S200 as the nitrogen seasoning step will be described.
  • nitriding is formed on the substrate by nitriding the processing container 203 constituting the processing chamber 201, in particular, the exposed surface of the upper container 210 formed of quartz.
  • this step is performed at the previous step of the main processing step S400.
  • the flow for performing the second pre-processing step S200 before the main processing step S400 is shown, but after performing the main processing step S400, the post-processing provided for the next nitriding plasma processing step You may implement 2nd pre-processing process S200 as a process.
  • the second pre-processing step S200 can be performed in a state where the wafer 200 as a dummy substrate is mounted on the susceptor 217, but here an example in which the dummy substrate is not used In particular.
  • the pre-processing step S200 includes the temperature raising / evacuating step S110, the processing gas supply step S220, the plasma processing step S230, the number of repetitions determination step S140, the purge step S150, and It comprises an evacuation step S160. That is, the processing gas supply step S220 and the plasma processing step S230 mainly differ from the first pre-processing step S100.
  • the inside of the processing chamber 201 is evacuated and the inside of the processing chamber 201 is heated to a predetermined value within a range of 150 to 750 ° C. (temperature raising / evacuating step S110) .
  • evacuation is performed so as to be the pressure in the processing chamber in the following processing gas supply step S220.
  • N 2 gas is supplied into the processing chamber 201 as a processing gas.
  • gases other than N 2 gas are not supplied into the processing chamber 201.
  • the valve 253a is opened, and supply of N 2 gas into the processing chamber 201 is started while controlling the flow rate with the MFC 252a.
  • the flow rate of the N 2 gas is set to a predetermined value of, for example, 50 to 500 sccm, more preferably 100 to 300 sccm.
  • the opening degree of the APC valve 242 is adjusted so that the pressure in the processing chamber 201 becomes a predetermined pressure of 3 Pa or less, preferably 0.5 to 3 Pa, more preferably 0.5 to 1 Pa.
  • Pulsma treatment step S230 When the pressure in the processing chamber 201 is stabilized, application of high frequency power to the resonant coil 212 is started.
  • high frequency power is supplied from the high frequency power source 273 at a predetermined power within a range of 100 to 1500 W, for example. Even if the magnitude of the high-frequency power applied to the resonant coil 212 in the second pre-processing step S200 is smaller than that in the first pre-processing step S100, it is possible to obtain a sufficient seasoning effect.
  • the induction plasma is excited in the plasma generation space 201a to which N 2 gas is supplied, and the plasma-like N 2 gas is dissociated to contain nitrogen, such as nitrogen radicals (nitrogen active species), nitrogen ions, etc.
  • nitrogen such as nitrogen radicals (nitrogen active species), nitrogen ions, etc.
  • a reactive species is generated.
  • the generated reactive species containing nitrogen reacts with the inner wall surface of the upper vessel 210 formed of quartz to reform the surface layer of the quartz.
  • the reactive species containing nitrogen generated by plasma excitation is reacted with the quartz layer on the inner wall surface of the upper vessel 210, as shown in FIG. 9B.
  • the surface layer of the exposed surface of the inner wall of the upper container 210 is reformed into a layer of SiN.
  • the surface layer of the exposed surface of the inner wall formed of quartz is coated with the SiN layer.
  • nitriding (SiNization) of the exposed surface of the inner wall of the upper container 210 becomes insufficient.
  • a silicon oxynitride (SiON) layer is formed on the exposed surface of
  • oxygen atoms (O) are easily released from the SiON layer formed on the exposed surface of the inner wall during the nitriding plasma processing which is the main processing step S400.
  • the released O is taken into the SiN film formed on the substrate to raise the oxygen concentration in the film or adhere to the substrate to cause particles.
  • the plasma processing step S230 ends.
  • the controller 221 determines whether or not the plasma processing step S230 has been performed a predetermined number of times (for example, 1000 times) (determination step S140 of the number of repetitions). Here, if it is determined that the predetermined number of times has been performed, a vacuum evacuation step S160 described later is performed. If it is determined that the predetermined number of times has not been performed, the processing gas supply step S220 and the plasma processing step S230 are performed again after the purge step S150 described later is performed.
  • a predetermined number of times for example, 1000 times
  • Purge step S150 As in the first pre-processing step S100, the inside of the processing chamber 201 is evacuated, and the N 2 gas in the processing chamber 201, the exhaust gas generated in the plasma processing step, particles and the like are discharged out of the processing chamber 201. Thereafter, when a predetermined purge time, for example, 1 to 2 minutes has elapsed, the processing gas supply step S220 and the plasma processing step S230 are again sequentially performed.
  • the cycle of performing plasma discharge in the plasma processing step S230 for 1 to 2 minutes per cycle and repeatedly performing the purge in the purge step S150 for 1 minute or more is repeated, and the accumulated time of plasma discharge is predetermined time
  • the plasma treatment process S230 is performed until it becomes above.
  • the inside of the processing chamber 201 is evacuated to a vacuum (evacuating step S160), and then the pressure in the processing chamber 201 is adjusted to the same pressure as the vacuum transfer chamber adjacent to the processing chamber 201, and the second pre-processing step S200 is performed. finish.
  • FIG. 11 is a view showing the result of measurement of the degree of mixing of oxygen in the SiN film formed on the substrate in the main processing step S400 using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Comparative Example 1 shown in FIG. 11 is an analysis of the SiN film formed on the substrate by performing the main processing step S400 without performing the second pre-processing step S200, and the oxygen content is 26.1. %Met.
  • Comparative Example 2 shown in FIG. 11 is an analysis of the SiN film when the pressure in the processing chamber 201 is set to 5 Pa and the second pre-processing step S200 is performed, and the oxygen content rate is 23.7%. there were.
  • the present example shown in FIG. 11 is an analysis of the SiN film when the pressure in the processing chamber 201 is set to 1 Pa and the second pre-processing step S200 is performed, and the oxygen content rate is 20.1%. there were.
  • the oxygen content is 25.6. %Met. That is, the content of oxygen taken into the SiN film can be reduced by performing the second pre-processing step S200, and in particular, when the second pre-processing step S200 is performed at a low pressure of around 1 Pa, the processing is performed. It was confirmed that the oxygen content can be reduced by 5% or more as compared with the case where no oxygen is contained.
  • the process according to the present embodiment includes a first pre-processing step S100, a second pre-processing step S200, and a main processing step S400 for performing nitriding plasma processing on a second product substrate. Are configured to be performed in that order.
  • the substrate processing apparatus 100 ′ includes, in addition to the gas supply system of the substrate processing apparatus according to the first embodiment, N 2 gas in the processing chamber
  • N 2 gas in the processing chamber A nitrogen gas supply pipe 232 d, an N 2 gas supply source 250 d, an MFC 252 d, and a valve 253 d are provided as a nitrogen gas supply system (nitrogen gas supply unit) for supplying the inside of the gas 201.
  • a mixed gas of N 2 gas and H 2 gas which is a nitrogen-containing gas, is processed as a reaction gas mainly by the gas supply head 236, the hydrogen-containing gas 232b, the nitrogen gas supply pipe 232d, the MFCs 252b and 252d, and the valves 253b and 253d.
  • a nitrogen-containing gas supply system (nitrogen-containing gas supply unit) for supplying into the chamber 201 is configured.
  • the first pre-processing step S100 is performed as a pre-stage of the second pre-processing step S200.
  • the pressure adjustment step pressure adjustment control for achieving the same pressure as the vacuum transfer chamber
  • the first pre-processing step S100 and the second pre-processing step S200 are performed by replacing the temperature raising / evacuating step S110 in the subsequent second pre-processing step S200 with the evacuating step S160 in the first pre-processing step S100.
  • the second pre-processing step S200 is performed.
  • the surface layer of the exposed surface composed of SiO 2 already modified by the first pre-processing step S100 is further formed into a layer of SiN. Reform.
  • FIG. 13 shows the flow of performing the first pre-processing step S100 and the second pre-processing step S200 before the main processing step S400, after performing the main processing step S400, the next main processing is performed.
  • the first pre-processing step S100 and the second pre-processing step S200 may be sequentially performed as a post-processing step included in the step S400.
  • the first pre-processing step S100 the crystalline state to the exposed surface of the inner wall of the upper container 210 to form a SiO 2 layer is stabilized, further the SiO 2 layer by a second pre-processing step S200 Since the SiN layer is reformed into a SiN layer, it is possible to form a dense SiN layer whose crystal state is more stable than in the case where only the second pre-processing step S200 is performed. Therefore, the effects of suppressing the release of O in the main processing step S400 and making the exposed surface difficult to be scraped off by plasma treatment can be further enhanced.
  • the nitriding treatment in the second pre-processing step S200 is promoted without being disturbed by these, and a denser SiN is formed. It is also possible to form a layer and to shorten the time of the nitriding seasoning process.
  • the reactive species containing oxygen used in the first pretreatment step S100 has higher energy than the reactive species containing nitrogen used in the second pretreatment step S200. Therefore, compared to the second pretreatment step S200, the first pretreatment step S100 is more effective in stabilizing the crystal state of the exposed surface of the inner wall with respect to quartz and removing hydrogen atom termination and the like from the surface layer. Therefore, as compared with the case where only the second pre-processing step S200 is performed, the effect resulting from the stabilization of the crystalline state and the removal of hydrogen atom termination and the like from the surface layer can be further enhanced.
  • the above-mentioned embodiment is suitably used also as a maintenance method of a substrate processing apparatus.
  • the generation of particles and the like generated by the etching on the inner surface of the reaction furnace can be reduced by the plasma, and the quality of the semiconductor device can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Plasma Technology (AREA)

Abstract

内側壁の少なくとも一部が石英で構成された反応炉内に酸素ガスを供給する工程と、反応炉内に供給された酸素ガスをプラズマ励起する工程と、プラズマ励起された酸素ガスにより、石英で構成された内側壁の露出面から水酸基を除去するとともに、露出面の表層を改質する第1工程と、反応炉内に窒素ガスを供給する工程と、反応炉内に供給された窒素ガスをプラズマ励起する工程と、プラズマ励起された窒素ガスにより、プラズマ励起された酸素ガスにより改質された露出面の表層を二酸化ケイ素から窒化ケイ素の層に改質する第2工程と、を行う。これにより、処理ガスをプラズマ励起することにより基板を処理する際に、プラズマにより反応炉内面へのエッチングにより生じるパーティクル等の発生を低減し、半導体装置の品質を向上させる。

Description

半導体装置の製造方法、基板処理装置及びプログラム
本発明は、半導体装置の製造方法、基板処理装置及びプログラムに関する。
半導体装置のパターンを形成する際、製造工程の一工程として、基板に酸化処理や窒化処理等の所定の処理を行う工程が実施される場合がある。
例えば、特許文献1には、プラズマ励起した処理ガスを用いて基板上に形成されたパターン表面を改質処理することが開示されている。
特開2014-75579号公報
しかし、プラズマを用いた基板処理装置では、基板への酸化処理等の際に、しばしばプラズマにより反応炉内面へのエッチングが起こることがある。このエッチングにより生じたパーティクルや、エッチングにより反応炉内面から脱離した成分は、半導体装置の品質を低下させる原因となることがある。
本発明の一態様によれば、内側壁の少なくとも一部が石英で構成された反応炉内に酸素ガスを供給する工程と、前記反応炉内に供給された酸素ガスをプラズマ励起する工程と、プラズマ励起された酸素ガスにより、石英で構成された前記内側壁の露出面から水酸基を除去するとともに、前記露出面の表層を改質する第1工程と、前記反応炉内に窒素ガスを供給する工程と、前記反応炉内に供給された窒素ガスをプラズマ励起する工程と、プラズマ励起された窒素ガスにより、プラズマ励起された酸素ガスにより改質された前記露出面の表層を二酸化ケイ素から窒化ケイ素の層に改質する第2工程と、を有する半導体装置の製造方法が提供される。
本発明によれば、処理ガスをプラズマ励起することにより基板を処理する際に、プラズマにより反応炉内面へのエッチングにより生じるパーティクル等の発生を低減し、半導体装置の品質を向上させる技術が提供される。
本発明の一実施形態に係る基板処理装置の概略断面図である。 本発明の一実施形態に係る基板処理装置のプラズマ生成原理を説明する説明図である。 本発明の一実施形態に係る基板処理装置の制御部の構成図である。 本発明の一実施形態に係る基板処理装置の処理工程を示すフロー図である。 本発明の一実施形態に係る処理工程における本処理工程を示すフロー図である。 本発明の一実施形態に係る処理工程における事前処理工程を示すフロー図である。 (A)は、酸素シーズニング処理を行わない場合の反応炉の内壁表面の状態を説明する図であって、(B)は、酸素シーズニング処理を行った場合の反応炉の内壁表面の状態を説明する図である。 酸素シーズニング処理を行わないで基板処理を行った場合と、酸素シーズニング処理を行った後に基板処理を行った場合の基板表面に付着したパーティクルの数を比較する図である。 (A)は、反応炉の内壁表面に対して窒素シーズニング処理を行う様子を説明する図であって、(B)は、窒素シーズニング処理により反応炉の内壁表面がSiN層でコーティングされた状態を説明する図である。 高圧と低圧で窒素シーズニング処理を行った場合の反応炉の内壁表面の状態の違いを説明する図である。 異なる窒素シーズニング処理条件それぞれにおける、基板上のSiN膜中の酸素混入状態を測定した結果を示す図である。 本発明の第3実施形態に係る基板処理装置の概略断面図である。 本発明の第3実施形態に係る処理工程を示すフロー図である。
<本発明の第1実施形態>
(1)基板処理装置の構成
本発明の第1実施形態に係る基板処理装置について、図1~図3を用いて以下に説明する。本実施形態に係る基板処理装置は、主に基板面上に形成された膜に対して酸化処理を行うように構成されている。
(処理室)
基板処理装置100は、ウエハ200をプラズマ処理する反応炉202を備えている。反応炉202には、処理室201を構成する処理容器203が設けられている。処理容器203は、第1の容器であるドーム型の上側容器210と、第2の容器である碗型の下側容器211とにより構成されている。上側容器210が下側容器211の上に被さることにより、処理室201が形成される。上側容器210は、非金属材料である石英(SiO2)で形成されており、下側容器211は、例えばアルミニウム(Al)で形成されている。すなわち、反応炉202の内側壁の一部を構成する上側容器210の内側壁は石英で構成されている。
また、下側容器211の下部側壁には、ウエハ200の搬入出口245とゲートバルブ244が設けられている。
処理室201は、周囲に共振コイル212が設けられているプラズマ生成空間201aと、プラズマ生成空間201aに連通し、ウエハ200が処理される基板処理空間201bを有する。プラズマ生成空間201aは処理室の内、共振コイル212の下端より上方であって、且つ共振コイル212の上端より下方の空間を言う。一方、基板処理空間201bは、基板がプラズマを用いて処理される空間であって、共振コイル212の下端より下方の空間を言う。
(サセプタ)
処理室201の底側中央には、ウエハ200を載置する基板載置部としてのサセプタ217が配置されている。サセプタ217は例えば窒化アルミニウム、セラミックス、石英等の非金属材料から形成されている。
サセプタ217の内部には、加熱機構としてのヒータ217bが埋め込まれている。ヒータ217bは、電力が供給されると、ウエハ200表面を例えば25℃から750℃程度まで加熱することができるように構成されている。
インピーダンス調整電極217cは、サセプタ217内部に設けられており、インピーダンス可変機構275を介して接地されている。インピーダンス可変機構275のインピーダンスを所定の範囲内で変化させることによってウエハ200の電位を制御できる。
サセプタ217には、サセプタを昇降させる駆動機構を備えるサセプタ昇降機構268が設けられる。下側容器211の底面にはウエハ突上げピン266が設けられ、サセプタ217が下降したときに、貫通孔217aを突き抜けるように構成されている。主に、サセプタ217及びヒータ217b、電極217cにより、本実施形態に係る基板載置部が構成されている。
(ガス供給部)
上側容器210の上部には、ガス供給ヘッド236が設けられている。ガス供給ヘッド236は、キャップ状の蓋体233と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備えている。
ガス導入口234には、酸素(O2)ガスを供給する酸素ガス供給管232aの下流端と、水素(H2)ガスを供給する水素ガス供給管232bの下流端と、不活性ガスとしてのアルゴン(Ar)ガスを供給する不活性ガス供給管232cと、が合流するように接続されている。酸素ガス供給管232aには、O2ガス供給源250a、流量制御装置としてのマスフローコントローラ(MFC)252a、開閉弁としてのバルブ253aが設けられている。水素ガス供給管232bには、H2ガス供給源250b、MFC252b、バルブ253bが設けられている。不活性ガス供給管232cには、Arガス供給源250c、MFC252c、バルブ253cが設けられている。酸素ガス供給管232aと水素ガス供給管232bと不活性ガス供給管232cとが合流した下流側には、バルブ243aが設けられ、ガス導入口234の上流端に接続されている。バルブ253a、253b、253c、243aを開閉させることによって、MFC252a、252b、252cによりそれぞれのガスの流量を調整しつつ、ガス供給管232a、232b、232cを介して、O2ガス、H2ガス、不活性ガス等の処理ガスを処理室201内へ供給できるように構成されている。
 主に、ガス供給ヘッド236、酸素ガス供給管232a、水素ガス供給管232b、不活性ガス供給管232c、MFC252a,252b,252c、バルブ253a,253b,253c,243aにより、本実施形態に係るガス供給系(ガス供給部)が構成されている。特に、ガス供給ヘッド236、酸素ガス供給管232a、MFC252a、バルブ253aにより、本実施形態に係る酸素ガス供給系(酸素ガス供給部)が構成されている。
(排気部)
 下側容器211の側壁には、処理室201内から反応ガス等の雰囲気を排気するガス排気口235が設けられている。ガス排気口235には、ガス排気管231の上流端が接続されている。ガス排気管231には、圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ242、開閉弁としてのバルブ243b、真空排気装置としての真空ポンプ246が設けられている。主に、ガス排気口235、ガス排気管231、APCバルブ242、バルブ243bにより、本実施形態に係る排気部が構成されている。尚、真空ポンプ246を排気部に含めても良い。
(プラズマ生成部)
 処理室201の外周部、すなわち上側容器210の側壁の外側には、処理室201を囲うように、第1の電極としての、螺旋状の共振コイル212が設けられている。共振コイル212は、プラズマ生成空間201aの外周に巻回するように設けられ、誘導結合構造を構成している。共振コイル212には、RFセンサ272、高周波電源273、高周波電源273のインピーダンスや出力周波数の整合を行う整合器274が接続される。
 高周波電源273は、共振コイル212に高周波電力を供給するものである。RFセンサ272は高周波電源273の出力側に設けられ、供給される高周波の進行波や反射波の情報をモニタするものである。RFセンサ272によってモニタされた反射波電力は整合器274に入力される。
 共振コイル212は、所定の波長の定在波を形成するため、一定の波長で共振するように巻径、巻回ピッチ、巻数が設定される。すなわち、共振コイル212の電気的長さは、高周波電源273から供給される高周波電力の所定周波数における1波長の整数倍に相当する長さに設定される。
 共振コイル212は、例えば、800kHz~50MHz、0.5~5KWの高周波電力によって0.01~10ガウス程度の磁場を発生し得る様に、50~300mm2の有効断面積を有し、上側容器210の外周側に2~60回程度巻回される。本実施形態では、高周波電力の周波数を27.12MHz、共振コイル212の電気的長さを1波長の長さに設定している。
共振コイル212の両端は電気的に接地され、可動タップ213を介して接地される。図1中の符号214は他方の固定グランドを示す。可動タップ213は、共振コイル212の共振特性を高周波電源273と略等しくするように位置が調整される。さらに、共振コイル212のインピーダンスを微調整するため、共振コイル212の両端の間には、可動タップ215によって給電部が構成される。
遮蔽板223は、共振コイル212の外側の電界を遮蔽すると共に、共振回路を構成するのに必要な容量成分を共振コイル212との間に形成する。
主に、共振コイル212、RFセンサ272、整合器274により、本実施形態に係るプラズマ生成部が構成されている。尚、プラズマ生成部として高周波電源273を含めても良い。
ここで、本実施形態に係る装置のプラズマ生成原理および生成されるプラズマの性質について図2を用いて説明する。本実施形態においては、プラズマ発生時の共振コイル212における共振のずれを電源側で補償するため、プラズマが発生した際の共振コイル212からの反射波電力をRFセンサ272において検出し、検出された反射波電力に基づいて整合器274が高周波電源273の出力を補正する。
具体的には、整合器274は、RFセンサ272において検出されたプラズマが発生した際の共振コイル212からの反射波電力が最小となる様に、高周波電源273のインピーダンス或いは出力周波数を増加または減少させる。インピーダンスを制御する場合、整合器274は、予め設定されたインピーダンスを補正する可変コンデンサ制御回路により構成され、周波数を制御する場合、整合器274は、予め設定された高周波電源273の発振周波数を補正する周波数制御回路により構成される。
かかる構成により、本実施形態における共振コイル212では、プラズマを含む当該共振コイルの実際の共振周波数による高周波電力が供給されるので(或いは、プラズマを含む当該共振コイルの実際のインピーダンスに整合するように高周波電力が供給されるので)、位相電圧と逆位相電圧が常に相殺される状態の定在波が形成され、コイルの電気的中点(電圧がゼロのノード)に最も高い位相電流が生起される。従って、電気的中点の近傍においては、処理室壁やサセプタ217との容量結合が殆どなく、電気的ポテンシャルの極めて低いドーナツ状の誘導プラズマが形成される。
(制御部)
制御部としてのコントローラ221は、図1に示された信号線A~Fを通じて、接続された各構成をそれぞれ制御するように構成されている。
図3に示すように、制御部(制御手段)であるコントローラ221は、CPU221a、RAM221b、記憶装置221c、I/Oポート221dを備えたコンピュータとして構成されている。RAM221b、記憶装置221c、I/Oポート221dは、内部バス221eを介して、CPU221aとデータ交換可能なように構成されている。コントローラ221には、例えばタッチパネルやディスプレイ等として構成された入出力装置222が接続されている。
記憶装置221cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置221c内には、基板処理装置の動作を制御する制御プログラムや、後述する処理工程の手順や条件などが記載されたプログラムレシピ等が読み出し可能に格納されている。プログラムレシピは、後述する処理工程における各手順をコントローラ221に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM221bは、CPU221aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域として構成されている。
I/Oポート221dは、図3に示す通り、コントローラ221と基板処理装置100を構成する各構成とを、信号線A~Fを介して接続している。
CPU221aは、記憶装置221cからの制御プログラムを読み出して実行すると共に、入出力装置222からの操作コマンドの入力等に応じて記憶装置221cからプロセスレシピを読み出すように構成されている。CPU221aは、読み出されたプロセスレシピの内容に沿うように、I/Oポート221d及び信号線Aを通じてAPCバルブ242の開度調整動作、バルブ243bの開閉動作、及び真空ポンプ246の起動・停止を、信号線Bを通じてサセプタ昇降機構268の昇降動作を、信号線Cを通じてヒータ電力調整機構276によるヒータ217bへの供給電力量調整動作や、インピーダンス可変機構275によるインピーダンス値調整動作を、信号線Dを通じてゲートバルブ244の開閉動作を、信号線Eを通じてRFセンサ272、整合器274及び高周波電源273の動作を、信号線Fを通じてMFC252a~252cによる各種ガスの流量調整動作、及びバルブ253a~253c、243aの開閉動作、等を制御するように構成されている。
コントローラ221は、外部記憶装置(例えば、磁気テープ、HDD等の磁気ディスク、CD等の光ディスク、MOなどの光磁気ディスク、フラッシュメモリ等の半導体メモリ)223に格納された上述のプログラムをコンピュータにインストールすることにより構成することができる。記憶装置221cや外部記憶装置223は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に記録媒体ともいう。本明細書において、記録媒体という言葉を用いた場合は、記憶装置221c単体のみを含む場合、外部記憶装置223単体のみを含む場合、または、その両方を含む場合が有る。なお、コンピュータへのプログラムの提供は、外部記憶装置223を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)処理工程
次に、第1実施形態に係る処理工程について、主に図4~図6を用いて説明する。本実施形態に係る処理工程は、O2ガスを用いて処理室201内のシーズニング処理を行う第1事前処理工程(酸素シーズニング処理工程)S100と、酸化プラズマ処理を行って製品用基板を処理する本処理工程(第1製品用基板処理工程)S300とから構成される。この処理工程は、例えばフラッシュメモリ等の半導体デバイスの製造工程の一工程として、基板処理装置100により実施される。
本実施形態における本処理工程S300では、実施例として、第1製品用基板であるウエハ200の表面上に形成されたシリコン(Si)膜に改質処理としての酸化プラズマ処理を施し、シリコン酸化膜を形成する。以下で説明する本実施形態に係る処理工程において、基板処理装置100を構成する各部の動作は、コントローラ221により制御される。
(2-1)本処理工程(第1製品用基板処理工程)
本処理工程S300としての酸化プラズマ処理工程について説明する。酸化プラズマ処理工程は、図5に示す基板搬入工程S310、昇温・真空排気工程S320、反応ガス供給工程S330、プラズマ処理工程S340、真空排気工程S350、基板搬出工程S360から構成される。
(基板搬入工程S310)
まず、サセプタ昇降機構268がサセプタ217を下降させて、ウエハ突上げピン266がサセプタ217表面よりも突出した状態とする。続いて、処理室201に隣接する真空搬送室から、ウエハ搬送機構を用いてウエハ突上げピン266上にウエハ200を移載する。その後、サセプタ昇降機構268がサセプタ217を上昇させることにより、ウエハ200はサセプタ217の上面に支持(載置)される。
(昇温・真空排気工程S320)
続いてウエハ200の昇温を行う。ヒータ217bは予め加熱されており、例えば150~750℃の範囲内の所定値にサセプタ217上のウエハ200を加熱する。また、ウエハ200の昇温を行う間、真空ポンプ246により処理室201内を真空排気し、処理室201内の圧力を所定の値とする。真空ポンプ246は、少なくとも後述の基板搬出工程S360が終了するまで作動させておく。
(反応ガス供給工程S330)
次に、反応ガスとして、酸素含有ガスであるO2ガスとH2ガスの混合ガスの処理室201内への供給を開始する。具体的には、MFC252a及び252bにて流量制御しながら、処理室201内へO2ガス及びH2ガスを供給する。また、処理室201内の圧力が、例えば50~200Paの範囲内の所定圧力となるように、APC242の開度を調整する。このように、後述のプラズマ処理工程S340の終了時までO2ガス及びH2ガスの供給を継続する。
(プラズマ処理工程S340)
処理室201内の圧力が安定したら、共振コイル212に対して高周波電源273からRFセンサ272を介して、高周波電力の印加を開始する。共振コイル212に供給する高周波電力は、例えば100~5000Wの範囲内の所定の電力とする。プラズマ放電を安定的に生じさせるためには1000W以上であることが望ましく、電力が100Wより低い場合、プラズマ放電を安定的に生じさせることが難しい。
これにより、O2ガス及びH2ガスが供給されているプラズマ生成空間201a内に高周波電界が形成され、誘導プラズマが励起される。プラズマ状のO2ガス及びH2ガスは解離し、酸素を含む酸素ラジカル(酸素活性種)や酸素イオン、水素を含む水素ラジカル(水素活性種)や水素イオン、等の反応種が生成される。
サセプタ217上に保持されているウエハ200の表面には、誘導プラズマにより生成されたラジカルと加速されない状態のイオンが供給される。供給されたラジカル及びイオンはウエハ200の表面に形成されているSi膜と反応し、Si膜表面をシリコン酸化層へと改質する。
その後、所定の処理時間、例えば10~300秒が経過したら高周波電源273からの電力出力を停止し、処理室201内におけるプラズマ放電を停止する。また、O2 ガス及びH2ガスの処理室201内への供給を停止する。
(真空排気工程S350)
その後、処理室201内のO2ガスやH2ガス、これらガスの反応により発生した排ガス等を処理室201外へと排気する。その後、APCバルブ242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室と同じ圧力に調整する。
(基板搬出工程S360)
処理室201内が所定の圧力となったら、サセプタ217をウエハ200の搬送位置まで下降させ、ウエハ突上げピン266上のウエハ200を、ウエハ搬送機構を用いて処理室201外へ搬出する。以上により本処理工程S300としての酸化プラズマ処理工程を終了する。
(2-2)第1事前処理工程(酸素シーズニング処理工程)
次に、本実施形態における酸素シーズニング処理工程としての第1事前処理工程S100について説明する。第1事前処理工程S100は、本処理工程S300としての酸化プラズマ処理工程において、処理室201を構成する反応炉202の処理容器203、特に石英で形成されている上側容器210の内壁表面からのパーティクルやガスの発生を抑制し、酸化プラズマ処理工程後の第1製品用ウエハの品質や歩留まりを向上させるために、本処理工程S300である酸化プラズマ処理工程の前段階で行う。
例えば、基板処理装置100に対して酸素シーズニング処理が行われたことがない場合や、前回の酸素シーズニング処理の実行から一定時間が経過している場合、上側容器210を交換やクリーニングした場合、等、上側容器210の内壁表面が本処理工程S300のプラズマによるエッチングによってパーティクルやガスを発生させ易い状態になっている時に、事前処理工程として行うことが望ましい。より具体的には、基板処理装置100の立ち上げ時やメンテナンス時、上側容器210の交換やクリーニングを行った後、などである。
なお、図4においては、第1事前処理工程S100を本処理工程S300の前に実施するフローを示しているが、本処理工程S300を行った後に、次の本処理工程に備えた後処理工程としてこの第1事前処理工程S100を実施してもよい。
第1事前処理工程S100は、図6に示す工程S110~S160から構成される。第1事前処理工程S100は、ダミー基板としてのウエハ200をサセプタ217上に載置した状態で行うこともできるが、ここではダミー基板を用いない例について特に説明する。
(昇温・真空排気工程S110)
真空ポンプ246により処理室201内を真空排気し、処理室201内の圧力を所定の値とする。真空ポンプ246は少なくとも基板搬出工程S360が終了するまで作動させておく。また、真空排気を行う間、ヒータ217bに電力を供給することで処理室201内を加熱することにより、後述するプラズマ処理による上側容器210の内壁表面の改質等の効果を高めたり、処理時間を短縮したりすることができる。処理室201内の温度が高いほど、改質効果向上や処理時間短縮が期待されるため、例えばヒータ217bは600℃以上の温度に設定することがより望ましい。
(処理ガス供給工程S120)
次に、処理ガスとしてのO2ガスを処理室201内へ供給する。本実施形態では、O2ガスのみを単独で処理室201内へ供給し、H2ガスや不活性ガス等のO2ガス以外のガスは供給しない。具体的には、バルブ253aを開け、MFC252aにて流量制御しながら、処理室201内へO2ガスの供給を開始する。このとき、O2ガスの流量を、例えば20~2000sccm、好ましくは20~1000sccmの範囲内の所定値とする。より好適な例として、O2ガスの流量を1000sccmとすることが好ましい。
また、処理室201内の圧力が、本処理工程S300における圧力より低い、例えば10~300Pa、好ましくは50~200Paの範囲内の所定圧力、より好ましくは約100Paとなるように、APCバルブ242の開度を調整する。圧力が10Paより低い場合、後述のプラズマ処理工程S130において、プラズマによる上側容器210の内壁表面へのエッチング作用によりダメージが発生する可能性がある。また、圧力が300Paを超える場合、後述のプラズマ処理工程S130において、上側容器210の内壁表面への改質等の十分な効果を得ることが現実的に困難である。このように、処理室201内を所定の圧力に維持するように排気しつつ、後述のプラズマ処理工程S130の終了時までO2ガスの供給を継続する。
(プラズマ処理工程S130)
処理室201内の圧力が安定したら、共振コイル212に対して高周波電源273から高周波電力の印加を開始する。共振コイル212に供給する高周波電力は、本処理工程S300のプラズマ処理工程S340において供給する高周波電力の値と異ならせてもよく、100W以上の範囲内の所定の電力であって、上側容器210の石英で構成された内壁表面への改質等の効果をより高めるため、例えば5000W以上としてもよい。
これにより、プラズマ生成空間201a内に供給されたO2ガスがプラズマ励起される。プラズマ状のO2ガスは解離し、酸素を含む、酸素ラジカル(酸素活性種)や酸素イオン等の反応種が生成される。発生した酸素を含む反応種は、石英で形成された上側容器210の内壁表面と反応し、その表層である石英の層を改質する。
第1事前処理工程S100を行う前の上側容器210の内壁表面の石英は、図7(A)で図示されているように、二酸化ケイ素(SiO2)の化学量論組成に従った規則的な分子構造を有しておらず、水素原子で終端されていたり(801)、水酸基(OH基)で終端されていたり(802)、原子同士の結合が欠損していたり(803)、不純物を取り込んでいたり(804)、結合が歪んでいたり(805)する。上側容器210の内壁表面の石英の層が図7(A)で示すような状態となっていると、本処理工程S300におけるプラズマ処理によって石英の表面の層が削り取られ易く、削り取られた石英がパーティクルとして基板処理に悪影響を与えてしまうこととなる。また同様に、上側容器210の内壁表面の石英の層が図7(A)で示すような状態となっていると、本処理工程S300におけるプラズマ処理によって、石英の表面の層から水素原子やOH基、水分や不純物などが脱離し易く、脱離したこれらの成分が基板処理に悪影響を与えてしまう。
そこで、プラズマ処理工程S130では、図7(B)で図示するように、プラズマ励起により生成した酸素を含む反応種と上側容器210の内壁を構成する石英の表面の層とを反応させ、その結晶性を改善するとともに、水素原子終端やOH基終端、不純物などを除去するように改質する。すなわち、上側容器210の内壁表面の水分を除去し、内壁を構成する石英の表面の層(石英で構成された内壁の露出面の表層)を、SiO2の化学量論組成に従った規則的な結晶構造を有する層となるように改質する。ここで、水分を除去するとは、H2Oの除去の他、OH基の除去も含む。
 このように改質された内壁の露出面の表層(すなわちSiO2の層)は、結晶状態が安定化され結晶構造が強固になっているため、本処理工程S300におけるプラズマ処理によって削り取られにくくなっており、削り取られた石英がパーティクルとして基板処理に悪影響を与えることを抑制できる。また、水素原子終端やOH基終端、不純物などが除去されているため、このように改質された内壁露出面の表層から、本処理工程S300におけるプラズマ処理によって、水素原子やOH基、水分や不純物などが脱離するのを抑制することができる。
その後、所定の処理時間、例えば1~2分が経過したら、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ励起を停止する。また、バルブ253aを閉めて、O2ガスの処理室201内への供給を停止する。以上により、プラズマ処理工程S130が終了する。
(繰り返し回数の判定工程S140)
処理室201内におけるプラズマ放電、及びO2ガスの処理室201内への供給を停止した後、コントローラ221は、プラズマ処理工程S130が所定回数(例えば300回)実行されたか否かを判定する。ここで、所定回数が実行されたと判定された場合、後述する真空排気工程S160が実行される。所定回数が実行されていないと判定された場合、後述するパージ工程S150を実行した後、処理ガス供給工程S120及びプラズマ処理工程S130が再度実行される。
(パージ工程S150)
真空ポンプ246により処理室201内を真空排気し、処理室201内のO2ガスや、プラズマ処理工程S130により発生した排ガス、パーティクル等を処理室201外へと排出(パージ)する。処理室201内の圧力は所定の値に維持してもよく、パージ工程の間、圧力を低くするように真空排気してもよい。その後、所定のパージ時間、例えば1~2分が経過したら、再び、処理ガス供給工程S120及びプラズマ処理工程S130を順番に実行する。
以上のように、プラズマ処理工程S130におけるプラズマ放電を1~2分実行し、パージ工程S150におけるパージを1分以上実行するというサイクル(即ち、プラズマ放電とパージの間欠的な実行)を繰り返し行って、プラズマ放電の累積時間が所定時間以上となるまでプラズマ処理工程S130を行う。内壁の石英の露出面の表層に対する上述の改質効果を十分に得るためには、プラズマ放電の累積時間を10時間以上とすることが望ましい。
(真空排気工程S160)
パージ工程S150と同様、処理室201内を真空排気する。その後、APCバルブ242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室と同じ圧力に調整し、第1事前処理工程S100を終了する。
(第1実施形態の効果)
本実施形態の効果について、本実施形態に係る基板処理装置100を用いて、第1事前処理工程S100により発明者が行った検証結果を基に説明する。図8の右側は、基板処理装置100のメンテナンス直後(すなわち、上側容器210の内壁表面の石英の層が図7(A)で示すような状態となっている場合)に、事前処理工程を実施せずに本処理工程S300(酸化プラズマ処理)を行って形成されたウエハ表面におけるパーティクルの分布を示す図である。左側は、メンテナンス直後に、事前処理工程として第1事前処理工程S100(酸素シーズニング処理)を72時間実施した後、本処理工程である酸化プラズマ処理をウエハに対して1枚ずつ繰り返し行った場合であって、1枚目のウエハ表面におけるパーティクルの分布と、75枚目のウエハ表面におけるパーティクルの分布を示す図である。
図8に示すように、基板処理装置100のメンテナンス直後に、第1事前処理工程S100を実施せずに本処理工程S300を行ったウエハの表面には、0.065μm以上0.080μm未満の大きさのパーティクルが1375個、0.080μm以上0.150μm未満の大きさのパーティクルが1195個、0.150μm以上の大きさのパーティクルが644個付着していた。
一方、第1事前処理工程S100を実施した後に本処理工程S300を行った1枚目のウエハ200の表面には、0.065μm以上0.080μm未満の大きさのパーティクルが4個、0.080μm以上0.150μm未満の大きさのパーティクルが2個、0.150μm以上の大きさのパーティクルが2個付着していた。また、75枚目のウエハ200の表面にはほとんどパーティクルが付着していなかった。すなわち、本処理工程S300を行う前に第1事前処理工程S100を行うことで、本処理工程S300を複数回繰り返す場合であっても、パーティクルの発生を低減できた。
 なお、本実施形態では、第1事前処理工程S100の後に、酸化プラズマ処理としての本処理工程S300を行う例について説明したが、本処理工程S300に替えて、後述する窒化プラズマ処理としての本処理工程S400を行う場合(すなわち、反応ガスとして酸素含有ガスに替えて窒素含有ガスを用いる場合)であっても、同様の効果が期待できる。また、水素や希ガス等の他のガスを反応ガスとして基板に対するプラズマ改質処理を行う場合であっても同様である。
<本発明の第2実施形態>
続いて、本発明の第2実施形態について説明する。本実施形態に係る基板処理装置は、主に基板面上に形成された膜に対して窒化処理を行うように構成されている。
(1)基板処理装置の構成
 本実施形態に係る基板処理装置100は、主に基板面上に形成された膜に対して窒化処理を行うように構成されている点で第1実施形態に係る基板処理装置100と異なる。すなわち、第1実施形態では、本処理工程S300として、O2ガスとH2ガスをプラズマ励起して基板のプラズマ処理を行う例を示したが、第2実施形態の本処理工程S400では、O2ガスに替えて窒素(N2)ガスを処理室201内に供給し、N2ガスとH2ガスをプラズマ励起して基板に対して窒化プラズマ処理を実行する。この場合、O2ガス供給源250aに替えてN2ガス供給源250a´を備える基板処理装置100を用いる。
(2)処理工程
本実施形態に係る処理工程は、第2事前処理工程(窒素シーズニング処理工程)S200と、第2製品用基板を窒化プラズマ処理する本処理工程(第2製品用基板処理工程)S400とから構成される。本実施形態に係る処理工程は、第1実施形態における図4~6と同様であり、本実施形態において、第1の実施形態と異なる部分のみを以下に説明する。
(2-1)本処理工程(第2製品用基板処理工程)
本処理工程S400では、第2製品用基板であるウエハ200の表面上に形成されたSi膜に改質処理としての窒化処理を施し、シリコン窒化膜(SiN膜)を形成する。本処理工程S400は、第1実施形態と同様に図5に示す基板搬入工程S310、昇温・真空排気工程S320、反応ガス供給工程S430、プラズマ処理工程S440、真空排気工程S350、基板搬出工程S360から構成される。すなわち、本処理工程S300とは、主に反応ガス供給工程S430及びプラズマ処理工程S440が異なる。
まず、ウエハ200を処理室201内に搬入し(S310)、処理室201内に搬入されたウエハ200の昇温を行って、ウエハ200の昇温を行う間、処理室201内を真空排気する(S320)。ただし、昇温・真空排気工程S320では、以下の反応ガス供給工程S430における温度及び処理室内圧力となるように昇温及び排気を行う。
(反応ガス供給工程S430)
次に、反応ガスとして、窒素含有ガスであるN2ガスとH2ガスの混合ガスの処理室201内への供給を開始する。具体的には、MFC252a及び252bにて流量制御しながら、処理室201内へN2ガス及びH2ガスの供給を開始する。N2ガスとH2ガスの流量比は、N2ガス:H2ガス=1:10~10:1の範囲内の所定の比率であって、例えば1:1とする。また、処理室201内の圧力が、1~250Paの範囲内の所定の圧力であって、好ましくは1~5Paとなるように、APCバルブ242の開度を調整する。このように、後述のプラズマ処理工程S440の終了時までN2ガス及びH2ガスの供給を継続する。
(プラズマ処理工程S440)
処理室201内の圧力が安定したら、共振コイル212に対して高周波電力の印加を開始する。本実施形態では、本処理工程S300のプラズマ処理工程S340と同様の周波数及び電力の高周波電力を共振コイル212に対して印加する。
これにより、N2ガス及びH2ガスが供給されているプラズマ生成空間201a内に誘導プラズマが励起される。プラズマ状のN2ガス及びH2ガスは解離し、窒素を含む窒素ラジカル(窒素活性種)や窒素イオン、水素を含む水素ラジカル(水素活性種)や水素イオン、等の反応種が生成される。誘導プラズマにより生成されたラジカルと加速されない状態のイオンはウエハ200の表面に供給され、ウエハ200の表面に形成されているシリコン層と反応し、Si層をSiN層へと改質する。
その後、所定の処理時間、例えば10~300秒が経過したら、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ放電を停止する。また、N2 ガス及びH2ガスの処理室201内への供給を停止する。
その後、処理室201内を真空排気し(S350)、処理室201内が所定の圧力となったら、ウエハ200を処理室201外へ搬出し(S360)、本処理工程S400としての窒化プラズマ処理を終了する。
(2-2)第2事前処理工程(窒素シーズニング処理工程)
次に、窒素シーズニング処理工程としての第2事前処理工程S200について説明する。第2事前処理工程S200は、本処理工程S400において、処理室201を構成する処理容器203、特に石英で形成されている上側容器210の露出面を窒化させることで、基板上に形成される窒化膜への酸素成分の混入を抑制し、窒化プラズマ処理工程後の第2製品用ウエハの品質や歩留まりを向上させるために、本処理工程S400の前段階で行う。
なお、本実施形態においては第2事前処理工程S200を本処理工程S400の前に実施するフローを示しているが、本処理工程S400を行った後に、次の窒化プラズマ処理工程に備えた後処理工程として第2事前処理工程S200を実施してもよい。また、第1事前処理工程S100と同様に、第2事前処理工程S200はダミー基板としてのウエハ200をサセプタ217上に載置した状態で行うこともできるが、ここではダミー基板を用いない例について特に説明する。
事前処理工程S200は、第1事前処理工程S100と同様に、図6に示す昇温・真空排気工程S110、処理ガス供給工程S220、プラズマ処理工程S230、繰り返し回数の判定工程S140、パージ工程S150、真空排気工程S160から構成される。すなわち、第1事前処理工程S100とは、主に処理ガス供給工程S220及びプラズマ処理工程S230が異なる。
まず、第1事前処理工程S100と同様に、処理室201内を真空排気するとともに、処理室201内を例えば150~750℃の範囲内の所定値に加熱する(昇温・真空排気工程S110)。ただし、昇温・真空排気工程S110では、以下の処理ガス供給工程S220における処理室内圧力となるように排気を行う。
(処理ガス供給工程S220)
次に、処理ガスとしてN2ガスのみを処理室201内へ供給する。本実施形態ではN2ガス以外のガスは処理室201内に供給しない。具体的には、バルブ253aを開け、MFC252aにて流量制御しながら、処理室201内へN2ガスの供給を開始する。このとき、N2ガスの流量を例えば50~500sccm、より好ましくは100~300sccmの所定の値とする。また、処理室201内の圧力が3Pa以下、好ましくは0.5~3Pa、より好ましくは0.5~1Paの所定の圧力となるように、APCバルブ242の開度を調整して処理室201内の排気を制御する。なお、0.5Pa未満の条件下では、プラズマ処理工程S230において生成される窒素を含む反応種の量が少なくなり過ぎるため、内壁を構成する石英の表面の層に対する窒化効果を得ることが困難となる。このように、処理室201内の圧力を維持しつつ、後述のプラズマ処理工程S230の終了時までN2ガスの供給を継続する。
(プラズマ処理工程S230)
処理室201内の圧力が安定したら、共振コイル212に対して高周波電力の印加を開始する。本実施形態では、高周波電源273から、例えば100~1500Wの範囲内の所定の電力で高周波電力を供給する。第2事前処理工程S200において共振コイル212に印加される高周波電力の大きさは、第1事前処理工程S100におけるものよりも小さくしても、十分なシーズニングによる効果を得ることができる。
これにより、N2ガスが供給されているプラズマ生成空間201a内に誘導プラズマが励起され、プラズマ状のN2ガスは解離して、窒素を含む、窒素ラジカル(窒素活性種)や窒素イオン等の反応種が生成される。発生した窒素を含む反応種は、石英で形成された上側容器210の内壁表面と反応し、その表層である石英の層を改質する。
プラズマ処理工程S230では、図9(A)で図示するように、プラズマ励起により生成した窒素を含む反応種と上側容器210の内壁表面の石英の層とを反応させ、図9(B)で図示するように、上側容器210の内壁の露出面の表層を、SiNの層に改質する。換言すると、石英で形成された内壁の露出面の表層を、SiN層でコーティングする。
このとき、図10で図示するように、高圧(具体的には3Paを超える圧力)で窒素シーズニング処理を行うと、上側容器210の内壁の露出面の窒化(SiN化)が不十分となり、内壁の露出面に酸窒化シリコン(SiON)層が形成される。これにより、本処理工程S400である窒化プラズマ処理時に内壁の露出面に形成されたSiON層から酸素原子(O)が放出されやすくなる。この放出されたOは、基板上に形成されるSiN膜に取り込まれて膜中の酸素濃度を上昇させたり、基板に付着してパーティクルの原因となる。
一方、3Pa以下、好ましくは0.5~3Pa、より好ましくは0.5~1Paの低圧で処理を行うと、上側容器210の内壁の露出面に強固なSiN層が形成される。これにより、本処理工程S400において酸素原子が放出されるのを抑制することができる。すなわち、基板上に形成されるSiN膜にOが取り込まれるのを抑制したり、放出されるOが基板に付着してパーティクルの原因となることを抑制することができる。
その後、所定の処理時間、例えば1~2分が経過したら、高周波電源273からの電力の出力を停止する。また、N2ガスの処理室201内への供給を停止する。以上により、プラズマ処理工程S230が終了する。
その後、コントローラ221は、プラズマ処理工程S230が所定回数(例えば1000回)実行されたか否かを判定する(繰り返し回数の判定工程S140)。ここで、所定回数が実行されたと判定された場合、後述する真空排気工程S160が実行される。所定回数が実行されていないと判定された場合、後述するパージ工程S150を実行した後、処理ガス供給工程S220及びプラズマ処理工程S230が再度実行される。
(パージ工程S150)
第1事前処理工程S100と同様に、処理室201内を真空排気し、処理室201内のN2ガスや、プラズマ処理工程により発生した排ガス、パーティクル等を処理室201外へと排出する。その後、所定のパージ時間、例えば1~2分が経過したら、再び、処理ガス供給工程S220及びプラズマ処理工程S230を順番に実行する。
以上のように、1サイクル当たり、プラズマ処理工程S230におけるプラズマ放電を1~2分実行し、パージ工程S150におけるパージを1分以上実行するというサイクルを繰り返し行って、プラズマ放電の累積時間が所定時間以上となるまでプラズマ処理工程S230を行う。内壁の石英の露出面の表層に対する上述の改質効果を十分に得るためには、プラズマ放電の累積時間を16時間以上とすることが望ましい。
続いて、処理室201内を真空排気し(真空排気工程S160)、その後、処理室201内の圧力を処理室201に隣接する真空搬送室と同じ圧力に調整し、第2事前処理工程S200を終了する。
(本実施形態の効果)
本実施形態の効果について、発明者が行った検証結果を基に説明する。図11は、本処理工程S400において基板上に形成されたSiN膜中の酸素の混入度合を、X線光電子分光法(XPS)を用いて測定した結果を示す図である。
図11に示す比較例1は、第2事前処理工程S200を行わずに、本処理工程S400を行って基板上に形成されたSiN膜を分析したものであって、酸素含有率は26.1%であった。また、図11に示す比較例2は、処理室201内の圧力を5Paとして第2事前処理工程S200を行った場合のSiN膜を分析したものであって、酸素含有率は23.7%であった。また、図11に示す本実施例は、処理室201内の圧力を1Paとして第2事前処理工程S200を行った場合のSiN膜を分析したものであって、酸素含有率は20.1%であった。また、図11に示す比較例3は、処理室201内の圧力を0.5Paとして第2事前処理工程S200を行った場合のSiN膜を分析したものであって、酸素含有率は25.6%であった。つまり、第2事前処理工程S200を行うことにより、SiN膜中に取り込まれる酸素の含有量を低減でき、特に1Pa前後の低圧で第2事前処理工程S200を行った場合には、当該処理を行わない場合と比較して5%以上酸素含有量が低減できることが確認された。
<本発明の第3実施形態>
本発明の第3実施形態について説明する。本実施形態に係る処理工程は、図13に示すように、第1事前処理工程S100と、第2事前処理工程S200と、第2製品用基板に対して窒化プラズマ処理を行う本処理工程S400とを当該順に行うように構成されている。
(1)基板処理装置の構成
本実施形態に係る基板処理装置100´は、図12に示すように、第1実施形態に係る基板処理装置のガス供給系に加えて、N2ガスを処理室201内に供給するための窒素ガス供給系(窒素ガス供給部)として、窒素ガス供給管232d、N2ガス供給源250d、MFC252d、バルブ253dが設けられている。また、主にガス供給ヘッド236、水素含有ガス232b、窒素ガス供給管232d、MFC252b,252d、バルブ253b,253dにより、反応ガスとして窒素含有ガスであるN2ガスとH2ガスの混合ガスを処理室201内への供給する窒素含有ガス供給系(窒素含有ガス供給部)が構成されている。
(2)処理工程
続いて、本実施形態に係る各工程について、特に第1及び第2実施形態の場合と異なる点を説明する。なお、本実施形態の工程はいずれも基板処理装置100´において実行される。
(2-1)第1事前処理工程(酸素シーズニング処理工程)
最初に、第1事前処理工程S100を第2事前処理工程S200の前段階として行う。ここで、本工程中の真空排気工程S160における調圧工程(真空搬送室と同じ圧力にするための調圧制御)は省略することができる。また、後続の第2事前処理工程S200における昇温・真空排気工程S110を、第1事前処理工程S100における真空排気工程S160で代替することにより、第1事前処理工程S100と第2事前処理工程S200を連続的に実行することができる。この場合、特に処理室内の昇温工程を省略もしくは短縮することができる。
(2-2)第2事前処理工程(窒素シーズニング処理工程)
第1事前処理工程S100が終了した後、第2事前処理工程S200を行う。本実施形態における第2事前処理工程S200では、第2実施形態の場合と異なり、第1事前処理工程S100によって既に改質されたSiO2で構成される露出面の表層を、更にSiNの層に改質する。
(2-3)本処理工程(第2製品用基板処理工程)
第2事前処理工程S200が終了した後、本処理工程S400を行う。本実施形態における本処理工程S400では、第2実施形態の場合と同様、第2製品用基板であるウエハ200の表面上に形成されたSi膜に改質処理としての窒化プラズマ処理を施し、SiN膜を形成する。
なお、図13においては、第1事前処理工程S100と第2事前処理工程S200を本処理工程S400の前に実施するフローを示しているが、本処理工程S400を行った後に、次の本処理工程S400に備えた後処理工程としてこの第1事前処理工程S100と第2事前処理工程S200とを順に実施してもよい。
(本実施形態の効果)
本実施形態によれば、第1事前処理工程S100によって、上側容器210の内壁の露出面に結晶状態が安定化されたSiO2層を形成し、更に第2事前処理工程S200によってこのSiO2層をSiN層に改質するので、第2事前処理工程S200のみを行う場合に比べて、より結晶状態が安定した緻密なSiN層を形成することができる。したがって、本処理工程S400においてOが放出されるのを抑制したり、プラズマ処理によって露出面が削り取られにくくしたりするという効果をより高めることができる。
また、第1事前処理工程S100において、内壁の露出面から水素原子終端やOH基終端、不純物などが除去されているため、窒化プラズマ処理を行う本処理工程S400においても、内壁露出面の表層から水素原子などが脱離するのを抑制することができる。
特に、第1事前処理工程S100において、内壁の露出面から水素原子終端などが除去されているため、第2事前処理工程S200における窒化処理がこれらに阻害されることなく促進され、より緻密なSiN層を形成したり、窒化シーズニング処理の時間を短縮したりすることもできる。
また、第1事前処理工程S100で用いられる酸素を含む反応種は、第2事前処理工程S200で用いられる窒素を含む反応種に比べて高いエネルギーを有している。そのため、第1事前処理工程S100は第2事前処理工程S200に比べて、内壁の露出面の石英に対する結晶状態の安定化や、表層から水素原子終端などを除去する効果がより高い。したがって、第2事前処理工程S200のみを行う場合に比べて、結晶状態の安定化や表層からの水素原子終端などが除去されることに起因する効果をより高めることができる。
<本発明の他の実施形態>
以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上述の実施形態では、反応炉202として、石英で形成されたドーム型の上側容器210と下側容器211から構成される処理容器を用いて説明したが、これに限らず、石英で形成された反応管を用いる構成にも適用できる。
なお、上述の実施形態は、基板処理装置のメンテナンス方法としても好適に用いられる。
本発明によれば、処理ガスをプラズマ励起することにより基板を処理する際に、プラズマにより反応炉内面へのエッチングにより生じるパーティクル等の発生を低減し、半導体装置の品質を向上させることができる。
  100…基板処理装置
  200…ウエハ
  201…処理室
  202…反応炉
  217…サセプタ

Claims (15)

  1.  内側壁の少なくとも一部が石英で構成された反応炉内に酸素ガスを供給する工程と、
     前記反応炉内に供給された酸素ガスをプラズマ励起する工程と、
     プラズマ励起された酸素ガスにより、石英で構成された前記内側壁の露出面から水酸基を除去するとともに、前記露出面の表層を改質する第1工程と、
     前記反応炉内に窒素ガスを供給する工程と、
     前記反応炉内に供給された窒素ガスをプラズマ励起する工程と、
     プラズマ励起された窒素ガスにより、プラズマ励起された酸素ガスにより改質された前記露出面の表層を二酸化ケイ素から窒化ケイ素の層に改質する第2工程と、
     を有する半導体装置の製造方法。
  2.  前記第2工程の後、前記反応炉内に基板を搬入する工程と、
     前記反応炉内に窒素含有ガスを供給する工程と、
     前記反応炉内に供給された前記窒素含有ガスをプラズマ励起する工程と、
     プラズマ励起された前記窒素含有ガスにより、前記基板の表面を処理する工程と、
     を有する請求項1に記載の半導体装置の製造方法。
  3. 前記第1工程および第2工程は、前記反応炉内に基板が収容されていない状態で実行される、請求項1に記載の半導体装置の製造方法。
  4. 前記反応炉内に酸素ガスを供給する工程では、酸素ガス以外のガスを前記反応炉内に供給せず、
    前記反応炉内に供給された酸素ガスをプラズマ励起する工程では、酸素を含む活性種が生成される、請求項1に記載の半導体装置の製造方法。
  5. 前記反応炉内に窒素ガスを供給する工程では、窒素ガス以外のガスを前記反応炉内に供給せず、
    前記反応炉内に供給された窒素ガスをプラズマ励起する工程では、窒素を含む活性種が生成される、請求項1に記載の半導体装置の製造方法。
  6. 前記第2工程では、前記反応炉内の圧力は0.5Pa以上3Pa以下の所定の圧力である、請求項1に記載の半導体装置の製造方法。
  7. 前記第2工程では、前記反応炉内の圧力は0.5Pa以上1Pa以下の所定の圧力である、請求項6に記載の半導体装置の製造方法。
  8. 前記第1工程の後に前記反応炉内を排気する第1排気工程をさらに有し、
    前記酸素ガスをプラズマ励起する工程と前記第1排気工程とを含むサイクルを複数回繰り返し行う、請求項1に記載の半導体装置の製造方法。
  9. 前記第2工程の後に前記反応炉内を排気する第2排気工程をさらに有し、
    前記窒素ガスをプラズマ励起する工程と前記第2排気工程とを含むサイクルを複数回繰り返し行う、請求項8に記載の半導体装置の製造方法。
  10. 前記反応炉内に供給された酸素ガスをプラズマ励起する工程および前記反応炉内に供給された窒素ガスをプラズマ励起する工程では、前記反応炉の外側に設けられた電極に高周波電力を印加することにより前記酸素ガスおよび前記窒素ガスをそれぞれ励起する、請求項1に記載の半導体装置の製造方法。
  11. 前記反応炉内に供給された窒素ガスをプラズマ励起する工程において前記電極に印加される高周波電力の大きさは、前記反応炉内に供給された酸素ガスをプラズマ励起する工程において前記電極に印加される高周波電力の大きさよりも小さい、請求項10に記載の半導体装置の製造方法。
  12. 前記反応炉は石英で形成された処理容器により構成されている、請求項1に記載の半導体装置の製造方法。
  13. 前記第1工程では、プラズマ励起された酸素ガスにより前記露出面の表層を二酸化ケイ素の化学量論組成となるように改質する、請求項1に記載の半導体装置の製造方法。
  14.  処理ガスがプラズマ励起されるプラズマ生成空間と、前記プラズマ生成空間に連通する基板処理空間と、を有する内側壁の少なくとも一部が石英で構成された反応炉と、
     前記プラズマ生成空間の外周に巻回するように設けられるコイルを備える誘導結合構造と、
     前記コイルに高周波電力を供給する高周波電源と、
     前記プラズマ生成空間に酸素ガスを供給する酸素ガス供給部と、
     前記プラズマ生成空間に窒素ガスを供給する窒素ガス供給部と、
     前記プラズマ生成空間に窒素含有ガスを供給する窒素含有ガス供給部と、
     前記コイルに高周波電力を供給して前記プラズマ生成空間に供給された酸素ガスをプラズマ励起する処理と、プラズマ励起された酸素ガスにより前記反応炉の前記内側壁の露出面から水酸基を除去するとともに、石英で構成された前記露出面の表層を改質する第1処理と、前記コイルに高周波電力を供給して前記プラズマ生成空間に供給された窒素ガスをプラズマ励起する処理と、プラズマ励起された窒素ガスにより、プラズマ励起された酸素ガスにより改質された前記露出面の表層を二酸化ケイ素から窒化ケイ素の層に改質する第2処理と、を行うように、前記高周波電源、前記酸素ガス供給部、前記窒素ガス供給部、および前記窒素含有ガス供給部を制御するよう構成される制御部と、
     を有する基板処理装置。
  15. 内側壁の少なくとも一部が石英で構成された基板処理装置の反応炉内に酸素ガスを供給する手順と、
     前記反応炉内に供給された酸素ガスをプラズマ励起する手順と、
     プラズマ励起された酸素ガスにより、石英で構成された前記内側壁の露出面から水酸基を除去するとともに、前記露出面の表層を改質する第1手順と、
     前記反応炉内に窒素ガスを供給する手順と、
     前記反応炉内に供給された窒素ガスをプラズマ励起する手順と、
     プラズマ励起された窒素ガスにより、プラズマ励起された酸素ガスにより改質された前記露出面の表層を二酸化ケイ素から窒化ケイ素の層に改質する第2手順と、
     をコンピュータにより前記基板処理装置に実行させるプログラム。
PCT/JP2018/009964 2017-09-12 2018-03-14 半導体装置の製造方法、基板処理装置及びプログラム WO2019053925A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174543 2017-09-12
JP2017174543 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019053925A1 true WO2019053925A1 (ja) 2019-03-21

Family

ID=65722499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009964 WO2019053925A1 (ja) 2017-09-12 2018-03-14 半導体装置の製造方法、基板処理装置及びプログラム

Country Status (2)

Country Link
TW (1) TWI704616B (ja)
WO (1) WO2019053925A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883620B2 (ja) * 2019-07-30 2021-06-09 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法およびプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315681A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 半導体の製造方法
JP2002164338A (ja) * 2000-11-24 2002-06-07 Ulvac Japan Ltd 多孔質sog膜の疎水化処理方法
WO2005074016A1 (ja) * 2004-01-28 2005-08-11 Tokyo Electron Limited 基板処理装置の処理室清浄化方法、基板処理装置、および基板処理方法
JP2006339253A (ja) * 2005-05-31 2006-12-14 Toshiba Corp プラズマ処理装置及びプラズマ処理方法
WO2008146805A1 (ja) * 2007-05-29 2008-12-04 Tokyo Electron Limited プラズマ窒化処理におけるチャンバ内の前処理方法、プラズマ処理方法、およびプラズマ処理装置
JP2010097993A (ja) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc プラズマ処理方法
JP2011216593A (ja) * 2010-03-31 2011-10-27 Tokyo Electron Ltd プラズマ窒化処理方法
JP2013187341A (ja) * 2012-03-08 2013-09-19 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089818A1 (ja) * 2004-03-19 2005-09-29 Japan Science And Technology Agency マイクロ波プラズマ滅菌方法および装置
KR20220002721A (ko) * 2013-11-21 2022-01-06 엔테그리스, 아이엔씨. 플라즈마 시스템에서 사용되는 챔버 구성요소를 위한 표면 코팅
KR101853362B1 (ko) * 2015-12-28 2018-04-30 세메스 주식회사 기판 처리 장치의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315681A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 半導体の製造方法
JP2002164338A (ja) * 2000-11-24 2002-06-07 Ulvac Japan Ltd 多孔質sog膜の疎水化処理方法
WO2005074016A1 (ja) * 2004-01-28 2005-08-11 Tokyo Electron Limited 基板処理装置の処理室清浄化方法、基板処理装置、および基板処理方法
JP2006339253A (ja) * 2005-05-31 2006-12-14 Toshiba Corp プラズマ処理装置及びプラズマ処理方法
WO2008146805A1 (ja) * 2007-05-29 2008-12-04 Tokyo Electron Limited プラズマ窒化処理におけるチャンバ内の前処理方法、プラズマ処理方法、およびプラズマ処理装置
JP2010097993A (ja) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc プラズマ処理方法
JP2011216593A (ja) * 2010-03-31 2011-10-27 Tokyo Electron Ltd プラズマ窒化処理方法
JP2013187341A (ja) * 2012-03-08 2013-09-19 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
TWI704616B (zh) 2020-09-11
TW201913808A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
KR101444765B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
WO2011125703A1 (ja) プラズマ窒化処理方法
JP2013080907A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
TWI823615B (zh) 清潔方法、半導體裝置之製造方法、程式及基板處理裝置
CN108834429B (zh) 半导体装置的制造方法、记录介质以及基板处理装置
JP6436886B2 (ja) 半導体装置の製造方法及びプログラム
US20230307295A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2019053806A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2019053925A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP7165743B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
JP4647499B2 (ja) 成膜方法およびコンピュータ可読記録媒体
JP6903040B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7393376B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置
WO2023053262A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7222946B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7117354B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7170890B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
JP7203869B2 (ja) 基板処理装置、半導体装置の製造方法、およびプログラム
JP7203950B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置及びプログラム
JP2023050747A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
CN116895506A (zh) 维护方法、半导体装置的制造方法、记录介质及处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP