WO2019052538A1 - 信号处理的方法和装置 - Google Patents

信号处理的方法和装置 Download PDF

Info

Publication number
WO2019052538A1
WO2019052538A1 PCT/CN2018/105762 CN2018105762W WO2019052538A1 WO 2019052538 A1 WO2019052538 A1 WO 2019052538A1 CN 2018105762 W CN2018105762 W CN 2018105762W WO 2019052538 A1 WO2019052538 A1 WO 2019052538A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
control information
uplink data
uplink control
Prior art date
Application number
PCT/CN2018/105762
Other languages
English (en)
French (fr)
Inventor
冯淑兰
沈秀勇
刘劲楠
张兴炜
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18855871.2A priority Critical patent/EP3672342B1/en
Priority to EP21205932.3A priority patent/EP4013162A1/en
Priority to BR112020005024-5A priority patent/BR112020005024A2/pt
Publication of WO2019052538A1 publication Critical patent/WO2019052538A1/zh
Priority to US16/817,789 priority patent/US11259308B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for signal processing.
  • the traditional cellular wireless communication system includes a network device and a terminal device.
  • the transmission from the terminal device to the network device is called uplink transmission, and the transmission from the network device to the terminal device is called downlink transmission, and which uplink time-frequency resources are sent by the terminal device.
  • uplink transmission usually specified by a network device.
  • the network device sends an uplink scheduling signaling, and the uplink scheduling signaling notifies the terminal device at which time-frequency resources to send uplink data, and after receiving the uplink scheduling signaling, the terminal device generates an uplink according to the indication of the uplink scheduling signaling.
  • the data packet is sent with uplink data in the scheduled time-frequency resource.
  • the network device also sends some Channel State Information-Reference Signal (CSI-RS), and the terminal device measures the reference signals to obtain channel state information, including a channel quality indicator.
  • CSI-RS Channel State Information-Reference Signal
  • the CQI, the Rank Indication (RI), and the Channel Precoding Matrix Indicator (PMI) the terminal device sends the channel state measurement feedback information to the network device by using the uplink signal.
  • the terminal receives uplink scheduling information in the nth subframe, and transmits uplink data in the (n+4)th subframe or the (n+4)th subframe, and the uplink data processing delay is about 4 subframes, each having a duration of 1 ms; for channel measurement, the nth subframe transmits a CSI-RS, and the (n+4)th subframe or the (n+4)th subframe transmits the CSI-RS for the CSI-RS.
  • Channel measurement feedback information If the uplink data and the channel measurement feedback information are sent in the same subframe, the resources that are partially scheduled for the uplink data transmission are left to transmit the channel measurement feedback information, which is called the uplink data and the channel measurement feedback information.
  • the terminal needs to perform puncturing and rate matching on the uplink data. Therefore, before performing uplink data processing, the terminal needs to know whether to reserve resources for channel measurement feedback in the scheduled uplink resources.
  • the terminal knows whether there is a multiplex of uplink data and channel measurement feedback about 4 ms in advance. Therefore, before performing uplink rate matching, the terminal can know whether it needs to be on the scheduled uplink transmission.
  • Channel measurement feedback reserves resources, and channel measurement feedback information processing does not cause problems in uplink data processing. Therefore, in the traditional cellular system, when the network device is scheduled, the impact of the channel measurement feedback delay on the uplink transmission is not particularly considered.
  • next generation wireless communication systems such as the New Radio (NR) system
  • NR New Radio
  • various demands for low latency have been proposed.
  • the implementation of low latency is mainly reflected in two aspects, for example, low delay of data transmission and low delay of channel quality feedback.
  • LTE Long Term Evolution
  • NR New Radio Access Network
  • the terminal device is required to send the uplink quickly after receiving the scheduling signaling of the network.
  • Data to reduce data transmission delay is as low as several symbols, assuming N2 symbols.
  • the CSI-RS is sent by the network device to trigger the terminal device to perform periodic or aperiodic measurement on the channel state, and report the channel state measurement information to the network device as soon as possible to reduce the delay of the channel quality feedback.
  • the channel measurement feedback information processing delay may be several OFDM symbols to several time slots according to different measurement requirements, assuming that the processing delay is K1 symbol. If the network device sends the uplink scheduling signaling in the time slot n, the scheduling signaling requires the terminal device to send the uplink data in the time slot n. On the other hand, the network device also sends the CSI-RS in the time slot n, and the scheduling terminal device is in time.
  • the channel n feedback information of the CSI-RS is multiplexed with the data of the time slot n, and the terminal device needs to complete a part of the uplink processing after completing the channel measurement feedback information processing, for example, the uplink rate matching parameter calculation and The uplink data rate matching needs to be obtained after the channel measurement feedback information is obtained, so that the uplink processing delay is increased, the uplink transmission delay is increased, the spectrum efficiency is lowered, and the terminal device cannot be completed before the uplink transmission required by the network device. Uplink processing causes uplink transmission to fail.
  • the present application provides a method and apparatus for signal processing, which can improve the accuracy of configuring time-frequency resources for uplink data and/or channel state measurement information of a terminal device by a network device, thereby reducing data transmission delay.
  • a method for signal processing includes: acquiring capability information of a terminal device, where the capability information includes a processing delay of uplink data of the terminal device and a processing delay of uplink control information of the terminal device. Determining, according to the capability information, a first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information; and sending, to the terminal device, the first signaling, the first signaling Indicate the first time-frequency resource.
  • the network device Determining, by the network device, the first time for carrying the first uplink data and/or the first uplink control information according to the processing delay of the uplink data of the terminal device and the capability information of the processing delay of the uplink control information of the terminal device
  • the first time-frequency resource is indicated by sending the first signaling to the terminal device, so that the transmission delay of the first uplink data and/or the first uplink control information is long or the scheduling fails, that is, the network is improved.
  • the efficiency of the time-frequency resource configuration of the device reduces the signal transmission delay.
  • the method further includes: determining, according to the capability information, a transmission manner of the first uplink data and the first uplink control information, where the transmission mode is the first uplink data and the first uplink control The information is transmitted independently, or the first uplink data and the first uplink control information are multiplexed and transmitted; wherein, determining, according to the capability information, the first time-frequency resource comprises: determining, according to the capability information and the transmission mode, the first One time frequency resources.
  • the network device may further determine, according to the capability information, a transmission manner of the first uplink data and the first uplink control information, and then determine the first time-frequency resource according to the capability information and the transmission manner, so that the network device can further improve the configuration time of the network device.
  • the efficiency of resources reduces the signal transmission delay.
  • the determining, according to the capability information, the transmission manner of the first uplink data and the first uplink control information includes: processing delay according to uplink data of the terminal device, and uplink control of the terminal device The processing delay of the information, determining whether the terminal device can obtain the size of the first uplink control information of the terminal device before starting the first uplink data processing; determining that the terminal device can obtain the first uplink data processing before starting the In the case of the size of the first uplink control information, determining that the transmission mode is that the first uplink data and the first uplink control information are multiplexed and transmitted; before determining that the terminal device is unable to start the first uplink data processing When the size of the first uplink control information is obtained, it is determined that the transmission mode is that the first uplink data and the first uplink control information are independently transmitted.
  • the network device can determine, according to the capability information of the terminal device, whether the terminal device can obtain the size of the uplink control information of the terminal device before starting the first uplink data processing, so that the first uplink data and the first uplink control information can be determined.
  • the transmission mode if the processing of the first uplink control information does not cause the processing delay of the first uplink data to increase, the multiplexing transmission method may be adopted. If the processing of the first uplink control information causes the first uplink data processing delay to increase, The first uplink control information transmission is decoupled from the first uplink data transmission, and the respective uplink transmissions are performed, thereby avoiding an increase in the uplink processing delay and reducing the signal transmission delay.
  • determining the first time-frequency resource according to the capability information and the transmission mode includes: transmitting, after the transmission mode is the first uplink data and the first uplink control information is multiplexed And determining, by the capability information, the first time-frequency resource, where the first time-frequency resource is used to carry the multiplexed first uplink data and the first uplink control information.
  • the network device may send the first signaling to indicate the first time-frequency resource.
  • the network device can enable the terminal device to send the multiplexed first uplink data and the first uplink control information on the first time-frequency resource by using the first signaling, thereby saving signaling overhead.
  • determining the first time-frequency resource according to the capability information and the transmission mode includes: transmitting, after the transmission mode is the first uplink data and the first uplink control information is multiplexed And determining, by the capability information, the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data, where the method further includes: determining a second time-frequency resource, where the second time-frequency resource is used The second time-frequency resource is the same as the first time-frequency resource, and the second signaling is sent to the terminal device, where the second signaling indicates the second time-frequency resource.
  • the network device may further determine to be used for carrying the uplink. Controlling the second time-frequency resource of the information, and the second time-frequency resource is the same as the first time-frequency resource, the network device may indicate the first time-frequency resource by using the first signaling, and indicating the second time-frequency by using the second signaling Resources, which increase the flexibility of the instructions.
  • determining the first time-frequency resource according to the capability information and the transmission mode includes: transmitting, after the transmission mode is the first uplink data and the first uplink control information is multiplexed And determining, by the capability information, the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink control information, where the method further includes: determining a second time-frequency resource, the second time-frequency resource And the second time-frequency resource is the same as the first time-frequency resource; the second signaling is sent to the terminal device, where the second signaling indicates the second time-frequency resource.
  • the first time-frequency resource can also be used to carry the first uplink control information
  • the second time-frequency resource is used to carry the first uplink data.
  • the network device indicates the first time-frequency resource by using the first signaling, and indicates the second time-frequency resource by using the second signaling, thereby improving the flexibility of the indication.
  • the method further includes: receiving, by the first time-frequency resource, the multiplexed first uplink data and the first uplink control information; or receiving the first at the first time-frequency resource Uplink data or the first uplink control information.
  • the terminal device may further send the first uplink data or the first time-frequency resource.
  • the first uplink control information the network device may also receive the first uplink data or the first uplink control information sent by the terminal device, so as to avoid resource waste and improve resource utilization.
  • the network device may receive the terminal device by using a blind detection manner. The first uplink data or the first uplink control information.
  • determining the first time-frequency resource according to the capability information and the transmission manner includes: if the transmission mode is that the first uplink data and the first uplink control information are independently transmitted, according to The capability information is used to determine the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data, where the method further includes: the first uplink data and the first uplink control in the transmission mode
  • the second time-frequency resource is determined according to the capability information, where the second time-frequency resource is used to carry the first uplink control information, and the second time-frequency resource and the first time-frequency resource are used.
  • the second signaling is sent to the terminal device, where the second signaling is used to indicate the second time-frequency resource.
  • the determining, by the network device, the first time-frequency resource according to the capability information and the transmission mode may be, when the transmission mode is independent transmission of the first uplink data and the first uplink control information, determining the first time-frequency resource according to the capability information, The network device can more accurately determine the first time-frequency resource, reduce the delay of signal transmission, and improve the efficiency of resource allocation.
  • determining the first time-frequency resource according to the capability information and the transmission manner includes: if the transmission mode is that the first uplink data and the first uplink control information are independently transmitted, according to The capability information is used to determine the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink control information, where the method further includes: the first uplink data and the first uplink in the transmission mode
  • the second time-frequency resource is determined according to the capability information, where the second time-frequency resource is used to carry the first uplink data, and the second time-frequency resource and the first time-frequency resource are used.
  • the second signaling is sent to the terminal device, where the second signaling is used to indicate the second time-frequency resource.
  • the network device may indicate, by using the first signaling and the second signaling, that the first uplink data and the first The time-frequency resources of the uplink control information improve the flexibility of the indication.
  • the second time-frequency resource and the first time-frequency resource are different, and the first time-frequency resource and the second time-frequency resource are different symbols in the same time slot, or the first The time slot in which the first time frequency resource is located is different from the time slot in which the second time frequency resource is located, or the first time frequency resource and the second time frequency resource are in different frequency domain resources in the same time slot.
  • the transmission delay of the first uplink data and the first uplink control information may still be further saved.
  • the first uplink data and the first uplink control information are multiplexed to multiplex the first uplink data and the first uplink control information by means of puncturing or rate matching.
  • the network device configures the time-frequency resource for multiplexing the first uplink data and the first uplink control information by means of puncturing or rate matching, and can improve resource utilization.
  • the first uplink control information includes at least one of a first uplink acknowledgement signal and first uplink channel measurement information feedback information.
  • the first uplink control information of the present application may include a first uplink acknowledgement signal or a first uplink channel measurement information feedback information or a combination of the two, so that the application scope of the embodiment of the present application is wide and adaptable.
  • a method for signal processing comprising: transmitting capability information to a network device, where the capability information includes a processing delay of processing, by the terminal device, uplink processing, and a processing delay of the terminal device processing the uplink control information; a first signaling, where the first signaling indicates a first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information; and determining, according to the first signaling, the first Time-frequency resources.
  • the terminal device sends the capability information including the uplink data and the uplink control information to the network device, and receives the first signaling sent by the network device, where the first signaling indication is used to carry the first uplink data and/or to carry the first uplink control information.
  • the first time-frequency resource, the first time-frequency resource may be determined by the network device according to the capability information of the terminal device, and the first time-frequency resource is determined according to the first signaling, thereby avoiding the first uplink data and/or Or the transmission delay of the first uplink control information is long or the scheduling fails, that is, the efficiency of the network device for configuring the time-frequency resource is improved, and the signal transmission delay is reduced.
  • the first time-frequency resource is used to carry the first uplink data
  • the method further includes: receiving second signaling, where the second signaling indicates a second time-frequency resource, where the The second time-frequency resource is used to carry the first uplink control information, and the first uplink data and the first uplink control information are determined according to the first signaling and the second signaling, where the transmission mode is the first An uplink data and the first uplink control information are independently transmitted, or the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the terminal device can also receive the second signaling.
  • the second signaling is used to indicate the second time-frequency resource that carries the first uplink control information, and the terminal device receiving the network device respectively indicates that the first uplink data and the first uplink are carried by using the first signaling and the second signaling. Control the time-frequency resources of the information, thereby increasing the flexibility of the indication.
  • the first time-frequency resource is used to carry the first uplink control information
  • the method further includes: receiving the second signaling, where the second signaling indicates the second time-frequency resource, where The second time-frequency resource is used to carry the first uplink data, and the first uplink data and the first uplink control information are determined according to the first signaling and the second signaling, where the transmission mode is the first An uplink data and the first uplink control information are independently transmitted, or the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the terminal device can also receive the second message.
  • the second signaling is used to indicate the second time-frequency resource that carries the first uplink data, and the terminal device receiving the network device respectively indicates that the first uplink data and the first uplink are carried by using the first signaling and the second signaling. Control the time-frequency resources of the information, thereby increasing the flexibility of the indication.
  • the method further includes: determining, by the first time-frequency resource, the first uplink data and the first uplink control information, determining the first uplink data and the first uplink The transmission mode of the control information is multiplexed and transmitted.
  • the terminal device receives the first signaling, and the terminal device determines, according to the first signaling, that the first time-frequency resource is used to carry the multiplexed first uplink data and the first uplink control information, thereby saving signaling overhead.
  • the determining, by the first signaling and the second signaling, the transmission manner of the first uplink data and the first uplink control information includes: the first time-frequency resource and the first If the second time-frequency resources are the same, the transmission mode is determined to be that the first uplink data and the first uplink control information are multiplexed and transmitted; if the first time-frequency resource is different from the second time-frequency resource, And determining that the transmission mode is that the first uplink data and the first uplink control information are independently transmitted.
  • the terminal device may determine, according to whether the time-frequency resource indicated by the first signaling is the same as the time-frequency resource indicated by the second signaling, determining the first uplink data and the The transmission mode of the first uplink control information further improves the accuracy of signal transmission.
  • the method further includes: determining whether, before starting the first uplink data processing, whether Obtaining a size of the first uplink control information; where the terminal device obtains the size of the first uplink control information before starting the first uplink data processing, the first time-frequency resource is sent after the multiplexing An uplink data and the first uplink control information.
  • the terminal device may determine whether the size of the first uplink control information is obtained before starting the first uplink data processing, Determining, according to the size of the first uplink control information, whether the signal type of the first time-frequency resource is sent before the first uplink data processing is started, if the terminal device obtains the first uplink before starting the first uplink data processing Controlling the size of the information, transmitting the first uplink data and the first uplink control information after the multiplexing of the first time-frequency resource, thereby saving signal transmission delay.
  • the method further includes: determining whether, before starting the first uplink data processing, whether Obtaining the size of the first uplink control information; if the terminal device does not obtain the size of the first uplink control information before starting the first uplink data processing, sending the first uplink data in the first time-frequency resource Or the first uplink control information.
  • the first uplink data processing of the terminal device is limited by the processing of the first uplink control information, which may cause the uplink transmission to fail.
  • the terminal device selects to send the first uplink data or the first uplink control information in the first time-frequency resource, thereby avoiding waste of uplink transmission resources, thereby improving resource utilization.
  • the first time-frequency resource and the second time-frequency resource are different, and the first time-frequency resource and the second time-frequency resource are in different symbols in the same time slot, or the first time The time-frequency resource is different from the time slot in which the second time-frequency resource is located, or the first time-frequency resource and the second time-frequency resource are in different frequency domain resources in the same time slot.
  • the transmission of the first uplink data and the first uplink control information may be further saved by independent transmission. Delay.
  • the first uplink data and the first uplink control information are multiplexed to multiplex the first uplink data and the first uplink control information by means of puncturing or rate matching.
  • the terminal device can improve resource utilization by transmitting the first uplink data and the first uplink control information after the multiplexed time-frequency resource configured by the network device in the manner of puncturing or rate matching.
  • the first uplink control information includes at least one of a first uplink acknowledgement signal and first uplink channel measurement information feedback information.
  • the first uplink control information of the present application may include a first uplink acknowledgement signal or a first uplink channel measurement information feedback information or a combination of the two, so that the application scope of the embodiment of the present application is wide and adaptable.
  • a signal processing apparatus which may be a network device or a chip in a network device.
  • the device has the functionality to implement the various embodiments of the first aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the network device comprises: a processing unit and a transceiver unit
  • the processing unit may be, for example, a processor
  • the transceiver unit may be, for example, a transceiver
  • the transceiver Includes RF circuitry
  • the network device further includes a storage unit, which may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the network device to perform the first aspect described above The method of signal processing of any one.
  • the chip when the device is a chip in a network device, the chip includes: a processing unit and a transceiver unit, and the processing unit may be, for example, a processor, and the transceiver unit may be, for example, the chip. Input/output interface, pins or circuits, etc.
  • the processing unit may execute a computer-executable instruction stored by the storage unit to cause the chip within the terminal to perform the signal processing method of any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the network device, such as a read-only memory ( Read-only memory (ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM Read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • the first aspect of the method of signal processing is performed by an integrated circuit.
  • the present application provides a device for signal processing, which may be a terminal device or a chip in a terminal device.
  • the device has the functionality to implement the various embodiments of the second aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the terminal device comprises: a processing unit and a transceiver unit
  • the processing unit may be, for example, a processor
  • the transceiver unit may be, for example, a transceiver
  • the transceiver The radio frequency circuit is included.
  • the terminal device further includes a storage unit, and the storage unit may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the terminal device to perform the second aspect The method of signal processing of any one.
  • the chip when the device is a chip in the terminal device, the chip includes: a processing unit and a transceiver unit, and the processing unit may be, for example, a processor, and the transceiver unit may be, for example, the chip. Input/output interface, pins or circuits, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the chip in the terminal device to perform the signal processing method of any of the above second aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal device, such as a ROM or may be stored. Static information and instructions for other types of static storage devices, RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the method of signal processing of the second aspect described above.
  • a communication system comprising: the apparatus of the above third aspect and the apparatus of the above fourth aspect.
  • a computer storage medium storing program code for indicating execution of any of the first aspect and the second aspect, or any possible implementation thereof The instructions of the method.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first and second aspects above, or any possible implementation thereof.
  • the network device determines, according to the foregoing, the first uplink data and/or the first uplink control information, according to the processing delay of the uplink data of the terminal device and the capability information of the processing delay of the uplink control information of the terminal device.
  • the first time-frequency resource, and the first time-frequency resource is indicated by sending the first signaling to the terminal device, so that the transmission delay of the first uplink data and/or the first uplink control information is long or the scheduling fails. That is to improve the efficiency of the network device configuration time-frequency resources, reducing the signal transmission delay.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of time-frequency resources in an embodiment of the present application.
  • 3 is a schematic diagram of time-frequency resource occupation of independent transmission in the embodiment of the present application.
  • Figure 5 is a schematic diagram of the transmission after multiplexing
  • FIG. 6 is a schematic diagram of uplink data independent transmission
  • FIG. 7 is a schematic flowchart of a method for signal processing according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a method of signal processing according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method of signal processing according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a method of signal processing according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an apparatus for signal processing according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for signal processing according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus for signal processing according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for signal processing according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the NodeB, the eNB or the eNodeB) may also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, a wireless access point, a transceiver station, a transmission point, and a car.
  • CRAN cloud radio access network
  • the device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network, etc., are not limited in this embodiment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system in FIG. 1 may include at least one terminal device 10 and a network device 20.
  • the network device 20 is used to provide communication services for each terminal device 10 and access the core network.
  • the arrow shown in FIG. 1 may represent an uplink/downlink transmission by a link between the terminal device 10 and the network device 20, wherein the communication link received by the network device 20 and received by the terminal device 10 is a downlink transmission, and the terminal The communication link sent by the device 10 and received by the network device 20 is an uplink transmission.
  • the traditional cellular wireless communication system includes a network device and a terminal device.
  • the transmission from the terminal device to the network device is called uplink transmission, and the transmission from the network device to the terminal device is called downlink transmission, and which uplink time-frequency resources are sent by the terminal device.
  • uplink transmission usually specified by a network device.
  • the network device sends an uplink scheduling signaling, and the uplink scheduling signaling notifies the terminal device at which time-frequency resources to send uplink data, and after receiving the uplink scheduling signaling, the terminal device generates an uplink according to the indication of the uplink scheduling signaling.
  • the data packet is sent with uplink data in the scheduled time-frequency resource.
  • the uplink scheduling bearer that the network device sends to the terminal device is in the physical downlink control channel (PDCCH) and is one of downlink control signaling (DCI).
  • the network device also sends some channel state information-reference signals (CSI-RS) for channel state measurement, and the terminal device measures the reference signals to obtain channel state information, including channel quality indicators.
  • CSI-RS channel state information-reference signals
  • the channel quality indicator (CQI), the rank indication (RI), and the precoding matrix indicator (PMI) the terminal device sends the channel state measurement feedback information to the network device by using the uplink signal.
  • the network device also sends a synchronization signal on a synchronization channel, and transmits a broadcast signal on a physical broadcast channel, and the terminal device can also measure the synchronization signal to obtain channel state information.
  • the terminal receives uplink scheduling information in the nth subframe, and transmits uplink data in the subframe after the (n+4)th subframe or the (n+4)th subframe, and uplink data processing.
  • the delay is at least about 4 subframes, and the duration of each subframe is 1 ms; for channel measurement, the n-th subframe transmits CSI-RS, after the (n+4)th subframe or the (n+4)th subframe
  • the subframe transmits channel measurement feedback information for the CSI-RS. If the uplink data and the channel measurement feedback information are sent in the same subframe, the resources that are partially scheduled for the uplink data transmission are left to transmit the channel measurement feedback information, which is called the uplink data and the channel measurement feedback information.
  • the terminal needs to perform puncturing and rate matching on the uplink data. Therefore, before performing uplink data processing, the terminal needs to know whether to reserve resources for channel measurement feedback in the scheduled uplink resources.
  • the terminal knows whether there is a multiplex of the uplink data and the channel measurement feedback about 4 ms in advance. Therefore, before performing the uplink rate matching, the terminal can know whether it is necessary to measure the channel on the scheduled uplink transmission. Feedback reserve resources, channel measurement feedback information processing will not cause problems in uplink data processing. Therefore, in the traditional cellular system, when the network device is scheduled, the impact of the channel measurement feedback delay on the uplink transmission processing is not particularly considered.
  • the delay of data transmission In order to enhance the user experience, various requirements for reducing the delay are proposed.
  • the implementation of low latency is mainly reflected in two aspects, one is the delay of data transmission; on the other hand, the delay of channel quality feedback is low.
  • the terminal device on the uplink transmission, the terminal device is required to quickly send the uplink after receiving the uplink data scheduling signaling of the network.
  • the data is used to reduce the data transmission delay.
  • the uplink processing delay requirement is as low as several symbols, and the N2 symbol is assumed.
  • the channel carrying the uplink data is called a physical uplink shared channel (PUSCH);
  • the network device sends the downlink reference signal to trigger the terminal device to perform periodic or aperiodic measurement on the channel state, and report the channel state measurement information to the network device as soon as possible to reduce the delay of the channel quality feedback.
  • the channel measurement feedback The information processing delay can be several OFDM symbols to several time slots according to different measurement requirements, assuming that the processing delay is K1 symbol.
  • the network device sends the downlink data PDSCH to the terminal device, and requests the terminal device to quickly process the downlink data and feed back information about whether the downlink data is successfully received to the terminal device, and the feedback signal is called an ACK/NACK signal in the NR.
  • the downlink processing delay requirement is as low as several symbols, assuming an N1 symbol.
  • the downlink reference signal may be a channel state information reference signal (CSI-RS), and the channel state measurement information includes a channel quality indicator (CQI), a precoding matrix indicator (PMI) And at least one of a rank indicator (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the channel state measurement information may also be referred to as uplink control information (UCI), and the channel carrying the uplink control information is referred to as a physical uplink control channel (PUCCH).
  • UCI uplink control information
  • PUCCH physical uplink control channel
  • the uplink data and the uplink control information may be transmitted independently.
  • the uplink data carried on the physical uplink shared channel (PUSCH) and the UCI carried on the physical uplink control channel are respectively allocated with different time-frequency resources for independent transmission, or may be uplink. After the data is multiplexed with UCI, the data is transmitted in a time-frequency resource.
  • the network device allocates a time-frequency resource to the PUSCH, where the time-frequency resource is at least one symbol in time and at least one sub-carrier is included in the frequency, as shown in FIG. 2 .
  • the time-frequency resource is at least one symbol in time and at least one sub-carrier is included in the frequency, as shown in FIG. 2 .
  • all time-frequency resources are used to carry uplink data, as described in FIG.
  • a part of the time-frequency resources allocated by the network device to the PUSCH is used to carry the UCI, as shown in FIG. 4 . Therefore, rate matching or puncturing of the uplink data is required, and a part of resources are reserved for carrying UCI.
  • the time-frequency resources reserved for the UCI mapping that is, the size of the UCI to be multiplexed with the uplink data
  • the size of the uplink UCI is determined according to the channel situation and needs.
  • the value of the UCI is changed according to factors such as the number and type of the UCI. For example, the value of the Rank Indication (RI) of the current channel obtained by the terminal device to measure the CSI-RS is determined. It is necessary to obtain the UCI size that is multiplexed with the uplink data before it can be started, thereby causing the processing delay of the uplink data transmission of the terminal device to be lengthened.
  • RI Rank Indication
  • the terminal device can start uplink data processing and generate uplink data after receiving the uplink scheduling signaling carried by the network device and carrying the PDCCH.
  • the packet is sent, and the uplink data of the bearer is sent when the allocated uplink time-frequency resource arrives.
  • the uplink processing delay N2 is defined as the last symbol of the PDCCH carrying the uplink scheduling signaling ends to be scheduled by the uplink scheduling signaling.
  • the minimum processing delay between the start times of the uplink data, the unit is the number of OFDM symbols, and may be any non-negative number greater than zero.
  • the terminal device needs to know that it needs to be multiplexed after receiving the uplink scheduling signaling carried in the PDCCH.
  • the size of the UCI can initiate the rate matching related processing, for example, waiting for the terminal device to measure the RI according to the channel state information reference signal (CSI-RS), and then obtaining the UCI multiplexed with the uplink data according to the RI. Size, at this time, the uplink rate matching related processing can be started, and then the uplink data packet is generated.
  • CSI-RS channel state information reference signal
  • the base station If the base station considers the processing delay of the multiplexed UCI to schedule, the base station needs to reserve more for the uplink processing. The time waits for the UCI processing to increase the transmission delay, which reduces the spectrum efficiency. If the base station does not consider the processing delay of the multiplexed UCI and schedules the uplink data to be multiplexed with the UCI, the scheduling may fail due to the terminal not being able to process the uplink data.
  • the scheduling signaling requires the terminal device to send the uplink data in the time slot n, and the network device sends the CSI-RS in the time slot n, and the scheduling terminal device is in the time slot n for the
  • the channel measurement feedback information of the CSI-RS is multiplexed with the data of the time slot n, and the terminal device needs to complete a part of the uplink processing after completing the channel measurement feedback information processing, for example, the uplink rate matching parameter calculation and the uplink data rate matching.
  • the channel measurement feedback information needs to be obtained before being processed, thereby increasing the uplink processing delay, and even causing the terminal device to fail to complete the uplink processing before the uplink transmission required by the network device, causing the scheduling to fail.
  • FIG. 7 shows a method of signal processing in an embodiment of the present application.
  • the network device acquires capability information of the terminal device, where the capability information includes at least one uplink data processing delay of the terminal device and a processing delay of the at least one uplink control information UCI of the terminal device. Accordingly, the terminal device transmits the capability information.
  • the terminal device can actively report the capability information, for example, periodically report the capability information, for example, the terminal device periodically (for example, every 640 ms or 320 ms, etc., the specific time can be agreed according to the implementation or configured by the network device) to the network device.
  • the terminal capability information is reported; or the event triggering device capability information is reported, for example, the terminal device reports the terminal capability information to the network device when initially accessing the network.
  • the network device may actively obtain the capability information, for example, sending signaling to trigger the terminal device to report capability information, and the like.
  • the network device may also obtain capability information of the terminal device through a core network device or other base station, etc., and the application is not limited thereto.
  • the uplink data processing delay of the terminal device is defined as a shortest time between a PDCCH end time for carrying uplink scheduling signaling and a start time for transmitting the scheduled uplink data.
  • the uplink data processing delay of the terminal device includes one or more, which is used to indicate a processing delay of the terminal device under different conditions, for example, the terminal device has different processing delays at different subcarrier intervals,
  • the uplink data processing delay of the terminal device includes values at different subcarrier intervals; or, for example, the terminal device has different processing delays under different transmission bandwidths, and the uplink data processing delay of the terminal device is included in different transmission bandwidths.
  • the uplink data processing delay of the terminal device includes values at different transmission rates; the uplink processing delay of the terminal device is also affected by the uplink data.
  • the value of the packet size, the uplink data mapping method, the uplink pilot mapping method, the PDCCH transmission method, and the like are different, and the present application is not limited thereto.
  • the processing delay of the uplink data of the terminal device includes a processing time for the terminal device to obtain uplink scheduling information, including: demodulating a PDCCH carrying the uplink scheduling information, obtaining a DCI by blind detection, and parsing the DCI to obtain uplink scheduling information.
  • the uplink control information of the terminal device includes: the terminal device receives a physical downlink shared channel (PDSCH) and sends an uplink acknowledgement signal ACK/NACK feedback information, and the terminal device receives the downlink CSI-RS and/or downlink synchronization.
  • PDSCH physical downlink shared channel
  • ACK/NACK feedback information the terminal device receives the downlink CSI-RS and/or downlink synchronization.
  • the downlink synchronization signal block includes at least one of a primary synchronization channel (PSCH), a secondary synchronization channel (SSCH), and a physical broadcast channel (PBCH).
  • PSCH primary synchronization channel
  • SSCH secondary synchronization channel
  • PBCH physical broadcast channel
  • the processing delay of the uplink control information of the terminal device includes at least one of a processing delay of the terminal device acknowledgment signal ACK/NACK and a processing delay of the channel measurement feedback information of the terminal device.
  • the acknowledgment signal ACK/NACK processing delay of the terminal device is a processing delay for receiving the downlink physical data channel and sending the acknowledgment signal ACK/NACK, for example, the terminal device receives the end time of the PDSCH carrying the downlink data to the terminal. The minimum time that the device starts to send ACK/NACK feedback information for the downlink data.
  • the channel measurement feedback information processing delay of the terminal device includes a processing delay of the terminal device receiving the downlink CSI-RS and obtaining channel measurement feedback information and/or beam information, and the terminal device receives the downlink synchronization signal block and obtains channel measurement feedback. At least one of processing delays of information and/or beam information.
  • the terminal device receives the downlink CSI-RS and obtains the processing delay of the channel measurement feedback information and/or the beam information, where the terminal device receives the CSI-RS end time to be measured, and the terminal device obtains the channel measurement feedback information. And/or the shortest time of the beam information.
  • the processing delay of the channel measurement feedback information of the terminal device includes a processing time of the terminal device measurement rank indication (RI), a processing time of the terminal device to measure channel quality information, and the terminal device measurement precoding matrix information ( At least one of the processing times of PMI).
  • RI terminal device measurement rank indication
  • PMI terminal device measurement precoding matrix information
  • the processing delay of the channel measurement feedback information of the terminal device has different values under different conditions, for example, different processing delays at different subcarrier intervals; and different measurement bandwidths.
  • the measurement channel can be at least one of CSI-RS or common reference signal CRS or synchronization signal
  • the network device determines, according to the capability information, a first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information.
  • the network device determines that the uplink data or the uplink control information is to be scheduled to be transmitted.
  • the uplink data to be scheduled is referred to as the first uplink data
  • the uplink control information to be scheduled is referred to as the first uplink control information.
  • the first uplink control information may include at least one uplink control information, where the uplink control information may be uplink ACK/NACK feedback information, channel measurement feedback information, or scheduling request information, and the channel measurement feedback information may include CQI, PMI, and RI. Wait.
  • the network device determines, according to the capability information, a first time-frequency resource, where the first time-frequency resource can be used to carry the first uplink data.
  • the network device determines, according to the capability information, the first time-frequency resource, where the first time-frequency resource is also used to carry the first uplink control information.
  • the network device determines, according to the capability information, the first time-frequency resource, where the first time-frequency resource is also used to carry the first uplink data and the first uplink control information.
  • the network device may determine the bearer according to the uplink data processing delay of the terminal device and the uplink control information processing delay of the terminal device.
  • the time-frequency resource of the first uplink data that is scheduled and/or the time-frequency resource that carries the scheduled first uplink control information avoiding the first situation caused by the mutual coupling of the first uplink data processing and the first uplink control information processing
  • the transmission delay of the uplink data and/or the first uplink control information is increased, which improves the spectrum efficiency and avoids scheduling failure caused by the terminal not being processed.
  • the network device when the terminal device needs to schedule the first uplink data to be transmitted in the time slot n, and schedule the first channel measurement feedback information to be transmitted in the time slot n, the network device according to the capability information of the terminal device, for example, channel measurement feedback.
  • the information processing delay is estimated to be obtained from the time when the terminal device receives the CSI-RS completion time to the completion of the corresponding channel measurement feedback information processing, and if the network device estimates that the terminal device can obtain the transmission in the time slot n before starting the first uplink data processing
  • the channel measurement feedback information size the network device can be configured to multiplex the first uplink data and the first channel measurement feedback information in the time slot n.
  • the network device when the terminal device needs to schedule the first uplink data to be transmitted in the time slot n, and schedule the first channel measurement feedback information to be transmitted in the time slot n, the network device according to the capability information of the terminal device, for example, channel measurement feedback.
  • the information processing delay is estimated to be obtained from the time when the terminal device receives the CSI-RS completion time to the completion of the corresponding channel measurement feedback information processing. If the network device estimates that the terminal device cannot obtain the time slot n before starting the first uplink data processing,
  • the network device can be configured to independently transmit the first uplink data and the first channel measurement feedback information in the time slot n, and the network device allocates the first time-frequency resource for the first uplink data transmission, respectively.
  • the first channel measurement feedback information allocates a second time-frequency resource, and the first time-frequency resource and the second time-frequency resource are independent of each other in time. In this way, the first uplink data transmission of the terminal device does not need to consider reserving the multiplexed resource for the first uplink control information, so the first uplink data transmission of the terminal device no longer needs to wait for the channel measurement feedback information to complete, so that the terminal device
  • the first uplink data processing is not affected by the first channel measurement feedback information that needs to wait for the multiplexed, and the first uplink data can be quickly processed.
  • the first time-frequency resource carrying the first uplink data may be that the terminal device sends the first uplink data in the first time-frequency resource, or the network device receives the first uplink data in the first time-frequency resource. .
  • the terminal device may send the first uplink control information on the first time-frequency resource, and the network device may also receive the first uplink control information in the first time-frequency resource.
  • the terminal device sends the first uplink data and the first uplink control information in the first time-frequency resource, and the network device receives the first uplink data and the first uplink control information in the first time-frequency resource.
  • the network device may further determine, according to the capability information, a transmission manner of the first uplink data and the first uplink control information, and then determine the first time-frequency resource according to the capability information and the transmission manner, so that the network device can further transmit the signal accurately.
  • Time-frequency resources reduce signal transmission delay and avoid scheduling failures.
  • the transmission mode may be that the first uplink data and the first uplink control information are independently transmitted, or the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the multiplexed transmission of the first uplink data and the first control information in the embodiment of the present application may be that the network device allocates the first time-frequency resource for the terminal device to carry the first uplink data, and the terminal device uses rate matching or puncturing.
  • the resource element (RE) included in the allocated first time-frequency resource a part of the RE is reserved for the first uplink control information to be transmitted.
  • the first uplink data and the first control information multiplexing transmission in the embodiment of the present application may be that the terminal device simultaneously transmits the first uplink data and the first control information configuration.
  • the first uplink data and the first uplink control information of the embodiment of the present application may be independently transmitted, where the network device determines the first time-frequency resource and the second time-frequency resource, where the first time-frequency resource is used to carry the first uplink data, and the second time-frequency resource is used to carry the first uplink data, and the second The time-frequency resource is used to carry the first uplink control information.
  • the transmission of the first uplink data is decoupled from the transmission of the first uplink control information, and the transmission of the first uplink data is not limited to the transmission of the first uplink control information.
  • the uplink data and different types of uplink control information may adopt different transmission modes. For example, in the time slot n, scheduling the first uplink data, scheduling the first uplink ACK/NACK signal transmission, and scheduling the channel measurement feedback information transmission, the network device may determine that the first uplink data and the channel measurement feedback information are multiplexed and transmitted, and the multiplexing The first uplink data and channel measurement feedback information are independently transmitted with the first uplink ACK/NACK signal. That is, the network device determines the first time-frequency resource, and is configured to carry the multiplexed first uplink data and the first channel measurement feedback information; the network device determines the second time-frequency resource, and is configured to carry the first uplink ACK/NACK signal.
  • the network device determines, according to the capability information, a transmission manner of the first uplink data and the first uplink control information, where the following implementation manners are as follows:
  • the network device determines that the first uplink data and the first uplink control information adopt an independent transmission manner.
  • the network device does not configure the first uplink data and the first uplink control information to be transmitted in a multiplex manner.
  • the transmission mode may also be referred to as an “uplink independent scheduling mode”.
  • the network device may configure the terminal device to work in an uplink scheduling independent mode or configure the terminal device not to operate in an uplink scheduling independent mode.
  • the network device does not configure the first uplink data and the first uplink control information to be transmitted in a multiplex manner, and the first uplink data and the first uplink control information are independently transmitted, and are not coupled to each other.
  • the network device may configure the first uplink data and the first uplink control information to be multiplexed and transmitted according to the situation.
  • the network device obtains the uplink data processing delay of the terminal device and the uplink device information processing delay of the terminal device, and the network device estimates that the terminal device can obtain the first uplink control information before starting the first uplink data processing, and the network device determines the first uplink data. And the first uplink control information adopts a multiplexing transmission manner; otherwise, the network device determines that the first uplink data and the first uplink control information adopt an independent transmission manner.
  • the network device obtains the uplink data processing delay N2 of the terminal device. If the terminal device capability information includes more than one uplink data processing delay, the network device obtains the uplink data processing delay closest to the first uplink data to be scheduled. For example, the terminal device has different uplink processing time delays at different subcarrier intervals, and the network device may use the uplink processing delay obtained by using the same subcarrier spacing as the first uplink data to be scheduled as the N2. For example, the terminal device has different uplink processing delays at different transmission rates, and the network device may obtain the obtained uplink processing time corresponding to the first uplink data to be scheduled and corresponding to the transmission rate of the first uplink data. Extended as N2.
  • the network device obtains the terminal device uplink control information processing delay K1. If the terminal device capability information includes more than one uplink control information processing delay, the network device may obtain the same or similar type as the first uplink control information to be scheduled, and The processing delay closest to the uplink control information is taken as K1.
  • the channel measurement feedback information processing delay is selected.
  • the closest may be when the terminal device has different channel measurement feedback information processing delays at different subcarrier intervals, and the network device obtains uplink control information processing with the same subcarrier spacing as the first uplink control information to be scheduled. Delay.
  • the network device obtains the uplink data processing delay of the terminal device, and the obtaining manner is as described above, and details are not described herein.
  • the network device obtains the delay of processing the uplink control information of the terminal device, and the obtaining manner is as described above, and details are not described herein.
  • the network device determines that the terminal device can obtain the size of the first uplink control information before starting the first uplink data processing, and the network device determines that the first uplink data and the first uplink control information adopt a multiplexing transmission manner; otherwise, the network device determines the first The uplink data and the first uplink control information adopt an independent transmission manner.
  • the network device obtains the uplink data processing delay N2 of the terminal device, and the acquiring manner is as described above, and details are not described herein again.
  • the network device obtains the uplink channel feedback information processing delay K1 of the terminal device, and the uplink channel feedback processing delay includes the delay of the terminal device to measure the RI, and the delay of the terminal device to measure the PMI, and other acquisition manners are as described above, no longer Narration.
  • the network device estimates that the terminal device can obtain the size of the first uplink channel feedback information before starting the first uplink data processing (for example, estimating by using the device to measure the RI delay), and the network device determines the first uplink data and the first uplink control information.
  • the multiplexing transmission mode is adopted; otherwise, the network device determines that the first uplink data and the first uplink control information adopt an independent transmission manner.
  • the network device obtains the uplink data processing delay N2 of the terminal device, and the acquiring manner is as described above, and details are not described herein again.
  • the network device obtains the delay K1 of the uplink channel feedback information processing of the terminal device, and the obtaining manner is as described above, and details are not described herein.
  • the network device estimates that the terminal device can obtain the first uplink channel feedback information before starting the first uplink data processing, and the network device determines that the first uplink data and the first uplink control information adopt a multiplexing transmission manner; otherwise, the network device determines the first uplink.
  • the data and the first uplink control information are transmitted in an independent manner.
  • the network device obtains the uplink data processing delay N2 of the terminal device, and the acquiring manner is as described above, and details are not described herein again.
  • the network device obtains the delay K1 of the uplink control information processing of the terminal device, and the obtaining manner is as described above, and details are not described herein.
  • the network device notifies the terminal device of the size of the first control channel information.
  • the network device determines that the terminal device can obtain the size of the first uplink control information before starting the first uplink data processing, and the network device determines that the first uplink data and the first uplink control information are in a multiplexing transmission manner.
  • the network device obtains the uplink data processing delay N2 of the terminal device, and the acquiring manner is as described above, and details are not described herein again.
  • the network device obtains the delay K1 of the uplink control information processing of the terminal device, and the obtaining manner is as described above, and details are not described herein.
  • the network device determines that the first uplink data and the first uplink control information are multiplexed, and the network device determines that the terminal device determines that the first time-frequency resource is reserved for the first uplink control channel information according to a pre-agreed rule.
  • the size of the resource
  • the network device determines that the terminal device can obtain the size of the first uplink control information before starting the first uplink data processing, and the network device determines that the first uplink data and the first uplink control information are in a multiplexing transmission manner.
  • the agreed rule may have different resource sizes reserved for the agreed first uplink control channel information for different configuration parameters. For example, for the uplink ACK/NACK and the uplink channel measurement feedback information, the reserved resource sizes are different; for different bandwidths, the reserved resources are different; for different types of channel measurement feedback information, the reserved resource sizes are different; Terminal antenna capabilities, reserved resources, etc.
  • the terminal device starts the first uplink data processing, which specifically includes the following:
  • the terminal device After detecting the scheduling information that carries the first uplink data, the terminal device starts the first uplink data processing for the terminal device.
  • the terminal device starts the rate matching parameter calculation of the first uplink data
  • the terminal device starts the first uplink data processing.
  • the terminal device starts the rate matching of the first uplink data
  • the terminal device starts the first uplink data processing.
  • signals involved in the embodiments of the present application may include uplink signals or uplink control information of the terminal device, such as channel measurement feedback information, and may include other information, etc., and the application is not limited thereto.
  • the first uplink control information is channel measurement feedback information
  • the following implementation methods are also available:
  • the network device may determine, according to the uplink data processing delay of the terminal device and the channel measurement feedback information processing delay of the terminal device, whether the terminal device can obtain the first channel measurement before starting the processing of the first uplink data.
  • the size of the feedback information The network device determines that the transmission mode of the first uplink data and the channel measurement feedback information is multiplexed and transmitted after determining that the terminal device can obtain the size of the channel measurement feedback information before starting to process the first uplink data. .
  • the network device determines, in the case that the terminal device cannot obtain the size of the first channel measurement feedback information before starting the processing of the first uplink data, determining the first uplink data and the first channel measurement feedback information.
  • the transmission methods are independent transmissions.
  • the terminal device may further be before the rate matching parameter calculation or the puncturing parameter of the first uplink data is started.
  • the network device may further determine, according to the uplink data processing delay of the terminal device and the channel measurement feedback information processing delay of the terminal device, whether the terminal device can complete the first uplink data processing before the terminal device starts the Channel measurement feedback information processing, or determining whether the terminal device can complete the channel measurement feedback information processing before the first uplink data rate matching parameter calculation or puncturing, or determining that the terminal device starts the first uplink data processing before the terminal device Whether the device can obtain the size of the channel measurement feedback information.
  • the terminal device obtains the size of the measurement feedback information, and may specifically adopt several implementation manners:
  • Manner 1 The size of the measurement feedback information in each case that the terminal device and the network device pre-arrange according to some predefined rules.
  • Method 2 Set the size of the measurement feedback information to a fixed value.
  • Manner 3 The network device notifies the terminal channel to measure the size of the feedback information by signaling.
  • Manner 4 The size of the channel measurement feedback information obtained by the terminal device after measuring the CSI-RS.
  • the terminal device can obtain the size of the channel measurement feedback information after measuring the RI of the channel obtained by the CSI-RS, or the terminal device obtains the need to report after measuring the CSI-RS, and the size of the channel measurement feedback information can be obtained after forming the data packet that needs to be reported. .
  • the terminal device may also determine the channel measurement feedback information of the terminal device obtained by the last measurement as the current channel measurement feedback information size.
  • the terminal device may also determine channel measurement feedback information of the terminal device that is obtained last time as the current channel measurement feedback information. In this way, the terminal device can only consider the uplink data processing delay, and can delay the uplink data processing to perform the first uplink data processing according to the previous channel measurement feedback information size.
  • the network device obtains a manner in which the terminal device obtains the size of the measurement feedback information, and estimates, according to the manner, whether the terminal device can obtain the size of the first channel measurement feedback information before the first uplink data processing.
  • the network device may schedule or configure the channel measurement feedback information that has been measured before the uplink data processing in the multiplex transmission, and is not necessarily the channel measurement feedback information of the CSI-RS of the current time slot. .
  • the network device schedules or configures the terminal device to transmit the channel measurement feedback information of the CSI-RS of the previous time slot in the current time slot and the uplink data of the current time slot, so as to avoid the current uplink.
  • the data transmission needs to wait for the delay caused by the channel measurement feedback information processing delay of the CSI-RS of the current time slot.
  • the network device After the network device determines the transmission manner of the first uplink data and the first uplink control information, the network device determines the first time-frequency resource.
  • the first time-frequency resource is used to carry the multiplexed first uplink data.
  • the first channel measures feedback information.
  • the network device determines, according to the capability information, the first time-frequency resource, where the first The time-frequency resource is used to carry the first uplink data. Further, the network device determines the second time-frequency resource according to the capability information, where the second time-frequency resource is used to carry the first uplink control information, where the first time-frequency is used.
  • the resource is the same as the second time-frequency resource.
  • the network device determines, according to the capability information, the first time-frequency resource, where the first The time-frequency resource is used to carry the first uplink control information; further, the network device determines the second time-frequency resource according to the capability information, where the second time-frequency resource is used to carry the first uplink data; the first time-frequency The resource is the same as the second time-frequency resource.
  • the network device determines the second time-frequency resource in addition to determining the first time-frequency resource, and is applicable.
  • the network device determines time-frequency resources for the first uplink data and the first uplink control information, respectively, instead of combining the scenarios for determining the time-frequency resources.
  • the first time-frequency resource is used to carry the first uplink data or the first uplink control information, where the network device determines that the first uplink data and the first uplink control information are independently transmitted.
  • the network device determines, according to the capability information, a first time-frequency resource, where the first time-frequency resource is used.
  • the first uplink data is carried by the network device.
  • the network device determines the second time-frequency resource according to the capability information, where the second time-frequency resource is used to carry the first uplink control information.
  • the network device determines, according to the capability information, a first time-frequency resource, where the first time-frequency resource is used.
  • the first uplink control information is carried by the network device.
  • the network device determines the second time-frequency resource according to the capability information, where the second time-frequency resource is used to carry the first uplink data.
  • the network device sends first signaling to the terminal device, where the first signaling indicates the first time-frequency resource.
  • the terminal device receives the first signaling.
  • the network device may send the first signaling to the terminal device, where the first signaling indicates The first time-frequency resource is used to carry the multiplexed first uplink data and the first uplink control information.
  • the first signaling further indicates that the first time-frequency resource is used to carry the multiplexed first uplink data and the first uplink control information. That is, the network device notifies the terminal device of the first time-frequency resource information, and notifies the terminal device of the information that the first uplink data and the first uplink control information are multiplexed and transmitted by the first time-frequency resource.
  • the network device may further indicate that the first uplink data and the first uplink control information are multiplexed and transmitted by using other signaling.
  • the network device may also indicate time-frequency resources that carry the first uplink data and the first uplink control information, respectively.
  • the network device sends the first signaling and the second signaling to the terminal device, where the first signaling indicates the first time-frequency resource, and the first time-frequency resource is used to carry the first uplink data, the second signaling
  • the second time-frequency resource is used to carry the first uplink control information.
  • the second time-frequency resource is the same as the first time-frequency resource.
  • the network device may indicate the first time-frequency resource by using the first signaling, where the first time-frequency resource is used for multiplexing transmission of the first uplink data and the first uplink control information according to an agreed rule.
  • the agreed rules for example, if the channel measurement feedback information of the transmitted CSI-RS of the n-slot is transmitted in the (n+Y) time slot according to the agreed timing relationship, for example, according to the agreed time slot relationship, m Uplink scheduling signaling sent by the slot, scheduling uplink data transmission of the (m+K2) time slot, if the (n+Y) time slot and the (m+K2) time slot are the same time slot, the first time frequency is agreed
  • the resource is used to carry the uplink data transmitted in the time slot and the signal after the uplink control information transmitted in the time slot is multiplexed.
  • the network device sends the first signaling and the second signaling to the terminal device, where the first signaling indicates the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink control information, the second signaling
  • the second time-frequency resource is used to carry the first uplink data.
  • the second time-frequency resource is the same as the first time-frequency resource.
  • the network device notifies the first uplink data and the first uplink control signaling by using one signaling; or the network device may also be as before Transmitting, by the two signaling, the first uplink data of the terminal device and the first uplink control signaling are multiplexed.
  • the time-frequency resource that carries the uplink data is usually notified to the terminal device by using an uplink scheduling command that is carried in the PDCCH, and the time-frequency resource that carries the uplink control signaling may be determined by using high-layer signaling or according to a predefined rule. Therefore, the network device notifies the terminal device of the first time-frequency resource and the second time-frequency resource by using two signalings, and the first time-frequency resource is the same as the second time-frequency resource. After the terminal device receives the first signaling and the second signaling, if it is determined that the second time-frequency resource is the same as the first time-frequency resource, the first uplink data and the first uplink control information are considered to be complex. Transfer after transmission.
  • the network device sends the first signaling and the second signaling to the terminal device, where the first signaling indicates the first time
  • the first time-frequency resource is used to carry the first uplink data
  • the second time-frequency resource is used to carry the first uplink control information.
  • the second time-frequency resource is different from the first time-frequency resource.
  • the network device sends the first signaling and the second signaling to the terminal device, where the first signaling indicates the first time
  • the first time-frequency resource is used to carry the first uplink control information
  • the second time-frequency resource is used to carry the first uplink data.
  • the second time-frequency resource is different from the first time-frequency resource.
  • the terminal device receives the second signaling.
  • the first signaling and/or the second signaling may be high layer signaling, or may be physical layer signaling, or may be MAC layer signaling, or may be some implementation rules, or may be high layer signaling.
  • the combination of at least two of physical layer signaling, MAC layer signaling, and implementation agreed rules is not limited thereto.
  • the terminal device obtains a first time-frequency resource according to the first signaling, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information.
  • the network device sends a time-frequency resource indicating the first uplink data and/or the first uplink control information to the terminal device, so that the terminal device can determine, to carry the first uplink data and/or the uplink control information.
  • the time-frequency resource may further transmit the first data and/or the uplink control information in the first time-frequency resource, so that the network device can accurately receive the first uplink data and/or the first time in a lower time delay.
  • the terminal device determines the first uplink data and the first uplink control information.
  • the transmission mode is multiplexed and transmitted.
  • the terminal device may further receive the second signaling, the terminal device And determining, by the first signaling and the second signaling, a transmission manner of the first uplink data and the first uplink control information, where the transmission manner may be that the first uplink data and the first uplink information are independently transmitted, or The first uplink data and the first uplink information are multiplexed and transmitted. In this way, the terminal device can determine how to process the uplink data and the uplink information.
  • the terminal device may determine, according to whether the first time-frequency resource indicated by the first signaling is the same as the second time-frequency resource indicated by the second signaling, determining the first uplink data and the first uplink control information. transfer method.
  • the terminal device determines the transmission manner of the first uplink data and the first uplink control information. Transfer after multiplexing. If the first time-frequency resource indicated by the first signaling is different from the second time-frequency resource indicated by the second signaling, the terminal device may determine that the first uplink data and the first uplink control information are transmitted by using Transfer separately. That is, the terminal device can determine the transmission manner of the first uplink data and the first uplink control information according to the first time-frequency resource indicated by the first signaling and the second time-frequency resource indicated by the second signaling.
  • the first time-frequency resource indicated by the first signaling is different from the second time-frequency resource indicated by the second signaling, and may be a time domain resource of the first time-frequency resource indicated by the first signaling, and the The time domain resource of the second time-frequency resource indicated by the second signaling is different, and may also be the frequency domain resource of the first time-frequency resource indicated by the first signaling and the frequency of the second time-frequency resource indicated by the second signaling.
  • the time domain resource and the frequency domain resource of the time-frequency resource indicated by the first signaling are different from the time domain resource and the frequency domain resource of the second signaling, and the present application is not limited thereto.
  • the frequency domain of the first time-frequency resource indicated by the first signaling may be different from the second time-frequency resource indicated by the second signaling.
  • the frequency domain resources of the second time-frequency resource indicated by the resource and the second signaling may be the same or different.
  • the time of the first time-frequency resource indicated by the first signaling may be the same or different, and the application is not limited thereto.
  • the first time-frequency resource indicated by the first signaling and the second time-frequency resource indicated by the second signaling are different in time domain, and may be further in different time slots or in the same time slot. Different symbols.
  • the time slot in which the first time-frequency resource indicated by the first signaling is located and the time slot in which the second time-frequency resource indicated by the second signaling is located may be adjacent time slots, so that low delay may be implemented as much as possible.
  • the time slot in which the time-frequency resource indicated by the first signaling is located is time slot 1
  • the time slot in which the time-frequency resource indicated by the second signaling is located is the next time slot 2 of time slot 1; or the second signaling indication
  • the time slot in which the time-frequency resource is located is slot 1
  • the time slot in which the time-frequency resource indicated by the first signaling is located is the next slot 2 in slot 1.
  • the terminal device determines that the transmission manner of the first uplink data and the first uplink control information is multiplexed
  • the terminal device transmits the first after multiplexing on the time-frequency resource indicated by the first signaling. Uplink data and channel measurement feedback information.
  • the terminal device may further determine, according to the uplink data processing delay of the terminal device, uplink control information of the terminal device, in a case that the transmission mode of the first uplink data and the first uplink control information is determined to be multiplexed and transmitted. Processing delay, determining whether the size of the first uplink control information is obtained before starting the first uplink data processing. If the terminal device can obtain the size of the first uplink control information before starting the first uplink data processing, the terminal device determines to send the first uplink data and the first after the first time-frequency resource is multiplexed. Uplink control information.
  • the network device receives the multiplexed first uplink data and the first uplink control in the first time-frequency resource, after determining that the first uplink data and the first uplink control information are transmitted in a multiplexed manner. information.
  • the terminal device may further determine, according to the uplink data processing delay of the terminal device, uplink control information of the terminal device, in a case that the transmission mode of the first uplink data and the first uplink control information is determined to be multiplexed and transmitted. Processing delay, determining whether the size of the first uplink control information is obtained before starting the first uplink data processing. If the terminal device cannot obtain the size of the first uplink control information before starting the first uplink data processing, the terminal device sends the first uplink data or the first channel measurement feedback information in the first time-frequency resource. .
  • the first time-frequency resource may also receive the first uplink data and the first uplink control. Information, either receiving the first uplink data or receiving the first uplink control information.
  • the network device first attempts to receive the multiplexed first uplink data and the first uplink control information if the transmission mode of the first uplink data and the first uplink control information is determined to be multiplexed, if not, if Upon successful reception, the network device needs to further attempt to receive the first uplink data and attempt to receive the first uplink control information.
  • the terminal device determines to send the first uplink data in the first time-frequency resource.
  • the terminal device may further send, to the network device, notification information, where the notification information indicates that the terminal device only sends one type of signal in the first time-frequency resource. Therefore, the network device can learn, according to the notification information, that the first time-frequency resource receiving information is of a type, and does not need to distinguish the first uplink data and the channel measurement feedback information, thereby saving signal processing delay.
  • the terminal device sends only the first uplink data or only the first uplink control information in the first time-frequency resource.
  • the terminal device determines that the first time-frequency resource arrives according to the terminal device capability information.
  • the first uplink data and the first uplink control information are not processed, so that the terminal device neither sends the first uplink data nor the first uplink control information, or if the terminal device determines, according to the terminal device capability information.
  • the terminal device can send an indication message to the network device to inform the network device of the error status. In this way, the network device can re-schedule the terminal device correctly.
  • the terminal device may further pre-arrange with the network device or the terminal device sets the size of the uplink control information that is multiplexed with the first data, or the network device may notify the terminal device of the size of the first uplink control information to be multiplexed. Therefore, the terminal device can perform the first uplink data processing in the case that the first uplink data and the first uplink control channel information are multiplexed according to the size of the fixed or known uplink control information.
  • the application may further include: after the step 704, the terminal device sends the first uplink data and/or the first uplink control information in the first time-frequency resource.
  • the network device receives the first uplink data in the first time-frequency resource, or receives the first uplink control information, or receives the first uplink data and the first uplink control information.
  • the terminal device After the network device determines that the first uplink data and the first uplink control information are transmitted in a multiplexed manner, if the terminal device can send the multiplexed first uplink data and the first time in the first time-frequency resource And an uplink control information, the terminal device sends the multiplexed first uplink data and the first uplink control information in the first time-frequency resource.
  • the terminal device may further send the first uplink data or the first uplink control information on the first time-frequency resource, thereby avoiding resource waste and improving resource utilization.
  • the network device may try to receive the first uplink data or the first uplink control information sent by the terminal device by using a blind detection manner, thereby avoiding resource waste and improving resource utilization. rate.
  • the terminal device when calculating the power headroom (PHR), the terminal device needs to obtain the size of the first uplink data and the size of the first uplink control information corresponding to the PHR. Further, the terminal device may further determine a calculation method of the uplink power pre-quantization according to the capability information.
  • PHR power headroom
  • the terminal device may generate the PHR according to the uplink data processing delay of the terminal device and the uplink control information processing delay of the terminal device.
  • the following implementation methods can be used:
  • Manner 1 The PHR calculation of the terminal device does not consider the size of the uplink control information.
  • Manner 2 The terminal device may decouple the first uplink data and the first uplink control information, for example, the terminal device, if the terminal device is unable to learn the size of the first uplink control information that is multiplexed with the first uplink data. The device may generate the PHR according to only the first uplink data or according to the fixed first uplink control information size. If the terminal device can obtain the size of the uplink control information that is multiplexed with the first uplink data, the terminal device can calculate the PHR according to the size of the first uplink data and the first uplink control information.
  • the terminal device can autonomously determine whether the PHR calculation considers the size of the first uplink control information. And the terminal device further sends the indication information to the network device, where the indication information indicates whether the PHR generated by the terminal device considers the size of the first uplink control information.
  • the terminal device can pre-agreed with the network device the size of the first uplink control information used when calculating the PHR, so that if the terminal device determines that the transmission mode of the first uplink data and the first channel measurement feedback information is multiplexed and transmitted, the terminal The device can generate a PHR with the agreed value.
  • Manner 5 The network device notifies the terminal device of the size of the first uplink control information used in calculating the PHR.
  • the network device determines the calculation mode of the PHR according to the processing delay including the processing delay of the uplink data of the terminal device and the processing delay of the uplink control information of the terminal device, and avoids the calculation manner of the PHR.
  • the PHR calculation processing delay increases due to the uplink control information processing delay. .
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 11 shows an apparatus 1100 for signal processing of an embodiment of the present application.
  • the device 1100 can be a network device.
  • the device 1100 may correspond to a network device in each method embodiment, and may have any function of the network device in the method.
  • the processing unit 1110 is configured to acquire capability information of the terminal device, where the capability information includes a processing delay of the uplink data of the terminal device and a processing delay of the uplink control information of the terminal device.
  • the processing unit 1110 may obtain the capability information by using the transceiver unit.
  • the processing unit 1110 may The capability information is obtained through a communication interface with the core network device or other base station; the processing unit 1110 may also read the stored capability information of the terminal device from the storage unit of the network device.
  • the manner in which the device 1100 obtains the capability information of the terminal device may be the same as the foregoing method embodiment. To avoid repetition, details are not described herein, but the application is not limited thereto.
  • the processing unit 1110 is further configured to determine, according to the capability information, a first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information.
  • the transceiver unit 1120 is configured to send a first signaling to the terminal device, where the first signaling indicates the first time-frequency resource.
  • the transceiver unit may be an input/output interface, a pin or a circuit, or the like, or may be implemented by a transceiver including a radio frequency circuit.
  • the apparatus for signal processing determines to carry the first uplink data and the capability information according to the processing delay of the uplink data including the terminal device and the processing delay of the uplink control information of the terminal device. And the first time-frequency resource of the first uplink control information, and the first time-frequency resource is indicated by sending the first signaling to the terminal device, so that the transmission delay of the uplink data and/or the uplink control information is avoided or Scheduling failure, that is, the efficiency of the network device configuration time-frequency resources is improved, and the signal transmission delay is reduced.
  • the processing unit 1120 is further configured to determine, according to the capability information, a transmission manner of the first uplink data and the first uplink control information, where the transmission mode is the first uplink data and the first uplink control information. Independent transmission, or the first uplink data and the first uplink control information are multiplexed and transmitted;
  • the processing unit 1110 is specifically configured to:
  • the first time-frequency resource is determined according to the capability information and the transmission mode.
  • processing unit 1110 is specifically configured to:
  • the terminal device If it is determined that the terminal device is capable of obtaining the size of the first uplink control information before starting the first uplink data processing, determining that the transmission mode is that the first uplink data and the first uplink control information are multiplexed and transmitted;
  • determining that the terminal device is unable to obtain the size of the first uplink control information before starting the first uplink data processing determining that the transmission mode is independent transmission of the first uplink data and the first uplink control information.
  • processing unit 1110 is specifically configured to:
  • the first time-frequency resource is determined according to the capability information, where the first time-frequency resource is used after the bearer is multiplexed.
  • the first uplink data and the first uplink control information are multiplexed and transmitted.
  • processing unit 1110 is specifically configured to:
  • the processing unit 1110 is further configured to determine a second time-frequency resource, where the second time-frequency resource is used to carry the first uplink control information, where the second time-frequency resource is the same as the first time-frequency resource;
  • the transceiver unit 1120 is further configured to send a second signaling to the terminal device, where the second signaling indicates the second time-frequency resource.
  • processing unit 1110 is specifically configured to:
  • control information determining, by the capability information, the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink, where the transmission mode is that the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the processing unit 1110 is further configured to determine a second time-frequency resource, where the second time-frequency resource is used to carry the first uplink data, where the second time-frequency resource is the same as the first time-frequency resource;
  • the transceiver unit 1120 is further configured to send a second signaling to the terminal device, where the second signaling indicates the second time-frequency resource.
  • the transceiver unit 1120 is further configured to:
  • processing unit 1110 is specifically configured to:
  • the processing unit 1110 is further configured to: when the transmission mode is that the first uplink data and the first uplink control information are independently transmitted, determine the second time-frequency resource according to the capability information, where the second time The frequency resource is used to carry the first uplink control information, and the second time-frequency resource is different from the first time-frequency resource;
  • the transceiver unit 1120 is further configured to send a second signaling to the terminal device, where the second signaling is used to indicate the second time-frequency resource.
  • processing unit 1110 is specifically configured to:
  • the processing unit 1110 is further configured to: when the transmission mode is that the first uplink data and the first uplink control information are independently transmitted, determine the second time-frequency resource according to the capability information, where the second time The frequency resource is used to carry the first uplink data, and the second time-frequency resource and the first time-frequency resource are different;
  • the transceiver unit 1120 is further configured to send a second signaling to the terminal device, where the second signaling is used to indicate the second time-frequency resource.
  • the second time-frequency resource and the first time-frequency resource are different, and the first time-frequency resource and the second time-frequency resource are different symbols in the same time slot, or the first time-frequency resource
  • the time slot in which the time slot is located is different from the time slot in which the second time-frequency resource is located, or the first time-frequency resource and the second time-frequency resource are in different frequency domain resources in the same time slot.
  • the first uplink data and the first uplink control information are multiplexed to multiplex the first uplink data and the first uplink control information by means of puncturing or rate matching.
  • the first uplink control information includes at least one of a first uplink acknowledgement signal and a first uplink channel measurement feedback information.
  • the apparatus for signal processing determines to carry the first uplink data and the capability information according to the processing delay of the uplink data including the terminal device and the processing delay of the uplink control information of the terminal device. And the first time-frequency resource of the first uplink control information, and the first time-frequency resource is indicated by sending the first signaling to the terminal device, so that the transmission delay of the uplink data and/or the uplink control information is avoided or Scheduling failure, that is, the efficiency of the network device configuration time-frequency resources is improved, and the signal transmission delay is reduced.
  • the apparatus 1100 for signal processing in the embodiment of the present application may be a network device, or may be a chip in the network device.
  • the apparatus 1100 for signal processing may correspond to the network device in the method of signal processing of the embodiment of FIG. 7, and the above and other management operations of the respective units in the signal processing apparatus 1100 and/or
  • the functions or functions are respectively implemented in order to implement the corresponding steps of the foregoing various methods, and are not described herein for brevity.
  • the transceiver unit 1120 in the embodiment of the present application may be implemented by the transceiver 1210, and the processing unit 1110 may be implemented by the processor 1220.
  • the signal processing device 1200 can include a transceiver 1210, a processor 1220, and a memory 1230.
  • the memory 1230 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 1220.
  • the transceiver 1210 can include a radio frequency circuit.
  • the network device further includes a storage unit.
  • the storage unit can be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the network device to perform the signal processing described above. method.
  • the signal processing device 1100 is a chip in a network device
  • the chip includes a processing unit 1110 and a transceiver unit 1120.
  • Transceiver unit 1120 can be implemented by transceiver 1210, and processing unit 1110 can be implemented by processor 1220.
  • the transceiver unit can be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing unit can execute computer executed instructions stored by the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • FIG. 13 is a schematic block diagram of an apparatus 1300 for signal processing according to another embodiment of the present application. As shown in FIG. 13, the device 1300 can be a terminal device.
  • the apparatus 1300 may correspond to a terminal device in each method embodiment, and may have any function of the terminal device in the method.
  • the transceiver unit 1310 is configured to send capability information to the network device, where the capability information includes a processing delay of the terminal device processing the uplink data and a processing delay of the terminal device processing the uplink control information;
  • the transceiver unit 1310 is further configured to receive the first signaling, where the first signaling indicates the first time-frequency resource, where the first time-frequency resource is used to carry the first uplink data and/or the first uplink control information;
  • the processing unit 1320 is configured to determine the first time-frequency resource according to the first signaling.
  • the apparatus for signal processing in the embodiment of the present application sends the capability information including the uplink data and the uplink control information to the network device, and receives the first signaling sent by the network device, where the first signaling indication is used to carry the first uplink.
  • Data and/or a first time-frequency resource carrying the first uplink control information, where the first time-frequency resource may be determined by the network device according to the capability information of the terminal device, and determining the first time-frequency resource according to the first signaling
  • the transmission delay of the uplink data and/or the uplink control information is long or the scheduling failure is avoided, that is, the efficiency of configuring the time-frequency resources of the network device is improved, and the signal transmission delay is reduced.
  • the first time-frequency resource is used to carry the first uplink data
  • the transceiver unit 1310 is further configured to receive the second signaling, where the second signaling indicates the second time-frequency resource, where the second time-frequency resource is used to carry the first uplink control information;
  • the processing unit 1320 is further configured to determine, according to the first signaling and the second signaling, a transmission manner of the first uplink data and the first uplink control information, where the transmission mode is the first uplink data and the first An uplink control information is independently transmitted, or the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the first time-frequency resource is used to carry the first uplink control information
  • the transceiver unit 1310 is further configured to receive the second signaling, where the second signaling indicates the second time-frequency resource, where the second time-frequency resource is used to carry the first uplink data.
  • the processing unit 1320 is further configured to determine, according to the first signaling and the second signaling, a transmission manner of the first uplink data and the first uplink control information, where the transmission mode is the first uplink data and the first An uplink control information is independently transmitted, or the first uplink data and the first uplink control information are multiplexed and transmitted.
  • the processing unit 1320 is further configured to: when the first time-frequency resource is used to carry the first uplink data and the first uplink control information, determine the first uplink data and the first uplink control The transmission method of information is multiplexed and transmitted.
  • processing unit 1320 is specifically configured to:
  • the transmission mode is that the first uplink data and the first uplink control information are multiplexed and transmitted;
  • the transmission mode is independent transmission of the first uplink data and the first uplink control information.
  • the processing unit 1320 is further configured to determine whether the first uplink data processing is obtained before starting the first uplink data processing.
  • the transceiver unit 1310 is further configured to: after the terminal device obtains the size of the first uplink control information before starting the first uplink data processing, send the first uplink after the multiplexing of the first time-frequency resource Data and the first uplink control information.
  • the processing unit 1320 is further configured to determine whether the first uplink data processing is obtained before starting the first uplink data processing.
  • the transceiver unit 1310 is further configured to: when the terminal device does not obtain the size of the first uplink control information before starting the first uplink data processing, send the first uplink data or the first time-frequency resource. First uplink control information.
  • the first time-frequency resource and the second time-frequency resource are different, the different symbols of the first time-frequency resource and the second time-frequency resource in the same time slot, or the first time-frequency resource Different from the time slot in which the second time-frequency resource is located, or the first time-frequency resource and the second time-frequency resource are in different frequency domain resources in the same time slot.
  • the first uplink data and the first uplink control information are multiplexed to multiplex the first uplink data and the first uplink control information by means of puncturing or rate matching.
  • the first uplink control information includes at least one of a first uplink acknowledgement signal and first uplink channel measurement information feedback information.
  • the apparatus for signal processing in the embodiment of the present application sends the capability information including the uplink data and the uplink control information to the network device, and receives the first signaling sent by the network device, where the first signaling indication is used to carry the first uplink.
  • Data and/or a first time-frequency resource carrying the first uplink control information, where the first time-frequency resource may be determined by the network device according to the capability information of the terminal device, and determining the first time-frequency resource according to the first signaling
  • the transmission delay of the uplink data and/or the uplink control information is long or the scheduling failure is avoided, that is, the efficiency of configuring the time-frequency resources of the network device is improved, and the signal transmission delay is reduced.
  • the apparatus 1300 for signal processing in the embodiment of the present application may be a terminal device or a chip in the terminal device.
  • the apparatus 1300 for signal processing may correspond to the terminal device in the method of signal processing of the embodiment of FIG. 7, and the above-described and other management operations of the respective units in the signal processing apparatus 1300 and/or
  • the functions or functions are respectively implemented in order to implement the corresponding steps of the foregoing various methods, and are not described herein for brevity.
  • the transceiver unit 1310 in the embodiment of the present application may be implemented by the transceiver 1410, and the processing unit 1320 may be implemented by the processor 1420.
  • device 1400 can include a transceiver 1410, a processor 1420, and a memory 1430.
  • the memory 1430 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 1420.
  • the transceiver may include a radio frequency circuit, and optionally, the terminal device further includes a storage unit.
  • the storage unit can be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the network device to perform the signal processing described above. method.
  • the signal processing device 1300 is a chip in the terminal device
  • the chip includes a processing unit 1320 and a transceiver unit 1310.
  • the transceiver unit 1310 can be, for example, an input/output interface on a chip, a pin or a circuit, or the like.
  • Processing unit 1320 can execute computer-executed instructions stored by the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • processor 1220 or processor 1420 can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory 1230 or the memory 1430 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous SDRAM
  • DDR SDRAM double data rate synchronous SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • FIG. 15 shows a communication system 1500 of an embodiment of the present application, the communication system 1500 comprising:
  • the embodiment of the present application further provides a computer storage medium, which can store program instructions for indicating any of the above methods.
  • the storage medium may be specifically a memory 1230 or 1430.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a distributed unit, a centralized unit, and a terminal device to implement functions involved in the foregoing embodiments, for example, generating or processing the foregoing. Data and/or information involved in the method.
  • the chip system further comprises a memory for storing the distributed program, the centralized unit and the necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号处理的方法和装置。网络设备获取终端设备的能力信息,该能力信息包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延;根据该能力信息,确定第一时频资源,该第一时频资源用于承载第一上行数据和/或第一上行控制信息;向该终端设备发送第一信令,该第一信令指示该第一时频资源。本申请能够提高网络设备为终端设备的第一上行数据和/或第一上行控制信息配置时频资源的效率,从而降低信号传输的时延。

Description

信号处理的方法和装置
本申请要求于2017年9月14日提交中国专利局、申请号为201710828912.1、申请名称为“信号处理的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种信号处理的方法和装置。
背景技术
传统蜂窝无线通信系统包含网络设备和终端设备,由终端设备向网络设备的传输称为上行传输,由网络设备向终端设备的传输称为下行传输,终端设备在哪些上行时频资源发送哪些上行信号通常由网络设备指定。具体的,网络设备会发送上行调度信令,上行调度信令通知终端设备在哪些时频资源发送上行数据,终端设备在接收到上行调度信令后,会按照上行调度信令的指示,生成上行数据包并在所调度的时频资源进行上行数据的发送。此外,网络设备还会发送一些用于信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),终端设备对这些参考信号进行测量,获得信道状态信息,包括信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indication,RI)、信道预编码矩阵信息(Proceding Matrix Indicator,PMI),终端设备通过上行信号将信道状态测量反馈信息发送给网络设备。在以前的传统的蜂窝通信系统中,终端在第n子帧接收上行调度信息,在第(n+4)子帧或者第(n+4)子帧发送上行数据,上行数据处理时延约为4子帧,每个时长为1ms;对于信道测量,则是第n子帧发送CSI-RS,在第(n+4)子帧或者第(n+4)子帧发送针对该CSI-RS的信道测量反馈信息。如果上行数据和信道测量反馈信息在同一个子帧发送,则将部分调度给上行数据传输的资源留出来传输信道测量反馈信息,称为上行数据与信道测量反馈信息复接传输。为此,终端需要对上行数据进行打孔和速率匹配,所以,终端在进行上行数据处理之前,需要获知在所调度的上行资源,是否要为信道测量反馈预留资源。在现有蜂窝通信系统中,终端都是提前约4ms知道是否有上行数据和信道测量反馈的复接,因此,终端在进行上行速率匹配之前,可以获知在所调度的上行传输上,是否需要为信道测量反馈预留资源,信道测量反馈信息处理不会导致上行数据处理出现问题。故传统蜂窝系统中,网络设备在调度的时候,不会特别考虑信道测量反馈时延对上行传输的影响。
在下一代无线通信系统,例如新无线通信(New Radio,NR)系统中,为了提升用户体验,提出了多种对低时延的需求。低时延的实现主要体现在两个方面,例如,数据传输的时延低和信道质量反馈的时延低。以3GPP长期演进(Long Term Evolution,LTE)或者新型接入网络(New Radio Access Network,NR)系统为例,在上行传输上,要求终端设备在接收到网络的调度信令后,快速的发送上行数据以降低数据传输时延,在NR系统 中,上行处理时延要求低至几个符号,假设为N2符号。在网络设备发送下行参考信号CSI-RS触发终端设备对信道状态进行周期性或者非周期性的测量,并尽快将信道状态测量信息上报给网络设备以降低信道质量反馈的时延。在NR系统中,信道测量反馈信息处理时延根据不同的测量要求,可以是几个OFDM符号到几个时隙,假设这个处理时延为K1符号。如果网络设备在时隙n发送上行调度信令,这个调度信令要求终端设备在时隙n发送上行数据,另一方面,网络设备还在时隙n发送CSI-RS,且调度终端设备在时隙n针对该CSI-RS的信道测量反馈信息与时隙n的数据复接在一起传输,则终端设备需要在完成信道测量反馈信息处理之后才可以启动一部分上行处理,例如上行速率匹配参数计算和上行数据速率匹配需要获得信道测量反馈信息大小之后才可以处理,因而增加了上行处理时延,导致上行传输时延增加,频谱效率降低,甚至会因终端设备在网络设备要求的上行传输之前无法完成上行处理而导致上行传输失败。
发明内容
本申请提供一种信号处理的方法和装置,能够提高网络设备为终端设备的上行数据和/或信道状态测量信息配置时频资源的精度,从而降低数据传输时延。
第一方面,提供了一种信号处理的方法,该方法包括:获取终端设备的能力信息,该能力信息包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延;根据该能力信息,确定第一时频资源,该第一时频资源用于承载第一上行数据和/或第一上行控制信息;向该终端设备发送第一信令,该第一信令指示该第一时频资源。
网络设备根据包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延的能力信息,确定用于承载第一上行数据和/或第一上行控制信息的第一时频资源,并通过向终端设备发送第一信令指示该第一时频资源,这样避免了第一上行数据和/或第一上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
在一些可能的实现方式中,该方法还包括:根据该能力信息,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输;其中,该根据该能力信息,确定第一时频资源包括:根据该能力信息和该传输方式,确定该第一时频资源。
网络设备还可以根据该能力信息确定第一上行数据和第一上行控制信息的传输方式,再根据能力信息和传输方式确定该第一时频资源,这样网络设备能够更进一步提高网络设备配置时频资源的效率,降低信号传输时延。
在一些可能的实现方式中,该根据该能力信息,确定该第一上行数据和该第一上行控制信息的传输方式包括:根据该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延,确定该终端设备在启动该第一上行数据处理之前是否能够获得该终端设备的第一上行控制信息的大小;在确定该终端设备能够在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输;在确定该终端设备不能够在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息独立传输。
网络设备可以根据终端设备的能力信息确定终端设备在启动该第一上行数据处理之前是否能够获得该终端设备的上行控制信息的大小,从而能够确定该第一上行数据和该第一上行控制信息的传输方式,如果第一上行控制信息的处理没有造成第一上行数据的处理时延增加,则可以采用复接的传输方法,如果第一上行控制信息的处理导致第一上行数据处理时延增加,则将第一上行控制信息传输与第一上行数据传输解耦,各自独立的传输,从而避免了这种情况下上行处理时延的增加,降低了信号传输时延。
在一些可能的实现方式中,该根据该能力信息和该传输方式,确定该第一时频资源包括:在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载复接后的该第一上行数据和该第一上行控制信息。
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,网络设备可以发送第一信令指示第一时频资源。这样网络设备能够通过第一信令使得终端设备在该第一时频资源发送复接后的第一上行数据和第一上行控制信息,从而节省了信令开销。
在一些可能的实现方式中,该根据该能力信息和该传输方式,确定该第一时频资源包括:在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息确定该第一时频资源,该第一时频资源用于承载该第一上行数据;其中,该方法还包括:确定第二时频资源,该第二时频资源用于承载该第一上行控制信息,该第二时频资源与该第一时频资源相同;向该终端设备发送第二信令,该第二信令指示该第二时频资源。
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,若第一时频资源用于承载该第一上行数据,则网络设备还可以确定用于承载上行控制信息的第二时频资源,且第二时频资源与第一时频资源相同,网络设备可以通过第一信令指示该第一时频资源,通过第二信令指示该第二时频资源,从而提高了指示的灵活性。
在一些可能的实现方式中,该根据该能力信息和该传输方式,确定该第一时频资源包括:在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息确定该第一时频资源,该第一时频资源用于承载该第一上行控制信息;其中,该方法还包括:确定第二时频资源,该第二时频资源用于承载该第一上行数据,该第二时频资源与该第一时频资源相同;向该终端设备发送第二信令,该第二信令指示该第二时频资源。
第一时频资源也可以用于承载第一上行控制信息,第二时频资源用于承载第一上行数据。网络设备通过第一信令指示该第一时频资源,通过第二信令指示该第二时频资源,从而提高了指示的灵活性。
在一些可能的实现方式中,该方法还包括:在该第一时频资源接收复接后的该第一上行数据和该第一上行控制信息;或在该第一时频资源接收该第一上行数据或该第一上行控制信息。
若终端设备不能够在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息,则终端设备还可以在该第一时频资源发送该第一上行数据或者该第一上行控制信息,网络设备还可以接收到终端设备发送的该第一上行数据或该第一上行控制信息,这样可以避免资源浪费,提高了资源利用率。具体的,在网络设备在该第一时频资源没有成功 接收到复接后的该第一上行数据和该第一上行口控制信息后,网络设备可以通过盲检测的方式,接收终端设备发送的该第一上行数据或该第一上行控制信息。
在一些可能的实现方式中,该根据该能力信息和该传输方式,确定第一时频资源包括:在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载该第一上行数据;其中,该方法还包括:在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第二时频资源,该第二时频资源用于承载该第一上行控制信息,且该第二时频资源和该第一时频资源不相同;向该终端设备发送第二信令,该第二信令用于指示该第二时频资源。
网络设备根据能力信息和传输方式确定第一时频资源可以是在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据能力信息确定第一时频资源,这样网络设备能够更加准确的确定出第一时频资源,降低了信号传输的时延,提升资源分配的效率。
在一些可能的实现方式中,该根据该能力信息和该传输方式,确定第一时频资源包括:在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载该第一上行控制信息;其中,该方法还包括:在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第二时频资源,该第二时频资源用于承载该第一上行数据,且该第二时频资源和该第一时频资源不相同;向该终端设备发送第二信令,该第二信令用于指示该第二时频资源。
在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,网络设备可以通过第一信令和第二信令分别指示用于承载该第一上行数据和该第一上行控制信息的时频资源,从而提高了指示的灵活性。
在一些可能的实现方式中,该第二时频资源和该第一时频资源不相同为该第一时频资源和该第二时频资源在同一个时隙中的不同符号,或该第一时频资源所在的时隙和该第二时频资源所在的时隙不同,或该第一时频资源和该第二时频资源在同一时隙的不同频域资源上。
在第二时频资源和该第一时频资源不相同的情况下,仍然可以更进一步节省该第一上行数据和该第一上行控制信息的传输时延。
在一些可能的实现方式中,该第一上行数据和该第一上行控制信息复接为通过打孔或者速率匹配的方式对该第一上行数据和该第一上行控制信息进行的复接。
网络设备为终端设备配置通过打孔或速率匹配的方式对该第一上行数据和该第一上行控制信息进行复接传输的时频资源,能够提高资源利用率。
在一些可能的实现方式中,该第一上行控制信息包括第一上行确认信号和第一上行信道测量信息反馈信息中的至少一项。
本申请的第一上行控制信息可以包括第一上行确认信号或第一上行信道测量信息反馈信息或者这两项的组合,从而使得本申请实施例的应用范围广,适应性强。
第二方面,提供了一种信号处理的方法,该方法包括:向网络设备发送能力信息,该能力信息包括终端设备处理上行数据的处理时延和终端设备处理上行控制信息的处理时 延;接收第一信令,该第一信令指示第一时频资源,该第一时频资源用于承载第一上行数据和/或第一上行控制信息;根据该第一信令,确定该第一时频资源。
终端设备向网络设备发送包括上行数据和上行控制信息的能力信息,并接收网络设备发送的第一信令,该第一信令指示用于承载第一上行数据和/或承载第一上行控制信息的第一时频资源,该第一时频资源可以是网络设备根据该终端设备的能力信息确定的,并根据该第一信令确定第一时频资源,这样避免了第一上行数据和/或第一上行控制信息的传输时延较长或调度失败,即提高了网络设备为配置时频资源的效率,降低了信号传输时延。
在一些可能的实现方式中,该第一时频资源用于承载该第一上行数据;其中,该方法还包括:接收第二信令,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行控制信息;根据该第一信令和该第二信令,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输。
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,若第一时频资可以用于承载第一上行数据,则终端设备还可以接收第二信令,该第二信令用于指示承载第一上行控制信息的第二时频资源,终端设备接收网络设备通过第一信令和第二信令分别指示承载该第一上行数据和该第一上行控制信息的时频资源,从而提高指示的灵活性。
在一些可能的实现方式中,该第一时频资源用于承载该第一上行控制信息;其中,该方法还包括:接收第二信令,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行数据;根据该第一信令和该第二信令,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输。
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,若第一时频资可以用于承载第一上行控制信息,则终端设备还可以接收第二信令,该第二信令用于指示承载第一上行数据的第二时频资源,终端设备接收网络设备通过第一信令和第二信令分别指示承载该第一上行数据和该第一上行控制信息的时频资源,从而提高指示的灵活性。
在一些可能的实现方式中,该方法还包括:在该第一时频资源用于承载该第一上行数据和该第一上行控制信息的情况下,确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输。
终端设备接收第一信令,终端设备根据第一信令确定该第一时频资源用于承载复接后的第一上行数据和第一上行控制信息,从而节省了信令开销。
在一些可能的实现方式中,该根据该第一信令和该第二信令,确定该第一上行数据和该第一上行控制信息的传输方式包括:在该第一时频资源与该第二时频资源相同的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输;在该第一时频资源与该第二时频资源不相同的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息独立传输。
在终端设备接收到两个信令的情况下,终端设备可以根据所述第一信令指示的时频资源与所述第二信令指示的时频资源是否相同确定该第一上行数据和该第一上行控制信息 的传输方式,从而更进一步提高了信号传输的准确性。
在一些可能的实现方式中,在确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,该方法还包括:确定在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小;在该终端设备在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息。
在确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,终端设备可以确定在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小,并根据在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小确定在第一时频资源发送的信号类型,若该终端设备在启动该第一上行数据处理之前获得第一上行控制信息的大小,在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息,从而节省了信号传输时延。
在一些可能的实现方式中,在确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,该方法还包括:确定在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小;在该终端设备在启动该第一上行数据处理之前没有获得该第一上行控制信息的大小的情况下,在该第一时频资源发送该第一上行数据或该第一上行控制信息。
若该终端设备在启动该第一上行数据处理之前没有获得第一上行控制信息的大小,则终端设备的第一上行数据处理受限于第一上行控制信息的处理而可能会导致上行传输失败,终端设备此时选择在该第一时频资源发送该第一上行数据或该第一上行控制信息,避免了上行传输资源浪费,从而提高了资源利用率。
在一些可能的实现方式中,该第一时频资源与该第二时频资源不相同为该第一时频资源与该第二时频资源在同一个时隙中的不同符号,或该第一时频资源与该第二时频资源所在的时隙不同,或该第一时频资源与该第二时频资源在同一时隙的不同频域资源上。
在第一信令指示的时频资源与该第二信令指示的时频资源不相同的情况下,仍然可以更进一步通过独立传输节省该第一上行数据和该第一上行控制信息的传输时延。
在一些可能的实现方式中,该第一上行数据和该第一上行控制信息复接为通过打孔或者速率匹配的方式对该第一上行数据和该第一上行控制信息进行的复接。
终端设备根据网络设备通过打孔或速率匹配的方式配置的时频资源传输复接后该第一上行数据和该第一上行控制信息,能够提高资源利用率。
在一些可能的实现方式中,该第一上行控制信息包括第一上行确认信号和第一上行信道测量信息反馈信息中的至少一项。
本申请的第一上行控制信息可以包括第一上行确认信号或第一上行信道测量信息反馈信息或者这两项的组合,从而使得本申请实施例的应用范围广,适应性强。
第三方面,提供了一种信号处理的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为网络设备时,网络设备包括:处理单元和收发单元, 所述处理单元例如可以是处理器,所述收发单元例如可以是收发器,所述收发器包括射频电路。可选地,所述网络设备还包括存储单元,该存储单元例如可以是存储器。当网络设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该网络设备执行上述第一方面任意一项的信号处理的方法。
在另一种可能的设计中,当该装置为网络设备内的芯片时,该芯片包括:处理单元和收发单元,所述处理单元例如可以是处理器,所述收发单元例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的信号处理的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述网络设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面信号处理的方法的程序执行的集成电路。
第四方面,本申请提供一种信号处理的装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置具有实现上述第二方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为终端设备时,终端设备包括:处理单元和收发单元,所述处理单元例如可以是处理器,所述收发单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端设备还包括存储单元,该存储单元例如可以是存储器。当终端设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端设备执行上述第二方面任意一项的信号处理的方法。
在另一种可能的设计中,当该装置为终端设备内的芯片时,该芯片包括:处理单元和收发单元,所述处理单元例如可以是处理器,所述收发单元例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端设备内的芯片执行上述第二方面任意一项的信号处理的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述第二方面信号处理的方法的程序执行的集成电路。
第五方面,提供了一种通信系统,该通信系统包括:上述第三方面的装置和上述第四方面的装置。
第六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面和第二方面中的任一方面或其任意可能的实现方式中的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面和第二方面中的任一方面或其任意可能的实现方式中的方法。
基于上述方案,网络设备根据包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延的能力信息,确定用于承载第一上行数据和/或第一上行控制信息的第一时频资源,并通过向终端设备发送第一信令指示该第一时频资源,这样避免了第一上行数据和/或第一上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
附图说明
图1是本申请实施例的通信系统的示意图;
图2是本申请实施例中时频资源的示意图;
图3是本申请实施例中独立传输的时频资源占用的示意图;
图4是本申请实施例中复接后传输的时频资源占用的示意图;
图5是复接后传输的示意图;
图6是上行数据独立传输的示意图;
图7是本申请一个实施例的信号处理的方法示意性流程图;
图8是本申请另一个实施例的信号处理的方法的示意图;
图9是本申请另一个实施例的信号处理的方法的示意图;
图10是本申请另一个实施例的信号处理的方法的示意图;
图11是本申请一个实施例的信号处理的装置的示意性框图;
图12是本申请另一个实施例的信号处理的装置的示意图结构图;
图13是本申请另一个实施例的信号处理的装置的示意图框图;
图14是本申请另一个实施例的信号处理的装置的示意性结构图;
图15是本申请实施例的通信系统的示意结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital  assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、无线接入点、收发站、传输点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例的通信系统的示意图。图1中的通信系统可以包括至少一个终端设备10和网络设备20。网络设备20用于为每个终端设备10提供通信服务并接入核心网。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的链路进行的上/下行传输,其中,网络设备20发送、终端设备10接收的通信链路为下行传输,终端设备10发送、网络设备20接收的通信链路为上行传输。
传统蜂窝无线通信系统包含网络设备和终端设备,由终端设备向网络设备的传输称为上行传输,由网络设备向终端设备的传输称为下行传输,终端设备在哪些上行时频资源发送哪些上行信号通常由网络设备指定。具体的,网络设备会发送上行调度信令,上行调度信令通知终端设备在哪些时频资源发送上行数据,终端设备在接收到上行调度信令后,会按照上行调度信令的指示,生成上行数据包并在所调度的时频资源进行上行数据的发送。网络设备发送给终端设备的上行调度承载在物理下行控制信道(physical downlink control channel,PDCCH)中,是下行控制信令(downlink control information,DCI)的一种。此外,网络设备还会发送一些用于信道状态测量的信道状态信息参考信号(channel state information-reference signal,CSI-RS),终端设备对这些参考信号进行测量,获得信道状态信息,包括信道质量指示(channel quality indicator,CQI)、秩指示(rank indication,RI)、预编码矩阵信息(proceding matrix indicator,PMI),终端设备通过上行信号将信道状态测量反馈信息发送给网络设备。网络设备还会在同步信道(synchronization channel)发送同步信号,在物理广播信道(physical broadcast channel)发送广播信号,终端设备还可以对同步信号进行测量,获得信道状态信息。在以前的传统的蜂窝通信系统中,终端在第n子帧接收上行调度信息,在第(n+4)子帧或者第(n+4)子帧之后的子帧发送上行数据,上行数据处理时延至少约为4子帧,每个子帧时长为1ms;对于信道测量,则是第n子帧发送CSI-RS,在第(n+4)子帧或者第(n+4)子帧之后的子帧发送针对该CSI-RS的信道测量反馈信息。如果上行数据和信道测量反馈信息在同一个子帧发送,则将部分调度给上行数据传输的资源留出来传输信道测量反馈信息,称为上行数据与信道测量反馈信息复接传输。为此,终端需要对上行数据进行打孔和速率匹配,所以,终端在进行上行数据处理之前,需要获知在所调度的上行资源,是否要为信道测量反馈预留资源。在现有蜂窝通信系统中,终端提前约4ms知道是否有上行数据和信道测量反馈的复接,因此,终端在进行上 行速率匹配之前,可以获知在所调度的上行传输上,是否需要为信道测量反馈预留资源,信道测量反馈信息处理不会导致上行数据处理出现问题。故传统蜂窝系统中,网络设备在调度的时候,不会特别考虑信道测量反馈时延对上行传输处理的影响。
在新的无线通信系统中,为了提升用户体验,提出了多种降低时延的需求。低时延的实现主要体现在两个方面,一方面是数据传输时延低;另一方面是信道质量反馈的时延低。
例如,以3GPP长期演进(long term evolution,LTE)或者新无线(new radio,NR)系统为例,在上行传输上,要求终端设备在接收到网络的上行数据调度信令后,快速的发送上行数据以降低数据传输时延,在NR系统中,上行处理时延要求低至几个符号,假设为N2符号,承载上行数据的信道称为物理上行共享信道(physical uplink shared channel,PUSCH);在网络设备发送下行参考信号触发终端设备对信道状态进行周期性或者非周期性的测量,并尽快将信道状态测量信息上报给网络设备以降低信道质量反馈的时延,在NR系统中,信道测量反馈信息处理时延根据不同的测量要求,可以是几个OFDM符号到几个时隙,假设这个处理时延为K1符号。另一方面,网络设备发送下行数据PDSCH给终端设备,并要求终端设备能够快速的处理下行数据并将是否成功接收到下行数据的信息反馈给终端设备,反馈信号称为ACK/NACK信号,在NR系统中,下行处理时延要求低至几个符号,假设为N1符号。其中,下行参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),信道状态测量信息包括信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indicator,RI)中的至少一项。另外,该信道状态测量信息也可以称为上行控制信息(uplink control information,UCI),承载上行控制信息的信道称为物理上行控制信道(physical uplink control channel,PUCCH)。
上行数据和上行控制信息可以独立传输,承载在物理上行共享信道(physical uplink shared channel,PUSCH)的上行数据和承载在物理上行控制信道的UCI分别分配不同的时频资源独立传输,也可以是上行数据与UCI复接后传输在一段时频资源传输。
具体地,网络设备为PUSCH分配一段时频资源,该时频资源为时间上至少一个符号、频率上至少包含一个子载波,如图2所示。在上行数据独立传输的情况下,所有的时频资源都用于承载上行数据,如图3所述。在上行数据与UCI复接进行传输的情况下,网络设备分配给PUSCH的时频资源有一部分用来承载UCI,如图4所示。因此需要对上行数据进行速率匹配或者打孔,留出一部分资源用来承载UCI。上行数据在进行速率匹配时,需要获知为UCI映射留出的时频资源是多少,也就是需要知道与上行数据复接的UCI的大小,而与上行UCI的大小会根据信道的情况、需要复接的UCI的数量和类型等因素而发生变化,例如取决于终端设备测量CSI-RS得到的当前信道的秩指示(Rank Indication,RI)的取值,所以,终端设备的上行速率匹配相关的操作,需要获得与上行数据复接的UCI大小之后才可以启动,从而导致终端设备上行数据传输的处理时延拉长。
例如,如图5所示,如果数据不需要与UCI复接,则终端设备在接收到网络设备发送的、承载在PDCCH的上行调度信令后,就可以启动上行数据的处理,并生成上行数据包,且在所分配的上行时频资源到来时发送承载所调度的上行数据,上行处理时延N2定义为承载上行调度信令的PDCCH的最后一个符号结束到所述上行调度信令所调度的上行数据开始时间之间的最小处理时延,单位是OFDM符号数,可以是任意大于零的非负数。
例如,如图6所示,如果上行数据与UCI复接后传输,例如上行数据与信道测量反馈信息复接,终端设备在接收到承载在PDCCH中的上行调度信令后,需要获知要复接的UCI的大小才可以启动速率匹配相关的处理,例如等待终端设备根据信道状态信息参考信号(channel state information reference signal,CSI-RS)测量得到RI,再根据RI得到与上行数据复接的UCI的大小,此时才可以开始上行速率匹配相关的处理,进而生成上行数据包,这样的调度,如果基站考虑了复接的UCI的处理时延来调度,则导致需要为上行处理预留更多的时间等待UCI处理而增加了传输时延,降低了频谱效率,如果基站没有考虑复接的UCI的处理时延而调度上行数据与UCI复接,甚至会由于终端来不及处理上行数据而导致调度失败。
如果网络设备在时隙n发送上行调度信令,这个调度信令要求终端设备在时隙n发送上行数据,且网络设备在时隙n发送CSI-RS,且调度终端设备在时隙n针对该CSI-RS的信道测量反馈信息与时隙n的数据复接在一起传输,则终端设备需要在完成信道测量反馈信息处理之后才可以启动一部分上行处理,例如上行速率匹配参数计算和上行数据速率匹配需要获得信道测量反馈信息大小之后才可以处理,因而增加了上行处理时延,甚至会导致终端设备在网络设备要求的上行传输之前无法完成上行处理而导致调度失败。
图7示出了本申请实施例的信号处理的方法。
701,网络设备获取终端设备的能力信息,该能力信息包括该终端设备的至少一个上行数据处理时延和该终端设备的至少一个上行控制信息UCI的处理时延。相应地,终端设备发送该能力信息。
需要说明的是,终端设备可以主动上报能力信息,例如,周期性上报能力信息,例如终端设备定期(例如每隔640ms或者320ms等,具体时间可以根据实现进行约定或者通过网络设备配置)向网络设备上报终端能力信息;或者事件触发性的上报终端能力信息,例如终端设备在初始接入网络时向网络设备上报终端能力信息。或者网络设备可以主动获取该能力信息,例如,发送信令触发终端设备上报能力信息等。网络设备还可以通过核心网设备或其他基站等获得终端设备的能力信息,本申请不限于此。
可选的,该终端设备的上行数据处理时延,定义为承载上行调度信令的PDCCH结束时间到发送所调度的上行数据开始时间之间的最短时间。
可选的,该终端设备的上行数据处理时延包括一个或多个,用于表示终端设备在不同条件下的处理时延,例如终端设备在不同子载波间隔下具有不同的处理时延,则终端设备的上行数据处理时延包括在不同子载波间隔下的值;或者例如终端设备在不同的传输带宽下具有不同的处理时延,则终端设备的上行数据处理时延包括在不同传输带宽下的值;或者例如终端设备在不同的上行传输速率下具有不同的处理时延,则终端设备的上行数据处理时延包括在不同传输速率下的值;终端设备的上行处理时延还受上行数据包大小、上行数据映射方式、上行导频映射方式、PDCCH传输方式等的影响而取不同的值,本申请不限于此。
可选的,该终端设备的上行数据的处理时延,包括该终端设备获得上行调度信息的处理时间(包括解调承载该上行调度信息的PDCCH,盲检测获得DCI,解析DCI获得上行调度信息)、根据上行调度所指示的方式生成待传输的上行数据传输块(TB)、上行数据编码和速率匹配参数计算、上行数据传输块编码、上行数据速率匹配、上行数据预编码、 上行数据解调等的至少一项。
可选的,该终端设备的上行控制信息包括终端设备接收物理下行共享信道(physical downlink shared channel,PDSCH)并发送上行确认信号ACK/NACK反馈信息、终端设备接收下行CSI-RS和/或下行同步信号块(synchronization signal block)而获得的信道测量反馈信息和/或波束信息、终端的上行调度请求(schedule request,SR)信息等的至少一项。其中,下行同步信号块包括主同步信道(primary synchronization channel,PSCH),辅同步信道(secondary synchronization channel,SSCH)和物理广播信道(physical broadcast channel,PBCH)中的至少一个。
可选的,该终端设备的上行控制信息的处理时延包括终端设备确认信号ACK/NACK的处理时延、终端设备的信道测量反馈信息的处理时延中的至少一个。
可选的,该终端设备的确认信号ACK/NACK处理时延为接收下行物理数据信道并发送确认信号ACK/NACK的处理时延,例如定义为终端设备接收承载下行数据的PDSCH的结束时间到终端设备开始发送针对该下行数据的ACK/NACK反馈信息的最小时间。
可选的,终端设备的信道测量反馈信息处理时延包括终端设备接收下行CSI-RS并获得信道测量反馈信息和/或波束信息的处理时延,终端设备接收下行同步信号块并获得信道测量反馈信息和/或波束信息的处理时延中的至少一个。
可选的,该终端设备接收下行CSI-RS并获得信道测量反馈信息和/或波束信息的处理时延,定义为终端设备接收待测量的CSI-RS结束时间到该终端设备获得信道测量反馈信息和/或波束信息的最短时间。
可选地,该终端设备的信道测量反馈信息的处理时延包括该终端设备测量秩指示(RI)的处理时间、该终端设备测量信道质量信息的处理时间和该终端设备测量预编码矩阵信息(PMI)的处理时间中的至少一项。
可选的,该终端设备的信道测量反馈信息的处理时延,在不同的条件下,具有不同的取值,例如,在不同的子载波间隔下具有不同的处理时延;在不同的测量带宽下具有不同的处理时延;在不同的测量配置下具有不同的处理时延;在不同的测量信道(可选的,测量信道可以是CSI-RS或者公共参考信号CRS或者同步信号中的至少一个)下具有不同的处理时延;在不同的测量目标(测量目标包括CQI、PMI、RI、波束管理、移动性管理中的至少一个)下具有不同的处理时延;在不同的测量精度下具有不同的处理时延;在不同的测量天线端口配置下具有不同的处理时延。
702,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源用于承载第一上行数据和/或第一上行控制信息。
网络设备确定需要调度上行数据或者上行控制信息传输,本申请实施例将待调度的上行数据称为第一上行数据,将待调度的上行控制信息称为第一上行控制信息。可选的,第一上行控制信息可以包括至少一个上行控制信息,上行控制信息可以是上行ACK/NACK反馈信息、信道测量反馈信息或者调度请求信息等,信道测量反馈信息可以包括CQI、PMI、RI等。
可选的,网络设备根据该能力信息,确定第一时频资源,该第一时频资源可以用于承载第一上行数据。
可选的,网络设备根据该能力信息,确定第一时频资源,该第一时频资源也可以用于 承载第一上行控制信息。
可选的,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源也可以用于承载第一上行数据和第一上行控制信息。
在网络设备需要调度第一上行数据传输和/或第一上行控制信息UCI传输的时候,网络设备可以根据该终端设备的上行数据处理时延和该终端设备的上行控制信息处理时延,确定承载所调度的第一上行数据的时频资源和/或承载所调度的第一上行控制信息的时频资源,避免出现由于第一上行数据处理和第一上行控制信息处理相互耦合而造成的第一上行数据和/或第一上行控制信息的传输时延增加,提升了频谱效率,又避免由于终端处理不及而造成的调度失败。
例如,如图8所示,在终端设备需要调度第一上行数据在时隙n传输,调度第一信道测量反馈信息在时隙n传输时,网络设备根据终端设备的能力信息,例如信道测量反馈信息处理时延,估计得到终端设备从接收CSI-RS完成时刻到完成相应的信道测量反馈信息处理的时间,如果网络设备估计终端设备在开始第一上行数据处理之前可以获得在时隙n要传输的信道测量反馈信息的大小,则网络设备可以配置对第一上行数据和第一信道测量反馈信息在时隙n复接传输。
例如,如图9所示,在终端设备需要调度第一上行数据在时隙n传输,调度第一信道测量反馈信息在时隙n传输时,网络设备根据终端设备的能力信息,例如信道测量反馈信息处理时延,估计得到终端设备从接收CSI-RS完成时刻到完成相应的信道测量反馈信息处理的时间,如果网络设备估计终端设备在开始第一上行数据处理之前不能够获得在时隙n要传输的信道测量反馈信息的大小,则网络设备可以配置对第一上行数据和第一信道测量反馈信息在时隙n独立传输,网络设备分别为第一上行数据传输分配第一时频资源,为第一信道测量反馈信息分配第二时频资源,所述第一时频资源与第二时频资源在时间上相互独立。这样,终端设备的第一上行数据传输不需要考虑为第一上行控制信息预留复接资源,因此终端设备的第一上行数据传输不再需要等待信道测量反馈信息完成的时间,从而终端设备的第一上行数据处理不会受到需要等待所要复接的第一信道测量反馈信息的影响,能够快速的处理该第一上行数据。
需要说明的是,第一时频资源承载第一上行数据可以是终端设备在该第一时频资源发送第一上行数据,也可以是网络设备在该第一时频资源接收该第一上行数据。同样地,终端设备可以在该第一时频资源发送第一上行控制信息,网络设备也可以在该第一时频资源接收该第一上行控制信息。或者终端设备在该第一时频资源发送第一上行数据和第一上行控制信息,网络设备在该第一时频资源接收该第一上行数据和该第一上行控制信息。
可选地,网络设备还可以根据该能力信息确定第一上行数据和第一上行控制信息的传输方式,再根据能力信息和传输方式确定第一时频资源,这样网络设备能够更进一步精确信号传输的时频资源,降低信号传输时延并避免调度失败。该传输方式可以是该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输。
本申请实施例的第一上行数据和第一控制信息复接传输可以是网络设备为终端设备分配第一时频资源用于承载第一上行数据,终端设备通过速率匹配或者打孔的方式,在所分配的第一时频资源所包含的资源元素(resource element,RE)中,留出一部分RE给第 一上行控制信息来传输。
可选地,本申请实施例的第一上行数据和第一控制信息复接传输可以是终端设备同时传输第一上行数据和第一控制信息配置。
本申请实施例的第一上行数据和第一上行控制信息独立传输可以是网络设备分别确定第一时频资源和第二时频资源,第一时频资源用于承载第一上行数据,第二时频资源用于承载第一上行控制信息。第一上行数据的传输与第一上行控制信息的传输解耦,第一上行数据的传输不受限于第一上行控制信息的传输。
在调度多于一种上行控制信息时,上行数据与不同类型的上行控制信息,可以采用不同的传输方式。例如在时隙n,调度第一上行数据、调度第一上行ACK/NACK信号传输、调度信道测量反馈信息传输,则网络设备可以确定第一上行数据与信道测量反馈信息复接传输,而复接后的第一上行数据与信道测量反馈信息,与第一上行ACK/NACK信号是独立传输。即网络设备确定第一时频资源,用于承载复接后的第一上行数据和第一信道测量反馈信息;网络设备确定第二时频资源,用于承载第一上行ACK/NACK信号。
可选的,网络设备根据该能力信息确定第一上行数据和第一上行控制信息的传输方式,具体为如下几种实现方式:
方式一:
网络设备确定第一上行数据和第一上行控制信息采用独立的传输方式。
这种方式意味着,网络设备不会配置第一上行数据和第一上行控制信息采用复接的方式传输,在下述实施例中也可以将这种传输方式称为“上行独立调度模式”。
进一步的,网络设备可以配置终端设备工作在上行调度独立的模式下或者配置终端设备不工作在上行调度独立模式。在终端设备工作在上行调度独立模式时,网络设备不会配置第一上行数据和第一上行控制信息采用复接的方式传输,第一上行数据与第一上行控制信息独立传输,不会相互耦合。在终端设备不是工作在上行调度独立模式时,网络设备可能会根据情况配置第一上行数据和第一上行控制信息复接传输。
方式二:
网络设备获得终端设备的上行数据处理时延和终端设备上行控制信息处理时延,网络设备估计终端设备在开始第一上行数据处理之前可以获得第一上行控制信息,则网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式;否则网络设备确定第一上行数据和第一上行控制信息采用独立的传输方式。
网络设备获得终端设备的上行数据处理时延N2,如果终端设备能力信息包括多于一个上行数据处理时延时,网络设备获得与待调度的第一上行数据最接近上行数据处理时延。例如,终端设备在不同的子载波间隔具有不同的上行处理时延时,网络设备可以将获得的与待调度的第一上行数据采用相同的子载波间隔的上行处理时延作为N2。再例如,终端设备在不同的传输速率具有不同的上行处理时延,网络设备可以将获得的与待调度的第一上行数据最接近且大于等于第一上行数据的传输速率所对应的上行处理时延作为N2。
网络设备获得终端设备上行控制信息处理时延K1,如果终端设备能力信息包括多于一个上行控制信息处理时延时,网络设备可以将获得与待调度的第一上行控制信息类型相同或相近、且最接近上行控制信息的处理时延作为K1。
例如,所述类型相同或相近可以是第一上行控制信息为信道测量反馈信息时,选择信道测量反馈信息处理时延。所述最接近可以是终端设备在不同的子载波间隔具有不同的信道测量反馈信息处理时延时,网络设备获得与待调度的第一上行控制信息采用相同的子载波间隔的上行控制信息处理时延。
方式三:
网络设备获得终端设备的上行数据处理时延,获取方式如前所述,不再赘述。
网络设备获得终端设备上行控制信息处理时延,获取方式如前所述,不再赘述。
网络设备估计终端设备在开始第一上行数据处理之前可以获得第一上行控制信息的大小,则网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式;否则网络设备确定第一上行数据和第一上行控制信息采用独立的传输方式。
方式四:
网络设备获得终端设备的上行数据处理时延N2,获取方式如前所述,不再赘述。
网络设备获得终端设备上行信道反馈信息处理时延K1,所述上行信道反馈处理时延包括终端设备测量RI的时延,和终端设备测量PMI的时延,其他获取方式如前所述,不再赘述。
网络设备估计终端设备在开始第一上行数据处理之前可以获得第一上行信道反馈信息的大小(例如通过设备测量RI的时延来估计),则网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式;否则网络设备确定第一上行数据和第一上行控制信息采用独立的传输方式。
方式五:
网络设备获得终端设备的上行数据处理时延N2,获取方式如前所述,不再赘述。
网络设备获得终端设备上行信道反馈信息处理时延K1,获取方式如前所述,不再赘述。
网络设备估计终端设备在开始第一上行数据处理之前可以获得第一上行信道反馈信息,则网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式;否则网络设备确定第一上行数据和第一上行控制信息采用独立的传输方式。
方式六:
网络设备获得终端设备的上行数据处理时延N2,获取方式如前所述,不再赘述。
网络设备获得终端设备上行控制信息处理时延K1,获取方式如前所述,不再赘述。
网络设备通知终端设备第一控制信道信息的大小。
网络设备确定终端设备在开始第一上行数据处理之前可以获得第一上行控制信息的大小,网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式。
方式七:
网络设备获得终端设备的上行数据处理时延N2,获取方式如前所述,不再赘述。
网络设备获得终端设备上行控制信息处理时延K1,获取方式如前所述,不再赘述。
网络设备确定采用第一上行数据和第一上行控制信息采用复接的传输方式,且网络设备确定终端设备将按照事先约定的规则,确定第一时频资源中为第一上行控制信道信息预留的资源的大小;
网络设备确定终端设备在开始第一上行数据处理之前可以获得第一上行控制信息的 大小,网络设备确定第一上行数据和第一上行控制信息采用复接的传输方式。
所述约定的规则可以对于不同的配置参数,约定的第一上行控制信道信息预留的资源大小不同。例如针对上行ACK/NACK和上行信道测量反馈信息,预留的资源大小不同;对于不同的带宽,预留的资源不同;对于不同类型的信道测量反馈信息,预留的资源大小不同;对于不同的终端天线能力,预留的资源不同等等。
在本申请所述的方法中,终端设备开始第一上行数据处理,具体包括如下几种:
终端设备在检测到承载第一上行数据的调度信息后,为终端设备开始第一上行数据处理时。
或者,终端设备在开始第一上行数据的速率匹配参数计算时,为终端设备开始第一上行数据处理时。
或者,终端设备在开始第一上行数据的速率匹配时,为终端设备开始第一上行数据处理时。
应理解,本申请实施例中涉及到的信号可以包括终端设备的上行信号或上行控制信息,例如信道测量反馈信息,还可以包括其他信息等,本申请不限于此。
当第一上行控制信息为信道测量反馈信息时,进一步的,还可以有如下实现方法:
可选地,网络设备可以根据该终端设备的上行数据处理时延和该终端设备的信道测量反馈信息处理时延确定在启动处理该第一上行数据之前该终端设备是否能够获得该第一信道测量反馈信息的大小。网络设备在确定该终端设备能够在启动处理该第一上行数据之前获得该信道测量反馈信息的大小的情况下,网络设备确定该第一上行数据和信道测量反馈信息的传输方式为复接后传输。
可选地,网络设备确定在该终端设备在启动处理该第一上行数据之前不能够获得该第一信道测量反馈信息的大小情况下,则确定该第一上行数据和该第一信道测量反馈信息的传输方式为相互独立传输。
可选地,在终端设备在启动处理该第一上行数据之前,进一步还可以是终端设备在启动该第一上行数据的速率匹配参数计算或打孔参数之前。
可选地,网络设备还可以根据该终端设备的上行数据处理时延和该终端设备的信道测量反馈信息处理时延,确定该终端设备启动该第一上行数据处理之前该终端设备是否能够完成该信道测量反馈信息处理,或者确定该终端设备在该第一上行数据速率匹配参数计算或打孔之前是否能够完成该信道测量反馈信息处理,或者确定该终端设备启动该第一上行数据处理之前该终端设备是否能够获得该信道测量反馈信息的大小。
可选地,终端设备获得测量反馈信息的大小,具体可以采用几种实现方式:
方式一:终端设备与网络设备按照某种预定义的规则预先约定的在各种情况下的测量反馈信息的大小。
方式二:设定测量反馈信息的大小为固定值。
方式三:网络设备通过信令通知终端信道测量反馈信息的大小。
方式四:终端设备对CSI-RS测量后得到的信道测量反馈信息的大小。例如终端设备在测量CSI-RS得到信道的RI后可以获得信道测量反馈信息的大小,或者终端设备在测量CSI-RS后得到需要上报,形成需要上报的数据包后可以获得信道测量反馈信息的大小。
方式五:终端设备也可以将上一次测量得到的该终端设备的信道测量反馈信息大小确 定为当前的信道测量反馈信息大小。
可选地,终端设备也可以将上一次测量得到的该终端设备的信道测量反馈信息确定为当前的信道测量反馈信息。这样终端设备可以仅考虑上行数据处理时延,及在获知上行数据处理时延时就可以根据上一次的信道测量反馈信息大小来进行第一上行数据处理。
对应地,网络设备获得终端设备获得测量反馈信息的大小的方式,并按照该方式来估计终端设备是否可以在该第一上行数据处理前可以获得该第一信道测量反馈信息的大小。
可选地,网络设备可以调度或者配置在进行复接传输时,采用最近一次在上行数据处理前已经测量得到的信道测量反馈信息,而不一定是当前时隙的CSI-RS的信道测量反馈信息。
例如,如图10所示,网络设备调度或者配置终端设备将上一个时隙的CSI-RS的信道测量反馈信息在当前时隙与当前时隙的上行数据一起复接传输,就可以避免当前上行数据传输需要等待当前时隙的CSI-RS的信道测量反馈信息处理时延所造成的延迟。
在网络设备确定该第一上行数据和该第一上行控制信息的传输方式后,网络设备确定第一时频资源。
可选地,在网络设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输的情况下,所述第一时频资源用于承载复接后的第一上行数据和第一信道测量反馈信息。
可选的,在网络设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输的情况下,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源用于承载第一上行数据;进一步的,网络设备根据该能力信息,确定第二时频资源,所述第二时频资源用于承载第一上行控制信息,所述第一时频资源和第二时频资源相同。
可选的,在网络设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输的情况下,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源用于承载第一上行控制信息;进一步的,网络设备根据该能力信息,确定第二时频资源,所述第二时频资源用于承载第一上行数据;所述第一时频资源和第二时频资源相同。
在网络设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输的情况下,网络设备在确定第一时频资源之外,还会确定第二时频资源,适用于网络设备分别为第一上行数据和第一上行控制信息确定时频资源而不是合并确定时频资源的场景。
可选地,在网络设备确定该第一上行数据和该第一上行控制信息独立传输的情况下,所述第一时频资源用于承载该第一上行数据或该第一上行控制信息。
可选的,在传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源,用于承载第一上行数据;进一步的,网络设备根据该能力信息,确定第二时频资源,所述第二时频资源,用于承载第一上行控制信息。
可选的,在传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,网络设备根据该能力信息,确定第一时频资源,所述第一时频资源,用于承载第一上行控制信息;进一步的,网络设备根据该能力信息,确定第二时频资源,所述第二时频资源,用于承载第一上行数据。
703,网络设备向终端设备发送第一信令,该第一信令指示第一时频资源。相应地, 终端设备接收该第一信令。
可选地,在网络设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输的情况下,网络设备可以向终端设备发送第一信令,第一信令指示第一时频资源,该第一时频资源用于承载复接后的该第一上行数据和该第一上行控制信息。
进一步的,其中,第一信令还指示第一时频资源用于承载复接后的该第一上行数据和该第一上行控制信息。即网络设备通知终端设备第一时频资源信息,还通知终端设备该第一上行数据和该第一上行控制信息在该第一时频资源复接传输的信息。可选的,网络设备还可以通过其他信令指示该第一上行数据和该第一上行控制信息复接传输。
可选地,网络设备也可以分别指示承载第一上行数据和第一上行控制信息的时频资源。具体地,网络设备向终端设备发送第一信令和第二信令,第一信令指示第一时频资源,该第一时频资源用于承载该第一上行数据,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行控制信息。此外,该第二时频资源与该第一时频资源相同。终端设备在接收到该第一信令和该第二信令后,如果确定该第二时频资源与该第一时频资源相同,则认为该第一上行数据和该第一上行控制信息复接后传输。
可选地,网络设备可以通过第一信令指示该第一时频资源,该第一时频资源按照约定的规则,用于第一上行数据和第一上行控制信息复接传输。所述约定的规则,例如,如果按照约定的时序关系,例如按照约定的时隙关系,n时隙的发送的CSI-RS的信道测量反馈信息,在(n+Y)时隙传输,m时隙发送的上行调度信令,调度第(m+K2)时隙的上行数据传输,如果(n+Y)时隙与(m+K2)时隙是相同的时隙,则约定第一时频资源用于承载该时隙传输的上行数据和该时隙传输的上行控制信息复接后的信号。
或者,网络设备向终端设备发送第一信令和第二信令,第一信令指示第一时频资源,该第一时频资源用于承载该第一上行控制信息,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行数据。此外,该第二时频资源与该第一时频资源相同。在第一上行数据和第一上行控制信令复接的情况下,优选的,网络设备通过一个信令通知第一上行数据和第一上行控制信令复接;或者,网络设备还可以如前所述通过两个信令通知终端设备第一上行数据和第一上行控制信令复接。由于承载上行数据的时频资源,通常是通过承载在PDCCH中的上行调度命令通知终端设备的,而承载上行控制信令的时频资源,则可以通过高层信令或者按照预先定义的规则确定,故网络设备通过两个信令通知终端设备第一时频资源和第二时频资源,而第一时频资源与第二时频资源相同。终端设备在接收到该第一信令和该第二信令后,如果确定该第二时频资源与该第一时频资源相同,则认为该第一上行数据和该第一上行控制信息复接后传输。
可选地,在传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,网络设备向终端设备发送第一信令和第二信令,第一信令指示第一时频资源,该第一时频资源用于承载该第一上行数据,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行控制信息。此外,该第二时频资源与该第一时频资源不相同。
可选地,在传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,网络设备向终端设备发送第一信令和第二信令,第一信令指示第一时频资源,该第一时频资源用于承载该第一上行控制信息,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行数据。此外,该第二时频资源与该第一时频资源不相同。
在网络设备发送第二信令的情况下,相应的,终端设备接收第二信令。
所述第一信令和/或第二信令可以是高层信令,还可以是物理层信令,还可以是MAC层信令,还可以是一些实现约定的规则,还可以是高层信令、物理层信令、MAC层信令、实现约定的规则之中至少两个的组合,本申请不限于此。
704,终端设备根据该第一信令,获得第一时频资源,该第一时频资源用于承载第一上行数据和/或该第一上行控制信息。
网络设备向终端设备发送指示用于承载该第一上行数据和/或该第一上行控制信息的时频资源,这样终端设备可以确定用于承载该第一上行数据和/或该上行控制信息的时频资源,进而可以在该第一时频资源传输第一数据和/或上行控制信息,使得网络设备能够在较低的时延内,准确的接收到该第一上行数据和/或该第一上行控制信息。
可选地,在第一信令指示的第一时频资源用于承载该第一上行数据和该第一上行控制信息的情况下,终端设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输。
可选地,在该第一信令指示的该第一时频资源用于承载该第一上行数据或该第一上行控制信息的情况下,终端设备还可以接收到第二信令,终端设备根据该第一信令和第二信令可以确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式可以是该第一上行数据和该第一上行信息独立传输,或该第一上行数据和该第一上行信息复接后传输。这样终端设备能够确定对上行数据和上行信息的处理方式。
可选地,终端设备可以根据该第一信令指示的第一时频资源与该第二信令指示的第二时频资源是否相同,确定该第一上行数据和该第一上行控制信息的传输方式。
具体地,若该第一信令指示的第一时频资源与该第二信令指示的第二时频资源相同,则终端设备确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输。若该第一信令指示的第一时频资源与该第二信令指示的第二时频资源不相同,则终端设备可以确定该第一上行数据和该第一上行控制信息的传输方式为单独传输。也就是说,终端设备能够根据该第一信令指示的第一时频资源与该第二信令指示的第二时频资源确定该第一上行数据和该第一上行控制信息的传输方式。
可选地,该第一信令指示的第一时频资源与该第二信令指示的第二时频资源不相同可以是第一信令指示的第一时频资源的时域资源和该第二信令指示的第二时频资源的时域资源不同,也可以是第一信令指示的第一时频资源的频域资源和该第二信令指示的第二时频资源的频域资源不同,也可以是第一信令指示的时频资源的时域资源和频域资源和该第二信令指示时频资源的时域资源和频域资源不同,本申请不限于此。
需要说明的是,该第一信令指示的第一时频资源与该第二信令指示的第二时频资源不相同的情况下,第一信令指示的第一时频资源的频域资源和第二信令指示的第二时频资源的频域资源可以相同,也可以不同。第一信令指示的第一时频资源的频域资源和第二信令指示的第二时频资源的频域资源不相同的情况下,第一信令指示的第一时频资源的时域资源和第二信令指示的第二时频资源的时域资源可以相同也可以不同,本申请不限于此。
可选地,该第一信令指示的第一时频资源和第二信令指示的第二时频资源在时域上不同,可以进一步是在不同的时隙或者在同一个时隙中的不同符号。
可选地,第一信令指示的第一时频资源所在的时隙和第二信令指示的第二时频资源所 在的时隙可以是相邻时隙,这样可以尽量实现低时延。
例如,第一信令指示的时频资源所在的时隙为时隙1,第二信令指示的时频资源所在的时隙为时隙1的下一个时隙2;或者第二信令指示的时频资源所在的时隙为时隙1,第一信令指示的时频资源所在的时隙为时隙1的下一个时隙2。
可选地,终端设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,终端设备在第一信令指示的时频资源上传输复接后的第一上行数据和信道测量反馈信息。
可选地,终端设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,还可以根据该终端设备的上行数据处理时延和该终端设备的上行控制信息处理时延,确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小。若该终端设备可以在在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小,则终端设备确定在该第一时频资源发送复接后的第一上行数据和第一上行控制信息。
相应地,网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,在第一时频资源接收该复接后的第一上行数据和第一上行控制信息。
可选地,终端设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,还可以根据该终端设备的上行数据处理时延和该终端设备的上行控制信息处理时延,确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小。若终端设备在启动所述第一上行数据处理之前不能够获得所述第一上行控制信息的大小,则终端设备在该第一时频资源发送该第一上行数据或该第一信道测量反馈信息。
相应地,网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,在该第一时频资源也可以是接收到第一上行数据和第一上行控制信息,或者接收到第一上行数据或接收到第一上行控制信息。此时,网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,先尝试接收复接后的第一上行数据和第一上行控制信息,如果不能够成功接收,则网络设备需要进一步分别尝试接收第一上行数据、尝试接收第一上行控制信息。
可选地,终端设备在确定网络设备发送的传输方式为第一上行数据和第一上行控制信息复接后传输的情况下,若终端设备确定在该第一时频资源发送该第一上行数据或该第一上行控制信息,则终端设备还可以向网络设备发送通知信息,该通知信息指示终端设备在该第一时频资源仅发送了一种信号。这样网络设备可以根据该通知信息获知在第一时频资源接收信息为一种类型,还不需要进行区分第一上行数据和信道测量反馈信息,节省了信号处理的时延。
例如,终端设备在该第一时频资源仅发送了第一上行数据或仅发送了第一上行控制信息。
可选地,若终端设备在第一时频资源到来时,第一上行数据和第一上行控制信息都没有处理完成,或者,若终端设备根据终端设备能力信息,判断在第一时频资源到来时,第一上行数据和第一上行控制信息都不会处理完成,这样终端设备既不发送第一上行数据也不发送第一上行控制信息,或者,若终端设备根据终端设备能力信息,判断在第一时频资源到来时,第一上行数据处理无法完成,或者若终端设备根据终端设备能力信息,判断在第一时频资源到来时,第一上行控制信息处理无法完成。在这种情况下终端设备可以向网 络设备发送指示信息,以告知网络设备该错误状态。这样网络设备可以重新对终端设备进行正确的调度。
可选地,终端设备还可以与网络设备预先约定或终端设备自己设定与第一数据复接的上行控制信息的大小,或者网络设备可以通知终端设备待复接的第一上行控制信息的大小,这样终端设备可以根据固定的或者已知的上行控制信息的大小,在第一上行数据和第一上行控制信道信息复接情况下进行第一上行数据处理。
可选地,本申请在步骤704之后还可以进一步包括:终端设备在第一时频资源发送第一上行数据和/或第一上行控制信息。相应地,网络设备在该第一时频资源接收该第一上行数据,或接收该第一上行控制信息,或接收该第一上行数据和该第一上行控制信息。
网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,若终端设备能够在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息,则终端设备在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息。
网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,若终端设备不能够在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息,则终端设备还可以在该第一时频资源发送该第一上行数据或者该第一上行控制信息,避免资源浪费,提高了资源利用率。
相应的,网络设备在确定第一上行数据和第一上行控制信息的传输方式为复接后传输的情况下,若网络设备在该第一时频资源没有成功接收到复接后的该第一上行数据和该第一上行口控制信息后,网络设备可以通过盲检测的方式,尝试接收终端设备发送的该第一上行数据或该第一上行控制信息,这样可以避免资源浪费,提高了资源利用率。
可选地,终端设备计算功率预量(power headroom,PHR)时,需要获得该PHR所对应的传输的第一上行数据的大小、第一上行控制信息的大小。进一步的,终端设备根据该能力信息还可以确定上行功率预量的计算方法。
具体地,终端设备在向网络设备上报PHR之前,可以根据终端设备的上行数据处理时延和该终端设备的上行控制信息处理时延生成该PHR。具体的,可以采用如下几种实现方式:
方式一:终端设备的PHR计算,不考虑上行控制信息的大小。方式二:若终端设备在PHR计算时,无法获知与第一上行数据复接传输的第一上行控制信息的大小,终端设备可以将第一上行数据和第一上行控制信息进行解耦,例如终端设备可以仅根据第一上行数据或者按照固定的第一上行控制信息大小生成该PHR。若终端设备在PHR计算时,可以获得与第一上行数据复接传输的上行控制信息的大小,则终端设备可以根据第一上行数据和第一上行控制信息的大小计算PHR。
方式三:终端设备可以自主的确定PHR计算是否考虑了第一上行控制信息的大小。并且终端设备进一步的向网络设备发送指示信息,通过该指示信息指示终端设备生成的PHR是否考虑了第一上行控制信息的大小。
方式四:终端设备可以与网络设备预先约定计算PHR时采用的第一上行控制信息大小,这样若终端设备确定第一上行数据和第一信道测量反馈信息的传输方式为复接后传输,则终端设备可以采用该约定的值生成PHR。
方式五:网络设备通知终端设备在计算PHR时所采用的第一上行控制信息大小。终 端设备接收该信息,并在计算PHR时采用的该第一上行控制信息大小。
因此,本申请实施例的信号处理的方法,网络设备根据包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延的能力信息,确定PHR的计算方式,避免了由于上行控制信息处理时延导致PHR计算处理时延的增加。。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的信号处理的方法,下面将描述本申请实施例的信号处理的装置。
图11示出了本申请实施例的信号处理的装置1100。如图11所示,该装置1100可以为网络设备。
应理解,该装置1100可以对应于各方法实施例中的网络设备,可以具有方法中的网络设备的任意功能。
处理单元1110,用于获取终端设备的能力信息,该能力信息包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延。
可选地,当处理单元1110获取终端设备发送的能力信息时,处理单元1110可以通过收发单元获取该能力信息;当处理单元1110获取核心网设备或其他基站发送的能力信息时,处理单元1110可以通过与该核心网设备或其他基站的通信接口获取该能力信息;处理单元1110也可以从网络设备的存储单元中读取存储的终端设备的能力信息。
还应理解,该装置1100获取终端设备的能力信息的方式可以与前述方法实施例相同,为避免重复,这里不进行赘述,但本申请并不限于此。
该处理单元1110,还用于根据该能力信息,确定第一时频资源,该第一时频资源用于承载第一上行数据和/或第一上行控制信息。
收发单元1120,用于向该终端设备发送第一信令,该第一信令指示该第一时频资源。可选地,该收发单元可以是输入/输出接口、管脚或电路等,也可以由包括射频电路的收发器实现。
因此,本申请实施例的信号处理的装置,通过根据包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延的能力信息,确定用于承载第一上行数据和/或第一上行控制信息的第一时频资源,并通过向终端设备发送第一信令指示该第一时频资源,这样避免了上行数据和/或上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
可选地,该处理单元1120,还用于根据该能力信息,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输;
该处理单元1110具体用于:
根据该能力信息和该传输方式,确定该第一时频资源。
可选地,该处理单元1110具体用于:
根据该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延,确定该终端设备在启动该第一上行数据处理之前是否能够获得该终端设备的第一上行控制信息的大小;
在确定该终端设备能够在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输;
在确定该终端设备不能够在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息独立传输。
可选地,该处理单元1110具体用于:
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载复接后的该第一上行数据和该第一上行控制信息。
可选地,该处理单元1110具体用于:
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息确定该第一时频资源,该第一时频资源用于承载该第一上行数据;
其中,该处理单元1110,还用于确定第二时频资源,该第二时频资源用于承载该第一上行控制信息,该第二时频资源与该第一时频资源相同;
该收发单元1120,还用于向该终端设备发送第二信令,该第二信令指示该第二时频资源。
可选地,该处理单元1110具体用于:
在该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,根据该能力信息确定该第一时频资源,该第一时频资源用于承载该第一上行控制信息;
其中,该处理单元1110,还用于确定第二时频资源,该第二时频资源用于承载该第一上行数据,该第二时频资源与该第一时频资源相同;
该收发单元1120,还用于向该终端设备发送第二信令,该第二信令指示该第二时频资源。
可选地,该收发单元1120还用于:
在该第一时频资源接收复接后的该第一上行数据和该第一上行控制信息;或
在该第一时频资源接收该第一上行数据或该第一上行控制信息。
可选地,该处理单元1110具体用于:
在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载该第一上行数据;
其中,该处理单元1110,还用于在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第二时频资源,该第二时频资源用于承载该第一上行控制信息,且该第二时频资源和该第一时频资源不相同;
该收发单元1120,还用于向该终端设备发送第二信令,该第二信令用于指示该第二时频资源。
可选地,该处理单元1110具体用于:
在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第一时频资源,该第一时频资源用于承载该第一上行控制信息;
其中,该处理单元1110,还用于在该传输方式为该第一上行数据和该第一上行控制信息独立传输的情况下,根据该能力信息,确定该第二时频资源,该第二时频资源用于承载该第一上行数据,且该第二时频资源和该第一时频资源不相同;
该收发单元1120,还用于向该终端设备发送第二信令,该第二信令用于指示该第二时频资源。
可选地,该第二时频资源和该第一时频资源不相同为该第一时频资源和该第二时频资源在同一个时隙中的不同符号,或该第一时频资源所在的时隙和该第二时频资源所在的时隙不同,或该第一时频资源和该第二时频资源在同一时隙的不同频域资源上。
可选地,该第一上行数据和该第一上行控制信息复接为通过打孔或者速率匹配的方式对该第一上行数据和该第一上行控制信息进行的复接。
可选地,该第一上行控制信息包括第一上行确认信号和第一上行信道测量反馈信息中的至少一项。
因此,本申请实施例的信号处理的装置,通过根据包括该终端设备的上行数据的处理时延和该终端设备的上行控制信息的处理时延的能力信息,确定用于承载第一上行数据和/或第一上行控制信息的第一时频资源,并通过向终端设备发送第一信令指示该第一时频资源,这样避免了上行数据和/或上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
可选地,本申请实施例的信号处理的装置1100可以是网络设备,也可以是网络设备内的芯片。
应理解,根据本申请实施例的信号处理的装置1100可对应于图7的实施例的信号处理的方法中的网络设备,并且信号处理的装置1100中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
可选地,若该信号处理的装置1100为网络设备,则本申请实施例中的收发单元1120可以由收发器1210实现,处理单元1110可以由处理器1220实现。如图12所示,信号处理的装置1200可以包括收发器1210,处理器1220和存储器1230。其中,存储器1230可以用于存储指示信息,还可以用于存储处理器1220执行的代码、指令等。所述收发器1210可以包括射频电路,可选地,所述网络设备还包括存储单元。
该存储单元例如可以是存储器。当网络设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该网络设备执行上述信号处理的方法。
可选地,若该信号处理的装置1100为网络设备内的芯片,则该芯片包括处理单元1110和收发单元1120。收发单元1120可以由收发器1210实现,处理单元1110可以由处理器1220实现。所述收发单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令。所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
图13是本申请另一个实施例的信号处理的装置1300的示意性框图。如图13所示,该装置1300可以为终端设备。
应理解,该装置1300可以对应于各方法实施例中的终端设备,可以具有方法中的终端设备的任意功能。
收发单元1310,用于向网络设备发送能力信息,该能力信息包括终端设备处理上行数据的处理时延和终端设备处理上行控制信息的处理时延;
所述收发单元1310,还用于接收第一信令,该第一信令指示第一时频资源,该第一时频资源用于承载第一上行数据和/或第一上行控制信息;
处理单元1320,用于根据该第一信令,确定该第一时频资源。
因此,本申请实施例的信号处理的装置,向网络设备发送包括上行数据和上行控制信息的能力信息,并接收网络设备发送的第一信令,该第一信令指示用于承载第一上行数据和/或承载第一上行控制信息的第一时频资源,该第一时频资源可以是网络设备根据该终端设备的能力信息确定的,并根据该第一信令确定第一时频资源,这样避免了上行数据和/或上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
可选地,该第一时频资源用于承载该第一上行数据;
该收发单元1310,还用于接收第二信令,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行控制信息;
该处理单元1320,还用于根据该第一信令和该第二信令,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输。
可选地,该第一时频资源用于承载该第一上行控制信息;
该收发单元1310,还用于接收第二信令,该第二信令指示第二时频资源,该第二时频资源用于承载该第一上行数据;
该处理单元1320,还用于根据该第一信令和该第二信令,确定该第一上行数据和该第一上行控制信息的传输方式,该传输方式为该第一上行数据和该第一上行控制信息独立传输,或该第一上行数据和该第一上行控制信息复接后传输。
可选地,该处理单元1320,还用于在该第一时频资源用于承载该第一上行数据和该第一上行控制信息的情况下,确定该第一上行数据和该第一上行控制信息的传输方式为复接后传输。
可选地,该处理单元1320具体用于:
在该第一时频资源与该第二时频资源相同的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输;
在该第一时频资源与该第二时频资源不相同的情况下,确定该传输方式为该第一上行数据和该第一上行控制信息独立传输。
可选地,在确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,该处理单元1320,还用于确定在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小;
该收发单元1310,还用于在该终端设备在启动该第一上行数据处理之前获得该第一上行控制信息的大小的情况下,在该第一时频资源发送复接后的该第一上行数据和该第一上行控制信息。
可选地,在确定该传输方式为该第一上行数据和该第一上行控制信息复接后传输的情况下,该处理单元1320,还用于确定在启动该第一上行数据处理之前是否获得该第一上行控制信息的大小;
该收发单元1310,还用于在该终端设备在启动该第一上行数据处理之前没有获得该第一上行控制信息的大小的情况下,在该第一时频资源发送该第一上行数据或该第一上行控制信息。
可选地,该第一时频资源与该第二时频资源不相同为该第一时频资源与该第二时频资源在同一个时隙中的不同符号,或该第一时频资源与该第二时频资源所在的时隙不同,或该第一时频资源与该第二时频资源在同一时隙的不同频域资源上。
可选地,该第一上行数据和该第一上行控制信息复接为通过打孔或者速率匹配的方式对该第一上行数据和该第一上行控制信息进行的复接。
可选地,该第一上行控制信息包括第一上行确认信号和第一上行信道测量信息反馈信息中的至少一项。
因此,本申请实施例的信号处理的装置,向网络设备发送包括上行数据和上行控制信息的能力信息,并接收网络设备发送的第一信令,该第一信令指示用于承载第一上行数据和/或承载第一上行控制信息的第一时频资源,该第一时频资源可以是网络设备根据该终端设备的能力信息确定的,并根据该第一信令确定第一时频资源,这样避免了上行数据和/或上行控制信息的传输时延较长或调度失败,即提高了网络设备配置时频资源的效率,降低了信号传输时延。
可选地,本申请实施例的信号处理的装置1300可以是终端设备,也可以是终端设备内的芯片。
应理解,根据本申请实施例的信号处理的装置1300可对应于图7的实施例的信号处理的方法中的终端设备,并且信号处理的装置1300中的各个单元的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
可选地,若该信号处理的装置1300为终端设备,则本申请实施例中的收发单元1310可以由收发器1410实现,处理单元1320可以由处理器1420实现。如图14所示,装置1400可以包括收发器1410,处理器1420和存储器1430。其中,存储器1430可以用于存储指示信息,还可以用于存储处理器1420执行的代码、指令等。所述收发器可以包括射频电路,可选地,所述终端设备还包括存储单元。
该存储单元例如可以是存储器。当网络设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该网络设备执行上述信号处理的方法。
可选地,若该信号处理的装置1300为终端设备内的芯片,则该芯片包括处理单元1320和收发单元1310。收发单元1310例如可以是芯片上的输入/输出接口、管脚或电路等。处理单元1320可执行存储单元存储的计算机执行指令。
可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。所述存储单元为所述芯片内的存储单元,如寄存器、缓存等, 所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
应理解,处理器1220或处理器1420可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器1230或存储器1430可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15示出了本申请实施例的通信系统1500,该通信系统1500包括:
如图11所示的实施例中的信号处理的装置1100和如图13所示的实施例中的信号处理的装置1300。
本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令。
可选地,该存储介质具体可以为存储器1230或1430。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持分布式单元、集中式单元以及终端设备以实现上述实施例中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存分布式单元、集中式单元以及终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也 可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性、机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种信号处理的方法,其特征在于,包括:
    获取终端设备的能力信息,所述能力信息包括所述终端设备的上行数据的处理时延和所述终端设备的上行控制信息的处理时延;
    根据所述能力信息,确定第一时频资源,所述第一时频资源用于承载第一上行数据和/或第一上行控制信息;
    向所述终端设备发送第一信令,所述第一信令指示所述第一时频资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述能力信息,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输;
    其中,所述根据所述能力信息,确定第一时频资源包括:
    根据所述能力信息和所述传输方式,确定所述第一时频资源。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述能力信息,确定所述第一上行数据和所述第一上行控制信息的传输方式包括:
    根据所述终端设备的上行数据的处理时延和所述终端设备的上行控制信息的处理时延,确定所述终端设备在启动所述第一上行数据处理之前是否能够获得所述终端设备的第一上行控制信息的大小;
    在确定所述终端设备能够在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输;
    在确定所述终端设备不能够在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述能力信息和所述传输方式,确定所述第一时频资源包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载复接后的所述第一上行数据和所述第一上行控制信息。
  5. 根据权利要求2或3所述的方法,其特征在于,所述根据所述能力信息和所述传输方式,确定所述第一时频资源包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息确定所述第一时频资源,所述第一时频资源用于承载所述第一上行数据;
    其中,所述方法还包括:
    确定第二时频资源,所述第二时频资源用于承载所述第一上行控制信息,所述第二时频资源与所述第一时频资源相同;
    向所述终端设备发送第二信令,所述第二信令指示所述第二时频资源。
  6. 根据权利要求2或3所述的方法,其特征在于,所述根据所述能力信息和所述传输方式,确定所述第一时频资源包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息确定所述第一时频资源,所述第一时频资源用于承载所述第一上行控制信息;
    其中,所述方法还包括:
    确定第二时频资源,所述第二时频资源用于承载所述第一上行数据,所述第二时频资源与所述第一时频资源相同;
    向所述终端设备发送第二信令,所述第二信令指示所述第二时频资源。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一时频资源接收复接后的所述第一上行数据和所述第一上行控制信息;或
    在所述第一时频资源接收所述第一上行数据或所述第一上行控制信息。
  8. 根据权利要求2或3所述的方法,其特征在于,所述根据所述能力信息和所述传输方式,确定第一时频资源包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载所述第一上行数据;
    其中,所述方法还包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第二时频资源,所述第二时频资源用于承载所述第一上行控制信息,且所述第二时频资源和所述第一时频资源不相同;
    向所述终端设备发送第二信令,所述第二信令用于指示所述第二时频资源。
  9. 根据权利要求2或3所述的方法,其特征在于,所述根据所述能力信息和所述传输方式,确定第一时频资源包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载所述第一上行控制信息;
    其中,所述方法还包括:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第二时频资源,所述第二时频资源用于承载所述第一上行数据,且所述第二时频资源和所述第一时频资源不同;
    向所述终端设备发送第二信令,所述第二信令用于指示所述第二时频资源。
  10. 一种信号处理的方法,其特征在于,包括:
    向网络设备发送能力信息,所述能力信息包括终端设备处理上行数据的处理时延和终端设备处理上行控制信息的处理时延;
    接收第一信令,所述第一信令指示第一时频资源,所述第一时频资源用于承载第一上行数据和/或第一上行控制信息;
    根据所述第一信令,确定所述第一时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时频资源用于承载所述第 一上行数据;
    其中,所述方法还包括:
    接收第二信令,所述第二信令指示第二时频资源,所述第二时频资源用于承载所述第一上行控制信息;
    根据所述第一信令和所述第二信令,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输。
  12. 根据权利要求10所述的方法,其特征在于,所述第一时频资源用于承载所述第一上行控制信息;
    其中,所述方法还包括:
    接收第二信令,所述第二信令指示第二时频资源,所述第二时频资源用于承载所述第一上行数据;
    根据所述第一信令和所述第二信令,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述第一时频资源用于承载所述第一上行数据和所述第一上行控制信息的情况下,确定所述第一上行数据和所述第一上行控制信息的传输方式为复接后传输。
  14. 根据权利要求11或12所述的方法,其特征在于,所述根据所述第一信令和所述第二信令,确定所述第一上行数据和所述第一上行控制信息的传输方式包括:
    在所述第一时频资源与所述第二时频资源相同的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输;
    在所述第一时频资源与所述第二时频资源不相同的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输。
  15. 根据权利要求13或14所述的方法,其特征在于,在确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,所述方法还包括:
    确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小;
    在所述终端设备在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,在所述第一时频资源发送复接后的所述第一上行数据和所述第一上行控制信息。
  16. 根据权利要求13或14所述的方法,其特征在于,在确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,所述方法还包括:
    确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小;
    在所述终端设备在启动所述第一上行数据处理之前没有获得所述第一上行控制信息的大小的情况下,在所述第一时频资源发送所述第一上行数据或所述第一上行控制信息。
  17. 一种信号处理的装置,其特征在于,包括:
    处理单元,用于获取终端设备的能力信息,所述能力信息包括所述终端设备的上行数据的处理时延和所述终端设备的上行控制信息的处理时延;
    所述处理单元,还用于根据所述能力信息,确定第一时频资源,所述第一时频资源用 于承载第一上行数据和/或第一上行控制信息;
    收发单元,用于向所述终端设备发送第一信令,所述第一信令指示所述第一时频资源。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元,还用于根据所述能力信息,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输;
    所述处理单元具体用于:
    根据所述能力信息和所述传输方式,确定所述第一时频资源。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    根据所述终端设备的上行数据的处理时延和所述终端设备的上行控制信息的处理时延,确定所述终端设备在启动所述第一上行数据处理之前是否能够获得所述终端设备的第一上行控制信息的大小;
    在确定所述终端设备能够在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输;
    在确定所述终端设备不能够在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输。
  20. 根据权利要求18或19所述的装置,其特征在于,所述处理单元具体用于:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载复接后的所述第一上行数据和所述第一上行控制信息。
  21. 根据权利要求18或19所述的装置,其特征在于,所述处理单元具体用于:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载所述第一上行数据;
    其中,所述处理单元,还用于确定第二时频资源,所述第二时频资源用于承载所述第一上行控制信息,所述第二时频资源与所述第一时频资源相同;
    所述收发单元,还用于向所述终端设备发送第二信令,所述第二信令指示所述第二时频资源。
  22. 根据权利要求18或19所述的装置,其特征在于,所述处理单元具体用于:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,根据所述能力信息确定所述第一时频资源,所述第一时频资源用于承载所述第一上行控制信息;
    其中,所述处理单元,还用于确定第二时频资源,所述第二时频资源用于承载所述第一上行数据,所述第二时频资源与所述第一时频资源相同;
    所述收发单元,还用于向所述终端设备发送第二信令,所述第二信令指示所述第二时频资源。
  23. 根据权利要求20至22中任一项所述的装置,其特征在于,所述收发单元还用于:
    在所述第一时频资源接收复接后的所述第一上行数据和所述第一上行控制信息;或
    在所述第一时频资源接收所述第一上行数据或所述第一上行控制信息。
  24. 根据权利要求18或19所述的装置,其特征在于,所述处理单元具体用于:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载所述第一上行数据;
    其中,所述处理单元,还用于在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第二时频资源,所述第二时频资源用于承载所述第一上行控制信息,且所述第二时频资源和所述第一时频资源不相同;
    所述收发单元,还用于向所述终端设备发送第二信令,所述第二信令用于指示所述第二时频资源。
  25. 根据权利要求18或19所述的装置,其特征在于,所述处理单元具体用于:
    在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第一时频资源,所述第一时频资源用于承载所述第一上行控制信息;
    其中,所述处理单元,还用于在所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输的情况下,根据所述能力信息,确定所述第二时频资源,所述第二时频资源用于承载所述第一上行数据,且所述第二时频资源和所述第一时频资源不同;
    所述收发单元,还用于向所述终端设备发送第二信令,所述第二信令用于指示所述第二时频资源。
  26. 一种信号处理的装置,其特征在于,包括:
    收发单元,用于向网络设备发送能力信息,所述能力信息包括终端设备处理上行数据的处理时延和终端设备处理上行控制信息的处理时延;
    所述收发单元,还用于接收第一信令,所述第一信令指示第一时频资源,所述第一时频资源用于承载第一上行数据和/或第一上行控制信息;
    处理单元,用于根据所述第一信令,确定所述第一时频资源。
  27. 根据权利要求26所述的装置,其特征在于,所述第一时频资源用于承载所述第一上行数据;
    所述收发单元,还用于接收第二信令,所述第二信令指示第二时频资源,所述第二时频资源用于承载所述第一上行控制信息;
    所述处理单元,还用于根据所述第一信令和所述第二信令,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输。
  28. 根据权利要求26所述的装置,其特征在于,所述第一时频资源用于承载所述第一上行控制信息;
    所述收发单元,还用于接收第二信令,所述第二信令指示第二时频资源,所述第二时频资源用于承载所述第一上行数据;
    所述处理单元,还用于根据所述第一信令和所述第二信令,确定所述第一上行数据和所述第一上行控制信息的传输方式,所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输,或所述第一上行数据和所述第一上行控制信息复接后传输。
  29. 根据权利要求26所述的装置,其特征在于,所述处理单元,还用于在所述第一时频资源用于承载所述第一上行数据和所述第一上行控制信息的情况下,确定所述第一上行数据和所述第一上行控制信息的传输方式为复接后传输。
  30. 根据权利要求27或28所述的装置,其特征在于,所述处理单元具体用于:
    在所述第一时频资源与所述第二时频资源相同的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输;
    在所述第一时频资源与所述第二时频资源不相同的情况下,确定所述传输方式为所述第一上行数据和所述第一上行控制信息独立传输。
  31. 根据权利要求29或30所述的装置,其特征在于,在确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,所述处理单元,还用于确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小;
    所述收发单元,还用于在所述终端设备在启动所述第一上行数据处理之前获得所述第一上行控制信息的大小的情况下,在所述第一时频资源发送复接后的所述第一上行数据和所述第一上行控制信息。
  32. 根据权利要求29或30所述的装置,其特征在于,在确定所述传输方式为所述第一上行数据和所述第一上行控制信息复接后传输的情况下,所述处理单元,还用于确定在启动所述第一上行数据处理之前是否获得所述第一上行控制信息的大小;
    所述收发单元,还用于在所述终端设备在启动所述第一上行数据处理之前没有获得所述第一上行控制信息的大小的情况下,在所述第一时频资源发送所述第一上行数据或所述第一上行控制信息。
  33. 根据权利要求8、9、14中任一项所述的方法或者根据权利要求24、25、30中任一项所述的装置,其特征在于,所述第一时频资源与所述第二时频资源不相同为所述第一时频资源与所述第二时频资源在同一个时隙中的不同符号,或所述第一时频资源与所述第二时频资源所在的时隙不同,或所述第一时频资源与所述第二时频资源在同一时隙的不同频域资源上。
  34. 根据权利要求2至7、11至16中任一项所述的方法或者根据权利要求18至23、27至32中任一项所述的装置,其特征在于,所述第一上行数据和所述第一上行控制信息复接为通过打孔或者速率匹配的方式对所述第一上行数据和所述第一上行控制信息进行的复接。
  35. 根据权利要求1至16、33、34中任一项所述的方法或者根据权利要求17至34中任一项所述的装置,其特征在于,所述第一上行控制信息包括第一上行确认信号和第一上行信道测量信息反馈信息中的至少一项。
  36. 一种可读存储介质,其特征在于,包括指令,当所述指令在通信设备上运行时,使得所述通信设备执行如权利要求1至16、33至35任一项所述的方法。
PCT/CN2018/105762 2017-09-14 2018-09-14 信号处理的方法和装置 WO2019052538A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18855871.2A EP3672342B1 (en) 2017-09-14 2018-09-14 Signal processing method and device
EP21205932.3A EP4013162A1 (en) 2017-09-14 2018-09-14 Signal processing method and apparatus
BR112020005024-5A BR112020005024A2 (pt) 2017-09-14 2018-09-14 método e aparelho de processamento de sinal
US16/817,789 US11259308B2 (en) 2017-09-14 2020-03-13 Signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710828912.1A CN109511168B (zh) 2017-09-14 2017-09-14 信号处理的方法、装置和可读存储介质
CN201710828912.1 2017-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/817,789 Continuation US11259308B2 (en) 2017-09-14 2020-03-13 Signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2019052538A1 true WO2019052538A1 (zh) 2019-03-21

Family

ID=65723205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105762 WO2019052538A1 (zh) 2017-09-14 2018-09-14 信号处理的方法和装置

Country Status (5)

Country Link
US (1) US11259308B2 (zh)
EP (2) EP4013162A1 (zh)
CN (2) CN113473619B (zh)
BR (1) BR112020005024A2 (zh)
WO (1) WO2019052538A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523412B2 (en) * 2017-11-17 2022-12-06 Qualcomm Incorporated UE processing time for UCI multiplexing
US11063645B2 (en) * 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11424868B2 (en) * 2019-01-24 2022-08-23 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment processing timeline enhancement in mobile communications
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
CN111817832B (zh) * 2019-07-18 2022-03-04 维沃移动通信有限公司 信息处理方法、终端及网络侧设备
CN114731621A (zh) * 2020-02-17 2022-07-08 中兴通讯股份有限公司 无线通信网络中的置零方法和系统
CN114158072B (zh) * 2021-11-26 2023-05-30 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527965A (zh) * 2008-03-05 2009-09-09 大唐移动通信设备有限公司 一种提高上行业务质量的方法和系统
CN102083211A (zh) * 2010-03-29 2011-06-01 大唐移动通信设备有限公司 上行控制信道资源的确定方法和设备
CN102118860A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 一种双工通信方法、终端调度方法及系统
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702289B2 (en) * 2005-07-21 2010-04-20 Motorola, Inc. Fast acquisition of a communication uplink allocation in a mobile communication system based on mobile processing capabilities
CN101286792A (zh) * 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 增强同步harq的设备和方法
KR101481583B1 (ko) 2008-04-18 2015-01-13 엘지전자 주식회사 하향링크 제어 정보 송수신 방법
US8325661B2 (en) 2008-08-28 2012-12-04 Qualcomm Incorporated Supporting multiple access technologies in a wireless environment
CN101807984B (zh) * 2009-02-18 2014-04-09 中兴通讯股份有限公司 同步harq的调度方法、装置及无线通信系统
CA2761636C (en) * 2009-05-29 2016-12-06 Panasonic Corporation Wireless communication apparatus and frequency hopping method
CN102916792B (zh) * 2012-10-12 2015-08-26 北京创毅讯联科技股份有限公司 数据传输方法和用户设备
EP3099118B1 (en) 2014-01-22 2019-06-12 LG Electronics Inc. Method for performing power control, and user equipment
CN106549726B (zh) 2015-09-18 2021-02-23 华为技术有限公司 传输数据的方法、基站和终端设备
WO2017110956A1 (ja) * 2015-12-25 2017-06-29 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106454901A (zh) * 2016-11-04 2017-02-22 维沃移动通信有限公司 下行控制信道的检测方法、指示方法、终端及网络侧设备
CN106533629A (zh) * 2016-12-05 2017-03-22 珠海市魅族科技有限公司 时延模式的切换方法、切换装置、终端及基站
WO2018170921A1 (zh) * 2017-03-24 2018-09-27 北京小米移动软件有限公司 通信资源管理方法、装置及系统
BR112020001159A2 (pt) * 2017-07-21 2020-07-21 Ntt Docomo, Inc. terminal de usuário e método de radiocomunicação
US10834711B2 (en) * 2018-04-17 2020-11-10 Qualcomm Incorporated Selectively multiplexing physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) communications
EP3694134B1 (en) * 2018-08-09 2022-02-16 LG Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
US11758540B2 (en) * 2019-03-21 2023-09-12 Acer Incorporated Multiplexing method of uplink control information (UCI) for ultra-reliable and low latency communications (URLLC)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527965A (zh) * 2008-03-05 2009-09-09 大唐移动通信设备有限公司 一种提高上行业务质量的方法和系统
CN102118860A (zh) * 2009-12-31 2011-07-06 中兴通讯股份有限公司 一种双工通信方法、终端调度方法及系统
CN102083211A (zh) * 2010-03-29 2011-06-01 大唐移动通信设备有限公司 上行控制信道资源的确定方法和设备
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3672342A4

Also Published As

Publication number Publication date
EP4013162A1 (en) 2022-06-15
EP3672342A4 (en) 2020-08-05
CN109511168A (zh) 2019-03-22
EP3672342B1 (en) 2021-11-03
EP3672342A1 (en) 2020-06-24
BR112020005024A2 (pt) 2020-09-15
CN109511168B (zh) 2021-06-15
US11259308B2 (en) 2022-02-22
CN113473619B (zh) 2022-04-12
US20200213994A1 (en) 2020-07-02
CN113473619A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CA3061633C (en) Beam configuration method and apparatus
US11259308B2 (en) Signal processing method and apparatus
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
US11632780B2 (en) Sidelink communication method, terminal device and network device
US11985635B2 (en) Wireless communication method, system, network device, and user equipment for improving transmission performance
WO2018170656A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018228176A1 (zh) 通信方法、终端设备和网络设备
WO2020199856A1 (zh) 信息传输的方法和通信装置
US11212798B2 (en) Method for transmitting uplink information, terminal device and network device
WO2018027918A1 (zh) 上行信道发送方法和装置
US20220078772A1 (en) Downlink signal transmission method and device
WO2021159419A1 (zh) 信息传输方法及相关装置
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2018082510A1 (zh) 信道状态信息反馈的方法与装置
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2021056334A1 (zh) 用于激活辅小区的通信方法和装置
WO2015100619A1 (zh) 用于测量信道状态信息的方法及装置
AU2018447235A1 (en) Uplink control information determination method and communication device
CN112640338A (zh) 一种信息传输方法、设备及存储介质
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
JP7495006B2 (ja) 情報送信方法、リソース決定方法及び装置
WO2021056580A1 (zh) 信号接收、发送方法及装置
WO2019191964A1 (zh) 传输物理随机接入信道prach的方法和设备
JP2023538698A (ja) Csiを報告する方法、csiを受信する方法および対応する装置
WO2019028754A1 (zh) 无线通信方法和网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005024

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018855871

Country of ref document: EP

Effective date: 20200317

ENP Entry into the national phase

Ref document number: 112020005024

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200313