WO2019052528A1 - Sensing light bulb - Google Patents

Sensing light bulb Download PDF

Info

Publication number
WO2019052528A1
WO2019052528A1 PCT/CN2018/105657 CN2018105657W WO2019052528A1 WO 2019052528 A1 WO2019052528 A1 WO 2019052528A1 CN 2018105657 W CN2018105657 W CN 2018105657W WO 2019052528 A1 WO2019052528 A1 WO 2019052528A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sensing
light
light bulb
casing structure
Prior art date
Application number
PCT/CN2018/105657
Other languages
French (fr)
Inventor
Yehua Wan
Lifeng LING
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2019052528A1 publication Critical patent/WO2019052528A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • F21V23/0464Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor sensing the level of ambient illumination, e.g. dawn or dusk sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/12Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by detecting audible sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/13Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using passive infrared detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the disclosure relates to the field of lighting, in particular to a sensing light bulb.
  • Lighting is using various light sources to illuminate work and living areas or individual objects.
  • a light bulb can be regarded as an apparatus with a lighting function. There is no need to perform lighting during daytime, neither for the case when no person is present. However, if the light bulb keeps illuminating during the above scenarios, it is a waste of electrical energy and may reduce a lifetime of the light bulb.
  • a human-body sensor or a light senor is disposed outside the light bulb.
  • Power supply of the light bulb can be controlled according to sensing signal of the human-body sensor or the light sensor, so as to achieve the sensing control of the light bulb.
  • the human body sensor or the light sensor is disposed outside the light bulb.
  • connection lines between the light bulb and the sensor has to be adjusted accordingly, and hence, assembly and replacement of the conventional light bulb are very inconvenient.
  • a sensing light bulb includes a light-emitting element, a sensing element, a control element, a light-emitting driving element, a casing structure, an optical cover, a first carrier, and a transparent cover.
  • the light-emitting element is configured to emit light.
  • the sensing element is configured to generate a trigger signal based on collected sensor data.
  • the control element is configured to send a control signal to the light-emitting driving element according to the trigger signal.
  • the light-emitting driving element is configured to drive the light-emitting element to emit light in response to the control signal.
  • the casing structure can accommodate the light-emitting element, the sensing element, the control element and the light-emitting driving element.
  • the optical cover is disposed at a first open end if the casing structure, where the first open end is an opening of the casing structure on a light-emitting path of the light bulb.
  • the first carrier accommodated by the casing structure has a plate structure, and includes a top surface facing toward the first open end of the casing structure and a bottom surface facing away the first open end of the casing structure.
  • the transparent cover is disposed on the top surface of the first carrier.
  • a chamber can be formed between the transparent cover and the first carrier.
  • the sensing element is disposed on the top surface of the first carrier and enclosed by the chamber.
  • the sensing element includes an event sensing circuit and/or a brightness sensing circuit.
  • the event sensing circuit is configured to detect whether a trigger event occurs within a sensing region, and when the trigger event occurs in the sensing region, generate and send a first trigger signal to the control element.
  • the brightness sensing circuit is configured to detect a brightness of the sensing region, and when the brightness is below the threshold value, generate and send a second trigger signal to the control element.
  • the control element is further configured to send the control signal to the light-emitting driving element according to the first trigger signal and/or the second trigger signal.
  • control element is configured to send the control signal to the light-emitting element in response to receiving both the first trigger signal and the second trigger signal.
  • the sensing light bulb further includes a second carrier disposed in the casing structure.
  • the second carrier has a plate structure and includes a top surface and a bottom surface. The bottom surface of the second carrier faces away from the first open end of the casing structure.
  • the first carrier is disposed on the top surface of the second carrier.
  • the light-emitting element is disposed on the top surface of the second carrier and arranged around an outer circumference of the first carrier.
  • the sensing light bulb further includes a third carrier disposed in the casing structure.
  • the control element and the light-emitting driving element are disposed on the third carrier.
  • the third carrier is connected to the second carrier by insertion at the bottom surface of the second carrier.
  • the third carrier, the second carrier, and the first carrier are sequentially disposed in the casing structure.
  • the second carrier includes a center hole at a center of the second carrier, and the third carrier is configured to be inserted into the center hole of the second carrier.
  • the sensing element on the first carrier is electrically connected to the control element on the third carrier through a first connection line.
  • the light-emitting element on the second carrier is electrically connected to the light-emitting driving element on the third carrier through a second connection line.
  • the sensing light bulb further includes a delay setting circuit and a setting element.
  • the delay setting circuit is disposed in the casing structure and connected to the control element.
  • the setting element is disposed on an outer surface of the casing structure.
  • the delay setting circuit is configured to send a delay electrical signal to the control element.
  • the delay electrical signal can be determined according to a setting operation with respect to the setting element.
  • the control element is further configured to delay the sending of the control signal to the driving element for a duration of time according to a parameter value of the delay electrical signal.
  • the delay setting circuit includes a rheostat.
  • a first terminal of the rheostat is grounded, and a second terminal of the rheostat is connected to an input terminal of the control element.
  • the parameter value of the delay electrical signal is determined according to a resistance of the rheostat.
  • the resistance of the rheostat is determined according to the setting operation.
  • the sensing light bulb further includes a power supply element disposed in the casing structure.
  • the power supply element is respectively connected to the sensing element, and the control element, and the light-emitting driving element.
  • the power supply element is configured to supply electrical power from an external power supply to the sensing element, the control element, and the light-emitting driving element.
  • the event sensing circuit includes one or more of a passive infrared sensor, a microwave sensor, and a sound sensor.
  • a center of the optical cover includes a through hole, and the transparent cover passes through the through hole to extend outward from the optical cover.
  • the transparent cover includes a plurality of fasteners.
  • the first carrier includes a plurality of slots having matching shapes with the plurality of fasteners.
  • the transparent cover is mounted to the first carrier by connecting the plurality of fasteners to the plurality of slots.
  • the event sensing circuit can be configured to detect whether a trigger event occurs within the sensing region; the brightness sensing circuit can be configured to detect the brightness of the sensing region.
  • the sensing element i.e., the event sensing circuit and the brightness sensing circuit
  • the sensing light bulb can be operated as a whole for replacement or assembly, resulting in convenient replacement and assembly during an assembly inspection process.
  • the transparent cover is disposed on the top surface of the first carrier to form the chamber between the transparent cover and the first carrier.
  • the event sensing circuit and the brightness sensing circuit are both disposed on the top surface of the first carrier and located inside the chamber.
  • the event sensing circuit and the brightness sensing circuit can be integrally arranged to effectively save space.
  • the integral arrangement of the event sensing circuit and the brightness sensing circuit can result in the sensing regions of the two sensing circuits being more consistent (e.g., having a greater overlapping sensing area or even completely overlapped, compared to a sensor light that places the two sensing circuits at different locations around the bulb) . Further, the two sensing regions being consistent allows the sensing light bulb to focus on a desired target area.
  • FIG. 1 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure
  • FIG. 2 is a functional block diagram of a sensing light bulb according to some embodiments of the present disclosure
  • FIG. 3 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • FIG. 4 is a functional block diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • FIG. 5 is a circuit diagram of a sensing light bulb according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • FIG. 1 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure.
  • the sensing light bulb includes: a casing structure 11, an optical cover 12, a transparent cover 13, a first carrier 14, and a sensing element.
  • the sensing element may include an event sensing circuit 21 and/or a brightness sensing circuit 22.
  • the first carrier 14, the event sensing circuit 21 and the brightness sensing circuit 22 are disposed inside the casing structure 11
  • the event sensing circuit 21 can be configured to detect whether a trigger event occurs within a sensing region, and the trigger event may refer to an event that there is human or object activity in the sensing region.
  • the brightness sensing circuit 22 can be configured to detect the brightness of the sensing region.
  • the optical cover 12 is disposed at a first open end of the casing structure 11, and light can be emitted out through the first end of the casing structure 11.
  • a top surface of the first carrier 14 faces toward the first open end of the casing structure 11. Referring to FIG. 1, the first open end of the casing structure 11 is an upper end of the casing structure 11.
  • the transparent cover 13 is disposed on the top surface of the first carrier 14 to cover at least partial surface of the top surface of the first carrier 14, and to form a chamber between the transparent cover 13 and the first carrier 14.
  • the event sensing circuit 21 and the brightness sensing circuit 22 are disposed on the top surface of the first carrier 14 and are enclosed by the chamber.
  • the optical cover 12 and the transparent cover 13 can be any cover, e.g., a lens, that light can transmit through.
  • a shape and structure of the lens can be further adjusted to facilitate light output and distribution.
  • the event sensing circuit 21 can be configured to detect whether a trigger event occurs within the sensing region; the brightness sensing circuit 22 can be configured to detect the brightness of the sensing region.
  • the sensing element i.e., the event sensing circuit 21 and the brightness sensing circuit 22
  • the sensing light bulb can be operated as a whole for replacement or assembly, resulting in convenient replacement and assembly (e.g., during an assembly inspection process) .
  • the transparent cover 13 is disposed on the top surface of the first carrier 14 to form the chamber between the transparent cover 13 and the first carrier 14.
  • the event sensing circuit 21 and the brightness sensing circuit 22 are both disposed on the top surface of the first carrier 14 and located inside the chamber.
  • the event sensing circuit 21 and the brightness sensing circuit 22 can be integrally arranged to effectively save space.
  • the integral arrangement of the event sensing circuit 21 and the brightness sensing circuit 22 can result in the sensing regions of the two sensing circuits being more consistent (e.g., having a greater overlapping sensing area or even completely overlapped, compared to a sensor light that places the two sensing circuits at different locations around the bulb) . Further, the two sensing regions being consistent allows the sensing light bulb to focus on a desired target area.
  • FIG. 2 is a functional block diagram of a sensing light bulb according to some embodiments of the present disclosure.
  • the sensing light bulb further includes: the light-emitting element 25, the control element 23, and the light-emitting driving element 24.
  • the light-emitting element 25, the control element 23, and the light-emitting driving element 24 are disposed inside the casing structure 11.
  • the control element 23 is connected to the light-emitting driving element 24.
  • the light-emitting element 25 is connected to the light-emitting driving element 24.
  • the sensing element 20 e.g., event sensing circuit 21 and/or the brightness sensing circuit 22
  • the control element 23 e.g., event sensing circuit 21 and/or the brightness sensing circuit 22
  • the event sensing circuit 21 can be further configured to detect whether the trigger event occurs in the sensing region and, when the trigger event occurs in the sensing region, generate and send a first trigger signal to the control element 23.
  • the brightness sensing circuit 22 can be further configured to detect whether the brightness is below a threshold value, and when the brightness is below the threshold value, generate and send a second trigger signal to the control element 23.
  • the brightness sensing circuit 22 is configured to directly send the detected ambient light brightness to the control element 23, and the control element 23 is configured to detect whether the brightness is below the threshold value.
  • the control element 23 can be configured to send a control signal to the light-emitting driving element 24 according to the first trigger signal and the second trigger signal. In some embodiments, the control element 23 can be configured to send the control signal to the light-emitting driving element 24 when the control element 23 receives both the first trigger signal and the second trigger signal.
  • the light-emitting driving element 24 can be configured to drive the light-emitting element 25 to emit light in response to the control signal.
  • the light-emitting element 25 When the trigger event is detected, and the brightness is below the threshold value, the light-emitting element 25 is driven to emit light.
  • the brightness sensing circuit 22 and the even sensing circuit 21 are integrally arranged, the detection of the trigger event in the sensing region and the brightness of the sensing region being below the threshold value can be used as the necessary condition for driving the light-emitting element 25 to emit light.
  • only the light sensor or only the human-body sensor is used in the conventional sensing light bulb.
  • the sensing light bulb consistent with the present disclosure can provide more targeted lighting, further reducing energy consumption.
  • the event sensing circuit 21 can be further configured to detect whether the trigger event stops in the sensing region for a preset time period, and when the trigger event stops occurring for the preset time period, the control element 23 is configured to control the light-emitting driving element 24 to stop driving the light-emitting element 25 to emit light.
  • FIG. 3 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure.
  • the sensing light bulb further includes a second carrier 15 disposed inside the casing structure 11, the top surface of the second carrier 15 facing toward the first open end of the casing structure 11.
  • the first carrier 14 is disposed on the top surface of the second carrier 15.
  • the first carrier 14 may be fixated on the second carrier 15 using any proper fixation mechanism, such as screws, bulks, glues, etc.
  • the light-emitting element 25 is disposed on the top surface of the second carrier 15 and arranged on an outer circumference of the first carrier 14.
  • the top surface of the second carrier 15 is formed by a center area and a peripheral area.
  • the first carrier 14 occupies the center area, and the peripheral area of the second carrier 15 not covered by the first carrier 14 are configured to house the light-emitting element 25.
  • the light-emitting element 25 may include multiple LED chips evenly dispersed around the first carrier 14.
  • the light-emitting element 25 is arranged on the outer circumference of the first carrier 14, such that the light emitted by the light-emitting element 25 cannot be blocked by the first carrier 14.
  • the top surface of the first carrier 14 and the top surface of the second carrier 15 are facing toward the first open end of the casing structure 11, and the first carrier 14 is disposed on the top surface of the second carrier 15.
  • a preset distance may be set between the light-emitting element 25 and the brightness sensing circuit 22.
  • the optical cover 12 As shown in FIG. 3, the optical cover 12
  • the sensing light bulb further includes a third carrier 16 disposed inside the casing structure 11.
  • the control element 23 and the light-emitting driving element 24 are disposed on the third carrier 16.
  • the third carrier 16 is inserted into the second carrier 15 such that the control element 23 and the light-emitting driving element 24 are on a side surface of the second carrier 15 opposite the top surface of the second carrier 15.
  • the connection between the second carrier 15 and the third carrier 16 can be stabilized by the insertion of the third carrier 16 in the second carrier 15.
  • the third carrier 16 is farthest away from the first open end of the casing structure 11
  • the second carrier 15 is in the middle
  • the first carrier 14 is closest to the first open end of the casing structure 11.
  • the second carrier 15 includes a through-hole thereof, and the third carrier 16 can be inserted into the second carrier 15 through the through-hole of the second carrier 15.
  • the through-hole may include a groove, and the third carrier 16 can be inserted into the groove. In this way, the second carrier 15 and the third carrier 16 can be fixedly connected, the space occupation can be further reduced.
  • the third carrier can be perpendicular to the second carrier 15.
  • the through-hole is located at the center of the second carrier 15.
  • the first carrier 14 may cover the through-hole at the top surface of the second carrier 15.
  • the third carrier 16 is inserted in the second carrier 15 and the first carrier 14 is disposed on the top surface of the second carrier 15, as shown in FIG. 3, such that the second carrier 15 cannot block the first carrier 14 to be connected to the third carrier 16, facilitating the first carrier 14 to be electrically connected to the third carrier 16.
  • the connection lines between the first carrier 14 and the third carrier 16 can be easier and safer.
  • the first carrier 14 and the third carrier 16 are electrically connected by a first connection line, so that the even sensing circuit 21 and the brightness sensing circuit 22 can be electrically connected to the control element 23 through the first connection line.
  • the second carrier 15 and the third carrier 16 are electrically connected by the second connection line, so that the light-emitting element 25 can be electrically connected to the light-emitting driving element 24 through the second connection line.
  • the bulb further includes a lamp head 17 disposed at a second open end of the casing structure 11. Circuits inside the sensing light bulb can be connected to external wires/power through the lamp head 17. Further, the first open end of the casing structure 11 can have a larger opening than the second open end of the casing structure 11. The first open end of the casing structure 11 can be configured to facilitate the light emitted from the light-emitting element 25 to emit out. The second open end of the casing structure 11 can be configured to facilitate connecting the circuits inside the sensing light bulb to the external wires. A diameter of the casing structure 11 may become smaller along a direction from the first open end to the second open end of the casing structure 11.
  • a shape of the third carrier 16 can be designed as: an end of the third carrier 16 close to the first open end of the casing structure 11 can be larger than another end of the third carrier 16 close to the second open end of the casing structure 11.
  • the first carrier 14 and the second carrier 15 can have a round shape, and a center of the first carrier 14 and a center of the second carrier 15 can be in the same axis after assembly.
  • a center of the optical cover 12 and a center of the transparent cover 13 may also be on the same axis as the centers of the first carrier 14 and the second carrier 15.
  • the first carrier 14, the second carrier 15, and the third carrier 16 may be any kind of circuit boards, which is not limited by the present disclosure.
  • FIG. 4 is a functional block diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • the sensing light bulb further includes: a delay setting circuit 26 disposed inside the casing structure 11, and a setting element 18 (e.g., a control panel operable by a user) disposed on a surface of the casing structure 11.
  • the delay setting circuit 26 is connected to the control element 23.
  • the delay setting circuit 26 can be configured to send the delay electrical signal to the control element 23, and the delay electrical signal can be determined by a setting operation with respect to the setting element 18.
  • the setting operation can be any operation that can change a parameter value of the delay electrical signal.
  • the parameter value of the delay electrical signal can be a resistance value, a voltage value, a current value, etc., which is not limited by the present disclosure.
  • the control element 23 can be further configured to delay a duration of time according to the parameter value of the delay electrical signal before sending the control signal to the light-emitting driving element 24.
  • the delay setting circuit 26 and the delay electrical signal it is possible to realize a delayed triggering of the lighting after a trigger even is detected and the brightness is below the threshold value.
  • the delayed duration of time can be determined according to the setting operation of a user, so as to provide lighting for the user according to actual conditions.
  • the conventional sensing light bulb usually is immediately triggered to provide lighting after a trigger even is detected or the brightness is below the threshold value.
  • a region covered by the light emitted by the conventional sensing light bulb usually does not match the sensing region of the sensing circuit of the conventional sensing light bulb.
  • the region covered by the light emitted by the conventional sensing light bulb may be much smaller than the sensing region of the sensing circuit of the conventional sensing light bulb.
  • a floor aisle connects two floors, and the sensing region may cover the two floors and the floor aisle; however, the light emitted by the light emitting element of the conventional sensing light bulb may only cover one of two floors or the floor aisle.
  • a delay triggering can have the triggered light more targeted.
  • FIG. 5 is a circuit diagram of a sensing light bulb according to some embodiments of the present disclosure.
  • the delay setting circuit 26 includes a rheostat RT.
  • One terminal of the rheostat RT is grounded, and the other terminal is connected to an input terminal of the control element 24.
  • the parameter value of the delay electrical signal can be determined according to a resistance of the rheostat RT.
  • the resistance of the rheostat RT can be determined according to the setting operation.
  • the parameter value of the delay electrical signal input to the control element 23 changes in response to the change in the resistance of the rheostat RT, and the parameter value may be a voltage value.
  • the control element 23 can determine the delayed duration of time based on the change of the voltage value.
  • the setting operation can be any operation with respect to the setting element 18.
  • the setting member 18 can be any input element that can cause changes of elements (or signal produced) in the delay setting circuit 26.
  • the setting member 18 may include one or more of the followings: a button, a knob, a slide button, a touch screen, and a button, a knob, and a slide button of the touch screen, etc.
  • the setting member 18 may include a transparent window, and the transparent window may have an openable structure. In some embodiments, an upper edge of the transparent window may be mounted to the surface of the casing structure 11 by a screw (shown in FIG. 3) . The user may be able to open the transparent window by losing the screw, so as to operate on the setting element 18.
  • the delay setting circuit 26 can be connected to the setting element 18. For example, a slider of the rheostat can be connected to the slide button of the setting element 18, to achieve synchronous sliding.
  • control element 23 may include a microprocessor circuit U3, and descriptions of the functions of the control element 23 can be understood as descriptions of the functions of the microprocessor circuit U3.
  • the sensing light bulb further includes a power supply element 17.
  • the power supply element 27 is respectively connected to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24.
  • the power supply element 27 can be configured to provide the electrical power from an external power supply U0 to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24.
  • the power supply element 27 can also be disposed inside the casing structure 13.
  • the power supply element 27 may include a rectifier circuit U1, and the rectifier circuit U1 can be configured to rectify an alternating current of the external power supply U0 into a direct current and provide the direct current to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24.
  • the power supply element 27 may further include a first capacitor C1 and a second capacitor C2.
  • the first capacitor C1 is connected in parallel with two input terminals of the rectifier circuit U1, while the second capacitor C2 is connected in parallel with two output terminals of the rectifier circuit U1.
  • the sensing light bulb may further include a second resistor R2 and a voltage stabilization element.
  • the voltage stabilization element may also include a forth capacitor C4 and a Zener diode Z1.
  • the electric power of power supply element 27 may be provided to the control element 23 after the electric power is divided by the second resistor R2. Further, a first terminal of the second resistor R2 may be connected to the power supply element 27, a first terminal of the fourth capacitor may be connected to a second terminal of the second resistor R2, a second terminal of the forth capacitor C4 mat be connected to the ground, and the Zener diode Z1 may be connected in parallel with two terminals of the fourth capacitor C4.
  • the second terminal of the second resistor R2 can also be connected to the event sensing circuit 21 and the brightness sensing circuit 22 to provide electrical power to the event sensing circuit 21 and the brightness sensing circuit 22.
  • the light-emitting driving element 24 may include a voltage-current conversion circuit U2.
  • the voltage-current conversion circuit U2 may be configured to receive the control signal (e.g., from the microprocessor circuit U3) and enter an operating state, and while in the operating state, output electric current based on the supplied electric power, such that the light-emitting element 25 can emit light.
  • the voltage-current conversion circuit U2 is a voltage-controlled current source. Through the voltage-current conversion circuit U2, the current obtained after conversion may be equivalent to an output-adjustable constant current source. The output current can be kept stable and does not change along with a change of a load.
  • the light-emitting driving element 24 may further include a first resistor R1.
  • a first terminal of the first resistor R1 may be connected to output terminal of the voltage-current conversion circuit U2.
  • a second terminal of the first resistor R1 may be connected to the sampling terminal of the voltage-current conversion circuit U2. While in the operating state, the voltage-current conversion circuit U2 can control the electrical power output from the output terminal of the voltage-current conversion circuit U2, according to the sampling of the first resistor R1, so as to output the output-adjustable constant current source.
  • the light-emitting driving element 24 may further include a direct-current voltage step-down circuit.
  • the direct-current voltage step-down circuit is configured to receive the control signal (e.g., from the microprocessor circuit U3) and enter an operating state, and while in the operating state, provide the first voltage drop to the light-emitting element 25.
  • the direct-current voltage step-down circuit may share components with the voltage-current conversion circuit U2.
  • the direct-current voltage step-down circuit may include a controller, a switch (e.g., a transistor) , a first diode D1, a first inductor T1, and a third capacitor C3.
  • the controller and the switch can be included in the voltage-current conversion circuit U2, so as to receive the first control signal (e.g., from the microprocessor circuit U3) at the same time and enter the operating state.
  • a control terminal (e.g., gate terminal) of the switch may be connected to the controller, and a drain terminal of the switch may be connected to the power supply element 1;
  • a second terminal of the first diode D1 and a first terminal of the first resistor R1 may be connected to a source terminal of the switch;
  • a second terminal of the first resistor R1 may be connected to a first terminal of the first inductor T1, and the first terminal of the first inductor T1 may also be connected to the controller;
  • a second terminal of the first inductor T1 may be connected to the light-emitting element 25 and the first terminal of the third capacitor C3; and a second terminal of the third capacitor C3 is connected to the ground.
  • the event sensing circuit 21 may include a passive infrared (PIR) sensor.
  • the event sensing circuit 21 may include a microwave sensor MS or a sound sensor ST.
  • PIR passive infrared
  • the event sensing circuit 21 includes one or more of the passive infrared sensor PIR, the microwave sensor MS or sound sensor ST.
  • the brightness sensing circuit 22 may include a photosensitive sensor RS, and any other sensor that can realize light sensing.
  • the light-emitting element 25 may include an LED light-emitting circuit U4, one terminal of the LED light-emitting circuit U4 may be connected to the light-emitting driving element 24, and the other terminal of the LED light-emitting circuit U4 is grounded.
  • the LED light-emitting circuit U4 may include a plurality of LED particles/chips connected in series. In some other embodiments, the LED light-emitting circuit U4 may include other type of element to emit light, which is not limited by the present disclosure.
  • FIG. 6 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • the optical cover 12 includes a through hole at the center thereof.
  • the transparent cover 13 can pass through the through hole of the optical cover 12 to extern outside of the optical cover 12.
  • the through hole of the optical cover 12 is disposed at the center of the optical cover 12, the transparent cover 13 can also be correspondingly disposed at the center of the optical cover 12.
  • the brightness sensing circuit 22 and the event sensing circuit 21 can be disposed at positions what are inside the transparent cover 13 and close to or at the center of the optical cover 12.
  • the brightness sensing circuit or the event sensing circuit of conventional sensing light bulb is usually disposed at edges of the sensing light bulb, and the light sensed by the conventional sensing light bulb is ambient brightness at the side of the light bulb.
  • the sensing light bulb consistent with the present disclosure can sense ambient brightness around the center of the light bulb, resulting in a more sensitive and accurate detection.
  • FIG. 7 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
  • the transparent cover 13 further includes fasteners 131
  • the first carrier 14 includes slots 141 having matching shapes with the fasteners 131.
  • the fasteners 131 can be pins, buckles, etc., and a shape of a fastener 131 can be a hook or another shape.
  • each of the fasteners 131 may have a “L” shape, and each of the slots may have a “L” shape.
  • the “L” shape may be shape similar to letter “L” but not necessarily the same as the letter “L” .
  • Each of the fasteners 131 may have two arms, an angle between the two arms may be 90 degree or another degree.
  • each of the slots may include a bottom wall and side walls, angles between the bottom wall and the side walls may be 90 degree or other degrees.
  • the fasteners 131 may have the same or different shapes with each other.
  • the slots may have the same or differ shapes with each other.
  • the transparent cover 13 can be mounted to the first carrier 14 by engaging the fasteners 131 to the slots 141.
  • the fasteners 131 can be respectively aligned with the slots 141. After the fasteners 131 are aligned with the slots 141, the fasteners can be respectively inserted into the slots 141.
  • the transparent cover 13 can be fixedly mounted to the first carrier 14.
  • the transparent cover 13 can also be dissembled from the first carrier 14 easily (e.g., without removing the optical cover 12 from the light bulb) to facilitate replacement of elements accommodated by the chamber formed by the transparent cover 13 and the first carrier 14.
  • the fasteners 131 when the fasteners 131 are inserted in the slots 141, the fasteners 131 can be easily removed from the slots 141 by pressing one or more of the fasteners 131 along a centripetal direction.
  • Methods to insert the fasteners 131 into the slots 141 and methods to remove the fasteners 131 from the slots 141 are not limited by the present disclosure, and can be determined according to shapes, mounting mechanisms, etc., of the fasteners 131 and the slots 141.
  • a top surface refers to a surface facing away from the lamp head 17 (facing toward the optical cover 12)
  • a bottom surface refers to a surface facing toward the lamp head (facing away from the optical cover 12) .

Abstract

A sensing light bulb includes: a light-emitting element (25) configured to emit light, a sensing element (20) configured to generate a trigger signal based on collected sensor data, a control element (23) configured to send a control signal to the light-emitting driving element (24) according to the trigger signal, a light-emitting driving element (24) configured to drive the light-emitting element (25) to emit light in response to the control signal, a casing structure (11), an optical cover (12), a first carrier (14), and a transparent cover (13). The casing structure (11) can accommodate the light-emitting element (25), the sensing element (20), the control element (23) and the light-emitting driving element (24). The optical cover (12) is disposed at a first open end if the casing structure (11). The transparent cover (13) is disposed on a top surface of the first carrier (14). The sensing element (20) is disposed on the top surface of the first carrier (14) and enclosed by a chamber formed between the transparent cover (13) and the first carrier (14).

Description

SENSING LIGHT BULB
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application No. 201710827017.8, filed on September 14, 2017, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
The disclosure relates to the field of lighting, in particular to a sensing light bulb.
BACKGROUND
Lighting is using various light sources to illuminate work and living areas or individual objects. A light bulb can be regarded as an apparatus with a lighting function. There is no need to perform lighting during daytime, neither for the case when no person is present. However, if the light bulb keeps illuminating during the above scenarios, it is a waste of electrical energy and may reduce a lifetime of the light bulb.
In conventional technologies, a human-body sensor or a light senor is disposed outside the light bulb. Power supply of the light bulb can be controlled according to sensing signal of the human-body sensor or the light sensor, so as to achieve the sensing control of the light bulb.
However, in the conventional technology, the human body sensor or the light sensor is disposed outside the light bulb. To replace the light bulb, connection lines between the light bulb and the sensor has to be adjusted accordingly, and hence, assembly and replacement of the conventional light bulb are very inconvenient.
BRIEF SUMMARY OF THE DISCLOSURE
In accordance with the disclosure, there is provided a sensing light bulb. The sensing light bulb includes a light-emitting element, a sensing element, a control element, a light-emitting driving element, a casing structure, an optical cover, a first carrier, and a transparent cover. The light-emitting element is configured to emit light. The sensing element is configured to generate a trigger signal based on collected sensor data. The control element is configured to send a control signal to the light-emitting driving element according to the trigger signal. The light-emitting driving element is configured to drive the light-emitting element to emit light in response to the control signal. The casing structure can accommodate the light-emitting element, the sensing element, the control element and the light-emitting driving element. The optical cover is disposed at a first open end if the casing structure, where the first open end is an opening of the casing structure on a light-emitting path of the light bulb. The first carrier accommodated by the casing structure has a plate structure, and includes a top surface facing toward the first open end of the casing structure and a bottom surface facing away the first open end of the casing structure. The transparent cover is disposed on the top surface of the first carrier. A chamber can be formed between the transparent cover and the first carrier. The sensing element is disposed on the top surface of the first carrier and enclosed by the chamber.
In some embodiments, the sensing element includes an event sensing circuit and/or a brightness sensing circuit. The event sensing circuit is configured to detect whether a trigger event occurs within a sensing region, and when the trigger event occurs in the sensing region, generate and send a first trigger signal to the control element. The brightness sensing circuit is configured to detect a brightness of the sensing region, and when the brightness is below the threshold value, generate and send a second trigger signal to the control element. The control element is further configured to send the control signal to the light-emitting driving element according to the first trigger signal and/or the second trigger signal.
In some embodiments, the control element is configured to send the control signal to the light-emitting element in response to receiving both the first trigger signal and the second trigger signal.
In some embodiments, the sensing light bulb further includes a second carrier disposed in the casing structure. The second carrier has a plate structure and includes a top surface and a bottom surface. The bottom surface of the second carrier faces away from the first open end of the casing structure. The first carrier is disposed on the top surface of the second carrier. The light-emitting element is disposed on the top surface of the second carrier and arranged around an outer circumference of the first carrier.
In some embodiments, the sensing light bulb further includes a third carrier disposed in the casing structure. The control element and the light-emitting driving element are disposed on the third carrier. The third carrier is connected to the second carrier by insertion at the bottom surface of the second carrier. The third carrier, the second carrier, and the first carrier are sequentially disposed in the casing structure.
In some embodiments, the second carrier includes a center hole at a center of the second carrier, and the third carrier is configured to be inserted into the center hole of the second carrier.
In some embodiments, the sensing element on the first carrier is electrically connected to the control element on the third carrier through a first connection line. The light-emitting element on the second carrier is electrically connected to the light-emitting driving element on the third carrier through a second connection line.
In some embodiments, the sensing light bulb further includes a delay setting circuit and a setting element. The delay setting circuit is disposed in the casing structure and connected to the control element. The setting element is disposed on an outer surface of the casing structure. The delay setting circuit is configured to send a delay electrical signal to the control element. The delay electrical signal can be determined according to a setting operation with respect to the setting element. The  control element is further configured to delay the sending of the control signal to the driving element for a duration of time according to a parameter value of the delay electrical signal.
In some embodiments, the delay setting circuit includes a rheostat. A first terminal of the rheostat is grounded, and a second terminal of the rheostat is connected to an input terminal of the control element. The parameter value of the delay electrical signal is determined according to a resistance of the rheostat. The resistance of the rheostat is determined according to the setting operation.
In some embodiments, the sensing light bulb further includes a power supply element disposed in the casing structure. The power supply element is respectively connected to the sensing element, and the control element, and the light-emitting driving element. The power supply element is configured to supply electrical power from an external power supply to the sensing element, the control element, and the light-emitting driving element.
In some embodiments, the event sensing circuit includes one or more of a passive infrared sensor, a microwave sensor, and a sound sensor.
In some embodiments, a center of the optical cover includes a through hole, and the transparent cover passes through the through hole to extend outward from the optical cover.
In some embodiments, the transparent cover includes a plurality of fasteners. The first carrier includes a plurality of slots having matching shapes with the plurality of fasteners. The transparent cover is mounted to the first carrier by connecting the plurality of fasteners to the plurality of slots.
In the sensing light bulb consistent with the present disclosure, the event sensing circuit can be configured to detect whether a trigger event occurs within the sensing region; the brightness sensing circuit can be configured to detect the brightness of the sensing region. In addition, the sensing element (i.e., the event sensing circuit and the brightness sensing circuit) is disposed inside the casing structure, such that, the event sensing circuit and the brightness sensing circuit can be integrated inside the sensing light bulb. Thus, the sensing light bulb can be operated  as a whole for replacement or assembly, resulting in convenient replacement and assembly during an assembly inspection process.
Moreover, the transparent cover is disposed on the top surface of the first carrier to form the chamber between the transparent cover and the first carrier. The event sensing circuit and the brightness sensing circuit are both disposed on the top surface of the first carrier and located inside the chamber. As such, the event sensing circuit and the brightness sensing circuit can be integrally arranged to effectively save space. In addition, the integral arrangement of the event sensing circuit and the brightness sensing circuit can result in the sensing regions of the two sensing circuits being more consistent (e.g., having a greater overlapping sensing area or even completely overlapped, compared to a sensor light that places the two sensing circuits at different locations around the bulb) . Further, the two sensing regions being consistent allows the sensing light bulb to focus on a desired target area.
BRIEF DESCRIPTION OF THE DRAWINGS
To more clearly explain the embodiments of the present disclosure or the technical solutions in a conventional technology, the drawings used in the description of the embodiments or the conventional technology are briefly described below. Obviously, the drawings described below illustrate only some embodiments of the present disclosure. For those skilled in the art, other drawings may also be obtained based on these drawings without creative efforts.
FIG. 1 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure;
FIG. 2 is a functional block diagram of a sensing light bulb according to some embodiments of the present disclosure;
FIG. 3 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure;
FIG. 4 is a functional block diagram of a sensing light bulb according to some other embodiments of the present disclosure;
FIG. 5 is a circuit diagram of a sensing light bulb according to some embodiments of the present disclosure;
FIG. 6 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure; and
FIG. 7 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
Reference numerals in the drawings: 11-casing structure; 12-optical cover; 13-transparent cover; 131-fastener; 14-first carrier; 141-slot; 15-second carrier; 16-third carrier; 17-lamp head; 18-setting element; 20-sensing element; 21-event sensing circuit; 22-brightness sensing circuit; 23-control element; 24-light-emtting driving element; 25-light-emitting element; 26-delay setting circuit; 27-power supply element; U0-external power supply; U1-rectifier circuit; U2-voltage-current conversion circuit; U3-microprocessor; U4-LED light-emitting circuit; C1-first capacitor; C2-second capacitor; C3-third capacitor; C4-fourth capacitor; R1-first resistance; R2-second resistance; D1-first diode; T1-first inductor; Z1-Zener diode; RT-first rheostat; RS-photosensitive sensor; and PIR-passive infrared sensor.
DETAILED DESCRIPTION
The following clearly describes the technical solutions according to embodiments of the present disclosure with reference to the accompanying drawings. Apparently, described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the scope of the present disclosure.
Some terms “first” “second” “third” “fourth” and the like, if any, in the specification and claims of the present disclosure and in the above drawings are used to distinguish similar objects and are not necessarily for describing a specific order or sequence. It should be understood that these terms may be interchanged where  appropriate, so that the embodiments of the disclosure described herein can be implemented, for example, in other sequences than those illustrated or described herein. In addition, terms “include” and “have” and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or apparatus that includes a series of steps or units is not limited to some steps or units that are clearly listed but may include other steps or units that are not explicitly listed or inherent to the process, method, system, product, or apparatus.
The technical solutions of the present disclosure are described in detail with specific embodiments below. The following embodiments can be combined with each other, and some same or similar concepts or processes may not be repeated in some embodiments.
FIG. 1 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure. Referring to FIG. 1, the sensing light bulb includes: a casing structure 11, an optical cover 12, a transparent cover 13, a first carrier 14, and a sensing element. The sensing element may include an event sensing circuit 21 and/or a brightness sensing circuit 22. The first carrier 14, the event sensing circuit 21 and the brightness sensing circuit 22 are disposed inside the casing structure 11
The event sensing circuit 21 can be configured to detect whether a trigger event occurs within a sensing region, and the trigger event may refer to an event that there is human or object activity in the sensing region.
The brightness sensing circuit 22 can be configured to detect the brightness of the sensing region.
The optical cover 12 is disposed at a first open end of the casing structure 11, and light can be emitted out through the first end of the casing structure 11. A top surface of the first carrier 14 faces toward the first open end of the casing structure 11. Referring to FIG. 1, the first open end of the casing structure 11 is an upper end of the casing structure 11.
The transparent cover 13 is disposed on the top surface of the first carrier 14 to cover at least partial surface of the top surface of the first carrier 14, and to form  a chamber between the transparent cover 13 and the first carrier 14. The event sensing circuit 21 and the brightness sensing circuit 22 are disposed on the top surface of the first carrier 14 and are enclosed by the chamber.
The optical cover 12 and the transparent cover 13 can be any cover, e.g., a lens, that light can transmit through. When the lens is used as the optical cover 12, a shape and structure of the lens can be further adjusted to facilitate light output and distribution.
In the sensing light bulb consistent with the present disclosure, the event sensing circuit 21 can be configured to detect whether a trigger event occurs within the sensing region; the brightness sensing circuit 22 can be configured to detect the brightness of the sensing region. In addition, the sensing element (i.e., the event sensing circuit 21 and the brightness sensing circuit 22) is disposed inside the casing structure 11, such that, the event sensing circuit 21 and the brightness sensing circuit 22 can be integrated inside the sensing light bulb. Thus, the sensing light bulb can be operated as a whole for replacement or assembly, resulting in convenient replacement and assembly (e.g., during an assembly inspection process) .
Moreover, the transparent cover 13 is disposed on the top surface of the first carrier 14 to form the chamber between the transparent cover 13 and the first carrier 14. The event sensing circuit 21 and the brightness sensing circuit 22 are both disposed on the top surface of the first carrier 14 and located inside the chamber. As such, the event sensing circuit 21 and the brightness sensing circuit 22 can be integrally arranged to effectively save space. In addition, the integral arrangement of the event sensing circuit 21 and the brightness sensing circuit 22 can result in the sensing regions of the two sensing circuits being more consistent (e.g., having a greater overlapping sensing area or even completely overlapped, compared to a sensor light that places the two sensing circuits at different locations around the bulb) . Further, the two sensing regions being consistent allows the sensing light bulb to focus on a desired target area.
FIG. 2 is a functional block diagram of a sensing light bulb according to some embodiments of the present disclosure.
Referring to FIG. 2, in some embodiments, the sensing light bulb further includes: the light-emitting element 25, the control element 23, and the light-emitting driving element 24. The light-emitting element 25, the control element 23, and the light-emitting driving element 24 are disposed inside the casing structure 11. The control element 23 is connected to the light-emitting driving element 24. The light-emitting element 25 is connected to the light-emitting driving element 24. The sensing element 20 (e.g., event sensing circuit 21 and/or the brightness sensing circuit 22) is connected to the control element 23.
The event sensing circuit 21 can be further configured to detect whether the trigger event occurs in the sensing region and, when the trigger event occurs in the sensing region, generate and send a first trigger signal to the control element 23.
The brightness sensing circuit 22 can be further configured to detect whether the brightness is below a threshold value, and when the brightness is below the threshold value, generate and send a second trigger signal to the control element 23. In some embodiments, the brightness sensing circuit 22 is configured to directly send the detected ambient light brightness to the control element 23, and the control element 23 is configured to detect whether the brightness is below the threshold value.
The control element 23 can be configured to send a control signal to the light-emitting driving element 24 according to the first trigger signal and the second trigger signal. In some embodiments, the control element 23 can be configured to send the control signal to the light-emitting driving element 24 when the control element 23 receives both the first trigger signal and the second trigger signal.
The light-emitting driving element 24 can be configured to drive the light-emitting element 25 to emit light in response to the control signal.
When the trigger event is detected, and the brightness is below the threshold value, the light-emitting element 25 is driven to emit light. When the brightness sensing circuit 22 and the even sensing circuit 21 are integrally arranged, the detection of the trigger event in the sensing region and the brightness of the sensing region being below the threshold value can be used as the necessary condition for driving the light-emitting element 25 to emit light. In contrast, only the light  sensor or only the human-body sensor is used in the conventional sensing light bulb. Thus, in comparison with the conventional sensing light bulb, the sensing light bulb consistent with the present disclosure can provide more targeted lighting, further reducing energy consumption. In some embodiments, the event sensing circuit 21 can be further configured to detect whether the trigger event stops in the sensing region for a preset time period, and when the trigger event stops occurring for the preset time period, the control element 23 is configured to control the light-emitting driving element 24 to stop driving the light-emitting element 25 to emit light.
FIG. 3 is a structural diagram of a sensing light bulb according to some embodiments of the present disclosure.
Referring to FIG. 3, in some embodiments, the sensing light bulb further includes a second carrier 15 disposed inside the casing structure 11, the top surface of the second carrier 15 facing toward the first open end of the casing structure 11. The first carrier 14 is disposed on the top surface of the second carrier 15. The first carrier 14 may be fixated on the second carrier 15 using any proper fixation mechanism, such as screws, bulks, glues, etc. The light-emitting element 25 is disposed on the top surface of the second carrier 15 and arranged on an outer circumference of the first carrier 14. For example, the top surface of the second carrier 15 is formed by a center area and a peripheral area. The first carrier 14 occupies the center area, and the peripheral area of the second carrier 15 not covered by the first carrier 14 are configured to house the light-emitting element 25. The light-emitting element 25 may include multiple LED chips evenly dispersed around the first carrier 14.
The light-emitting element 25 is arranged on the outer circumference of the first carrier 14, such that the light emitted by the light-emitting element 25 cannot be blocked by the first carrier 14. In addition, the top surface of the first carrier 14 and the top surface of the second carrier 15 are facing toward the first open end of the casing structure 11, and the first carrier 14 is disposed on the top surface of the second carrier 15. As such, the inner space of the casing structure 11 can be efficiently utilized to compensate for the space occupation caused by the integral arrangement of the event sensing circuit 21 and the brightness sensing circuit 22. In some  embodiments, a preset distance may be set between the light-emitting element 25 and the brightness sensing circuit 22.
In some embodiments, as shown in FIG. 3, the optical cover 12
In some embodiments, the sensing light bulb further includes a third carrier 16 disposed inside the casing structure 11. The control element 23 and the light-emitting driving element 24 are disposed on the third carrier 16. The third carrier 16 is inserted into the second carrier 15 such that the control element 23 and the light-emitting driving element 24 are on a side surface of the second carrier 15 opposite the top surface of the second carrier 15. The connection between the second carrier 15 and the third carrier 16 can be stabilized by the insertion of the third carrier 16 in the second carrier 15.
As shown in FIG. 3, among the three carriers (i.e., the first carrier 14, the second carrier 15, and the third carrier 16) , the third carrier 16 is farthest away from the first open end of the casing structure 11, the second carrier 15 is in the middle, and the first carrier 14 is closest to the first open end of the casing structure 11.
In some embodiments, the second carrier 15 includes a through-hole thereof, and the third carrier 16 can be inserted into the second carrier 15 through the through-hole of the second carrier 15. Further, the through-hole may include a groove, and the third carrier 16 can be inserted into the groove. In this way, the second carrier 15 and the third carrier 16 can be fixedly connected, the space occupation can be further reduced. In some embodiments, the third carrier can be perpendicular to the second carrier 15. In some embodiments, the through-hole is located at the center of the second carrier 15. The first carrier 14 may cover the through-hole at the top surface of the second carrier 15.
In addition, the third carrier 16 is inserted in the second carrier 15 and the first carrier 14 is disposed on the top surface of the second carrier 15, as shown in FIG. 3, such that the second carrier 15 cannot block the first carrier 14 to be connected to the third carrier 16, facilitating the first carrier 14 to be electrically connected to the third carrier 16. The connection lines between the first carrier 14 and the third carrier 16 can be easier and safer. Referring to FIG. 3, in some embodiments, the first carrier  14 and the third carrier 16 are electrically connected by a first connection line, so that the even sensing circuit 21 and the brightness sensing circuit 22 can be electrically connected to the control element 23 through the first connection line. The second carrier 15 and the third carrier 16 are electrically connected by the second connection line, so that the light-emitting element 25 can be electrically connected to the light-emitting driving element 24 through the second connection line.
In some embodiments, the bulb further includes a lamp head 17 disposed at a second open end of the casing structure 11. Circuits inside the sensing light bulb can be connected to external wires/power through the lamp head 17. Further, the first open end of the casing structure 11 can have a larger opening than the second open end of the casing structure 11. The first open end of the casing structure 11 can be configured to facilitate the light emitted from the light-emitting element 25 to emit out. The second open end of the casing structure 11 can be configured to facilitate connecting the circuits inside the sensing light bulb to the external wires. A diameter of the casing structure 11 may become smaller along a direction from the first open end to the second open end of the casing structure 11. The design of the third carrier 16 perpendicular to the second carrier 15 can effectively adapt to the shape of the casing structure 11. To further adapt to the shape of casing structure 11, a shape of the third carrier 16 can be designed as: an end of the third carrier 16 close to the first open end of the casing structure 11 can be larger than another end of the third carrier 16 close to the second open end of the casing structure 11.
In some embodiments, the first carrier 14 and the second carrier 15 can have a round shape, and a center of the first carrier 14 and a center of the second carrier 15 can be in the same axis after assembly. A center of the optical cover 12 and a center of the transparent cover 13 may also be on the same axis as the centers of the first carrier 14 and the second carrier 15. The first carrier 14, the second carrier 15, and the third carrier 16 may be any kind of circuit boards, which is not limited by the present disclosure.
FIG. 4 is a functional block diagram of a sensing light bulb according to some other embodiments of the present disclosure.
Referring to FIG. 4, in connection to FIG. 3, the sensing light bulb further includes: a delay setting circuit 26 disposed inside the casing structure 11, and a setting element 18 (e.g., a control panel operable by a user) disposed on a surface of the casing structure 11. The delay setting circuit 26 is connected to the control element 23.
The delay setting circuit 26 can be configured to send the delay electrical signal to the control element 23, and the delay electrical signal can be determined by a setting operation with respect to the setting element 18. The setting operation can be any operation that can change a parameter value of the delay electrical signal. The parameter value of the delay electrical signal can be a resistance value, a voltage value, a current value, etc., which is not limited by the present disclosure.
The control element 23 can be further configured to delay a duration of time according to the parameter value of the delay electrical signal before sending the control signal to the light-emitting driving element 24.
Through the design of the delay setting circuit 26 and the delay electrical signal, it is possible to realize a delayed triggering of the lighting after a trigger even is detected and the brightness is below the threshold value. In addition, the delayed duration of time can be determined according to the setting operation of a user, so as to provide lighting for the user according to actual conditions. In contrast, the conventional sensing light bulb usually is immediately triggered to provide lighting after a trigger even is detected or the brightness is below the threshold value. A region covered by the light emitted by the conventional sensing light bulb usually does not match the sensing region of the sensing circuit of the conventional sensing light bulb. For example, the region covered by the light emitted by the conventional sensing light bulb may be much smaller than the sensing region of the sensing circuit of the conventional sensing light bulb. For example, in a building, a floor aisle connects two floors, and the sensing region may cover the two floors and the floor aisle; however, the light emitted by the light emitting element of the conventional sensing light bulb may only cover one of two floors or the floor aisle. For the above situations, a delay triggering can have the triggered light more targeted.
FIG. 5 is a circuit diagram of a sensing light bulb according to some embodiments of the present disclosure.
Referring to FIG. 5, in some embodiments, the delay setting circuit 26 includes a rheostat RT. One terminal of the rheostat RT is grounded, and the other terminal is connected to an input terminal of the control element 24. The parameter value of the delay electrical signal can be determined according to a resistance of the rheostat RT. The resistance of the rheostat RT can be determined according to the setting operation.
Further, the parameter value of the delay electrical signal input to the control element 23 changes in response to the change in the resistance of the rheostat RT, and the parameter value may be a voltage value. The control element 23 can determine the delayed duration of time based on the change of the voltage value.
The setting operation can be any operation with respect to the setting element 18. The setting member 18 can be any input element that can cause changes of elements (or signal produced) in the delay setting circuit 26. In some embodiments, the setting member 18 may include one or more of the followings: a button, a knob, a slide button, a touch screen, and a button, a knob, and a slide button of the touch screen, etc. The setting member 18 may include a transparent window, and the transparent window may have an openable structure. In some embodiments, an upper edge of the transparent window may be mounted to the surface of the casing structure 11 by a screw (shown in FIG. 3) . The user may be able to open the transparent window by losing the screw, so as to operate on the setting element 18. The delay setting circuit 26 can be connected to the setting element 18. For example, a slider of the rheostat can be connected to the slide button of the setting element 18, to achieve synchronous sliding.
In some embodiments, referring to FIG. 5, the control element 23 may include a microprocessor circuit U3, and descriptions of the functions of the control element 23 can be understood as descriptions of the functions of the microprocessor circuit U3.
The sensing light bulb further includes a power supply element 17. The  power supply element 27 is respectively connected to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24. The power supply element 27 can be configured to provide the electrical power from an external power supply U0 to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24. The power supply element 27 can also be disposed inside the casing structure 13. The power supply element 27 may include a rectifier circuit U1, and the rectifier circuit U1 can be configured to rectify an alternating current of the external power supply U0 into a direct current and provide the direct current to the event sensing circuit 21, the brightness sensing circuit 22, the control element 22, and the light-emitting driving element 24. In some embodiments, the power supply element 27 may further include a first capacitor C1 and a second capacitor C2. The first capacitor C1 is connected in parallel with two input terminals of the rectifier circuit U1, while the second capacitor C2 is connected in parallel with two output terminals of the rectifier circuit U1.
To realize the power supply to the control element 23, the sensing light bulb may further include a second resistor R2 and a voltage stabilization element. The voltage stabilization element may also include a forth capacitor C4 and a Zener diode Z1. The electric power of power supply element 27 may be provided to the control element 23 after the electric power is divided by the second resistor R2. Further, a first terminal of the second resistor R2 may be connected to the power supply element 27, a first terminal of the fourth capacitor may be connected to a second terminal of the second resistor R2, a second terminal of the forth capacitor C4 mat be connected to the ground, and the Zener diode Z1 may be connected in parallel with two terminals of the fourth capacitor C4.
In addition, the second terminal of the second resistor R2 can also be connected to the event sensing circuit 21 and the brightness sensing circuit 22 to provide electrical power to the event sensing circuit 21 and the brightness sensing circuit 22.
Referring to FIG. 5, the light-emitting driving element 24 may include a  voltage-current conversion circuit U2. The voltage-current conversion circuit U2 may be configured to receive the control signal (e.g., from the microprocessor circuit U3) and enter an operating state, and while in the operating state, output electric current based on the supplied electric power, such that the light-emitting element 25 can emit light. The voltage-current conversion circuit U2 is a voltage-controlled current source. Through the voltage-current conversion circuit U2, the current obtained after conversion may be equivalent to an output-adjustable constant current source. The output current can be kept stable and does not change along with a change of a load. In some embodiments, the light-emitting driving element 24 may further include a first resistor R1. A first terminal of the first resistor R1 may be connected to output terminal of the voltage-current conversion circuit U2. A second terminal of the first resistor R1 may be connected to the sampling terminal of the voltage-current conversion circuit U2. While in the operating state, the voltage-current conversion circuit U2 can control the electrical power output from the output terminal of the voltage-current conversion circuit U2, according to the sampling of the first resistor R1, so as to output the output-adjustable constant current source.
The light-emitting driving element 24 may further include a direct-current voltage step-down circuit. The direct-current voltage step-down circuit is configured to receive the control signal (e.g., from the microprocessor circuit U3) and enter an operating state, and while in the operating state, provide the first voltage drop to the light-emitting element 25. The direct-current voltage step-down circuit may share components with the voltage-current conversion circuit U2. In some embodiments, the direct-current voltage step-down circuit may include a controller, a switch (e.g., a transistor) , a first diode D1, a first inductor T1, and a third capacitor C3. The controller and the switch can be included in the voltage-current conversion circuit U2, so as to receive the first control signal (e.g., from the microprocessor circuit U3) at the same time and enter the operating state. While in the operating state, a control terminal (e.g., gate terminal) of the switch may be connected to the controller, and a drain terminal of the switch may be connected to the power supply element 1; a second terminal of the first diode D1 and a first terminal of the first resistor R1 may  be connected to a source terminal of the switch; a second terminal of the first resistor R1 may be connected to a first terminal of the first inductor T1, and the first terminal of the first inductor T1 may also be connected to the controller; a second terminal of the first inductor T1 may be connected to the light-emitting element 25 and the first terminal of the third capacitor C3; and a second terminal of the third capacitor C3 is connected to the ground.
Referring to FIG. 5, the event sensing circuit 21 may include a passive infrared (PIR) sensor. In some embodiments, the event sensing circuit 21 may include a microwave sensor MS or a sound sensor ST. Through different detecting mechanism of different types of sensors, an occurrence of the trigger event can be detected. Optionally, the occurrence of the trigger event can be detected by a combination of the passive infrared sensor PIR, the microwave sensor MS and sound sensor ST. That is, the event sensing circuit 21 includes one or more of the passive infrared sensor PIR, the microwave sensor MS or sound sensor ST.
Referring to FIG. 5, the brightness sensing circuit 22 may include a photosensitive sensor RS, and any other sensor that can realize light sensing.
The light-emitting element 25 may include an LED light-emitting circuit U4, one terminal of the LED light-emitting circuit U4 may be connected to the light-emitting driving element 24, and the other terminal of the LED light-emitting circuit U4 is grounded. The LED light-emitting circuit U4 may include a plurality of LED particles/chips connected in series. In some other embodiments, the LED light-emitting circuit U4 may include other type of element to emit light, which is not limited by the present disclosure.
FIG. 6 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
Referring to FIG. 6, the optical cover 12 includes a through hole at the center thereof. The transparent cover 13 can pass through the through hole of the optical cover 12 to extern outside of the optical cover 12.
The through hole of the optical cover 12 is disposed at the center of the optical cover 12, the transparent cover 13 can also be correspondingly disposed at the  center of the optical cover 12. The brightness sensing circuit 22 and the event sensing circuit 21 can be disposed at positions what are inside the transparent cover 13 and close to or at the center of the optical cover 12. In contrast, the brightness sensing circuit or the event sensing circuit of conventional sensing light bulb is usually disposed at edges of the sensing light bulb, and the light sensed by the conventional sensing light bulb is ambient brightness at the side of the light bulb. Whereas, the sensing light bulb consistent with the present disclosure can sense ambient brightness around the center of the light bulb, resulting in a more sensitive and accurate detection.
FIG. 7 is a structural diagram of a sensing light bulb according to some other embodiments of the present disclosure.
Referring to FIG. 7, the transparent cover 13 further includes fasteners 131, and the first carrier 14 includes slots 141 having matching shapes with the fasteners 131. The fasteners 131 can be pins, buckles, etc., and a shape of a fastener 131 can be a hook or another shape. For example, each of the fasteners 131 may have a “L” shape, and each of the slots may have a “L” shape. The “L” shape may be shape similar to letter “L” but not necessarily the same as the letter “L” . Each of the fasteners 131 may have two arms, an angle between the two arms may be 90 degree or another degree. Similarly, each of the slots may include a bottom wall and side walls, angles between the bottom wall and the side walls may be 90 degree or other degrees. The fasteners 131 may have the same or different shapes with each other. The slots may have the same or differ shapes with each other. The transparent cover 13 can be mounted to the first carrier 14 by engaging the fasteners 131 to the slots 141. For example, the fasteners 131 can be respectively aligned with the slots 141. After the fasteners 131 are aligned with the slots 141, the fasteners can be respectively inserted into the slots 141. As such, the transparent cover 13 can be fixedly mounted to the first carrier 14. The transparent cover 13 can also be dissembled from the first carrier 14 easily (e.g., without removing the optical cover 12 from the light bulb) to facilitate replacement of elements accommodated by the chamber formed by the transparent cover 13 and the first carrier 14. For example, referring to FIG. 7, when the fasteners 131 are inserted  in the slots 141, the fasteners 131 can be easily removed from the slots 141 by pressing one or more of the fasteners 131 along a centripetal direction. Methods to insert the fasteners 131 into the slots 141 and methods to remove the fasteners 131 from the slots 141 are not limited by the present disclosure, and can be determined according to shapes, mounting mechanisms, etc., of the fasteners 131 and the slots 141.
Directions above are described based on a vertical axis of the light bulb where the lamp head 17 is located at a lowest point on the axis and the optical cover 12 and/or the transparent cover 13 is located at a highest point on the axis. A top surface refers to a surface facing away from the lamp head 17 (facing toward the optical cover 12) , and a bottom surface refers to a surface facing toward the lamp head (facing away from the optical cover 12) .
Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than limiting the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: it is possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all the technical features; however, these modifications or replacements do not deviate the scope of the present disclosure.

Claims (13)

  1. A sensing light bulb, comprising:
    a light-emitting element configured to emit light;
    a sensing element configured to generate a trigger signal based on collected sensor data;
    a control element configured to send a control signal to a light-emitting driving element according to the trigger signal;
    the light-emitting driving element configured to drive the light-emitting element to emit light in response to the control signal;
    a casing structure, configured to accommodate the light-emitting element, the sensing element, the control element, the light-emitting driving element;
    an optical cover disposed at a first open end of the casing structure, the first open end being an opening of the casing structure on a light-emitting path of the light bulb;
    a first carrier accommodated by the casing structure and having a plate structure including a top surface facing toward the first open end of the casing structure and a bottom surface facing away from the first open end of the casing structure; and
    a transparent cover disposed on the top surface of the first carrier, wherein a chamber is formed between the transparent cover and the first carrier, and the sensing element is disposed on the top surface of the first carrier and enclosed by the chamber.
  2. The sensing light bulb according to claim 1, wherein:
    the sensing element comprises at least one of:
    an event sensing circuit, configured to detect whether a trigger event occurs within a sensing region and, when the trigger event occurs in the sensing region, generate and send a first trigger signal to the control element; or
    a brightness sensing circuit, configured to detect a brightness of the sensing region, and when the brightness is below the threshold value, generate and send a second trigger signal to the control element; and
    the control element is further configured to send the control signal to the  light-emitting driving element according to at least one of the first trigger signal or the second trigger signal.
  3. The sensing light bulb according to claim 2, wherein:
    the control element is configured to send the control signal to the light-emitting driving element in response to receiving both the first trigger signal and the second trigger signal.
  4. The sensing light bulb according to claim 1, further comprising: a second carrier disposed in the casing structure and having a plate structure including a top surface and a bottom surface, wherein:
    the bottom surface of the second carrier faces away from the first open end of the casing structure;
    the first carrier is disposed on the top surface of the second carrier; and
    the light-emitting element is disposed on the top surface of the second carrier and arranged around an outer circumference of the first carrier.
  5. The sensing light bulb according to claim 4, further comprising: a third carrier disposed in the casing structure, wherein:
    the control element and the light-emitting driving element are disposed on the third carrier;
    the third carrier is connected to the second carrier by insertion at the bottom surface of the second carrier,
    the third carrier, the second carrier, and the first carrier are sequentially disposed in the casing structure.
  6. The sensing light bulb according to claim 5, wherein the second carrier includes a center hole at a center of the second carrier, and the third carrier is configured to be inserted into the center hole of the second carrier.
  7. The sensing light bulb according to claim 6, wherein:
    the sensing element on the first carrier is electrically connected to the control element on the third carrier through a first connection line; and
    the light-emitting element on the second carrier is electrically connected to the light-emitting driving element on the third carrier through a second connection line.
  8. The sensing light bulb of claim 4, further comprising:
    a delay setting circuit disposed in the casing structure and connected to the control element; and
    a setting element disposed on an outer surface of the casing structure,
    wherein:
    the delay setting circuit is configured to send a delay electrical signal to the control element, the delay electrical signal being determined according to a setting operation with respect to the setting element; and
    the control element is further configured to delay the sending of the control signal to the light-emitting driving element for a duration of time according to a parameter value of the delay electrical signal.
  9. The sensing light bulb according to claim 8, wherein:
    the delay setting circuit comprises a rheostat, a first terminal of the rheostat being grounded, and a second terminal of the rheostat being connected to an input terminal of the control element;
    the parameter value of the delay electrical signal is determined according to a resistance of the rheostat; and
    the resistance of the rheostat is determined according to the setting operation.
  10. The sensing light bulb according to claim 1, further comprising: a power supply element disposed in the casing structure, wherein:
    the power supply element is respectively connected to the sensing element, and the control element, and the light-emitting driving element;
    the power supply element is configured to supply electrical power from an external power supply to the sensing element, the control element, and the light-emitting driving element.
  11. The sensing light bulb according to claim 2, wherein the event sensing circuit comprises at least one of: a passive infrared sensor, a microwave sensor, or a sound sensor.
  12. The sensing light bulb according to claim 9, wherein a center of the optical cover includes a through hole, and the transparent cover passes through the through hole to extend outward from the optical cover.
  13. The sensing light bulb according to claim 1, wherein:
    the transparent cover includes a plurality of fasteners;
    the first carrier includes a plurality of slots having matching shapes with the plurality of fasteners; and
    the transparent cover is mounted to the first carrier by connecting the plurality of fasteners to the plurality of slots.
PCT/CN2018/105657 2017-09-14 2018-09-14 Sensing light bulb WO2019052528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710827017.8A CN107461622B (en) 2017-09-14 2017-09-14 Induction type bulb
CN201710827017.8 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019052528A1 true WO2019052528A1 (en) 2019-03-21

Family

ID=60551536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105657 WO2019052528A1 (en) 2017-09-14 2018-09-14 Sensing light bulb

Country Status (2)

Country Link
CN (1) CN107461622B (en)
WO (1) WO2019052528A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333358B (en) * 2017-08-10 2023-09-22 浙江生辉照明有限公司 Induction type bulb
CN107461622B (en) * 2017-09-14 2023-12-12 浙江生辉照明有限公司 Induction type bulb

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2881321Y (en) * 2005-09-09 2007-03-21 张宏伟 Induction type LED lamp
CN102506312A (en) * 2011-09-30 2012-06-20 宁波市柯玛士太阳能科技有限公司 Induction lamp
CN106594538A (en) * 2016-12-23 2017-04-26 浙江生辉照明有限公司 Induction lamp and system for preventing sensor module from being mistakenly triggered
CN206429906U (en) * 2017-02-07 2017-08-22 王秀兰 A kind of intelligent-induction lamp
CN107461622A (en) * 2017-09-14 2017-12-12 浙江生辉照明有限公司 induction type bulb
CN207298454U (en) * 2017-09-14 2018-05-01 浙江生辉照明有限公司 Induction type light bulb

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2718939Y (en) * 2004-07-28 2005-08-17 长沙东特科技有限公司 Acousto-optic control human body inductive lamp
US9794990B2 (en) * 2014-09-28 2017-10-17 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp with improved compatibility with an electrical ballast
CN201884990U (en) * 2010-10-27 2011-06-29 漳州灿坤实业有限公司 LED (light-emitting diode) lamp utilizing switch to adjust light
CN202026287U (en) * 2011-02-25 2011-11-02 浙江丽得电器有限公司 Pyroelectric human-body-induction delay switch
EP3243195A4 (en) * 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
CN204799422U (en) * 2015-07-06 2015-11-25 北京五源环保技术有限公司 High -voltage pulse power dust collector
CN106358342B (en) * 2015-07-22 2020-04-03 上海芯迈科技有限公司 Dimming drive circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2881321Y (en) * 2005-09-09 2007-03-21 张宏伟 Induction type LED lamp
CN102506312A (en) * 2011-09-30 2012-06-20 宁波市柯玛士太阳能科技有限公司 Induction lamp
CN106594538A (en) * 2016-12-23 2017-04-26 浙江生辉照明有限公司 Induction lamp and system for preventing sensor module from being mistakenly triggered
CN206429906U (en) * 2017-02-07 2017-08-22 王秀兰 A kind of intelligent-induction lamp
CN107461622A (en) * 2017-09-14 2017-12-12 浙江生辉照明有限公司 induction type bulb
CN207298454U (en) * 2017-09-14 2018-05-01 浙江生辉照明有限公司 Induction type light bulb

Also Published As

Publication number Publication date
CN107461622B (en) 2023-12-12
CN107461622A (en) 2017-12-12

Similar Documents

Publication Publication Date Title
US20190295386A1 (en) Intelligent signage
US20220165515A1 (en) Keypad Having Illuminated Buttons
US9860954B1 (en) Automatic sensing system and automatic sensing control method for LED lighting
US20120223646A1 (en) Motion activated off grid led light
US9046230B2 (en) Modular flashlight system
US9717130B2 (en) Control device having an integral reflecting structure for a sensing circuit
EP3222117B1 (en) Lighting control apparatus and method
EP1658758A1 (en) Energy saving lamp with sensor
US10082283B2 (en) Apparatus and method for ambient light measurement by a solid state light bulb
US9433065B2 (en) Lighting system including time of flight ranging system
US20160323956A1 (en) Apparatus and method for ambient light measurement by a solid state light bulb
EP2706822A2 (en) Energy-saving illumination device detecting proximity of human body
WO2019052528A1 (en) Sensing light bulb
JP6601769B2 (en) LED lighting circuit and lighting apparatus provided with the same
US9615424B2 (en) Light source device, lighting device, and luminaire
US9226374B2 (en) Illumination light source
JP6761248B2 (en) Lighting device
WO2019029707A1 (en) Motion sensor light bulb
TW201436640A (en) Switch system and wall switch used for the same
EP3607347B1 (en) Optical wake-up detection for a user interface device
CN216944099U (en) Storage box
KR20210115541A (en) Light bulb having function of sensing human body
CN107846750B (en) LED light emitting device and light emitting apparatus having the same
CN211531387U (en) Automatic control system for indoor light
KR101920215B1 (en) Device controller using wall switch and drive voltage supply circuit of device contoroller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857335

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18857335

Country of ref document: EP

Kind code of ref document: A1