WO2019050290A1 - 인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법 - Google Patents

인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법 Download PDF

Info

Publication number
WO2019050290A1
WO2019050290A1 PCT/KR2018/010411 KR2018010411W WO2019050290A1 WO 2019050290 A1 WO2019050290 A1 WO 2019050290A1 KR 2018010411 W KR2018010411 W KR 2018010411W WO 2019050290 A1 WO2019050290 A1 WO 2019050290A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sense
signal
circuit
output signal
Prior art date
Application number
PCT/KR2018/010411
Other languages
English (en)
French (fr)
Inventor
조규진
샙코타아시시
손준봉
정연수
박혜진
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2019050290A1 publication Critical patent/WO2019050290A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Definitions

  • the present invention relates to an artificial neural circuit, an artificial neural system, and an artificial neural circuit manufacturing method.
  • the present invention receives sensing signals obtained from sensing pixels composed of a plurality of thin film transistors and resistors formed on a flexible substrate and provides a serialized signal corresponding to the sensing signals as a sensing output signal on one signal line And an artificial neural circuit and an artificial neural system capable of easily constructing a sensed signal transmission path.
  • the present invention provides an artificial neural network and an artificial neural system that store acquisition positions of sensing signals and acquisition time information of sensing signals even when sensing signals obtained from a plurality of sensing pixels are transmitted in series.
  • the present invention provides artificial neural networks and artificial neural systems optimized for the production of artificial skins by forming a plurality of thin film transistors, resistors and signal lines by mixing a printed electronic system and a silicon based technology on a flexible substrate.
  • the artificial neural network includes a thin film transistor having a plurality of thin film transistors formed on a flexible substrate by at least one of roll to roll gravure, offset, gravure offset, reverse offset, And a plurality of sense resistors connected to the thin film transistor array, a plurality of sense amplifiers for receiving the plurality of sense signals sensed from the sense resistors, and for outputting a clock signal to the sense amplifiers corresponding to the signals obtained by serializing the plurality of sense signals And a transfer unit for transferring the sensing output signal.
  • the converting unit may include a data collecting circuit for acquiring the plurality of sensing signals and providing the plurality of sensing signals as a plurality of sensing input voltages, and a plurality of inverters sequentially connected to receive the sensing input voltages as input signals, A serial conversion circuit for providing the clock signal as the serialized sense output signal, and a clock generation circuit for providing the clock signal.
  • the sequentially connected inverters include a distribution resistor coupled in series, and a switching transistor that is turned on or off in response to the sense input voltage, each of the plurality of inverters comprises a previous inverter And the best-end inverter is connected between the clock signal and the ground voltage, and the detection output signal from the node between the distribution resistor of the most-end inverter and the switching transistor is connected to the node between the node and the ground voltage, Can be provided.
  • the switching transistor may comprise a PMOS or NMOS transistor.
  • the sequentially connected inverters include CMOS transistors each of which is composed of NMOS and PMOS transistors connected in series and each of which is turned on or off in response to the sense input voltage, Each of which is connected between a node between the NMOS and PMOS transistors of the previous inverter and a ground voltage, the best-end inverter being connected between the clock signal and the ground voltage, and a node between the NMOS and PMOS transistors of the most- The sensing output signal may be provided.
  • the transfer unit may include a signal line formed on the flexible substrate by a silicon-based technology or a printing technology.
  • the artificial nervous system receives a plurality of sensing signals obtained from a sensing unit formed of a sensing transistor composed of a thin film transistor and a sensing resistor matrix formed on a flexible substrate, An artificial neural circuit for converting the sensed output signal into a sensed output signal corresponding to the serialized signal and transmitting the sensed output signal to a single signal line, And a central processing unit for deriving time.
  • the artificial neural network includes a conversion unit for receiving the plurality of sensing signals from the sensing pixels and providing the clock signal as a sensing output signal corresponding to a signal obtained by serializing the plurality of sensing signals, A data acquisition circuit for acquiring the plurality of sense signals and providing the plurality of sense signals as a plurality of input sense voltages, a serial conversion circuit including a plurality of sequentially connected inverters for receiving the input sense voltages and providing a clock signal as a serial sense output signal, Circuit, and a clock generation circuit that provides the clock signal.
  • the central processing unit can determine a position where the sensing signal is obtained based on a threshold voltage of transistors constituting the plurality of inverters, and an attenuation rate of the clock signal.
  • the central processing unit can continuously improve the determination accuracy of the sensing signal by receiving the sensing output signal and performing the machine learning.
  • an artificial neural circuit is formed on a flexible substrate which can be deformed in various forms through printing electronic technology and silicon-based technology, so that an artificial neural network capable of effectively providing an artificial neural device suitable for an artificial arm, And an artificial nerve system.
  • the sensing signals obtained from a plurality of sensing pixels arranged in a matrix form are serialized and transmitted, so that a configuration for transmitting a sensing signal can be implemented simply.
  • An artificial neural circuit and an artificial neural system capable of deriving position and detection time information can be provided.
  • FIG. 1 is a conceptual diagram of a nervous system.
  • FIG. 2 is a block diagram illustrating an artificial neural system according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a sensing unit according to an embodiment of the present invention.
  • FIG 4 is a graph showing a case where the sense resistors included in the sensing pixels SP output different currents depending on the pressure according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a serial conversion circuit according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a sense output signal Vout according to the value of the sense input voltages Vin provided in the serial conversion circuit composed of four inverters.
  • Figs. 7 and 8 are circuit diagrams showing that the serial conversion circuit of Fig. 5 constitutes a different voltage distribution circuit according to the sense input voltage Vin.
  • 9 to 13 are views showing a method of manufacturing a sensing unit according to an embodiment of the present invention.
  • Fig. 1 is a block diagram of a computer system according to an embodiment of the present invention. Fig. For convenience of explanation, the apparatus and method are described together when necessary.
  • the nerve cells included in the nervous system include dendrites for detecting stimuli, cell bodies for converting the stimuli sensed by the dendrites into signals differentiated according to the site and intensity, and signals transformed from the cell body into one path Lt; / RTI >
  • Signals from exons can be converted to chemical signals through synapses, and stimuli collected from many neurons can be delivered to the brain.
  • the entire path through which signals sensed from nerve cells are transmitted to the brain is referred to as a nerve system.
  • the present invention relates to an artificial dendrite and an artificial cell body, which mimic a human nervous system,
  • An artificial neural system including the implemented artificial neural circuit and a central processing unit receiving a signal from the artificial neural network, and a method of manufacturing the artificial neural system.
  • FIG. 2 is a block diagram illustrating an artificial neural system according to an embodiment of the present invention.
  • the artificial nerve system 1 includes an artificial neural circuit 10 including a sensing unit 100, a conversion unit 200, and a transmission unit 300, and a central processing unit 20 can do.
  • the sensing unit 100 of the artificial neural circuit 10 corresponds to an artificial dendrite and the converting unit 200 may correspond to an artificial nerve cell body or artificial soma. ≪ / RTI >
  • the sensing unit 100 may be implemented as a sensor array in which one sensing pixel composed of a thin film transistor (TFT) capable of sensing a stimulus and a resistance is formed in the form of N x N (N is an integer of 1 or more) matrix have.
  • TFT thin film transistor
  • N is an integer of 1 or more matrix
  • the sensing unit 100 is implemented as a thin film transistor on a flexible substrate and is easily deformed.
  • the sensing unit 100 according to the embodiment of the present invention may be configured such that a plurality of sensing pixels are configured in a matrix, Can be distinguished. The specific configuration of the sensing unit 100 will be described later with reference to FIG.
  • the sensing signal received from the sensing unit 100 may be provided to the converting unit 200.
  • the converting unit 200 may include a data collecting circuit 210, a serial converting circuit 220, and a clock generating circuit 230.
  • the converting unit 200 receives a plurality of sensing signals from the sensing unit 100, serializes the sensing signals into a sensing output signal, and provides the sensing signals to the transmitting unit 300.
  • the conversion unit 200 provides a clock signal in response to a plurality of sense signals, as a sense output signal corresponding to a signal obtained by serializing a plurality of sense signals.
  • a plurality of sensing signals collected from the sensing unit 100 may be transmitted as a current value.
  • the data collecting circuit 210 converts the current values transmitted from the sensing unit 100 into voltage values, ).
  • the signals provided from the respective sensors in the form of a matrix of the sensing unit 100 may be transmitted to the data collecting circuit 210 in parallel and the data collecting circuit 210 may convert the parallel current values into a parallel voltage value And provides it to the serial conversion circuit 220 as a sense input voltage.
  • the data acquisition circuit 210 may be implemented as a DAQ (Data Acquisition) circuit.
  • the data acquisition circuit 210 may include at least one of a driving element, a signal conditioning element, and an analog-to-digital conversion element.
  • the driving element may receive a sensing signal by providing a driving signal to each of the sensing pixels constituting the matrix of the sensing unit 100.
  • the driving element may comprise a word line driving circuit and a bit line driving circuit.
  • the driving element may not be provided in the conversion unit 200 but may be provided in the sensing unit 100.
  • the signal conditioning element may include circuits for performing amplification, attenuation, filtering, and the like to remove noise of the signal collected from the sensing unit 100.
  • the analog-to-digital conversion (ADC) Can be converted into a digital format.
  • the serial conversion circuit 220 may simultaneously receive the sensing input voltages supplied from the data collecting circuit 210, that is, a plurality of sensing input voltages, and serialize the sensed input voltages to the transmitting unit 300. According to an embodiment, the serial conversion circuit 220 operates in synchronization with the clock signal provided by the clock generation circuit 230 or in response to the sense input voltage, converts the clock signal into a sense output signal corresponding to the serialized value of the sense input voltage And may be provided to the delivery unit 300.
  • the concrete configuration and operation of the serial conversion circuit 220 will be described in detail with reference to FIG.
  • the clock generation circuit 230 may include an oscillation circuit and may provide a clock signal between 0.1 Hz and 2 GHz to the serial conversion circuit 220.
  • the clock signal generated by the clock generation circuit 230 may be provided to the data collection circuit 210 according to the embodiment.
  • the clock generation circuit 230 may include a ring oscillator.
  • the sensed output signal serialized in the serial conversion circuit 220 may be provided to the central processing unit 20 via the transmission unit 300.
  • the central processing unit 20 can receive a serialized sensing output signal from a plurality of artificial neural circuits 10, and a plurality of artificial neural circuits 10 constitute a neural network, Or may be provided to the central processing unit 20.
  • the artificial neural circuit 10 may further include a logic circuit (not shown) for performing a logic operation on the sense output signal serialized in the serial conversion circuit 220 according to the embodiment.
  • the logic circuit includes logic gates such as NAND, NOR, and OR gates to perform logical operations to notify that a corresponding stimulus is detected when any of the received output signals is sensed, (20).
  • the sensing unit 100 includes a gas sensor that senses gas, it may preferentially communicate with other sensing signals through logical operation when sensing CO gas. This logical operation may be performed in one artificial neural circuit 10 or may be performed on the sense output signals provided from a plurality of artificial neural circuits.
  • the number and the number of pixels of the matrix of the sensing unit 100 that determines the area sensed by one artificial neural circuit 10 and the artificial neural networks 10 constitute a neural network, May be different depending on various implementations.
  • FIG. 3 is a circuit diagram showing a sensing unit according to an embodiment of the present invention.
  • the sensing unit 100 may include a plurality of sensing pixels SP1, SP2, ..., SP15, and SP16.
  • One sensing pixel SP may comprise a thin film transistor and a resistor.
  • the configuration of the sensing pixel will be described with reference to the first sensing pixel SP1 connected to the first word line WL1 and the first bit line BL1.
  • the first thin film transistor TR11 included in the first sensing pixel SP1 may be connected to the first bit line BL1, the first word line WL1, and the first sensing resistor R11.
  • the gate of the first thin film transistor TR11 is connected to the first word line WL1 to receive the driving signal, and the drain thereof is connected to the first sensing resistor R11 to receive a different current value can do.
  • the current value thus received may be provided to the data collecting circuit 210 via the first bit line BL1 connected to the source.
  • FIG. 3 shows the sensing unit 100 including 16 sensing pixels SP1, ..., SP16 in the form of a 4X4 matrix
  • the sensing unit 100 is not limited to the above-
  • the shape of the matrix constituting the sensing unit 100 may be different depending on the width of the sensing area of the sensing unit 100 and the sensitivity of the sensing unit 100.
  • the sensing pixels SP1, ..., SP16 can be variously manufactured to have a size of 1 um 2 to 1 cm 2 , so that the stimulation can be detected even if only the fine position is stimulated.
  • the sensing resistor may comprise a variable resistor having a different resistance value depending on pressure, temperature, and humidity, and may be composed of a pressure-sensitive rubber, a temperature-responsive film, a humidity-responsive film, or the like. As will be described below, the resistor can be manufactured in such a manner that after the thin film transistor is manufactured, the drain electrode of the thin film transistor is exposed to laminate the rubber sheet or the film.
  • the current value delivered from each of the sensing pixels of the sensing unit 100 may be provided to the data acquisition circuit 210 as a sensing signal.
  • a plurality of sense signals may be communicated to the data acquisition circuit 210 at one time in response to a word line drive signal delivered to the pixels of the sensing portion 100 from the data acquisition circuit 210, The circuit 210 identifies the bit lines to which the driving signal and the sensing signals are transmitted to determine which sensing pixel is transmitted from which sensing pixel.
  • N sense signals may be received from the N x N matrix according to an embodiment and the data acquisition circuit 210 may provide the N sense input voltages to the serial conversion circuit 220.
  • the data collecting circuit 210 provides the central processing unit 20 with information on the driving signal and the collected sensing signal so that the central processing unit 20 can detect the sensing unit 100 based on the sensing output signal, So that the acquisition position and acquisition time of the signal can be determined.
  • the sense input voltage converted from the data acquisition circuit 210 to a voltage value may be provided to the serial conversion circuit 220.
  • the serial conversion circuit 220 can be driven based on the clock signal CLK provided from the clock generation circuit 230.
  • the central processing unit 20 receiving the serialized sensing output signal can determine the sensing output signal according to the sensing signal generated at a certain time according to the clock signal CLK.
  • the current value outputted from the sensing pixel SP may be different depending on the sensing resistance.
  • 4 is a graph showing a case where the sense resistors included in the sensing pixels SP output different currents depending on the pressure according to an embodiment of the present invention.
  • the X axis is the gate-source voltage (V GS ) of the thin-film transistor constituting the sensing pixel of Fig. 3, and the Y axis is the drain-source current (I DS ).
  • V GS gate-source voltage
  • I DS drain-source current
  • the sensing signal received from the sensing unit 100 according to the embodiment may be different depending on characteristics such as the channel length, threshold voltage, etc. of the thin film transistor as well as the characteristics of the sensing resistor.
  • FIG. 5 is a circuit diagram showing a serial conversion circuit according to an embodiment of the present invention.
  • the serial conversion circuit 220 may include a plurality of inverters SDC1, SDC2, SDC3, and SDC4 that are sequentially connected to receive a sense input voltage as an input signal. 5, a resistive inverter including a resistor and a transistor will be described. However, the present invention is not limited to this.
  • the serial conversion circuit 220 includes an NMOS transistor and a PMOS transistor connected in series, A CMOS transistor inverter in which an input signal is provided and an output signal is provided between the connection nodes of the transistors may be sequentially connected.
  • the number of inverters included in the serial conversion circuit 220 is proportional to the number of sensing pixels or the number of bit lines of the sensing pixel array, and may be substantially the same according to the embodiment.
  • the sensing unit 100 is configured as an N x N matrix, if containing a N 2 of detection pixels, and the serial conversion circuit 220 may include an N-number of inverters.
  • the inverters SDC1, SDC2, SDC3 and SDC4 comprise resistors and switching transistors connected in series, and each inverter (SDC1, SDC2, SDC3, SDC4) is connected to the node between the resistance of the previous inverter and the switching transistor.
  • the inverters SDC1, SDC2, SDC3, and SDC4 of FIG. 5 are determined by turning on or off of the switching transistor by the value of the sense input voltage, so that the connection relationship of each node and the turn- Depending on whether it functions or not, a different resistor circuit is constructed.
  • the first inverter (SDC1) among the sequentially connected inverters (SDC1, SDC2, SDC3, SDC4) is connected between the clock signal (CLK) and the ground voltage.
  • the resistor circuit which is differently constructed according to the sense input voltage Vin may consequently correspond to the resistor distribution circuit of the clock signal CLK. That is, the serial conversion circuit 220 constitutes a different voltage distribution circuit in response to the sensing input voltages Vin1, Vin2, Vin3, and Vin4 transmitted from the plurality of sensing pixels to output the clock signal CLK as the sensing output signal Vout, and the sense output signal Vout has a different value depending on the sense input voltages Vin1, Vin2, Vin3, and Vin4.
  • the first inverter SDC1 may include a first switching transistor STR1 and a first distribution resistor DR1 connected between the clock signal CLK and the ground voltage GND.
  • the switching transistor STR1 is turned on or off in response to the first sense input voltage Vin1.
  • the first sensing input voltage Vin1 is greater than or equal to the threshold voltage of the first switching transistor STR1
  • the first switching transistor STR1 is turned on and the first sensing input voltage Vin1 is turned on
  • the threshold voltage of the first switching transistor STR1 is smaller than the threshold voltage of the first switching transistor STR1, the first switching transistor STR1 is turned off.
  • the threshold voltage of the switching transistors STR1, STR2, STR3 and STR4 may be lower than the threshold voltage of the switching transistors STR1, STR2, STR3 and STR4 because the manner in which the sense input voltage is delivered may differ according to the threshold voltages of the switching transistors STR1, Sensitivity to the stimulus can be increased.
  • this embodiment can be applied to the case where the switching transistors STR1, STR2, STR3 and STR4 are NMOS transistors, and the threshold voltage value for determining the sensitivity with which the sensing signal is transmitted is determined according to the configuration of the inverter in a different manner .
  • the second inverter SDC2 may include a second distribution resistor DR2 and a second switching transistor STR2 connected in series between the first node ND1 and the ground voltage GND.
  • the second switching transistor STR2 is connected to the second sense input voltage Vin2 provided from the second bit line BL2 of FIG. 3 (the position of the sense pixel may be different depending on which word line the drive signal is provided to) And may be turned off or turned off according to the control signal.
  • the second switching transistor STR2 is turned on when the second sensing input voltage Vin2 is equal to or greater than the threshold voltage of the second switching transistor STR2 and the second sensing input voltage Vin2 is applied to the second switching transistor STR2,
  • the second switching transistor STR2 is turned off when the threshold voltage of the second switching transistor STR2 is smaller than the threshold voltage of the second switching transistor STR2.
  • the third inverter SDC3 is connected to the third input terminal of the second inverter SDC2 via a distributed input voltage node connected to the so-called distributed output voltage node, i.e., a third distributed resistor DR3 and a third switching transistor STR3.
  • the third switching transistor STR3 is turned on or off in response to the third sense input voltage Vin3 so that the serial conversion circuit 220 can configure a different voltage distribution circuit.
  • the fourth inverter SDC4 may include a fourth distribution resistor DR4 and a fourth switching transistor STR4 connected between the third node ND3 and the ground voltage GND.
  • the fourth switching transistor STR4 is turned on or off in response to the fourth sensing input voltage Vin4 to transfer the sensing output signal Vout to the transmitting portion 300.
  • an inverter that is located at the end of an inverter connected in series and finally provides a sense output signal (Vout) is referred to as a most-end inverter.
  • a plurality of sense input voltages (specifically, input voltages converted into voltage values through the data acquisition circuit 210) provided from the plurality of sensing pixels are provided to the inverters of the serial conversion circuit 220, respectively.
  • the value of the clock signal CLK provided to the serial conversion circuit 220 varies in accordance with the magnitude of the sense input voltage Vin.
  • the sense output signal according to the sense input voltage may be different based on at least one of the threshold voltage of the switching transistor STR, the turn-on resistance, and the resistance value of the distribution resistor.
  • the sense output signal Vout finally provided through the inverters connected in series and in series is provided through the transfer part 300 and consequently a plurality of sense input voltages Vin are supplied through the transfer part 300 (single serial) signal.
  • FIG. 6 is a graph showing the sense output signal Vout according to the value of the sense input voltages Vin provided to the serial conversion circuit 220 composed of four inverters.
  • serial conversion circuit 220 of FIG. 5 having a different configuration according to the sense input voltage Vin is exemplarily shown in FIG. 7 and FIG. 8 as a voltage distribution circuit.
  • Fig. 7 shows a serial conversion circuit when the sensing input voltage Vin is " 0101 "
  • Fig. 8 shows a serial conversion circuit when the sensing input voltage Vin is " 1001 ".
  • the distribution resistors DR1, DR2, DR3 and DR4 have the same values as those shown in Fig. However, when the switching transistors illustrated in FIG. 5 are turned on in response to the sense input voltage, the turn-on resistance of the switching transistor is represented by the switching transistor resistance STRR.
  • the first and third switching transistors STR1 and STR3 of FIG. 5 are turned off and the second and fourth switching transistors STR2 and STR4 ) Is turned on.
  • the first distribution resistor DR1 and the second distribution resistor DR2 are connected in series through the first node ND1 and the third distribution resistor DR3 and the second switching transistor DR2 are connected in series at the second node ND2.
  • the turn-on resistors STRR2 are connected in parallel.
  • the third distribution resistor DR3 and the fourth distribution resistor DR2 are connected in series through the third node ND3 and finally the fourth switching transistor turn-on resistor STR4 and the fourth switching transistor turn- And is divided by the sense output signal Vout.
  • the first and fourth switching transistors STR1 and STR4 of FIG. 5 are turned on and the second and third switching transistors STR2 and STR3 are turned off. Accordingly, a voltage divider circuit as shown in FIG. 8 may be formed and the sensing output signal Vout may be provided to the transmitting portion 300.
  • the value of the output voltage of the clock signal (CLK) can be different according to the value of the sense input voltage (Vin), and the voltage of the output signal (Vout) through the transfer unit 300
  • the provided central processing unit 20 can determine which switching transistor is turned on.
  • the serial conversion circuit 220 operates in synchronization with the clock signal CLK provided from the clock generation circuit 230, so that it is possible to determine at what point which sense input voltage is provided.
  • the artificial neural network 10 and the artificial nervous system 1 serialize the sensing signals provided from the plurality of sensing pixels and transmit the sensed signals to the central processing unit 20 through the transmission unit 300. [ It is possible to determine from which sensing pixel the sensing signal is provided at a certain point in time.
  • the sensing signal received from the plurality of sensing pixels can be transmitted without error, and the transmitting unit 300 can be simply implemented, so that it is also suitable for configuring various neural networks.
  • 9 to 13 are views showing a method of manufacturing the sensing unit 100 according to an embodiment of the present invention.
  • a thin film transistor active matrix 810 in which a plurality of sensing pixels are formed is provided.
  • the thin film transistor active matrix 810 may be implemented in a sheet form so as to be manufactured in a block form and attached to a necessary position to monitor external stimuli.
  • the thin film transistor active matrix 810 may be fabricated through deposition and etching on a flexible substrate or a glass or rigid substrate and may be fabricated by a continuous roll-to-roll gravure, offset, gravure-offset, reverse offset, .
  • the thin film transistors can constitute the array as the conductive ink is printed on the substrate that is flexibly rolled using printing electronic technology.
  • Printed electronics have a significant advantage in improving manufacturing speeds because they can continuously produce large quantities of circuits.
  • a silicon-based chip, Technology In order to compensate for the limitations of circuit patterns and circuit complexity that can be manufactured by continuous roll-to-roll gravure, offset, gravure-offset, reverse offset or screen printing methods, a silicon-based chip, Technology, and the silicon-based technology.
  • the circuit of the high-complexity circuit such as the central processing unit 20 In the case of silicon-based technology can be manufactured. Therefore, the artificial neural network 10 and the artificial neural system 1 according to the present invention can be manufactured by mixing the printing electronic system and the silicon based technology.
  • a passivation film 820 may be formed on the thin film transistor active matrix 810.
  • the passivation film 820 may comprise a vacuum grease.
  • an insulating layer 830 may be formed on a thin film transistor active matrix 810 having a passivation film 820 formed thereon. After insulating the regions except for the drain electrode through the insulating layer 830, the passivation film 820 is removed as shown in FIG.
  • the sensitive material for sensing the stimulus is laminating on the insulating layer 830.
  • the sensitive material of the sensing sheet 840 and the drain electrode of the thin film transistor active matrix 810 are electrically connected.
  • the sensing sheet 840 may include a pressure sensor rubber sheet or a touch sensitive sheet, a temperature sensor sheet.
  • the conversion unit 200 connected to the sensing unit 100 may be formed by a silicon-based technology integrated on a printed circuit board (PCB) or a flexible printed circuit board (FPCB).
  • the sensing unit 100 may be attached to the flexible substrate through the conductive adhesive to be connected to the sensing unit 100 according to an embodiment of the present invention.
  • the silicon technology based chip is bonded to the printed circuit area of the flexible substrate after the silicon technology based chips are bonded to the printed circuit area after the solder or the conductive adhesive for roll to roll chip bonding is printed on the flexible substrate, Can be accomplished in a continuous process.
  • the transfer unit 300 may be formed using a deposition-and-etching-type silicon-based technique or a printed-electronic method on a flexible substrate on which the sensing unit 100 is formed.
  • the central processing unit 20 may be manufactured using a silicon-based technology and may be attached to the flexible substrate and connected to the transfer unit 300 like the conversion unit 200. As the central processing unit 20 continuously receives the detection output signal and performs the machine learning, the central processing unit 20 can more accurately grasp the detection position of the detection signal, the intensity of the detection signal, and the detection time of the detection signal based on the detection output signal . For example, the central processing unit 20 can determine the position where the sense signal is obtained based on the threshold voltage of the transistors constituting the plurality of inverters, and the decay rate of the clock signal.
  • the sensing signals obtained from a plurality of thin film transistors are serialized and provided through one signal line, And can be manufactured in a simple manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Neurology (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

본 발명에 의한 인공 신경 회로는, 유연 기판 상에 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 형성된 복수의 박막트랜지스터들이 매트릭스 형태로 구성된 박막트랜지스터 어레이, 및 상기 박막트랜지스터 어레이와 각각 연결된 복수의 감지 저항들로 구성된 감지부, 상기 감지 저항들로부터 감지된 복수의 감지 신호들을 수신하고, 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 제공하는 변환부, 및 상기 감지 출력 신호를 전달하는 전달부를 포함한다.

Description

인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법
본 발명은 인공 신경 회로, 인공 신경 시스템 및 인공 신경 회로 제조 방법에 관한 것이다.
인간과 유사한 역할을 수행할 수 있는 휴머노이드 로봇 개발이 선진국을 중심으로 활발히 진행되고 있다. 또한 로봇 제조 기술이 발달하면서 사고로 인하여 신체의 일부를 잃거나 선천적으로 신체 일부가 없이 태어난 사람들에게 인공으로 손, 팔, 발 및 다리와 같은 신체 기관을 제조하여 정상적인 사람과 같이 생활할 수 있도록 하는 연구가 국내외에서 활발이 진행되고 있다.
휴머노이드 로봇과 인공 신체를 제조할 때에 가장 중요한 기술 중 하나는 온도, 압력 및 습도와 같은 외부의 자극에 민감하면서도 능동적으로 반응하도록 하는 인공 신경망의 설계 및 제조 기술이다. 이를 위해 다양한 인조 스킨 형태의 센서 제조에 관한 기술이 보고되었다. 그러나 다수의 센서들로부터 감지된 신호를 로봇에서 뇌(Brain)의 역할을 하는 중앙처리장치(CPU)로 보내고, 또한 얻어진 신호에 대한 반응을 개시(initiate)하기 위한 신호를 다시 모터에 보내는 신호라인이 매우 복잡해지고, 이러한 신호 송수신의 복잡성이 현실적으로 인공신경망을 제조하는데 가장 큰 걸림돌이었다.
이를 해결하기 위해 미국 스탠포드 대학교 의대 팀에서는 신호를 빛으로 만들어 전송하는 방법을 개발하여 발표하기도 하였으나, 실제로 신경이 분포할 수 있는 다양한 위치에서 에러없이 신호를 송수신하는 것은 불가능하다.
본 발명은 유연 기판 상에 형성된 다수의 박막트랜지스터와 저항으로 구성된 감지 픽셀들로부터 획득된 감지 신호들을 수신하고, 감지 신호들에 상응하는 직렬화된 신호를 감지 출력 신호로서 하나의 신호 선으로 제공함에 따라서, 감지한 신호 전달 경로를 간단하게 구성할 수 있는 인공 신경 회로 및 인공 신경 시스템을 제공한다.
본 발명에서는 다수의 감지 픽셀들로부터 획득된 감지 신호를 직렬로 전달하는 경우에도 감지 신호의 획득 위치 및 감지 신호의 획득 시간 정보를 보관하는 인공 신경 회로 및 인공 신경 시스템을 제공한다.
본 발명은 유연 기판 상에 인쇄전자 방식 및 실리콘 기반 기술을 혼합하여 다수의 박막 트랜지스터와 저항 및 신호 선을 형성함에 따라 인공 스킨의 제조에 최적화된 인공 신경 회로 및 인공 신경 시스템을 제공한다.
본 발명의 일 실시 예에 의한 인공 신경 회로는 유연 기판 상에 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 형성된 복수의 박막트랜지스터들이 매트릭스 형태로 구성된 박막트랜지스터 어레이, 및 상기 박막트랜지스터 어레이와 연결된 복수의 감지 저항들로 구성된 감지부, 상기 감지 저항들로부터 감지된 복수의 감지 신호들을 수신하고, 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력신호로 제공하는 변환부, 및 상기 감지 출력신호를 전달하는 전달부를 포함한다.
일 실시예에 있어서, 상기 변환부는, 상기 복수의 감지 신호들을 획득하여 복수의 감지 입력전압으로 제공하는 데이터 수집회로, 상기 감지 입력전압을 각각 입력 신호로 입력받는 순차적으로 연결된 복수의 인버터들을 포함하여, 상기 클럭 신호를 상기 직렬화한 감지 출력신호로 제공하는 직렬 변환회로, 및 상기 클럭 신호를 제공하는 클럭 생성회로를 포함할 수 있다.
일 실시예에 있어서, 상기 순차적으로 연결된 복수의 인버터들은, 직렬로 연결된 분배 저항, 및 상기 감지 입력전압에 응답하여 턴 온 또는 턴 오프되는 스위칭 트랜지스터를 포함하며, 상기 복수의 인버터들 각각은 이전 인버터의 분배 저항 및 스위칭 트랜지스터 사이의 노드와 접지전압 사이에 연결되고, 최선단 인버터는 상기 클럭 신호와 접지전압 사이에 연결되고, 최말단 인버터의 분배 저항 및 스위칭 트랜지스터 사이의 노드로부터 상기 감지 출력신호가 제공될 수 있다.
일 실시예에 있어서, 상기 스위칭 트랜지스터는 PMOS 또는 NMOS 트랜지스터를 포함할 수 있다.
일 실시예에 있어서, 상기 순차적으로 연결된 복수의 인버터들은, 직렬로 연결된 NMOS 및 PMOS 트랜지스터로 구성되어 각각이 상기 감지 입력전압에 응답하여 턴 온 또는 턴 오프되는 CMOS 트랜지스터를 포함하며, 상기 복수의 인버터들 각각은, 이전 인버터의 상기 NMOS 및 PMOS 트랜지스터 사이의 노드와 접지전압 사이에 연결되고, 최선단 인버터는 상기 클럭 신호와 접지전압 사이에 연결되고, 최말단 인버터의 NMOS 및 PMOS 트랜지스터 사이의 노드로부터 상기 감지 출력신호가 제공될 수 있다.
실시예에 따라, 상기 전달부는 상기 유연 기판 상에 실리콘 기반 기술 또는 인쇄전자 기술로 형성되는 하나의 신호선을 포함할 수 있다.
본 발명의 일 실시예에 따른 인공 신경 시스템은, 박막트랜지스터 및 감지 저항으로 구성된 감지 픽셀들이 유연 기판 상에 매트릭스 형성된 감지부로부터 획득한 복수의 감지 신호들을 수신하고, 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 변환하여 하나의 신호 선으로 전달하는 인공 신경 회로, 및 상기 인공 신경 회로로부터 전달받은 감지 출력 신호에 기초하여 상기 감지 신호가 획득된 위치 및 감지 신호의 획득 시간을 도출하는 중앙처리장치를 포함한다.
일 실시예에 있어서, 상기 인공 신경 회로는, 상기 감지 픽셀들로부터 상기 복수의 감지 신호들을 수신하여 상기 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 제공하는 변환부는, 상기 복수의 감지 신호들을 획득하여 복수의 입력 감지전압으로 제공하는 데이터 수집회로, 상기 입력 감지전압을 각각 입력받아 클럭 신호를 상기 직렬화한 감지 출력신호로 제공하는 순차적으로 연결된 복수의 인버터들을 포함한 직렬 변환회로, 및 상기 클럭 신호를 제공하는 클럭 생성회로를 포함할 수 있다.
일 실시예에 있어서, 상기 중앙처리장치는, 상기 복수의 인버터들을 구성하는 트랜지스터들의 문턱 전압, 및 상기 클럭 신호의 감쇄율에 기초하여 상기 감지 신호가 획득된 위치를 판단할 수 있다.
일 실시예에 있어서, 상기 중앙처리장치는, 지속적으로 감지 출력신호를 수신하여 머신 러닝을 수행함에 따라 상기 감지 신호의 판단 정확성을 향상시킬 수 있다.
본 발명에 의하면, 다양한 형태로 변형이 가능한 유연한 기판 상에 인쇄전자 기술 및 실리콘 기반 기술을 통하여 인공 신경 회로를 형성함에 따라 인공 팔, 인공 다리 등에 적합한 인공 신경 장치를 효과적으로 제공할 수 있는 인공 신경 회로 및 인공 신경 시스템을 제공할 수 있다.
본 발명에 의하면, 매트릭스 형태로 배치된 다수의 감지 픽셀들로부터 획득된 감지 신호들을 직렬화하여 전달함에 따라 감지 신호의 전달을 위한 구성은 간단하게 구현이 가능하며, 이러한 간단한 구성을 통해서도 감지 신호의 감지 위치 및 감지 시간 정보를 도출할 수 있는 인공 신경 회로 및 인공 신경 시스템을 제공할 수 있다.
도 1은 신경 시스템을 개념적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 인공 신경 시스템을 나타내는 블록도이다.
도 3은 본 발명의 일 실시예에 따른 감지부를 나타내는 회로도이다.
도 4는 본 발명의 일 실시예에 따른 감지 픽셀(SP)에 포함된 감지 저항이 압력에 따라 상이한 전류를 출력하는 경우를 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따른 직렬 변환회로를 나타내는 회로도이다.
도 6은 4개의 인버터들로 구성된 직렬 변환회로에 제공된 감지 입력전압들(Vin)의 값에 따른 감지 출력신호(Vout)를 나타내는 그래프이다.
도 7 및 도 8은 도 5의 직렬 변환회로가 감지 입력전압(Vin)에 따라 상이한 전압 분배회로를 구성하게 되는 것을 나타낸 회로도이다.
도 9 내지 도 13은 본 발명의 일 실시예에 따른 감지부를 제조하는 방법을 나타내는 도면들이다.
이하에서 본 발명의 기술적 사상을 명확하게 하기 위하여 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략할 것이다. 도면들 중 실질적으로 동일한 기능구성을 갖는 구성요소들에 대하여는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호들 및 부호들을 부여하였다. 설명의 편의를 위하여 필요한 경우에는 장치와 방법을 함께 서술하도록 한다.
도 1은 신경 시스템을 개념적으로 나타낸 도면이다. 신경 시스템에 포함된 신경 세포는 자극을 감지하는 덴드라이트, 덴드라이트로부터 감지된 자극을 부위 및 강도에 따라 차별화된 신호로 변환하는 셀 바디(Soma), 그리고 셀 바디로부터 변환된 신호를 하나의 경로로 전달하는 엑손으로 구성될 수 있다.
엑손으로부터 전달된 신호는 시냅스를 통해 화학적 신호로 변환될 수 있으며, 이렇듯 다수의 신경 세포들로부터 수집된 자극들은 뇌로 전달될 수 있다. 본 명세서에서는 신경 세포들로부터 감지된 신호들이 뇌에 전달되는 전체 경로를 신경 시스템이라고 일컬으며, 본 발명은 인체의 신경 시스템을 모방한 인공 덴드라이트와 인공 셀 바디, 그리고 하나의 신호 선을 엑손으로 구현한 인공 신경 회로 및 이러한 인공 신경으로부터 신호를 수신한 중앙처리장치를 포함하는 인공 신경 시스템 및 이를 제조하는 방법을 제안한다.
도 2는 본 발명의 일 실시예에 따른 인공 신경 시스템을 나타내는 블록도이다.
도 2를 참조하면, 인공 신경 시스템(1)은 감지부(100), 변환부(200), 및 전달부(300)를 포함하는 인공 신경 회로(10), 및 중앙처리장치(20)를 포함할 수 있다. 인공 신경 회로(10)의 감지부(100)는 인공 덴드라이트에 상응하며, 변환부(200)는 인공 신경 세포체, 즉 인공 소마(Soma)에 상응할 수 있으며, 전달부(300)는 인공 엑손에 상응할 수 있다.
감지부(100)는 자극을 감지할 수 있는 박막 트랜지스터(thin film transistor, TFT)와 저항으로 구성된 하나의 감지 픽셀이 N x N (N은 1 이상의 정수) 매트릭스 형태로 구성된 센서 어레이로 구현될 수 있다. 실시예에 따라, 감지부(100)가 실제로 의수나 의족 등에 사용되는 인조 피부로 제조되기 위해서는 유연한 기판 상에 박막트랜지스터로 구현되어 변형이 용이하게 구현되는 것이 바람직하다. 나아가, 본 발명의 일 실시예에 따른 감지부(100)는 복수의 감지 픽셀들이 매트릭스로 구성됨에 따라서 어느 부위에서 자극이 감지되었는지, 즉 매트릭스의 몇 번째 행의 몇 번째 열에서 자극이 감지되었는지에 대해서도 판별이 가능하다. 감지부(100)의 구체적인 구성은 도 3을 참조하여 후술하도록 한다.
감지부(100)로부터 수신된 감지 신호는 변환부(200)로 제공될 수 있다. 변환부(200)는 데이터 수집회로(210), 직렬 변환회로(220), 및 클럭 생성회로(230)를 포함할 수 있다. 변환부(200)는 감지부(100)로부터 복수의 감지 신호들을 수신하고, 감지 출력 신호로 직렬화하여(serialize) 전달부(300)에 제공한다. 구체적으로, 변환부(200)는 복수의 감지 신호들에 응답하여 클럭 신호를, 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 제공한다.
감지부(100)로부터 수집된 다수의 감지 신호들을 전류 값으로 전달될 수 있는데, 데이터 수집회로(210)는 감지부(100)로부터 전달된 전류 값들을 모두 전압 값으로 변환하여 직렬 변환회로(220)로 제공한다.
실시예에 따라 감지부(100)의 매트릭스 형태의 각 센서들로부터 제공된 신호들이 병렬로 데이터 수집회로(210)로 전달될 수 있으며, 데이터 수집회로(210)는 이러한 병렬 전류 값을 병렬 전압 값으로 변환하여 감지 입력전압으로 직렬 변환회로(220)에 제공한다.
데이터 수집회로(210)는 DAQ(Data AcQuisition) 회로로 구현될 수 있다. 데이터 수집회로(210)는 구동 요소, 신호 컨디셔닝 요소, 및 아날로그-디지털 변환요소 중 적어도 하나를 포함할 수 있다. 구동 요소는 감지부(100)의 매트릭스를 구성하는 각 감지 픽셀들에 대하여 구동 신호를 제공함에 따라서 감지 신호를 전달받을 수 있다. 실시예에 따라, 구동 요소는 워드라인 구동회로 및 비트라인 구동회로를 포함할 수 있다. 실시예에 따라 구동 요소는 변환부(200)에 구비되지 않고 감지부(100)에 구비될 수도 있다.
신호 컨디셔닝 요소는 감지부(100)로부터 수집된 신호의 노이즈를 제거하기 위하여 증폭, 감쇠, 필터링 등을 수행하기 위한 회로들을 포함할 수 있으며, 아날로그-디지털 변환(ADC)요소는 감지부(100)로부터 수신한 아날로그 전류 값을 디지털 형식으로 변환할 수 있다.
직렬 변환회로(220)는 데이터 수집회로(210)로부터 제공받은 감지 입력전압을 병렬로, 즉 다수의 감지 입력전압들을 동시에 수신하여 감지 출력신호로 직렬화하여 전달부(300)에 제공할 수 있다. 실시예에 따라 직렬 변환회로(220)는 클럭 생성회로(230)에서 제공된 클럭 신호에 동기하여 동작하거나 감지 입력전압에 응답하여, 클럭 신호를 감지 입력전압이 직렬화된 값에 상응하는 감지 출력신호로 전달부(300)에 제공할 수 있다. 직렬 변환회로(220)의 구체적인 구성 및 동작에 대해서는 도 5를 참조하여 구체적으로 설명하도록 한다.
클럭 생성회로(230)는 발진회로를 포함할 수 있으며 0.1Hz 내지 2GHz 사이의 클럭 신호를 직렬 변환회로(220)에 제공할 수 있다. 실시예에 따라 클럭 생성회로(230)에서 생성된 클럭 신호는 데이터 수집회로(210)에 제공될 수도 있다. 클럭 생성회로(230)는 링 오실레이터를 포함할 수 있다.
직렬 변환회로(220)에서 직렬화된 감지 출력신호는 전달부(300)를 통해 중앙처리장치(20)에 제공될 수 있다. 중앙처리장치(20)는 다수의 인공 신경 회로(10)들로부터 직렬화된 감지 출력신호를 제공받을 수 있으며, 다수의 인공 신경 회로(10)는 신경 네트워크를 구성하여 신경 네트워크를 통해 변환된 신호로 중앙처리장치(20)에 제공될 수도 있다.
실시예에 따라 인공 신경 회로(10)는 직렬 변환회로(220)에서 직렬화된 감지 출력신호에 대하여 논리연산을 수행하는 논리회로(미도시)를 더 포함할 수 있다. 논리회로는 NAND, NOR, OR 게이트들과 같은 논리 게이트들을 포함하여, 수신된 출력신호들 중 어느 자극이 감지된 경우에는 우선적으로 해당 자극이 감지되었다는 것을 전달하기 위한 논리 연산을 수행하여 중앙처리장치(20)로 제공할 수 있다. 예를 들어, 감지부(100)가 가스를 감지하는 가스 센서를 포함하는 경우, CO 가스를 감지한 경우에 논리연산을 통해 다른 감지 신호들과의 관계에서 우선적으로 전달할 수 있을 것이다. 이러한 논리 연산은 하나의 인공 신경 회로(10) 내에서 수행되거나, 다수의 인공 신경 회로들로부터 제공된 감지 출력신호들에 대하여 수행될 수 있다.
하나의 인공 신경 회로(10)가 감지하는 영역을 결정하는 감지부(100)의 매트릭스의 크기 및 픽셀 수, 그리고 인공 신경 회로(10)들이 신경 네트워크를 구성하여 중앙처리장치(20)에 감지 신호를 전달하는 방식은 다양한 구현 방식에 따라서 상이해질 수 있다.
도 3은 본 발명의 일 실시예에 따른 감지부를 나타내는 회로도이다.
도 3을 참조하면, 감지부(100)는 다수의 감지 픽셀(SP1, SP2, ..., SP15, SP16)들로 구성될 수 있다. 하나의 감지 픽셀(SP)은 박막트랜지스터 및 저항을 포함할 수 있다.
제1 워드라인(WL1) 및 제1 비트라인(BL1)과 연결된 제1 감지 픽셀(SP1)을 기준으로 감지 픽셀의 구성을 설명하도록 한다. 제1 감지 픽셀(SP1)에 포함된 제1 박막트랜지스터(TR11)는 제1 비트라인(BL1), 제1 워드라인(WL1), 및 제1 감지 저항(R11)과 연결될 수 있다. 구체적으로 제1 박막트랜지스터(TR11)의 게이트는 제1 워드라인(WL1)과 연결되어 구동신호를 수신하고, 드레인은 제1 감지 저항(R11)과 연결되어 자극의 감지에 따라 상이한 전류 값을 수신할 수 있다. 이렇게 수신된 전류 값은 소스와 연결된 제1 비트라인(BL1)을 통하여 데이터 수집회로(210)에 제공될 수 있다.
도 3에서는 4X4 매트릭스 형태로 16개의 감지 픽셀들(SP1, ..., SP16)을 포함하는 감지부(100)를 도시하였으나, 상술한 바와 같이 감지부(100)의 구성이 이데 한정되는 것은 아니며 감지부(100)가 감지하는 영역의 너비와 감지부(100)의 민감도에 따라서 감지부(100)를 구성하는 매트릭스의 형태는 상이해질 수 있다.
실시예에 따라, 감지 픽셀들(SP1, ..., SP16)은 1um2 내지 1cm2 크기를 가지도록 다양하게 제조될 수 있어 미세한 위치만을 자극하여도 자극을 감지할 수 있다.
감지 저항은 압력, 온도, 습도에 따라 상이한 저항 값을 가지는 가변 저항을 포함할 수 있으며, 압력 반응성 고무, 온도 반응성 필름, 습도 반응성 필름 등으로 구성될 수 있다. 이하에서 설명할 것이지만, 저항은, 박막트랜지스터가 제조된 이후, 박막트랜지스터의 드레인 전극을 노출시켜 고무 시트 또는 필름을 라미네이션하는 방식으로 제조될 수 있다.
감지부(100)의 각 감지 픽셀들로부터 전달된 전류 값은 감지 신호로 데이터 수집회로(210)에 제공될 수 있다. 실시예에 따라, 데이터 수집회로(210)로부터 감지부(100)의 픽셀들에 전달된 워드라인 구동신호에 응답하여 복수의 감지 신호들이 한번에 데이터 수집회로(210)에 전달될 수 있으며, 데이터 수집회로(210)는 구동신호와 감지 신호들이 전달된 비트라인들을 식별하여 어느 감지 픽셀로부터 전달된 감지 신호인지를 판별할 수 있다. 실시예에 따라 N x N 매트릭스로부터 N개의 감지 신호들이 수신될 수 있으며, 데이터 수집회로(210)는 N개의 감지 입력전압으로 직렬 변환회로(220)에 제공할 수 있다.
실시예에 따라 데이터 수집회로(210)는 구동신호와 수집된 감지 신호의 정보를 중앙처리장치(20)에 제공하여 중앙처리장치(20)가 감지 출력신호에 기초하여 감지부(100)의 감지 신호의 획득 위치 및 획득 시간을 판단할 수 있도록 한다.
데이터 수집회로(210)로부터 전압 값으로 변환된 감지 입력전압은 직렬 변환회로(220)에 제공될 수 있다. 직렬 변환회로(220)는 클럭 생성회로(230)로부터 제공되는 클럭 신호(CLK)에 기초하여 구동될 수 있다. 예를 들어, 직렬화된 감지 출력신호를 수신한 중앙처리장치(20)는 클럭 신호(CLK)에 따라 어느 시점에 생성된 감지 신호에 따른 감지 출력신호인지를 판별할 수 있다.
감지 픽셀(SP)에서 출력되는 전류 값, 즉 감지 신호는 감지 저항에 따라 상이해질 수 있다. 도 4는 본 발명의 일 실시예에 따른 감지 픽셀(SP)에 포함된 감지 저항이 압력에 따라 상이한 전류를 출력하는 경우를 나타낸 그래프이다.
도 4에 있어서, X축은 도 3의 감지 픽셀을 구성하는 박막트랜지스터의 게이트-소스 전압(VGS)이며, Y축은 드레인-소스 전류(IDS)이다. 감지 픽셀을 구성하는 저항이 압력에 따라 상이한 저항 값을 가지므로, 상이한 압력에 따라서 게이트-소스 전압(VGS)에 따른 드레인-소스 전류(IDS) 값이 상이한 것을 확인할 수 있다.
실시예에 따라 감지부(100)로부터 수신되는 감지 신호는, 감지 저항의 특성뿐만 아니라, 박막트랜지스터의 채널 길이, 문턱 전압 등과 같은 특성에 따라서도 상이해질 수 있다.
도 5는 본 발명의 일 실시예에 따른 직렬 변환회로를 나타내는 회로도이다.
도 5를 참조하면, 직렬 변환회로(220)는 감지 입력전압을 각각 입력 신호로 입력받는 순차적으로 연결된 복수의 인버터들(SDC1, SDC2, SDC3, SDC4)로 구성될 수 있다. 도 5에서는 저항과 트랜지스터로 구성된 저항성 인버터를 도시하여 이에 기초하여 설명하는 것이지만, 본 발명은 이에 한정되지 않으며, 직렬 변환회로(220)는 NMOS 트랜지스터와 PMOS 트랜지스터가 직렬로 연결되며 각 트랜지스터의 게이트로 입력 신호가 제공되어 그 트랜지스터들의 연결 노드 사이로 출력 신호가 제공되는 CMOS 트랜지스터 인버터가 순차적으로 연결되어 구현될 수도 있다.
직렬 변환회로(220)에 포함된 인버터들의 수는 감지 픽셀의 수 또는 감지 픽셀 어레이의 비트라인의 수와 비례하며, 실시예에 따라 실질적으로 동일할 수 있다. 예를 들어, 감지부(100)가 N x N 매트릭스로 구성되어 N2개의 감지 픽셀을 포함하는 경우, 직렬 변환회로(220)는 N개의 인버터들을 포함할 수 있다.
도 5에서는 도 3에 도시한 바와 같이 16개의 감지 픽셀들의 4개의 비트라인들(BL1, BL2, BL3, BL4)로부터 제공된 감지 신호가 변환된 4개의 감지 입력전압(Vin1, Vin2, Vin3, Vin4)을 수신한 직렬 변환회로(220)를 도시하였으며 이에 기초로 하여 설명한다.
인버터들(SDC1, SDC2, SDC3, SDC4)은 직렬로 연결된 저항과 스위칭 트랜지스터를 포함하며, 각 인버터들(SDC1, SDC2, SDC3, SDC4)은 이전 인버터의 저항과 스위칭 트랜지스터 사이의 노드와 연결된다.
도 5의 인버터들(SDC1, SDC2, SDC3, SDC4)은 감지 입력전압의 값에 의해 결과적으로 스위칭 트랜지스터의 턴 온 또는 턴 오프가 결정되어, 각 노드들의 연결 관계, 그리고 스위칭 트랜지스터가 턴 온 저항으로 기능하는지에 따라, 상이한 저항 회로를 구성하게 된다.
순차적으로 연결된 인버터들(SDC1, SDC2, SDC3, SDC4) 중 최선단 인버터, 즉 제1 인버터(SDC1)는 클럭 신호(CLK)와 접지전압 사이에 연결된다. 감지 입력전압(Vin)에 따라 상이하게 구성되는 저항 회로는 결과적으로 클럭 신호(CLK)의 저항 분배회로에 상응할 수 있다. 즉, 직렬 변환회로(220)는 복수의 감지 픽셀들로부터 전달된 감지 입력 전압들(Vin1, Vin2, Vin3, Vin4)에 응답하여 상이한 전압 분배회로를 구성하여 클럭 신호(CLK)를 감지 출력신호(Vout)로 제공하되, 감지 출력신호(Vout)는 감지 입력전압(Vin1, Vin2, Vin3, Vin4)에 따라 상이한 값을 가지게 된다.
제1 인버터(SDC1)는, 클럭 신호(CLK)와 접지전압(GND) 사이에 연결된 제1 스위칭 트랜지스터(STR1) 및 제1 분배 저항(DR1)을 포함할 수 있다. 스위칭 트랜지스터(STR1)는 제1 감지 입력전압(Vin1)에 응답하여 턴 온 또는 턴 오프된다. 제1 감지 입력전압(Vin1)이 제1 스위칭 트랜지스터(STR1)의 문턱 전압(Threshold voltage)보다 크거나 같은 경우, 제1 스위칭 트랜지스터(STR1)는 턴 온되고, 제1 감지 입력전압(Vin1)이 제1 스위칭 트랜지스터(STR1)의 문턱 전압보다 작은 경우, 제1 스위칭 트랜지스터(STR1)는 턴 오프된다.
실시예에 따라 감지 입력전압이 전달되는 방식이 스위칭 트랜지스터들(STR1, STR2, STR3, STR4)의 문턱 전압에 따라서 상이해질 수 있으므로, 스위칭 트랜지스터(STR1, STR2, STR3, STR4)의 문턱 전압이 낮을수록 자극에 대한 민감도가 높아질 수 있다. 다만, 이러한 실시예는 스위칭 트랜지스터(STR1, STR2, STR3, STR4)가 NMOS 트랜지스터인 경우에 적용될 수 있으며, 인버터의 구성에 따라서 감지 신호가 전달되는 민감도를 결정하기 위한 문턱 전압 값은 상이한 방식으로 결정될 수 있다.
마찬가지로 제2 인버터(SDC2)는 제1 노드(ND1)와 접지 전압(GND) 사이에 직렬로 연결된 제2 분배 저항(DR2)과 제2 스위칭 트랜지스터(STR2)를 포함할 수 있다. 제2 스위칭 트랜지스터(STR2)는 도 3의 제2 비트라인(BL2)으로부터 제공된(어느 워드라인에 구동신호가 제공되었는지에 따라 감지 픽셀의 위치는 상이해질 수 있음) 제2 감지 입력전압(Vin2)에 따라 턴 온 또는 턴 오프될 수 있다. 제2 감지 입력전압(Vin2)이 제2 스위칭 트랜지스터(STR2)의 문턱 전압보다 크거나 같은 경우에 제2 스위칭 트랜지스터(STR2)는 턴 온되고, 제2 감지 입력전압(Vin2)이 제2 스위칭 트랜지스터(STR2)의 문턱 전압보다 작은 경우에 제2 스위칭 트랜지스터(STR2)는 턴 오프된다.
제 3 인버터(SDC3)는 제2 인버터(SDC2)의 이른바, 분배 출력전압 노드와 연결된 분배 입력전압 노드, 즉 제2 노드(ND2)와 접지 전압(GND) 사이에 직렬로 연결된 제3 분배 저항(DR3) 및 제3 스위칭 트랜지스터(STR3)를 포함한다. 마찬가지로 제3 스위칭 트랜지스터(STR3)는 제3 감지 입력전압(Vin3)에 응답하여 턴 온 또는 턴 오프되어 직렬 변환회로(220)가 상이한 전압 분배회로를 구성할 수 있도록 한다.
제4 인버터(SDC4)는 제3 노드(ND3)와 접지 전압(GND) 사이에 연결된 제4 분배 저항(DR4) 및 제4 스위칭 트랜지스터(STR4)를 포함할 수 있다. 제4 스위칭 트랜지스터(STR4)는 제 4 감지 입력전압(Vin4)에 응답하여 턴 온 또는 턴 오프되어, 감지 출력신호(Vout)를 전달부(300)로 전달한다. 본 발명에서 순차적으로 연결된 인버터의 가장 마지막에 위치하여 최종적으로 감지 출력 신호(Vout)를 제공하는 인버터를 최말단 인버터라 일컫는다.
살펴본 바와 같이 복수의 감지 픽셀들로부터 제공된 복수의 감지 입력전압들(구체적으로 데이터 수집회로(210)를 통해 전압 값으로 변환된 입력전압들)은 직렬 변환회로(220)의 인버터에 각각 제공된다. 감지 입력전압(Vin)의 크기에 따라서 직렬 변환회로(220)에 제공되는 클럭 신호(CLK)의 값이 상이하게 변화한다. 실시예에 따라, 스위칭 트랜지스터(STR)의 문턱 전압, 턴 온 저항, 분배 저항의 저항 값 중 적어도 하나에 기초하여 감지 입력전압에 따른 감지 출력신호가 상이해질 수 있다.
순차적으로 그리고 직렬로 연결된 인버터들을 통해 최종적으로 제공되는 감지 출력신호(Vout)가 전달부(300)를 통해 제공되며, 결론적으로 복수의 감지 입력전압들(Vin)이 전달부(300)를 통해 일련(single serial)의 신호로 변환된다.
도 6은 4개의 인버터들로 구성된 직렬 변환회로(220)에 제공된 감지 입력전압들(Vin)의 값에 따른 감지 출력신호(Vout)를 나타내는 그래프이다.
도 6에서는 감지 입력전압(Vin)이 "1"인 경우 스위칭 트랜지스터(STR)의 문턱 전압보다 커 스위칭 트랜지스터(STR)가 턴 온되고, 감지 입력전압이 "0"의 값을 가지면 스위칭 트랜지스터(STR)가 턴 오프되는 경우를 나타낸다.
감지 입력전압(Vin)이 "0000"인 경우, 모든 스위칭 트랜지스터들이 턴 오프되어 클럭 신호(CLK)와 실질적으로 동일한 감지 출력신호(Vout)가 제공될 수 있으며, 감지 입력전압(Vin)이 "1111"인 경우, 모든 스위칭 트랜지스터들이 턴 온 저항으로 기능하여 가장 많은 저항성분이 전압 분배회로를 구성하게 되어 감지 출력신호(Vout)의 크기가 가장 작을 수 있다.
이해의 편의를 위하여 감지 입력전압(Vin)에 따라 상이한 구성을 가지게 되는 도 5의 직렬 변환회로(220)를 전압 분배회로로서 도 7 및 도 8에 예시적으로 나타내었다. 도 7은 감지 입력전압(Vin)이 "0101"인 경우의 직렬 변환회로를 나타낸 도면이고, 도 8은 감지 입력전압(Vin)이 "1001"인 경우의 직렬 변환회로를 나타낸 도면이다.
도 7 및 도 8에서 각 분배 저항(DR1, DR2, DR3, DR4)은 도 5에 나타낸 것과 동일한 값을 가진다. 다만 도 5에서 설명한 스위칭 트랜지스터들이 감지 입력전압에 응답하여 턴 온되었을 때는 턴 온 저항으로 회로를 구성하게 되므로, 이러한 스위칭 트랜지스터의 턴 온 저항을 스위칭 트랜지스터 저항(STRR)으로 표시하였다.
도 7에서는 감지 입력전압(Vin)이 "0101"임에 따라, 도 5의 제1 및 제3 스위칭 트랜지스터들(STR1, STR3)은 턴 오프되고, 제2 및 제4 스위칭 트랜지스터들(STR2, STR4)은 턴 온된다. 이에 따라 제1 노드(ND1)를 통해 제1 분배 저항(DR1)과 제2 분배 저항(DR2)이 직렬로 연결되고, 제2 노드(ND2)에서는 제3 분배 저항(DR3)과 제2 스위칭 트랜지스터 턴 온 저항(STRR2)이 병렬로 연결된다. 제3 노드(ND3)를 통해 제3 분배 저항(DR3)과 제4 분배 저항(DR2)이 직렬로 연결되며, 마지막으로 제4 노드(ND4)를 통해 제4 스위칭 트랜지스터 턴 온 저항(STRR4)과 감지 출력신호(Vout)로 분압된다.
도 8을 참조하면, 감지 입력전압(Vin)이 "1001"임에 따라, 도 5의 제1 및 제4 스위칭 트랜지스터들(STR1, STR4)이 턴 온되고, 제2 및 제3 스위칭 트랜지스터들(STR2, STR3)이 턴 오프된다. 이에 따라 도 8에 도시한 바와 같은 전압 분배회로가 형성되어 감지 출력신호(Vout)가 전달부(300)로 제공될 수 있다.
이와 같이 감지 입력전압(Vin)의 값에 따라서 클럭 신호(CLK)가 분배되어 출력되는 전압의 값이 상이해질 수 있으며, 전달부(300), 즉 하나의 신호선을 통해 감지 출력신호(Vout)를 제공받은 중앙처리장치(20)는 어느 스위칭 트랜지스터가 턴 온 되었는지를 파악할 수 있다. 또한, 상술한 바와 같이 직렬 변환회로(220)가 클럭 생성회로(230)로부터 제공된 클럭 신호(CLK)에 동기하여 동작함에 따라, 어느 시점에서 어떠한 감지 입력전압이 제공되었는지 판별할 수 있다.
이와 같이 본 발명의 일 실시예에 따른 인공 신경 회로(10) 및 인공 신경 시스템(1)은, 다수의 감지 픽셀들로부터 제공된 감지 신호를 직렬화하여 전달부(300)를 통해 중앙처리장치(20)로 제공하면서도 어느 감지 픽셀로부터 어느 시점에 감지 신호가 제공되었는지를 판별할 수 있다.
따라서 다수의 감지 픽셀들로부터 수신된 감지 신호를 오류 없이 전달할 수 있으며, 전달부(300)가 간단하게 구현되기 때문에 다양한 신경 네트워크를 구성하는 데에도 적합할 수 있다.
도 9 내지 도 13은 본 발명의 일 실시예에 따른 감지부(100)를 제조하는 방법을 나타내는 도면이다.
도 9를 참조하면, 복수의 감지 픽셀들이 형성된 박막트랜지스터 액티브 매트릭스(810)가 제공된다. 박막트랜지스터 액티브 매트릭스(810)는 블록 형태로 제조되어 필요한 위치에 부착되어 외부 자극을 모니터링할 수 있도록 시트(sheet) 형태로 구현될 수 있다. 박막트랜지스터 액티브 매트릭스(810)는 유연 기판이나 유리 또는 단단한 기판에 증착과 에칭을 통해 제조될 수 있으며, 유연 기판에 연속적인 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋 또는 스크린 인쇄 방식에 따라 제조될 수 있다.
박막트랜지스터 액티브 매트릭스(810)가 인쇄 방식에 따라 제조되는 경우, 인쇄전자 기술을 이용하여 유연하게 말아지는(rolling) 기판에 전도성 잉크를 인쇄함에 따라서 박막트랜지스터들이 어레이를 구성할 수 있다. 인쇄전자 방식은 대량의 회로들을 연속적으로 제조할 수 있기 때문에 제조 속도의 향상에도 상당한 이점이 있다.
연속적인 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋 또는 스크린 인쇄 방식으로 제조가 가능한 회로 패턴이나 회로 복잡도의 한계를 보완하기 위하여 실리콘 기술을 기반으로 제조된 실리콘 기술 기반의 칩을 본딩하여 인쇄전자 기술과 실리콘 기반 기술의 장점을 모두 가질 수 있도록 구성될 수도 있는데, 본 발명에 있어서 박막트랜지스터 액티브 매트릭스(810)가 인쇄전자 방식으로 제조되는 경우에도 중앙처리장치(20)와 같이 복잡도가 높은 회로의 경우에는 실리콘 기반 기술로 제조될 수 있다. 따라서 본 발명에 따른 인공 신경 회로(10)와 인공 신경 시스템(1)은 인쇄전자 방식과 실리콘 기반 기술을 혼합하여 제조될 수 있다.
박막트랜지스터 액티브 매트릭스(810)를 구성하는 복수의 감지 픽셀들을 구성하는 박막트랜지스터의 드레인 전극을 실링(sealing)하는 패시베이션을 수행한다. 도 10을 참조하면, 박막트랜지스터 액티브 매트릭스(810) 상에 패시베이션 막(820)을 형성할 수 있다. 실시예에 따라 패시베이션 막(820)은 진공 구리스(vacuum grease)를 포함할 수 있다.
도 11을 참조하면, 패시베이션 막(820)이 형성된 박막트랜지스터 액티브 매트릭스(810) 상에 절연층(830)을 형성할 수 있다. 절연층(830)을 통해 드레인 전극을 제외한 영역들을 절연한 이후, 도 12와 같이 패시베이션 막(820)을 제거한다.
도 13을 참조하면, 자극 감지를 위한 감응 물질을 절연층(830) 상에 라미네이팅(laminating) 한다. 이에 따라 감지 시트(840)의 감응 물질과 박막트랜지스터 액티브 매트릭스(810)의 드레인 전극이 전기적으로 연결된다. 실시예에 따라 감지 시트(840)는 압력센서 고무 시트 또는 터치 감지 시트, 온도 센서 시트를 포함할 수 있다.
감지부(100)와 연결되는 변환부(200)는 인쇄회로기판(PCB) 또는 유연인쇄회로기판(FPCB) 기반에 집적화된 실리콘 기반의 기술로 생성될 수 있다. 실시예에 따라 변환부(200)는 도전성 점착제를 통하여 감지부(100)가 생성된 유연 기판에 점착되어 감지부(100)와 연결될 수 있다.
실리콘 기술 기반 칩이 유연 기판의 인쇄 회로 영역에 본딩되는 것은 유연 기판 위에 롤투롤 칩 본딩용 솔더 또는 도전성 접착제가 미리 칩이 본딩될 전극 위에 인쇄된 이후에 실리콘 기술 기반 칩들이 인쇄 회로 영역에 접합되는 연속적인 과정에 따라 이루어질 수 있다.
마찬가지로 전달부(300)는 감지부(100)가 형성된 유연 기판에 증착 및 에칭 방식의 실리콘 기반 기술로 형성되거나, 인쇄전자 방식으로 형성될 수 있다.
중앙처리장치(20)는 실리콘 기반 기술로 제조되어 변환부(200)와 마찬가지로 유연 기판에 점착되어 전달부(300)와 연결될 수 있다. 중앙처리장치(20)는 지속적으로 감지 출력신호를 수신하여 머신 러닝을 수행함에 따라서 감지 출력신호에 기초한 감지 신호의 감지 위치 및 감지 신호의 세기, 그리고 감지 신호의 감지 시간을 보다 정확하게 파악할 수 있을 것이다. 예를 들어, 중앙처리장치(20)는, 복수의 인버터들을 구성하는 트랜지스터들의 문턱 전압, 및 클럭 신호의 감쇄율에 기초하여 감지 신호가 획득된 위치를 판단할 수 있다.
이상에서 살펴본 것과 같이 본 발명의 일 실시 예에 따른 인경 신경 회로 및 인공 신경 시스템은 다수의 박막트랜지스터들로부터 획득한 감지 신호를, 직렬화하여 하나의 신호 선을 통해 제공함에 따라 감지 신호의 전달 정확성을 향상시킬 수 있으며 간단한 방식으로 제조가 가능하다.
지금까지 본 발명에 대하여 도면에 도시된 바람직한 실시예들을 중심으로 상세히 살펴보았다. 이러한 실시예들은 이 발명을 한정하려는 것이 아니라 예시적인 것에 불과하며, 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 진정한 기술적 보호범위는 전술한 설명이 아니라 첨부된 특허청구범위의 기술적 사상에 의해서 정해져야 할 것이다. 비록 본 명세서에 특정한 용어들이 사용되었으나 이는 단지 본 발명의 개념을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 본 발명의 각 단계는 반드시 기재된 순서대로 수행되어야 할 필요는 없으며, 병렬적, 선택적 또는 개별적으로 수행될 수 있다.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 특허청구범위에서 청구하는 본 발명의 본질적인 기술사상에서 벗어나지 않는 범위에서 다양한 변형 형태 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 균등물은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 구성요소를 포함하는 것으로 이해되어야 한다.

Claims (10)

  1. 유연 기판 상에 롤투롤 그라비아, 옵셋, 그라비아-옵셋, 리버스 옵셋, 스크린 인쇄 방식 중 적어도 하나의 방식으로 형성된 복수의 박막트랜지스터들이 매트릭스 형태로 구성된 박막트랜지스터 어레이, 및 상기 박막트랜지스터 어레이와 연결된 복수의 감지 저항들로 구성된 감지부;
    상기 감지 저항들로부터 감지된 복수의 감지 신호들을 수신하고, 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력신호로 제공하는 변환부; 및
    상기 감지 출력신호를 전달하는 전달부를 포함하는 인공 신경 회로.
  2. 제1 항에 있어서,
    상기 변환부는,
    상기 복수의 감지 신호들을 획득하여 복수의 감지 입력전압으로 제공하는 데이터 수집회로;
    상기 감지 입력전압을 각각 입력 신호로 입력받는 순차적으로 연결된 복수의 인버터들을 포함하여, 상기 클럭 신호를 상기 직렬화한 감지 출력신호로 제공하는 직렬 변환회로; 및
    상기 클럭 신호를 제공하는 클럭 생성회로를 포함하는, 인공 신경 회로.
  3. 제2 항에 있어서,
    상기 순차적으로 연결된 복수의 인버터들은,
    직렬로 연결된 분배 저항, 및 상기 감지 입력전압에 응답하여 턴 온 또는 턴 오프되는 스위칭 트랜지스터를 포함하며,
    상기 복수의 인버터들 각각은 이전 인버터의 분배 저항 및 스위칭 트랜지스터 사이의 노드와 접지전압 사이에 연결되고,
    최선단 인버터는 상기 클럭 신호와 접지전압 사이에 연결되고, 최말단 인버터의 분배 저항 및 스위칭 트랜지스터 사이의 노드로부터 상기 감지 출력신호가 제공되는, 인공 신경 회로.
  4. 제3 항에 있어서,
    상기 스위칭 트랜지스터는 PMOS 또는 NMOS 트랜지스터를 포함하는, 인공 신경 회로.
  5. 제2 항에 있어서,
    상기 순차적으로 연결된 복수의 인버터들은,
    직렬로 연결된 NMOS 및 PMOS 트랜지스터로 구성되어 각각이 상기 감지 입력전압에 응답하여 턴 온 또는 턴 오프되는 CMOS 트랜지스터를 포함하며,
    상기 복수의 인버터들 각각은, 이전 인버터의 상기 NMOS 및 PMOS 트랜지스터 사이의 노드와 접지전압 사이에 연결되고,
    최선단 인버터는 상기 클럭 신호와 접지전압 사이에 연결되고, 최말단 인버터의 NMOS 및 PMOS 트랜지스터 사이의 노드로부터 상기 감지 출력신호가 제공되는, 인공 신경 회로.
  6. 제3항 또는 제5 항에 있어서,
    상기 전달부는
    상기 유연 기판 상에 실리콘 기반 기술 또는 인쇄전자 기술로 형성되는 하나의 신호선을 포함하는, 인공 신경 회로.
  7. 박막트랜지스터 및 감지 저항으로 구성된 감지 픽셀들이 유연 기판 상에 매트릭스 형성된 감지부로부터 획득한 복수의 감지 신호들을 수신하고, 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 변환하여 하나의 신호 선으로 전달하는 인공 신경 회로; 및
    상기 인공 신경 회로로부터 전달받은 감지 출력 신호에 기초하여 상기 감지 신호가 획득된 위치 및 감지 신호의 획득 시간을 도출하는 중앙처리장치를 포함하는 인공 신경 시스템.
  8. 제7 항에 있어서,
    상기 인공 신경 회로는,
    상기 감지 픽셀들로부터 상기 복수의 감지 신호들을 수신하여 상기 클럭 신호를 상기 복수의 감지 신호들을 직렬화한 신호에 상응하는 감지 출력 신호로 제공하는 변환부는,
    상기 복수의 감지 신호들을 획득하여 복수의 입력 감지전압으로 제공하는 데이터 수집회로;
    상기 입력 감지전압을 각각 입력받아 클럭 신호를 상기 직렬화한 감지 출력신호로 제공하는 순차적으로 연결된 복수의 인버터들을 포함한 직렬 변환회로; 및
    상기 클럭 신호를 제공하는 클럭 생성회로를 포함하는 인공 신경 시스템.
  9. 제8 항에 있어서,
    상기 중앙처리장치는,
    상기 복수의 인버터들을 구성하는 트랜지스터들의 문턱 전압, 및 상기 클럭 신호의 감쇄율에 기초하여 상기 감지 신호가 획득된 위치를 판단하는, 인공 신경 시스템.
  10. 제8 항에 있어서,
    상기 중앙처리장치는,
    지속적으로 감지 출력신호를 수신하여 머신 러닝을 수행함에 따라 상기 감지 신호의 판단 정확성을 향상시키는 인공 신경 시스템.
PCT/KR2018/010411 2017-09-06 2018-09-06 인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법 WO2019050290A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0114085 2017-09-06
KR1020170114085A KR101998286B1 (ko) 2017-09-06 2017-09-06 인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019050290A1 true WO2019050290A1 (ko) 2019-03-14

Family

ID=65635021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010411 WO2019050290A1 (ko) 2017-09-06 2018-09-06 인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법

Country Status (2)

Country Link
KR (1) KR101998286B1 (ko)
WO (1) WO2019050290A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144130A (ko) * 2013-06-10 2014-12-18 삼성전자주식회사 시냅스 어레이, 펄스 쉐이퍼 회로 및 이들을 포함하는 뉴로모픽 시스템
WO2016076534A1 (ko) * 2014-11-12 2016-05-19 서울대학교산학협력단 뉴런 디바이스 및 뉴런 디바이스를 포함하는 집적회로
US20160224887A1 (en) * 2010-09-30 2016-08-04 International Business Machines Corporation Producing spike-timing dependent plasticity in a neuromorphic network utilizing phase change synaptic devices
WO2016137019A1 (ko) * 2015-02-23 2016-09-01 순천대학교 산학협력단 인쇄 박막 트랜지스터 어레이를 이용한 크로마토그래피 장치용 디지털 모니터링 센서, 이 센서를 포함하는 크로마토그래피 장치, 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법
KR20170025715A (ko) * 2015-08-31 2017-03-08 에스케이하이닉스 주식회사 시냅스 및 이를 포함하는 뉴로모픽 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026181A (ja) 2007-07-23 2009-02-05 Ryukoku Univ ニューラルネットワーク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160224887A1 (en) * 2010-09-30 2016-08-04 International Business Machines Corporation Producing spike-timing dependent plasticity in a neuromorphic network utilizing phase change synaptic devices
KR20140144130A (ko) * 2013-06-10 2014-12-18 삼성전자주식회사 시냅스 어레이, 펄스 쉐이퍼 회로 및 이들을 포함하는 뉴로모픽 시스템
WO2016076534A1 (ko) * 2014-11-12 2016-05-19 서울대학교산학협력단 뉴런 디바이스 및 뉴런 디바이스를 포함하는 집적회로
WO2016137019A1 (ko) * 2015-02-23 2016-09-01 순천대학교 산학협력단 인쇄 박막 트랜지스터 어레이를 이용한 크로마토그래피 장치용 디지털 모니터링 센서, 이 센서를 포함하는 크로마토그래피 장치, 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법
KR20170025715A (ko) * 2015-08-31 2017-03-08 에스케이하이닉스 주식회사 시냅스 및 이를 포함하는 뉴로모픽 장치

Also Published As

Publication number Publication date
KR20190027252A (ko) 2019-03-14
KR101998286B1 (ko) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2017023042A1 (ko) 딥 빌리프 네트워크를 위한 복수 레이어가 적층된 뉴런 어레이 및 뉴런 어레이 동작 방법
WO2020045739A1 (ko) 정전식 센서와 저항식 센서를 통합한 하이브리드 대면적 압력 센서
EP1411485A3 (en) System and method for monitoring a structure
CN106980297A (zh) 多通道压力数据采集电路及多通道压力数据采集系统
CN107393505A (zh) 感光电路及感光电路驱动方法、显示装置
WO2019050290A1 (ko) 인공 신경 회로, 인공 신경 시스템, 및 인공 신경 회로의 제조 방법
WO2022164078A1 (ko) 기판 효과를 제거한 OLEDoS 화소 보상 회로 및 그 제어 방법
WO2016140389A1 (ko) 사용자 모니터링을 위한 착용형 장치 및 시스템
WO2013085111A1 (ko) 다중 센서 배열을 위한 전류 검출 장치
WO2010077037A4 (ko) Cog 애플리케이션을 위한 인터페이스 시스템
CN105263404B (zh) 信号检测装置、信号检测方法、以及信号检测装置的制造方法
US12027085B2 (en) Sampling circuit and driving method thereof, pixel sampling circuit, and display apparatus
WO2018221941A2 (ko) 자체 동력 이온 채널 센서
JPH11502396A (ja) 多重化回路
WO2016076534A1 (ko) 뉴런 디바이스 및 뉴런 디바이스를 포함하는 집적회로
EP0865684B1 (en) Charge measurement circuit
WO2020130543A1 (ko) 터치 감지를 제어하는 전자 장치
WO2022164046A1 (ko) 스마트 매트
WO2022245104A1 (ko) 대면적 온도 감지 시트
WO2018194231A1 (ko) 차동 모드 변환 장치 및 차동 모드 변환 장치를 이용한 계측 장치
WO2024196057A1 (ko) 촉각 센서 모듈, 촉각 센서 모듈 학습 시스템 및 촉각 센서 시스템
Saleh et al. Low Power Electronic System for Tactile Sensory Feedback for Prosthetics
WO2019078599A1 (ko) Pcm 기반의 뉴런 네트워크 소자
WO2020242121A1 (ko) 신경망 훈련이 가능한 시냅스 모방 소자
WO2021033855A1 (ko) 아날로그 뉴런-시냅스 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854043

Country of ref document: EP

Kind code of ref document: A1