WO2019049922A1 - Base material film for flat cables and insulating film for flat cables using same - Google Patents

Base material film for flat cables and insulating film for flat cables using same Download PDF

Info

Publication number
WO2019049922A1
WO2019049922A1 PCT/JP2018/033000 JP2018033000W WO2019049922A1 WO 2019049922 A1 WO2019049922 A1 WO 2019049922A1 JP 2018033000 W JP2018033000 W JP 2018033000W WO 2019049922 A1 WO2019049922 A1 WO 2019049922A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
film
flat cables
temperature
less
Prior art date
Application number
PCT/JP2018/033000
Other languages
French (fr)
Japanese (ja)
Inventor
晴紀 安田
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2019540991A priority Critical patent/JP7116732B2/en
Publication of WO2019049922A1 publication Critical patent/WO2019049922A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables

Definitions

  • the present invention relates to a substrate film for flat cable and an insulating film for flat cable using the same.
  • Attenuation (transmission loss) of the electric signal flowing through the flat cable becomes a problem by increasing the frequency.
  • the transmission loss can be expressed by the sum of the conductor loss and the dielectric loss, and the conductor loss and the dielectric loss increase as the frequency of the electric signal increases.
  • the dielectric loss is proportional to the square root of the dielectric constant of the insulating film and the dielectric loss tangent as well as the frequency.
  • dielectric loss due to an insulating film has been dealt with, for example, by lowering the dielectric constant and dielectric loss tangent of the adhesive layer that wraps the conductor, as in Patent Document 1.
  • PET polyethylene terephthalate
  • Patent Document 2 is made of a biaxially oriented polyarylene sulfide film, and has a dielectric loss of 0 to 0.01 at a temperature of 25 ° C. and a frequency of 1 GHz, and a tensile elongation at break of 100 to 250 in the longitudinal direction and the width direction.
  • % Insulating films are disclosed.
  • Patent Document 3 further includes a foamed polyester resin insulating layer having a relative dielectric constant of 2.4 to 3.0, and a polyolefin adhesive layer having a relative dielectric constant of 2.1 to 2.7, A flat cable is disclosed in which the relative permittivity of the adhesive layer is smaller than the relative permittivity of the insulating layer.
  • An object of the present invention is to provide a flat cable substrate film for efficiently transmitting high frequency signals and an insulating film for flat cable using the same.
  • the base film for flat cables of the present invention has a relative dielectric constant of 2.5 or less, a dielectric loss tangent of 0.005 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz, and a syndiotactic polystyrene type It is characterized in that it contains a resin (SPS resin) and is biaxially oriented.
  • the relative dielectric constant and the dielectric loss tangent of the base film are determined by the cavity resonator perturbation method based on ASTMD2520.
  • the relative dielectric constant and dielectric loss tangent of the base film at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz, after leaving the base film (test piece) in an environment of a temperature of 23 ° C. and a relative humidity of 50% It is a value measured in a test environment at a temperature of 23 ( ⁇ 2) ° C. and a relative humidity of 50 ( ⁇ 5)%.
  • the substrate film for flat cables of the present invention has a relative dielectric constant of 2.5 or less and a dielectric loss tangent of 0.005 or less, the dielectric loss is small. Also, the propagation speed of the signal flowing through the flat cable conductor is inversely proportional to the square root of the relative permittivity of the insulating film, so the signal propagation speed is high. Furthermore, since the SPS resin has a low water absorption rate, it is difficult to deteriorate the quality due to humidity.
  • the base film for flat cables of the present invention preferably has a relative dielectric constant of 2.5 or less and a dielectric loss tangent of 0.005 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz.
  • the measurement was carried out within 20 minutes from the environment of temperature 60 ° C. and relative humidity 90%. Since the relative dielectric constant of the substrate film is small even in an environment with a temperature of 60 ° C and a relative humidity of 90%, the flat cable using this substrate film has a signal propagation speed even when used in a high temperature and high humidity environment You can keep In addition, dielectric loss can also be suppressed.
  • the rate of change of the relative dielectric constant of the base film at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz relative to the relative dielectric constant of the base film at a temperature of 23 ° C. and a relative humidity of 50% and a frequency of 10 GHz It is preferable when it is 0% or less.
  • the base film for flat cables of the present invention has a nominal strain at break of tensile failure of 15% or more at room temperature. In this case, if the nominal strain at break is less than 15%, the flexibility as a flat cable can not be sufficiently provided.
  • the nominal strain on tensile fracture of the film is based on JIS K 7127 (1999) when the specimen type 2 (10 mm ⁇ 100 mm strip) is pulled at a speed of 200 mm / min. Say the growth rate of
  • the base film for flat cables of this invention Comprising: That whose glass transition point is 140 degreeC or more is preferable. Since heat treatment such as heating and pressing to thermally bond adhesive layers in the process of drying the adhesive layer in the manufacturing process of the insulating film or flat cable can be performed at a relatively high temperature, the selectivity of the material of the primer layer and the adhesive layer Is high. In addition, in this specification, a glass transition point is calculated
  • TMA thermomechanical-analysis
  • the coefficient of thermal expansion is obtained by suspending the test piece (2 mm ⁇ 25 mm) so that the longitudinal direction is in the vertical direction, and applying a tensile load of 5 gf / 2 mm width to the lower end of the test piece. It is a coefficient of thermal expansion when the ambient temperature is raised from 50 ° C. to 100 ° C. at a heating rate of 10 ° C./min.
  • the insulating film for flat cables of the present invention is characterized by having the base film for flat cables of the present invention and an adhesive layer provided on the base film. Moreover, what provided the primer layer between the base film and the adhesive layer is preferable. Since the insulating film for flat cables of this invention has a low dielectric constant and dielectric loss tangent of a base film, it can construct a flat cable with small dielectric loss.
  • FIG. 1a is a side cross-sectional view showing one embodiment of the flat cable insulating film of the present invention
  • FIG. 1b is a side cross-sectional view showing another embodiment of the flat cable insulating film of the present invention.
  • the insulating film 1 for flat cables of FIG. 1a has a base film 10, a primer layer 11 provided on the base film, and an adhesive layer 12 provided on the primer layer.
  • the primer layer 11 is a resin layer which suppresses peeling of the base film 10 and the adhesive layer 12.
  • the adhesive layer 12 is a resin layer having heat sealability. The relative permittivity and dielectric loss tangent of the primer layer 11 and the adhesive layer 12 are preferably equal to or smaller than that of the base film 10.
  • the base film 10 contains syndiotactic polystyrene (hereinafter, SPS) resin and is biaxially oriented.
  • SPS syndiotactic polystyrene
  • the biaxial orientation means that polymers are oriented in two different directions in the plane direction. The two different directions are preferably oriented in two directions substantially perpendicular to each other (the film extrusion direction (MD) and the direction perpendicular to the extrusion direction (TD)). Toughness (elongation and tensile strength) can be imparted to the film by biaxial orientation.
  • Biaxial orientation is achieved by biaxially orienting the unoriented precursor film. For example, a simultaneous biaxial stretching system, a sequential biaxial stretching system, etc. are mentioned, and a simultaneous biaxial stretching system is preferable.
  • the unstretched precursor film is obtained by melting the resin material and forming it into a film.
  • an extrusion molding method, a calendar molding method, a casting method and the like can be mentioned, and the extrusion molding method is preferable.
  • the thickness of the base film 10 is 5 to 300 ⁇ m, preferably 5 to 100 ⁇ m, and particularly preferably 10 to 75 ⁇ m.
  • the base film 10 has a relative dielectric constant of 2.5 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz. Preferably, it is 2.4 or less, particularly preferably 2.3 or less.
  • the relative dielectric constant is higher than 2.5, the signal transmission speed is reduced and the dielectric loss is increased at a temperature of 23 ° C. and a relative humidity of 50%.
  • the relative dielectric constant never falls below 1.5.
  • the base film 10 has a relative dielectric constant of 2.5 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz. Preferably, it is 2.4 or less, particularly preferably 2.35 or less.
  • the relative dielectric constant is higher than 2.5, the temperature is 60 ° C., the relative humidity is 90%, the signal transmission speed is reduced, and the dielectric loss is increased.
  • the relative dielectric constant never falls below 1.5.
  • the base film absorbs the moisture although it is minute by leaving the base film in an environment of temperature 60 ° C.
  • the ratio of the base film at temperature 60 ° C., relative humidity 90% and frequency 10 GHz The dielectric constant is slightly higher than the dielectric constant of the base film at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz.
  • the rate of change is less than 3.0%. Preferably it is 2.0% or less, especially preferably 1.5% or less. And the rate of change never falls below 0.1%.
  • the rate of change of the relative dielectric constant of the base film 10 with a frequency of 10 GHz in an environment of 60 ° C. and 90% relative humidity is the base film 10 with a frequency of 10 GHz in an environment of 23 ° C. and 50% relative humidity. Because the relative dielectric constant of the flat cable is 3.0% or less, the change in the electrical characteristics of the flat cable is small even by environmental changes.
  • the dielectric loss tangent of the base film 10 is 0.005 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz. Preferably, it is 0.002 or less, particularly preferably 0.001 or less.
  • the dielectric loss tangent of the base film is larger than 0.005, the dielectric loss is large at a temperature of 23 ° C. and a relative humidity of 50%. In the case of a base film mainly composed of SPS resin, the dielectric loss tangent never falls below 0.00005.
  • the dielectric loss tangent of the base film 10 is 0.005 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz. Preferably, it is 0.002 or less, particularly preferably 0.001 or less.
  • the dielectric loss tangent of the base film is larger than 0.005, the dielectric loss becomes large at a temperature of 60 ° C. and a relative humidity of 90%.
  • the dielectric loss tangent never falls below 0.00005.
  • the base film absorbs moisture although it is minute by leaving the base film in an environment at a temperature of 60 ° C.
  • the dielectric of the base film at a temperature of 60 ° C., a relative humidity of 90% and a frequency of 10 GHz
  • the tangent is slightly higher than the dielectric loss tangent of the base film at a temperature of 23 ° C., a relative humidity of 50% and a frequency of 10 GHz.
  • the rate of change is less than 30%. It is preferably at most 25%, particularly preferably at most 20%. The rate of change never falls below 5%.
  • Nominal strain at break of base film 10 preferably 15% or more, more preferably 35% or more, particularly preferably 50% or more at room temperature, in any direction of MD direction and TD direction .
  • Nominal strain at room temperature is related to the flexibility of the flat film. If the tensile strain at nominal temperature at room temperature is too small, the film is likely to be damaged during handling and use. There is no particular problem even if the tensile strain at nominal temperature at room temperature is large, but in the case of the base film 10 containing an SPS-based resin as a main component, it usually does not exceed 200%.
  • the glass transition temperature of the base film 10 is 140 ° C. or more, preferably 180 ° C. or more, and particularly preferably 200 ° C. or more. If the glass transition point is low, the quality may be degraded in the production process of the insulating film and / or the production process of the flat cable. There is no particular problem even if the glass transition temperature is large, but in the case of the base film 10 mainly composed of SPS resin, it does not usually exceed 250 ° C.
  • the base film 10 is substantially made of SPS resin.
  • the base film 10 may contain a synthetic resin other than the SPS-based resin, as long as the base film 10 does not affect the electrical characteristics, tensile strain at break, and glass transition temperature of the base film 10.
  • the base film 10 is an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, an antistatic agent, an inorganic filler, a coloring agent, a crystal nucleating agent, a flame retardant etc. in the range which can exhibit the effect of this invention. You may contain an additive.
  • the SPS-based resin is a styrenic polymer having a syndiotactic structure.
  • the syndiotactic structure means a steric structure in which a phenyl group or a substituted phenyl group which is a side chain relative to a main chain formed from a carbon-carbon bond is alternately located in the opposite direction.
  • the degree of tacticity (tacticity) of the SPS resin can be quantified by nuclear magnetic resonance ( 13 C-NMR) with isotope carbon.
  • the tacticity of SPS-based resin measured by 13 C-NMR method is a chain consisting of several monomer units, for example, dyads in the case of two, triads in the case of three, triads in the case of five, and pentads in the case of five. It can be shown by the proportion of reverse syndiotactic configuration (racemic dyad etc.).
  • the SPS-based resin in the present invention is usually at least 75%, preferably at least 85% in racemic dyad, or at least 60%, preferably at least 75% in racemic triad, or at least 30%, preferably 50% in racemic pentad. It is a styrenic polymer having the above syndiotacticity.
  • Types of styrene-based polymers as SPS-based resins include polystyrene, poly (alkylstyrene), poly (halogenated styrene), poly (halogenated alkylstyrene), poly (alkoxystyrene), poly (vinyl benzoate), These hydrogenated polymers etc. and these mixtures, or the copolymer which has these as a main component are mentioned.
  • poly (alkylstyrenes) examples include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), poly (tertiary butylstyrene), poly (phenylstyrene), poly (vinyl naphthalene), poly (vinyl styrene) Etc.).
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene) and the like.
  • poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene) and the like.
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • the weight average molecular weight of the SPS resin is 10,000 to 3,000,000, preferably 30,000 to 1,500,000, and particularly preferably 50,000 to 500,000.
  • the melting point of the SPS resin is 200 to 320 ° C., preferably 220 to 280 ° C.
  • the melting point is a value measured according to JIS K 7121 (1987).
  • the water absorption rate of the SPS resin is 0.005% to 0.20%, preferably 0.01% to 0.20%, particularly preferably 0.05% to 0.15%.
  • the water absorption is a value measured using a 100 mm ⁇ 100 mm square test piece based on the 6.2A method of JIS K 7209 (2000).
  • the thermal expansion coefficient of the SPS resin is 80 ppm / ° C. or less, preferably 75 ppm / ° C. or less, particularly preferably 70 ppm / ° C. or less, in any of the MD direction and the TD direction.
  • the absolute value of the difference between the MD direction and the TD direction of the thermal expansion coefficient is 50 ppm / ° C. or less, preferably 40 ppm / ° C. or less, particularly preferably 20 ppm / ° C. or less.
  • the absolute value of the thermal contraction rate of the SPS resin at 150 ° C. is 4.0% or less, preferably 2.0% or less, particularly preferably 1.5% or less in any of the MD direction and the TD direction. It is.
  • the thermal contraction rate at 150 ° C is measured for 30 minutes at a temperature of 150 ° C and a length in the MD direction and TD direction after leaving a test piece of 200 mm ⁇ 200 mm for 2 hours at a temperature of 23 ° C. and a relative humidity of 50%. After leaving it to stand, it is a ratio of the amount of change with respect to the length before the test by determining the amount of change between the MD direction and the length in the TD direction after leaving for 2 hours under an environment of temperature 23 ° C. and relative humidity 50%.
  • a base film, an insulation film, and a flat cable is shown.
  • SPS resin pellets are melted, kneaded, and extrusion molded to form an unstretched precursor film.
  • This precursor film is simultaneously biaxially stretched or sequentially biaxially stretched to produce a substrate film for flat cable.
  • a relaxation heat treatment in which the heat treatment is carried out by relaxing the tension at the time of biaxial stretching treatment after biaxial stretching.
  • the stretching ratio, stretching temperature and stretching speed of biaxial stretching can be selected according to the desired coefficient of thermal expansion and tensile strain at break.
  • the temperature and relaxation rate of relaxation heat treatment can be selected according to the heat shrinkage rate.
  • the primer layer 11 and the adhesive layer 12 are laminated on one surface of the flat cable base film 10 to produce the flat cable insulating film 1 of FIG. 1 (a).
  • An electromagnetic wave shield layer or the like may be provided on the other surface of the base film 10.
  • the adhesive layer 12 may be provided directly on the base film 10 as in the insulating film 1 of FIG. 1 (b).
  • a flat cable is manufactured by preparing two insulating films 1, facing each other with an adhesive layer 12, sandwiching a conductor, bonding them while heating, and heat-sealing.
  • Example 1 SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition temperature 93 ° C, melting point 272 ° C), melt extruded at 320 ° C using an extruder with a T-die attached to the tip, and cooled to give a precursor A film (about 250 ⁇ m) was obtained.
  • This precursor film is simultaneously biaxially stretched in the MD direction and TD direction at 110 ° C. at a drawing speed of 500% / min and a draw ratio of 3.3 ⁇ 3.4 (MD ⁇ TD), and then at 230 ° C.
  • Example 2 SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition point 95 ° C, melting point 247 ° C), melt extruded at 320 ° C using an extruder equipped with a T-die at the tip, and cooled to give a precursor A film (about 500 ⁇ m) was obtained. This precursor film is simultaneously biaxially stretched in the MD direction and TD direction at 110 ° C.
  • Example 2 At a drawing speed of 500% / min and a draw ratio of 3.3 ⁇ 3.4 (MD ⁇ TD), and then at 230 ° C. and a relaxation rate A relaxation heat treatment was performed at 94% ⁇ 96% (MD ⁇ TD) to obtain a 50 ⁇ m thick base film (Example 2).
  • Comparative Example 1 A base film (made by Toray DuPont Co., Ltd., Kapton) made of a thermosetting polyimide resin having a thickness of 25 ⁇ m was prepared. Comparative Example 2 A base film (Lumirror, manufactured by Toray Industries, Inc.) made of biaxially oriented polyethylene terephthalate (hereinafter, PET) resin having a thickness of 25 ⁇ m was prepared.
  • Comparative Example 3 Melt extrusion of SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition point 95 ° C, melting point 247 ° C) at 320 ° C using an extruder with a T-die attached to the tip, cooling and unstretching A base film (about 50 ⁇ m) was obtained.
  • the base film for flat cables of the present invention exhibited excellent values both in relative dielectric constant and dielectric loss tangent at a frequency of 1 GHz under an environment of a temperature of 23 ° C. and a relative humidity of 50%.
  • Examples 1 and 2 and Comparative Examples 1 and 2 were cut into a width of 1.5 mm and a length of 60 mm, and left for 48 hours under the environment of 60 ° C. and 90% relative humidity.
  • the frequency is 10 GHz in a test environment with a temperature of 23 (. +-. 2) .degree. C. and a relative humidity of 50 (. +-. 5)% for 10 minutes to 15 minutes.
  • Each relative dielectric constant and dielectric loss tangent were measured twice each, and the average value was calculated.
  • the results of relative dielectric constant are shown in Table 2, and the results of dielectric loss tangent are shown in Table 3.
  • the dielectric loss tangents of Examples 1 and 2 were as excellent as 0.002 or less under any environment.
  • tensile fracture stress, tensile fracture nominal strain, tensile elastic modulus, coefficient of thermal expansion, and coefficient of thermal contraction show values in the MD direction and TD direction (MD / TD).
  • the tensile breaking stress and the tensile modulus of elasticity were determined under the same conditions as tensile breaking nominal strain (JIS K 7127, test piece type 2, 200 mm / min).
  • the heat shrinkage rate (200 ° C.) was determined under the same conditions as the heat shrinkage rate (150 ° C.) except that the heat shrinkage rate (200 ° C.) was left for 30 minutes.
  • Example 1 and Comparative Example 2 were cut out to have a width of 100 mm and a length of 150 mm.
  • the test pieces of the base film of Example 1 and Comparative Example 2 were left to stand for 50 hours, 100 hours, 150 hours, and 200 hours, respectively, in a suspended state under an environment of a temperature of 120 ° C. and a relative humidity of 100%. The state of each base film in each condition was confirmed. The results are shown in Table 5.
  • the base film of Comparative Example 2 was degraded by hydrolysis only when it was left under an environment of a temperature of 120 ° C. and a relative humidity of 100% for 50 hours. On the other hand, in the base film of Example 1, no change was observed in the film even after being left under the above environment for 200 hours. It turns out that the base film of Example 1 is superior to the base film of Comparative Example 2 in hydrolysis resistance.

Abstract

[Problem] To provide: a base material film for flat cables, which is used for the purpose of efficiently transmitting high frequency signals; and an insulating film for flat cables, which uses this base material film for flat cables. [Solution] A base material film (10) for flat cables has a relative dielectric constant of 2.5 or less and a dielectric loss tangent of 0.001 or less at a temperature of 23°C, at a relative humidity of 50% and at a frequency of 10GHz, while containing a syndiotactic polystyrene resin and being biaxially oriented. An insulating film (1) for flat cables is provided with: this base material film (10) for flat cables; and an adhesive layer (12) that is provided on this base material film.

Description

フラットケーブル用基材フィルムおよびそれを用いたフラットケーブル用絶縁フィルムSubstrate film for flat cable and insulating film for flat cable using the same
 本発明は、フラットケーブル用基材フィルムおよびそれを用いたフラットケーブル用絶縁フィルムに関する。 The present invention relates to a substrate film for flat cable and an insulating film for flat cable using the same.
 基材フィルムおよびその表面に設けられた接着層を備えた絶縁フィルムの間に、接着層同士が向かい合うようにして複数の導体を挟んで閉じたフラットケーブルが知られている。このフラットケーブルは、コンパクトで密な配線が可能なことから、種々の電子機器の配線に使用されている。また、電子機器の発達に伴い、フラットケーブルにも、高周波化した電気信号を伝播することが求められている。 There is known a flat cable which is closed with a plurality of conductors sandwiched between an insulating film provided with a base film and an adhesive layer provided on the surface thereof such that the adhesive layers face each other. This flat cable is used for wiring of various electronic devices because of its compactness and dense wiring. Further, with the development of electronic devices, it is also required to propagate high frequency electric signals to flat cables.
 一方、高周波化することにより、フラットケーブルを流れる電気信号の減衰(伝送損失)が問題となる。この伝送損失は、導体損失と、誘電損失との和で表すことができ、電気信号の高周波化に伴いこの導体損失と誘電損失は大きくなる。そして誘電損失は、周波数と共に、絶縁フィルムの比誘電率の平方根と、誘電正接とに比例する。
 従来、絶縁フィルムによる誘電損失は、例えば、特許文献1のように、導体を包み込む接着層の比誘電率および誘電正接を下げることにより対応してきた。そして、絶縁フィルムの基材フィルムとしては、一般的に、加工性が優れていることからポリエチレンテレフタレート(PET)が用いられていた。
 しかし、さらなる大容量化が求められる中、誘電損失をさらに抑制するべく、より比誘電率および誘電正接を低くした基材フィルムが求められている。
On the other hand, attenuation (transmission loss) of the electric signal flowing through the flat cable becomes a problem by increasing the frequency. The transmission loss can be expressed by the sum of the conductor loss and the dielectric loss, and the conductor loss and the dielectric loss increase as the frequency of the electric signal increases. And, the dielectric loss is proportional to the square root of the dielectric constant of the insulating film and the dielectric loss tangent as well as the frequency.
Heretofore, dielectric loss due to an insulating film has been dealt with, for example, by lowering the dielectric constant and dielectric loss tangent of the adhesive layer that wraps the conductor, as in Patent Document 1. And as a base film of an insulation film, generally the polyethylene terephthalate (PET) was used from the processability being excellent.
However, while further increase in capacity is required, in order to further suppress dielectric loss, a substrate film having a lower relative dielectric constant and a lower dielectric loss tangent is required.
 例えば、特許文献2には、二軸配向ポリアリーレンスルフィドフィルムからなり、温度25℃、周波数1GHzにおける誘電損失が0~0.01であり、長手方向および幅方向の引張破断伸度が100~250%である絶縁フィルムが開示されている。
 また特許文献3には、比誘電率が2.4~3.0である発泡ポリエステル系樹脂絶縁層と、比誘電率が2.1~2.7であるポリオレフィン系接着剤層とを備え、接着剤層の比誘電率が絶縁層の比誘電率より小さいフラットケーブルが開示されている。
For example, Patent Document 2 is made of a biaxially oriented polyarylene sulfide film, and has a dielectric loss of 0 to 0.01 at a temperature of 25 ° C. and a frequency of 1 GHz, and a tensile elongation at break of 100 to 250 in the longitudinal direction and the width direction. % Insulating films are disclosed.
Patent Document 3 further includes a foamed polyester resin insulating layer having a relative dielectric constant of 2.4 to 3.0, and a polyolefin adhesive layer having a relative dielectric constant of 2.1 to 2.7, A flat cable is disclosed in which the relative permittivity of the adhesive layer is smaller than the relative permittivity of the insulating layer.
特許第6064378号Patent No. 6064378 特開2007-250245号公報JP 2007-250245 A 特開2012-64478号公報JP 2012-64478 A
 本発明は、高周波信号を効率よく伝送するためのフラットケーブル用基材フィルムおよびそれを用いたフラットケーブル用絶縁フィルムを提供することを目的としている。 An object of the present invention is to provide a flat cable substrate film for efficiently transmitting high frequency signals and an insulating film for flat cable using the same.
 本発明のフラットケーブル用基材フィルムは、温度23℃、相対湿度50%、周波数10GHzにおいて、比誘電率が2.5以下であり、誘電正接が0.005以下であり、シンジオタクチックポリスチレン系樹脂(SPS系樹脂)を含有し、二軸配向されていることを特徴としている。
 なお、本明細書において、基材フィルムの比誘電率および誘電正接は、ASTMD2520に基づいた空洞共振器摂動法によって求める。また温度23℃、相対湿度50%、周波数10GHzにおける基材フィルムの比誘電率、誘電正接は、基材フィルム(試験片)を温度23℃、相対湿度50%の環境に48時間放置した後、温度23(±2)℃、相対湿度50(±5)%の試験環境下で測定した値である。
The base film for flat cables of the present invention has a relative dielectric constant of 2.5 or less, a dielectric loss tangent of 0.005 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz, and a syndiotactic polystyrene type It is characterized in that it contains a resin (SPS resin) and is biaxially oriented.
In the present specification, the relative dielectric constant and the dielectric loss tangent of the base film are determined by the cavity resonator perturbation method based on ASTMD2520. The relative dielectric constant and dielectric loss tangent of the base film at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz, after leaving the base film (test piece) in an environment of a temperature of 23 ° C. and a relative humidity of 50%, It is a value measured in a test environment at a temperature of 23 (± 2) ° C. and a relative humidity of 50 (± 5)%.
 本発明のフラットケーブル用基材フィルムは、比誘電率が2.5以下であり、誘電正接が0.005以下であるため、誘電損失が小さい。また、フラットケーブルの導体を流れる信号の伝播速度は、絶縁フィルムの比誘電率の平方根に反比例するため、信号の伝播速度が大きい。さらに、SPS系樹脂は吸水率が低いため、湿度による品質劣化がしにくい。つまり、基材フィルムに吸収された極性分子である水分子は、高周波信号によって生じる電場によって大きく動くため、絶縁フィルムの比誘電率および誘電正接に大きな影響をもたらすが、SPS系樹脂は吸水率が低いため、この基材フィルムを用いたフラットケーブルを多湿な環境で使用してもその電気特性を維持できる。さらに、耐加水分解性に優れている。 Since the substrate film for flat cables of the present invention has a relative dielectric constant of 2.5 or less and a dielectric loss tangent of 0.005 or less, the dielectric loss is small. Also, the propagation speed of the signal flowing through the flat cable conductor is inversely proportional to the square root of the relative permittivity of the insulating film, so the signal propagation speed is high. Furthermore, since the SPS resin has a low water absorption rate, it is difficult to deteriorate the quality due to humidity. In other words, water molecules, which are polar molecules absorbed by the base film, are largely moved by the electric field generated by the high frequency signal, and thus have a great influence on the dielectric constant and dielectric loss tangent of the insulating film, but SPS resin has a water absorption coefficient Because of the low property, the flat cable using this substrate film can maintain its electrical characteristics even when used in a humid environment. Furthermore, it is excellent in hydrolysis resistance.
 本発明のフラットケーブル用基材フィルムであって、温度60℃、相対湿度90%、周波数10GHzにおいて、比誘電率が2.5以下であり、誘電正接が0.005以下であるものが好ましい。なお温度60℃、相対湿度90%、周波数10GHzにおける基材フィルムの比誘電率、誘電正接は、基材フィルム(試験片)を温度60℃、相対湿度90%の環境に48時間放置した後、温度23(±2)℃、相対湿度50(±5)%の試験環境下で測定した値である。なお、測定は、温度60℃、相対湿度90%の環境から取出し、20分以内に行った。温度60℃、相対湿度90%の環境下においても基材フィルムの比誘電率は小さいため、この基材フィルムを用いたフラットケーブルは、高温高湿の環境下で使用しても信号の伝播速度を保つことができる。また、誘電損失も抑えることができる。
 特に、温度60℃、相対湿度90%、周波数10GHzにおける前記基材フィルムの比誘電率の、温度23℃、相対湿度50%、周波数10GHzにおける前記基材フィルムの比誘電率に対する変化率が3.0%以下である場合、好ましい。
The base film for flat cables of the present invention preferably has a relative dielectric constant of 2.5 or less and a dielectric loss tangent of 0.005 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz. The relative dielectric constant and dielectric loss tangent of the base film at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz after leaving the base film (test piece) in an environment of a temperature of 60 ° C. and a relative humidity of 90% for 48 hours It is a value measured in a test environment at a temperature of 23 (± 2) ° C. and a relative humidity of 50 (± 5)%. The measurement was carried out within 20 minutes from the environment of temperature 60 ° C. and relative humidity 90%. Since the relative dielectric constant of the substrate film is small even in an environment with a temperature of 60 ° C and a relative humidity of 90%, the flat cable using this substrate film has a signal propagation speed even when used in a high temperature and high humidity environment You can keep In addition, dielectric loss can also be suppressed.
In particular, the rate of change of the relative dielectric constant of the base film at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz relative to the relative dielectric constant of the base film at a temperature of 23 ° C. and a relative humidity of 50% and a frequency of 10 GHz. It is preferable when it is 0% or less.
 本発明のフラットケーブル用基材フィルムであって、引張破壊呼びひずみが、室温において、15%以上であるものが好ましい。この場合、引張破壊呼びひずみが15%より小さいと、フラットケーブルとしての可撓性を十分に与えることができない。
 なお、本明細書中において、フィルムの引張破壊呼びひずみは、JISK7127(1999)に基づいて試験片タイプ2(10mm×100mmの短冊)を200mm/分の速度で引っ張ったときにおける降伏後の破断時の伸び率をいう。
It is preferable that the base film for flat cables of the present invention has a nominal strain at break of tensile failure of 15% or more at room temperature. In this case, if the nominal strain at break is less than 15%, the flexibility as a flat cable can not be sufficiently provided.
In this specification, the nominal strain on tensile fracture of the film is based on JIS K 7127 (1999) when the specimen type 2 (10 mm × 100 mm strip) is pulled at a speed of 200 mm / min. Say the growth rate of
 本発明のフラットケーブル用基材フィルムであって、ガラス転移点が140℃以上であるものが好ましい。絶縁フィルムの製造工程における接着層の乾燥やフラットケーブルの製造過程における接着層同士を熱融着させる加熱加圧等の熱処理を比較的高い温度で行えるため、プライマ層や接着層の材料の選択性が高い。
 なお、本明細書中において、ガラス転移点は、JISK7197(1991)に基づいて得られる熱機械分析(TMA)測定結果から求める。
It is the base film for flat cables of this invention, Comprising: That whose glass transition point is 140 degreeC or more is preferable. Since heat treatment such as heating and pressing to thermally bond adhesive layers in the process of drying the adhesive layer in the manufacturing process of the insulating film or flat cable can be performed at a relatively high temperature, the selectivity of the material of the primer layer and the adhesive layer Is high.
In addition, in this specification, a glass transition point is calculated | required from the thermomechanical-analysis (TMA) measurement result obtained based on JISK7197 (1991).
 本発明のフラットケーブル用基材フィルムにおいて、熱膨張率が80ppm/℃以下であるものが好ましい。熱膨張率が80ppm/℃より大きくなると、耐熱寸法安定性が低下する。
 なお、本明細書中において、熱膨張率は、試験片(2mm×25mm)を長手方向が鉛直方向になるように吊り下げて、該試験片の下端に5gf/2mm幅の引張荷重を印加し、雰囲気温度を昇温速度10℃/分で50℃から100℃まで昇温したときの熱膨張率である。
In the base film for flat cables of the present invention, one having a thermal expansion coefficient of 80 ppm / ° C. or less is preferable. When the coefficient of thermal expansion exceeds 80 ppm / ° C., the heat resistant dimensional stability decreases.
In this specification, the coefficient of thermal expansion is obtained by suspending the test piece (2 mm × 25 mm) so that the longitudinal direction is in the vertical direction, and applying a tensile load of 5 gf / 2 mm width to the lower end of the test piece. It is a coefficient of thermal expansion when the ambient temperature is raised from 50 ° C. to 100 ° C. at a heating rate of 10 ° C./min.
 本発明のフラットケーブル用絶縁フィルムは、本発明のフラットケーブル用基材フィルムと、その基材フィルムに設けられた接着層とを有することを特徴としている。また基材フィルムと接着層との間にプライマ層を備えたものが好ましい。
 本発明のフラットケーブル用絶縁フィルムは、基材フィルムの比誘電率および誘電正接が低いため、誘電損失の小さいフラットケーブルを構築することができる。
The insulating film for flat cables of the present invention is characterized by having the base film for flat cables of the present invention and an adhesive layer provided on the base film. Moreover, what provided the primer layer between the base film and the adhesive layer is preferable.
Since the insulating film for flat cables of this invention has a low dielectric constant and dielectric loss tangent of a base film, it can construct a flat cable with small dielectric loss.
図1aは本発明のフラットケーブル用絶縁フィルムの一実施形態を示す側面断面図であり、図1bは本発明のフラットケーブル用絶縁フィルムの他の実施形態を示す側面断面図である。FIG. 1a is a side cross-sectional view showing one embodiment of the flat cable insulating film of the present invention, and FIG. 1b is a side cross-sectional view showing another embodiment of the flat cable insulating film of the present invention.
 図1aのフラットケーブル用絶縁フィルム1は、基材フィルム10と、その基材フィルム上に設けられたプライマ層11と、そのプライマ層上に設けられた接着層12とを有する。プライマ層11は、基材フィルム10と接着層12の剥離を抑制する樹脂層である。接着層12は、ヒートシール性を有する樹脂層である。なお、プライマ層11および接着層12の比誘電率および誘電正接は、基材フィルム10と同等か小さくするのが好ましい。 The insulating film 1 for flat cables of FIG. 1a has a base film 10, a primer layer 11 provided on the base film, and an adhesive layer 12 provided on the primer layer. The primer layer 11 is a resin layer which suppresses peeling of the base film 10 and the adhesive layer 12. The adhesive layer 12 is a resin layer having heat sealability. The relative permittivity and dielectric loss tangent of the primer layer 11 and the adhesive layer 12 are preferably equal to or smaller than that of the base film 10.
 基材フィルム10は、シンジオタクチックポリスチレン(以下、SPS)系樹脂を含有し、二軸配向されている。
 二軸配向とは、面方向において、高分子が互いに異なる2方向で配向していることを意味する。異なる2方向としては、略直角をなす2方向(フィルムの押出方向(MD)および押出方向に対して垂直な方向(TD))で配向しているのが好ましい。二軸配向することによりフィルムに、靭性(伸びおよび引張強さ)を付与することができる。
 二軸配向は、未延伸の前躯体フィルムを二軸延伸することにより達成される。例えば、同時二軸延伸方式、逐次二軸延伸方式等が挙げられ、同時二軸延伸方式が好ましい。未延伸の前駆体フィルムは、樹脂材料を溶融してフィルム状に成形することにより得られる。例えば、押出成形法、カレンダー成形法、キャスティング法等が挙げられ、押出成形法が好ましい。
 基材フィルム10の厚みは、5~300μm、好ましくは5μm~100μm、特に好ましくは10μm~75μmである。
The base film 10 contains syndiotactic polystyrene (hereinafter, SPS) resin and is biaxially oriented.
The biaxial orientation means that polymers are oriented in two different directions in the plane direction. The two different directions are preferably oriented in two directions substantially perpendicular to each other (the film extrusion direction (MD) and the direction perpendicular to the extrusion direction (TD)). Toughness (elongation and tensile strength) can be imparted to the film by biaxial orientation.
Biaxial orientation is achieved by biaxially orienting the unoriented precursor film. For example, a simultaneous biaxial stretching system, a sequential biaxial stretching system, etc. are mentioned, and a simultaneous biaxial stretching system is preferable. The unstretched precursor film is obtained by melting the resin material and forming it into a film. For example, an extrusion molding method, a calendar molding method, a casting method and the like can be mentioned, and the extrusion molding method is preferable.
The thickness of the base film 10 is 5 to 300 μm, preferably 5 to 100 μm, and particularly preferably 10 to 75 μm.
 基材フィルム10は、比誘電率が、温度23℃、相対湿度50%、周波数10GHzにおいて、2.5以下である。好ましくは、2.4以下、特に好ましくは2.3以下である。比誘電率が2.5より高いと、温度23℃、相対湿度50%において、信号の伝送速度が遅くなり、誘電損失が大きくなる。なお、SPS系樹脂を主成分とした基材フィルムの場合、比誘電率が1.5を下回ることはない。 The base film 10 has a relative dielectric constant of 2.5 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz. Preferably, it is 2.4 or less, particularly preferably 2.3 or less. When the relative dielectric constant is higher than 2.5, the signal transmission speed is reduced and the dielectric loss is increased at a temperature of 23 ° C. and a relative humidity of 50%. In the case of a base film mainly composed of SPS resin, the relative dielectric constant never falls below 1.5.
 基材フィルム10は、比誘電率が、温度60℃、相対湿度90%、周波数10GHzにおいて、2.5以下である。好ましくは、2.4以下、特に好ましくは2.35以下である。比誘電率が2.5より高いと、温度60℃、相対湿度90%、信号の伝送速度が遅くなり、誘電損失が大きくなる。なお、SPS系樹脂を主成分とした基材フィルムの場合、比誘電率が1.5を下回ることはない。
 なお基材フィルムを温度60℃、相対湿度90%の環境下に放置することにより基材フィルムは微小ながら水分を吸収するため、温度60℃、相対湿度90%、周波数10GHzにおける基材フィルムの比誘電率は、温度23℃、相対湿度50%、周波数10GHzにおける基材フィルムの比誘電率より若干高くなる。その変化率は3.0%以下である。好ましくは2.0%以下、特に好ましくは1.5%以下である。そして、変化率が0.1%を下回ることはない。
 このように温度60℃、相対湿度90%の環境下における周波数10GHzの基材フィルム10の比誘電率の変化率が、温度23℃、相対湿度50%の環境下における周波数10GHzの基材フィルム10の比誘電率に対して3.0%以下であるため、環境変化によってもフラットケーブルの電気特性の変化が小さい。
The base film 10 has a relative dielectric constant of 2.5 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz. Preferably, it is 2.4 or less, particularly preferably 2.35 or less. When the relative dielectric constant is higher than 2.5, the temperature is 60 ° C., the relative humidity is 90%, the signal transmission speed is reduced, and the dielectric loss is increased. In the case of a base film mainly composed of SPS resin, the relative dielectric constant never falls below 1.5.
In addition, since the base film absorbs the moisture although it is minute by leaving the base film in an environment of temperature 60 ° C. and relative humidity 90%, the ratio of the base film at temperature 60 ° C., relative humidity 90% and frequency 10 GHz The dielectric constant is slightly higher than the dielectric constant of the base film at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz. The rate of change is less than 3.0%. Preferably it is 2.0% or less, especially preferably 1.5% or less. And the rate of change never falls below 0.1%.
Thus, the rate of change of the relative dielectric constant of the base film 10 with a frequency of 10 GHz in an environment of 60 ° C. and 90% relative humidity is the base film 10 with a frequency of 10 GHz in an environment of 23 ° C. and 50% relative humidity. Because the relative dielectric constant of the flat cable is 3.0% or less, the change in the electrical characteristics of the flat cable is small even by environmental changes.
 基材フィルム10の誘電正接は、温度23℃、相対湿度50%、周波数10GHzにおいて、0.005以下である。好ましくは、0.002以下、特に好ましくは0.001以下である。基材フィルムの誘電正接が0.005より大きいと、温度23℃、相対湿度50%において誘電損失が大きくなる。なお、SPS系樹脂を主成分とした基材フィルムの場合、誘電正接が0.00005を下回ることはない。 The dielectric loss tangent of the base film 10 is 0.005 or less at a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz. Preferably, it is 0.002 or less, particularly preferably 0.001 or less. When the dielectric loss tangent of the base film is larger than 0.005, the dielectric loss is large at a temperature of 23 ° C. and a relative humidity of 50%. In the case of a base film mainly composed of SPS resin, the dielectric loss tangent never falls below 0.00005.
 基材フィルム10の誘電正接は、温度60℃、相対湿度90%、周波数10GHzにおいて、0.005以下である。好ましくは、0.002以下、特に好ましくは、0.001以下である。基材フィルムの誘電正接が0.005より大きいと、温度60℃、相対湿度90%において誘電損失が大きくなる。なお、SPS系樹脂を主成分とした基材フィルムの場合、誘電正接が0.00005を下回ることはない。
 なお基材フィルムを温度60℃、相対湿度90%の環境下に放置することにより基材フィルムは微小ながら水分を吸収するため、温度60℃、相対湿度90%、周波数10GHzにおける基材フィルムの誘電正接は、温度23℃、相対湿度50%、周波数10GHzにおける基材フィルムの誘電正接より若干高くなる。その変化率は30%以下である。好ましくは25%以下、特に好ましくは20%以下である。なお、変化率が5%を下回ることはない。
The dielectric loss tangent of the base film 10 is 0.005 or less at a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz. Preferably, it is 0.002 or less, particularly preferably 0.001 or less. When the dielectric loss tangent of the base film is larger than 0.005, the dielectric loss becomes large at a temperature of 60 ° C. and a relative humidity of 90%. In the case of a base film mainly composed of SPS resin, the dielectric loss tangent never falls below 0.00005.
In addition, since the base film absorbs moisture although it is minute by leaving the base film in an environment at a temperature of 60 ° C. and a relative humidity of 90%, the dielectric of the base film at a temperature of 60 ° C., a relative humidity of 90% and a frequency of 10 GHz The tangent is slightly higher than the dielectric loss tangent of the base film at a temperature of 23 ° C., a relative humidity of 50% and a frequency of 10 GHz. The rate of change is less than 30%. It is preferably at most 25%, particularly preferably at most 20%. The rate of change never falls below 5%.
 基材フィルム10の引張破壊呼びひずみ、室温において、MD方向およびTD方向のいずれの方向についても、好ましくは15%以上であり、より好ましくは35%以上であり、特に好ましくは50%以上である。室温での引張破壊呼びひずみは、フラットフィルムの可撓性に関係する。室温での引張破壊呼びひずみが小さすぎると、ハンドリング時や使用時にフィルムが破損しやすい。なお、室温における引張破壊呼びひずみが大きくても特に問題はないが、SPS系樹脂を主成分とした基材フィルム10の場合、通常200%を超えることはない。 Nominal strain at break of base film 10, preferably 15% or more, more preferably 35% or more, particularly preferably 50% or more at room temperature, in any direction of MD direction and TD direction . Nominal strain at room temperature is related to the flexibility of the flat film. If the tensile strain at nominal temperature at room temperature is too small, the film is likely to be damaged during handling and use. There is no particular problem even if the tensile strain at nominal temperature at room temperature is large, but in the case of the base film 10 containing an SPS-based resin as a main component, it usually does not exceed 200%.
 基材フィルム10のガラス転移温度は140℃以上、好ましくは180℃以上、特に好ましくは200℃以上である。ガラス転移点が低いと、絶縁フィルムの製造工程および/またはフラットケーブルの製造工程において、品質が低下するおそれがある。なお、ガラス転移温度は大きくても特に問題はないが、SPS系樹脂を主成分とした基材フィルム10の場合、通常250℃を超えることはない。 The glass transition temperature of the base film 10 is 140 ° C. or more, preferably 180 ° C. or more, and particularly preferably 200 ° C. or more. If the glass transition point is low, the quality may be degraded in the production process of the insulating film and / or the production process of the flat cable. There is no particular problem even if the glass transition temperature is large, but in the case of the base film 10 mainly composed of SPS resin, it does not usually exceed 250 ° C.
 基材フィルム10は、実質的にSPS系樹脂からなる。しかし、基材フィルム10は、上記基材フィルム10の電気特性、引張破壊呼びひずみ、ガラス転移温度に影響を与えない範囲で、SPS系樹脂以外の合成樹脂を含有していてもよい。
 また基材フィルム10は、本発明の効果が発揮できる範囲内で、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、無機フィラー、着色剤、結晶核剤、難燃剤等の添加剤を含有してもよい。
The base film 10 is substantially made of SPS resin. However, the base film 10 may contain a synthetic resin other than the SPS-based resin, as long as the base film 10 does not affect the electrical characteristics, tensile strain at break, and glass transition temperature of the base film 10.
Moreover, the base film 10 is an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, an antistatic agent, an inorganic filler, a coloring agent, a crystal nucleating agent, a flame retardant etc. in the range which can exhibit the effect of this invention. You may contain an additive.
SPS系樹脂は、シンジオタクチック構造を有するスチレン系ポリマーである。シンジオタクチック構造とは、炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基または置換フェニル基が交互に反対方向に位置する立体構造を意味する。 The SPS-based resin is a styrenic polymer having a syndiotactic structure. The syndiotactic structure means a steric structure in which a phenyl group or a substituted phenyl group which is a side chain relative to a main chain formed from a carbon-carbon bond is alternately located in the opposite direction.
 SPS系樹脂の立体規則性の程度(タクティシティ)は同位体炭素による核磁気共鳴法(13C-NMR法)により定量することができる。13C-NMR法により測定されるSPS系樹脂のタクティシティは、数個のモノマー単位からなる連鎖、例えば、2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドのうち、構成単位の立体配置が逆のシンジオタクチックであるもの(ラセミダイアッド等)の割合によって示すことができる。本発明におけるSPS系樹脂は、通常、ラセミダイアッドで75%以上、好ましくは85%以上、もしくはラセミトリアッドで60%以上、好ましくは75%以上、もしくはラセミペンタッドで30%以上、好ましくは50%以上のシンジオタクティシティーを有するスチレン系ポリマーである。 The degree of tacticity (tacticity) of the SPS resin can be quantified by nuclear magnetic resonance ( 13 C-NMR) with isotope carbon. The tacticity of SPS-based resin measured by 13 C-NMR method is a chain consisting of several monomer units, for example, dyads in the case of two, triads in the case of three, triads in the case of five, and pentads in the case of five. It can be shown by the proportion of reverse syndiotactic configuration (racemic dyad etc.). The SPS-based resin in the present invention is usually at least 75%, preferably at least 85% in racemic dyad, or at least 60%, preferably at least 75% in racemic triad, or at least 30%, preferably 50% in racemic pentad. It is a styrenic polymer having the above syndiotacticity.
 SPS系樹脂としてのスチレン系ポリマーの種類としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体等及びこれらの混合物、又はこれらを主成分とする共重合体が挙げられる。ポリ(アルキルスチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(ターシャリーブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、ポリ(ビニルスチレン)等が挙げられる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)等が挙げられる。ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等が挙げられる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)等が挙げられる。 Types of styrene-based polymers as SPS-based resins include polystyrene, poly (alkylstyrene), poly (halogenated styrene), poly (halogenated alkylstyrene), poly (alkoxystyrene), poly (vinyl benzoate), These hydrogenated polymers etc. and these mixtures, or the copolymer which has these as a main component are mentioned. Examples of poly (alkylstyrenes) include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), poly (tertiary butylstyrene), poly (phenylstyrene), poly (vinyl naphthalene), poly (vinyl styrene) Etc.). Examples of poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene) and the like. Examples of poly (halogenated alkylstyrene) include poly (chloromethylstyrene) and the like. Examples of poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene).
 SPS系樹脂の重量平均分子量は、10,000~3,000,000、好ましくは30,000~1,500,000、特に好ましくは50,000~500,000である。 The weight average molecular weight of the SPS resin is 10,000 to 3,000,000, preferably 30,000 to 1,500,000, and particularly preferably 50,000 to 500,000.
 SPS系樹脂の融点は200~320℃、好ましくは220~280℃である。融点は、JISK7121(1987)に従って測定した値である。
 SPS系樹脂の吸水率は、0.005%~0.20%、好ましくは0.01%~0.20%、特に好ましくは0.05%~0.15%である。吸水率は、JISK7209(2000)の6.2A法に基づいて、100mm×100mm平方の試験片を用いて測定した値である。
The melting point of the SPS resin is 200 to 320 ° C., preferably 220 to 280 ° C. The melting point is a value measured according to JIS K 7121 (1987).
The water absorption rate of the SPS resin is 0.005% to 0.20%, preferably 0.01% to 0.20%, particularly preferably 0.05% to 0.15%. The water absorption is a value measured using a 100 mm × 100 mm square test piece based on the 6.2A method of JIS K 7209 (2000).
 SPS系樹脂の熱膨張率は、MD方向およびTD方向のいずれの方向についても、80ppm/℃以下、好ましくは75ppm/℃以下、特に好ましくは70ppm/℃以下である。なお、熱膨張率は小さいほど好ましいが、SPS系樹脂を主成分とした基材フィルム10の場合、通常10ppm/℃を下回ることはない。また熱膨張率のMD方向とTD方向との差の絶対値は、50ppm/℃以下、好ましくは40ppm/℃以下、特に好ましくは20ppm/℃以下である。 The thermal expansion coefficient of the SPS resin is 80 ppm / ° C. or less, preferably 75 ppm / ° C. or less, particularly preferably 70 ppm / ° C. or less, in any of the MD direction and the TD direction. The smaller the thermal expansion coefficient, the better, but in the case of the base film 10 containing an SPS-based resin as a main component, it does not usually fall below 10 ppm / ° C. The absolute value of the difference between the MD direction and the TD direction of the thermal expansion coefficient is 50 ppm / ° C. or less, preferably 40 ppm / ° C. or less, particularly preferably 20 ppm / ° C. or less.
 SPS系樹脂の150℃での熱収縮率の絶対値は、MD方向およびTD方向のいずれの方向についても、4.0%以下、好ましくは2.0%以下、特に好ましくは1.5%以下である。150℃での熱収縮率は、200mm×200mmの試験片を温度23℃、相対湿度50%の環境下に2時間放置した後のMD方向とTD方向の長さと、雰囲気温度150℃で30分間放置した後、温度23℃、相対湿度50%の環境下に2時間放置した後のMD方向とTD方向の長さとの変化量を求め、試験前の長さに対する変化量の割合である。 The absolute value of the thermal contraction rate of the SPS resin at 150 ° C. is 4.0% or less, preferably 2.0% or less, particularly preferably 1.5% or less in any of the MD direction and the TD direction. It is. The thermal contraction rate at 150 ° C is measured for 30 minutes at a temperature of 150 ° C and a length in the MD direction and TD direction after leaving a test piece of 200 mm × 200 mm for 2 hours at a temperature of 23 ° C. and a relative humidity of 50%. After leaving it to stand, it is a ratio of the amount of change with respect to the length before the test by determining the amount of change between the MD direction and the length in the TD direction after leaving for 2 hours under an environment of temperature 23 ° C. and relative humidity 50%.
 次に基材フィルム、絶縁フィルムおよびフラットケーブルの製造方法を示す。
 初めに、SPS樹脂ペレットを、溶融・混練し、押出成形して未延伸の前躯体フィルムを成形する。この前躯体フィルムを同時二軸延伸または逐次二軸延伸してフラットケーブル用基材フィルムを製造する。なお、二軸延伸後、二軸延伸処理時の張力を弛緩させて熱処理を行う弛緩式熱処理を行うのが好ましい。二軸延伸の延伸倍率、延伸温度、延伸速度は、所望の熱膨張率、引張破壊呼びひずみに応じて適当な条件を選択することができる。弛緩式熱処理の温度および弛緩倍率は、熱収縮率に応じて適当な条件を選択することができる。
 次いで、このフラットケーブル用基材フィルム10の一方の面にプライマ層11、接着層12を積層して、図1(a)のフラットケーブル用絶縁フィルム1を製造する。なお、基材フィルム10の他方の面に、電磁波シールド層等を設けてもよい。また図1(b)の絶縁フィルム1のように、接着層12を基材フィルム10に直接設けてもよい。
 絶縁フィルム1を2枚準備し、互いに接着層12を向け合い、導体を挟み、加熱しながら張り合わせて熱融着することにより、フラットケーブルを製造する。
Next, the manufacturing method of a base film, an insulation film, and a flat cable is shown.
First, SPS resin pellets are melted, kneaded, and extrusion molded to form an unstretched precursor film. This precursor film is simultaneously biaxially stretched or sequentially biaxially stretched to produce a substrate film for flat cable. In addition, it is preferable to perform a relaxation heat treatment in which the heat treatment is carried out by relaxing the tension at the time of biaxial stretching treatment after biaxial stretching. The stretching ratio, stretching temperature and stretching speed of biaxial stretching can be selected according to the desired coefficient of thermal expansion and tensile strain at break. The temperature and relaxation rate of relaxation heat treatment can be selected according to the heat shrinkage rate.
Next, the primer layer 11 and the adhesive layer 12 are laminated on one surface of the flat cable base film 10 to produce the flat cable insulating film 1 of FIG. 1 (a). An electromagnetic wave shield layer or the like may be provided on the other surface of the base film 10. The adhesive layer 12 may be provided directly on the base film 10 as in the insulating film 1 of FIG. 1 (b).
A flat cable is manufactured by preparing two insulating films 1, facing each other with an adhesive layer 12, sandwiching a conductor, bonding them while heating, and heat-sealing.
[実施例1]
 SPS系樹脂(出光興産株式会社製、ザレック、ガラス転移点93℃、融点272℃)を、T-ダイを先端に取り付けた押出機を用いて、320℃にて溶融押出し、冷却して前駆体フィルム(約250μm)を得た。この前躯体フィルムを110℃で延伸速度500%/分、延伸倍率3.3×3.4(MD×TD)にてMD方向およびTD方向に同時二軸延伸し、その後、230℃および弛緩倍率94%×96%(MD×TD)にて弛緩式熱処理を行い、厚さ25μmの基材フィルム(実施例1)を得た。
[実施例2]
 SPS系樹脂(出光興産株式会社製、ザレック、ガラス転移点95℃、融点247℃)を、T-ダイを先端に取り付けた押出機を用いて、320℃にて溶融押出し、冷却して前駆体フィルム(約500μm)を得た。この前躯体フィルムを110℃で延伸速度500%/分、延伸倍率3.3×3.4(MD×TD)にてMD方向およびTD方向に同時二軸延伸し、その後、230℃および弛緩倍率94%×96%(MD×TD)にて弛緩式熱処理を行い、厚さ50μmの基材フィルム(実施例2)を得た。
Example 1
SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition temperature 93 ° C, melting point 272 ° C), melt extruded at 320 ° C using an extruder with a T-die attached to the tip, and cooled to give a precursor A film (about 250 μm) was obtained. This precursor film is simultaneously biaxially stretched in the MD direction and TD direction at 110 ° C. at a drawing speed of 500% / min and a draw ratio of 3.3 × 3.4 (MD × TD), and then at 230 ° C. and a relaxation rate A relaxation heat treatment was performed at 94% × 96% (MD × TD) to obtain a 25 μm-thick base film (Example 1).
Example 2
SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition point 95 ° C, melting point 247 ° C), melt extruded at 320 ° C using an extruder equipped with a T-die at the tip, and cooled to give a precursor A film (about 500 μm) was obtained. This precursor film is simultaneously biaxially stretched in the MD direction and TD direction at 110 ° C. at a drawing speed of 500% / min and a draw ratio of 3.3 × 3.4 (MD × TD), and then at 230 ° C. and a relaxation rate A relaxation heat treatment was performed at 94% × 96% (MD × TD) to obtain a 50 μm thick base film (Example 2).
[比較例1]
 厚さ25μmの熱硬化性ポリイミド樹脂製の基材フィルム(東レ・デュポン株式会社製、カプトン)を準備した。
[比較例2]
 厚さ25μmの二軸配向されたポリエチレンテレフタレート(以下、PET)樹脂製の基材フィルム(東レ株式会社製、ルミラー)を準備した。
[比較例3]
 SPS系樹脂(出光興産株式会社製、ザレック、ガラス転移点95℃、融点247℃)を、T-ダイを先端に取り付けた押出機を用いて、320℃にて溶融押出し、冷却して未延伸の基材フィルム(約50μm)を得た。
Comparative Example 1
A base film (made by Toray DuPont Co., Ltd., Kapton) made of a thermosetting polyimide resin having a thickness of 25 μm was prepared.
Comparative Example 2
A base film (Lumirror, manufactured by Toray Industries, Inc.) made of biaxially oriented polyethylene terephthalate (hereinafter, PET) resin having a thickness of 25 μm was prepared.
Comparative Example 3
Melt extrusion of SPS resin (made by Idemitsu Kosan Co., Ltd., Zarek, glass transition point 95 ° C, melting point 247 ° C) at 320 ° C using an extruder with a T-die attached to the tip, cooling and unstretching A base film (about 50 μm) was obtained.
[1GHzにおける誘電率・誘電正接の測定]
 実施例1、2、比較例1、2の基材フィルムを幅1.5mm×長さ60mmに切り出し、温度23℃、相対湿度50%の環境下で48時間放置した。その後、温度23(±2)℃、相対湿度50(±5)%の試験環境下で、周波数を1GHzとして、それぞれの比誘電率および誘電正接を2回ずつ測定し、その平均値を求めた。測定装置としては、アジレント・テクノロジー株式会社製のPNA-LネットワークアナライザN5230Aと、株式会社関東電子応用開発製の空洞共振器1GHz用CP431とを用いた。その結果を表1に示す。
[Measurement of dielectric constant and dielectric loss tangent at 1 GHz]
The base films of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into a width of 1.5 mm and a length of 60 mm, and left for 48 hours under an environment of a temperature of 23 ° C. and a relative humidity of 50%. Thereafter, the relative dielectric constant and the dielectric loss tangent were measured twice at a frequency of 1 GHz in a test environment of a temperature of 23 (± 2) ° C. and a relative humidity of 50 (± 5)%, and the average value was determined. . As a measurement apparatus, PNA-L network analyzer N5230A manufactured by Agilent Technologies, Inc. and CP431 for cavity resonator 1 GHz manufactured by Kanto Electronics Application Development Co., Ltd. were used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のフラットケーブル用基材フィルムは、温度23℃、相対湿度50%の環境下、周波数1GHzにおいて、比誘電率および誘電正接の両方において優れた値を示した。 The base film for flat cables of the present invention exhibited excellent values both in relative dielectric constant and dielectric loss tangent at a frequency of 1 GHz under an environment of a temperature of 23 ° C. and a relative humidity of 50%.
「10GHzにおける誘電率・誘電正接の測定」
 実施例1、2、比較例1、2の基材フィルムを幅1.5mm×長さ60mmに切り出し、温度23℃、相対湿度50%の環境下で48時間放置した。その後、温度23(±2)℃、相対湿度50(±5)%の試験環境下で、周波数を10GHzとして、それぞれの比誘電率および誘電正接を2回ずつ測定し、その平均値を求めた。測定装置としては、アジレント・テクノロジー株式会社製のPNA-LネットワークアナライザN5230Aと、株式会社関東電子応用開発製の空洞共振器10GHz用CP531とを用いた。
 同様に、実施例1、2、比較例1、2、3の基材フィルムを幅1.5mm×長さ60mmに切り出し、温度60℃、相対湿度90%の環境下で48時間放置した。それぞれの基材フィルムを上記環境下から取出した後、10分~15分の間に、温度23(±2)℃、相対湿度50(±5)%の試験環境下で、周波数を10GHzとして、それぞれの比誘電率および誘電正接を2回ずつ測定し、その平均値を求めた。比誘電率の結果を表2に、誘電正接の結果を表3に示す。
"Measurement of dielectric constant and dielectric loss tangent at 10 GHz"
The base films of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into a width of 1.5 mm and a length of 60 mm, and left for 48 hours under an environment of a temperature of 23 ° C. and a relative humidity of 50%. Thereafter, the relative dielectric constant and the dielectric loss tangent were measured twice each at a frequency of 10 GHz in a test environment with a temperature of 23 (± 2) ° C. and a relative humidity of 50 (± 5)%, and the average value was determined. . As a measurement apparatus, PNA-L network analyzer N5230A manufactured by Agilent Technologies, Inc. and CP 531 for cavity resonator 10 GHz manufactured by Kanto Electronics Application Development Co., Ltd. were used.
Similarly, the base films of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into a width of 1.5 mm and a length of 60 mm, and left for 48 hours under the environment of 60 ° C. and 90% relative humidity. After removing each base film from the above environment, the frequency is 10 GHz in a test environment with a temperature of 23 (. +-. 2) .degree. C. and a relative humidity of 50 (. +-. 5)% for 10 minutes to 15 minutes. Each relative dielectric constant and dielectric loss tangent were measured twice each, and the average value was calculated. The results of relative dielectric constant are shown in Table 2, and the results of dielectric loss tangent are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1、2の比誘電率は、いずれの環境下でも2.5以下と非常に優れた数値であった。さらに、その変化率は、わずかに1.3%であった。 As shown in Table 2, the relative dielectric constants of Examples 1 and 2 were as excellent as 2.5 or less under any environment. Furthermore, the rate of change was only 1.3%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、実施例1、2の誘電正接は、いずれの環境下でも0.002以下と非常に優れた数値であった。 As shown in Table 2, the dielectric loss tangents of Examples 1 and 2 were as excellent as 0.002 or less under any environment.
 実施例1、2、比較例1、2、3の基材フィルムについての物性を表4に示す。なお、引張破壊応力、引張破壊呼びひずみ、引張弾性率、熱膨張率、熱収縮率は、MD方向とTD方向の値(MD/TD)を示す。また引張破壊応力および引張弾性率は、引張破壊呼びひずみと同条件(JISK7127、試験片タイプ2、200mm/分)で求めた。熱収縮率(200℃)は、雰囲気温度200℃で30分放置した以外は、熱収縮率(150℃)と同じ条件で求めた。 Physical properties of the base films of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 4. In addition, tensile fracture stress, tensile fracture nominal strain, tensile elastic modulus, coefficient of thermal expansion, and coefficient of thermal contraction show values in the MD direction and TD direction (MD / TD). The tensile breaking stress and the tensile modulus of elasticity were determined under the same conditions as tensile breaking nominal strain (JIS K 7127, test piece type 2, 200 mm / min). The heat shrinkage rate (200 ° C.) was determined under the same conditions as the heat shrinkage rate (150 ° C.) except that the heat shrinkage rate (200 ° C.) was left for 30 minutes.
Figure JPOXMLDOC01-appb-T000004
※1:比較例3の未延伸の基材フィルムは、降伏することなく破断した。
Figure JPOXMLDOC01-appb-T000004
* 1: The unstretched substrate film of Comparative Example 3 was broken without yielding.
「耐久試験」
 実施例1および比較例2の基材フィルムを、幅100mm×長さ150mmに切り出した。実施例1および比較例2の基材フィルムの試験片を、温度120℃、相対湿度100%の環境下で、宙吊り状態で、それぞれ50時間、100時間、150時間、200時間放置した。各条件におけるそれぞれの基材フィルムの状態を確認した。その結果を表5に示す。
"An endurance test"
The base films of Example 1 and Comparative Example 2 were cut out to have a width of 100 mm and a length of 150 mm. The test pieces of the base film of Example 1 and Comparative Example 2 were left to stand for 50 hours, 100 hours, 150 hours, and 200 hours, respectively, in a suspended state under an environment of a temperature of 120 ° C. and a relative humidity of 100%. The state of each base film in each condition was confirmed. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
○:折り曲げても割れない
△:折り曲げると割れる
×:触ると崩れる
※2:150時間で中止した
Figure JPOXMLDOC01-appb-T000005
○: not broken even when bent :: broken when bent ×: broken when touched * Stopped at 2: 150 hours
 比較例2の基材フィルムは、温度120℃、相対湿度100%の環境下に50時間放置しただけで、加水分解によってフィルムが劣化した。一方、実施例1の基材フィルムは、上記環境下に200時間放置してもフィルムに変化は見られなかった。実施例1の基材フィルムは、比較例2の基材フィルムに比べて、耐加水分解性に優れていることがわかる。 The base film of Comparative Example 2 was degraded by hydrolysis only when it was left under an environment of a temperature of 120 ° C. and a relative humidity of 100% for 50 hours. On the other hand, in the base film of Example 1, no change was observed in the film even after being left under the above environment for 200 hours. It turns out that the base film of Example 1 is superior to the base film of Comparative Example 2 in hydrolysis resistance.
 1  絶縁フィルム
 10 基材フィルム
 11 プライマ層
 12 接着層
1 insulating film 10 substrate film 11 primer layer 12 adhesive layer

Claims (7)

  1. 温度23℃、相対湿度50%、周波数10GHzにおいて、比誘電率が2.5以下であり、誘電正接が0.005以下であり、
    シンジオタクチックポリスチレン系樹脂を含有し、二軸配向された、
    フラットケーブル用基材フィルム。
    At a temperature of 23 ° C., a relative humidity of 50%, and a frequency of 10 GHz, the dielectric constant is 2.5 or less, and the dielectric loss tangent is 0.005 or less,
    Biaxially oriented, containing syndiotactic polystyrene based resin
    Substrate film for flat cables.
  2. 温度60℃、相対湿度90%、周波数10GHzにおいて、比誘電率が2.5以下であり、誘電正接が0.005以下である、
    請求項1記載のフラットケーブル用基材フィルム。
    At a temperature of 60 ° C., a relative humidity of 90%, and a frequency of 10 GHz, the relative dielectric constant is 2.5 or less, and the dielectric loss tangent is 0.005 or less.
    The base film for flat cables according to claim 1.
  3. 温度60℃、相対湿度90%、周波数10GHzにおける前記基材フィルムの比誘電率の、温度23℃、相対湿度50%、周波数10GHzにおける前記基材フィルムの比誘電率に対する変化率が3.0%以下である、
    請求項2記載のフラットケーブル用基材フィルム。
    The rate of change of the relative dielectric constant of the base film at a temperature of 60 ° C., a relative humidity of 90% and a frequency of 10 GHz relative to the relative dielectric constant of the base film at a temperature of 23 ° C. and a relative humidity of 50% and a frequency of 10 GHz Less than
    The base film for flat cables according to claim 2.
  4. 引張破壊呼びひずみが、室温において、15%以上である、
    請求項1から3いずれか記載のフラットケーブル用基材フィルム。
    Nominal strain at break is 15% or more at room temperature
    The base film for flat cables according to any one of claims 1 to 3.
  5. ガラス転移点が、140℃以上である、
    請求項1から4いずれか記載のフラットケーブル用基材フィルム。
    The glass transition point is 140 ° C. or higher,
    The base film for flat cables according to any one of claims 1 to 4.
  6. 熱膨張率が、80ppm/℃以下である、
    請求項1から5いずれか記載のフラットケーブル用基材フィルム。
    The coefficient of thermal expansion is 80 ppm / ° C. or less
    The base film for flat cables according to any one of claims 1 to 5.
  7. 請求項1~6のいずれか記載のフラットケーブル用基材フィルムと、その基材フィルムに設けられた接着層とを有する、フラットケーブル用絶縁フィルム。 An insulating film for flat cable, comprising the substrate film for flat cable according to any one of claims 1 to 6 and an adhesive layer provided on the substrate film.
PCT/JP2018/033000 2017-09-08 2018-09-06 Base material film for flat cables and insulating film for flat cables using same WO2019049922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540991A JP7116732B2 (en) 2017-09-08 2018-09-06 Base film for flat cable and insulation film for flat cable using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173557 2017-09-08
JP2017-173557 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049922A1 true WO2019049922A1 (en) 2019-03-14

Family

ID=65634656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033000 WO2019049922A1 (en) 2017-09-08 2018-09-06 Base material film for flat cables and insulating film for flat cables using same

Country Status (2)

Country Link
JP (1) JP7116732B2 (en)
WO (1) WO2019049922A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049964A1 (en) * 2018-09-06 2020-03-12 リケンテクノス株式会社 Hot-melt adhesive, reinforcing tape, and flexible flat cable having reinforced at conductor terminal with reinforcing tape
EP3929166A1 (en) * 2020-06-17 2021-12-29 Shin-Etsu Chemical Co., Ltd. Annealed quartz glass cloth and method for manufacturing the same
EP3932880A1 (en) * 2020-06-30 2022-01-05 Shin-Etsu Chemical Co., Ltd. Low dielectric resin substrate
WO2023068110A1 (en) * 2021-10-18 2023-04-27 住友電気工業株式会社 Resin sheet for flexible flat cable and flexible flat cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179586B2 (en) 2018-11-08 2022-11-29 株式会社荏原製作所 Eddy current detection device and polishing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100363A (en) * 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd Low-permittivity insulating plastic film and its production
JP2000040421A (en) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd Electric part
JP2000164038A (en) * 1998-11-27 2000-06-16 Idemitsu Petrochem Co Ltd Polystylene based resin film for electric insulation
JP2002506269A (en) * 1998-03-02 2002-02-26 ザ ダウ ケミカル カンパニー Syndiotactic monovinylidene aromatic polymer film
JP2004071397A (en) * 2002-08-07 2004-03-04 Ge Plastics Japan Ltd Resin composition for wire cable coating material
JP2006083364A (en) * 2004-08-19 2006-03-30 Mitsubishi Gas Chem Co Inc Curable resin composition, curable film and film
JP2011111592A (en) * 2009-11-30 2011-06-09 Teijin Ltd Highly insulating film
JP2013100486A (en) * 2011-10-11 2013-05-23 Hitachi Cable Ltd Foamed resin composition, wire and cable
JP2017036373A (en) * 2015-08-07 2017-02-16 出光興産株式会社 Insulation film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323918A (en) * 2006-05-31 2007-12-13 Toyobo Co Ltd Shielded flat cable and its manufacturing method
JP6017925B2 (en) * 2012-10-31 2016-11-02 帝人フィルムソリューション株式会社 Biaxially oriented film for electrical insulation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100363A (en) * 1995-10-05 1997-04-15 Matsushita Electric Ind Co Ltd Low-permittivity insulating plastic film and its production
JP2002506269A (en) * 1998-03-02 2002-02-26 ザ ダウ ケミカル カンパニー Syndiotactic monovinylidene aromatic polymer film
JP2000040421A (en) * 1998-07-24 2000-02-08 Idemitsu Petrochem Co Ltd Electric part
JP2000164038A (en) * 1998-11-27 2000-06-16 Idemitsu Petrochem Co Ltd Polystylene based resin film for electric insulation
JP2004071397A (en) * 2002-08-07 2004-03-04 Ge Plastics Japan Ltd Resin composition for wire cable coating material
JP2006083364A (en) * 2004-08-19 2006-03-30 Mitsubishi Gas Chem Co Inc Curable resin composition, curable film and film
JP2011111592A (en) * 2009-11-30 2011-06-09 Teijin Ltd Highly insulating film
JP2013100486A (en) * 2011-10-11 2013-05-23 Hitachi Cable Ltd Foamed resin composition, wire and cable
JP2017036373A (en) * 2015-08-07 2017-02-16 出光興産株式会社 Insulation film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049964A1 (en) * 2018-09-06 2020-03-12 リケンテクノス株式会社 Hot-melt adhesive, reinforcing tape, and flexible flat cable having reinforced at conductor terminal with reinforcing tape
JP7265456B2 (en) 2018-09-06 2023-04-26 リケンテクノス株式会社 Hot melt adhesives, reinforcing tapes, and flexible flat cables
EP3929166A1 (en) * 2020-06-17 2021-12-29 Shin-Etsu Chemical Co., Ltd. Annealed quartz glass cloth and method for manufacturing the same
EP3932880A1 (en) * 2020-06-30 2022-01-05 Shin-Etsu Chemical Co., Ltd. Low dielectric resin substrate
US11802192B2 (en) 2020-06-30 2023-10-31 Shin-Etsu Chemical Co., Ltd. Low dielectric resin substrate
WO2023068110A1 (en) * 2021-10-18 2023-04-27 住友電気工業株式会社 Resin sheet for flexible flat cable and flexible flat cable

Also Published As

Publication number Publication date
JPWO2019049922A1 (en) 2020-08-20
JP7116732B2 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
JP7116732B2 (en) Base film for flat cable and insulation film for flat cable using the same
JP7336986B2 (en) Laminate with layer of thermoplastic engineering plastic and method for producing same
US20120076984A1 (en) Biaxially Oriented Poly(Arylene Sulfide) Resin Film and Process for Production of Same
TWI821355B (en) High frequency circuit substrate
CN108068300B (en) Polystyrene-based release film and multilayer film
CN107001661B (en) Alignment film
JP5896753B2 (en) Release film production method
TW202000420A (en) Mold release film and method for producing mold release film
WO2015178365A1 (en) Release film
JP5308295B2 (en) Thermoplastic liquid crystal polymer film for transmission line and transmission line
JP6508884B2 (en) Polystyrene-based release film having rough surface and method for producing the same
JP2007323918A (en) Shielded flat cable and its manufacturing method
JP2020083989A (en) Base material film, insulator film and flat cable or antenna
CN114341239B (en) Liquid crystal polymer film, method for producing same, flexible copper-clad laminate, and flexible printed wiring board
JP2023083928A (en) Copper-clad laminate
WO2023157369A1 (en) Laminate and metal-clad laminate board having said laminate
JP2020041120A (en) Biaxially oriented polypropylene film, metallized film, film capacitor, and film roll
TWI809265B (en) Resin film, high-frequency circuit substrate and manufacturing method thereof
WO2023181963A1 (en) Molded styrene-based resin
JP4369134B2 (en) Substrate and molded product
WO2015190386A1 (en) Polystyrene release film having rough surface and production method therefor
JP4335572B2 (en) Styrene resin composition, film, substrate and molded product
TW202212469A (en) Resin film, method for producing same, printed wiring board, coverlay, and multilayer body
WO2022091993A1 (en) Multilayer body for electronic curcuit boards
JP2022130932A (en) polyphenylene sulfide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853672

Country of ref document: EP

Kind code of ref document: A1