WO2019049819A1 - 医療情報処理システム - Google Patents
医療情報処理システム Download PDFInfo
- Publication number
- WO2019049819A1 WO2019049819A1 PCT/JP2018/032565 JP2018032565W WO2019049819A1 WO 2019049819 A1 WO2019049819 A1 WO 2019049819A1 JP 2018032565 W JP2018032565 W JP 2018032565W WO 2019049819 A1 WO2019049819 A1 WO 2019049819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hospital
- patient
- medical
- processing system
- information processing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0204—Market segmentation
- G06Q30/0205—Location or geographical consideration
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/20—ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
Definitions
- the present invention relates to a medical information processing system operated at a medical institution including a hospitalization facility, a judgment support information generation method, and a program.
- Medical institutions perform a wide range of tasks such as surgery, examinations, and rehabilitation for many patients.
- the information processing system dedicated to medical institutions supports the work of conventional medical personnel and improves work efficiency.
- Examples of information processing systems dedicated to medical institutions include a system that converts existing paper medical records into an electronic medical record, and a system that receives medical record information as electronic data from the beginning.
- the electronic medical record information group of each patient is stored in the server (storage) of the information processing system, called by an authorized medical institution, and used as a conventional paper medical record as needed.
- An information processing system that handles only collection / presentation of electronic medical records is generally called an electronic medical record system.
- Patent Document 1 A wide variety of medical information processing systems used in medical institutions other than electronic medical record systems, for example, one system is described in Patent Document 1.
- Patent Document 1 describes a medical support system that determines medical care for a viewer.
- the medical support system gets the patient data to the processor, evaluates the clinical needs of this patient, proposes clinical outcomes, and one patient for the clinical needs and the proposed clinical outcomes Perform the step of determining the service to be provided based on the service / outcome / necessity model.
- the method by the medical support system described in this patent document 1 has obtained a plurality of computer models by machine learning with respect to various information obtained inside and outside the hospital, and proposed a clinical need based on the plurality of models. Determine the service for the patient who meets the clinical outcome.
- patent documents 2 to 6 are described also in patent documents 2 to 6 other than patent document 1, for example.
- the integrated medical backbone system described in Patent Document 2 integrates a mechanism for acquiring patient attributes and the like to generate an integrated electronic medical record, a mechanism for supporting medical treatment and the like by a doctor, and the like, and recording medical information of an individual Connect the backbone database with the network and integrate medical environment such as hospital and home.
- the medical care support system described in Patent Document 3 creates a plan and performs confirmation of the past and present conditions when performing medical care etc. on a patient, and an index screen for displaying an index of medical care records, and medical care for the patient It is made easy by arranging side by side with the medical treatment plan screen which displays a plan chart.
- Patent Document 4 predicts the situation in the near future and the situation where the medical care institution will be placed, on the basis of the ever-changing disaster situation and the course of coping by the medical care organization at the time of disaster. Decide if patient transfer should be performed and where to place medical personnel and equipment.
- the medical management support system described in Patent Document 5 creates and displays a project network diagram for each patient, supporting execution of various tasks in a medical institution, improving the quality of medical care, and improving management of the medical institution. help.
- the analysis system described in Patent Document 6 calculates the improvement period of the side effects from the fluctuation of the test result, and among the prescribed medicines, agents other than the ones prescribed continuously after the start of the improvement period are the side effects.
- the side effect causing drug information indicating that it is related is calculated, and information on the drug related to the side effect is output.
- JP 2016-520941 gazette Japanese Patent Application Laid-Open No. 2002-056093 JP, 2004-021380, A JP 2005-346589 A Japanese Patent Application Publication No. 2007-140607 International Publication 2016/103322
- Patent Document 1 uses a service / outcome / necessity model created by machine learning by collecting viewer data and uses a model for clinical need and proposed clinical outcome. It includes the steps of determining the service to be provided to the patient.
- this medical support system obtains multiple computer models by machine learning with respect to various information obtained inside and outside the hospital, and meets the clinical need and the proposed clinical outcome based on the multiple models. Can determine the service for human patients.
- Patent Document 5 discloses a system for optimizing resources by accumulating tasks for a plurality of patients.
- the method by the accumulation of tasks is weak to the information to be input in the future, and for example, when an emergency occurs, the entire schedule may greatly be changed.
- Patent Document 1 the technology described in Patent Document 1 and the technology described in other patent documents have not been able to cope with changes in the operation policy.
- the object of the present invention is to support medical staff's judgment on individual patients based on selected hospital-wide operation policy information and a database reflecting the current in-hospital and out-of-hospital environment, which solves the above-mentioned problems.
- the medical information processing system refers to a management policy input unit that receives a selection of a management policy that defines a plurality of management policies that can be taken by the entire hospital, and a database that is managed in a hospital accessible manner. Then, using the model learning unit that generates a maximization model for the change in hospital environment of each management policy for each selectable management policy, and using the management policy maximization model selected in the management policy input unit, And a behavioral optimization unit that generates medical staff's decision support information for each patient that maximizes the overall efficiency of the hospital according to changes in the hospital environment.
- the model learning unit refers in advance to a database managed so as to be accessible in a hospital, and allows a plurality of operations that the entire hospital can take. Generate a maximization model for the environmental change of the hospital for each management policy for each policy, accept the selection of management policy by the management policy input unit, and use the maximization model for the management policy selected by the behavior optimization unit Then, health care worker decision support information is generated for each patient that maximizes the overall efficiency of the hospital according to the change in hospital environment.
- a program includes an information processing system, an operation policy input unit that receives a selection of an operation policy defining a plurality of operation policies that can be taken by the entire hospital, and a database in which the hospital is managed accessible.
- the model learning unit that generates a maximization model for the change in hospital environment for each management policy for each selectable management policy, and using the management policy maximization model selected in the management policy input section It operates as a behavior optimization unit that generates medical staff's decision support information for each patient that maximizes the overall efficiency of the hospital in accordance with the environmental change of the hospital.
- medical information processing for providing medical patient judgment support to individual patients based on selected hospital-wide operation policy information and a database reflecting the current in-hospital and non-hospital environment.
- FIG. 1 is a block diagram showing a medical information processing system 1 according to an embodiment of the present invention.
- the medical information processing system 1 includes at least an input / output unit 10, a behavior optimization unit 20, and a model learning unit 30. Further, in the medical information processing system 1, it is assumed that various databases configured so that each component can be used as needed and a learning model group storage unit that stores a learned learning model are constructed.
- the various databases may be external databases instead of internal databases.
- the learning model group storage unit may use an external storage or the like instead of the internal memory or the internal storage.
- the medical information processing system 1 internally operates a processor and a memory to operate each component as follows.
- the input / output unit 10 is an input / output interface, operates as an operation policy input unit, and receives a plurality of operation policies (operation policy information) that can be taken by the entire hospital.
- the operation policy as an option is, for example, an index that contributes to the improvement of hospital management or the efficiency of hospital operations in hospital operation.
- the management policy includes, for example, a cost reduction index for the entire hospital, a power saving reinforcement index for the entire hospital, an index for minimizing the duration of hospitalization for many patients, and an index for minimizing working hours for hospital staff.
- the management policy may be set by, for example, a director or a manager.
- the input / output unit 10 sequentially receives the electronic medical record information of each patient and various information inside and outside the hospital and sequentially registers them in the database.
- the input / output unit 10 also acquires and registers various information inside and outside the hospital from an external database.
- the behavior optimization unit 20 reads out the maximization model of the operation policy selected through the input / output unit 10 from the learning model group storage unit, and refers to various databases for various information to be used for medical treatment for each patient. Generate decision support information for workers.
- This medical staff's judgment support information is information that serves as the behavioral support for individual medical workers to maximize the overall operation policy of the selected hospital, and the environment change of the hospital at that time according to the maximization model It is generated automatically according to the demand or according to the user's request.
- the judgment support information may be automatically generated by the maximization model according to the current situation of various databases or the behavior optimization unit 20 appropriately in response to the user's request.
- the behavior optimization unit 20 may generate, as the determination support information, a notification indicating a change policy of the room environment for each patient.
- This adjustment of the room environment can measure the activity of the natal healing effect.
- As adjustment items of the hospital room environment it is desirable for hospitalized patients to include the brightness of the hospital room, the smell in the room, the sound (including environmental music, background music, silence), the room temperature, and the humidity.
- the medical worker who receives the judgment support information considers whether to change the individual room environment according to the patient (s), and changes the room environment as necessary.
- the behavior optimization unit 20 may include, as the determination support information, generating a notification indicating an ordering policy of each patient.
- the ordering policy should include prescriptions, exams, and treatment plans for each patient.
- the medical staff who has received the judgment support information reviews the ordering policy according to the patient, and implements prescription, examination, and treatment plan of the indicated policy as necessary.
- a treatment plan is a plan which shows what kind of procedure and order a certain patient is to treat, such as medication and rehab instruction.
- the treatment plan is information indicating a treatment order such as treatment A ⁇ treatment B (or treatment B ′) ⁇ treatment C.
- the behavior optimization unit 20 may include, as the determination support information, generating a notification indicating a policy of post-discharge care operation of each patient. It is desirable that the policy of post-discharge care services include candidates for transfer to hospitals (recovery hospitals, various facilities, homes, etc.) for each patient. The medical worker who has received the judgment support information examines the transfer destination according to the patient, and carries out the task of transferring to the transfer destination candidate of the policy indicated as necessary.
- the model learning unit 30 refers to various databases managed in a hospital so as to be accessible using various machine learning methods such as regression method, decision tree learning, Bayesian method, kernel method, neural network, deep learning, etc. Create and update a maximization model for the hospital environment change of each operation policy for each selectable operation policy. Further, the model learning unit 30 refers to various databases which are managed in an accessible manner in the hospital, and shifts from the treatment plan for each patient along with the hospital environment change of each operation policy for each selectable operation policy. May be included in machine learning items. In addition, deviation from the treatment plan means, for example, that the degree of recovery of the patient's illness or injury differs from the initial treatment plan by treatment based on the initial treatment plan, and the contents of treatment in the initial treatment plan are changed ( Or the factor of the change).
- the model learning unit 30 operates as a model learning unit.
- Items (parameters) used for machine learning can include, for example, items used for learning disease names and symptoms of each patient with reference to an electronic medical record database.
- the receipt database, the surrounding environment database, the work situation database, and the like may be constructed so as to be referable, and the parameter group used for machine learning may be selected. It is desirable to have many parameters included in the learning items. For example, if it mentions the parameter showing the environment relevant to a weather, the weather outside temperature, humidity, room temperature in the hospital, humidity, the average temperature of this week / this month, etc. can be illustrated, for example. Any record information appropriately managed in a database may be used.
- the parameters related to the environmental change of the hospital should include at least one of the number of inpatients in the nearby medical institution, the number of inpatients at the destination medical institution, the climate of the area, the population change in the area, and the number of visiting patients.
- changes in the hospital environment may include the situation where competing hospitals have been established, seasonal fluctuations in the number of patients, resource status at the hospital to be transferred to, hospital data, and changes in patient questionnaire results.
- judgment support information for each operation policy that can be classified according to hospital management aspect, medical quality, medical efficiency, hospitalization time, patient satisfaction etc. Significant variations may occur as content differences.
- the parameters relating to the treatment plan for individual patients include, as individual items, the scheduled date and the execution date regarding the examination date, informed consent date, discharge date, and the like.
- the deviation from the treatment plan for each patient can include the occurrence status of the emergency, the degree of recovery of the patient, and the deviation from the treatment plan for the individual patient as learning parameters.
- the machine learning method is not particularly limited, but an expectation value maximization method, an EM method (expectation-maximization algorithm), or the like may be used.
- a reinforcement learning algorithm such as SVM (Support Vector Machine), a clustering method such as k-nearest neighbor method, a neural network method such as learning vector quantization, an ensemble method such as random forest, etc. May be used in combination.
- the medical information processing system 1 sequentially matches the current situation with the hospital by using the various databases managed in the hospital so as to be accessible and the learning model of the management policy of each hospital. Provide decision support information that can be the best course of action for the
- various databases be managed by including, as individual items, deviations from the treatment plan for individual patients capable of inputting, acquiring, and sensing.
- the model learning unit 30 and the behavior optimization unit 20 deviations from the treatment plan for each patient, which occur momentarily in the maximization model of each operation policy and the individual judgment support information, can be obtained. It will be reflected.
- the medical information processing system 1 supports medical staff's judgment support for each patient based on the selected hospital-wide operation policy information and the database reflecting the current in-hospital and out-of-hospital environment. It becomes feasible.
- FIG. 2 is a flowchart showing the basic flow of the medical information processing system 1 of the present embodiment.
- FIG. 3 is a flowchart example showing a machine learning flow of the medical information processing system 1.
- FIG. 4 is an example of a flowchart showing a determination support information generation routine of the medical information processing system 1.
- the medical information processing system 1 machine-learns the index maximizing model in advance by the model learning unit 30 with reference to various databases managed so as to be accessible in the hospital for each management policy (F101).
- the medical information processing system 1 generates the judgment support information of the medical worker for each patient using the maximization model of the selected operation policy by the behavior optimization unit 20 and proposes it to the medical worker (F102) ).
- the medical information processing system 1 receives the selection or change of the operation policy through the input / output unit 10, and the medical worker belonging to each department in the hospital can receive the entire hospital based on the latest operation policy. Implement behavioral support for individual patients that can maximize efficiency.
- each medical worker can carry out the operation for each patient referring to the judgment support information.
- each medical worker carries out an action for each patient based on the contents of the action support information in accordance with the operation policy derived based on various information that he / she does not know, as well as the information that he / she knows. Can be implemented.
- FIG. 3 is a flowchart example showing a machine learning flow of the medical information processing system 1.
- the processor of the information processing system which is the medical information processing system 1 sequentially collects a large amount of data (electronic medical record data, ambient environment data, receipt data, etc.) to be learned in various databases (S101).
- the processor extracts data of items (features, parameters) to be learned from the data group accumulated in various databases (S102).
- the processor learns the relationship of the feature (parameter) group for each index of the operation policy (S103).
- the processor stores the learning result for each index in the learning model group storage unit (S104).
- FIG. 4 is an example of a flowchart showing a determination support information generation routine of the medical information processing system 1.
- This judgment support information assumes, for example, that the doctor looks at the patient to be examined next before treatment.
- the judgment support information generation routine is to be carried out at each place where each medical worker works for patients in the hospital.
- the processor of the information processing system to be the medical information processing system 1 acquires patient information of a target patient (S201).
- patient information may be acquired from an electronic medical record database.
- the processor calls a learning model (maximization model) of the input operation policy (S202).
- the processor derives and processes an action optimization policy for a target patient (patient attribute) based on the learning model of the selection index (S203).
- the processor notifies the medical staff of the derived action optimization policy as determination support information (S204).
- the generation processing of the judgment support information of the medical worker for this patient may be performed appropriately in response to the request from the medical worker, or when the medical worker approaches the room, the judgment support information is automatically generated.
- the generation may be performed.
- the medical information processing system 1 can select individual patients based on the selected hospital-wide operation policy information and the database reflecting the current in-hospital and out-of-hospital environment. It will be possible to implement medical staff's decision support for
- FIG. 5 is an explanatory view visually showing the operation of the medical information processing system 1.
- the individual patient response flow shown in the figure shows the flow from discharge to discharge in the order of “test” ⁇ “diagnosis” ⁇ “treatment” ⁇ “discharge judgment” assuming the general hospital response flow for hospitalized patients ing.
- the response flow of this individual patient may be reassembled as appropriate depending on the outpatient, the emergency outpatient, the hospital bed and the like.
- the medical information processing system 1 refers to various databases which are managed in the hospital so as to be accessible in advance by the model learning unit 30, and the hospital environment of each management policy for each of a plurality of management policies which can be taken by the entire hospital. Generate a maximization model (learning model) for the change. The medical information processing system 1 appropriately reinforces each learning model.
- the medical information processing system 1 receives the selection of the operation policy defined by the management or the like by the input / output unit 10, and the behavior optimization unit 20 uses the maximization model of the selected operation policy to execute the judgment support information. It is generated at each site according to the work timing of each medical worker. This judgment support information serves as an action support for each medical worker for individual patients maximizing the overall efficiency of the hospital in accordance with the selected operation policy in accordance with the change in the hospital environment.
- FIG. 5 shows an example of the process flow of the behavior optimization unit 20 that provides the test determination support information.
- a medical worker is notified of an inspection method in which the operation policy index is maximized using the learning model of the selected operation policy, the patient attribute, the surrounding environment, and the like.
- This processing operation may derive an inspection method optimized for a designated policy, such as cost priority or effect priority, based on past patient examination records having similar patient attributes, using individual machine learning.
- the processing flow performed at the other timings of provision of diagnosis judgment support information, timing of treatment judgment support information provision, and timing of judgment support information provision for discharge judgment are also based on the learning model of the selected operation policy.
- the provision of judgment support information may be implemented.
- FIG. 5 has shown the corresponding
- the medical practitioner who carries out the work flow in the hospital appropriately provides the decision support information according to the work flow before carrying out the work on the individual patient. You can operate the
- the hospital operation policy is often determined in consideration of management impact. On the other hand, it is difficult for medical workers to judge whether their judgments and choices are in line with the hospital operation policy.
- the medical information processing system to which the present invention described above is applied helps solve these problems. That is, in consideration of the impact of the hospital management, it is possible to support the medical staff to carry out the work in charge, and as a result, it is possible to make a business judgment that contributes to the management according to the hospital management policy.
- the present invention can provide action support for the following factors, as described later in part by post hoc analysis.
- Partially optimal avoidance The hospital work is diverse in the departments involved with one patient. It is difficult for humans to properly determine what is the partial optimal non-optimal treatment of a certain department for each patient, situation, or resource situation. In complex or difficult situations, healthcare workers have to rely on heuristics.
- Avoid confusion of operation adjustment For example, out-of-hospital environment change (weather, competitive hospital, seasonal variation of the number of patients, resource situation of transfer destination hospital, receipt data, etc.), blur from treatment plan (emergency illness, deviation from treatment plan, etc.) I can not do the overall optimum work that I considered. Even when management indexes to be emphasized have been changed, it is difficult for humans and existing systems to present medical staff with suggestions for optimal treatment.
- Medical treatment has a large risk of prediction errors, such as sudden changes in patients, makes uniform operation like factory of industrial products difficult, and requires low risk.
- the management or the manager wants to maximize the management policy of the whole hospital (for example, the shortest hospitalization time after maintaining the unscheduled re-admission rate, staffing hours, patient satisfaction, etc.) , Give rough instructions.
- ID for each patient various information such as weather, etc. in the medical information processing system in the present medical information processing system, for example, cost-effectiveness, total hospitalization time, etc. It is possible to present action support information that optimizes each medical staff involved in each patient.
- the medical information processing system to which the present invention is applied is medical treatment for each patient based on the selected hospital-wide operation policy information and the database reflecting the current in-hospital and out-of-hospital environment. Can support the judgment of the workers.
- Each part of this system may be realized by appropriately using a combination of hardware, software, and virtualization technology of a computer system (server system) as illustrated in FIGS. 6 and 7.
- the computer system includes one or more processors and memory tailored to the desired configuration.
- a program for an action support system is expanded in the above-mentioned memory, and each section is operated by operating hardware such as one or more processors based on this program with execution instructions and codes. To achieve.
- this program may realize each part in cooperation with an operating system, a micro program, a function provided by software such as a driver, and the like.
- the program data developed in the memory appropriately includes an execution instruction group, a code group, a table file, content data, and the like that cause the processor to operate as one or more of the above-described units.
- this computer system does not necessarily need to be built as one device, and it is built by so-called thin clients, distributed computing, cloud computing by combining a plurality of servers / computers / virtual machines etc. It is also good.
- each part of the computer system may be replaced with hardware or firmware (for example, one or more LSIs: large-scale integration, FPGA: field programmable gate array, combination of electronic elements).
- hardware or firmware for example, one or more LSIs: large-scale integration, FPGA: field programmable gate array, combination of electronic elements.
- only a part of each part may be replaced with hardware or firmware.
- this program may be recorded non-temporarily on a recording medium and distributed.
- the program recorded on the recording medium is read into a memory through a wired, wireless, or recording medium itself to operate a processor or the like.
- recording media also include storage media, memory devices, storage devices and the like of similar terms.
- Examples of this recording medium include an optical disk, a magnetic disk, a semiconductor memory device, a hard disk device, and a tape medium.
- a combination of a volatile module (for example, RAM: Random Access Memory) and a non-volatile module (for example, ROM: Read Only Memory) may be used as the recording medium.
- the recording medium includes an action support program developed in the memory and operated by the processor of the information processing system, and a learning process, an input process and an action support By performing the process in a timely manner, the medical information processing system according to the present invention can be constructed.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Marketing (AREA)
- Finance (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Game Theory and Decision Science (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Bioethics (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
医療情報処理システムは、病院全体が取り得る複数の運営方針を定めた運営方針の選択を受け付ける運営方針入力部と、病院でアクセス可能に管理されているデータベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成するモデル学習部と、前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する行動最適化部と、を具備する。
Description
本発明は、入院施設を含む医療機関で運用される医療情報処理システム、判断支援情報生成方法およびプログラムに関する。
昨今、医療機関内で情報処理システムが多く使用されている。また、医療機関専用の情報処理システムの開発も活発である。
医療機関では多くの患者に対して手術や検査、リハビリなどの多岐に亘る業務を行っている。医療機関専用の情報処理システムは、従前の医療関係者の業務をサポートして、作業効率を高めている。
医療機関専用の情報処理システムには、従前の紙のカルテを電子カルテとして情報化するシステムや、最初からカルテ情報を電子データとして受け付けるシステムなどがある。各患者の電子カルテ情報群は、情報処理システムのサーバ(ストレージ)に保存され、権限がある医療機関者によって呼び出され、必要に応じて従前の紙カルテのように使用される。電子カルテの収集/提示のみを扱う情報処理システムは、概ね電子カルテシステムと呼ばれている。
医療機関で用いられている医療情報処理システムは、電子カルテシステム以外にも多岐に亘り、例えば特許文献1に一つのシステムが記載されている。
特許文献1には、看者のための医療を決定する医療支援システムが記載されている。この医療支援システムは、プロセッサーに、看者データを取得し、この看者の臨床的必要性を評価し、臨床アウトカムを提案し、臨床的必要性及び提案された臨床アウトカムのために一人の患者に提供されるべきサービスを、サービス/アウトカム/必要性モデルに基づいて決定するステップを実行させる。
この特許文献1に記載された医療支援システムによる方法は、病院内外で得られる様々な情報に関して機械学習によって複数のコンピュータモデルを得て、その複数のモデルに基づいて臨床的必要性と提案された臨床アウトカムを満たす、患者のためのサービスを決定できる。
また、医療機関で用いられている医療情報処理システムは、特許文献1以外にも例えば特許文献2から6にも記載されている。
特許文献2に記載された統合医療基幹業務システムは、患者の属性等を取得して総合電子カルテを生成する仕組みと、医師等の診療等を支援する仕組みと、個人の医療情報を記録する統合基幹データベースとを、ネットワークで接続し、病院や家庭等の医療環境を統合する。
特許文献3に記載された診療支援システムは、患者に診療などを行うにあたり、その計画の作成や、過去や現在の状況の確認を、診療記録のインデックスを表示するインデックス画面と、その患者の診療計画表を表示する診療計画画面とを並べて配置することで、容易にする。
特許文献4に記載された医療情報処理システムは、災害時において、刻々と変化する被災状況と診療機関による対処の経過を基礎として、近い将来の被災状況と診療機関が置かれる状況を予測し、患者転送を行うべきか否か、医療人員・機材をどこに配置すべきかを決定する。
特許文献5に記載された医療マネジメント支援システムは、医療機関における各種業務の遂行支援と、医療の質向上と医療機関の経営改善とを、患者毎のプロジェクトネットワーク図を作成して表示することで助ける。
特許文献6に記載された分析システムは、検査結果の変動から副作用の改善期間を算出し、処方されている薬剤のうち改善期間の開始後に継続して処方されている薬剤以外の薬剤が副作用と関係することを示す副作用原因薬剤情報を算出し、副作用と関係する薬剤の情報を出力する。
上記した特許文献1に記載の技術は、看者データを収集して機械学習によって作成されたサービス/アウトカム/必要性モデルを用いて、臨床的必要性及び提案された臨床アウトカムのために一人の患者に提供されるべきサービスを決定するステップを含んでいる。
このため、この医療支援システムは、病院内外で得られる様々な情報に関して機械学習によって複数のコンピュータモデルを得て、その複数のモデルに基づいて臨床的必要性と提案された臨床アウトカムを満たす、1人の患者のためのサービスを決定できる。
しかしながら、この特許文献1に記載された技術では、例えば複数の患者に跨る問題を最適化することに改善点を指摘できる。換言すれば、特許文献1の医療支援システムは、1人の患者に対する提供サービスを導出した結果、他の患者に最適なサービスを提供できない場合を生じさせかねない。
一方、特許文献5には、複数の患者に対して、タスクの積み上げによりリソース最適化を図るシステムが開示されている。しかしタスクの積み上げによる手法は、今後入力される情報に弱く、例えば急患が生じることで、全体の予定が大きく狂う可能性を多大に含むこととなる。
また、多くの病院では、日々様々な変化に対応する必要がある。この様々な変化の下で、院長や各管理部門担当者は、様々な運営方針に従って病院を運営している。これらの運営方針は、何らかのきっかけで変更されることがある。例えば、想定外の事象や、病院外の環境変化によって、運営方針が変えられることが想定できる。
一方、特許文献1に記載された技術や、他の特許文献に記載された技術は、運営方針が変えられることについて対応できていない。
本発明の目的は、上記課題を解決する、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施する医療情報処理システムを提供することである。
本発明の一実施形態に係る医療情報処理システムは、病院全体が取り得る複数の運営方針を定めた運営方針の選択を受け付ける運営方針入力部と、病院でアクセス可能に管理されているデータベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成するモデル学習部と、前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する行動最適化部と、を具備する。
本発明の一実施形態に係る医療情報処理システムによる判断支援情報生成方法は、モデル学習部によって、予め、病院でアクセス可能に管理されているデータベースを参照して、病院全体が取り得る複数の運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成し、運営方針入力部によって、運営方針の選択を受け付け、行動最適化部によって、選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する。
本発明の一実施形態に係るプログラムは、情報処理システムを、病院全体が取り得る複数の運営方針を定めた運営方針の選択を受け付ける運営方針入力部と、病院でアクセス可能に管理されているデータベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成するモデル学習部と、前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する行動最適化部、として動作させる。
本発明によれば、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施する医療情報処理システムを提供できる。
本発明の実施形態を図面を参照して説明する。
[実施形態]
図1は、本発明の一実施形態に係る医療情報処理システム1を示すブロック図である。
医療情報処理システム1は、少なくとも、入出力部10、行動最適化部20、及びモデル学習部30を含み構成される。また医療情報処理システム1には、各構成要素が必要に応じて利用可能に構成された各種データベースと学習された学習モデルを記憶する学習モデル群記憶部とが構築されていることとする。なお各種データベースは、内部データベースとせずとも、外部データベースを用いることとしてもよい。同様に、学習モデル群記憶部は、内部メモリーや内部ストレージとせずとも、外部ストレージ等を用いることとしてもよい。医療情報処理システム1は、プロセッサー及びメモリーを内在して、各構成要素を以下のように動作させる。
図1は、本発明の一実施形態に係る医療情報処理システム1を示すブロック図である。
医療情報処理システム1は、少なくとも、入出力部10、行動最適化部20、及びモデル学習部30を含み構成される。また医療情報処理システム1には、各構成要素が必要に応じて利用可能に構成された各種データベースと学習された学習モデルを記憶する学習モデル群記憶部とが構築されていることとする。なお各種データベースは、内部データベースとせずとも、外部データベースを用いることとしてもよい。同様に、学習モデル群記憶部は、内部メモリーや内部ストレージとせずとも、外部ストレージ等を用いることとしてもよい。医療情報処理システム1は、プロセッサー及びメモリーを内在して、各構成要素を以下のように動作させる。
入出力部10は、入出力インタフェースであり、運営方針入力手段として動作し、病院全体が取り得る複数の運営方針(運営方針情報)を受け付ける。選択肢となる運営方針は、例えば、病院の運営において病院の経営の改善又は病院の業務効率化に寄与する指標である。特に限定しないものの、運営方針は、例えば、病院全体のコスト削減指標や病院全体の省電力強化指標、多数の患者全体の在院期間最少化指標、病院スタフの労働時間最小化指標が挙げられる。なお、この運営方針は、例えば院長や経営者などが設定すればよい。
また、入出力部10は、各患者の電子カルテ情報や病院内外の各種情報を逐次受け付けてデータベースに逐次登録する。また、入出力部10は、外部データベースから病院内外の各種情報を取得したり登録したりする。
行動最適化部20は、入出力部10を介して選択された運営方針の最大化モデルを学習モデル群記憶部から読み出すと共に、使用する各種情報について各種データベースを参照して、個々の患者に対する医療従事者の判断支援情報を生成する。この医療従事者の判断支援情報は、選択された病院の全体の運営方針を最大化するための個々の医療従事者の行動支援となる情報であり、最大化モデルによってその時点の病院の環境変化に合わせて自動で若しくは使用者の要求に応じて適宜生成される。換言すれば、判断支援情報は、最大化モデルによって各種データベースの現在の状況に合わせて自動で若しくは使用者の要求に応じて行動最適化部20が適宜生成すればよい。
行動最適化部20は、判断支援情報として個々の患者に対する病室環境の変更方針を示す通知を生成することとすればよい。この病室環境の調整では、ナチュアルヒーリング効果の活性が計れる。病室環境の調整項目としては、入院患者であれば、病室の明るさ、室内の匂い、音(環境音楽、バックグラウンドミュージック、無音を含む)、室温、湿度を含めることが望ましい。判断支援情報を受けた医療従事者は、患者(群)に合わせて個々の病室環境を変更するか検討して、必要に応じて病室環境を変更する。
同様に、行動最適化部20は、判断支援情報として個々の患者のオーダリング方針を示す通知を生成することとを含めてもよい。オーダリング方針は、患者毎に、処方、検査、治療計画を含めることが望ましい。判断支援情報を受けた医療従事者は、患者に合わせてオーダリング方針を検討して、必要に応じて示された方針の処方、検査、治療計画を実施する。なお、治療計画とは、ある患者に対してどのような手順や順序で、投薬やリハビリ指示などの治療をするかを示す計画である。具体的には、治療計画は、治療A→治療B(又は治療B’)→治療C、といった治療順序を示す情報である。
同様に、行動最適化部20は、判断支援情報として個々の患者の退院後ケア業務の方針を示す通知を生成することとを含めてもよい。退院後ケア業務の方針は、患者毎に、転院先候補(回復期病院や、各種施設、自宅、等)を含めることが望ましい。判断支援情報を受けた医療従事者は、患者に合わせて転院先を検討して、必要に応じて示された方針の転院先候補に移るための業務を実施する。
モデル学習部30は、回帰法、決定木学習、ベイズ法、カーネル法、ニューラルネットワーク、深層学習などの各種機械学習手法を用いて、病院でアクセス可能に管理されている各種データベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルをそれぞれ生成及び更新する。また、モデル学習部30は、病院でアクセス可能に管理されている各種データベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化と共に個々の患者に対する治療計画からのズレを機械学習の項目に含めることとしてもよい。なお、治療計画からのズレとは、例えば、当初の治療計画に基づいた治療により、患者の病気やけがの回復具合が当初の治療計画と異なり、当初の治療計画における治療内容を変更すること(又はその変更の要因)である。
このモデル学習部30は、モデル学習手段として動作する。機械学習に用いる項目(パラメータ群)は、例えば電子カルテデータベースを参照して、各患者の病名や症状を学習に用いる項目を含めることができる。同様に、レセプトデータベース、周辺環境データベース、勤務状況データベースなどを参照可能に構築して、機械学習に用いるパラメータ群を選定してもよい。学習項目に含めるパラメータは、数多く揃えることが望ましい。例えば天候に関係する環境を表すパラメータについて述べれば、例えば院外の天気、気温、湿度、院内の室温、湿度、今週/今月の平均気温、などを例示できる。データベースで適切に管理されている記録情報であれば利用すればよい。
病院の環境変化に関するパラメータには、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報のいずれかを少なくとも含めることとする。また、病院の環境変化には、競合病院ができたことや、患者数の季節変動、転院先病院のリソース状況、レセプトデータ、患者アンケート結果の変動なども適宜含められる。特にレセプトデータをそれぞれの運営方針毎の機械学習に含めることで、病院の経営的側面、医療の質、医療の効率、在院時間、患者満足度などで区分けできる運営方針毎の判断支援情報の内容の差異として有意な変動を生じさせ得る。
また、個々の患者に対する治療計画に関するパラメータには、検査日、インフォームドコンセント日、退院日などに関しての予定日と実行日とを個別の項目として含めることが望ましい。また、個々の患者に対する治療計画からのズレには、急患の発生状況や、患者の回復具合、個別の患者の治療計画からのズレを学習のパラメータに含めることができる。これらのパラメータを加えることで、病院の経営的側面、医療の質、医療の効率、在院時間、患者満足度などで区分けできる運営方針毎の判断支援情報の内容の差異として有意な変動を生じさせ得る。
機械学習手法は特に限定しないものの、期待値最大化法やEM法(expectation-maximization algorithm)、などを用いることとすればよい。また例えば強化学習のアルゴリズムとして、必要に応じてSVM(Support Vector Machine)等の回帰手法、k近傍法等のクラスタリング手法や、学習ベクトル量子化などのニューラルネットワーク手法、ランダムフォレスト等のアンサンブル法、などを組み合わせて用いることとしてもよい。
このように、医療情報処理システム1は、病院でアクセス可能に管理されている各種データベースと個々の病院の運営方針の学習モデルとを用いて、現在の状況に逐次合わせて、医療従事者に病院の全体として最適であろう行動方針とできる判断支援情報を提供する。
各種データベースには、入力や取得、センシングできる変化する病院の置かれた環境それぞれを個別の項目として数多く管理されることが望ましい。このことで、モデル学習部30及び行動最適化部20を介することで、個々の運営方針の最大化モデルと個別の判断支援情報とに、時々刻々と変化する病院の環境変化を反映させられる。
同様に、各種データベースには、入力や取得、センシングできる個々の患者に対する治療計画からのズレを個別の項目として含めて管理されることが望ましい。このことで、モデル学習部30及び行動最適化部20を介することによって、個々の運営方針の最大化モデルと個別の判断支援情報とに、時々刻々と生じる個々の患者に対する治療計画からのズレを反映させられる。
上記構成によって、医療情報処理システム1は、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施可能になる。
[実施形態の動作説明]
次に、本実施形態に係る医療情報処理システム1の動作を説明する。
図2は、本実施形態の医療情報処理システム1の基本フローを示すフローチャートである。図3は、医療情報処理システム1の機械学習フローを示すフローチャート例である。また、図4は、医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャート例である。
次に、本実施形態に係る医療情報処理システム1の動作を説明する。
図2は、本実施形態の医療情報処理システム1の基本フローを示すフローチャートである。図3は、医療情報処理システム1の機械学習フローを示すフローチャート例である。また、図4は、医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャート例である。
まず、基本フローは、図2に示したように次のようになる。
医療情報処理システム1は、予め、モデル学習部30によって、運営方針毎に、病院でアクセス可能に管理されている各種データベースを参照して、指標最大化モデルを機械学習する(F101)。
医療情報処理システム1は、行動最適化部20によって、選択された運営方針の最大化モデルを用いて、個々の患者に対する医療従事者の判断支援情報を生成し、医療従事者に提案する(F102)。
このフローのように、医療情報処理システム1は、入出力部10を介して運営方針の選択若しくは変更を受け付け、院内の各部署に属する医療従事者に、最新の運営方針に基づいた病院の全体効率を最大にし得る個々の患者に対する行動支援を、実施する。
医療情報処理システム1は、予め、モデル学習部30によって、運営方針毎に、病院でアクセス可能に管理されている各種データベースを参照して、指標最大化モデルを機械学習する(F101)。
医療情報処理システム1は、行動最適化部20によって、選択された運営方針の最大化モデルを用いて、個々の患者に対する医療従事者の判断支援情報を生成し、医療従事者に提案する(F102)。
このフローのように、医療情報処理システム1は、入出力部10を介して運営方針の選択若しくは変更を受け付け、院内の各部署に属する医療従事者に、最新の運営方針に基づいた病院の全体効率を最大にし得る個々の患者に対する行動支援を、実施する。
これにより、各医療従事者は、判断支援情報を参考に個々の患者に対する業務を実施できる。結果、各医療従事者は、自身が知っている事柄と共に、自身が知り得ていない様々な情報に基づいて導出された運営方針に沿った行動支援情報の内容を踏まえて、個々の患者に対する行動を実施できるようになる。
次に、図3は、医療情報処理システム1の機械学習フローを示すフローチャート例である。
まず、医療情報処理システム1のとなる情報処理システムのプロセッサーは、学習対象となる多量のデータ(電子カルテデータ、周囲環境データ、レセプトデータ等)を逐次各種データベースに収集する(S101)。
次に、プロセッサーは、各種データベースに蓄積されたデータ群から学習対象とする項目(特徴、パラメータ)のデータを抽出する(S102)。
次に、プロセッサーは、運営方針の指標毎に、特徴(パラメータ)群の関係を学習する(S103)。
最後に、プロセッサーは、指標毎の学習結果を学習モデル群記憶部に蓄積する(S104)。
この機械学習は、定期的に実施して、最新の学習結果にアップデートすることが望ましい。
図4は、医療情報処理システム1の判断支援情報生成ルーチンを示すフローチャート例である。この判断支援情報は、例えば医師が次に診察する患者について治療前に見ることを想定している。また、判断支援情報生成ルーチンは、院内で各医療従事者が患者に対する業務を行う各所で実施されることとする。
まず、医療情報処理システム1となる情報処理システムのプロセッサーは、対象患者の患者情報を取得する(S201)。例えば、電子カルテデータベースから患者情報を取得すればよい。
次に、プロセッサーは、入力された運営方針の学習モデル(最大化モデル)を呼出す(S202)。
次に、プロセッサーは、選択指標の学習モデルに基づいた対象患者(患者属性)に対する行動最適化方針を導出処理する(S203)。
最後に、プロセッサーは、導出した行動最適化方針を判断支援情報として医療従事者に通知する(S204)。
この患者に対する医療従事者の判断支援情報の生成処理は、医療従事者からの要求に適宜応答して行われてもよいし、医療従事者が病室に近づいた際に自動的に判断支援情報の生成を行うこととしてもよい。
このように情報処理システムを動作させることで、医療情報処理システム1は、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施することが可能になる。
ここで、医療情報処理システム1の全体の動作を視覚的に示して説明する。
図5は、医療情報処理システム1の動作を視覚的に示した説明図である。
図示した個別患者の対応フローは入院患者に対する一般的な病院の対応フローを想定して“検査”→“診断”→“治療”→“退院判断”の順で退院までのフローをブロック化して示している。この個別患者の対応フローは、通院患者や緊急外来、病床などによって適宜組み直せばよい。
図5は、医療情報処理システム1の動作を視覚的に示した説明図である。
図示した個別患者の対応フローは入院患者に対する一般的な病院の対応フローを想定して“検査”→“診断”→“治療”→“退院判断”の順で退院までのフローをブロック化して示している。この個別患者の対応フローは、通院患者や緊急外来、病床などによって適宜組み直せばよい。
医療情報処理システム1は、モデル学習部30によって、予め、病院でアクセス可能に管理されている各種データベースを参照して、病院全体が取り得る複数の運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデル(学習モデル)を生成する。また、医療情報処理システム1は、適宜各学習モデルを強化学習する。
医療情報処理システム1は、入出力部10によって、経営者等が定めた運営方針の選択を受け付け、行動最適化部20によって、選択された運営方針の最大化モデルを用いて、判断支援情報を各医療従事者の業務タイミングに合わせて各所で生成する。この判断支援情報は、各医療従事者にとって、病院の環境変化に合わせて、選定された運営方針に沿って病院の全体効率を最大化する個々の患者に対する行動支援になる。
図5は、検査用判断支援情報を提供する行動最適化部20の処理フロー例を示している。本フローでは、選択された運営方針の学習モデルと患者属性、周囲環境等を用いて、運営方針指標が最大化される検査手法が、最適検査手法として医療従事者に通知される。この処理動作は、個別の機械学習によって、患者属性の類似した過去の患者検査記録に基づいて例えばコスト優先や効果優先等の指定された方針に最適とされた検査手法を導出すればよい。
他の、診断用判断支援情報提供タイミング、治療用判断支援情報提供タイミング、退院判断用判断支援情報提供タイミングで行われる処理フローも同様に選択された運営方針の学習モデルに基づいて目的に則した判断支援情報の提供を実施すればよい。
なお、図5は、入院患者に対する対応フローを示している。他の患者に対しては、病院内の業務フローを実施する医療従事者が、個別の患者に対する業務を行う前にその業務フローに合わせて適宜判断支援情報を提供するように行動最適化部20を動作させればよい。
多くの既存の病院では、医療従事者が患者のために最適な業務(検査や治療など)を適宜判断して行っている。このことは検査計画や治療計画などの部分最適化と呼べる。医療従事者は自身の担当する業務範囲で患者にとって最適な対処を行うものと想定される。しかしながら、必ずしも、一部署での患者に対する部分最適化が病院内全体からして患者や病院に対して最適な結果とはならない。簡単な例では、健康診断で複数の検査を受ける患者は、個別の検査で短時間で済む高価な検査を受けたとしても、次の検査や診断を直ぐに受けられなければ、待ち時間が増え対価も増加するが帰宅時間は早まらない。人間は、個別事象の最適化に良好な判断を下せるものの、全体リソースに基づく個別事象の最適化判断に不向きな側面を有する。この観点に更に病院の運営方針を加味して個別事象の最適化を図ることは難しい。更に、病院の運営方針は、変更され得る。
病院の運営方針は、多くの場合、経営インパクトを考慮して定める。一方、医療従事者にとって、自身の判断、選択が病院の運営方針に則しているかどうか判断が難しい。
上記説明した本発明を適用した医療情報処理システムは、これらのことの解決を助ける。すなわち、病院経営のインパクトを鑑みた上で医療従事者が担当業務を実施することをサポートし、結果的に病院の運営方針に沿った運営に貢献する業務判断が可能になる。
より部分的に事後的分析により説明すれば、本発明は以下の要因について行動支援が行える。
部分最適の回避:
病院業務は1名の患者に関わる部門が多様である。ある部門の部分最適でなく全体最適の処置が何であるのか、をヒトが患者毎、状況毎、リソース状況毎に適切に判断することは困難である。複雑な状況や困難な状況では医療従事者は経験則に頼らざるを得ない。
病院業務は1名の患者に関わる部門が多様である。ある部門の部分最適でなく全体最適の処置が何であるのか、をヒトが患者毎、状況毎、リソース状況毎に適切に判断することは困難である。複雑な状況や困難な状況では医療従事者は経験則に頼らざるを得ない。
経営効率低下の回避:
目の前の患者にどのような処置をすべきか、と病院全体を鑑みた際にその処置が経営効率を最大化させるベストな処置かを患者毎、状況毎にヒトが判断することは困難である。
目の前の患者にどのような処置をすべきか、と病院全体を鑑みた際にその処置が経営効率を最大化させるベストな処置かを患者毎、状況毎にヒトが判断することは困難である。
オペレーション調整(経営方針変更)の混乱回避:
例えば、病院外の環境変化(天候、競合病院ができた、患者数の季節変動、転院先病院のリソース状況、レセプトデータ等)、治療計画からのブレ(急患、治療計画からのズレ等)を考慮した全体最適業務を行えない。重視すべき経営指標が変更された場合でも最適な処置の示唆を医療従事者に提示することが人間や従前のシステムでは困難である。
例えば、病院外の環境変化(天候、競合病院ができた、患者数の季節変動、転院先病院のリソース状況、レセプトデータ等)、治療計画からのブレ(急患、治療計画からのズレ等)を考慮した全体最適業務を行えない。重視すべき経営指標が変更された場合でも最適な処置の示唆を医療従事者に提示することが人間や従前のシステムでは困難である。
医療は患者の急変等、予測誤差のリスクが大きく、工業製品の工場のような画一的オペレーションが困難であり、かつ低リスクを求められる。これに対して、経営者や管理者は、病院全体の経営方針(例えば、予定外再入院率、スタフ労働時間、患者満足度を維持した上で、在院時間最短化等)を最大化すべく、大まかな指示を出す。他方、病院内の医療従事者は、自身の業務にまで経営方針を落とし込んで業務を調整することは困難である。
これらのことが、本医療情報処理システムでは、データベースに登録されている、その時の病院リソースや、患者毎のID、天気などの様々な情報に応じて、例えば費用対効果や総在院時間などを最適化する行動支援情報を、各患者に関わる各医療従事者に提示可能にある。
このため、人間では困難な、リソース全体最適化(ベッド数、スタフ能力、空検査装置などの高効率運用)を、天候、競合病院ができた、患者数の季節変動、転院先病院のリソース状況、レセプトの変更などの多岐に亘る膨大なデータ、治療計画等からのブレ(急患、治療計画からのズレ等)と共に、入力された運営方針を反映した業務調整が行えるようになる。
以上説明したように、本発明を適用した医療情報処理システムは、選択された病院全体の運営方針情報と現在の病院内および病院外の環境が反映されたデータベースとに基づいた個々の患者に対する医療従事者の判断支援を実施できる。
尚、本システムの各部は、図6および図7に例示するようなコンピュータシステム(サーバシステム)のハードウェアとソフトウェア、仮想化技術の組み合わせを適宜用いて実現すればよい。このコンピュータシステムは、所望形態に合わせた、1ないし複数のプロセッサーとメモリーを含む。また、このコンピュータシステムの形態は、上記メモリーに行動支援システム用のプログラムが展開され、このプログラムに基づいて1ないし複数のプロセッサー等のハードウェアを実行命令群やコード群で動作させることによって、各部を実現すればよい。この際、必要に応じて、このプログラムは、オペーレティングシステムや、マイクロプログラム、ドライバなどのソフトウェアが提供する機能と協働して、各部を実現することとしてもよい。
メモリーに展開されるプログラムデータは、プロセッサーを1ないし複数の上述した各部として動作させる実行命令群やコード群、テーブルファイル、コンテンツデータなどを適宜含む。
また、このコンピュータシステムは、必ずしも一つの装置として構築される必要はなく、複数のサーバ/コンピュータ/仮想マシンなどが組み合わさって、所謂、シンクライアントや、分散コンピューティング、クラウドコンピューティングで構築されてもよい。
また、コンピュータシステムの一部/全ての各部をハードウェアやファームウェア(例えば、一ないし複数のLSI:Large-Scale Integration、FPGA:Field Programmable Gate Array、電子素子の組み合わせ)で置換することとしてもよい。同様に、各部の一部のみをハードウェアやファームウェアで置換することとしてもよい。
また、このプログラムは、記録媒体に非一時的に記録されて頒布されても良い。当該記録媒体に記録されたプログラムは、有線、無線、又は記録媒体そのものを介してメモリーに読込まれ、プロセッサー等を動作させる。
尚、本明細書では、記録媒体には、類似するタームの記憶媒体やメモリー装置、ストレージ装置なども含むこととする。この記録媒体を例示すれば、オプティカルディスクや磁気ディスク、半導体メモリー装置、ハードディスク装置、テープメディアなどが挙げられる。また、記録媒体は、不揮発性であることが望ましい。また、記録媒体は、揮発性モジュール(例えばRAM:Random Access Memory)と不揮発性モジュール(例えばROM:Read Only Memory)の組み合わせを用いることとしてもよい。
上記形態を別の表現で説明すれば、医療情報処理システムとして動作させる情報処理システムを、メモリーに展開された行動支援プログラムに基づき、入出力部、行動最適化部、モデル学習部として動作させることで、その結果、本発明に係る医療情報処理システムを実現できる。
同様に、上記形態を更に別の表現で説明すれば、記録媒体は、メモリーに展開されて情報処理システムのプロセッサーで動作する行動支援プログラムを含み、情報処理リソースに学習工程、入力工程、行動支援工程を適時実行させることで、本発明に係る医療情報処理システムを構築できる。
なお、実施形態を例示して本発明を説明した。しかし、本発明の具体的な構成は前述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更があってもこの発明に含まれる。例えば、上述した実施形態のブロック構成の分離併合、手順の入れ替えなどの変更は本発明の趣旨および説明される機能を満たせば自由であり、上記説明が本発明を限定するものではない。
この出願は、2017年9月8日に出願された日本出願特願2017-172847号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 医療情報処理システム(コンピュータシステム)
10 入出力部
20 行動最適化部
30 モデル学習部
10 入出力部
20 行動最適化部
30 モデル学習部
Claims (10)
- 病院全体が取り得る複数の運営方針を定めた運営方針の選択を受け付ける運営方針入力部と、
病院でアクセス可能に管理されているデータベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成するモデル学習部と、
前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する行動最適化部と、
を具備することを特徴とする医療情報処理システム。 - 前記モデル学習部は、病院でアクセス可能に管理されている前記データベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化と個々の患者に対する治療計画からのズレとに対する最大化モデルを生成し、
前記行動最適化部は、前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化と個々の患者に対する治療計画からのズレとに合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する
ことを特徴とする請求項1に記載の医療情報処理システム。 - 前記行動最適化部は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者に対する病室環境の変更方針を示す通知を生成することを特徴とする請求項2に記載の医療情報処理システム。
- 前記行動最適化部は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者のオーダリング方針を示す通知を生成することを特徴とする請求項1から3の何れか一項に記載の医療情報処理システム。
- 前記行動最適化部は、選択された運営方針の最大化モデルを用いて、病院でアクセス可能に管理されている前記データベースの現在の状況に合わせて、判断支援情報として個々の患者の退院後ケア業務の方針を示す通知を生成することを特徴とする請求項1から4の何れか一項に記載の医療情報処理システム。
- 病院の環境変化には、近隣医療機関の入院患者数、転院先医療機関の入院患者数、その地域の気候、その地域の人口の増減、来院患者数に関する情報のいずれかが少なくとも含まれ、
病院の環境変化は、病院でアクセス可能に管理されている前記データベースで、病院の環境変化それぞれを個別の項目として管理することで、前記モデル学習部によって、個々の運営方針の最大化モデルに反映される
ことを特徴とする請求項1から5の何れか一項に記載の医療情報処理システム。 - 個々の患者に対する治療計画には、少なくとも検査日、インフォームドコンセント日、退院日のいずれかに関しての予定日と実行日とが含まれ、
個々の患者に対する治療計画は、病院でアクセス可能に管理されている前記データベースで、個々の患者に対する治療計画の予定日と実行日とをそれぞれを個別の項目として管理することで、前記モデル学習部によって、個々の運営方針の最大化モデルに反映される
ことを特徴とする請求項2から6の何れか一項に記載の医療情報処理システム。 - 個々の患者に対する治療計画からのズレには、少なくとも、救急患者の発生状況、患者の回復具合が含まれ、
個々の患者に対する治療計画からのズレは、病院でアクセス可能に管理されている前記データベースで、個々の患者に対する治療計画からのズレそれぞれを個別の項目として管理することで、前記モデル学習手段によって、個々の運営方針の最大化モデルに反映される
ことを特徴とする請求項2から7の何れか一項に記載の医療情報処理システム。 - モデル学習部によって、予め、病院でアクセス可能に管理されているデータベースを参照して、病院全体が取り得る複数の運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成し、
運営方針入力部によって、運営方針の選択を受け付け、
行動最適化部によって、選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する
ことを特徴とする判断支援情報生成方法。 - 情報処理システムのプロセッサーを、
病院全体が取り得る複数の運営方針を定めた運営方針の選択を受け付ける運営方針入力部と、
病院でアクセス可能に管理されているデータベースを参照して、選択可能な運営方針毎に個々の運営方針の病院の環境変化に対する最大化モデルを生成するモデル学習部と、
前記運営方針入力部で選択された運営方針の最大化モデルを用いて、病院の環境変化に合わせて病院の全体効率を最大化する個々の患者に対する医療従事者の判断支援情報を生成する行動最適化部、
として動作させることを特徴とするプログラムを非一時的に記録した記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019540941A JP7011339B2 (ja) | 2017-09-08 | 2018-09-03 | 医療情報処理システム |
US16/645,248 US20200373006A1 (en) | 2017-09-08 | 2018-09-03 | Medical information processing system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-172847 | 2017-09-08 | ||
JP2017172847 | 2017-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049819A1 true WO2019049819A1 (ja) | 2019-03-14 |
Family
ID=65634135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032565 WO2019049819A1 (ja) | 2017-09-08 | 2018-09-03 | 医療情報処理システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200373006A1 (ja) |
JP (1) | JP7011339B2 (ja) |
WO (1) | WO2019049819A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021041185A1 (en) * | 2019-08-29 | 2021-03-04 | Nec Laboratories America, Inc. | Adversarial cooperative imitation learning for dynamic treatment |
JP2022110990A (ja) * | 2021-01-19 | 2022-07-29 | 株式会社アルム | 感染者療養管理システム |
JP7325881B1 (ja) * | 2023-06-29 | 2023-08-15 | 株式会社アスター | 情報処理装置、情報処理方法および情報処理プログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019106881A1 (ja) * | 2017-11-30 | 2019-06-06 | テルモ株式会社 | 支援システム、支援方法、および支援プログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013109762A (ja) * | 2011-11-23 | 2013-06-06 | General Electric Co <Ge> | 実時間状況対応kpiに基づく自律警報エージェント |
JP2015533433A (ja) * | 2012-10-22 | 2015-11-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ヘルスケアシステム及び方法 |
JP2016532459A (ja) * | 2013-07-31 | 2016-10-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 患者のケアを調整する医療用意思決定支援システム |
-
2018
- 2018-09-03 JP JP2019540941A patent/JP7011339B2/ja active Active
- 2018-09-03 WO PCT/JP2018/032565 patent/WO2019049819A1/ja active Application Filing
- 2018-09-03 US US16/645,248 patent/US20200373006A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013109762A (ja) * | 2011-11-23 | 2013-06-06 | General Electric Co <Ge> | 実時間状況対応kpiに基づく自律警報エージェント |
JP2015533433A (ja) * | 2012-10-22 | 2015-11-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ヘルスケアシステム及び方法 |
JP2016532459A (ja) * | 2013-07-31 | 2016-10-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 患者のケアを調整する医療用意思決定支援システム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021041185A1 (en) * | 2019-08-29 | 2021-03-04 | Nec Laboratories America, Inc. | Adversarial cooperative imitation learning for dynamic treatment |
JP2022110990A (ja) * | 2021-01-19 | 2022-07-29 | 株式会社アルム | 感染者療養管理システム |
JP7325881B1 (ja) * | 2023-06-29 | 2023-08-15 | 株式会社アスター | 情報処理装置、情報処理方法および情報処理プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019049819A1 (ja) | 2020-09-24 |
US20200373006A1 (en) | 2020-11-26 |
JP7011339B2 (ja) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11264128B2 (en) | Machine-learning framework for coordinating and optimizing healthcare resource utilization and delivery of healthcare services across an integrated healthcare system | |
US11256876B2 (en) | Gap in care determination using a generic repository for healthcare | |
US11080367B2 (en) | System-wide probabilistic alerting and activation | |
US20170185723A1 (en) | Machine Learning System for Creating and Utilizing an Assessment Metric Based on Outcomes | |
Beuscart-Zéphir et al. | Example of a human factors engineering approach to a medication administration work system: potential impact on patient safety | |
US20060282302A1 (en) | System and method for managing healthcare work flow | |
US20080255880A1 (en) | Plan-of-Care Order-Execution-Management Software System | |
US20160253463A1 (en) | Simulation-based systems and methods to help healthcare consultants and hospital administrators determine an optimal human resource plan for a hospital | |
JP7011339B2 (ja) | 医療情報処理システム | |
US20180165780A1 (en) | Business intelligence portal | |
US20140108035A1 (en) | System and method to automatically assign resources in a network of healthcare enterprises | |
US20150039343A1 (en) | System for identifying and linking care opportunities and care plans directly to health records | |
WO2020069466A1 (en) | Healthcare ecosystem methods, systems, and techniques | |
CA2942983C (en) | System and method for managing illness outside of a hospital environment | |
US20170024523A1 (en) | Requirement Forecast for Health Care Services | |
US20170177801A1 (en) | Decision support to stratify a medical population | |
US20090177489A1 (en) | Systems and methods for patient scheduling and record handling | |
US20220359067A1 (en) | Computer Search Engine Employing Artificial Intelligence, Machine Learning and Neural Networks for Optimal Healthcare Outcomes | |
Copenhaver et al. | Health system innovation: Analytics in action | |
Golmohammadi et al. | Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics | |
Kılıç et al. | Patient adherence in healthcare operations: A narrative review | |
REITER | IMPLEMENTATION OF BUSINESS INTELLIGENCE IN AN ELECTRONIC HEALTH RECORD TO IMPROVE HEALTHCARE MANAGEMENT | |
Reischer | Classic Medicine, Modern Care: Development of an Innovative Medical Home Visit App | |
Lapinsky | Computers in intensive care | |
Chakravarty et al. | Healthcare Delivery Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853282 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019540941 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853282 Country of ref document: EP Kind code of ref document: A1 |