WO2019049589A1 - Light source device and light projection device - Google Patents

Light source device and light projection device Download PDF

Info

Publication number
WO2019049589A1
WO2019049589A1 PCT/JP2018/029717 JP2018029717W WO2019049589A1 WO 2019049589 A1 WO2019049589 A1 WO 2019049589A1 JP 2018029717 W JP2018029717 W JP 2018029717W WO 2019049589 A1 WO2019049589 A1 WO 2019049589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
light source
laser light
source device
Prior art date
Application number
PCT/JP2018/029717
Other languages
French (fr)
Japanese (ja)
Inventor
森本 廉
公博 村上
麻生 淳也
博隆 上野
古賀 稔浩
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019540838A priority Critical patent/JPWO2019049589A1/en
Publication of WO2019049589A1 publication Critical patent/WO2019049589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present disclosure relates to a light source device that emits light and a light projecting device using the light source device.
  • a light source device that generates light of a predetermined wavelength by irradiating a wavelength conversion member with light emitted from a laser light source.
  • this light source device for example, light that is wavelength-converted and diffused by the wavelength conversion member and light that is diffused without wavelength conversion by the wavelength conversion member are combined, and light of a predetermined color such as white light is generated. It is generated.
  • a light source device is used, for example, as a light source device of a vehicular headlamp.
  • Patent Document 1 discloses a light projector (headlight) that projects a light image generated by light conversion means (phosphor) onto a road by a light projection optical system.
  • the projector comprises six laser light sources and two micro mirrors. Three laser light sources are assigned to one micro mirror.
  • the three laser beams incident on one micro mirror are irradiated on the light emitting surface of the light conversion means at positions mutually displaced in the direction perpendicular to the scanning direction.
  • the micro mirror vibrates only around a single axis. As the micromirrors vibrate, the beam spots displaced relative to each other in the direction perpendicular to the scanning direction scan the light emitting surface of the light conversion means.
  • the three laser beams scanned by one micro mirror are positioned on the light emitting surface of the light conversion means at a position between the three laser beams scanned by the other micro mirror.
  • Patent Document 1 In the configuration of Patent Document 1 described above, six positions displaced in the direction perpendicular to the scanning direction are scanned with laser light emitted from each laser light source. If there is a fluctuation in intensity, band-like unevenness occurs in the light distribution from the wavelength conversion member. In addition, even when one of the optical systems for guiding the plurality of laser light sources or the respective laser beams to the wavelength conversion member is deviated due to impact such as vibration or temporal change, the light distribution is also uneven similarly. Become.
  • the present disclosure provides a light source device capable of smoothly controlling the output of each laser light source while suppressing occurrence of unevenness in light distribution, and a light projecting device using the same. To aim.
  • a first aspect of the present disclosure relates to a light source device.
  • the light source device includes a plurality of laser light sources, a wavelength conversion member, an optical deflector, an optical system, a position detector, and a controller.
  • the wavelength conversion member converts the wavelength of the laser light emitted from the plurality of laser light sources into another wavelength and diffuses the wavelength-converted light.
  • the light deflector scans laser light emitted from the plurality of laser light sources on the incident surface of the wavelength conversion member.
  • the optical system is a plurality of beams arranged in the scanning direction on the incident surface of the wavelength conversion member by a plurality of laser beams respectively emitted from a plurality of laser light sources and at least one spot is separated from the other spots. Form a spot.
  • the position detector receives specularly reflected light of the plurality of laser beams specularly reflected on the incident surface of the wavelength conversion member with respect to the scanning range on the incident surface, and outputs a detection signal according to the light receiving position and the received light amount Do.
  • the controller controls the plurality of laser light sources based on the detection signal from the position detector.
  • the beam spots are arranged in the scanning direction and are separated from each other on the incident surface of the wavelength conversion member, even if a failure such as a failure occurs in any one laser light source, There is no unevenness in light distribution.
  • the specularly reflected light of the plurality of laser beams specularly reflected on the incident surface of the wavelength conversion member is received by the position detector for all scanning ranges on the incident surface, so the detection signal from the position detector The output of each laser light source can be controlled smoothly.
  • a second aspect of the present disclosure relates to a light projecting device.
  • the light projecting device includes the light source device according to the first aspect, and a projection optical system that projects the light diffused by the wavelength conversion member.
  • the same effect as the first aspect can be exhibited.
  • the output of each laser light source can be smoothly controlled while suppressing the occurrence of unevenness in light distribution.
  • FIG. 1A is a side view showing a configuration of a light projecting device according to an embodiment.
  • FIG. 1B is a plan view showing the configuration of the light projecting device according to the embodiment.
  • FIG. 2 is a perspective view showing the configuration and arrangement of the laser light source according to the embodiment.
  • FIG. 3 is a view schematically showing a convergence state of the laser beam after being reflected by the cylindrical mirror according to the embodiment.
  • FIG. 4A is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the embodiment.
  • FIG. 4B is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the embodiment.
  • FIG. 4A is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the embodiment.
  • FIG. 4B is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion
  • FIG. 5A is a diagram showing a configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment.
  • FIG. 5B is a diagram showing a configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment.
  • FIG. 6A is a diagram showing another configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment.
  • FIG. 6B is a view schematically showing the arrangement of beam spots of each laser beam formed on the incident surface of the wavelength conversion member according to the configuration example of FIG. 6A.
  • FIG. 7A is a side view schematically showing the configuration of the wavelength conversion member according to the embodiment.
  • FIG. 7B is a plan view schematically showing the configuration of the wavelength conversion member according to the embodiment.
  • FIG. 8A is a diagram for describing a configuration of a position detector according to an embodiment and a method for generating a position detection signal.
  • FIG. 8B is a cross-sectional view schematically showing the configuration of the position detector according to the embodiment.
  • FIG. 9A is a view schematically showing the movement of the beam spot on the incident surface of the wavelength conversion member according to the embodiment.
  • FIG. 9B is a view schematically showing the movement of a specularly reflected light spot on the position detector when the beam spot moves as shown in FIG. 9A according to the embodiment.
  • FIG. 10 is a circuit block diagram showing a main circuit configuration of the light source device according to the embodiment.
  • FIG. 11A is a flowchart showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot according to the embodiment.
  • FIG. 11B is a flowchart showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot according to the embodiment.
  • FIG. 11C is a view schematically showing a scanning state of a specularly reflected light spot on the light receiving surface of the position detector at the time of check scanning according to the embodiment.
  • FIG. 12A is a diagram showing parameters for output control of the laser light source according to the embodiment.
  • FIG. 12B is a timing chart showing an example of output control of the laser light source according to the embodiment.
  • FIG. 13A is a view showing parameters for output control of the laser light source according to the embodiment.
  • FIG. 13B is a timing chart showing another example of output control of the laser light source according to the embodiment.
  • FIG. 14A is a side view showing the configuration of a light projecting device according to a modification.
  • FIG. 14B is a plan view showing the configuration of a light projecting device according to a modification.
  • FIG. 15A is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the modification.
  • FIG. 15B is a view schematically showing a scanning state of a specularly reflected light spot on the light receiving surface of the position detector at the time of check scanning according to the modification.
  • This coordinate axis is a global coordinate system (Fig. 1A, Fig. 1B, Fig. 14A, Fig. 14B) in which the light projection direction of the light source device and the light projection device is Z axis, and the light emission direction or reflection of optical components to be described.
  • FIG. 15B is appropriately used in accordance with the description, and therefore, the two do not necessarily coincide.
  • FIG. 1A and FIG. 1B are a side view and a plan view showing the configuration of the light projecting device according to the embodiment, respectively.
  • the light projecting device 1 includes a light source device 2 for generating light and a projection optical system 3 for projecting the light generated by the light source device 2.
  • the projection optical system 3 includes two lenses 3a and 3b, and the lenses 3a and 3b condense light from the light source device 2 and project the light to a target area.
  • the projection optical system 3 does not necessarily have to be composed of two lenses 3a and 3b. For example, it may be a single lens or may be equipped with two or more lenses or mirrors.
  • the projection optical system 3 may be configured to condense the light from the light source device 2 by a concave mirror.
  • the light source device 2 includes three laser light sources 11a to 11c, three collimator lenses 12a to 12c, two reflecting prisms 13a and 13b, a cylindrical lens 14, a reflecting mirror 15, an optical deflector 16, and a cylindrical mirror 17 and the wavelength conversion member 18.
  • the cylindrical lens 14 and the cylindrical mirror 17 constitute a condensing optical system for causing the laser light emitted from the laser light sources 11a to 11c to converge on the incident surface of the wavelength conversion member 18.
  • the above-described members constituting the light source device 2 are installed together with the projection optical system 3 on a base (not shown).
  • the laser light sources 11a to 11c respectively emit laser light in a blue wavelength band (for example, 450 nm).
  • the laser light sources 11a to 11c are made of, for example, semiconductor lasers.
  • the laser light sources 11a to 11c are laser light sources of the same type.
  • the wavelength of the laser light emitted from the laser light sources 11a to 11c can be changed as appropriate.
  • the laser light sources 11a to 11c are not necessarily single emitter semiconductor lasers having a single light emitting area, and may be, for example, multi-emitter semiconductor lasers having a plurality of light emitting areas in one light emitting element.
  • the laser light sources 11a to 11c do not necessarily emit laser light of a single wavelength band, and may be, for example, a multi-emission semiconductor laser in which a plurality of light emitting elements are mounted on one substrate.
  • the collimator lenses 12a to 12c convert the laser beams emitted from the laser light sources 11a to 11c into parallel beams, respectively.
  • the reflecting prisms 13 a and 13 b respectively reflect the laser beams transmitted through the collimator lenses 12 b and 12 c in the direction toward the cylindrical lens 14.
  • a plate-like reflection mirror may be used instead of the reflection prisms 13a and 13b.
  • the laser light sources 11b and 11c are disposed to face each other.
  • the reflecting prisms 13a and 13b are disposed such that a gap is generated in the direction in which the laser light sources 11b and 11c face each other, that is, in the X-axis direction.
  • the laser light sources 11a to 11c are arranged such that the emission optical axis is included in one plane parallel to the XZ plane.
  • the laser light emitted from the laser light source 11a is converted into parallel light by the collimator lens 12a, and then travels to the cylindrical lens 14 through the gap between the reflecting prisms 13a and 13b.
  • the optical axes of the opposed laser light sources 11b and 11c are bent in directions parallel to the XZ plane by the reflecting prisms 13a and 13b.
  • the laser beams emitted from the laser light sources 11a to 11c are incident on the incident surface of the cylindrical lens 14 at mutually different positions in the X-axis direction.
  • three laser beams can be approached without being limited by the package and cap outer shape of the laser light sources 11a to 11c.
  • the optical system after the cylindrical lens 14 can be made compact, and the influence of the aberration of the optical system can be reduced.
  • the size of the mirror 16 a of the light deflector 16 can be reduced, and the increase in size and power consumption of the light deflector 16 can be suppressed.
  • the laser light emitted from the laser light source 11 a is incident on the central position of the incident surface of the cylindrical lens 14.
  • the laser beams emitted from the laser light sources 11 b and 11 c are respectively incident at positions deviated from the central position of the incident surface of the cylindrical lens 14 by a predetermined distance in the X axis positive and negative directions.
  • the cylindrical lens 14 is a curved surface in which the incident surface is curved only in the direction parallel to the XZ plane.
  • the entrance surface of the cylindrical lens 14 is aspheric, and the exit surface of the cylindrical lens 14 is a plane perpendicular to the Z axis.
  • the exit surface of the cylindrical lens 14 may also be a curved surface curved in a direction parallel to the XZ plane.
  • the entrance surface of the cylindrical lens 14 may be flat and the exit surface may be curved.
  • the cylindrical lens 14 is disposed such that the generatrix of the incident surface is perpendicular to a plane including the optical axes of the three laser beams incident on the incident surface, that is, parallel to the Y-axis direction.
  • the cylindrical lens 14 has a convergence power only in the direction in which the three optical axes of the laser light sources 11a to 11c at the incident position are aligned, ie, in the X-axis direction.
  • the laser light emitted from the laser light sources 11a to 11c is converged by the cylindrical lens 14 on the incident surface of the wavelength conversion member 18 in the scanning direction of the laser light.
  • beam spots of three laser beams are formed on the incident surface of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
  • the reflection mirror 15 bends the optical axes of the three laser beams transmitted through the cylindrical lens 14 in the direction parallel to the YZ plane.
  • the three laser beams are reflected by the reflection mirror 15 and then enter the mirror 16 a of the light deflector 16. Note that, depending on the layout of the optical system from the cylindrical lens 14 to the wavelength conversion member 18, the reflection mirror 15 may be omitted. In this case, the three laser beams transmitted through the cylindrical lens 14 directly enter the mirror 16 a of the light deflector 16.
  • the light deflector 16 includes a mirror 16a, and changes the traveling direction of the laser beam reflected by the reflection mirror 15 by rotating the mirror 16a about a rotation axis L1 parallel to the Z axis.
  • the incident surface of the mirror 16a is a plane.
  • the mirror 16a is, for example, a high reflectance mirror in which a dielectric multilayer film is formed on a glass plate.
  • the mirror 16a is disposed parallel to the XZ plane at the neutral position.
  • the light deflector 16 is configured of, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
  • the cylindrical mirror 17 is a reflecting surface whose incident surface is curved in a concave direction only in the direction parallel to the YZ plane.
  • the incident surface of the cylindrical mirror 17 is spherical, but may be aspheric.
  • the cylindrical mirror 17 is disposed such that the generatrix of the incident surface is parallel to a plane including the optical axes of the three laser beams incident on the incident surface, that is, parallel to the X-axis direction.
  • the cylindrical mirror 17 has convergent power only in the direction perpendicular to the direction in which the three optical axes of the laser light sources 11a to 11c at the incident position are aligned, ie, in the direction parallel to the YZ plane.
  • the laser light emitted from the laser light sources 11a to 11c is converged by the cylindrical mirror 17 on the incident surface of the wavelength conversion member 18 in the direction perpendicular to the scanning direction of the laser light.
  • the cylindrical mirror 17 may be replaced with a transmission type cylindrical lens.
  • the three laser beams incident on the cylindrical lens are subjected to the converging action in the direction parallel to the YZ plane by the cylindrical lens, and then enter the wavelength conversion member 18.
  • the incident surface of the mirror 16a may be replaced with a cylindrical mirror surface.
  • the cylindrical mirror 17 is omitted or is a flat reflection mirror, and the three laser beams incident on the cylindrical lens 14 have a converging action in a direction parallel to the YZ plane by the mirror 16a of the cylindrical surface. After receiving, it passes through the reflection mirror or directly enters the wavelength conversion member 18 as it is.
  • the wavelength conversion member 18 is disposed at a position where the laser light reflected by the cylindrical mirror 17 is incident.
  • the wavelength conversion member 18 is a rectangular plate-like member, and is installed so that the incident surface is parallel to the XY plane. As described above, when the mirror 16a pivots about the pivot axis L1, the wavelength conversion member 18 is scanned in the longitudinal direction by the laser beam.
  • the wavelength conversion member 18 converts a part of the incident laser light into a wavelength different from that of the blue wavelength band and diffuses it in the Z-axis direction. Other laser beams not subjected to wavelength conversion are diffused by the wavelength conversion member 18 in the Z-axis direction. Thus, the diffused light of two types of wavelengths is combined to generate light of a predetermined color. The light of each wavelength is taken into the projection optical system 3 and projected onto the target area.
  • part of the laser light is converted into light in the yellow wavelength band by the wavelength conversion member 18.
  • the diffused light in the yellow wavelength band after wavelength conversion and the scattered light in the blue wavelength band not subjected to wavelength conversion are synthesized to generate white light.
  • the wavelength after wavelength conversion may not be in the yellow wavelength band, and the color of the light generated may be a color other than white.
  • the configuration of the wavelength conversion member 18 will be described later with reference to FIGS. 7A and 7B.
  • FIG. 2 is a perspective view showing the configuration and arrangement of the laser light source 11a.
  • the structure of the light emitting element 110 with which the laser light source 11a was equipped is shown by FIG.
  • the configuration of the light emitting elements of the other laser light sources 11b and 11c is the same as that shown in FIG.
  • Upper and lower surfaces of the light emitting element 110 are electrodes 111 and 112.
  • the laser beam 130 is emitted from the active layer 113 sandwiched between the upper and lower cladding layers along the emission optical axis 120.
  • the laser beam 130 spreads in a direction parallel to the active layer 113 and in a direction perpendicular to the active layer 113 at a predetermined radiation angle.
  • the radiation angle in the direction perpendicular to the active layer 113 is larger than the radiation angle in the direction parallel to the active layer 113. Therefore, the beam shape of the emitted laser beam 130 is an ellipse.
  • the major axis of this ellipse is called the fast axis
  • the minor axis of the ellipse is called the slow axis.
  • the laser light source 11 a is disposed such that the fast axis is parallel to the convergence direction of the cylindrical lens 14.
  • the remaining two laser light sources 11 b and 11 c are arranged such that the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14 at the incident position of the cylindrical lens 14.
  • the laser light is more likely to converge in the direction along the fast axis than the direction along the slow axis. This is because the width of the light emitting region in the fast axis direction at the end face of the laser light sources 11a to 11c (semiconductor laser) is generally narrower than that of the slow axis. Therefore, by arranging the laser light sources 11a to 11c as described above, the laser beams emitted from the laser light sources 11a to 11c can be converged efficiently by the cylindrical lens 14.
  • FIG. 3 is a view schematically showing the convergence state of the laser beam after being reflected by the cylindrical mirror 17.
  • broken lines from the cylindrical mirror 17 toward the wavelength conversion member 18 indicate the laser beams 130a to 130c emitted from the laser light sources 11a to 11c, and the ellipses indicated by the broken lines indicate the beam spots BSa to BSa of these laser lights. It shows BSc.
  • the laser beam source 11a is arranged such that the three beam spots BSa to BSc are aligned in the scanning direction of the laser beam and separated from each other on the incident surface 18a of the wavelength conversion member 18. 11c and the cylindrical lens 14 (condensing optical system) are adjusted.
  • the size of beam spots BSa to BSc is defined by an area of 1 / e 2 or more of the intensity peak.
  • the sizes of the beam spots BSa to BSc may be defined by full width at half maximum (FWHM). In this case, even if a part of the region of 1 / e 2 or more of the intensity peak overlaps, it can be said that the beam spots BSa to BSc are separated from each other if the beam spots defined by FWHM do not overlap. .
  • the method of defining the beam size is the same as in the modification described later.
  • FIGS. 4A and 4B are diagrams for explaining the configuration for separating the beam spots BSa to BSc in the scanning direction on the incident surface 18a of the wavelength conversion member 18, respectively.
  • the illustration of the optical member disposed between the cylindrical lens 14 and the wavelength conversion member 18 is omitted.
  • the arrangement of the laser light sources 11a to 11c or the arrangement of the reflecting prisms 13a and 13b is adjusted so that the laser beams 130a to 130c enter the cylindrical lens 14 in a nonparallel state.
  • the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 with the optical axis parallel to the Z axis
  • the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are Respectively, the light is incident on the cylindrical lens 14 in a state in which the optical axis is slightly inclined in the positive and negative directions of the X-axis from the state in parallel with the Z-axis.
  • the cylindrical lens 14 has no aberration, and the cylindrical lens 14 is configured to converge incident parallel light into one focal line. That is, the cylindrical lens 14 is a single focus cylindrical lens. Further, the optical system is set such that the optical path length from the cylindrical lens 14 to the wavelength conversion member 18 and the focal length of the cylindrical lens 14 are substantially the same.
  • the convergence position of the laser beams 130a to 130c is the incident surface 18a of the wavelength conversion member 18.
  • they are mutually displaced in the scanning direction (X-axis direction).
  • the beam spots BSa to BSc of the laser beams 130a to 130c are aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other.
  • the laser beams 130a to 130c may be incident on the cylindrical lens 14 in parallel with each other as shown in FIG. 4B.
  • the beam spots BSa to BSc of the laser beams 130a to 130c are positioned on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
  • the adjustment of the incident direction of the laser beams 130b and 130c to the cylindrical lens 14 is performed, for example, on the reflection surface of the reflecting prisms 13a and 13b with respect to the emission optical axis of the laser light sources 11b and 11c, as shown in FIG. It can be done by adjusting the tilt.
  • the laser light sources 11b and 11c are disposed such that the emission light axes are parallel to the X axis, and the light emission axes of the laser light sources 11b and 11c are opposite to the reflection surfaces of the reflection prisms 13a and 13b.
  • the reflective prisms 13a and 13b are disposed such that the angle ⁇ is slightly larger than 45 degrees.
  • the laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis.
  • the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 in parallel to the Z axis, and the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are , And enters the cylindrical lens 14 in a state slightly inclined from the state parallel to the Z axis.
  • adjustment of the incident direction of the laser beams 130b and 130c with respect to the cylindrical lens 14 is performed, for example, as shown in FIG. 5B, with the emission optical axes of the laser light sources 11b and 11c parallel to the X axis. Can also be performed by tilting in a direction parallel to the XZ plane.
  • the reflecting prisms 13a and 13b are disposed such that the reflecting surface has an inclination of 45 degrees with respect to the X axis, and the emission optical axes of the laser light sources 11b and 11c and the reflection of the reflecting prisms 13a and 13b, for example.
  • the laser light sources 11 b and 11 c are disposed such that the angles ⁇ with the surface are slightly larger than 45 degrees, respectively.
  • the collimator lenses 12b and 12c are arranged such that the optical axes thereof are aligned with the emission optical axes of the laser light sources 11b and 11c.
  • the laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis.
  • the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 in parallel to the Z axis, and the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are , And enters the cylindrical lens 14 in a state slightly inclined from the state parallel to the Z axis.
  • the arrangement of both the laser light sources 11b and 11c and the reflecting prisms 13a and 13b may be adjusted.
  • the laser light sources 11b and 11c are tilted so that the optical axes of the laser beams 130b and 130c approach the optical axis of the laser beam 130a as the incident surface of the cylindrical lens 14 is approached.
  • the laser beams 130b and 130c intersect and the laser beam 130b is shifted to the X axis negative side with respect to the laser beam 130a.
  • the laser beam 130c is converged to a position deviated to the X axis positive side with respect to the laser beam 130a. Therefore, also according to this configuration, the three beam spots BSa to BSc can be arranged on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction of the laser light and separated from each other.
  • the laser light sources 11b and 11c are disposed so that the emission optical axis is parallel to the X axis, and the reflection prisms 13a and 13b are disposed such that the reflection surface is inclined 45 degrees with respect to the X axis. Ru.
  • the laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis.
  • the laser beams 130a to 130b enter the cylindrical lens 14 with the optical axes parallel to each other.
  • the optical path length from the cylindrical lens 14 to the wavelength conversion member 18 is set to be approximately the same as the focal length of the cylindrical lens 14, in the incident surface 18 a of the wavelength conversion member 18
  • the width of the three laser beams 130a to 130c (beam spots BSa to BSc) in the scanning direction of the laser beam, that is, the X axis direction is compressed to about the width of the focal line generated by the converging action of the cylindrical lens 14.
  • the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 may be the same as or different from the focal length of the cylindrical mirror 17.
  • the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 is set to be equal to the focal length of the cylindrical mirror 17, the laser light converges to the minimum width proportional to the focal length of the cylindrical mirror 17.
  • the laser beam is less likely to be converged than the fast axis.
  • the light is incident on the wavelength conversion member 18 at a predetermined incident angle (referred to as ⁇ 1) from the direction parallel to the slow axis.
  • ⁇ 1 a predetermined incident angle
  • the width of the beam in the slow axis direction is expanded to 1 / cos ⁇ 1 times the minimum width proportional to the focal length of the cylindrical mirror 17. For this reason, laser light is converged with a certain width in the slow axis direction.
  • the width of the beam spots BSa to BSc in the slow axis direction is cylindrical.
  • the width can be designed wider than the minimum width at the focal position of the mirror 17.
  • the beam spots BSa to BSc of the three laser beams 130a to 130c are perpendicular to the scanning direction of the laser beam, that is, parallel to the YZ plane. You can design freely in a wide range. Therefore, on the incident surface 18a of the wavelength conversion member 18, the beam spots BSa to BSc of the three laser beams 130a to 130c have a linear shape extending in the direction perpendicular to the scanning direction of the laser beam.
  • the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 is set to be different from the focal length of the cylindrical mirror 17 good.
  • the wavelength conversion member 18 can be scanned with a wide width in the direction intersecting the scanning direction, the wavelength conversion member 18 can be efficiently scanned with each laser beam.
  • FIG. 7A is a side view schematically showing the configuration of the wavelength conversion member 18.
  • the wavelength conversion member 18 has a configuration in which the reflective film 202 and the phosphor layer 203 are laminated on the upper surface of the substrate 201.
  • the substrate 201 is made of, for example, silicon, aluminum nitride ceramic, sapphire glass or the like.
  • the reflective film 202 is configured by laminating a first reflective film 202a and a second reflective film 202b.
  • the first reflective film 202a is, for example, a metal film such as Ag, an Ag alloy, or Al.
  • the second reflective film 202b also has a function of protecting the first reflective film 202a from oxidation or the like as well as reflection.
  • One or more layers of dielectrics such as SiN, AlN.
  • the reflective film 202 does not necessarily have to be composed of the first reflective film 202a and the second reflective film 202b, and may have a single layer or a structure in which three or more layers are stacked.
  • the phosphor layer 203 is formed by fixing the phosphor particles 203a with a binder 203b.
  • the phosphor particles 203a emit fluorescence in the yellow wavelength band by being irradiated with laser light in the blue wavelength band emitted from the laser light sources 11a to 11c.
  • As the phosphor particles 203a for example, (Y n G d 1-n ) 3 (Al m Ga 1-m ) 5 O 12 : Ce (0.5 ⁇ n ⁇ 1, 0.5) having an average particle diameter of 1 ⁇ m to 30 ⁇ m. ⁇ m ⁇ 1) is used.
  • the binder 203b a transparent material mainly containing silsesquioxane such as polymethyl silsesquioxane is used.
  • the laser light that has entered inside can be scattered more efficiently and can be extracted from the light source device 2. Further, by the presence of the void 203c in the vicinity of the second reflective film 202b, it is possible to effectively scatter the laser light and the fluorescence while reducing the energy loss due to the surface of the second reflective film 202b.
  • the phosphor layer 203 further contains a filler 203 d for enhancing the strength and the heat resistance.
  • the laser light emitted from the laser light sources 11a to 11c is irradiated to the excitation region R1 shown in FIG. 7A, and is scattered and absorbed on the surface or inside of the phosphor layer 203.
  • a part of the laser light is converted into light of a yellow wavelength band by the phosphor particles 203 a and emitted from the phosphor layer 203.
  • the other part of the laser light is scattered without being converted to light in the yellow wavelength band, and is emitted from the phosphor layer 203 as light in the blue wavelength band.
  • the light of each wavelength band is scattered while propagating in the phosphor layer 203, and is thus emitted from the light emitting region R2 slightly wider than the excitation region R1.
  • FIG. 7B is a plan view schematically showing the configuration of the wavelength conversion member 18.
  • the wavelength conversion member 18 has a rectangular shape elongated in the X-axis direction in plan view.
  • the wavelength conversion member 18 is scanned with laser light in the X-axis direction by rotating the mirror 16 a of the light deflector 16.
  • the mirror 16a is rotated in a predetermined angular range in both directions from a neutral position parallel to the XZ plane.
  • BS indicates the beam spot of each laser beam emitted from the laser light sources 11a to 11c as described above.
  • the three beam spots BS reciprocate on the incident surface 18a of the wavelength conversion member 18 in the width W1.
  • the reciprocating movement of the beam spot BS is indicated by a straight arrow, but since the laser beam is incident on the wavelength conversion member 18 from an oblique direction, the movement locus of the actual beam spot BS is X It becomes a slightly curved locus in which both ends in the positive and negative directions of the X axis are displaced in the negative direction of the Y axis with respect to the central position in the axial direction.
  • the area of the beam spot BS on the incident surface 18a corresponds to the excitation area R1 of FIG. 7A. While the beam spot BS moves on the incident surface 18a of the wavelength conversion member 18, diffused light of the blue wavelength band and diffused light of the yellow wavelength band from the light emission area R2 slightly wider than the area of the beam spot BS in the positive Z-axis direction It is emitted.
  • the two wavelength bands of light thus emitted are taken in by the projection optical system 3 shown in FIGS. 1A and 1B and projected onto the target area. Thereby, white light in which the light of the blue wavelength band and the light of the yellow wavelength band are combined is projected from the light projecting device 1 to the target area.
  • the position detector 19 is installed at a position where the laser light (hereinafter, referred to as “regular reflection light”) specularly reflected by the incident surface 18 a of the wavelength conversion member 18 is received.
  • the position detector 19 is disposed such that the specularly reflected light is incident on the central position in the X-axis direction of the incident surface of the position detector 19 when the mirror 16 a of the light deflector 16 is in the neutral position.
  • the position detector 19 receives specularly reflected light with respect to the scanning range on the incident surface of the wavelength conversion member 18, and outputs a detection signal according to the light receiving position and the received light amount.
  • the position detector 19 has a long light receiving surface in the X-axis direction so as to be able to receive specularly reflected light with respect to the scanning range on the incident surface of the wavelength conversion member 18.
  • the position detector 19 is made of, for example, a PSD (Position Sensitive Detector). Besides, the position detector 19 may have a configuration in which photodetectors are arranged on an array, or may be an imaging device such as a CCD (Charge Coupled Device).
  • PSD Position Sensitive Detector
  • CCD Charge Coupled Device
  • FIG. 8A is a diagram for describing a configuration of the position detector 19 and a method of generating a position detection signal.
  • 8B is a cross-sectional view schematically showing the configuration of the position detector 19. As shown in FIG.
  • the position detector 19 has a structure in which a P-type resistive layer which also serves as a light receiving surface and a resistive layer is formed on the surface of an N-type high-resistance silicon substrate. Electrodes EX1 and EX2 for outputting a photocurrent in the lateral direction are formed in the resistance layer on the front side, and a common electrode EX3 is formed in the resistance layer on the back side. The photocurrents flowing into the electrodes EX1 and EX2 are output from the terminals 19b and 19c.
  • the light receiving surface 19a of the position detector 19 When the light receiving surface 19a of the position detector 19 is irradiated with the regular reflection light (the regular reflection light spot RB), a charge proportional to the light quantity is generated at the light reception position of the regular reflection light (the regular reflection light spot RB). This charge reaches the resistance layer as a photocurrent, is divided in inverse proportion to the distance to each of the electrodes EX1 and EX2, and is output from the terminals 19b and 19c connected to the electrodes EX1 and EX2.
  • the photocurrents output from the terminals 19b and 19c have sizes divided in inverse proportion to the distances Lx1 and Lx2 from the light reception position of the regular reflection light to the electrodes EX1 and EX2. . Therefore, the light receiving position of the specularly reflected light in the X-axis direction on the light receiving surface can be detected based on the current value of the photocurrent output from the terminals 19 b and 19 c.
  • the specularly reflected light spot RB is irradiated at the position shown in FIG. 8A.
  • the lateral coordinates Px of the light receiving position relative to the lateral center position Lmx of the light receiving surface 19a are Ix1 and Ix2, respectively, the current values of the photocurrents output from the electrodes EX1 and EX2.
  • the distance between EX1 and EX2 is Lx, it is calculated by the following equation.
  • the formula (1) is calculated to obtain the specularly reflected light spot RB on the light receiving surface 19a.
  • a position detection signal (coordinates Px) indicating the position can be calculated. Further, by adding the current values Ix1 and Ix2 of the photocurrent to each other, it is possible to acquire the received light amount of the specularly reflected light.
  • FIG. 9A is a view schematically showing the movement of the beam spots BS1 to BS3 on the incident surface 18a of the wavelength conversion member 18.
  • FIG. 9B is a view schematically showing the movement of the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a of the position detector 19 when the beam spots BS1 to BS3 move as shown in FIG. 9A.
  • Wm is the center position in the X-axis direction of the incident surface 18a.
  • the three beam spots that scan the incident surface 18a of the wavelength conversion member 18 are referred to as beam spots BS1, BS2, and BS3 in order from the X-axis positive side.
  • the beam spots BS1, BS2, and BS3 correspond to the beam spots BSb, BSa, and BSc illustrated in FIGS. 4A and 4B, respectively.
  • the specularly reflected light spots RB1, RB2, and RB3 are beam spots of specularly reflected light in which the laser beams of the beam spots BS1, BS2, and BS3 are specularly reflected on the incident surface 18a of the wavelength conversion member 18, respectively.
  • the specularly reflected light spots RB1 to RB3 move along the light receiving surface 19a of the position detector 19 as shown in FIG. Move like.
  • the lateral movement positions of the specularly reflected light spots RB1 to RB3 correspond one-to-one to the movement positions of the beam spots BS1 to BS3 in the X-axis direction on the incident surface 18a.
  • the specularly reflected light spots RB1 to RB3 move the light receiving surface 19a of the position detector 19 in the lateral direction in the range of the width Lw.
  • the laser light source corresponding to the specularly reflected light spot to be detected is turned on, and the other laser light sources are turned off.
  • the laser light sources of the regular reflection spots are turned on sequentially from the regular reflection light spot RB3 on the left side of FIG. 9B.
  • the calculation of the equation (1) is performed, and the light receiving position of each specularly reflected light spot is detected.
  • the current values Ix1 and Ix2 are added to each other to detect the amount of light received by each regular reflection light spot.
  • the light receiving position of each specularly reflected light spot and the method of detecting the amount of light received will be described later with reference to FIGS. 11A to 11C.
  • FIG. 10 is a circuit block diagram showing a main circuit configuration of the light source device 2 according to the embodiment.
  • the light source device 2 includes a controller 301, laser drive circuits 302a to 302c, a mirror drive circuit 303, a position detection circuit 304, and an interface 305 as the configuration of the circuit section. .
  • the controller 301 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a memory, and controls each part according to a predetermined control program.
  • the laser drive circuits 302a to 302c drive the laser light sources 11a to 11c according to the control signal from the controller 301, respectively.
  • the mirror drive circuit 303 drives the mirror 16 a of the light deflector 16 in accordance with the control signal from the controller 301.
  • the position detection circuit 304 calculates the position detection signal by the calculation of the equation (1) based on the current values Ix1 and Ix2 output from the position detector 19, and adds the current values Ix1 and Ix2 to each other to calculate the light amount. Calculate the signal.
  • the position detection circuit 304 outputs the calculated position detection signal and light amount signal to the controller 301.
  • the interface 305 is, for example, an input / output circuit for the controller 301 to transmit / receive a signal to / from an external control circuit such as a control circuit on the vehicle side.
  • the controller 301 controls the laser light sources 11a to 11c and the light deflector 16 so that the light irradiated to the target area from the projection optical system 3 has a predetermined light distribution pattern in the target area. That is, the controller 301 controls the light deflector 16 so that the scanning range of the three beam spots BS1 to BS3 has the width W1 shown in FIG. 9A, and the light distribution pattern in the target area is a predetermined light distribution pattern As described above, the control of turning on / off the laser light sources 11a to 11c corresponding to the three beam spots BS1 to BS3 is performed.
  • the three beam spots BS1 to BS3 are arranged in line in the scanning direction and are separated from each other.
  • the amounts of light of the beam spots BS1 to BS3 and the positions and intervals of the beam spots BS1 to BS3 may change due to changes over time, vibrations or shocks transmitted to the light source device 2, and the like. Therefore, in order to appropriately perform the above control, the controller 301 needs to detect the decrease in the light amount of the beam spot and the fluctuation of the position and the interval of the beam spot for each beam spot as needed. In other words, it is necessary for the controller 301 to perform control by detecting the received light amount of each regular reflection light spot, the light receiving position, and the interval between the regular reflection light as needed.
  • FIG. 11A and FIG. 11B are flowcharts showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot, respectively.
  • the controller 301 when the light source device 2 is activated (S11), the controller 301 performs check scanning for detecting the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 (S12). Then, the controller 301 obtains the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 based on the position detection signal and the light amount signal input from the position detection circuit 304 at the time of the check scanning (S13) .
  • the controller 301 receives the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3.
  • a check scan is performed to detect (S22).
  • the controller 301 obtains the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 based on the position detection signal and the light amount signal input from the position detection circuit 304 at the time of this check scan (S23) .
  • the check timing in step S21 is set to, for example, a fixed cycle (for example, several seconds) from the activation of the light source device 2.
  • FIG. 11C is a diagram schematically showing the scanning state of the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a of the position detector 19 at the time of check scanning (S12 and S22 in FIGS. 11A and 11B).
  • the spots filled in black indicate that the specularly reflected light spot is in the lighted state
  • the broken and white spots indicate that the specularly reflected light spot is in the extinguished state.
  • the controller 301 controls the light deflector 16 so that the regular reflection light spots RB1 to RB3 move the light receiving surface 19a at a constant speed. Then, the controller 301 controls the laser light sources 11a to 11c so that the specularly reflected light spots RB1 to RB3 are sequentially turned on at a predetermined cycle.
  • the controller 301 drives only the laser light source 11c corresponding to the regular reflection light spot RB3 in a pulse shape, and turns on only the regular reflection light spot RB3.
  • the controller 301 drives only the laser light source 11a corresponding to the regular reflection light spot RB2 in a pulse shape at a predetermined time interval from the driving of the laser light source 11c. Only the light spot RB2 is turned on.
  • the controller 301 drives only the laser light source 11a corresponding to the regular reflection light spot RB1 in a pulse shape at a predetermined time interval from the driving of the laser light source 11a. Only the spot RB1 is turned on.
  • each laser light source is driven by pulse signals of the same level and the same time width. Therefore, if the output characteristics of the respective laser light sources are the same, the values of the light quantity signal at the time of the irradiation of the respective specularly reflected light spots become the same.
  • the controller 301 controls the position detection signal and the light amount of the specularly reflected light spot from the position detection circuit 304 when lighting each specularly reflected light spot in steps S13 and S23 of FIGS. 11A and 11B.
  • a signal is acquired, and the light receiving position and the light receiving amount on the light receiving surface 19a of the position detector 19 are obtained for each specularly reflected light spot.
  • the controller 301 determines the specularly reflected light spots RB1 based on the light receiving positions acquired for the specularly reflected light spots RB1 to RB3, and the scanning speed by the light deflector 16 and the time interval for lighting the specularly reflected light spots RB1 to RB3. Calculate the interval between ... and RB3.
  • the controller 301 determines that the light distribution pattern from the wavelength conversion member 18 has a predetermined pattern using the light receiving position of each regular reflection light spot acquired by the above processing and the interval between the reflection light spots.
  • the laser light sources 11a to 11c are controlled so that At this time, at the same time, the controller 301 controls the laser light sources 11a to 11c so that the laser light is emitted with the output of the predetermined level based on the light reception amounts of the regular reflection light spots.
  • the controller 301 executes control on the laser light sources 11a to 11c by updating the light reception amount, the light reception position, and the interval of each regular reflection light spot each time the timing of the check scan comes.
  • FIG. 12B is a timing chart showing an example of output control of the laser light sources 11a to 11c.
  • the top row of FIG. 12B shows the waveform of the drive signal for driving the mirror 16a of the light deflector 16.
  • the second to fourth rows from the top of FIG. 12B show the specularly reflected light spots RB1 to RB3, respectively.
  • the waveforms of control signals for driving the corresponding laser light sources are shown.
  • 12B is the waveform of the drive signal of the laser light source 11b
  • the waveform of the third stage from the top of FIG. 12B is the waveform of the drive signal of the laser light source 11a.
  • the lower waveform is the waveform of the drive signal of the laser light source 11c.
  • FIG. 12A shows respective parameters used in the output control of FIG. 12B.
  • the scan in the right direction is set to “scan 1”
  • the scan in the left direction is set to “scan 2”.
  • the dashed arrows indicate the scanning direction and scanning range of the specularly reflected light spot.
  • the scanning speed is constant.
  • the interval X1 between the regular reflection light spots RB1 and RB2 and the interval X2 between the regular reflection light spots RB2 and RB3 are successively updated by the processing shown in FIGS. 11A to 11C.
  • the light reception amounts of the specularly reflected light spots RB1 to RB3 when the respective laser light sources are driven by pulse signals of a predetermined level and a predetermined time width are detected and sequentially updated. .
  • a non-light emission interval Xoff for stopping light emission is set at both ends of the scanning range.
  • non-light emitting sections corresponding to the non-light emitting section X off are set at both ends of the width W1 shown in FIG. 9A.
  • the output of each laser light source is controlled such that the amount of emitted light increases at the center of the width W1 shown in FIG. 9A.
  • the controller 301 applies output control signals shown in the second and subsequent stages of FIG. 12B to the respective laser light sources in synchronization with the drive signal of the mirror 16a.
  • the controller 301 calculates and sets the intervals of the waveforms of the output control signals according to the calculation equation appended to FIG. 12B based on the parameters shown in FIG. 12A. Further, the controller 301 sets each output control signal so that the output of each laser light source becomes a predetermined same level based on the received light amount of each regular reflection light spot acquired by the processing shown in FIGS. 11A to 11C. Set the maximum value of the waveform.
  • light is projected to the target area with a light distribution pattern in which the width in the horizontal direction is somewhat restricted and the central light amount is increased.
  • FIG. 13B is a timing chart showing another example of output control of the laser light sources 11a to 11c. Similar to FIG. 12B, the top row of FIG. 13B shows the waveform of a drive signal for driving the mirror 16a of the light deflector 16. The second to fourth rows from the top of FIG. The waveforms of control signals for driving the laser light sources respectively corresponding to RB1 to RB3 are shown.
  • FIG. 13A shows each parameter used in the output control of FIG. 13B as in FIG. 12A.
  • the non-lighting interval X ADB in which light emission is stopped is set in the middle of the scanning range.
  • a non-light emitting period corresponding to the light off period X ADB is set in part of the width W1 shown in FIG. 9A.
  • the light source device 2 is controlled to turn off the position of the oncoming vehicle, the oncoming vehicle, or the person. Be instructed.
  • This instruction is input to the controller 301 via the interface 305 of FIG.
  • the controller 301 controls the laser drive circuits 302a to 302c to turn off the laser light sources 11a to 11c in a predetermined section in the width W1 in accordance with an instruction from the vehicle side.
  • the turn-off section X ADB shown in FIG. 13A corresponds to a section to turn off the laser light sources 11a to 11c by this control.
  • a section corresponding to the light off section ADB is indicated by hatching.
  • control is performed such that light is projected onto the target area with uniform intensity. Therefore, the output control signal for each laser light source has a rectangular waveform.
  • the controller 301 applies an output control signal shown in the second or lower stage of FIG. 13B to each laser light source in synchronization with the drive signal of the mirror 16a.
  • the controller 301 calculates and sets the intervals of the waveforms of the output control signals according to the calculation equation appended to FIG. 13B based on the parameters shown in FIG. 13A.
  • the intervals of the waveforms of the output control signals are the same as the intervals of the waveforms of the output control signals shown in FIG. 12B.
  • the controller 301 sets a part of the waveform of each output control signal to the zero level in accordance with the turn-off period X ADB .
  • the controller 301 calculates and sets the timing and period for setting a part of the waveform to the zero level based on the parameters shown in FIG. 13A according to the calculation equation appended to FIG. 13B.
  • the controller 301 sets the level of the rectangular waveform of each output control signal based on the light quantity of each regular reflection light spot acquired by the processing shown in FIGS. 11A to 11C.
  • light is projected to the target area with a light distribution pattern in which the width in the horizontal direction is somewhat restricted and light emission is stopped in a part of the section.
  • the wavelength No unevenness occurs in the light distribution from the conversion member 18.
  • the specularly reflected light of the plurality of laser beams specularly reflected on the incident surface 18 a of the wavelength conversion member 18 is received by the position detector 19 with respect to all scanning ranges on the incident surface 18 a. The output of each laser light source can be smoothly controlled by the detection signal from
  • the controller 301 drives the laser light sources 11a to 11c independently to receive the light receiving positions and the light receiving positions of the regular reflection lights (regular reflection light spots RB1 to RB3) from the position detector 19. A detection signal corresponding to the light amount is acquired. As a result, the light receiving position and the light receiving amount of the regular reflection light (regular reflection light spots RB1 to RB3) separated from each other in the scanning direction can be accurately detected.
  • the controller 301 executes control to drive the laser light sources 11a to 11c independently and acquire a detection signal from the position detector 19 when the light source device 2 is activated.
  • the controller 301 executes control to drive the laser light sources 11a to 11c independently and acquire a detection signal from the position detector 19 when the light source device 2 is activated.
  • each specularly reflected light specularly reflected light spots RB1 to RB3
  • the light receiving position and the light receiving amount can be detected.
  • the controller 301 performs control to drive the laser light sources 11a to 11c independently and acquire a detection signal from the position detector 19 every predetermined period after the light source device 2 is activated. Run. In this way, during actual operation of light emission, it is possible to sequentially acquire the light reception positions and the light reception amounts of the regular reflection lights (regular reflection light spots RB1 to RB3). Thus, even when the light receiving positions and the light receiving amounts of the regular reflection lights (regular reflection light spots RB1 to RB3) change during actual light emission operation, the respective laser light sources can be controlled with high accuracy.
  • acquisition of the detection signal (light reception position, light reception light quantity) after starting of the light source device 2 may not necessarily be performed in a fixed cycle, and the number of times of acquisition of detection signals may not be plural. Acquisition of detection signals after activation of the light source device 2 is performed at a predetermined timing at which the possibility of fluctuations in the light reception positions and light reception amounts of the regular reflection lights (regular reflection light spots RB1 to RB3) may be assumed. Just do it. For example, instead of the control in FIG. 11B or together with this control, acquisition control of detection signals (light receiving position, received light quantity) is executed at the timing when it is detected that a large vibration or impact is applied to the light source device 2. May be
  • the controller 301 generates light in a predetermined light distribution pattern from the wavelength conversion member 18 based on the detection signal from the position detector 19.
  • the laser light sources 11a to 11c are controlled. As described above, by individually controlling the laser light sources 11a to 11c based on the detection signal, the resolution of the light distribution pattern from the wavelength conversion member 18 can be enhanced, and a more sophisticated light distribution pattern can be realized.
  • the controller 301 performs control to stop light emission in a part of the scanning range with respect to the wavelength conversion member 18 (light-off section X ADB ).
  • the controller 301 controls the turn-off timing and the turn-off period of each of the laser light sources such that the turn-off of the laser light sources 11a to 11c matches with a partial range (turn-off section X ADB ) in which light emission is stopped.
  • the boundary of the non-lighting section X ADB can be cleared, and light extinguishing of a part of the range can be satisfactorily performed.
  • the controller 301 obtains the intervals X1 and X2 of the specularly reflected light on the light receiving surface 19a of the position detector 19 based on the detection signal from the position detector 19. It is preferable to set the extinguishing timing of the laser light sources 11a to 11c based on the acquired intervals X1 and X2. In this way, the turn-off timings of the laser light sources 11a to 11c can be set smoothly and accurately.
  • the beam spots BS1 to BS3 can be separated and arranged in the scanning direction on the incident surface 18a of the wavelength conversion member 18 while realizing a compact optical system.
  • FIG. 14A and FIG. 14B are respectively a side view and a plan view showing a configuration of a light projecting device 1 according to a modification.
  • the number of laser light sources arranged in the light source device 2 is increased to four. That is, the laser light source 11d is newly added as compared with the above embodiment.
  • the laser light source 11d is the same as the laser light sources 11a to 11c.
  • the laser light emitted from the laser light source 11 d is converted into parallel light by the collimator lens 12 d.
  • the laser light source 11a and the laser light source 11d are disposed to face each other.
  • the laser light sources 11a and 11d are arranged such that the fast axis is parallel to the Z axis, as with the laser light sources 11b and 11c.
  • the reflection prism 13c is disposed in the emission direction of the laser light source 11a
  • the reflection prism 13d is disposed in the emission direction of the laser light source 11d.
  • the optical axis of the laser light source 11a and the optical axis of the laser light source 11d are bent in directions parallel to the XZ plane by the reflecting prisms 13c and 13d so as to be directed to the cylindrical lens 14, respectively.
  • the reflecting prisms 13c and 13d are disposed without a gap in the X-axis direction. Compared to the above embodiment, the gap between the reflecting prisms 13a and 13b is widened.
  • the laser beams emitted from the laser light sources 11a and 11d are bent along the optical axes by the reflecting prisms 13c and 13d, and then enter the cylindrical lens 14 through the gap between the reflecting prisms 13a and 13b.
  • the optical axes of the laser light sources 11 a to 11 d are included in one plane perpendicular to the generatrix of the cylindrical lens 14, that is, one plane parallel to the XZ plane.
  • the positions of the laser light sources 11a to 11d in the Y-axis direction are adjusted.
  • the incident surface 18a of the wavelength conversion member 18 is positioned at the position of the focal length of the cylindrical lens 14 as in the above embodiment.
  • beam spots of four laser beams are formed on the incident surface of the wavelength conversion member 18 so as to align in the scanning direction and to be separated from each other.
  • the four laser beams 130a to 130d can be obtained by causing the laser beams 130a to 130d emitted from the laser light sources 11a to 11d to be incident on the cylindrical lens 14 in a nonparallel state.
  • the beam spots BSa to BSd can be aligned in the scanning direction and separated from each other on the incident surface 18a of the wavelength conversion member 18. In this case, a single-focus cylindrical lens without aberration is used as the cylindrical lens 14.
  • the laser beams 130a to 130d can be incident on the cylindrical lens 14 in a nonparallel state. it can.
  • the beam spots BSa to BSd may be arranged in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other by using the cylindrical lens 14 having aberration in advance. Good. Further, as in the case of FIGS. 6A and 6B, the laser beams 130a to 130d are made to intersect with each other in the optical path from the cylindrical lens 14 to the wavelength conversion member 18, and the beam spots BSa to BSd of the laser beams 130a to 130c are obtained. Alternatively, they may be separated from each other on the incident surface 18 a of the wavelength conversion member 18.
  • the position detector 19 is configured to receive the laser beams 130a to 130d with respect to all scanning ranges on the incident surface 18a of the wavelength conversion member 18 and output a detection signal according to the light reception position and the light reception amount. .
  • a laser drive circuit for driving the laser light source 11d is added to the circuit block of FIG.
  • the controller 301 drives the laser light sources 11a to 11d independently as shown in FIG. 15B in steps S12 and S22 in FIG. 11A and FIG. 11B, and acquires detection signals from the position detector 19 The light receiving position of the light, the light receiving amount, and the interval of the regular reflection light are acquired.
  • RB1 to RB4 are regular reflection light spots by the laser light emitted from the laser light sources 11b, 11a, 11d and 11c, respectively.
  • the laser light sources 11b, 11a, 11d, and 11c are individually driven such that the regular reflection light spots are sequentially irradiated from the leftmost regular reflection light spot RB4.
  • the controller 301 controls the laser light sources 11a to 11d based on the acquired light reception positions of the regularly reflected light, the received light amount and the interval of the regularly reflected light, for example, similar to FIGS. 12A, 12B and 13A, 13B. Take control.
  • the beam spot of the laser beam emitted from each laser light source is separated in the scanning direction on the incident surface 18a of the wavelength conversion member 18 in the above embodiment and the modified example, it is in the scanning direction on the incident surface 18a If a plurality of beam spots are formed side by side and spaced apart from one another, several beam spots may overlap on the incident surface 18a.
  • the beam spots BSa and BSb may be overlapped, and two beam spots may be formed on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
  • the beam spots BSa and BSb may be overlapped, and three beam spots may be formed on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
  • the beam spots BSa and BSb are overlapped, and the beam spots BSc and BSd are further overlapped, and two beam spots are aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 It may be formed to be separated from each other.
  • the laser beams superimposed on each other may be made incident on the cylindrical lens 14 so as to be parallel to each other.
  • the cylindrical lens 14 a single-focus cylindrical lens without aberration is used.
  • the mutually overlapping laser beams are made to be incident on the cylindrical lens 14 so as to be parallel to each other. Can be incident on the cylindrical lens 14 in a non-parallel state.
  • the light reception position and the light reception amount of the specularly reflected light corresponding to each laser light source are separately detected, and each laser light source is individually controlled. do it.
  • predetermined control is performed by individually controlling the respective laser light sources. Light distribution pattern can be realized well.
  • the number of beam spots to be overlapped is limited to about two. Thereby, it can suppress that a light density increases excessively, and it can suppress that the luminous efficiency in the wavelength conversion member 18 falls by the temperature quenching effect by light saturation or heat_generation
  • the laser light sources 11a to 11c are individually turned on while scanning the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a, and the light receiving positions and the received light amounts of the specularly reflected light spots RB1 to RB3.
  • the specularly reflected light spots may not necessarily be scanned.
  • the laser light sources 11a to 11c are individually turned on to detect the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3. Good.
  • 13A and 13B show the control in the case of turning off part of the scanning range, but it may be control to turn on only part of the scanning range.
  • the laser light source is controlled based on the light receiving positions of the specularly reflected light spots RB1 to RB3 and the received light amounts. However, based on the light receiving positions of the specularly reflected light spots RB1 to RB3.
  • the mirror 16 a of the light deflector 16 may be controlled. For example, the movement range of the regular reflection light (the swing angle of the mirror 16a) is detected based on any one light reception position of the regular reflection light spots RB1 to RB3, and the movement range of the regular reflection light (the swing angle of the mirror 16a)
  • the light deflector 16 may be controlled so as to be appropriate.
  • each laser light source is arranged such that the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14, but the arrangement method of the laser light source is necessarily limited to this. It is not something to be done.
  • each laser light source may be arranged such that the slow axis of the laser light is parallel to the convergence direction of the cylindrical lens 14.
  • the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14 as in the embodiment and the modifications described above.
  • each laser light source is arranged.
  • the number of laser light sources disposed in the light source device 2 is not limited to the number shown in the above embodiment and the modification, and may be two or five or more.
  • the configuration of the optical system does not necessarily have to be the configuration shown in FIGS. 1A, 1B and 14A, 14B, so that it is aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other.
  • Various modifications are possible as long as multiple beam spots can be formed.
  • the condensing optical system does not necessarily have to be divided into the cylindrical lens 14 and the cylindrical mirror 17, and the laser light may be converged in the scanning direction and the direction perpendicular to the scanning direction by one lens.
  • the lens constituting the condensing optical system may be a Fresnel lens or a diffractive lens.
  • the light deflector 16 may be configured to rotate the mirror 16a about two axes perpendicular to each other.
  • the type of phosphor particles 203a contained in the phosphor layer 203 of the wavelength conversion member 18 is not necessarily limited to one type, and for example, the laser beams from the laser light sources 11a to 11d produce fluorescence of different wavelengths.
  • Plural kinds of phosphor particles 203 a may be included in the phosphor layer 203. In this case, light of a predetermined color is generated by the diffused light of the fluorescent light generated from the phosphor particles 203a of each type and the diffused light of the laser light which is not wavelength-converted by the phosphor particles 203a.
  • the wavelength conversion member 18 is not limited to the reflection type, and may be a transmission type.
  • the scanning direction of the laser light may not necessarily be the horizontal direction, and the vertical direction may be the scanning direction of the laser light depending on the required irradiation conditions.
  • the outputs of the respective laser light sources can be smoothly controlled while suppressing the occurrence of unevenness in light distribution. Therefore, the light source device and the light projecting device according to the present disclosure can be used, for example, as a light source device of a vehicle headlamp, and is industrially useful.

Abstract

Provided are a light source device capable of controlling the output of each laser light source smoothly while suppressing the occurrence of unevenness in light distribution, and a light projection device using the same. According to the present invention, the light source device is provided with: a laser light source; a wavelength conversion member; an optical deflector for scanning a laser beam emitted from the laser light source on an incident surface of the wavelength conversion member; and an optical system for forming a plurality of beam spots on the incident surface of the wavelength conversion member by a plurality of laser beams respectively emitted from the laser light source so as to be in parallel in the scanning direction and spaced apart from each other. In addition, the light source device is provided with: a position detector that receives a plurality of laser beams specularly reflected from the incident surface of the wavelength conversion member with respect to all scanning ranges on the incident surface, and outputs a detection signal corresponding to the received light position and the received light amount; and a controller that controls the laser light source on the basis of the detection signal from the position detector.

Description

光源装置および投光装置Light source device and light projecting device
 本開示は、光を発する光源装置およびそれを用いた投光装置に関する。 The present disclosure relates to a light source device that emits light and a light projecting device using the light source device.
 従来、レーザ光源から出射された光を波長変換部材に照射することにより所定波長の光を生成する光源装置が知られている。この光源装置では、たとえば、波長変換部材により波長変換されて拡散された光と、波長変換部材により波長変換されずに拡散された光とが合成されて、白色光等、所定の色の光が生成される。このような光源装置が、たとえば、車両用前照灯の光源装置として利用されている。 BACKGROUND Conventionally, a light source device is known that generates light of a predetermined wavelength by irradiating a wavelength conversion member with light emitted from a laser light source. In this light source device, for example, light that is wavelength-converted and diffused by the wavelength conversion member and light that is diffused without wavelength conversion by the wavelength conversion member are combined, and light of a predetermined color such as white light is generated. It is generated. Such a light source device is used, for example, as a light source device of a vehicular headlamp.
 以下の特許文献1には、光変換手段(蛍光体)によって生成された光像を投光光学系によって道路上に投光する投光器(ヘッドライト)が開示されている。投光器は、6つのレーザ光源と、2つのマイクロミラーとを備える。1つのマイクロミラーに対して3つのレーザ光源が割り当てられている。1つのマイクロミラーに入射した3つのレーザ光は、それぞれ、走査方向に垂直な方向に互いに変位した位置において、光変換手段の発光面に照射される。マイクロミラーは、単一軸の周りにのみ振動する。マイクロミラーが振動することにより、走査方向に垂直な方向に互いに変位したビームスポットが、光変換手段の発光面を走査する。一方のマイクロミラーで走査される3つのレーザ光は、光変換手段の発光面上において、他方のマイクロミラーで走査される3つのレーザ光の間の位置に位置づけられる。 Patent Document 1 below discloses a light projector (headlight) that projects a light image generated by light conversion means (phosphor) onto a road by a light projection optical system. The projector comprises six laser light sources and two micro mirrors. Three laser light sources are assigned to one micro mirror. The three laser beams incident on one micro mirror are irradiated on the light emitting surface of the light conversion means at positions mutually displaced in the direction perpendicular to the scanning direction. The micro mirror vibrates only around a single axis. As the micromirrors vibrate, the beam spots displaced relative to each other in the direction perpendicular to the scanning direction scan the light emitting surface of the light conversion means. The three laser beams scanned by one micro mirror are positioned on the light emitting surface of the light conversion means at a position between the three laser beams scanned by the other micro mirror.
国際公開第2014/121315号International Publication No. 2014/121315
 上記特許文献1の構成では、走査方向に垂直な方向に変位した6つの位置を、各レーザ光源から出射されたレーザ光で走査する構成であるため、これらレーザ光源のうち1つにでも故障もしくは強度の変動があると、波長変換部材からの配光に帯状のムラが生じる。また、振動等の衝撃や経時変化等によって複数のレーザ光源または各レーザ光を波長変換部材へと導く各光学系のうち1つにでもずれが生じた場合も、同様に、配光が不均一になってしまう。 In the configuration of Patent Document 1 described above, six positions displaced in the direction perpendicular to the scanning direction are scanned with laser light emitted from each laser light source. If there is a fluctuation in intensity, band-like unevenness occurs in the light distribution from the wavelength conversion member. In addition, even when one of the optical systems for guiding the plurality of laser light sources or the respective laser beams to the wavelength conversion member is deviated due to impact such as vibration or temporal change, the light distribution is also uneven similarly. Become.
 かかる課題に鑑み、本開示は、配光にムラが生じることを抑制しつつ、各レーザ光源の出力を円滑に制御することが可能な光源装置およびそれを用いた投光装置を提供することを目的とする。 In view of such problems, the present disclosure provides a light source device capable of smoothly controlling the output of each laser light source while suppressing occurrence of unevenness in light distribution, and a light projecting device using the same. To aim.
 本開示の第1の態様は、光源装置に関する。この態様に係る光源装置は、複数のレーザ光源と、波長変換部材と、光偏向器と、光学系と、位置検出器と、コントローラと、を備える。波長変換部材は、複数のレーザ光源から出射されたレーザ光の波長を他の波長に変換するとともに波長変換された光を拡散させる。光偏向器は、複数のレーザ光源から出射されたレーザ光を波長変換部材の入射面上において走査させる。光学系は、複数のレーザ光源からそれぞれ出射された複数のレーザ光により、波長変換部材の入射面上において、走査方向に並び、且つ少なくとも1つのスポットが他のスポットと離間するように複数のビームスポットを形成する。位置検出器は、波長変換部材の入射面において正反射した複数のレーザ光の正反射光を、入射面上の走査範囲に対して受光して、受光位置および受光光量に応じた検出信号を出力する。コントローラは、位置検出器からの検出信号に基づいて複数のレーザ光源を制御する。 A first aspect of the present disclosure relates to a light source device. The light source device according to this aspect includes a plurality of laser light sources, a wavelength conversion member, an optical deflector, an optical system, a position detector, and a controller. The wavelength conversion member converts the wavelength of the laser light emitted from the plurality of laser light sources into another wavelength and diffuses the wavelength-converted light. The light deflector scans laser light emitted from the plurality of laser light sources on the incident surface of the wavelength conversion member. The optical system is a plurality of beams arranged in the scanning direction on the incident surface of the wavelength conversion member by a plurality of laser beams respectively emitted from a plurality of laser light sources and at least one spot is separated from the other spots. Form a spot. The position detector receives specularly reflected light of the plurality of laser beams specularly reflected on the incident surface of the wavelength conversion member with respect to the scanning range on the incident surface, and outputs a detection signal according to the light receiving position and the received light amount Do. The controller controls the plurality of laser light sources based on the detection signal from the position detector.
 本態様に係る光源装置によれば、波長変換部材の入射面上において、各ビームスポットが走査方向に並び且つ互いに離間するため、何れか1つのレーザ光源に故障等の不具合が生じたとしても、配光にムラが生じることがない。また、波長変換部材の入射面で正反射した複数のレーザ光の正反射光が、入射面上の全ての走査範囲に対して位置検出器で受光されるため、位置検出器からの検出信号により、各レーザ光源の出力を円滑に制御することができる。 According to the light source device according to this aspect, since the beam spots are arranged in the scanning direction and are separated from each other on the incident surface of the wavelength conversion member, even if a failure such as a failure occurs in any one laser light source, There is no unevenness in light distribution. In addition, the specularly reflected light of the plurality of laser beams specularly reflected on the incident surface of the wavelength conversion member is received by the position detector for all scanning ranges on the incident surface, so the detection signal from the position detector The output of each laser light source can be controlled smoothly.
 本開示の第2の態様は、投光装置に関する。この態様に係る投光装置は、第1の態様に係る光源装置と、前記波長変換部材により拡散された光を投射する投射光学系と、を備える。 A second aspect of the present disclosure relates to a light projecting device. The light projecting device according to this aspect includes the light source device according to the first aspect, and a projection optical system that projects the light diffused by the wavelength conversion member.
 本態様に係る投光装置によれば、第1の態様と同様の効果が奏され得る。 According to the light projecting device relating to the present aspect, the same effect as the first aspect can be exhibited.
 以上のとおり、本開示に係る光源装置および投光装置によれば、配光にムラが生じることを抑制しつつ、各レーザ光源の出力を円滑に制御することができる。 As described above, according to the light source device and the light projecting device according to the present disclosure, the output of each laser light source can be smoothly controlled while suppressing the occurrence of unevenness in light distribution.
 本開示効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本開示にかかる発明を実施化する際の一つの例示であって、本開示にかかる発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。 The effects and significance of the present disclosure will become more apparent from the description of the embodiments shown below. However, the embodiment shown below is merely an example when implementing the invention according to the present disclosure, and the invention according to the present disclosure is in no way limited to those described in the following embodiments. It is not something to be done.
図1Aは、実施の形態に係る投光装置の構成を示す側面図である。FIG. 1A is a side view showing a configuration of a light projecting device according to an embodiment. 図1Bは、実施の形態に係る投光装置の構成を示す平面図である。FIG. 1B is a plan view showing the configuration of the light projecting device according to the embodiment. 図2は、実施の形態に係るレーザ光源の構成と配置を示す斜視図である。FIG. 2 is a perspective view showing the configuration and arrangement of the laser light source according to the embodiment. 図3は、実施の形態に係るシリンドリカルミラーで反射された後のレーザ光の収束状態を模式的に示す図である。FIG. 3 is a view schematically showing a convergence state of the laser beam after being reflected by the cylindrical mirror according to the embodiment. 図4Aは、実施の形態に係る、波長変換部材の入射面においてビームスポットを走査方向に離間させるための構成を説明する図である。FIG. 4A is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the embodiment. 図4Bは、実施の形態に係る、波長変換部材の入射面においてビームスポットを走査方向に離間させるための構成を説明する図である。FIG. 4B is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the embodiment. 図5Aは、実施の形態に係る、シリンドリカルレンズに対するレーザ光の入射方向を調整するための構成例を示す図である。FIG. 5A is a diagram showing a configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment. 図5Bは、実施の形態に係る、シリンドリカルレンズに対するレーザ光の入射方向を調整するための構成例を示す図である。FIG. 5B is a diagram showing a configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment. 図6Aは、実施の形態に係る、シリンドリカルレンズに対するレーザ光の入射方向を調整するための他の構成例を示す図である。FIG. 6A is a diagram showing another configuration example for adjusting the incident direction of the laser light to the cylindrical lens according to the embodiment. 図6Bは、図6Aの構成例により波長変換部材の入射面に形成される各レーザ光のビームスポットの配置を模式的に示す図である。FIG. 6B is a view schematically showing the arrangement of beam spots of each laser beam formed on the incident surface of the wavelength conversion member according to the configuration example of FIG. 6A. 図7Aは、実施の形態に係る波長変換部材の構成を模式的に示す側面図である。FIG. 7A is a side view schematically showing the configuration of the wavelength conversion member according to the embodiment. 図7Bは、実施の形態に係る波長変換部材の構成を模式的に示す平面図である。FIG. 7B is a plan view schematically showing the configuration of the wavelength conversion member according to the embodiment. 図8Aは、実施の形態に係る位置検出器の構成および位置検出信号の生成方法を説明するための図である。FIG. 8A is a diagram for describing a configuration of a position detector according to an embodiment and a method for generating a position detection signal. 図8Bは、実施の形態に係る位置検出器の構成を模式的に示す断面図である。FIG. 8B is a cross-sectional view schematically showing the configuration of the position detector according to the embodiment. 図9Aは、実施の形態に係る、波長変換部材の入射面におけるビームスポットの移動を模式的に示す図である。FIG. 9A is a view schematically showing the movement of the beam spot on the incident surface of the wavelength conversion member according to the embodiment. 図9Bは、実施の形態に係る、図9Aのようにビームスポットが移動した場合の位置検出器上における正反射光スポットの移動を模式的に示す図である。FIG. 9B is a view schematically showing the movement of a specularly reflected light spot on the position detector when the beam spot moves as shown in FIG. 9A according to the embodiment. 図10は、実施の形態に係る光源装置の主たる回路構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram showing a main circuit configuration of the light source device according to the embodiment. 図11Aは、実施の形態に係る各正反射光スポットの受光位置および受光光量を取得するための制御を示すフローチャートである。FIG. 11A is a flowchart showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot according to the embodiment. 図11Bは、実施の形態に係る各正反射光スポットの受光位置および受光光量を取得するための制御を示すフローチャートである。FIG. 11B is a flowchart showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot according to the embodiment. 図11Cは、実施の形態に係るチェック走査時における位置検出器の受光面上の正反射光スポットの走査状態を模式的に示す図である。FIG. 11C is a view schematically showing a scanning state of a specularly reflected light spot on the light receiving surface of the position detector at the time of check scanning according to the embodiment. 図12Aは、実施の形態に係るレーザ光源の出力制御のための各パラメータを示す図である。FIG. 12A is a diagram showing parameters for output control of the laser light source according to the embodiment. 図12Bは、実施の形態に係るレーザ光源の出力制御の一例を示すタイミングチャートである。FIG. 12B is a timing chart showing an example of output control of the laser light source according to the embodiment. 図13Aは、実施の形態に係るレーザ光源の出力制御のための各パラメータを示す図である。FIG. 13A is a view showing parameters for output control of the laser light source according to the embodiment. 図13Bは、実施の形態に係るレーザ光源の出力制御の他の例を示すタイミングチャートである。FIG. 13B is a timing chart showing another example of output control of the laser light source according to the embodiment. 図14Aは、変更例に係る投光装置の構成を示す側面図である。FIG. 14A is a side view showing the configuration of a light projecting device according to a modification. 図14Bは、変更例に係る投光装置の構成を示す平面図である。FIG. 14B is a plan view showing the configuration of a light projecting device according to a modification. 図15Aは、変更例に係る、波長変換部材の入射面においてビームスポットを走査方向に離間させるための構成を説明する図である。FIG. 15A is a view for explaining a configuration for separating beam spots in the scanning direction on the incident surface of the wavelength conversion member according to the modification. 図15Bは、変更例に係るチェック走査時における位置検出器の受光面上の正反射光スポットの走査状態を模式的に示す図である。FIG. 15B is a view schematically showing a scanning state of a specularly reflected light spot on the light receiving surface of the position detector at the time of check scanning according to the modification.
 以下、本開示の実施の形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。この座標軸は、光源装置および投光装置の光投射方向をZ軸とするグローバル座標系(図1A、図1B、図14A、図14B)と、説明対象となる光学部品の光出射方向、または反射面の法線方向をZ軸とするローカル座標系(図2、図4A、図4B、図5A、図5B、図6A、図6B、図7A、図7B、図9A、図9B、図15A、図15B)を説明に合わせて適宜使い分けており、従って、両者は必ずしも一致するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. For convenience, X, Y, and Z axes orthogonal to each other are added to the respective drawings. This coordinate axis is a global coordinate system (Fig. 1A, Fig. 1B, Fig. 14A, Fig. 14B) in which the light projection direction of the light source device and the light projection device is Z axis, and the light emission direction or reflection of optical components to be described. 2A, 4A, 4B, 5A, 5B, 6A, 6A, 7A, 7B, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 9A, 7A, 7A, 7A, 7A, 7B). FIG. 15B is appropriately used in accordance with the description, and therefore, the two do not necessarily coincide.
 図1A、図1Bは、それぞれ、実施の形態に係る投光装置の構成を示す側面図および平面図である。 FIG. 1A and FIG. 1B are a side view and a plan view showing the configuration of the light projecting device according to the embodiment, respectively.
 投光装置1は、光を生成する光源装置2と、光源装置2により生成された光を投射するための投射光学系3とを備える。投射光学系3は、2つのレンズ3a、3bを備え、これらレンズ3a、3bによって光源装置2からの光を集光して目標領域へと投射する。なお、投射光学系3は、必ずしも2つのレンズ3a、3bから構成されなくともよく、たとえば、1つのレンズでもよく、2つ以上のレンズやミラーを備えていてもよい。また、投射光学系3は、凹面ミラーによって光源装置2からの光を集光する構成であってもよい。 The light projecting device 1 includes a light source device 2 for generating light and a projection optical system 3 for projecting the light generated by the light source device 2. The projection optical system 3 includes two lenses 3a and 3b, and the lenses 3a and 3b condense light from the light source device 2 and project the light to a target area. The projection optical system 3 does not necessarily have to be composed of two lenses 3a and 3b. For example, it may be a single lens or may be equipped with two or more lenses or mirrors. The projection optical system 3 may be configured to condense the light from the light source device 2 by a concave mirror.
 光源装置2は、3つのレーザ光源11a~11cと、3つのコリメータレンズ12a~12cと、2つの反射プリズム13a、13bと、シリンドリカルレンズ14と、反射ミラー15と、光偏向器16と、シリンドリカルミラー17と、波長変換部材18とを備えている。シリンドリカルレンズ14とシリンドリカルミラー17は、レーザ光源11a~11cから出射されたレーザ光を波長変換部材18の入射面に収束させるための集光光学系を構成する。光源装置2を構成する上記部材は、投射光学系3とともに、図示しないベースに設置されている。 The light source device 2 includes three laser light sources 11a to 11c, three collimator lenses 12a to 12c, two reflecting prisms 13a and 13b, a cylindrical lens 14, a reflecting mirror 15, an optical deflector 16, and a cylindrical mirror 17 and the wavelength conversion member 18. The cylindrical lens 14 and the cylindrical mirror 17 constitute a condensing optical system for causing the laser light emitted from the laser light sources 11a to 11c to converge on the incident surface of the wavelength conversion member 18. The above-described members constituting the light source device 2 are installed together with the projection optical system 3 on a base (not shown).
 レーザ光源11a~11cは、それぞれ、青色波長帯(たとえば、450nm)のレーザ光を出射する。レーザ光源11a~11cは、たとえば、半導体レーザからなっている。レーザ光源11a~11cは、同一機種のレーザ光源である。レーザ光源11a~11cから出射されるレーザ光の波長は、適宜変更可能である。レーザ光源11a~11cは、必ずしも単一の発光領域を有するシングルエミッターの半導体レーザでなくともよく、たとえば、1つの発光素子に複数の発光領域を有するマルチエミッターの半導体レーザであってもよい。また、レーザ光源11a~11cは、必ずしも単一波長帯のレーザ光を出射するものでなくともよく、たとえば、1基板に複数の発光素子がマウントされたマルチ発光の半導体レーザであってもよい。 The laser light sources 11a to 11c respectively emit laser light in a blue wavelength band (for example, 450 nm). The laser light sources 11a to 11c are made of, for example, semiconductor lasers. The laser light sources 11a to 11c are laser light sources of the same type. The wavelength of the laser light emitted from the laser light sources 11a to 11c can be changed as appropriate. The laser light sources 11a to 11c are not necessarily single emitter semiconductor lasers having a single light emitting area, and may be, for example, multi-emitter semiconductor lasers having a plurality of light emitting areas in one light emitting element. The laser light sources 11a to 11c do not necessarily emit laser light of a single wavelength band, and may be, for example, a multi-emission semiconductor laser in which a plurality of light emitting elements are mounted on one substrate.
 コリメータレンズ12a~12cは、それぞれ、レーザ光源11a~11cから出射されたレーザ光を平行光に変換する。反射プリズム13a、13bは、それぞれ、コリメータレンズ12b、12cを透過したレーザ光を、シリンドリカルレンズ14に向かう方向に反射する。反射プリズム13a、13bに代えて、板状の反射ミラーを用いてもよい。 The collimator lenses 12a to 12c convert the laser beams emitted from the laser light sources 11a to 11c into parallel beams, respectively. The reflecting prisms 13 a and 13 b respectively reflect the laser beams transmitted through the collimator lenses 12 b and 12 c in the direction toward the cylindrical lens 14. A plate-like reflection mirror may be used instead of the reflection prisms 13a and 13b.
 図1Bに示すように、レーザ光源11b、11cは、互いに向き合うように配置されている。反射プリズム13a、13bは、レーザ光源11b、11cが向き合う方向、すなわち、X軸方向に隙間が生じるように配置されている。レーザ光源11a~11cは、出射光軸がX-Z平面に平行な1つの平面に含まれるように配置されている。 As shown in FIG. 1B, the laser light sources 11b and 11c are disposed to face each other. The reflecting prisms 13a and 13b are disposed such that a gap is generated in the direction in which the laser light sources 11b and 11c face each other, that is, in the X-axis direction. The laser light sources 11a to 11c are arranged such that the emission optical axis is included in one plane parallel to the XZ plane.
 レーザ光源11aから出射されたレーザ光は、コリメータレンズ12aにより平行光に変換された後、反射プリズム13a、13bの間の隙間を通って、シリンドリカルレンズ14へと向かう。対向配置されたレーザ光源11b、11cの光軸は、反射プリズム13a、13bによって、X-Z平面に平行な方向に曲げられる。これにより、レーザ光源11a~11cから出射されたレーザ光は、シリンドリカルレンズ14の入射面に対し、X軸方向において互いに異なる位置に入射する。 The laser light emitted from the laser light source 11a is converted into parallel light by the collimator lens 12a, and then travels to the cylindrical lens 14 through the gap between the reflecting prisms 13a and 13b. The optical axes of the opposed laser light sources 11b and 11c are bent in directions parallel to the XZ plane by the reflecting prisms 13a and 13b. As a result, the laser beams emitted from the laser light sources 11a to 11c are incident on the incident surface of the cylindrical lens 14 at mutually different positions in the X-axis direction.
 以上の構成により、レーザ光源11a~11cのパッケージやキャップ外形に制限されることなく、3つのレーザ光を接近させることが可能となる。これにより、シリンドリカルレンズ14に入射する3つのレーザ光を束ねた光束の全幅を小さくできる。その結果、シリンドリカルレンズ14以降の光学系のコンパクト化が可能となると共に、光学系が有する収差の影響を小さくすることができる。また、光偏向器16のミラー16aのサイズを小さくでき、光偏向器16の大型化や消費電力の増大を抑制できる。 According to the above configuration, three laser beams can be approached without being limited by the package and cap outer shape of the laser light sources 11a to 11c. As a result, it is possible to reduce the overall width of a bundle of three laser beams incident on the cylindrical lens 14. As a result, the optical system after the cylindrical lens 14 can be made compact, and the influence of the aberration of the optical system can be reduced. In addition, the size of the mirror 16 a of the light deflector 16 can be reduced, and the increase in size and power consumption of the light deflector 16 can be suppressed.
 レーザ光源11aから出射されたレーザ光は、シリンドリカルレンズ14の入射面の中央位置に入射する。レーザ光源11b、11cから出射されたレーザ光は、それぞれ、シリンドリカルレンズ14の入射面の中央位置からX軸正負の方向に所定距離だけずれた位置に入射する。 The laser light emitted from the laser light source 11 a is incident on the central position of the incident surface of the cylindrical lens 14. The laser beams emitted from the laser light sources 11 b and 11 c are respectively incident at positions deviated from the central position of the incident surface of the cylindrical lens 14 by a predetermined distance in the X axis positive and negative directions.
 シリンドリカルレンズ14は、入射面がX-Z平面に平行な方向のみに湾曲した曲面となっている。シリンドリカルレンズ14の入射面は非球面であり、シリンドリカルレンズ14の出射面は、Z軸に垂直な平面である。シリンドリカルレンズ14の出射面も、X-Z平面に平行な方向に湾曲した曲面であってもよい。あるいは、シリンドリカルレンズ14の入射面が平面で出射面が曲面であってもよい。 The cylindrical lens 14 is a curved surface in which the incident surface is curved only in the direction parallel to the XZ plane. The entrance surface of the cylindrical lens 14 is aspheric, and the exit surface of the cylindrical lens 14 is a plane perpendicular to the Z axis. The exit surface of the cylindrical lens 14 may also be a curved surface curved in a direction parallel to the XZ plane. Alternatively, the entrance surface of the cylindrical lens 14 may be flat and the exit surface may be curved.
 シリンドリカルレンズ14は、入射面の母線が、入射面に入射する3つのレーザ光の光軸を含む平面に垂直、すなわちY軸方向に平行となるように配置されている。シリンドリカルレンズ14は、入射位置におけるレーザ光源11a~11cの3つの光軸が並ぶ方向、すなわち、X軸方向のみに収束パワーを有する。レーザ光源11a~11cから出射されたレーザ光は、シリンドリカルレンズ14によって、波長変換部材18の入射面上においてレーザ光の走査方向に収束される。後述のように、本実施の形態では、3つのレーザ光のビームスポットが、波長変換部材18の入射面上において走査方向に並び、且つ、互いに離間するように形成される。 The cylindrical lens 14 is disposed such that the generatrix of the incident surface is perpendicular to a plane including the optical axes of the three laser beams incident on the incident surface, that is, parallel to the Y-axis direction. The cylindrical lens 14 has a convergence power only in the direction in which the three optical axes of the laser light sources 11a to 11c at the incident position are aligned, ie, in the X-axis direction. The laser light emitted from the laser light sources 11a to 11c is converged by the cylindrical lens 14 on the incident surface of the wavelength conversion member 18 in the scanning direction of the laser light. As described later, in the present embodiment, beam spots of three laser beams are formed on the incident surface of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
 反射ミラー15は、シリンドリカルレンズ14を透過した3つのレーザ光の光軸を、それぞれ、Y-Z平面に平行な方向に折り曲げる。3つのレーザ光は、反射ミラー15で反射された後、光偏向器16のミラー16aに入射する。なお、シリンドリカルレンズ14から波長変換部材18までの光学系のレイアウトによっては、反射ミラー15が省略され得る。この場合、シリンドリカルレンズ14を透過した3つのレーザ光は、直接、光偏向器16のミラー16aに入射する。 The reflection mirror 15 bends the optical axes of the three laser beams transmitted through the cylindrical lens 14 in the direction parallel to the YZ plane. The three laser beams are reflected by the reflection mirror 15 and then enter the mirror 16 a of the light deflector 16. Note that, depending on the layout of the optical system from the cylindrical lens 14 to the wavelength conversion member 18, the reflection mirror 15 may be omitted. In this case, the three laser beams transmitted through the cylindrical lens 14 directly enter the mirror 16 a of the light deflector 16.
 光偏向器16は、ミラー16aを備え、ミラー16aをZ軸に平行な回動軸L1について回動させることにより、反射ミラー15で反射されたレーザ光の進行方向を変化させる。ミラー16aの入射面は平面である。ミラー16aは、たとえば、ガラス板に誘電体多層膜を形成した高反射率のミラーである。ミラー16aは、中立位置において、X-Z平面に平行となるように配置される。光偏向器16は、たとえば、MEMS(Micro Electro Mechanical Systems)ミラーによって構成される。 The light deflector 16 includes a mirror 16a, and changes the traveling direction of the laser beam reflected by the reflection mirror 15 by rotating the mirror 16a about a rotation axis L1 parallel to the Z axis. The incident surface of the mirror 16a is a plane. The mirror 16a is, for example, a high reflectance mirror in which a dielectric multilayer film is formed on a glass plate. The mirror 16a is disposed parallel to the XZ plane at the neutral position. The light deflector 16 is configured of, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
 シリンドリカルミラー17は、入射面がY-Z平面に平行な方向のみ凹面に湾曲した反射面となっている。シリンドリカルミラー17の入射面は球面であるが、非球面であってもよい。シリンドリカルミラー17は、入射面の母線が、入射面に入射する3つのレーザ光の光軸を含む平面に平行、すなわちX軸方向に平行となるように配置されている。シリンドリカルミラー17は、入射位置におけるレーザ光源11a~11cの3つの光軸が並ぶ方向に垂直な方向、すなわち、Y-Z平面に平行な方向のみに収束パワーを有する。レーザ光源11a~11cから出射されたレーザ光は、シリンドリカルミラー17によって、波長変換部材18の入射面上においてレーザ光の走査方向に垂直な方向に収束される。 The cylindrical mirror 17 is a reflecting surface whose incident surface is curved in a concave direction only in the direction parallel to the YZ plane. The incident surface of the cylindrical mirror 17 is spherical, but may be aspheric. The cylindrical mirror 17 is disposed such that the generatrix of the incident surface is parallel to a plane including the optical axes of the three laser beams incident on the incident surface, that is, parallel to the X-axis direction. The cylindrical mirror 17 has convergent power only in the direction perpendicular to the direction in which the three optical axes of the laser light sources 11a to 11c at the incident position are aligned, ie, in the direction parallel to the YZ plane. The laser light emitted from the laser light sources 11a to 11c is converged by the cylindrical mirror 17 on the incident surface of the wavelength conversion member 18 in the direction perpendicular to the scanning direction of the laser light.
 なお、光偏向器16から波長変換部材18までの光学系のレイアウトによっては、シリンドリカルミラー17が透過型のシリンドリカルレンズに置き換えられ得る。この場合、シリンドリカルレンズに入射した3つのレーザ光は、シリンドリカルレンズでY-Z平面に平行な方向の収束作用を受けた後、波長変換部材18に入射する。 Depending on the layout of the optical system from the light deflector 16 to the wavelength conversion member 18, the cylindrical mirror 17 may be replaced with a transmission type cylindrical lens. In this case, the three laser beams incident on the cylindrical lens are subjected to the converging action in the direction parallel to the YZ plane by the cylindrical lens, and then enter the wavelength conversion member 18.
 さらに、ミラー16aの入射面を、シリンドリカルミラー面に置き換えてもよい。この場合、シリンドリカルミラー17は、省略されるか、平面の反射ミラーとされ、シリンドリカルレンズ14に入射した3つのレーザ光は、シリンドリカル面のミラー16aによりY-Z平面に平行な方向の収束作用を受けた後、反射ミラーを経るか、または、そのまま直接、波長変換部材18に入射する。 Furthermore, the incident surface of the mirror 16a may be replaced with a cylindrical mirror surface. In this case, the cylindrical mirror 17 is omitted or is a flat reflection mirror, and the three laser beams incident on the cylindrical lens 14 have a converging action in a direction parallel to the YZ plane by the mirror 16a of the cylindrical surface. After receiving, it passes through the reflection mirror or directly enters the wavelength conversion member 18 as it is.
 波長変換部材18は、シリンドリカルミラー17によって反射されたレーザ光が入射する位置に配置されている。波長変換部材18は、長方形形状の板状の部材であり、入射面がX-Y平面に平行となるように設置されている。上記のようにミラー16aが回動軸L1について回動することにより、波長変換部材18は、レーザ光によって長手方向に走査される。 The wavelength conversion member 18 is disposed at a position where the laser light reflected by the cylindrical mirror 17 is incident. The wavelength conversion member 18 is a rectangular plate-like member, and is installed so that the incident surface is parallel to the XY plane. As described above, when the mirror 16a pivots about the pivot axis L1, the wavelength conversion member 18 is scanned in the longitudinal direction by the laser beam.
 波長変換部材18は、入射したレーザ光の一部を、青色波長帯とは異なる波長に変換して、Z軸方向に拡散させる。波長変換されなかった他のレーザ光は、波長変換部材18によってZ軸方向に拡散される。こうして拡散された2種類の波長の光が合成されて、所定の色の光が生成される。各波長の光は、投射光学系3に取り込まれて、目標領域に投射される。 The wavelength conversion member 18 converts a part of the incident laser light into a wavelength different from that of the blue wavelength band and diffuses it in the Z-axis direction. Other laser beams not subjected to wavelength conversion are diffused by the wavelength conversion member 18 in the Z-axis direction. Thus, the diffused light of two types of wavelengths is combined to generate light of a predetermined color. The light of each wavelength is taken into the projection optical system 3 and projected onto the target area.
 本実施の形態では、波長変換部材18によって、レーザ光の一部が、黄色波長帯の光に変換される。波長変換後の黄色波長帯の拡散光と、波長変換されなかった青色波長帯の散乱光とが合成されて、白色の光が生成される。なお、波長変換後の波長は黄色波長帯でなくてもよく、生成される光の色は、白以外の色であってもよい。波長変換部材18の構成は、追って、図7A、図7Bを参照して説明する。 In the present embodiment, part of the laser light is converted into light in the yellow wavelength band by the wavelength conversion member 18. The diffused light in the yellow wavelength band after wavelength conversion and the scattered light in the blue wavelength band not subjected to wavelength conversion are synthesized to generate white light. The wavelength after wavelength conversion may not be in the yellow wavelength band, and the color of the light generated may be a color other than white. The configuration of the wavelength conversion member 18 will be described later with reference to FIGS. 7A and 7B.
 図2は、レーザ光源11aの構成と配置を示す斜視図である。図2には、レーザ光源11aに装備された発光素子110の構成が示されている。他のレーザ光源11b、11cの発光素子の構成も図2と同様である。 FIG. 2 is a perspective view showing the configuration and arrangement of the laser light source 11a. The structure of the light emitting element 110 with which the laser light source 11a was equipped is shown by FIG. The configuration of the light emitting elements of the other laser light sources 11b and 11c is the same as that shown in FIG.
 発光素子110は、上下面が電極111、112となっている。これら電極111、112に電圧を印加することにより、上下のクラッド層に挟まれた活性層113から出射光軸120に沿ってレーザ光130が出射される。レーザ光130は、活性層113に平行な方向および活性層113に垂直な方向に所定の放射角で広がる。活性層113に垂直な方向の放射角は、活性層113に平行な方向の放射角よりも大きい。従って、出射されたレーザ光130のビーム形状は楕円である。一般に、この楕円の長軸はファスト軸と呼ばれ、楕円の短軸はスロー軸と呼ばれる。 Upper and lower surfaces of the light emitting element 110 are electrodes 111 and 112. By applying a voltage to the electrodes 111 and 112, the laser beam 130 is emitted from the active layer 113 sandwiched between the upper and lower cladding layers along the emission optical axis 120. The laser beam 130 spreads in a direction parallel to the active layer 113 and in a direction perpendicular to the active layer 113 at a predetermined radiation angle. The radiation angle in the direction perpendicular to the active layer 113 is larger than the radiation angle in the direction parallel to the active layer 113. Therefore, the beam shape of the emitted laser beam 130 is an ellipse. In general, the major axis of this ellipse is called the fast axis, and the minor axis of the ellipse is called the slow axis.
 図1A、図1Bの構成において、レーザ光源11aは、ファスト軸が、シリンドリカルレンズ14の収束方向に平行となるように配置される。残り2つのレーザ光源11b、11cは、シリンドリカルレンズ14の入射位置においてレーザ光のファスト軸がシリンドリカルレンズ14の収束方向に平行となるように配置される。レーザ光は、スロー軸に沿った方向よりもファスト軸に沿った方向の方が収束されやすい。これは、一般的にレーザ光源11a~11c(半導体レーザ)の端面におけるファスト軸方向の発光領域の幅が、スロー軸に比べて狭いからである。したがって、レーザ光源11a~11cを上記のように配置することにより、レーザ光源11a~11cから出射されたレーザ光をシリンドリカルレンズ14によって効率的に収束させることができる。 In the configuration of FIGS. 1A and 1B, the laser light source 11 a is disposed such that the fast axis is parallel to the convergence direction of the cylindrical lens 14. The remaining two laser light sources 11 b and 11 c are arranged such that the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14 at the incident position of the cylindrical lens 14. The laser light is more likely to converge in the direction along the fast axis than the direction along the slow axis. This is because the width of the light emitting region in the fast axis direction at the end face of the laser light sources 11a to 11c (semiconductor laser) is generally narrower than that of the slow axis. Therefore, by arranging the laser light sources 11a to 11c as described above, the laser beams emitted from the laser light sources 11a to 11c can be converged efficiently by the cylindrical lens 14.
 図3は、シリンドリカルミラー17で反射された後のレーザ光の収束状態を模式的に示す図である。 FIG. 3 is a view schematically showing the convergence state of the laser beam after being reflected by the cylindrical mirror 17.
 図3において、シリンドリカルミラー17から波長変換部材18に向かう破線はレーザ光源11a~11cから出射されたレーザ光130a~130cを示し、各破線に付記された楕円は、これらレーザ光のビームスポットBSa~BScを示している。 In FIG. 3, broken lines from the cylindrical mirror 17 toward the wavelength conversion member 18 indicate the laser beams 130a to 130c emitted from the laser light sources 11a to 11c, and the ellipses indicated by the broken lines indicate the beam spots BSa to BSa of these laser lights. It shows BSc.
 図3に示すように、本実施の形態では、3つのビームスポットBSa~BScが、波長変換部材18の入射面18a上において、レーザ光の走査方向に並び且つ互いに離間するように、レーザ光源11a~11cとシリンドリカルレンズ14(集光光学系)が調整されている。 As shown in FIG. 3, in the present embodiment, the laser beam source 11a is arranged such that the three beam spots BSa to BSc are aligned in the scanning direction of the laser beam and separated from each other on the incident surface 18a of the wavelength conversion member 18. 11c and the cylindrical lens 14 (condensing optical system) are adjusted.
 なお、ビームスポットBSa~BScのサイズは、強度ピークの1/e以上の領域によって規定される。あるいは、ビームスポットBSa~BScのサイズが、FWHM(full width at half maximum)で規定されてもよい。この場合、強度ピークの1/e以上の領域の一部が重なっていても、FWHMで規定された場合のビームスポットが重なっていなければ、ビームスポットBSa~BScは互いに離間していると言える。ビームサイズの規定方法は、追って説明する変更例においても同様である。 The size of beam spots BSa to BSc is defined by an area of 1 / e 2 or more of the intensity peak. Alternatively, the sizes of the beam spots BSa to BSc may be defined by full width at half maximum (FWHM). In this case, even if a part of the region of 1 / e 2 or more of the intensity peak overlaps, it can be said that the beam spots BSa to BSc are separated from each other if the beam spots defined by FWHM do not overlap. . The method of defining the beam size is the same as in the modification described later.
 図4A、図4Bは、それぞれ、波長変換部材18の入射面18aにおいてビームスポットBSa~BScを走査方向に離間させるための構成を説明する図である。なお、便宜上、図4A、図4Bでは、シリンドリカルレンズ14と波長変換部材18との間に配置された光学部材の図示が省略されている。 FIGS. 4A and 4B are diagrams for explaining the configuration for separating the beam spots BSa to BSc in the scanning direction on the incident surface 18a of the wavelength conversion member 18, respectively. For convenience, in FIGS. 4A and 4B, the illustration of the optical member disposed between the cylindrical lens 14 and the wavelength conversion member 18 is omitted.
 図4Aに示す構成では、レーザ光130a~130cが互いに非平行な状態でシリンドリカルレンズ14に入射するよう、レーザ光源11a~11cの配置または反射プリズム13a、13bの配置が調整されている。具体的には、レーザ光源11aから出射されたレーザ光130aは、光軸がZ軸に並行な状態でシリンドリカルレンズ14に入射し、レーザ光源11b、11cから出射されたレーザ光130b、130cは、それぞれ、光軸がZ軸に並行な状態からX軸正負の方向にやや傾いた状態でシリンドリカルレンズ14に入射する。 In the configuration shown in FIG. 4A, the arrangement of the laser light sources 11a to 11c or the arrangement of the reflecting prisms 13a and 13b is adjusted so that the laser beams 130a to 130c enter the cylindrical lens 14 in a nonparallel state. Specifically, the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 with the optical axis parallel to the Z axis, and the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are Respectively, the light is incident on the cylindrical lens 14 in a state in which the optical axis is slightly inclined in the positive and negative directions of the X-axis from the state in parallel with the Z-axis.
 この構成において、シリンドリカルレンズ14には収差がなく、シリンドリカルレンズ14は、入射した平行光を1つの焦線に収束させるように構成されている。すなわち、シリンドリカルレンズ14は、単焦点のシリンドリカルレンズである。また、シリンドリカルレンズ14から波長変換部材18までの光路長と、シリンドリカルレンズ14の焦点距離とが略同じとなるように光学系が設定されている。 In this configuration, the cylindrical lens 14 has no aberration, and the cylindrical lens 14 is configured to converge incident parallel light into one focal line. That is, the cylindrical lens 14 is a single focus cylindrical lens. Further, the optical system is set such that the optical path length from the cylindrical lens 14 to the wavelength conversion member 18 and the focal length of the cylindrical lens 14 are substantially the same.
 この構成では、図4Aに示すように、レーザ光130a~130cが互いに非平行な状態でシリンドリカルレンズ14に入射することにより、レーザ光130a~130cの収束位置が、波長変換部材18の入射面18a上において、走査方向(X軸方向)に互いに変位する。これにより、レーザ光130a~130cの各ビームスポットBSa~BScが、波長変換部材18の入射面18a上において、走査方向に並び且つ互いに離間するようになる。 In this configuration, as shown in FIG. 4A, when the laser beams 130a to 130c enter the cylindrical lens 14 in a non-parallel state, the convergence position of the laser beams 130a to 130c is the incident surface 18a of the wavelength conversion member 18. Above, they are mutually displaced in the scanning direction (X-axis direction). As a result, the beam spots BSa to BSc of the laser beams 130a to 130c are aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other.
 なお、シリンドリカルレンズ14が予めX軸方向に収差をもつ場合は、図4Bに示すように、レーザ光130a~130cを互いに平行な状態でシリンドリカルレンズ14に入射させてもよい。この場合、シリンドリカルレンズ14の収差によって、レーザ光130a~130cの各ビームスポットBSa~BScが、波長変換部材18の入射面18a上において、走査方向に並び且つ互いに離間するように位置付けられる。 When the cylindrical lens 14 has an aberration in the X-axis direction in advance, the laser beams 130a to 130c may be incident on the cylindrical lens 14 in parallel with each other as shown in FIG. 4B. In this case, due to the aberration of the cylindrical lens 14, the beam spots BSa to BSc of the laser beams 130a to 130c are positioned on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other.
 図4Aの構成において、シリンドリカルレンズ14に対するレーザ光130b、130cの入射方向の調整は、たとえば、図5Aに示すように、レーザ光源11b、11cの出射光軸に対する反射プリズム13a、13bの反射面の傾きを調整することによって行われ得る。この場合、たとえば、レーザ光源11b、11cは、それぞれ、出射光軸がX軸に平行となるように配置され、レーザ光源11b、11cの出射光軸と反射プリズム13a、13bの反射面とのなす角θがそれぞれ45度よりもやや大きくなるように、反射プリズム13a、13bが配置される。レーザ光源11aは、出射光軸がZ軸に平行となるように配置される。これにより、図4Aに示したように、レーザ光源11aから出射されたレーザ光130aは、Z軸に平行にシリンドリカルレンズ14に入射し、レーザ光源11b、11cから出射されたレーザ光130b、130cは、Z軸に平行な状態からやや傾いた状態でシリンドリカルレンズ14に入射する。 In the configuration of FIG. 4A, the adjustment of the incident direction of the laser beams 130b and 130c to the cylindrical lens 14 is performed, for example, on the reflection surface of the reflecting prisms 13a and 13b with respect to the emission optical axis of the laser light sources 11b and 11c, as shown in FIG. It can be done by adjusting the tilt. In this case, for example, the laser light sources 11b and 11c are disposed such that the emission light axes are parallel to the X axis, and the light emission axes of the laser light sources 11b and 11c are opposite to the reflection surfaces of the reflection prisms 13a and 13b. The reflective prisms 13a and 13b are disposed such that the angle θ is slightly larger than 45 degrees. The laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis. Thus, as shown in FIG. 4A, the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 in parallel to the Z axis, and the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are , And enters the cylindrical lens 14 in a state slightly inclined from the state parallel to the Z axis.
 あるいは、図4Aの構成において、シリンドリカルレンズ14に対するレーザ光130b、130cの入射方向の調整は、たとえば、図5Bに示すように、レーザ光源11b、11cの出射光軸を、X軸に平行な状態からX-Z平面に平行な方向に傾けることによっても行われ得る。 Alternatively, in the configuration of FIG. 4A, adjustment of the incident direction of the laser beams 130b and 130c with respect to the cylindrical lens 14 is performed, for example, as shown in FIG. 5B, with the emission optical axes of the laser light sources 11b and 11c parallel to the X axis. Can also be performed by tilting in a direction parallel to the XZ plane.
 この場合、たとえば、反射プリズム13a、13bは、それぞれ、反射面がX軸に対して45度の傾きをもつように配置され、レーザ光源11b、11cの出射光軸と反射プリズム13a、13bの反射面とのなす角θがそれぞれ45度よりもやや大きくなるように、レーザ光源11b、11cが配置される。コリメータレンズ12b、12cは、光軸がレーザ光源11b、11cの出射光軸に整合するように配置される。レーザ光源11aは、出射光軸がZ軸に平行となるように配置される。これにより、図4Aに示したように、レーザ光源11aから出射されたレーザ光130aは、Z軸に平行にシリンドリカルレンズ14に入射し、レーザ光源11b、11cから出射されたレーザ光130b、130cは、Z軸に平行な状態からやや傾いた状態でシリンドリカルレンズ14に入射する。 In this case, for example, the reflecting prisms 13a and 13b are disposed such that the reflecting surface has an inclination of 45 degrees with respect to the X axis, and the emission optical axes of the laser light sources 11b and 11c and the reflection of the reflecting prisms 13a and 13b, for example. The laser light sources 11 b and 11 c are disposed such that the angles θ with the surface are slightly larger than 45 degrees, respectively. The collimator lenses 12b and 12c are arranged such that the optical axes thereof are aligned with the emission optical axes of the laser light sources 11b and 11c. The laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis. Thus, as shown in FIG. 4A, the laser beam 130a emitted from the laser light source 11a is incident on the cylindrical lens 14 in parallel to the Z axis, and the laser beams 130b and 130c emitted from the laser light sources 11b and 11c are , And enters the cylindrical lens 14 in a state slightly inclined from the state parallel to the Z axis.
 なお、レーザ光130b、130cをシリンドリカルレンズ14に対してZ軸方向から傾いた方向に入射させるために、レーザ光源11b、11cと反射プリズム13a、13bの両方の配置が調整されてもよい。 In order to cause the laser beams 130b and 130c to be incident on the cylindrical lens 14 in a direction inclined from the Z-axis direction, the arrangement of both the laser light sources 11b and 11c and the reflecting prisms 13a and 13b may be adjusted.
 また、図6Aに示すように、シリンドリカルレンズ14の入射面に近づくに伴って、レーザ光130b、130cの光軸がレーザ光130aの光軸に接近するように、レーザ光源11b、11cが傾けられてもよい。この場合、図6Bに示すようにシリンドリカルレンズ14から波長変換部材18までの光路において、レーザ光130b、130cが交差し、レーザ光130bは、レーザ光130aに対してX軸負側にずれた位置に収束され、レーザ光130cは、レーザ光130aに対してX軸正側にずれた位置に収束される。よって、この構成によっても、3つのビームスポットBSa~BScは、波長変換部材18の入射面18a上において、レーザ光の走査方向に並び且つ互いに離間するように配置され得る。 Further, as shown in FIG. 6A, the laser light sources 11b and 11c are tilted so that the optical axes of the laser beams 130b and 130c approach the optical axis of the laser beam 130a as the incident surface of the cylindrical lens 14 is approached. May be In this case, as shown in FIG. 6B, in the optical path from the cylindrical lens 14 to the wavelength conversion member 18, the laser beams 130b and 130c intersect and the laser beam 130b is shifted to the X axis negative side with respect to the laser beam 130a. The laser beam 130c is converged to a position deviated to the X axis positive side with respect to the laser beam 130a. Therefore, also according to this configuration, the three beam spots BSa to BSc can be arranged on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction of the laser light and separated from each other.
 なお、図4Bの構成では、出射光軸がX軸に平行となるようにレーザ光源11b、11cが配置され、反射面がX軸に対して45度傾くように反射プリズム13a、13bが配置される。また、レーザ光源11aは、出射光軸がZ軸に平行となるように配置される。これにより、図4Bに示すように、光軸が互いに平行な状態でレーザ光130a~130bがシリンドリカルレンズ14に入射する。 In the configuration of FIG. 4B, the laser light sources 11b and 11c are disposed so that the emission optical axis is parallel to the X axis, and the reflection prisms 13a and 13b are disposed such that the reflection surface is inclined 45 degrees with respect to the X axis. Ru. The laser light source 11a is disposed such that the emission optical axis is parallel to the Z axis. As a result, as shown in FIG. 4B, the laser beams 130a to 130b enter the cylindrical lens 14 with the optical axes parallel to each other.
 本実施の形態では、上記のように、シリンドリカルレンズ14から波長変換部材18までの光路長が、シリンドリカルレンズ14の焦点距離と略同じに設定されているため、波長変換部材18の入射面18aにおいて、3つのレーザ光130a~130c(ビームスポットBSa~BSc)は、レーザ光の走査方向、すなわちX軸方向の幅が、シリンドリカルレンズ14の収束作用により生成される焦線の幅付近にまで圧縮される。 In the present embodiment, as described above, since the optical path length from the cylindrical lens 14 to the wavelength conversion member 18 is set to be approximately the same as the focal length of the cylindrical lens 14, in the incident surface 18 a of the wavelength conversion member 18 The width of the three laser beams 130a to 130c (beam spots BSa to BSc) in the scanning direction of the laser beam, that is, the X axis direction is compressed to about the width of the focal line generated by the converging action of the cylindrical lens 14. Ru.
 なお、シリンドリカルミラー17から波長変換部材18までの光路長は、シリンドリカルミラー17の焦点距離と同一であっても相違していてもよい。たとえば、シリンドリカルミラー17から波長変換部材18までの光路長が、シリンドリカルミラー17の焦点距離と同一に設定された場合、レーザ光は、シリンドリカルミラー17の焦点距離に比例した最小幅に収束する。 The optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 may be the same as or different from the focal length of the cylindrical mirror 17. For example, when the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 is set to be equal to the focal length of the cylindrical mirror 17, the laser light converges to the minimum width proportional to the focal length of the cylindrical mirror 17.
 ただし、シリンドリカルミラー17による収束方向はレーザ光130a~130cのスロー軸に平行な方向であるため、レーザ光はファスト軸に比べて収束されにくい。その上、本構成では、スロー軸に平行な方向から所定の入射角(θ1とする)で波長変換部材18に入射する。このようにレーザ光が波長変換部材18に対して斜めから入射することにより、スロー軸方向におけるビームの幅が、シリンドリカルミラー17の焦点距離に比例した最小幅の1/cosθ1倍に広がる。このため、レーザ光は、スロー軸方向にある程度の幅をもって収束される。 However, since the convergence direction by the cylindrical mirror 17 is a direction parallel to the slow axis of the laser beams 130a to 130c, the laser beam is less likely to be converged than the fast axis. Moreover, in the present configuration, the light is incident on the wavelength conversion member 18 at a predetermined incident angle (referred to as θ1) from the direction parallel to the slow axis. As described above, when the laser light obliquely enters the wavelength conversion member 18, the width of the beam in the slow axis direction is expanded to 1 / cos θ1 times the minimum width proportional to the focal length of the cylindrical mirror 17. For this reason, laser light is converged with a certain width in the slow axis direction.
 入射面18a上におけるビームスポットBSa~BScのスロー軸方向の幅をできるだけ小さくしたい場合には、シリンドリカルミラー17の焦点距離を小さく設定する必要がある。一方、シリンドリカルミラー17から波長変換部材18までの光路長が、シリンドリカルミラー17の焦点距離と異なる場合、波長変換部材18の入射面18a上におけるビームスポットBSa~BScのスロー軸方向の幅は、シリンドリカルミラー17の焦点位置における最小幅よりも広く設計することができる。 When it is desired to make the width of the beam spots BSa to BSc in the slow axis direction as small as possible on the incident surface 18a, it is necessary to set the focal distance of the cylindrical mirror 17 small. On the other hand, when the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 is different from the focal length of the cylindrical mirror 17, the width of the beam spots BSa to BSc in the slow axis direction on the incident surface 18a of the wavelength conversion member 18 is cylindrical. The width can be designed wider than the minimum width at the focal position of the mirror 17.
 以上のように、波長変換部材18の入射面18aにおいて、3つのレーザ光130a~130cのビームスポットBSa~BScは、レーザ光の走査方向に垂直な方向、すなわちY-Z平面に平行な方向の幅を広い範囲で自由に設計できる。したがって、波長変換部材18の入射面18aにおいて、3つのレーザ光130a~130cのビームスポットBSa~BScは、レーザ光の走査方向に垂直な方向に延びた線状の形状となる。上記のように、走査方向に垂直な方向におけるビームスポットの長さを広げたい場合は、シリンドリカルミラー17から波長変換部材18までの光路長を、シリンドリカルミラー17の焦点距離と相違するように設定すると良い。ビームスポットの長さをさらに広げたい場合には、シリンドリカルミラーの反射面を平面、または凸面に形成することで実現できる。 As described above, on the incident surface 18a of the wavelength conversion member 18, the beam spots BSa to BSc of the three laser beams 130a to 130c are perpendicular to the scanning direction of the laser beam, that is, parallel to the YZ plane. You can design freely in a wide range. Therefore, on the incident surface 18a of the wavelength conversion member 18, the beam spots BSa to BSc of the three laser beams 130a to 130c have a linear shape extending in the direction perpendicular to the scanning direction of the laser beam. As described above, when it is desired to extend the beam spot length in the direction perpendicular to the scanning direction, the optical path length from the cylindrical mirror 17 to the wavelength conversion member 18 is set to be different from the focal length of the cylindrical mirror 17 good. When it is desired to further extend the length of the beam spot, it can be realized by forming the reflection surface of the cylindrical mirror to be a flat surface or a convex surface.
 このように、ビームスポットBSa~BScを走査方向に交差する方向に長い形状とすることにより、各ビームスポットの光密度が過度に高まることがなく、光飽和や発熱による温度消光効果により波長変換部材18における発光効率が低下することを抑止できる。また、走査方向に交差する方向に広い幅で波長変換部材18を走査できるため、波長変換部材18を効率的に各レーザ光で走査できる。 As described above, by forming the beam spots BSa to BSc into a long shape in the direction intersecting the scanning direction, the light density of each beam spot is not excessively increased, and the wavelength conversion member is obtained by the temperature quenching effect due to light saturation or heat generation. It is possible to suppress the decrease of the luminous efficiency at 18. Further, since the wavelength conversion member 18 can be scanned with a wide width in the direction intersecting the scanning direction, the wavelength conversion member 18 can be efficiently scanned with each laser beam.
 図7Aは、波長変換部材18の構成を模式的に示す側面図である。 FIG. 7A is a side view schematically showing the configuration of the wavelength conversion member 18.
 波長変換部材18は、基板201の上面に、反射膜202と、蛍光体層203とを積層した構成となっている。 The wavelength conversion member 18 has a configuration in which the reflective film 202 and the phosphor layer 203 are laminated on the upper surface of the substrate 201.
 基板201は、たとえば、シリコンや窒化アルミニウムセラミック、サファイヤガラスなどからなっている。反射膜202は、第1の反射膜202aと第2の反射膜202bとが積層されて構成されている。第1の反射膜202aは、たとえば、Ag、Ag合金、Alなどの金属膜である。第2の反射膜202bは、反射とともに第1の反射膜202aを酸化などから保護する機能をも有し、たとえば、SiO、ZnO、ZrO、Nb、Al、TiO、SiN、AlNなど誘電体の1つまたは複数の層からなっている。反射膜202は、必ずしも、第1の反射膜202aおよび第2の反射膜202bから構成されなくともよく、単層または3つ以上の層が積層された構成であってもよい。 The substrate 201 is made of, for example, silicon, aluminum nitride ceramic, sapphire glass or the like. The reflective film 202 is configured by laminating a first reflective film 202a and a second reflective film 202b. The first reflective film 202a is, for example, a metal film such as Ag, an Ag alloy, or Al. The second reflective film 202b also has a function of protecting the first reflective film 202a from oxidation or the like as well as reflection. For example, SiO 2 , ZnO, ZrO 2 , Nb 2 O 5 , Al 2 O 3 , TiO 2 , One or more layers of dielectrics such as SiN, AlN. The reflective film 202 does not necessarily have to be composed of the first reflective film 202a and the second reflective film 202b, and may have a single layer or a structure in which three or more layers are stacked.
 蛍光体層203は、蛍光体粒子203aをバインダ203bで固定することにより形成される。蛍光体粒子203aは、レーザ光源11a~11cから出射された青色波長帯のレーザ光が照射されることによって黄色波長帯の蛍光を発する。蛍光体粒子203aとして、たとえば、平均粒子径が1μm~30μmの(YGd1-n(AlGa1-m12:Ce(0.5≦n≦1、0.5≦m≦1)が用いられる。また、バインダ203bとして、ポリメチルシルセスキオキサンなどのシルセスキオキサンを主に含む透明材料が用いられる。 The phosphor layer 203 is formed by fixing the phosphor particles 203a with a binder 203b. The phosphor particles 203a emit fluorescence in the yellow wavelength band by being irradiated with laser light in the blue wavelength band emitted from the laser light sources 11a to 11c. As the phosphor particles 203a, for example, (Y n G d 1-n ) 3 (Al m Ga 1-m ) 5 O 12 : Ce (0.5 ≦ n ≦ 1, 0.5) having an average particle diameter of 1 μm to 30 μm. ≦ m ≦ 1) is used. In addition, as the binder 203b, a transparent material mainly containing silsesquioxane such as polymethyl silsesquioxane is used.
 さらに、蛍光体層203の内部に、ボイド203cを設けることが好ましい。これにより、内部に侵入したレーザ光をより効率的に散乱させて、光源装置2から取り出すことができる。また、第2の反射膜202b付近にボイド203cが存在することにより、第2の反射膜202bの表面によるエネルギーロスを低減しつつ、効果的にレーザ光と蛍光を散乱させることができる。蛍光体層203には、さらに、強度および耐熱性を高めるためのフィラー203dが含まれる。 Furthermore, it is preferable to provide a void 203 c inside the phosphor layer 203. As a result, the laser light that has entered inside can be scattered more efficiently and can be extracted from the light source device 2. Further, by the presence of the void 203c in the vicinity of the second reflective film 202b, it is possible to effectively scatter the laser light and the fluorescence while reducing the energy loss due to the surface of the second reflective film 202b. The phosphor layer 203 further contains a filler 203 d for enhancing the strength and the heat resistance.
 レーザ光源11a~11cから出射されたレーザ光は、図7Aに示す励起領域R1に照射され、蛍光体層203の表面または内部で、散乱、吸収される。このとき、レーザ光の一部は、蛍光体粒子203aにより黄色波長帯の光に変換されて、蛍光体層203から放射される。また、レーザ光の他の一部は、黄色波長帯の光に変換されずに散乱されて青色波長帯の光のまま蛍光体層203から放射される。このとき、各波長帯の光は、蛍光体層203内を伝搬しながら散乱されるため、励起領域R1よりもやや広い発光領域R2から放射される。 The laser light emitted from the laser light sources 11a to 11c is irradiated to the excitation region R1 shown in FIG. 7A, and is scattered and absorbed on the surface or inside of the phosphor layer 203. At this time, a part of the laser light is converted into light of a yellow wavelength band by the phosphor particles 203 a and emitted from the phosphor layer 203. In addition, the other part of the laser light is scattered without being converted to light in the yellow wavelength band, and is emitted from the phosphor layer 203 as light in the blue wavelength band. At this time, the light of each wavelength band is scattered while propagating in the phosphor layer 203, and is thus emitted from the light emitting region R2 slightly wider than the excitation region R1.
 図7Bは、波長変換部材18の構成を模式的に示す平面図である。 FIG. 7B is a plan view schematically showing the configuration of the wavelength conversion member 18.
 波長変換部材18は、平面視において、X軸方向に長い長方形の形状を有する。波長変換部材18は、光偏向器16のミラー16aが回動されることにより、レーザ光でX軸方向に走査される。ミラー16aは、X-Z平面に平行な中立位置から両方向に所定の角度範囲で回動される。図7Bにおいて、BSは、上記のようにレーザ光源11a~11cから出射された各レーザ光のビームスポットを示している。3つのビームスポットBSは、波長変換部材18の入射面18aを、幅W1において往復移動する。 The wavelength conversion member 18 has a rectangular shape elongated in the X-axis direction in plan view. The wavelength conversion member 18 is scanned with laser light in the X-axis direction by rotating the mirror 16 a of the light deflector 16. The mirror 16a is rotated in a predetermined angular range in both directions from a neutral position parallel to the XZ plane. In FIG. 7B, BS indicates the beam spot of each laser beam emitted from the laser light sources 11a to 11c as described above. The three beam spots BS reciprocate on the incident surface 18a of the wavelength conversion member 18 in the width W1.
 なお、図7Bには、ビームスポットBSの往復移動が直線の矢印で示されているが、レーザ光が斜め方向から波長変換部材18に入射するため、実際のビームスポットBSの移動軌跡は、X軸方向の中央位置に対してX軸正負方向の両端がY軸負方向に変位した、やや湾曲した軌跡となる。 In FIG. 7B, the reciprocating movement of the beam spot BS is indicated by a straight arrow, but since the laser beam is incident on the wavelength conversion member 18 from an oblique direction, the movement locus of the actual beam spot BS is X It becomes a slightly curved locus in which both ends in the positive and negative directions of the X axis are displaced in the negative direction of the Y axis with respect to the central position in the axial direction.
 入射面18a上におけるビームスポットBSの領域は、図7Aの励起領域R1に対応する。波長変換部材18の入射面18aをビームスポットBSが移動する間に、ビームスポットBSの領域よりもやや広い発光領域R2から青色波長帯の拡散光と黄色波長帯の拡散光がZ軸正方向に放射される。 The area of the beam spot BS on the incident surface 18a corresponds to the excitation area R1 of FIG. 7A. While the beam spot BS moves on the incident surface 18a of the wavelength conversion member 18, diffused light of the blue wavelength band and diffused light of the yellow wavelength band from the light emission area R2 slightly wider than the area of the beam spot BS in the positive Z-axis direction It is emitted.
 こうして放射された2つの波長帯の光が、図1A、図1Bに示した投射光学系3により取り込まれ、目標領域に投射される。これにより、青色波長帯の光と黄色波長帯の光が合成された白色の光が、投光装置1から目標領域に投射される。 The two wavelength bands of light thus emitted are taken in by the projection optical system 3 shown in FIGS. 1A and 1B and projected onto the target area. Thereby, white light in which the light of the blue wavelength band and the light of the yellow wavelength band are combined is projected from the light projecting device 1 to the target area.
 さらに、本実施の形態では、波長変換部材18の入射面18aで正反射されたレーザ光(以下、「正反射光」という)を受光する位置に、位置検出器19が設置されている。位置検出器19は、光偏向器16のミラー16aが中立位置にあるときに、正反射光が位置検出器19の入射面のX軸方向の中央位置に入射するように配置されている。 Further, in the present embodiment, the position detector 19 is installed at a position where the laser light (hereinafter, referred to as “regular reflection light”) specularly reflected by the incident surface 18 a of the wavelength conversion member 18 is received. The position detector 19 is disposed such that the specularly reflected light is incident on the central position in the X-axis direction of the incident surface of the position detector 19 when the mirror 16 a of the light deflector 16 is in the neutral position.
 位置検出器19は、波長変換部材18の入射面上の走査範囲に対して正反射光を受光するとともに、受光位置および受光光量に応じた検出信号を出力する。位置検出器19は、波長変換部材18の入射面上の走査範囲に対して正反射光を受光可能なように、X軸方向に長い受光面を有する。 The position detector 19 receives specularly reflected light with respect to the scanning range on the incident surface of the wavelength conversion member 18, and outputs a detection signal according to the light receiving position and the received light amount. The position detector 19 has a long light receiving surface in the X-axis direction so as to be able to receive specularly reflected light with respect to the scanning range on the incident surface of the wavelength conversion member 18.
 位置検出器19は、たとえば、PSD(Position SensitiveDetector)からなっている。この他、位置検出器19は、フォトディテクタがアレイ上に配置された構成であってもよく、CCD(Charge Coupled Device)等の撮像素子であってもよい。 The position detector 19 is made of, for example, a PSD (Position Sensitive Detector). Besides, the position detector 19 may have a configuration in which photodetectors are arranged on an array, or may be an imaging device such as a CCD (Charge Coupled Device).
 図8Aは、位置検出器19の構成および位置検出信号の生成方法を説明するための図である。また、図8Bは、位置検出器19の構成を模式的に示す断面図である。 FIG. 8A is a diagram for describing a configuration of the position detector 19 and a method of generating a position detection signal. 8B is a cross-sectional view schematically showing the configuration of the position detector 19. As shown in FIG.
 図8Bに示すように、位置検出器19は、N型高抵抗シリコン基板の表面に、受光面と抵抗層を兼ねたP型抵抗層を形成した構造となっている。表面側の抵抗層には、横方向における光電流を出力するための電極EX1、EX2が形成され、裏面側の抵抗層には共通電極EX3が形成されている。電極EX1、EX2に流入した光電流は、端子19b、19cから出力される。 As shown in FIG. 8B, the position detector 19 has a structure in which a P-type resistive layer which also serves as a light receiving surface and a resistive layer is formed on the surface of an N-type high-resistance silicon substrate. Electrodes EX1 and EX2 for outputting a photocurrent in the lateral direction are formed in the resistance layer on the front side, and a common electrode EX3 is formed in the resistance layer on the back side. The photocurrents flowing into the electrodes EX1 and EX2 are output from the terminals 19b and 19c.
 次に、位置検出器19における受光位置の算出方法について説明する。 Next, a method of calculating the light receiving position in the position detector 19 will be described.
 位置検出器19の受光面19aに正反射光(正反射光スポットRB)が照射されると、正反射光(正反射光スポットRB)の受光位置に光量に比例した電荷が発生する。この電荷は光電流として抵抗層に到達し、各電極EX1、EX2までの距離に逆比例して分割されて、電極EX1、EX2に接続された端子19b、19cから出力される。 When the light receiving surface 19a of the position detector 19 is irradiated with the regular reflection light (the regular reflection light spot RB), a charge proportional to the light quantity is generated at the light reception position of the regular reflection light (the regular reflection light spot RB). This charge reaches the resistance layer as a photocurrent, is divided in inverse proportion to the distance to each of the electrodes EX1 and EX2, and is output from the terminals 19b and 19c connected to the electrodes EX1 and EX2.
 ここで、位置検出器19において、端子19b、19cから出力される光電流は、正反射光の受光位置から電極EX1、EX2までの距離Lx1、Lx2に逆比例して分割された大きさを有する。よって、端子19b、19cから出力される光電流の電流値をもとに、受光面上におけるX軸方向の正反射光の受光位置を検出することができる。 Here, in the position detector 19, the photocurrents output from the terminals 19b and 19c have sizes divided in inverse proportion to the distances Lx1 and Lx2 from the light reception position of the regular reflection light to the electrodes EX1 and EX2. . Therefore, the light receiving position of the specularly reflected light in the X-axis direction on the light receiving surface can be detected based on the current value of the photocurrent output from the terminals 19 b and 19 c.
 たとえば、位置検出器19について、図8Aの位置に正反射光スポットRBが照射されたとする。この場合、受光面19aの横方向のセンター位置Lmxを基準とする受光位置の横方向の座標Pxは、電極EX1、EX2から出力される光電流の電流値をそれぞれIx1、Ix2、横方向における電極EX1、EX2間の距離をLxとすると、以下の式によって算出される。 For example, with respect to the position detector 19, it is assumed that the specularly reflected light spot RB is irradiated at the position shown in FIG. 8A. In this case, the lateral coordinates Px of the light receiving position relative to the lateral center position Lmx of the light receiving surface 19a are Ix1 and Ix2, respectively, the current values of the photocurrents output from the electrodes EX1 and EX2. Assuming that the distance between EX1 and EX2 is Lx, it is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 こうして、位置検出器19の端子19b、19cから出力された光電流の電流値Ix1、Ix2をもとに、式(1)の演算を行うことにより、受光面19a上における正反射光スポットRBの位置を示す位置検出信号(座標Px)を算出できる。また、光電流の電流値Ix1、Ix2を互いに加算することにより、正反射光の受光光量を取得できる。 Thus, based on the current values Ix1 and Ix2 of the photocurrents output from the terminals 19b and 19c of the position detector 19, the formula (1) is calculated to obtain the specularly reflected light spot RB on the light receiving surface 19a. A position detection signal (coordinates Px) indicating the position can be calculated. Further, by adding the current values Ix1 and Ix2 of the photocurrent to each other, it is possible to acquire the received light amount of the specularly reflected light.
 図9Aは、波長変換部材18の入射面18aにおけるビームスポットBS1~BS3の移動を模式的に示す図である。図9Bは、図9AのようにビームスポットBS1~BS3が移動した場合の位置検出器19の受光面19a上における正反射光スポットRB1~RB3の移動を模式的に示す図である。図9Aにおいて、Wmは、入射面18aのX軸方向のセンター位置である。 FIG. 9A is a view schematically showing the movement of the beam spots BS1 to BS3 on the incident surface 18a of the wavelength conversion member 18. As shown in FIG. FIG. 9B is a view schematically showing the movement of the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a of the position detector 19 when the beam spots BS1 to BS3 move as shown in FIG. 9A. In FIG. 9A, Wm is the center position in the X-axis direction of the incident surface 18a.
 なお、ここでは、波長変換部材18の入射面18aを走査する3つのビームスポットが、X軸正側から順番に、ビームスポットBS1、BS2、BS3と称されている。ビームスポットBS1、BS2、BS3は、それぞれ、図4A、図4Bに示したビームスポットBSb、BSa、BScに対応する。また、正反射光スポットRB1、RB2、RB3は、それぞれ、ビームスポットBS1、BS2、BS3のレーザ光が波長変換部材18の入射面18aで正反射した正反射光のビームスポットである。 Here, the three beam spots that scan the incident surface 18a of the wavelength conversion member 18 are referred to as beam spots BS1, BS2, and BS3 in order from the X-axis positive side. The beam spots BS1, BS2, and BS3 correspond to the beam spots BSb, BSa, and BSc illustrated in FIGS. 4A and 4B, respectively. The specularly reflected light spots RB1, RB2, and RB3 are beam spots of specularly reflected light in which the laser beams of the beam spots BS1, BS2, and BS3 are specularly reflected on the incident surface 18a of the wavelength conversion member 18, respectively.
 波長変換部材18の入射面18a上をビームスポットBS1~BS3が図9Aに示すように移動すると、これに伴い、正反射光スポットRB1~RB3は、位置検出器19の受光面19a上を図9Bのように移動する。ここで、正反射光スポットRB1~RB3の横方向の移動位置は、入射面18a上におけるビームスポットBS1~BS3のX軸方向の各移動位置に1対1で対応する。また、ビームスポットBS1~BS3が幅W1の範囲をX軸方向に移動すると、正反射光スポットRB1~RB3は、位置検出器19の受光面19aを幅Lwの範囲で横方向に移動する。 When the beam spots BS1 to BS3 move on the incident surface 18a of the wavelength conversion member 18 as shown in FIG. 9A, the specularly reflected light spots RB1 to RB3 move along the light receiving surface 19a of the position detector 19 as shown in FIG. Move like. Here, the lateral movement positions of the specularly reflected light spots RB1 to RB3 correspond one-to-one to the movement positions of the beam spots BS1 to BS3 in the X-axis direction on the incident surface 18a. When the beam spots BS1 to BS3 move in the X axis direction in the range of the width W1, the specularly reflected light spots RB1 to RB3 move the light receiving surface 19a of the position detector 19 in the lateral direction in the range of the width Lw.
 各正反射光の受光位置および受光光量の検出においては、後述のように、検出対象の正反射光スポットに対応するレーザ光源のみが点灯され、その他のレーザ光源は消灯される。たとえば、図9Bの左側の正反射光スポットRB3から順番に、各正反射スポットのレーザ光源が点灯される。そして、各レーザ光源の点灯時に位置検出器19から出力される電流値Ix1、Ix2に基づいて、上記式(1)の演算が行われ、各正反射光スポットの受光位置が検出される。さらに、電流値Ix1、Ix2が互いに加算されて、各正反射光スポットの受光光量が検出される。各正反射光スポットの受光位置および受光光量の検出方法については、追って、図11A~図11Cを参照して説明する。 In the detection of the light receiving position and the light receiving amount of each specularly reflected light, as described later, only the laser light source corresponding to the specularly reflected light spot to be detected is turned on, and the other laser light sources are turned off. For example, the laser light sources of the regular reflection spots are turned on sequentially from the regular reflection light spot RB3 on the left side of FIG. 9B. Then, based on the current values Ix1 and Ix2 output from the position detector 19 at the time of lighting each laser light source, the calculation of the equation (1) is performed, and the light receiving position of each specularly reflected light spot is detected. Further, the current values Ix1 and Ix2 are added to each other to detect the amount of light received by each regular reflection light spot. The light receiving position of each specularly reflected light spot and the method of detecting the amount of light received will be described later with reference to FIGS. 11A to 11C.
 <回路構成>
 図10は、実施の形態に係る光源装置2の主たる回路構成を示す回路ブロック図である。
<Circuit configuration>
FIG. 10 is a circuit block diagram showing a main circuit configuration of the light source device 2 according to the embodiment.
 図10に示すように、光源装置2は、回路部の構成として、コントローラ301と、レーザ駆動回路302a~302cと、ミラー駆動回路303と、位置検出回路304と、インタフェース305と、を備えている。 As shown in FIG. 10, the light source device 2 includes a controller 301, laser drive circuits 302a to 302c, a mirror drive circuit 303, a position detection circuit 304, and an interface 305 as the configuration of the circuit section. .
 コントローラ301は、CPU(Central Processing Unit)等の演算処理回路と、メモリとを備え、所定の制御プログラムに従って各部を制御する。レーザ駆動回路302a~302cは、それぞれ、コントローラ301からの制御信号に従って、レーザ光源11a~11cを駆動する。ミラー駆動回路303は、コントローラ301からの制御信号に従って、光偏向器16のミラー16aを駆動する。位置検出回路304は、位置検出器19から出力された電流値Ix1、Ix2に基づいて上記式(1)の演算により位置検出信号を算出し、また、電流値Ix1、Ix2を互いに加算して光量信号を算出する。位置検出回路304は、算出した位置検出信号および光量信号をコントローラ301に出力する。インタフェース305は、たとえば、車両側の制御回路等、外部制御回路との間でコントローラ301が信号の送受信を行うための入出力回路である。 The controller 301 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a memory, and controls each part according to a predetermined control program. The laser drive circuits 302a to 302c drive the laser light sources 11a to 11c according to the control signal from the controller 301, respectively. The mirror drive circuit 303 drives the mirror 16 a of the light deflector 16 in accordance with the control signal from the controller 301. The position detection circuit 304 calculates the position detection signal by the calculation of the equation (1) based on the current values Ix1 and Ix2 output from the position detector 19, and adds the current values Ix1 and Ix2 to each other to calculate the light amount. Calculate the signal. The position detection circuit 304 outputs the calculated position detection signal and light amount signal to the controller 301. The interface 305 is, for example, an input / output circuit for the controller 301 to transmit / receive a signal to / from an external control circuit such as a control circuit on the vehicle side.
 コントローラ301は、投射光学系3から目標領域に照射される光が目標領域において所定の配光パターンとなるように、レーザ光源11a~11cおよび光偏向器16を制御する。すなわち、コントローラ301は、3つのビームスポットBS1~BS3の走査範囲が図9Aに示した幅W1となるように光偏向器16を制御しながら、目標領域における配光パターンが所定の配光パターンとなるように、3つのビームスポットBS1~BS3に対応するレーザ光源11a~11cに対し、点灯/消灯の制御を行う。 The controller 301 controls the laser light sources 11a to 11c and the light deflector 16 so that the light irradiated to the target area from the projection optical system 3 has a predetermined light distribution pattern in the target area. That is, the controller 301 controls the light deflector 16 so that the scanning range of the three beam spots BS1 to BS3 has the width W1 shown in FIG. 9A, and the light distribution pattern in the target area is a predetermined light distribution pattern As described above, the control of turning on / off the laser light sources 11a to 11c corresponding to the three beam spots BS1 to BS3 is performed.
 本実施の形態では、図9Aに示したように、3つのビームスポットBS1~BS3が走査方向に並びかつ互いに離間するように配置される。ここで、ビームスポットBS1~BS3の光量や、ビームスポットBS1~BS3の位置および間隔は、経時変化や、光源装置2に伝わる振動または衝撃等によって変動し得る。このため、コントローラ301は、上記の制御を適切に行うために、ビームスポットの光量低下やビームスポットの位置および間隔の変動を、ビームスポットごとに随時検出しておく必要がある。換言すると、コントローラ301は、各正反射光スポットの受光光量、受光位置および正反射光間の間隔を随時検出して制御を行う必要がある。 In the present embodiment, as shown in FIG. 9A, the three beam spots BS1 to BS3 are arranged in line in the scanning direction and are separated from each other. Here, the amounts of light of the beam spots BS1 to BS3 and the positions and intervals of the beam spots BS1 to BS3 may change due to changes over time, vibrations or shocks transmitted to the light source device 2, and the like. Therefore, in order to appropriately perform the above control, the controller 301 needs to detect the decrease in the light amount of the beam spot and the fluctuation of the position and the interval of the beam spot for each beam spot as needed. In other words, it is necessary for the controller 301 to perform control by detecting the received light amount of each regular reflection light spot, the light receiving position, and the interval between the regular reflection light as needed.
 以下、正反射光スポットRB1~RB3の受光位置および受光光量の検出方法と、その検出結果を用いた各レーザ光源の制御方法について説明する。 The method of detecting the light receiving positions and the amount of light received of the specularly reflected light spots RB1 to RB3 and the control method of each laser light source using the detection results will be described below.
 図11A、図11Bは、それぞれ、各正反射光スポットの受光位置および受光光量を取得するための制御を示すフローチャートである。 FIG. 11A and FIG. 11B are flowcharts showing control for acquiring the light receiving position and the received light amount of each regular reflection light spot, respectively.
 図11Aに示すように、コントローラ301は、光源装置2が起動されると(S11)、正反射光スポットRB1~RB3の受光位置および受光光量を検出するためのチェック走査を行う(S12)。そして、コントローラ301は、このチェック走査の際に位置検出回路304から入力された位置検出信号および光量信号に基づいて、正反射光スポットRB1~RB3の受光位置および受光光量をそれぞれ取得する(S13)。 As shown in FIG. 11A, when the light source device 2 is activated (S11), the controller 301 performs check scanning for detecting the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 (S12). Then, the controller 301 obtains the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 based on the position detection signal and the light amount signal input from the position detection circuit 304 at the time of the check scanning (S13) .
 また、図11Bに示すように、コントローラ301は、光源装置2が起動された後の動作中において、所定のチェックタイミングが到来すると(S21)、正反射光スポットRB1~RB3の受光位置および受光光量を検出するためのチェック走査を行う(S22)。そして、コントローラ301は、このチェック走査の際に位置検出回路304から入力された位置検出信号および光量信号に基づいて、正反射光スポットRB1~RB3の受光位置および受光光量をそれぞれ取得する(S23)。ここで、ステップS21のチェックタイミングは、たとえば、光源装置2の起動から一定周期(たとえば数秒)に設定される。 Further, as shown in FIG. 11B, when a predetermined check timing comes during operation after the light source device 2 is activated (S21), the controller 301 receives the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3. A check scan is performed to detect (S22). Then, the controller 301 obtains the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3 based on the position detection signal and the light amount signal input from the position detection circuit 304 at the time of this check scan (S23) . Here, the check timing in step S21 is set to, for example, a fixed cycle (for example, several seconds) from the activation of the light source device 2.
 図11Cは、チェック走査時(図11A、図11BのS12、S22)における位置検出器19の受光面19a上の正反射光スポットRB1~RB3の走査状態を模式的に示す図である。図11Cにおいて、黒で塗り潰されたスポットは、正反射光スポットが点灯状態にあることを示し、破線かつ白抜きのスポットは、正反射光スポットが消灯状態にあることを示している。 FIG. 11C is a diagram schematically showing the scanning state of the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a of the position detector 19 at the time of check scanning (S12 and S22 in FIGS. 11A and 11B). In FIG. 11C, the spots filled in black indicate that the specularly reflected light spot is in the lighted state, and the broken and white spots indicate that the specularly reflected light spot is in the extinguished state.
 図11Cに示すように、チェック走査時において、3つの正反射光スポットRB1~RB3は、1つずつ順番に点灯状態に設定される。すなわち、チェック走査時において、コントローラ301は、正反射光スポットRB1~RB3が一定速度で受光面19aを移動するように、光偏向器16を制御する。そして、コントローラ301は、正反射光スポットRB1~RB3が所定の周期で順番に点灯されるように、レーザ光源11a~11cを制御する。 As shown in FIG. 11C, at the time of check scanning, the three specularly reflected light spots RB1 to RB3 are set to light in order one by one. That is, at the time of check scanning, the controller 301 controls the light deflector 16 so that the regular reflection light spots RB1 to RB3 move the light receiving surface 19a at a constant speed. Then, the controller 301 controls the laser light sources 11a to 11c so that the specularly reflected light spots RB1 to RB3 are sequentially turned on at a predetermined cycle.
 たとえば、コントローラ301は、まず、図11Cの上段に示すように、正反射光スポットRB3に対応するレーザ光源11cのみをパルス状に駆動して、正反射光スポットRB3のみを点灯させる。次に、コントローラ301は、図11Cの中段に示すように、レーザ光源11cの駆動から所定の時間間隔で、正反射光スポットRB2に対応するレーザ光源11aのみをパルス状に駆動して、正反射光スポットRB2のみを点灯させる。さらに、コントローラ301は、図11Cの下段に示すように、レーザ光源11aの駆動から所定の時間間隔で、正反射光スポットRB1に対応するレーザ光源11aのみをパルス状に駆動して、正反射光スポットRB1のみを点灯させる。 For example, first, as shown in the upper part of FIG. 11C, the controller 301 drives only the laser light source 11c corresponding to the regular reflection light spot RB3 in a pulse shape, and turns on only the regular reflection light spot RB3. Next, as shown in the middle part of FIG. 11C, the controller 301 drives only the laser light source 11a corresponding to the regular reflection light spot RB2 in a pulse shape at a predetermined time interval from the driving of the laser light source 11c. Only the light spot RB2 is turned on. Furthermore, as shown in the lower part of FIG. 11C, the controller 301 drives only the laser light source 11a corresponding to the regular reflection light spot RB1 in a pulse shape at a predetermined time interval from the driving of the laser light source 11a. Only the spot RB1 is turned on.
 なお、チェック走査の際、各レーザ光源は、同一レベルかつ同一時間幅のパルス信号によって駆動される。したがって、各レーザ光源の出力特性が互いに同じであれば、各正反射光スポットの照射時における光量信号の値は、互いに同一となる。 At the time of check scanning, each laser light source is driven by pulse signals of the same level and the same time width. Therefore, if the output characteristics of the respective laser light sources are the same, the values of the light quantity signal at the time of the irradiation of the respective specularly reflected light spots become the same.
 こうしてチェック走査を実行している間に、コントローラ301は、図11A、図11BのステップS13、S23において、各正反射光スポットの点灯時に位置検出回路304から正反射光スポットの位置検出信号および光量信号を取得し、正反射光スポットごとに、位置検出器19の受光面19a上の受光位置および受光光量を取得する。さらに、コントローラ301は、正反射光スポットRB1~RB3について取得した受光位置と、光偏向器16による走査速度および正反射光スポットRB1~RB3を点灯させる時間間隔とに基づいて、正反射光スポットRB1~RB3間の間隔を算出する。 Thus, while executing the check scan, the controller 301 controls the position detection signal and the light amount of the specularly reflected light spot from the position detection circuit 304 when lighting each specularly reflected light spot in steps S13 and S23 of FIGS. 11A and 11B. A signal is acquired, and the light receiving position and the light receiving amount on the light receiving surface 19a of the position detector 19 are obtained for each specularly reflected light spot. Furthermore, the controller 301 determines the specularly reflected light spots RB1 based on the light receiving positions acquired for the specularly reflected light spots RB1 to RB3, and the scanning speed by the light deflector 16 and the time interval for lighting the specularly reflected light spots RB1 to RB3. Calculate the interval between ... and RB3.
 発光の実動作時において、コントローラ301は、上記の処理により取得した各正反射光スポットの受光位置および反射光スポット間の間隔を用いて、波長変換部材18からの配光パターンが所定のパターンとなるように、レーザ光源11a~11cを制御する。このとき、同時に、コントローラ301は、各正反射光スポットの受光光量に基づいて、所定レベルの出力でレーザ光が出射されるように、レーザ光源11a~11cを制御する。コントローラ301は、チェック走査のタイミングが到来するごとに、各正反射光スポットの受光光量、受光位置および間隔を更新して、レーザ光源11a~11cに対する制御を実行する。 At the time of actual operation of light emission, the controller 301 determines that the light distribution pattern from the wavelength conversion member 18 has a predetermined pattern using the light receiving position of each regular reflection light spot acquired by the above processing and the interval between the reflection light spots. The laser light sources 11a to 11c are controlled so that At this time, at the same time, the controller 301 controls the laser light sources 11a to 11c so that the laser light is emitted with the output of the predetermined level based on the light reception amounts of the regular reflection light spots. The controller 301 executes control on the laser light sources 11a to 11c by updating the light reception amount, the light reception position, and the interval of each regular reflection light spot each time the timing of the check scan comes.
 図12Bは、レーザ光源11a~11cの出力制御の一例を示すタイミングチャートである。図12Bの最上段には、光偏向器16のミラー16aを駆動するための駆動信号の波形が示され、図12Bの上から2~4段目には、正反射光スポットRB1~RB3にそれぞれ対応するレーザ光源を駆動するための制御信号の波形が示されている。すなわち、図12Bの上から2段目の波形はレーザ光源11bの駆動信号の波形であり、図12Bの上から3段目の波形はレーザ光源11aの駆動信号の波形であり、図12Bの最下段の波形はレーザ光源11cの駆動信号の波形である。 FIG. 12B is a timing chart showing an example of output control of the laser light sources 11a to 11c. The top row of FIG. 12B shows the waveform of the drive signal for driving the mirror 16a of the light deflector 16. The second to fourth rows from the top of FIG. 12B show the specularly reflected light spots RB1 to RB3, respectively. The waveforms of control signals for driving the corresponding laser light sources are shown. 12B is the waveform of the drive signal of the laser light source 11b, and the waveform of the third stage from the top of FIG. 12B is the waveform of the drive signal of the laser light source 11a. The lower waveform is the waveform of the drive signal of the laser light source 11c.
 また、図12Aには、図12Bの出力制御において用いられる各パラメータが示されている。ここでは、右方向の走査が「走査1」に設定され、左方向の走査が「走査2」に設定されている。破線の矢印は、正反射光スポットの走査方向と走査範囲を示している。走査速度は一定である。正反射光スポットRB1、RB2の間隔X1および正反射光スポットRB2、RB3の間隔X2は、図11A~図11Cに示した処理により逐次更新される。また、図11A~図11Cに示した処理により、所定レベル且つ所定時間幅のパルス信号で各レーザ光源が駆動されたときの正反射光スポットRB1~RB3の受光光量が検出され、逐次更新される。 Further, FIG. 12A shows respective parameters used in the output control of FIG. 12B. Here, the scan in the right direction is set to “scan 1”, and the scan in the left direction is set to “scan 2”. The dashed arrows indicate the scanning direction and scanning range of the specularly reflected light spot. The scanning speed is constant. The interval X1 between the regular reflection light spots RB1 and RB2 and the interval X2 between the regular reflection light spots RB2 and RB3 are successively updated by the processing shown in FIGS. 11A to 11C. Further, by the processing shown in FIGS. 11A to 11C, the light reception amounts of the specularly reflected light spots RB1 to RB3 when the respective laser light sources are driven by pulse signals of a predetermined level and a predetermined time width are detected and sequentially updated. .
 図12Bの制御では、図12Aに示すように、走査範囲の両端に発光を停止させる非発光区間Xoffが設定されている。換言すると、この制御では、図9Aに示した幅W1の両端に、非発光区間Xoffに対応する非発光区間が設定されている。また、この制御では、図9Aに示した幅W1の中央において発光光量が高まるように、各レーザ光源の出力が制御される。 In the control of FIG. 12B, as shown in FIG. 12A, a non-light emission interval Xoff for stopping light emission is set at both ends of the scanning range. In other words, in this control, non-light emitting sections corresponding to the non-light emitting section X off are set at both ends of the width W1 shown in FIG. 9A. Further, in this control, the output of each laser light source is controlled such that the amount of emitted light increases at the center of the width W1 shown in FIG. 9A.
 このような制御を行う場合、コントローラ301は、ミラー16aの駆動信号に同期して、各レーザ光源に対し、図12Bの2段目以下に示す出力制御信号を付与する。コントローラ301は、各出力制御信号の波形の間隔を、図12Aに示したパラメータに基づいて、図12Bに付記した算出式により算出して設定する。また、コントローラ301は、図11A~図11Cに示した処理により取得した各正反射光スポットの受光光量に基づいて、各レーザ光源の出力が所定の同一レベルとなるように、各出力制御信号の波形の最大値を設定する。これにより、水平方向の幅がやや制限され且つ中央の光量が高められた配光パターンで、目標領域に光が投射される。 When such control is performed, the controller 301 applies output control signals shown in the second and subsequent stages of FIG. 12B to the respective laser light sources in synchronization with the drive signal of the mirror 16a. The controller 301 calculates and sets the intervals of the waveforms of the output control signals according to the calculation equation appended to FIG. 12B based on the parameters shown in FIG. 12A. Further, the controller 301 sets each output control signal so that the output of each laser light source becomes a predetermined same level based on the received light amount of each regular reflection light spot acquired by the processing shown in FIGS. 11A to 11C. Set the maximum value of the waveform. Thus, light is projected to the target area with a light distribution pattern in which the width in the horizontal direction is somewhat restricted and the central light amount is increased.
 図13Bは、レーザ光源11a~11cの出力制御の他の例を示すタイミングチャートである。図12Bと同様、図13Bの最上段には、光偏向器16のミラー16aを駆動するための駆動信号の波形が示され、図13Bの上から2~4段目には、正反射光スポットRB1~RB3にそれぞれ対応するレーザ光源を駆動するための制御信号の波形が示されている。 FIG. 13B is a timing chart showing another example of output control of the laser light sources 11a to 11c. Similar to FIG. 12B, the top row of FIG. 13B shows the waveform of a drive signal for driving the mirror 16a of the light deflector 16. The second to fourth rows from the top of FIG. The waveforms of control signals for driving the laser light sources respectively corresponding to RB1 to RB3 are shown.
 また、図13Aには、図12Aと同様、図13Bの出力制御において用いられる各パラメータが示されている。ここでは、走査範囲の両端の他、走査範囲の途中の区間にも、発光を停止させる消灯区間XADBが設定されている。換言すると、この制御では、図9Aに示した幅W1の一部に、消灯区間XADBに対応する非発光区間が設定されている。 Further, FIG. 13A shows each parameter used in the output control of FIG. 13B as in FIG. 12A. Here, in addition to both ends of the scanning range, the non-lighting interval X ADB in which light emission is stopped is set in the middle of the scanning range. In other words, in this control, a non-light emitting period corresponding to the light off period X ADB is set in part of the width W1 shown in FIG. 9A.
 光源装置2が車両の前照灯として用いられる場合、たとえば、車両側の制御回路からの制御指令によって、図9Aに示した幅W1中の所定の区間においてレーザ光源11a~11cを消灯させる制御が行われ得る。たとえば、車両側において、前照灯の範囲内に前走車や対向車、人等が検出された場合、前走車や対向車、人の位置を消灯する制御が車両側から光源装置2に指示される。この指示は、図10のインタフェース305を介してコントローラ301に入力される。この場合、コントローラ301は、車両側からの指示に応じて、幅W1中の所定の区間においてレーザ光源11a~11cを消灯させる制御を、レーザ駆動回路302a~302cに対し行う。 When the light source device 2 is used as a headlight of a vehicle, for example, control to turn off the laser light sources 11a to 11c in a predetermined section in the width W1 shown in FIG. It can be done. For example, when the vehicle ahead detects an oncoming vehicle, an oncoming vehicle, or a person within the range of the headlights, the light source device 2 is controlled to turn off the position of the oncoming vehicle, the oncoming vehicle, or the person. Be instructed. This instruction is input to the controller 301 via the interface 305 of FIG. In this case, the controller 301 controls the laser drive circuits 302a to 302c to turn off the laser light sources 11a to 11c in a predetermined section in the width W1 in accordance with an instruction from the vehicle side.
 図13Aに示した消灯区間XADBは、この制御によりレーザ光源11a~11cを消灯させる区間に相当する。図13Bには、消灯区間ADBに対応する区間が、斜線のハッチングで示されている。なお、図13Bの制御では、目標領域に均一な強度で光が投射される制御が行われる。このため、各レーザ光源に対する出力制御信号は、矩形状の波形となっている。 The turn-off section X ADB shown in FIG. 13A corresponds to a section to turn off the laser light sources 11a to 11c by this control. In FIG. 13B, a section corresponding to the light off section ADB is indicated by hatching. In the control of FIG. 13B, control is performed such that light is projected onto the target area with uniform intensity. Therefore, the output control signal for each laser light source has a rectangular waveform.
 このような制御を行う場合、コントローラ301は、ミラー16aの駆動信号に同期して、各レーザ光源に対し、図13Bの2段目以下に示す出力制御信号を付与する。コントローラ301は、各出力制御信号の波形の間隔を、図13Aに示したパラメータに基づいて、図13Bに付記した算出式により算出して設定する。各出力制御信号の波形の間隔は、図12Bに示した各出力制御信号の波形の間隔と同じである。 When such control is performed, the controller 301 applies an output control signal shown in the second or lower stage of FIG. 13B to each laser light source in synchronization with the drive signal of the mirror 16a. The controller 301 calculates and sets the intervals of the waveforms of the output control signals according to the calculation equation appended to FIG. 13B based on the parameters shown in FIG. 13A. The intervals of the waveforms of the output control signals are the same as the intervals of the waveforms of the output control signals shown in FIG. 12B.
 また、コントローラ301は、各出力制御信号の波形の一部を、消灯区間XADBに応じてゼロレベルに設定する。コントローラ301は、波形の一部をゼロレベルに設定するタイミングおよび期間を、図13Aに示したパラメータに基づいて、図13Bに付記した算出式により算出して設定する。さらに、コントローラ301は、図11A~図11Cに示した処理により取得した各正反射光スポットの光量に基づいて、各出力制御信号の矩形波形のレベルを設定する。これにより、水平方向の幅がやや制限され且つ一部の区間において発光が停止された配光パターンで、目標領域に光が投射される。 Further, the controller 301 sets a part of the waveform of each output control signal to the zero level in accordance with the turn-off period X ADB . The controller 301 calculates and sets the timing and period for setting a part of the waveform to the zero level based on the parameters shown in FIG. 13A according to the calculation equation appended to FIG. 13B. Furthermore, the controller 301 sets the level of the rectangular waveform of each output control signal based on the light quantity of each regular reflection light spot acquired by the processing shown in FIGS. 11A to 11C. Thus, light is projected to the target area with a light distribution pattern in which the width in the horizontal direction is somewhat restricted and light emission is stopped in a part of the section.
 <実施形態の効果>
 以上、本実施形態によれば、以下の効果が奏される。
<Effect of the embodiment>
As mentioned above, according to this embodiment, the following effects are produced.
 波長変換部材18の入射面18a上において、各ビームスポットBS1~BS3が走査方向に並び且つ互いに離間するため、レーザ光源11a~11cの何れか1つに故障等の不具合が生じたとしても、波長変換部材18からの配光にムラが生じることがない。また、波長変換部材18の入射面18aで正反射した複数のレーザ光の正反射光が、入射面18a上の全ての走査範囲に対して位置検出器19で受光されるため、位置検出器19からの検出信号により、各レーザ光源の出力を円滑に制御することができる。 Since the beam spots BS1 to BS3 align in the scanning direction and are separated from each other on the incident surface 18a of the wavelength conversion member 18, even if a failure such as a failure occurs in any one of the laser light sources 11a to 11c, the wavelength No unevenness occurs in the light distribution from the conversion member 18. In addition, the specularly reflected light of the plurality of laser beams specularly reflected on the incident surface 18 a of the wavelength conversion member 18 is received by the position detector 19 with respect to all scanning ranges on the incident surface 18 a. The output of each laser light source can be smoothly controlled by the detection signal from
 図11Cを参照して説明したとおり、コントローラ301は、レーザ光源11a~11cをそれぞれ単独で駆動させて、位置検出器19から各正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量に応じた検出信号を取得する。これにより、走査方向に互いに分離した正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量を、正確に検出することができる。 As described with reference to FIG. 11C, the controller 301 drives the laser light sources 11a to 11c independently to receive the light receiving positions and the light receiving positions of the regular reflection lights (regular reflection light spots RB1 to RB3) from the position detector 19. A detection signal corresponding to the light amount is acquired. As a result, the light receiving position and the light receiving amount of the regular reflection light (regular reflection light spots RB1 to RB3) separated from each other in the scanning direction can be accurately detected.
 この場合、コントローラ301は、図11Aに示したように、光源装置2の起動時に、レーザ光源11a~11cをそれぞれ単独で駆動させて位置検出器19から検出信号を取得する制御を実行する。このように、光源装置2の起動時に検出信号を取得する処理を実行することにより、光源装置2による発光の実動作を中断することなく、各正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量を検出できる。 In this case, as shown in FIG. 11A, the controller 301 executes control to drive the laser light sources 11a to 11c independently and acquire a detection signal from the position detector 19 when the light source device 2 is activated. As described above, by executing the process of acquiring the detection signal at the time of activation of the light source device 2, without interrupting the actual operation of light emission by the light source device 2, each specularly reflected light (specularly reflected light spots RB1 to RB3) The light receiving position and the light receiving amount can be detected.
 また、コントローラ301は、図11Bに示したように、光源装置2の起動後所定の周期ごとに、レーザ光源11a~11cをそれぞれ単独で駆動させて位置検出器19から検出信号を取得する制御を実行する。こうすると、発光の実動作中に、逐次、各正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量を取得できる。これにより、発光の実動作中に、各正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量に変動が生じた場合も、各レーザ光源を精度良く制御できる。 Further, as shown in FIG. 11B, the controller 301 performs control to drive the laser light sources 11a to 11c independently and acquire a detection signal from the position detector 19 every predetermined period after the light source device 2 is activated. Run. In this way, during actual operation of light emission, it is possible to sequentially acquire the light reception positions and the light reception amounts of the regular reflection lights (regular reflection light spots RB1 to RB3). Thus, even when the light receiving positions and the light receiving amounts of the regular reflection lights (regular reflection light spots RB1 to RB3) change during actual light emission operation, the respective laser light sources can be controlled with high accuracy.
 なお、光源装置2の起動後における検出信号(受光位置、受光光量)の取得は、必ずしも一定周期で行われなくてもよく、また、検出信号の取得の回数も複数でなくてもよい。光源装置2の起動後における検出信号の取得は、各正反射光(正反射光スポットRB1~RB3)の受光位置および受光光量に変動が生じた可能性が想定され得る所定のタイミングにおいて実行されればよい。たとえば、図11Bの制御に代えて、あるいは、この制御とともに、光源装置2に大きな振動や衝撃が付与されたことが検出されたタイミングで検出信号(受光位置、受光光量)の取得制御が実行されてもよい。 In addition, acquisition of the detection signal (light reception position, light reception light quantity) after starting of the light source device 2 may not necessarily be performed in a fixed cycle, and the number of times of acquisition of detection signals may not be plural. Acquisition of detection signals after activation of the light source device 2 is performed at a predetermined timing at which the possibility of fluctuations in the light reception positions and light reception amounts of the regular reflection lights (regular reflection light spots RB1 to RB3) may be assumed. Just do it. For example, instead of the control in FIG. 11B or together with this control, acquisition control of detection signals (light receiving position, received light quantity) is executed at the timing when it is detected that a large vibration or impact is applied to the light source device 2. May be
 図12A、図12Bおよび図13A、図13Bに示したように、コントローラ301は、位置検出器19からの検出信号に基づいて、波長変換部材18から所定の配光パターンで光が生じるように、レーザ光源11a~11cを制御する。このように、検出信号に基づいてレーザ光源11a~11cを個別に制御することにより、波長変換部材18からの配光パターンの分解能を高めることができ、より精緻な配光パターンを実現できる。 As shown in FIGS. 12A and 12B and FIGS. 13A and 13B, the controller 301 generates light in a predetermined light distribution pattern from the wavelength conversion member 18 based on the detection signal from the position detector 19. The laser light sources 11a to 11c are controlled. As described above, by individually controlling the laser light sources 11a to 11c based on the detection signal, the resolution of the light distribution pattern from the wavelength conversion member 18 can be enhanced, and a more sophisticated light distribution pattern can be realized.
 たとえば、コントローラ301は、図13A、図13Bに示したように、波長変換部材18に対する走査範囲の一部の範囲(消灯区間XADB)において発光を停止させる制御を行う。この場合、コントローラ301は、レーザ光源11a~11cの消灯がそれぞれ発光を停止させる一部の範囲(消灯区間XADB)に整合するように、各レーザ光源の消灯タイミングと消灯期間を制御する。これにより、消灯区間XADBの境界をクリアにでき、一部の範囲の消灯を良好に行い得る。 For example, as shown in FIGS. 13A and 13B, the controller 301 performs control to stop light emission in a part of the scanning range with respect to the wavelength conversion member 18 (light-off section X ADB ). In this case, the controller 301 controls the turn-off timing and the turn-off period of each of the laser light sources such that the turn-off of the laser light sources 11a to 11c matches with a partial range (turn-off section X ADB ) in which light emission is stopped. Thereby, the boundary of the non-lighting section X ADB can be cleared, and light extinguishing of a part of the range can be satisfactorily performed.
 この場合、コントローラ301は、図13A、図13Bに示したように、位置検出器19からの検出信号に基づいて、位置検出器19の受光面19a上における正反射光の間隔X1、X2を取得し、取得した間隔X1、X2に基づいて、レーザ光源11a~11cの消灯タイミングを設定するのが好ましい。こうすると、レーザ光源11a~11cの消灯タイミングを円滑かつ正確に設定できる。 In this case, as shown in FIGS. 13A and 13B, the controller 301 obtains the intervals X1 and X2 of the specularly reflected light on the light receiving surface 19a of the position detector 19 based on the detection signal from the position detector 19. It is preferable to set the extinguishing timing of the laser light sources 11a to 11c based on the acquired intervals X1 and X2. In this way, the turn-off timings of the laser light sources 11a to 11c can be set smoothly and accurately.
 なお、図1A~図6Bに示した構成により、光学系のコンパクト化を実現しながら、波長変換部材18の入射面18aにおいて、ビームスポットBS1~BS3を走査方向に分離して並べることができる。 With the configuration shown in FIGS. 1A to 6B, the beam spots BS1 to BS3 can be separated and arranged in the scanning direction on the incident surface 18a of the wavelength conversion member 18 while realizing a compact optical system.
 <変更例>
 図14A、図14Bは、それぞれ、変更例に係る投光装置1の構成を示す側面図および平面図である。
<Modification example>
FIG. 14A and FIG. 14B are respectively a side view and a plan view showing a configuration of a light projecting device 1 according to a modification.
 変更例では、光源装置2に配置されるレーザ光源の数が4つに増やされている。すなわち、上記実施の形態に比べて、新たにレーザ光源11dが追加されている。レーザ光源11dは、レーザ光源11a~11cと同種である。レーザ光源11dから出射されたレーザ光は、コリメータレンズ12dによって平行光に変換される。 In the modification, the number of laser light sources arranged in the light source device 2 is increased to four. That is, the laser light source 11d is newly added as compared with the above embodiment. The laser light source 11d is the same as the laser light sources 11a to 11c. The laser light emitted from the laser light source 11 d is converted into parallel light by the collimator lens 12 d.
 レーザ光源11aとレーザ光源11dは、対向するように配置されている。レーザ光源11a、11dは、レーザ光源11b、11cと同様、ファスト軸がZ軸に平行となるように配置されている。 The laser light source 11a and the laser light source 11d are disposed to face each other. The laser light sources 11a and 11d are arranged such that the fast axis is parallel to the Z axis, as with the laser light sources 11b and 11c.
 レーザ光源11aの出射方向に反射プリズム13cが配置され、レーザ光源11dの出射方向に反射プリズム13dが配置されている。レーザ光源11aの光軸と、レーザ光源11dの光軸は、それぞれ、シリンドリカルレンズ14に向かうように、反射プリズム13c、13dによって、X-Z平面に平行な方向に曲げられる。反射プリズム13c、13dは、X軸方向に隙間なく配置されている。上記実施の形態に比べて、反射プリズム13a、13b間の隙間が広げられている。レーザ光源11a、11dからそれぞれ出射されたレーザ光は、反射プリズム13c、13dによって光軸が曲げられた後、反射プリズム13a、13b間の隙間を通って、シリンドリカルレンズ14に入射する。 The reflection prism 13c is disposed in the emission direction of the laser light source 11a, and the reflection prism 13d is disposed in the emission direction of the laser light source 11d. The optical axis of the laser light source 11a and the optical axis of the laser light source 11d are bent in directions parallel to the XZ plane by the reflecting prisms 13c and 13d so as to be directed to the cylindrical lens 14, respectively. The reflecting prisms 13c and 13d are disposed without a gap in the X-axis direction. Compared to the above embodiment, the gap between the reflecting prisms 13a and 13b is widened. The laser beams emitted from the laser light sources 11a and 11d are bent along the optical axes by the reflecting prisms 13c and 13d, and then enter the cylindrical lens 14 through the gap between the reflecting prisms 13a and 13b.
 シリンドリカルレンズ14の入射位置において、レーザ光源11a~11dの光軸は、シリンドリカルレンズ14の母線に垂直な1つの平面、すなわちX-Z平面に平行な1つの平面に含まれる。このように、レーザ光源11a~11dのY軸方向の位置が調整されている。 At the incident position of the cylindrical lens 14, the optical axes of the laser light sources 11 a to 11 d are included in one plane perpendicular to the generatrix of the cylindrical lens 14, that is, one plane parallel to the XZ plane. Thus, the positions of the laser light sources 11a to 11d in the Y-axis direction are adjusted.
 光学系のその他の構成は、上記実施の形態と同様である。変更例においても、上記実施の形態と同様、シリンドリカルレンズ14の焦点距離の位置に、波長変換部材18の入射面18aが位置づけられている。変更例では、4つのレーザ光のビームスポットが、波長変換部材18の入射面上において走査方向に並び、且つ、互いに離間するように形成される。 The other configuration of the optical system is the same as that of the above embodiment. Also in the modified example, the incident surface 18a of the wavelength conversion member 18 is positioned at the position of the focal length of the cylindrical lens 14 as in the above embodiment. In a modification, beam spots of four laser beams are formed on the incident surface of the wavelength conversion member 18 so as to align in the scanning direction and to be separated from each other.
 たとえば、図15Aに示すように、レーザ光源11a~11dからそれぞれ出射されたレーザ光130a~130dを、互いに非平行な状態で、シリンドリカルレンズ14に入射させることにより、これら4つのレーザ光130a~130dのビームスポットBSa~BSdを、波長変換部材18の入射面18a上において、走査方向に並び、且つ、互いに離間させることができる。この場合、シリンドリカルレンズ14として、収差のない単一焦点のシリンドリカルレンズが用いられる。また、シリンドリカルレンズ14よりも前段側の光学系を図5A、図5Bと同様の方法で調整することにより、レーザ光130a~130dを、互いに非平行な状態で、シリンドリカルレンズ14に入射させることができる。 For example, as shown in FIG. 15A, the four laser beams 130a to 130d can be obtained by causing the laser beams 130a to 130d emitted from the laser light sources 11a to 11d to be incident on the cylindrical lens 14 in a nonparallel state. The beam spots BSa to BSd can be aligned in the scanning direction and separated from each other on the incident surface 18a of the wavelength conversion member 18. In this case, a single-focus cylindrical lens without aberration is used as the cylindrical lens 14. In addition, by adjusting the optical system on the front side of the cylindrical lens 14 by the same method as in FIGS. 5A and 5B, the laser beams 130a to 130d can be incident on the cylindrical lens 14 in a nonparallel state. it can.
 なお、図4Bの場合と同様、予め収差を持つシリンドリカルレンズ14を用いて、ビームスポットBSa~BSdを、波長変換部材18の入射面18a上において、走査方向に並び、且つ、互いに離間させてもよい。また、図6A、図6Bの場合と同様、シリンドリカルレンズ14から波長変換部材18までの間の光路においてレーザ光130a~130dを互いに交差させて、レーザ光130a~130cの各ビームスポットBSa~BSdを、波長変換部材18の入射面18a上において互いに離間させてもよい。 As in the case of FIG. 4B, the beam spots BSa to BSd may be arranged in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other by using the cylindrical lens 14 having aberration in advance. Good. Further, as in the case of FIGS. 6A and 6B, the laser beams 130a to 130d are made to intersect with each other in the optical path from the cylindrical lens 14 to the wavelength conversion member 18, and the beam spots BSa to BSd of the laser beams 130a to 130c are obtained. Alternatively, they may be separated from each other on the incident surface 18 a of the wavelength conversion member 18.
 本変更例では、波長変換部材18の入射面18aにおけるレーザ光130a~130dの正反射光が、位置検出器19の受光面19aに入射し、レーザ光130a~130dに対応する4つの正反射光スポットが形成される。位置検出器19は、波長変換部材18の入射面18a上の全ての走査範囲に対してレーザ光130a~130dを受光して、受光位置および受光光量に応じた検出信号を出力可能に構成される。 In this modification, regular reflections of the laser beams 130a to 130d on the incident surface 18a of the wavelength conversion member 18 are incident on the light receiving surface 19a of the position detector 19, and four regular reflections corresponding to the laser beams 130a to 130d. A spot is formed. The position detector 19 is configured to receive the laser beams 130a to 130d with respect to all scanning ranges on the incident surface 18a of the wavelength conversion member 18 and output a detection signal according to the light reception position and the light reception amount. .
 本変更例では、図10の回路ブロックに、レーザ光源11dを駆動するためのレーザ駆動回路が追加される。コントローラ301は、図11A、図11BのステップS12、S22において、図15Bに示すように、レーザ光源11a~11dをそれぞれ単独で駆動させて、位置検出器19から検出信号を取得し、各正反射光の受光位置、受光光量と、正反射光の間隔を取得する。図15Bにおいて、RB1~RB4は、それぞれ、レーザ光源11b、11a、11d、11cから出射されたレーザ光による正反射光スポットである。 In this modification, a laser drive circuit for driving the laser light source 11d is added to the circuit block of FIG. The controller 301 drives the laser light sources 11a to 11d independently as shown in FIG. 15B in steps S12 and S22 in FIG. 11A and FIG. 11B, and acquires detection signals from the position detector 19 The light receiving position of the light, the light receiving amount, and the interval of the regular reflection light are acquired. In FIG. 15B, RB1 to RB4 are regular reflection light spots by the laser light emitted from the laser light sources 11b, 11a, 11d and 11c, respectively.
 ステップS12、S22では、最も左側の正反射光スポットRB4から順番に正反射光スポットが照射されるように、レーザ光源11b、11a、11d、11cが個別に駆動される。コントローラ301は、取得した各正反射光の受光位置、受光光量および正反射光の間隔に基づいて、レーザ光源11a~11dに対する制御、たとえば、図12A、図12Bおよび図13A、図13Bと同様の制御を行う。 In steps S12 and S22, the laser light sources 11b, 11a, 11d, and 11c are individually driven such that the regular reflection light spots are sequentially irradiated from the leftmost regular reflection light spot RB4. The controller 301 controls the laser light sources 11a to 11d based on the acquired light reception positions of the regularly reflected light, the received light amount and the interval of the regularly reflected light, for example, similar to FIGS. 12A, 12B and 13A, 13B. Take control.
 本変更例においても、上記実施の形態と同様の効果が奏され得る。加えて、本変更例によれば、レーザ光源11dが追加されるため、光源装置2の発光光量を高めることができる。 Also in this modification, the same effect as the above embodiment can be exhibited. In addition, according to this modification, since the laser light source 11d is added, the amount of light emitted from the light source device 2 can be increased.
 <その他の変更例>
 投光装置1および光源装置2の構成は、上記実施形態および変更例に示した構成以外に、種々の変更が可能である。
Other Modifications
The configurations of the light projecting device 1 and the light source device 2 can be variously modified in addition to the configurations shown in the above embodiment and the modification.
 たとえば、上記実施の形態および変更例では、各レーザ光源から出射されたレーザ光のビームスポットが、波長変換部材18の入射面18aにおいて走査方向に離間したが、入射面18a上において、走査方向に並び且つ互いに離間するように複数のビームスポットが形成されれば、幾つかのビームスポットが入射面18a上において重なっていてもよい。 For example, although the beam spot of the laser beam emitted from each laser light source is separated in the scanning direction on the incident surface 18a of the wavelength conversion member 18 in the above embodiment and the modified example, it is in the scanning direction on the incident surface 18a If a plurality of beam spots are formed side by side and spaced apart from one another, several beam spots may overlap on the incident surface 18a.
 たとえば、上記実施の形態の構成において、ビームスポットBSa、BSbが重ねられて、波長変換部材18の入射面18a上に2つのビームスポットが走査方向に並び且つ互いに離間するように形成されてもよい。また、上記変更例の構成において、ビームスポットBSa、BSbが重ねられて、波長変換部材18の入射面18a上に3つのビームスポットが走査方向に並び且つ互いに離間するように形成されてもよい。あるいは、上記変更例の構成において、ビームスポットBSa、BSbが重ねられ、さらに、ビームスポットBSc、BSdが重ねられて、波長変換部材18の入射面18a上に2つのビームスポットが走査方向に並び且つ互いに離間するように形成されてもよい。 For example, in the configuration of the above embodiment, the beam spots BSa and BSb may be overlapped, and two beam spots may be formed on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other. . Further, in the configuration of the above-mentioned modification, the beam spots BSa and BSb may be overlapped, and three beam spots may be formed on the incident surface 18a of the wavelength conversion member 18 so as to be aligned in the scanning direction and separated from each other. Alternatively, in the configuration of the modified example, the beam spots BSa and BSb are overlapped, and the beam spots BSc and BSd are further overlapped, and two beam spots are aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 It may be formed to be separated from each other.
 これらの場合、互いに重ねられるレーザ光を、互いに平行となるように、シリンドリカルレンズ14に入射させればよい。シリンドリカルレンズ14は、収差のない単焦点のシリンドリカルレンズが用いられる。シリンドリカルレンズ14よりも前段の光学系を図5A、図5Bと同様の方法で調整することにより、互いに重ねられるレーザ光を、互いに平行となるように、シリンドリカルレンズ14に入射させ、その他のレーザ光を互いに非平行な状態でシリンドリカルレンズ14に入射させることができる。 In these cases, the laser beams superimposed on each other may be made incident on the cylindrical lens 14 so as to be parallel to each other. As the cylindrical lens 14, a single-focus cylindrical lens without aberration is used. By adjusting the optical system in front of the cylindrical lens 14 by the same method as in FIGS. 5A and 5B, the mutually overlapping laser beams are made to be incident on the cylindrical lens 14 so as to be parallel to each other. Can be incident on the cylindrical lens 14 in a non-parallel state.
 このようにビームスポットが重ねられる場合も、上記実施の形態と同様、各レーザ光源に対応する正反射光の受光位置および受光光量を個別に検出して、各レーザ光源を個別に制御するようにすればよい。こうすると、経時変化や衝撃等によって、互いに重ねられたビームスポットに走査方向の位置ずれが生じて一部または全部が互いに重ならなくなったとしても、各レーザ光源を個別に制御することにより、所定の配光パターンを良好に実現することができる。 Even when beam spots are overlapped in this manner, as in the above embodiment, the light reception position and the light reception amount of the specularly reflected light corresponding to each laser light source are separately detected, and each laser light source is individually controlled. do it. In this case, even if positional deviations in the scanning direction occur in the beam spots overlapped with each other due to aging or impact, and even if some or all of the beam spots do not overlap with each other, predetermined control is performed by individually controlling the respective laser light sources. Light distribution pattern can be realized well.
 なお、重ねられるビームスポットは2つ程度に制限されることが好ましい。これにより、光密度が過度に高まることを抑制でき、光飽和や発熱による温度消光効果により波長変換部材18における発光効率が低下することを抑制できる。 Preferably, the number of beam spots to be overlapped is limited to about two. Thereby, it can suppress that a light density increases excessively, and it can suppress that the luminous efficiency in the wavelength conversion member 18 falls by the temperature quenching effect by light saturation or heat_generation | fever.
 また、上記実施の形態では、正反射光スポットRB1~RB3を受光面19a上で走査させつつ、レーザ光源11a~11cを個別に点灯させて、正反射光スポットRB1~RB3の受光位置および受光光量を検出したが、正反射光スポットRB1~RB3の受光位置および受光光量を検出する際に、必ずしも、各正反射光スポットが走査されていなくてもよい。たとえば、光偏向器16のミラー16aを中立位置に固定した状態で、レーザ光源11a~11cを個別に点灯させて、正反射光スポットRB1~RB3の受光位置および受光光量を検出するようにしてもよい。 In the above embodiment, the laser light sources 11a to 11c are individually turned on while scanning the specularly reflected light spots RB1 to RB3 on the light receiving surface 19a, and the light receiving positions and the received light amounts of the specularly reflected light spots RB1 to RB3. However, when detecting the light receiving positions of the specularly reflected light spots RB1 to RB3 and the amount of light received, the specularly reflected light spots may not necessarily be scanned. For example, even when the mirrors 16a of the light deflector 16 are fixed at the neutral position, the laser light sources 11a to 11c are individually turned on to detect the light reception positions and the light reception amounts of the regular reflection light spots RB1 to RB3. Good.
 また、図13A、図13Bには、走査範囲の一部を消灯する場合の制御を示したが、走査範囲の一部のみを点灯させる制御であってもよい。 13A and 13B show the control in the case of turning off part of the scanning range, but it may be control to turn on only part of the scanning range.
 また、上記実施の形態では、正反射光スポットRB1~RB3の受光位置および受光光量に基づいてレーザ光源を制御する例を示したが、さらに、正反射光スポットRB1~RB3の受光位置に基づいて光偏向器16のミラー16aを制御するようにしてもよい。たとえば、正反射光スポットRB1~RB3の何れか1つの受光位置に基づいて、正反射光の移動範囲(ミラー16aの振り角)を検出し、正反射光の移動範囲(ミラー16aの振り角)が適切となるように、光偏向器16を制御するようにしてもよい。 In the above embodiment, the laser light source is controlled based on the light receiving positions of the specularly reflected light spots RB1 to RB3 and the received light amounts. However, based on the light receiving positions of the specularly reflected light spots RB1 to RB3. The mirror 16 a of the light deflector 16 may be controlled. For example, the movement range of the regular reflection light (the swing angle of the mirror 16a) is detected based on any one light reception position of the regular reflection light spots RB1 to RB3, and the movement range of the regular reflection light (the swing angle of the mirror 16a) The light deflector 16 may be controlled so as to be appropriate.
 また、上記実施の形態および変更例では、レーザ光のファスト軸がシリンドリカルレンズ14の収束方向に平行となるように、各レーザ光源が配置されたが、レーザ光源の配置方法は、必ずしもこれに限定されるものではない。たとえば、レーザ光のスロー軸が、シリンドリカルレンズ14の収束方向に平行となるように、各レーザ光源が配置されてもよい。ただし、波長変換部材18の入射面18aにおいてレーザ光を走査方向により小さく絞るためには、上記実施の形態および変更例のように、レーザ光のファスト軸がシリンドリカルレンズ14の収束方向に平行となるように、各レーザ光源を配置することが好ましい。 Further, in the above-described embodiment and modifications, each laser light source is arranged such that the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14, but the arrangement method of the laser light source is necessarily limited to this. It is not something to be done. For example, each laser light source may be arranged such that the slow axis of the laser light is parallel to the convergence direction of the cylindrical lens 14. However, in order to narrow down the laser light in the scanning direction in the incident surface 18 a of the wavelength conversion member 18, the fast axis of the laser light is parallel to the convergence direction of the cylindrical lens 14 as in the embodiment and the modifications described above. Preferably, each laser light source is arranged.
 また、光源装置2に配置されるレーザ光源の数は、上記実施の形態および変更例に示した数に限られるものではなく、2つまたは5つ以上であってもよい。光学系の構成は、必ずしも、図1A、図1Bおよび図14A、図14Bに示した構成でなくてもよく、波長変換部材18の入射面18a上において、走査方向に並び且つ互いに離間するように複数のビームスポットを形成可能な限りにおいて、種々の変更が可能である。 Further, the number of laser light sources disposed in the light source device 2 is not limited to the number shown in the above embodiment and the modification, and may be two or five or more. The configuration of the optical system does not necessarily have to be the configuration shown in FIGS. 1A, 1B and 14A, 14B, so that it is aligned in the scanning direction on the incident surface 18a of the wavelength conversion member 18 and separated from each other. Various modifications are possible as long as multiple beam spots can be formed.
 また、集光光学系は、必ずしも、シリンドリカルレンズ14とシリンドリカルミラー17に分けられなくともよく、1つのレンズによって走査方向と走査方向に垂直な方向にレーザ光を収束させてもよい。集光光学系を構成するレンズは、フレネルレンズや、回折レンズであってもよい。また、光偏向器16は、ミラー16aを互いに垂直な2軸周りに回動させる構成であってもよい。 Moreover, the condensing optical system does not necessarily have to be divided into the cylindrical lens 14 and the cylindrical mirror 17, and the laser light may be converged in the scanning direction and the direction perpendicular to the scanning direction by one lens. The lens constituting the condensing optical system may be a Fresnel lens or a diffractive lens. In addition, the light deflector 16 may be configured to rotate the mirror 16a about two axes perpendicular to each other.
 また、波長変換部材18の蛍光体層203に含まれる蛍光体粒子203aの種類は、必ずしも1種類でなくてもよく、たとえば、レーザ光源11a~11dからのレーザ光によって互いに異なる波長の蛍光を生じる複数種類の蛍光体粒子203aが蛍光体層203に含まれてもよい。この場合、各種類の蛍光体粒子203aから生じた蛍光の拡散光と、これら蛍光体粒子203aによって波長変換されなかったレーザ光の拡散光とによって、所定の色の光が生成される。波長変換部材18は、反射型に限らず、透過型であってもよい。 Further, the type of phosphor particles 203a contained in the phosphor layer 203 of the wavelength conversion member 18 is not necessarily limited to one type, and for example, the laser beams from the laser light sources 11a to 11d produce fluorescence of different wavelengths. Plural kinds of phosphor particles 203 a may be included in the phosphor layer 203. In this case, light of a predetermined color is generated by the diffused light of the fluorescent light generated from the phosphor particles 203a of each type and the diffused light of the laser light which is not wavelength-converted by the phosphor particles 203a. The wavelength conversion member 18 is not limited to the reflection type, and may be a transmission type.
 また、レーザ光の走査方向は、必ずしも水平方向でなくてもよく、必要とされる照射条件によっては鉛直方向がレーザ光の走査方向であってもよい。 The scanning direction of the laser light may not necessarily be the horizontal direction, and the vertical direction may be the scanning direction of the laser light depending on the required irradiation conditions.
 この他、本開示の実施の形態は、請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 Besides the above, the embodiment of the present disclosure can be variously modified as appropriate within the scope of the technical idea shown in the claims.
 本開示に係る光源装置および投光装置によれば、配光にムラが生じることを抑制しつつ、各レーザ光源の出力を円滑に制御することができる。そのため、本開示に係る光源装置および投光装置は、たとえば、車両用前照灯の光源装置として利用することができ、産業上有用である。 According to the light source device and the light projecting device according to the present disclosure, the outputs of the respective laser light sources can be smoothly controlled while suppressing the occurrence of unevenness in light distribution. Therefore, the light source device and the light projecting device according to the present disclosure can be used, for example, as a light source device of a vehicle headlamp, and is industrially useful.
 1 投光装置
 2 光源装置
 3 投射光学系
 11a~11d レーザ光源
 13a~13d、23 反射プリズム
 14 シリンドリカルレンズ(光学系)
 16 光偏向器
 16a ミラー
 17 シリンドリカルミラー(光学系)
 18 波長変換部材
 18a 入射面
 19 位置検出器
 301 コントローラ
DESCRIPTION OF SYMBOLS 1 light projection apparatus 2 light source device 3 projection optical system 11a-11d laser light source 13a-13d, 23 reflection prism 14 cylindrical lens (optical system)
16 light deflector 16a mirror 17 cylindrical mirror (optical system)
18 wavelength conversion member 18 a incident surface 19 position detector 301 controller

Claims (10)

  1. 複数のレーザ光源と、
    前記複数のレーザ光源から出射されたレーザ光が入射する入射面を備え、前記レーザ光を、前記レーザ光の波長とは異なる波長の光に変換するとともに前記光を拡散させる波長変換部材と、
    前記レーザ光を前記入射面上において走査させる光偏向器と、
    前記複数のレーザ光源から出射された複数のレーザ光により、前記入射面上において、前記走査方向に並び、且つ少なくとも1つのスポットが他のスポットと離間するように複数のビームスポットを形成する光学系と、
    前記入射面において正反射した前記複数のレーザ光の正反射光を、前記入射面上の走査範囲に対して受光して、受光位置および受光光量に応じた検出信号を出力する位置検出器と、
    前記位置検出器からの検出信号に基づいて前記複数のレーザ光源を制御するコントローラと、を備える、
    ことを特徴とする光源装置。
    With multiple laser light sources,
    A wavelength conversion member provided with an incident surface on which laser light emitted from the plurality of laser light sources is incident, and converting the laser light into light of a wavelength different from that of the laser light and diffusing the light;
    An optical deflector for scanning the laser beam on the incident surface;
    An optical system that forms a plurality of beam spots on the incident surface so as to align at least one spot with another spot on the incident surface by a plurality of laser beams emitted from the plurality of laser light sources When,
    A position detector which receives specularly reflected light of the plurality of laser beams specularly reflected on the incident surface with respect to a scanning range on the incident surface, and outputs a detection signal according to a light receiving position and a received light amount;
    A controller that controls the plurality of laser light sources based on a detection signal from the position detector.
    A light source device characterized by
  2. 複数のレーザ光源と、
    前記複数のレーザ光源から出射されたレーザ光が入射する入射面を備え、前記レーザ光を、前記レーザ光の波長とは異なる波長の光に変換するとともに前記光を拡散させる波長変換部材と、
    前記レーザ光を前記入射面上において走査させる光偏向器と、
    前記複数のレーザ光源から出射された複数のレーザ光により、前記入射面上において、前記走査方向に並び且つ互いに離間するように複数のビームスポットを形成する光学系と、
    前記入射面において正反射した前記複数のレーザ光の正反射光を、前記入射面上の走査範囲に対して受光して、受光位置および受光光量に応じた検出信号を出力する位置検出器と、
    前記位置検出器からの検出信号に基づいて前記複数のレーザ光源を制御するコントローラと、を備える、
    ことを特徴とする光源装置。
    With multiple laser light sources,
    A wavelength conversion member provided with an incident surface on which laser light emitted from the plurality of laser light sources is incident, and converting the laser light into light of a wavelength different from that of the laser light and diffusing the light;
    An optical deflector for scanning the laser beam on the incident surface;
    An optical system for forming a plurality of beam spots on the incident surface so as to be aligned in the scanning direction and separated from each other by a plurality of laser beams emitted from the plurality of laser light sources;
    A position detector which receives specularly reflected light of the plurality of laser beams specularly reflected on the incident surface with respect to a scanning range on the incident surface, and outputs a detection signal according to a light receiving position and a received light amount;
    A controller that controls the plurality of laser light sources based on a detection signal from the position detector.
    A light source device characterized by
  3. 請求項1または2に記載の光源装置において、
    前記コントローラは、前記複数のレーザ光源をそれぞれ単独で駆動させて、前記位置検出器から前記検出信号を取得する、
    ことを特徴とする光源装置。
    In the light source device according to claim 1 or 2,
    The controller individually drives the plurality of laser light sources to obtain the detection signal from the position detector.
    A light source device characterized by
  4. 請求項3に記載の光源装置において、
    前記コントローラは、前記光源装置の起動時に、前記複数のレーザ光源をそれぞれ単独で駆動させて前記検出信号を取得する制御を実行する、
    ことを特徴とする光源装置。
    In the light source device according to claim 3,
    The controller executes control for individually driving the plurality of laser light sources and acquiring the detection signal when the light source device is activated.
    A light source device characterized by
  5. 請求項3または4に記載の光源装置において、
    前記コントローラは、前記光源装置の起動後の所定のタイミングにおいて、前記複数のレーザ光源をそれぞれ単独で駆動させて前記検出信号を取得する制御を実行する、
    ことを特徴とする光源装置。
    In the light source device according to claim 3 or 4,
    The controller executes control to individually drive the plurality of laser light sources and acquire the detection signal at a predetermined timing after activation of the light source device.
    A light source device characterized by
  6. 請求項5に記載の光源装置において、
    前記コントローラは、前記光源装置の起動後所定の周期ごとに、前記複数のレーザ光源をそれぞれ単独で駆動させて前記検出信号を取得する制御を実行する、
    ことを特徴とする光源装置。
    In the light source device according to claim 5,
    The controller executes control for independently driving the plurality of laser light sources and acquiring the detection signal at predetermined cycles after activation of the light source device.
    A light source device characterized by
  7. 請求項1ないし6の何れか一項に記載の光源装置において、
    前記コントローラは、前記位置検出器からの前記検出信号に基づいて、前記波長変換部材から所定の配光パターンで前記光が生じるように、前記複数のレーザ光源を制御する、
    ことを特徴とする光源装置。
    The light source device according to any one of claims 1 to 6.
    The controller controls the plurality of laser light sources such that the light is generated in a predetermined light distribution pattern from the wavelength conversion member based on the detection signal from the position detector.
    A light source device characterized by
  8. 請求項7に記載の光源装置において、
    前記コントローラは、前記波長変換部材に対する走査範囲の一部の範囲において発光を停止させる制御を行う場合、前記各レーザ光源の消灯がそれぞれ前記発光を停止させる前記一部の範囲に整合するように、前記複数のレーザ光源を制御する、
    ことを特徴とする光源装置。
    In the light source device according to claim 7,
    When the controller performs control to stop light emission in a partial range of the scanning range for the wavelength conversion member, the turn-off of each of the laser light sources is matched with the partial range to stop the light emission, respectively. Control the plurality of laser light sources,
    A light source device characterized by
  9. 請求項8に記載の光源装置において、
    前記コントローラは、前記位置検出器からの検出信号に基づいて、前記位置検出器の受光面上における前記正反射光の間隔を取得し、取得した前記間隔に基づいて、前記複数のレーザ光源の消灯タイミングを設定する、
    ことを特徴とする光源装置。
    In the light source device according to claim 8,
    The controller acquires an interval of the regularly reflected light on the light receiving surface of the position detector based on a detection signal from the position detector, and turns off the plurality of laser light sources based on the acquired interval. Set the timing,
    A light source device characterized by
  10. 請求項1ないし9の何れか一項に記載の光源装置と、
    前記波長変換部材により拡散された光を投射する投射光学系と、を備える、
    ことを特徴とする投光装置。
    A light source device according to any one of claims 1 to 9,
    A projection optical system that projects the light diffused by the wavelength conversion member;
    A light projecting device characterized by
PCT/JP2018/029717 2017-09-11 2018-08-08 Light source device and light projection device WO2019049589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540838A JPWO2019049589A1 (en) 2017-09-11 2018-08-08 Light source device and light projecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174418 2017-09-11
JP2017-174418 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049589A1 true WO2019049589A1 (en) 2019-03-14

Family

ID=65633925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029717 WO2019049589A1 (en) 2017-09-11 2018-08-08 Light source device and light projection device

Country Status (2)

Country Link
JP (1) JPWO2019049589A1 (en)
WO (1) WO2019049589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015184A1 (en) * 2019-07-25 2021-01-28 株式会社小糸製作所 Vehicular lamp and vehicular headlight

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086432A (en) * 2009-10-14 2011-04-28 Sharp Corp Illumination device, automotive lighting equipment, and vehicle
JP2016507136A (en) * 2013-02-07 2016-03-07 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH Automotive floodlight and method for generating light distribution
JP2016088425A (en) * 2014-11-10 2016-05-23 パナソニックIpマネジメント株式会社 Illuminating device and vehicle mounted with the same
WO2016157765A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086432A (en) * 2009-10-14 2011-04-28 Sharp Corp Illumination device, automotive lighting equipment, and vehicle
JP2016507136A (en) * 2013-02-07 2016-03-07 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH Automotive floodlight and method for generating light distribution
JP2016088425A (en) * 2014-11-10 2016-05-23 パナソニックIpマネジメント株式会社 Illuminating device and vehicle mounted with the same
WO2016157765A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Illumination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015184A1 (en) * 2019-07-25 2021-01-28 株式会社小糸製作所 Vehicular lamp and vehicular headlight

Also Published As

Publication number Publication date
JPWO2019049589A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
CN109416166B (en) Light emitting device and lighting device
US9482412B2 (en) Lighting device
US20150176778A1 (en) Lighting device
JP6549026B2 (en) Light emitting device and lighting device
WO2018021109A1 (en) Light emission device and illumination device
JP2015184591A (en) Optical scanner and vehicle headlamp device
JP6684602B2 (en) Optical scanning device
JP7051810B2 (en) Lighting equipment
JP6946054B2 (en) Vehicle lighting
JP2016046072A (en) Lighting device and vehicle headlight
JP6684674B2 (en) Vehicle lamp and driving method thereof
WO2020116084A1 (en) Light source unit, illumination device, machining device, and deflection element
JP6189638B2 (en) Optical system
US20190390831A1 (en) Light source apparatus and light source apparatus driving method
WO2019049589A1 (en) Light source device and light projection device
JP6292376B2 (en) Vehicle lamp and lens body
JP7065267B2 (en) Light source device and floodlight device
EP3196545A1 (en) Vehicular lamp
US11231569B2 (en) Light-emitting device and illumination device
WO2019044374A1 (en) Light source device and light projection device
JP6517285B2 (en) Optical system
JP7426838B2 (en) Lighting equipment, vehicle lights
JP2019029295A (en) Light source device and light projector
JP2020087574A (en) Light source device and projection device
JP7048220B2 (en) Vehicle lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853790

Country of ref document: EP

Kind code of ref document: A1