WO2019049555A1 - Lens drive device, camera module, and method for manufacturing lens drive device - Google Patents

Lens drive device, camera module, and method for manufacturing lens drive device Download PDF

Info

Publication number
WO2019049555A1
WO2019049555A1 PCT/JP2018/028576 JP2018028576W WO2019049555A1 WO 2019049555 A1 WO2019049555 A1 WO 2019049555A1 JP 2018028576 W JP2018028576 W JP 2018028576W WO 2019049555 A1 WO2019049555 A1 WO 2019049555A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
lens
holder
coil
optical axis
Prior art date
Application number
PCT/JP2018/028576
Other languages
French (fr)
Japanese (ja)
Inventor
英幸 五明
大友 勝彦
和昭 長谷川
秀充 佐藤
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019049555A1 publication Critical patent/WO2019049555A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a lens driving device, a camera module, and a method of manufacturing the lens driving device.
  • a lens is mounted in such a small camera, and a lens driving device for driving a lens body (a lens barrel on which the lens is mounted) is incorporated for autofocusing.
  • a lens drive device is required to have a function to drive a lens body with a small size and accuracy, and in order to satisfy this requirement, as a lens drive device, a lens holder (lens holding member) for holding the lens body is driven.
  • a lens holder lens holding member
  • the magnetic field of the permanent magnet crosses the coil for autofocusing, and the lens body is moved in the direction of the optical axis according to Fleming's left hand law by supplying current to the coil for autofocusing provided around the lens holder. Drive in parallel to perform focusing.
  • a camera shake correction mechanism used in a general camera is also incorporated into the small camera.
  • the camera shake correction mechanism includes various methods such as a method of moving a lens, a method of moving an automatic focusing drive, or a method of moving an imaging device (for example, a CCD: Charge Coupled Device).
  • a camera shake correction coil is provided below the lens holder so as to cross the magnetic field of the permanent magnet, and the current is supplied to the camera shake correction coil
  • the lens holder is driven in a direction perpendicular to the optical axis by moving the lens, and shake is corrected.
  • the permanent magnet is used in the lens drive device mentioned above, there is a variation in the size of the permanent magnet. As described above, if there is variation in the size of the permanent magnet, the distance from the permanent magnet to the coil for autofocus changes, and the strength of the magnetic field penetrating the coil for autofocus is different. Even when a current is applied, the driving force for driving the lens body varies. As described above, when the driving force for driving the lens body varies, it may not be possible to perform proper autofocus. Also, if the size of the permanent magnet varies, the distance from the permanent magnet to the coil for camera shake correction changes, and the strength of the magnetic field penetrating the coil for camera shake correction is different. Also in the driving force which drives a lens body, dispersion arises. As described above, when the driving force for driving the lens body varies, it may not be possible to perform proper shake correction.
  • a lens holder capable of holding a lens body provided with a lens, and a lens holder disposed on the outer peripheral side of the lens holder and operating the lens holder in the optical axis direction of the lens And a plurality of magnets spaced apart from the first coil on the outer peripheral side of the first coil, and a magnet holder installed on the outer peripheral side of the first coil and holding the magnet And an upper spring and a lower spring connecting the lens holder and the magnet holder, and the lens is spaced apart from the magnet in the optical axis direction of the lens, and the lens holder is in a direction intersecting the optical axis direction of the lens And a plurality of magnets, each of which includes a second coil to be operated, a support for supporting the second coil, and a suspension wire for connecting the support and the upper spring.
  • the driving force for auto focusing and image stabilization can be stabilized.
  • the perspective view (1) of the lens drive device in this embodiment The perspective view (2) of the lens drive device in this embodiment Top view of the lens drive device according to the present embodiment
  • An exploded perspective view (2) of the lens drive device according to the present embodiment Structure of permanent magnet (1) Structure of permanent magnet (2) Structure of permanent magnet (3) Structure of permanent magnet (4)
  • FIG. 1 is a perspective view seen from the upper side of the lens drive device in the present embodiment
  • FIG. 2 is a perspective view seen from the lower side of the lens drive device in the present embodiment
  • FIG. It is a top view of the lens drive device in this Embodiment
  • FIG. 4 is an exploded perspective view seen from the upper side of the lens drive device in the present embodiment
  • FIG. 5 is an exploded perspective view seen from the lower side of the lens drive device in the present embodiment.
  • the direction shown by the broken line arrow A in FIGS. 1 and 2 is the optical axis direction of the lens (not shown), and this direction is the direction perpendicular to the paper surface in FIG.
  • the lens drive device according to the present embodiment is formed in a rectangular parallelepiped shape in appearance.
  • the lens drive device according to the present embodiment includes a case 10, an upper flat spring 20, a magnet holder 30, a permanent magnet 40, a lens holder 50, a first coil 60, and a lower flat spring 70.
  • the upper leaf spring 20 and the lower leaf spring 70 are formed of a metal material having a spring property.
  • the lens holder 50 is formed with an opening 51 at a central portion so that a lens body such as a lens barrel (not shown) can be installed.
  • a coil 60 of 1 is provided.
  • the first coil 60 is a coil for lens autofocusing.
  • the magnet holder 30 is formed in a substantially rectangular shape (substantially quadrilateral shape) in a plan view as viewed from the optical axis direction, and an opening 31 in which the lens holder 50 and the first coil 60 are inserted is provided in the central portion. In the four corners located around the opening 31, magnet installation areas 32 in which permanent magnets 40 are installed are provided. Therefore, around the first coil 60, the permanent magnets 40 are disposed to face the first coil 60 at a distance, respectively.
  • the outer portion 21 of the upper leaf spring 20 is fixed to upper surface portions 33 at the four corners of the magnet holder 30 with an adhesive or the like, and the inner portion 22 of the upper leaf spring 20 is fixed to the upper surface portion 52 of the lens holder 50 by caulking or the like. It is done.
  • the upper leaf spring 20 is connected to the outer portion 21 of the upper leaf spring 20 connected to the upper surface portion 33 of the magnet holder 30 and the inner portion 22 of the upper leaf spring 20 connected to the upper surface portion 52 of the lens holder 50.
  • the spring portion 23 acts as a spring.
  • the upper surface portion 33 of the magnet holder 30 is provided at a position corresponding to the magnet installation area 32, that is, at a position opposite to the ceiling surface 32a of the magnet installation area 32 described later in the optical axis direction.
  • the lower side (the imaging side) of the magnet holder 30 and the lens holder 50 two lower side plate springs 70 are provided to face each other.
  • the outer portions 71 of the lower leaf spring 70 are fixed to the bottom portions 34 of the four corners of the magnet holder 30 by caulking or the like, and the inner portions 72 of the lower leaf spring 70 are fixed to the bottom portion 53 of the lens holder 50 with an adhesive or the like. It is done.
  • the lower leaf spring 70 is an outer portion 71 of the lower leaf spring 70 connected to the bottom surface portion 34 of the magnet holder 30 and an inner portion 72 of the lower leaf spring 70 connected to the bottom surface portion 53 of the lens holder 50.
  • a spring portion 73 serves as a spring.
  • the lens holder 50 when a force in the optical axis direction is applied to the lens holder 50, the upper plate spring 20 and the lower plate spring 70 connecting the lens holder 50 and the magnet holder 30 are deformed, and the lens holder 50 is It can be moved in the direction of the optical axis of the lens.
  • two coil substrates 85 are provided opposite to each other between the lower flat spring 70 and the support 90 under the magnet holder 30, and permanent between the coil substrate 85 and the support 90.
  • Two magnetic sensors 81 for detecting the magnetic force of the magnet 40 are provided.
  • the magnetic sensor 81 is mounted on the lower surface of the coil substrate 85.
  • the coil substrate 85 is formed of a multilayer substrate, and one second coil 80 is formed on each side of one coil substrate 85.
  • the second coil 80 is formed of a spiral conductive pattern (not shown) formed on the inner layer and the surface of the coil substrate 85 made of a multilayer substrate.
  • the four second coils 80 are disposed to face the four permanent magnets 40 with a distance, respectively.
  • a wiring pattern for transmitting current to the first coil 60 and the second coil 80 and for transmitting a signal detected by the magnetic sensor 81 is formed.
  • the wiring pattern is three-dimensionally formed on the support 90 by printing or the like, and a part of the wiring pattern of the support 90 is electrically connected to the wiring pattern including the conductive pattern formed on the coil substrate 85.
  • the four corners of the support 90 having a rectangular shape in plan view and the connection portions 24 at the four corners of the upper flat spring 20 are connected by four suspension wires 91, respectively.
  • the lens holder 30 and the lens holder 50 are movable in a direction (generally perpendicular direction) intersecting the optical axis direction.
  • the suspension wire 91 and the upper leaf spring 20 are made of a conductive metal material, and each of the two upper leaf springs 20 is a wire (wire) forming the first coil 60. Both end portions are connected by soldering or the like, and the wiring pattern of the support 90 and the suspension wire 91 are connected by soldering or the like. Therefore, an electric current can be supplied to the first coil 60 from the wiring pattern of the support 90 through the suspension wire 91 and the upper flat spring 20. Further, the coil substrate 85 having the second coil 80 is installed and supported on the support 90, and a current can flow from the wiring pattern of the support 90 to the second coil 80.
  • the permanent magnet 40 is formed in a substantially hexagonal column shape.
  • 6A is a top view of the permanent magnet 40 viewed from the optical axis direction
  • FIG. 6B is a front view viewed from the inside (the side of the first coil 60)
  • FIG. 6C is a back view viewed from the outside
  • Fig. 6D is a side view.
  • the external shape of the permanent magnet 40 is formed substantially in parallel with the inner side surface 40 a on the opposite side of the inner side surface 40 a which is the side of the first coil 60 (the side facing the first coil 60) and the inner side surface 40 a
  • An outer surface 40b, a side surface 40c formed substantially perpendicular to the inner surface 40a from both ends of the inner surface 40a, an inclined surface 40d formed to scrape a corner between the side surface 40c and the outer surface 40b, an upper surface 40e and The bottom surface 40f is formed. Therefore, the side surface of the hexagonal prism is formed by the inner side surface 40a, the outer side surface 40b, the two side surfaces 40c, and the two inclined surfaces 40d.
  • the angle between the inner surface 40a, the outer surface 40b, the side surface 40c and the inclined surface 40d and the upper surface 40e and the bottom surface 40f is substantially perpendicular, and the angle between the outer surface 40b and the side surface 40c and the inclined surface 40d is approximately It is 45 degrees.
  • Each surface may be formed by a flat surface, and the corner between each surface and the surface may be chamfered.
  • the permanent magnet 40 is a surface where the top surface 40 e and the bottom surface 40 f are opposed in the optical axis direction.
  • each permanent magnet 40 is magnetized so that the inner side surface 40 a and the outer side surface 40 b side have different magnetic poles, and is magnetized so that the inner side surfaces 40 a of the four permanent magnets 40 have the same magnetic pole ing.
  • the inner side surface 40a of all the permanent magnets 40 is an N pole, and the outer surface 40b side is an S pole.
  • each permanent magnet 40 is installed in a magnet installation area 32 provided at four corners of the magnet holder 30.
  • the magnet installation area 32 is formed in a shape corresponding to the external shape of the permanent magnet 40, and the ceiling surface 32a substantially perpendicular to the optical axis direction
  • the rear wall surface 32b, the side surface 32c, and the inclined surface 32d are substantially parallel to the optical axis direction. Therefore, in the magnet installation area 32, the side (inner side) where the first coil 60 is arranged and the side (imaging side) where the second coil 80 is arranged are opened.
  • an inner side surface 37 having a substantially U shape is formed around the magnet installation area 32 on the inner side of the magnet holder 30 (the side facing the first coil 60).
  • 7 is a bottom view (plan view seen from the imaging side) of the magnet holder 30
  • FIG. 8A is a perspective view of the magnet installation area 32 of the magnet holder 30
  • FIG. 8B is a view of the magnet holder 30. It is a side view of magnet installation field 32 seen from the opening 31 side.
  • a magnetic field penetrating the first coil 60 is generated by the permanent magnet 40 installed in the magnet holder 30, and a current is caused to flow through the first coil 60, according to Fleming's left-hand rule.
  • a force is generated to move the first coil 60 in the optical axis direction of the lens.
  • the magnet holder 30 and the lens holder 50 are connected by an upper leaf spring 20 and a lower leaf spring 70.
  • the first coil 60 is attached to the lens holder 50, and the lens is attached to the lens holder 50. Therefore, by supplying current to the first coil 60, the lens holder 50 can be moved in the optical axis direction with respect to the magnet holder 30, and auto focusing of the lens can be performed.
  • a magnetic field penetrating the second coil 80 is generated by the permanent magnet 40 installed in the magnet holder 30, and the permanent magnet 40 and the second coil 80 are generated by supplying a current to the second coil 80.
  • Force is generated between Since the coil substrate 85 having the second coil 80 is fixed on the support 90, the force acts in the moving direction of the permanent magnet 40.
  • the four corners of the magnet holder 30 to which the permanent magnet 40 is attached are connected to the support 90 via the upper leaf spring 20 and the suspension wire 91 having elasticity. Therefore, by supplying current to the second coil 80, the permanent magnet 40, the magnet holder 30, and the lens holder 50 can be moved in a direction substantially perpendicular to the optical axis of the lens. In this way, camera shake correction can be performed.
  • two second coils 80 located at one diagonal are connected in series, and the remaining two second coils 80 located at the other diagonal are connected. Connected in series.
  • the distance between the inner side surface 40a of the permanent magnet 40 and the first coil 60 is La1.
  • the distance La2 between the inner surface 40a of the permanent magnet 40 and the first coil 60 is 9A is smaller than the interval La1 in the case shown in FIG. 9A.
  • the force acting on the first coil 60 is greater than that shown in FIG. Also becomes stronger.
  • the distance La3 between the inner surface 40a of the permanent magnet 40 and the first coil 60 is as shown in FIG. It becomes wider than the interval La1 in the case shown in 9A.
  • the force acting on the first coil 60 is as shown in FIG. 9A. It becomes weaker than.
  • the distance between the bottom surface 40f of the permanent magnet 40 and the second coil 80 provided on the coil substrate 85 is Lb1. is there.
  • the distance Lb2 between the bottom surface 40f of the permanent magnet 40 and the second coil 80 is as shown in FIG. It becomes narrower than the interval Lb1 in the case shown in FIG.
  • the force acting on the permanent magnet 40 is stronger than the case shown in FIG. 10A.
  • the shake correction may not be properly performed if the variation occurs.
  • the magnet holder 30 is manufactured using a metal mold
  • the magnet installation area 32 has a shape larger than the external dimension of the permanent magnet 40 so that a gap is formed between the magnet installation area 32 of the magnet holder 30 and the permanent magnet 40. It is formed.
  • the permanent magnet 40 is installed, the permanent magnet 40 is positioned so as to be a desired position, and then the gap between the magnet installation area 32 of the magnet holder 30 and the permanent magnet 40 is hardened with an adhesive. It is done. Specifically, as shown in FIGS.
  • the permanent magnet 40 is fixed to the magnet holder 30.
  • the gap 41 is a first gap between the permanent magnet 40 and the surface (the back wall surface 32b, the inclined surface 32d, and the side surface 32c) forming the magnet installation region 32 in the direction perpendicular to the optical axis direction.
  • This is a second gap between the permanent magnet 40 in the optical axis direction and the ceiling surface 32 a which is a surface forming the magnet installation area 32.
  • FIG. 14 shows the state of the adhesive 42 by the thermosetting resin cured in the magnet installation area 32 of the magnet holder 30 and the adhesive 44 by the ultraviolet curing resin, and for the sake of convenience, the permanent magnet temporarily fixed. It shows a state in which 40 is removed.
  • adhesive strength between the permanent magnet 40 and the surface forming the magnet installation area 32 can be enhanced by providing the adhesive in both the gap 41 and the gap 43.
  • the ultraviolet curable adhesive 44 and the thermosetting adhesive 42 in combination as the adhesive, it is possible to improve the productivity and the adhesive strength.
  • the permanent magnet 40 can be temporarily fixed to the magnet installation area 32 in a short time by the UV curable adhesive 44, and the permanent magnet 40 is firmly fixed to the magnet installation area 32 by the thermosetting adhesive 42 having high adhesive strength. It is possible to fix (final fix).
  • the magnetic member 110 is formed of a magnetic material such as iron.
  • the magnetic member 110 is formed in a substantially rectangular shape (more strictly, an octagonal shape) when viewed from the top, and the upper portion 111 is formed to be larger than the lower portion 112.
  • the lower portion 112 is formed with four side surfaces 113, and an upper bottom surface 114 is formed between the side surfaces of the upper portion 111 and the lower portion 112.
  • 16A is a perspective view of the magnetic member 110 as viewed from the top side
  • FIG. 16B is a perspective view of the magnetic member 110 as viewed from the bottom side.
  • the first jig 120 is formed of a nonmagnetic material such as a resin material, and an opening 122 is formed on the upper surface side of the upper portion 121 of the first jig 120. It is done.
  • the shape of the opening 122 is a shape corresponding to the magnetic member 110, and is formed in such a shape that substantially the entire portion enters from the lower portion 112 side of the magnetic member 110.
  • the opening 122 is formed continuously to the lower portion 123 of the first jig 120, and when the magnetic member 110 is attached to the opening 122, the lower portion 112 of the magnetic member 110 is a first member. It will be located inside the lower part 123 of the tool 120.
  • the reference side surfaces 124 for defining the position of the inner side surface 40 a of the permanent magnet 40 are formed outside the lower portion 123 of the first jig 120, and between the upper portion 121 and the lower portion 123.
  • the reference bottom surface 125 for defining the position of the bottom surface 40 f of the permanent magnet 40 is formed. That is, the upper portion 121 of the first jig 120 is formed to be larger than the lower portion 123, and the lower surface of the upper portion 121 at a portion protruding outward from the lower portion 123 is a flat reference bottom surface 125.
  • the outer shape of the lower portion 123 of the first jig 120 is formed to fit inside the magnet holder 30, and the size of the lower portion 123 (the forming position of the reference side surface 124) corresponds to the lower portion 123 of the magnet holder 30.
  • the four reference side surfaces 124 are precisely defined so as to be substantially in surface contact with the inner side surfaces 37 formed around the four magnet mounting areas 32 of the magnet holder 30 when inserted inside.
  • the projection amount of the lower portion 123 protruding from the upper portion 121 of the first jig 120 that is, the dimension from the reference bottom surface 125 to the tip end surface of the lower portion 123 is from the upper surface portion 33 of the magnet holder 30 to the bottom surface 40f of the permanent magnet 40 It is set with high precision so as to become the design reference dimension of.
  • 17A is a perspective view of the first jig 120 as viewed from the top side
  • FIG. 17B is a perspective view of the first jig 120 as viewed from the bottom side.
  • the first jig 120 may be described as a nonmagnetic member.
  • the second jig 130 is formed of a nonmagnetic material such as a resin material, and a plurality of magnet holders 30 are provided on the upper surface of the second jig 130. Recesses 131 and 132 are provided. Therefore, as shown in FIG. 18, on the upper surface portion 33 which is the upper surface side of the magnet holder 30, a plurality of convex portions 35 and 36 corresponding to the plurality of concave portions 131 and 132 of the second jig 130 are provided. It is provided.
  • a penetrating portion 133 penetrating vertically is formed at the central portion of the second jig 130, and the size of the penetrating portion 133 is set smaller than the lower portion 123 of the first jig 120. There is.
  • the magnetic member 110 is inserted into the opening 122 on the upper surface of the first jig 120 from the lower portion 112 side.
  • the permanent magnet 40 is adsorbed so as to be in contact with the reference side surface 124 and the reference bottom surface 125 of the first jig 120. Since the magnetic member 110 is formed of a magnetic material, the permanent magnet 40 can be magnetically attracted to the reference side surface 124 and the reference bottom surface 125 of the first jig 120 via the first jig 120. Specifically, the inner side surface 40 a of the permanent magnet 40 is adsorbed to the reference side surface 124 of the first jig 120, and the bottom surface 40 f of the permanent magnet 40 is adsorbed to the reference bottom surface 125 of the first jig 120.
  • 20A is a perspective view of this state as viewed from the top side
  • FIG. 20B is a perspective view of the bottom side
  • FIG. 20C is a side view.
  • the reference side surface 124 may be described as a first reference surface
  • the reference bottom surface 125 may be described as a second reference surface.
  • the permanent magnet 40 is used as the first jig.
  • Other methods may be used as long as they can contact the reference side surface 124 and the reference bottom surface 125 of 120 and maintain the contact state to some extent.
  • the magnetic member 110 and the first jig 120 may be formed of one magnetic material, but from the viewpoint of manufacturing, a method using the magnetic member 110 and the first jig 120 of the nonmagnetic member Is preferred.
  • FIGS. 21A and 21B the corresponding protrusions 35 and 36 provided on the magnet holder 30 are inserted into the recesses 131 and 132 provided on the upper surface of the second jig 130 and installed. .
  • the magnet holder 30 is in a posture in which the upper surface portion 33 is directed to the upper surface side of the second jig 130 (a posture reverse to the state shown in FIG. 4). It is in contact with the upper surface of the tool 130.
  • FIG. 21A is a perspective view of this state as viewed from the top
  • FIG. 21B is a side view.
  • an adhesive (not shown) is applied to the ceiling surface 32a, the back wall surface 32b, the side surface 32c, and the inclined surface 32d of the magnet installation area 32 of the magnet holder 30.
  • an ultraviolet curable adhesive is applied to the ceiling surface 32 a of the magnet installation area 32 of the magnet holder 30 so that the state as shown in FIG. 14 is obtained, and the magnet installation area of the magnet holder 30 is A thermosetting adhesive is applied to the back wall surface 32b, the side surface 32c, and the inclined surface 32d. At this time, a part of the thermosetting adhesive also adheres to the ceiling surface 32a.
  • the method of using two types of adhesives as mentioned above is preferable, only the ultraviolet curable adhesive is used on the ceiling surface 32a, the back wall surface 32b, the side surface 32c and the inclined surface 32d of the magnet installation area 32 of the magnet holder 30. May be applied.
  • region 32 shown in FIG. 14 you may make the part which apply
  • magnet installation region 32 of magnet holder 30 By applying a thermosetting adhesive and fixing the permanent magnet 40 to the magnet installation area 32 with the thermosetting adhesive, the bonding area can be increased, and the bonding strength can be enhanced.
  • the first jig 120 is brought close to the second jig 130, and the first fixing step is performed on the magnet installation area 32 of the magnet holder 30 to which the adhesive is applied.
  • the permanent magnet 40 in a state of being adsorbed to the tool 120 is inserted.
  • the four reference side surfaces 124 of the first jig 120 are in contact with the inner side surface 37 located around the inside of the four magnet installation areas 32 of the magnet holder 30.
  • the inner side surface 37 around the magnet installation area 32 and the inner side surface 40 a of the permanent magnet 40 become flush with each other.
  • FIG. 22A is a perspective view of this state as viewed from the top
  • FIG. 22B is a side view.
  • the permanent magnet 40 in the direction perpendicular to the optical axis direction is obtained by inserting the lower portion 123 of the first jig 120 in a state in which the permanent magnet 40 is adsorbed inside the magnet holder 30.
  • the thermosetting adhesive is interposed in the first gap (the gap 41) where the surface forming the magnet installation area 32 (the back wall surface 32b, the inclined surface 32d, the side surface 32c) opposes, and the optical axis direction
  • an ultraviolet curable adhesive is interposed in the first gap (the gap 41) where the surface forming the magnet installation area 32 (the back wall surface 32b, the inclined surface 32d, the side surface 32c) opposes, and the optical axis direction
  • an ultraviolet curable adhesive is interposed in the second gap (the gap 43) where the permanent magnet 40 and the ceiling surface 32a which is the surface forming the magnet installation area 32 are opposed to each other.
  • the ultraviolet curable adhesive is applied to the ultraviolet curable adhesive from the obliquely lower side through the penetration portion 133 of the second jig 130 to apply it to the ceiling surface 32 a of the magnet installation area 32 of the magnet holder 30. Cure the UV curable adhesive. Thereby, the permanent magnet 40 is fixed to the magnet installation area 32 of the magnet holder 30 with an adhesive.
  • the first jig 120 is formed of a resin material which transmits ultraviolet light, such as acrylic resin.
  • the second jig 130 is also preferably formed of a resin material that transmits ultraviolet light.
  • the magnetic member 110 put in the opening 122 of the first jig 120 is removed.
  • the first jig 120 and the second jig 130 are removed from the magnet holder 30. Thereafter, heat is applied to cure the thermosetting adhesive applied to the back wall surface 32b, the side surface 32c, the inclined surface 32d, and the ceiling surface 32a of the magnet installation area 32 of the magnet holder 30. As a result, it is possible to manufacture one in which each permanent magnet 40 is installed in a predetermined area in the magnet installation area 32 of the magnet holder 30. In addition, before removing the magnet holder 30 from the second jig 130, it is also possible to remove the first jig 120 with the magnetic member 110 attached together with the magnetic member 110.
  • each permanent magnet 40 can be fixed at a desired position with high accuracy to the magnet holder 30 by the above method. Therefore, as shown in FIG. 25, the inside surface 37 and the permanent magnet 40 around the magnet installation area 32 of the magnet holder 30 on the side of the first coil 60 (the side facing the first coil 60). It becomes flush with the side surface 40a. Further, the inner side surfaces 40a of the permanent magnets 40 located diagonally are parallel to each other, and the centers of the inner side surfaces 40a of the permanent magnets 40 located diagonally in a plan view seen from the direction along the optical axis direction. The distance B1 from the intersection point 212 of the straight lines 211a and 211b connecting the two to the center of the inner side surface 40a of each permanent magnet 40 is equal.
  • the variation of the distance B1 to the center of the inner surface 40a of each permanent magnet 40 is smaller than the variation of the distance B2 from the intersection point 212 to the outer surface 40b of each permanent magnet 40.
  • the auxiliary line 211 c which is the starting point of the distances B 1 and B 2 is a straight line which is parallel to the inner side surface 40 a of the permanent magnet 40 and passes through the intersection point 212.
  • the dimension line which shows the distance B1 and the distance B2 with a continuous line is a straight line parallel to the straight line 211a. Therefore, the distance B2 is the distance between the intersection point 212 and the outer side surface 40b located on the extension of the straight line 211a.
  • the inner side surface 40 a of the permanent magnet 40 and the back wall surface 32 b of the magnet installation area 32 of the magnet holder 30 are parallel to each other.
  • the distance B3 between the magnet installation area 32 and the back wall surface 32b is equal.
  • the distances B4 between the inner side surface 40a of the permanent magnet 40 and the inner side surface 37 around the magnet installation area 32 of the magnet holder 30 in which the permanent magnet 40 located at the diagonal of the permanent magnet 40 is inserted are equal to each other. It is formed. 26, the straight line (dimension line) indicating the distance B4 is a straight line orthogonal to the inner side surface 40a of the permanent magnet 40 and the inner side surface 37 of the magnet holder 30 (the inner side surface of the wall having the ceiling surface 32a). .
  • the lens drive device in the present embodiment is manufactured by the above manufacturing method. Therefore, as shown in FIGS. 11 to 13, the back wall surface 32 b of the magnet installation area 32 of the magnet holder 30 and the outer surface 40 b of the permanent magnet 40, the side surface 32 c of the magnet installation area 32 and the side surface 40 c of the permanent magnet 40, the magnet A gap 41 is formed between the inclined surface 32 d of the installation area 32 and the inclined surface 40 d of the permanent magnet 40, and a permanent magnet is formed by the adhesive 42 of thermosetting resin provided in the gap 41 in the direction perpendicular to the optical axis direction. 40 is fixed.
  • a gap 43 in the optical axis direction is formed between the ceiling surface 32a of the magnet installation area 32 of the magnet holder 30 and the upper surface 40e of the permanent magnet 40, and an adhesive made of ultraviolet curing resin provided in the gap 43.
  • the permanent magnet 40 is fixed by 44.
  • the upper plate spring 20 and the lower plate spring 70 are attached to the upper surface side and the lower surface side of the lens holder 50 and the magnet holder 30 to which the first coil 60 is attached. Further, the magnetic sensor 81 is attached to the lower surface of the coil substrate 85 provided with the second coil 80, and the coil substrate 85 is fixed to the support 90. Then, the support 90 and the upper leaf spring 20 are connected by the suspension wire 91. After that, the lens driving device in the present embodiment can be manufactured by covering the case 10 on the support body 90 and fixing it.
  • thermosetting adhesive may be placed in the first gap (the gap 41) facing the surface forming the and then heated to cure the thermosetting adhesive.
  • the permanent magnet 40 after applying two kinds of adhesives to the magnet installation area 32 of the magnet holder 30, the permanent magnet 40 is put into the magnet installation area 32, and thereafter, the first jig 120 and the magnetic member 110 are respectively
  • the permanent magnet 40 can be adsorbed to the first jig 120 by mounting it on the first jig 120, and then the UV curable adhesive can be cured.
  • the camera module according to the present embodiment uses the lens driving device according to the present embodiment, and a lens barrel 210 in which a lens (not shown) is incorporated is attached to the lens holder 50. It is done. That is, the lens barrel 210 as a lens body is held by the lens holder 50 by means such as an adhesive. Further, an imaging element 220 is attached to the side (imaging side) opposite to the side (subject side) where light is incident on the lens of the lens barrel 210. The imaging element 220 can capture a two-dimensional image, and is attached to the imaging substrate 221 by soldering or the like. The camera module in the present embodiment can form an image by forming an image on the imaging surface of the imaging element 220 by the light incident on the lens barrel 210.

Abstract

A lens drive device comprises: a lens holder capable of holding a lens body equipped with a lens; a first coil provided around the lens holder and moving the lens holder along the optical axis direction of the lens; a plurality of magnets provided around the first coil at a distance from the first coil; a magnet holder provided around the first coil and holding the magnets; upper and lower springs for coupling the lens holder and the magnet holder; a second coil provided at a distance from the magnets along the optical axis direction of the lens and moving the lens holder in a direction intersecting with the optical axis of the lens; a support for supporting the second coil; and a suspension wire for connecting the support and the upper spring. Each of the plurality of magnets is provided in a plurality of magnet placement regions in the magnet holder. Gaps are provided between each magnet and the surface that forms the magnet placement regions in the optical axis direction and in a direction perpendicular to the optical axis direction.

Description

レンズ駆動装置、カメラモジュール及びレンズ駆動装置の製造方法Lens drive device, camera module and method of manufacturing lens drive device
 本発明は、レンズ駆動装置、カメラモジュール及びレンズ駆動装置の製造方法に関するものである。 The present invention relates to a lens driving device, a camera module, and a method of manufacturing the lens driving device.
 近年、携帯電話に代表される携帯機器の多くには、小型カメラが搭載されている。このような小型カメラには、レンズが搭載されており、オートフォーカスのためレンズ体(レンズが装着される鏡筒)を駆動するレンズ駆動装置が組み込まれている。このようなレンズ駆動装置は、小型で精度良くレンズ体を駆動させる機能が求められており、この要求を満たすため、レンズ駆動装置として、レンズ体を保持するレンズホルダ(レンズ保持部材)を駆動するための磁気回路をレンズホルダの周囲に設けたものが知られている。具体的には、レンズホルダの周囲にオートフォーカス用のコイルを設け、更に外側に永久磁石を設置したものがある。永久磁石の磁界は、オートフォーカス用のコイルを横切っており、レンズホルダの周囲に設けられたオートフォーカス用のコイルに電流を流すことにより、フレミングの左手の法則により、レンズ体を光軸方向に平行に駆動し、フォーカシングを行う。 2. Description of the Related Art In recent years, small cameras have been mounted on many portable devices represented by mobile phones. A lens is mounted in such a small camera, and a lens driving device for driving a lens body (a lens barrel on which the lens is mounted) is incorporated for autofocusing. Such a lens drive device is required to have a function to drive a lens body with a small size and accuracy, and in order to satisfy this requirement, as a lens drive device, a lens holder (lens holding member) for holding the lens body is driven. It is known to provide a magnetic circuit for the lens holder around the lens holder. Specifically, there is one in which a coil for auto focusing is provided around the lens holder, and a permanent magnet is further provided on the outside. The magnetic field of the permanent magnet crosses the coil for autofocusing, and the lens body is moved in the direction of the optical axis according to Fleming's left hand law by supplying current to the coil for autofocusing provided around the lens holder. Drive in parallel to perform focusing.
 また、最近では、小型カメラで撮影される画像の品質を上げるために、一般のカメラに用いられている手振れ補正機構を、小型カメラに取り入れることも行われている。この手振れ補正機構には、レンズを動かす方法や自動焦点駆動装置を動かす方法、或いは撮像素子(例えば、CCD:Charge Coupled Device)を動かす方法と様々な方法がある。手振れ補正機構のうち、レンズを動かす方法を取り入れたレンズ駆動装置では、例えば、レンズホルダの下側に、永久磁石の磁界を横切るように手振れ補正用のコイルを設け、手振れ補正用のコイルに電流を流すことにより、レンズホルダを光軸に垂直方向に駆動し、手振れ補正を行う。 Furthermore, recently, in order to improve the quality of an image captured by a small camera, a camera shake correction mechanism used in a general camera is also incorporated into the small camera. The camera shake correction mechanism includes various methods such as a method of moving a lens, a method of moving an automatic focusing drive, or a method of moving an imaging device (for example, a CCD: Charge Coupled Device). In the lens driving device incorporating the method of moving the lens in the camera shake correction mechanism, for example, a camera shake correction coil is provided below the lens holder so as to cross the magnetic field of the permanent magnet, and the current is supplied to the camera shake correction coil The lens holder is driven in a direction perpendicular to the optical axis by moving the lens, and shake is corrected.
特開2016-38505号公報JP, 2016-38505, A
 ところで、上述したレンズ駆動装置では、永久磁石が用いられているが、永久磁石の大きさにはバラツキがある。このように、永久磁石の大きさにバラツキがあると、永久磁石からオートフォーカス用のコイルまでの距離が変わってしまい、オートフォーカス用のコイルを貫く磁界の強さが異なるため、同じ電流量の電流を流してもレンズ体を駆動する駆動力にバラツキが生じる。このように、レンズ体を駆動する駆動力にバラツキが生じると、適正なオートフォーカスを行うことができなくなる場合がある。また、永久磁石の大きさにバラツキがあると、永久磁石から手振れ補正用のコイルまでの距離が変わり、手振れ補正用のコイルを貫く磁界の強さが異なるため、同じ電流量の電流を流してもレンズ体を駆動する駆動力にバラツキが生じる。このように、レンズ体を駆動する駆動力にバラツキが生じると、適正な手振れ補正を行うことができなくなる場合がある。 By the way, although the permanent magnet is used in the lens drive device mentioned above, there is a variation in the size of the permanent magnet. As described above, if there is variation in the size of the permanent magnet, the distance from the permanent magnet to the coil for autofocus changes, and the strength of the magnetic field penetrating the coil for autofocus is different. Even when a current is applied, the driving force for driving the lens body varies. As described above, when the driving force for driving the lens body varies, it may not be possible to perform proper autofocus. Also, if the size of the permanent magnet varies, the distance from the permanent magnet to the coil for camera shake correction changes, and the strength of the magnetic field penetrating the coil for camera shake correction is different. Also in the driving force which drives a lens body, dispersion arises. As described above, when the driving force for driving the lens body varies, it may not be possible to perform proper shake correction.
 従って、永久磁石の大きさにバラツキがあっても、オートフォーカス及び手振れ補正のための駆動力が安定しているレンズ駆動装置が求められている。 Therefore, there is a need for a lens driving device that has stable driving force for autofocus and image stabilization even if the size of the permanent magnet varies.
 本実施の形態の一観点によれば、レンズを備えたレンズ体を保持可能なレンズホルダと、前記レンズホルダの外周側に配置され、前記レンズホルダを前記レンズの光軸方向に動作させる第1のコイルと、前記第1のコイルの外周側に、前記第1のコイルと離間して配置された複数の磁石と、前記第1のコイルの外周側に設置され、前記磁石を保持するマグネットホルダと、前記レンズホルダ及び前記マグネットホルダを連結する上バネ及び下バネと、前記レンズの光軸方向において前記磁石と離間して配置され、前記レンズホルダを前記レンズの光軸方向と交差する方向に動作させる第2のコイルと、前記第2のコイルを支持する支持体と、前記支持体と前記上バネとを接続するサスペンションワイヤと、を有し、複数の前記磁石は、前記マグネットホルダの複数の磁石設置領域にそれぞれ設置されるものであって、それぞれの前記磁石と前記磁石設置領域を形成する面との間には、前記光軸方向と垂直な方向、及び、前記光軸方向において隙間が設けられていることを特徴とする。 According to one aspect of the present embodiment, a lens holder capable of holding a lens body provided with a lens, and a lens holder disposed on the outer peripheral side of the lens holder and operating the lens holder in the optical axis direction of the lens And a plurality of magnets spaced apart from the first coil on the outer peripheral side of the first coil, and a magnet holder installed on the outer peripheral side of the first coil and holding the magnet And an upper spring and a lower spring connecting the lens holder and the magnet holder, and the lens is spaced apart from the magnet in the optical axis direction of the lens, and the lens holder is in a direction intersecting the optical axis direction of the lens And a plurality of magnets, each of which includes a second coil to be operated, a support for supporting the second coil, and a suspension wire for connecting the support and the upper spring. It is installed in each of a plurality of magnet installation areas of the gnet holder, and a direction perpendicular to the optical axis direction and the light are provided between each of the magnets and a surface forming the magnet installation area. A gap is provided in the axial direction.
 開示のレンズ駆動装置によれば、永久磁石の大きさにバラツキがあっても、オートフォーカス及び手振れ補正のための駆動力を安定にすることができる。 According to the disclosed lens driving device, even if there is variation in the size of the permanent magnet, the driving force for auto focusing and image stabilization can be stabilized.
本実施の形態におけるレンズ駆動装置の斜視図(1)The perspective view (1) of the lens drive device in this embodiment 本実施の形態におけるレンズ駆動装置の斜視図(2)The perspective view (2) of the lens drive device in this embodiment 本実施の形態におけるレンズ駆動装置の上面図Top view of the lens drive device according to the present embodiment 本実施の形態におけるレンズ駆動装置の分解斜視図(1)An exploded perspective view (1) of the lens drive device according to the present embodiment 本実施の形態におけるレンズ駆動装置の分解斜視図(2)An exploded perspective view (2) of the lens drive device according to the present embodiment 永久磁石の構造図(1)Structure of permanent magnet (1) 永久磁石の構造図(2)Structure of permanent magnet (2) 永久磁石の構造図(3)Structure of permanent magnet (3) 永久磁石の構造図(4)Structure of permanent magnet (4) マグネットホルダの下面図Bottom view of magnet holder マグネットホルダの説明図(1)Illustration of magnet holder (1) マグネットホルダの説明図(2)Illustration of magnet holder (2) 永久磁石の大きさにバラツキがある場合の第1のコイルとの関係の説明図(1)Explanatory drawing (1) of the relationship with the 1st coil in case there is variation in the size of a permanent magnet 永久磁石の大きさにバラツキがある場合の第1のコイルとの関係の説明図(2)Explanatory drawing (2) of the relationship with the 1st coil in case there is variation in the size of a permanent magnet 永久磁石の大きさにバラツキがある場合の第1のコイルとの関係の説明図(3)Explanatory drawing (3) of the relationship with the 1st coil in case there is variation in the size of a permanent magnet 永久磁石の大きさにバラツキがある場合の第2のコイルとの関係の説明図(1)Explanatory drawing (1) of a relation with the 2nd coil in case there is variation in size of a permanent magnet 永久磁石の大きさにバラツキがある場合の第2のコイルとの関係の説明図(2)Explanatory drawing (2) of a relationship with the 2nd coil in case there is variation in size of a permanent magnet 永久磁石の大きさにバラツキがある場合の第2のコイルとの関係の説明図(3)Explanatory drawing (3) of a relation with the 2nd coil in case there is variation in size of a permanent magnet 本実施の形態におけるレンズ駆動装置の説明図(1)Explanatory drawing (1) of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の説明図(2)Explanatory drawing (2) of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の説明図(3)Explanatory drawing (3) of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の説明図(4)Explanatory drawing (4) of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造に用いる治具の分解斜視図An exploded perspective view of a jig used for manufacturing the lens driving device according to the present embodiment 本実施の形態におけるレンズ駆動装置の製造に用いる磁性部材の説明図(1)Explanatory drawing (1) of the magnetic member used for manufacture of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造に用いる磁性部材の説明図(2)Explanatory drawing (2) of the magnetic member used for manufacture of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造に用いる第1の治具の説明図(1)Explanatory drawing (1) of the 1st jig used for manufacture of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造に用いる第1の治具の説明図(2)An explanatory view (1) of a first jig used for manufacturing a lens drive device according to the present embodiment. マグネットホルダの斜視図Perspective view of magnet holder 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(1)Process explanatory drawing (1) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(2)Process explanatory drawing (2) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(3)Process explanatory drawing (3) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(4)Process explanatory drawing (4) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(5)Process explanatory drawing (5) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(6)Process explanatory drawing (6) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(7)Process explanatory drawing (7) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(8)Process explanatory drawing (8) of the manufacturing method of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(9)Process explanatory drawing of the manufacturing method of the lens drive device in this Embodiment (9) 本実施の形態におけるレンズ駆動装置の製造方法の工程説明図(10)Process explanatory drawing of the manufacturing method of the lens drive device in this Embodiment (10) 本実施の形態におけるレンズ駆動装置の説明図(5)Explanatory drawing (5) of the lens drive device in this Embodiment 本実施の形態におけるレンズ駆動装置の説明図(6)Explanatory drawing (6) of the lens drive device in this Embodiment 本実施の形態におけるカメラモジュールの構造図Structure diagram of camera module in the present embodiment
 実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。 A mode for carrying out will be described below. In addition, about the same member etc., the same code | symbol is attached | subjected and description is abbreviate | omitted.
 〔レンズ駆動装置〕
 本実施の形態におけるレンズ駆動装置について図1から図5に基づき説明する。図1は、本実施の形態におけるレンズ駆動装置の上方側から見た斜視図であり、図2は、本実施の形態におけるレンズ駆動装置の下方側から見た斜視図であり、図3は、本実施の形態におけるレンズ駆動装置の上面図である。図4は、本実施の形態におけるレンズ駆動装置の上方側から見た分解斜視図であり、図5は、本実施の形態におけるレンズ駆動装置の下方側から見た分解斜視図である。尚、図1及び図2における破線矢印Aに示す方向は、不図示のレンズの光軸方向であり、この方向は、図3においては紙面に垂直方向である。
[Lens drive device]
The lens driving device in the present embodiment will be described based on FIGS. 1 to 5. FIG. 1 is a perspective view seen from the upper side of the lens drive device in the present embodiment, FIG. 2 is a perspective view seen from the lower side of the lens drive device in the present embodiment, and FIG. It is a top view of the lens drive device in this Embodiment. FIG. 4 is an exploded perspective view seen from the upper side of the lens drive device in the present embodiment, and FIG. 5 is an exploded perspective view seen from the lower side of the lens drive device in the present embodiment. The direction shown by the broken line arrow A in FIGS. 1 and 2 is the optical axis direction of the lens (not shown), and this direction is the direction perpendicular to the paper surface in FIG.
 本実施の形態におけるレンズ駆動装置は、図1から図3に示すように、外観は直方体の形状で形成されている。本実施の形態におけるレンズ駆動装置は、図4及び図5に示すように、ケース10、上側板バネ20、マグネットホルダ30、永久磁石40、レンズホルダ50、第1のコイル60、下側板バネ70、第2のコイル80、磁気センサ81、支持体90等を有している。上側板バネ20及び下側板バネ70は、バネ性を有する金属材料により形成されている。 As shown in FIGS. 1 to 3, the lens drive device according to the present embodiment is formed in a rectangular parallelepiped shape in appearance. As shown in FIGS. 4 and 5, the lens drive device according to the present embodiment includes a case 10, an upper flat spring 20, a magnet holder 30, a permanent magnet 40, a lens holder 50, a first coil 60, and a lower flat spring 70. , The second coil 80, the magnetic sensor 81, the support 90, and the like. The upper leaf spring 20 and the lower leaf spring 70 are formed of a metal material having a spring property.
 本実施の形態におけるレンズ駆動装置では、レンズホルダ50は中央部分に不図示のレンズバレル等のレンズ体を設置することができるように開口51が形成されており、レンズホルダ50の周囲には第1のコイル60が設けられている。第1のコイル60はレンズのオートフォーカス用のコイルである。 In the lens drive device according to the present embodiment, the lens holder 50 is formed with an opening 51 at a central portion so that a lens body such as a lens barrel (not shown) can be installed. A coil 60 of 1 is provided. The first coil 60 is a coil for lens autofocusing.
 マグネットホルダ30は、光軸方向から見た平面視において、外形形状が略矩形状(略四角形状)に形成され、中央部分にレンズホルダ50及び第1のコイル60が入れられる開口部31が設けられており、開口部31の周囲に位置する4隅には、各々永久磁石40が設置される磁石設置領域32が設けられている。従って、第1のコイル60の周囲には、各々永久磁石40が、第1のコイル60と離間して対向配置される。 The magnet holder 30 is formed in a substantially rectangular shape (substantially quadrilateral shape) in a plan view as viewed from the optical axis direction, and an opening 31 in which the lens holder 50 and the first coil 60 are inserted is provided in the central portion. In the four corners located around the opening 31, magnet installation areas 32 in which permanent magnets 40 are installed are provided. Therefore, around the first coil 60, the permanent magnets 40 are disposed to face the first coil 60 at a distance, respectively.
 マグネットホルダ30及びレンズホルダ50の上側(被写体側)には、2つの上側板バネ20が対向して設けられている。上側板バネ20の外側部分21はマグネットホルダ30の4隅の上面部分33に接着剤等により固定されており、上側板バネ20の内側部分22はレンズホルダ50の上面部分52にかしめ等により固定されている。従って、上側板バネ20は、マグネットホルダ30の上面部分33と接続されている上側板バネ20の外側部分21と、レンズホルダ50の上面部分52と接続されている上側板バネ20の内側部分22との間がバネ部23となりバネとして機能する。なお、マグネットホルダ30の上面部分33は、磁石設置領域32に対応する位置、すなわち、後述する磁石設置領域32の天井面32aと光軸方向において反対側の位置に設けられている。 On the upper side (subject side) of the magnet holder 30 and the lens holder 50, two upper leaf springs 20 are provided to face each other. The outer portion 21 of the upper leaf spring 20 is fixed to upper surface portions 33 at the four corners of the magnet holder 30 with an adhesive or the like, and the inner portion 22 of the upper leaf spring 20 is fixed to the upper surface portion 52 of the lens holder 50 by caulking or the like. It is done. Thus, the upper leaf spring 20 is connected to the outer portion 21 of the upper leaf spring 20 connected to the upper surface portion 33 of the magnet holder 30 and the inner portion 22 of the upper leaf spring 20 connected to the upper surface portion 52 of the lens holder 50. The spring portion 23 acts as a spring. The upper surface portion 33 of the magnet holder 30 is provided at a position corresponding to the magnet installation area 32, that is, at a position opposite to the ceiling surface 32a of the magnet installation area 32 described later in the optical axis direction.
 また、マグネットホルダ30及びレンズホルダ50の下側(撮像側)には、2つの下側板バネ70が対向して設けられている。下側板バネ70の外側部分71はマグネットホルダ30の4隅の底面部分34にかしめ等により固定されており、下側板バネ70の内側部分72はレンズホルダ50の底面部分53に接着剤等により固定されている。従って、下側板バネ70は、マグネットホルダ30の底面部分34と接続されている下側板バネ70の外側部分71と、レンズホルダ50の底面部分53と接続されている下側板バネ70の内側部分72との間がバネ部73となりバネとして機能する。 Further, on the lower side (the imaging side) of the magnet holder 30 and the lens holder 50, two lower side plate springs 70 are provided to face each other. The outer portions 71 of the lower leaf spring 70 are fixed to the bottom portions 34 of the four corners of the magnet holder 30 by caulking or the like, and the inner portions 72 of the lower leaf spring 70 are fixed to the bottom portion 53 of the lens holder 50 with an adhesive or the like. It is done. Accordingly, the lower leaf spring 70 is an outer portion 71 of the lower leaf spring 70 connected to the bottom surface portion 34 of the magnet holder 30 and an inner portion 72 of the lower leaf spring 70 connected to the bottom surface portion 53 of the lens holder 50. A spring portion 73 serves as a spring.
 従って、レンズホルダ50に光軸方向の力が加わると、レンズホルダ50とマグネットホルダ30とを連結している上側板バネ20及び下側板バネ70が変形し、マグネットホルダ30に対しレンズホルダ50をレンズの光軸方向に動かすことができる。 Therefore, when a force in the optical axis direction is applied to the lens holder 50, the upper plate spring 20 and the lower plate spring 70 connecting the lens holder 50 and the magnet holder 30 are deformed, and the lens holder 50 is It can be moved in the direction of the optical axis of the lens.
 また、マグネットホルダ30の下の下側板バネ70と支持体90との間には、2つのコイル基板85が対向して設けられており、コイル基板85と支持体90との間には、永久磁石40の磁力を検出するための2つの磁気センサ81が設けられている。磁気センサ81は、コイル基板85の下面に実装されている。コイル基板85は、多層基板によって構成されており、1つのコイル基板85の両側に、それぞれ第2のコイル80が1つずつ形成されている。この第2のコイル80は、多層基板からなるコイル基板85の内層および表面に形成された渦巻き状の導電パターン(図示せず)によって構成されている。4つの第2のコイル80は、4つの永久磁石40とそれぞれ離間して対向した状態で配置されている。 In addition, two coil substrates 85 are provided opposite to each other between the lower flat spring 70 and the support 90 under the magnet holder 30, and permanent between the coil substrate 85 and the support 90. Two magnetic sensors 81 for detecting the magnetic force of the magnet 40 are provided. The magnetic sensor 81 is mounted on the lower surface of the coil substrate 85. The coil substrate 85 is formed of a multilayer substrate, and one second coil 80 is formed on each side of one coil substrate 85. The second coil 80 is formed of a spiral conductive pattern (not shown) formed on the inner layer and the surface of the coil substrate 85 made of a multilayer substrate. The four second coils 80 are disposed to face the four permanent magnets 40 with a distance, respectively.
 支持体90には、第1のコイル60及び第2のコイル80に電流を流すため、また、磁気センサ81において検出された信号を伝達するための配線パターンが形成されている。配線パターンは、支持体90に印刷等によって立体的に形成されており、支持体90の配線パターンの一部は、コイル基板85に形成された導電パターンを含む配線パターンに電気的に接続されている。また、平面視が矩形状の支持体90の4隅と上側板バネ20の4隅の接続部分24とは、4本のサスペンションワイヤ91により各々接続されており、支持体90に対し、マグネットホルダ30やレンズホルダ50は、光軸方向に交差する方向(略垂直な方向)に移動可能である。また、サスペンションワイヤ91及び上側板バネ20は、導電性を有する金属材料により形成されており、2つの上側板バネ20の各々には、第1のコイル60を形成している配線(線材)の両端部が半田付け等で接続されており、支持体90の配線パターンとサスペンションワイヤ91とが半田付け等で接続されている。従って、支持体90の配線パターンから、サスペンションワイヤ91及び上側板バネ20を介し、第1のコイル60に電流を流すことができる。また、支持体90の上には、第2のコイル80を有するコイル基板85が設置されて支持されており、支持体90の配線パターンから第2のコイル80に電流を流すことができる。 In the support body 90, a wiring pattern for transmitting current to the first coil 60 and the second coil 80 and for transmitting a signal detected by the magnetic sensor 81 is formed. The wiring pattern is three-dimensionally formed on the support 90 by printing or the like, and a part of the wiring pattern of the support 90 is electrically connected to the wiring pattern including the conductive pattern formed on the coil substrate 85. There is. The four corners of the support 90 having a rectangular shape in plan view and the connection portions 24 at the four corners of the upper flat spring 20 are connected by four suspension wires 91, respectively. The lens holder 30 and the lens holder 50 are movable in a direction (generally perpendicular direction) intersecting the optical axis direction. The suspension wire 91 and the upper leaf spring 20 are made of a conductive metal material, and each of the two upper leaf springs 20 is a wire (wire) forming the first coil 60. Both end portions are connected by soldering or the like, and the wiring pattern of the support 90 and the suspension wire 91 are connected by soldering or the like. Therefore, an electric current can be supplied to the first coil 60 from the wiring pattern of the support 90 through the suspension wire 91 and the upper flat spring 20. Further, the coil substrate 85 having the second coil 80 is installed and supported on the support 90, and a current can flow from the wiring pattern of the support 90 to the second coil 80.
 次に、永久磁石40についてより詳細に説明する。図6A~図6Dに示されるように、永久磁石40は略六角柱状で形成されている。尚、図6Aは、光軸方向から見た永久磁石40の上面図であり、図6Bは内側(第1のコイル60の側)から見た正面図であり、図6Cは外側から見た背面図であり、図6Dは側面図である。 Next, the permanent magnet 40 will be described in more detail. As shown in FIGS. 6A to 6D, the permanent magnet 40 is formed in a substantially hexagonal column shape. 6A is a top view of the permanent magnet 40 viewed from the optical axis direction, FIG. 6B is a front view viewed from the inside (the side of the first coil 60), and FIG. 6C is a back view viewed from the outside Fig. 6D is a side view.
 永久磁石40の外観形状は、第1のコイル60の側(第1のコイル60と対向する側)となる内側面40a、内側面40aの反対側に、内側面40aと略平行に形成されている外側面40b、内側面40aの両端から内側面40aに対し略垂直に形成された側面40c、側面40cと外側面40bとの間の角を削るように形成された傾斜面40d、上面40e及び底面40fにより形成されている。従って、内側面40a、外側面40b、2つの側面40c、2つの傾斜面40dにより、6角柱の側面が形成されている。尚、内側面40a、外側面40b、側面40c及び傾斜面40dと、上面40e及び底面40fとのなす角は略垂直であり、外側面40b及び側面40cと傾斜面40dとのなす角は、約45°である。尚、各々の面は、平面によって形成されており、各々の面と面との角は、面取り加工が施されていてもよい。永久磁石40は、上面40eと底面40fとが、光軸方向において対向する面である。また、それぞれの永久磁石40は、内側面40aと外側面40b側とが異なる磁極となるように着磁されており、4つの永久磁石40の内側面40aが同じ磁極となるように着磁されている。例えば、全ての永久磁石40の内側面40aがN極であり、外側面40b側がS極である。 The external shape of the permanent magnet 40 is formed substantially in parallel with the inner side surface 40 a on the opposite side of the inner side surface 40 a which is the side of the first coil 60 (the side facing the first coil 60) and the inner side surface 40 a An outer surface 40b, a side surface 40c formed substantially perpendicular to the inner surface 40a from both ends of the inner surface 40a, an inclined surface 40d formed to scrape a corner between the side surface 40c and the outer surface 40b, an upper surface 40e and The bottom surface 40f is formed. Therefore, the side surface of the hexagonal prism is formed by the inner side surface 40a, the outer side surface 40b, the two side surfaces 40c, and the two inclined surfaces 40d. The angle between the inner surface 40a, the outer surface 40b, the side surface 40c and the inclined surface 40d and the upper surface 40e and the bottom surface 40f is substantially perpendicular, and the angle between the outer surface 40b and the side surface 40c and the inclined surface 40d is approximately It is 45 degrees. Each surface may be formed by a flat surface, and the corner between each surface and the surface may be chamfered. The permanent magnet 40 is a surface where the top surface 40 e and the bottom surface 40 f are opposed in the optical axis direction. Also, each permanent magnet 40 is magnetized so that the inner side surface 40 a and the outer side surface 40 b side have different magnetic poles, and is magnetized so that the inner side surfaces 40 a of the four permanent magnets 40 have the same magnetic pole ing. For example, the inner side surface 40a of all the permanent magnets 40 is an N pole, and the outer surface 40b side is an S pole.
 本実施の形態においては、上述した永久磁石40が4つ設けられており、各々の永久磁石40は、マグネットホルダ30の4隅に設けられた磁石設置領域32に各々設置されている。具体的には、図7、図8A及び図8Bに示すように、磁石設置領域32は、永久磁石40の外観形状に対応した形状で形成されており、光軸方向に略垂直な天井面32aと、光軸方向に略平行な、奥壁面32b、側面32c、傾斜面32dを有している。したがって、磁石設置領域32は、第1のコイル60が配置される側(内側)と、第2のコイル80が配置される側(撮像側)とが開放されている。また、マグネットホルダ30の内側(第1のコイル60と対向する側)であって、磁石設置領域32の周囲には、略U字形状をなした内側面37が形成されている。尚、図7は、マグネットホルダ30の下面図(撮像側から見た平面図)であり、図8Aは、マグネットホルダ30の磁石設置領域32の斜視図であり、図8Bは、マグネットホルダ30の開口部31の側から見た磁石設置領域32の側面図である。 In the present embodiment, four permanent magnets 40 described above are provided, and each permanent magnet 40 is installed in a magnet installation area 32 provided at four corners of the magnet holder 30. Specifically, as shown in FIGS. 7, 8A and 8B, the magnet installation area 32 is formed in a shape corresponding to the external shape of the permanent magnet 40, and the ceiling surface 32a substantially perpendicular to the optical axis direction The rear wall surface 32b, the side surface 32c, and the inclined surface 32d are substantially parallel to the optical axis direction. Therefore, in the magnet installation area 32, the side (inner side) where the first coil 60 is arranged and the side (imaging side) where the second coil 80 is arranged are opened. Further, an inner side surface 37 having a substantially U shape is formed around the magnet installation area 32 on the inner side of the magnet holder 30 (the side facing the first coil 60). 7 is a bottom view (plan view seen from the imaging side) of the magnet holder 30, FIG. 8A is a perspective view of the magnet installation area 32 of the magnet holder 30, and FIG. 8B is a view of the magnet holder 30. It is a side view of magnet installation field 32 seen from the opening 31 side.
 次に、オートフォーカス機能と手振れ補正機能について説明する。本実施の形態においては、マグネットホルダ30に設置された永久磁石40により第1のコイル60を貫く磁界が発生しており、第1のコイル60に電流を流すことにより、フレミングの左手の法則により、レンズの光軸方向に第1のコイル60を動かす力が生じる。マグネットホルダ30とレンズホルダ50とは、上側板バネ20及び下側板バネ70により連結されている。第1のコイル60はレンズホルダ50に取り付けられており、レンズホルダ50にはレンズが取り付けられている。従って、第1のコイル60に電流を流すことにより、マグネットホルダ30に対し、レンズホルダ50を光軸方向に動かすことができ、レンズのオートフォーカスを行うことができる。 Next, the auto focus function and the shake correction function will be described. In the present embodiment, a magnetic field penetrating the first coil 60 is generated by the permanent magnet 40 installed in the magnet holder 30, and a current is caused to flow through the first coil 60, according to Fleming's left-hand rule. A force is generated to move the first coil 60 in the optical axis direction of the lens. The magnet holder 30 and the lens holder 50 are connected by an upper leaf spring 20 and a lower leaf spring 70. The first coil 60 is attached to the lens holder 50, and the lens is attached to the lens holder 50. Therefore, by supplying current to the first coil 60, the lens holder 50 can be moved in the optical axis direction with respect to the magnet holder 30, and auto focusing of the lens can be performed.
 同様に、マグネットホルダ30に設置された永久磁石40により第2のコイル80を貫く磁界が発生しており、第2のコイル80に電流を流すことにより、永久磁石40と第2のコイル80との間で力が発生する。第2のコイル80を有するコイル基板85は支持体90の上に固定されているため、力は永久磁石40を動かす方向に働く。永久磁石40が取り付けられているマグネットホルダ30の4隅は、上側板バネ20及び弾性を有するサスペンションワイヤ91を介して支持体90と接続されている。従って、第2のコイル80に電流を流すことにより、永久磁石40、マグネットホルダ30及びレンズホルダ50をレンズの光軸とはほぼ垂直方向に動かすことができる。これにより、手振れ補正をすることができる。尚、4つの第2のコイル80は、一方の対角に位置する2つの第2のコイル80が直列に接続されており、他方の対角に位置する残りの2つの第2のコイル80が直列に接続されている。 Similarly, a magnetic field penetrating the second coil 80 is generated by the permanent magnet 40 installed in the magnet holder 30, and the permanent magnet 40 and the second coil 80 are generated by supplying a current to the second coil 80. Force is generated between Since the coil substrate 85 having the second coil 80 is fixed on the support 90, the force acts in the moving direction of the permanent magnet 40. The four corners of the magnet holder 30 to which the permanent magnet 40 is attached are connected to the support 90 via the upper leaf spring 20 and the suspension wire 91 having elasticity. Therefore, by supplying current to the second coil 80, the permanent magnet 40, the magnet holder 30, and the lens holder 50 can be moved in a direction substantially perpendicular to the optical axis of the lens. In this way, camera shake correction can be performed. In the four second coils 80, two second coils 80 located at one diagonal are connected in series, and the remaining two second coils 80 located at the other diagonal are connected. Connected in series.
 ところで、永久磁石40は、厳密に同じ大きさの形状のものを多く作製することは困難であり、大きさにバラツキが生じている。このため、磁石設置領域32の奥壁面32bに永久磁石40の外側面40bの位置合わせをして永久磁石40をマグネットホルダ30の磁石設置領域32に設置すると、永久磁石40の内側面40aと第1のコイル60との間隔に違いが生じる。 By the way, it is difficult to produce many permanent magnets 40 having exactly the same size, and variations in size occur. Therefore, when the permanent magnet 40 is installed in the magnet installation area 32 of the magnet holder 30 by aligning the outer surface 40b of the permanent magnet 40 on the back wall surface 32b of the magnet installation area 32, the inner surface 40a of the permanent magnet 40 and the A difference occurs in the distance between the first coil 60 and the second coil 60.
 具体的には、図9Aに示すように、永久磁石40が所望の形状で形成されている場合には、永久磁石40の内側面40aと第1のコイル60との間隔はLa1である。これに対し、図9Bに示すように、永久磁石40の内側面40aと外側面40bとの厚さが厚い場合には、永久磁石40の内側面40aと第1のコイル60との間隔La2は、図9Aに示す場合の間隔La1よりも狭くなる。この場合には、第1のコイル60を貫く磁界が強まり、第1のコイル60に図9Aに示す場合と同じ電流を流すと、第1のコイル60に働く力は、図9Aに示す場合よりも強くなる。 Specifically, as shown in FIG. 9A, when the permanent magnet 40 is formed in a desired shape, the distance between the inner side surface 40a of the permanent magnet 40 and the first coil 60 is La1. On the other hand, as shown in FIG. 9B, when the thickness between the inner surface 40a and the outer surface 40b of the permanent magnet 40 is large, the distance La2 between the inner surface 40a of the permanent magnet 40 and the first coil 60 is 9A is smaller than the interval La1 in the case shown in FIG. 9A. In this case, when the magnetic field penetrating the first coil 60 is intensified, and the same current as in the case shown in FIG. 9A is applied to the first coil 60, the force acting on the first coil 60 is greater than that shown in FIG. Also becomes stronger.
 また、図9Cに示すように、永久磁石40の内側面40aと外側面40bとの厚さが薄い場合には、永久磁石40の内側面40aと第1のコイル60との間隔La3は、図9Aに示す場合の間隔La1よりも広くなる。この場合には、第1のコイル60を貫く磁界が弱くなり、第1のコイル60に図9Aの場合と同じ電流を流しても、第1のコイル60に働く力は、図9Aに示す場合よりも弱くなる。 Further, as shown in FIG. 9C, when the thickness between the inner surface 40a and the outer surface 40b of the permanent magnet 40 is small, the distance La3 between the inner surface 40a of the permanent magnet 40 and the first coil 60 is as shown in FIG. It becomes wider than the interval La1 in the case shown in 9A. In this case, even if the magnetic field penetrating the first coil 60 becomes weak and the same current as in the case of FIG. 9A flows in the first coil 60, the force acting on the first coil 60 is as shown in FIG. 9A. It becomes weaker than.
 このように、第1のコイル60に働く力が、永久磁石40の大きさのバラツキを反映して、ばらついてしまうと、適正なオートフォーカスを行うことができなくなる。 As described above, when the force acting on the first coil 60 varies due to the variation in the size of the permanent magnet 40, it is not possible to perform proper autofocus.
 また、図10Aに示すように、永久磁石40が所望の形状で形成されている場合には、永久磁石40の底面40fとコイル基板85に備えられた第2のコイル80との間隔はLb1である。これに対し、図10Bに示すように、永久磁石40の上面40eと底面40fとの厚さが厚い場合には、永久磁石40の底面40fと第2のコイル80との間隔Lb2は、図10Aに示す場合の間隔Lb1よりも狭くなる。この場合には、第2のコイル80を貫く磁界が強まり、第2のコイル80に図10Aに示す場合と同じ電流を流すと、永久磁石40に働く力(第2のコイル80に働く力の反力)は、図10Aに示す場合よりも強くなる。 Further, as shown in FIG. 10A, when the permanent magnet 40 is formed in a desired shape, the distance between the bottom surface 40f of the permanent magnet 40 and the second coil 80 provided on the coil substrate 85 is Lb1. is there. On the other hand, as shown in FIG. 10B, when the thickness between the top surface 40e and the bottom surface 40f of the permanent magnet 40 is large, the distance Lb2 between the bottom surface 40f of the permanent magnet 40 and the second coil 80 is as shown in FIG. It becomes narrower than the interval Lb1 in the case shown in FIG. In this case, when the magnetic field penetrating the second coil 80 is intensified, and the same current is applied to the second coil 80 as shown in FIG. 10A, the force acting on the permanent magnet 40 (the force acting on the second coil 80 The reaction force) is stronger than the case shown in FIG. 10A.
 また、図10Cに示すように、永久磁石40の上面40eと底面40fとの厚さが薄い場合には、永久磁石40の底面40fと第2のコイル80との間隔Lb3は、図10Aに示す場合の間隔Lb1よりも広くなる。この場合には、第2のコイル80を貫く磁界が弱まり、第2のコイル80に図10Aの場合と同じ電流を流しても、永久磁石40に働く力は、図10Aに示す場合よりも弱くなる。 Further, as shown in FIG. 10C, when the thickness between the top surface 40e and the bottom surface 40f of the permanent magnet 40 is thin, the distance Lb3 between the bottom surface 40f of the permanent magnet 40 and the second coil 80 is as shown in FIG. It becomes wider than the case interval Lb1. In this case, even though the magnetic field penetrating the second coil 80 is weakened and the same current as in FIG. 10A is applied to the second coil 80, the force acting on the permanent magnet 40 is weaker than that shown in FIG. 10A. Become.
 このように、第2のコイル80に働く力が、永久磁石40の大きさのバラツキを反映して、ばらついてしまうと手振れ補正が適切に行われなくなる場合がある。尚、マグネットホルダ30は金型等を用いて作製されるため、永久磁石40に比べて、高い寸法精度で作製することができる。 As described above, when the force acting on the second coil 80 reflects the variation of the size of the permanent magnet 40, the shake correction may not be properly performed if the variation occurs. In addition, since the magnet holder 30 is manufactured using a metal mold | die etc., compared with the permanent magnet 40, it can manufacture with high dimensional accuracy.
 本実施の形態におけるレンズ駆動装置は、マグネットホルダ30の磁石設置領域32と永久磁石40との間に隙間が形成されるように、永久磁石40の外形寸法よりも大きな形状で磁石設置領域32が形成されている。永久磁石40を設置する際には、永久磁石40が所望の位置となるように位置合わせがなされた後、マグネットホルダ30の磁石設置領域32と永久磁石40との間の隙間は接着剤により固められている。具体的には、図11から図13に示すように、マグネットホルダ30の磁石設置領域32の奥壁面32bと永久磁石40の外側面40b、磁石設置領域32の側面32cと永久磁石40の側面40c、磁石設置領域32の傾斜面32dと永久磁石40の傾斜面40dとの間には隙間41が形成されており、この隙間41に、熱硬化性の接着剤42が設けられて永久磁石40がマグネットホルダ30(磁石設置領域32)に固定されている。また、マグネットホルダ30の磁石設置領域32の天井面(内底面)32aと永久磁石40の上面40eとの間には隙間43が形成されており、この隙間43には紫外線硬化性の接着剤44が設けられて、永久磁石40がマグネットホルダ30に固定されている。隙間41は、光軸方向と垂直な方向における永久磁石40と磁石設置領域32を形成する面(奥壁面32b、傾斜面32d、側面32c)との間の第1の隙間であり、隙間43は、光軸方向における永久磁石40と磁石設置領域32を形成する面である天井面32aとの間の第2の隙間である。尚、図14は、マグネットホルダ30の磁石設置領域32において硬化している熱硬化樹脂による接着剤42及び紫外線硬化樹脂による接着剤44の様子を示すものであり、便宜上、一旦固定された永久磁石40を取り除いた状態を示す。このように、接着剤が隙間41と隙間43との両方に設けられることで、永久磁石40と磁石設置領域32を形成する面との間の接着強度を高めることができる。また、接着剤として、紫外線硬化性の接着剤44と熱硬化性の接着剤42を併用することによって、生産性の向上と接着強度の向上を図ることができる。例えば、紫外線硬化性の接着剤44で、永久磁石40を磁石設置領域32に短時間で仮固定でき、接着強度の高い熱硬化性の接着剤42によって、永久磁石40を磁石設置領域32に強固に固定(本固定)することが可能となる。 In the lens drive device according to the present embodiment, the magnet installation area 32 has a shape larger than the external dimension of the permanent magnet 40 so that a gap is formed between the magnet installation area 32 of the magnet holder 30 and the permanent magnet 40. It is formed. When the permanent magnet 40 is installed, the permanent magnet 40 is positioned so as to be a desired position, and then the gap between the magnet installation area 32 of the magnet holder 30 and the permanent magnet 40 is hardened with an adhesive. It is done. Specifically, as shown in FIGS. 11 to 13, the back wall surface 32 b of the magnet installation area 32 of the magnet holder 30 and the outer surface 40 b of the permanent magnet 40, the side surface 32 c of the magnet installation area 32 and the side surface 40 c of the permanent magnet 40 A gap 41 is formed between the inclined surface 32d of the magnet installation area 32 and the inclined surface 40d of the permanent magnet 40, and the thermosetting adhesive 42 is provided in the gap 41, and the permanent magnet 40 is formed. It is being fixed to the magnet holder 30 (magnet installation area | region 32). Further, a gap 43 is formed between the ceiling surface (inner bottom surface) 32 a of the magnet installation area 32 of the magnet holder 30 and the upper surface 40 e of the permanent magnet 40. The UV curable adhesive 44 is formed in the gap 43. The permanent magnet 40 is fixed to the magnet holder 30. The gap 41 is a first gap between the permanent magnet 40 and the surface (the back wall surface 32b, the inclined surface 32d, and the side surface 32c) forming the magnet installation region 32 in the direction perpendicular to the optical axis direction. This is a second gap between the permanent magnet 40 in the optical axis direction and the ceiling surface 32 a which is a surface forming the magnet installation area 32. FIG. 14 shows the state of the adhesive 42 by the thermosetting resin cured in the magnet installation area 32 of the magnet holder 30 and the adhesive 44 by the ultraviolet curing resin, and for the sake of convenience, the permanent magnet temporarily fixed. It shows a state in which 40 is removed. Thus, adhesive strength between the permanent magnet 40 and the surface forming the magnet installation area 32 can be enhanced by providing the adhesive in both the gap 41 and the gap 43. Further, by using the ultraviolet curable adhesive 44 and the thermosetting adhesive 42 in combination as the adhesive, it is possible to improve the productivity and the adhesive strength. For example, the permanent magnet 40 can be temporarily fixed to the magnet installation area 32 in a short time by the UV curable adhesive 44, and the permanent magnet 40 is firmly fixed to the magnet installation area 32 by the thermosetting adhesive 42 having high adhesive strength. It is possible to fix (final fix).
 〔レンズ駆動装置の製造方法〕
 次に、本実施の形態におけるレンズ駆動装置の製造方法について説明する。本実施の形態におけるレンズ駆動装置の製造方法では、図15に示すように、レンズ駆動装置を製造するための治具として、磁性部材110、第1の治具120、第2の治具130を用いる。図16A及び図16Bに示されるように、磁性部材110は、鉄等の磁性材料により形成されている。磁性部材110は、上面から見た形状が略4角形状(より厳密には、8角形状)の形状で形成されており、上部111が下部112よりも大きく形成されている。下部112には4つの側面113が形成されており、上部111の側面と下部112との間には、上部底面114が形成されている。尚、図16Aは磁性部材110を上面側から見た斜視図であり、図16Bは磁性部材110を底面側から見た斜視図である。
[Method of Manufacturing Lens Drive Device]
Next, a method of manufacturing the lens driving device in the present embodiment will be described. In the lens drive device manufacturing method according to the present embodiment, as shown in FIG. 15, the magnetic member 110, the first jig 120, and the second jig 130 are used as jigs for manufacturing the lens drive device. Use. As shown in FIGS. 16A and 16B, the magnetic member 110 is formed of a magnetic material such as iron. The magnetic member 110 is formed in a substantially rectangular shape (more strictly, an octagonal shape) when viewed from the top, and the upper portion 111 is formed to be larger than the lower portion 112. The lower portion 112 is formed with four side surfaces 113, and an upper bottom surface 114 is formed between the side surfaces of the upper portion 111 and the lower portion 112. 16A is a perspective view of the magnetic member 110 as viewed from the top side, and FIG. 16B is a perspective view of the magnetic member 110 as viewed from the bottom side.
 図17A及び図17Bに示すように、第1の治具120は、樹脂材料等の非磁性体により形成されており、第1の治具120の上部121の上面側には開口部122が形成されている。開口部122の形状は、磁性部材110に対応した形状であって、磁性部材110の下部112側から略全体が入る形状で形成されている。開口部122は、第1の治具120の下部123まで連続して形成されており、開口部122に磁性部材110が装着された際には、磁性部材110の下部112は、第1の治具120の下部123の内側に位置するものとなる。第1の治具120の下部123の外側には、永久磁石40の内側面40aの位置を規定するための4つの平坦な基準側面124が形成されており、上部121と下部123との間には、永久磁石40の底面40fの位置を規定するための基準底面125が形成されている。すなわち、第1の治具120の上部121は、下部123よりも大きく形成されており、下部123よりも外側に突出した部分における上部121の下面が平坦な基準底面125となっている。 As shown in FIGS. 17A and 17B, the first jig 120 is formed of a nonmagnetic material such as a resin material, and an opening 122 is formed on the upper surface side of the upper portion 121 of the first jig 120. It is done. The shape of the opening 122 is a shape corresponding to the magnetic member 110, and is formed in such a shape that substantially the entire portion enters from the lower portion 112 side of the magnetic member 110. The opening 122 is formed continuously to the lower portion 123 of the first jig 120, and when the magnetic member 110 is attached to the opening 122, the lower portion 112 of the magnetic member 110 is a first member. It will be located inside the lower part 123 of the tool 120. Four flat reference side surfaces 124 for defining the position of the inner side surface 40 a of the permanent magnet 40 are formed outside the lower portion 123 of the first jig 120, and between the upper portion 121 and the lower portion 123. The reference bottom surface 125 for defining the position of the bottom surface 40 f of the permanent magnet 40 is formed. That is, the upper portion 121 of the first jig 120 is formed to be larger than the lower portion 123, and the lower surface of the upper portion 121 at a portion protruding outward from the lower portion 123 is a flat reference bottom surface 125.
 第1の治具120の下部123の外形形状は、マグネットホルダ30の内側に収まるように形成されており、下部123の大きさ(基準側面124の形成位置)は、下部123をマグネットホルダ30の内側に入れた際に、4つの基準側面124がマグネットホルダ30の4つの磁石設置領域32の周囲に形成された内側面37に、各々ほぼ面接触するような寸法に精度良く定められている。また、第1の治具120の上部121から突出する下部123の突出量、すなわち基準底面125から下部123の先端面までの寸法は、マグネットホルダ30の上面部分33から永久磁石40の底面40fまでの設計上の基準寸法となるように精度良く設定されている。尚、図17Aは第1の治具120を上面側から見た斜視図であり、図17Bは第1の治具120を底面側から見た斜視図である。尚、本願においては、第1の治具120を非磁性部材と記載する場合がある。 The outer shape of the lower portion 123 of the first jig 120 is formed to fit inside the magnet holder 30, and the size of the lower portion 123 (the forming position of the reference side surface 124) corresponds to the lower portion 123 of the magnet holder 30. The four reference side surfaces 124 are precisely defined so as to be substantially in surface contact with the inner side surfaces 37 formed around the four magnet mounting areas 32 of the magnet holder 30 when inserted inside. The projection amount of the lower portion 123 protruding from the upper portion 121 of the first jig 120, that is, the dimension from the reference bottom surface 125 to the tip end surface of the lower portion 123 is from the upper surface portion 33 of the magnet holder 30 to the bottom surface 40f of the permanent magnet 40 It is set with high precision so as to become the design reference dimension of. 17A is a perspective view of the first jig 120 as viewed from the top side, and FIG. 17B is a perspective view of the first jig 120 as viewed from the bottom side. In the present application, the first jig 120 may be described as a nonmagnetic member.
 第2の治具130は、図15に示されるように、樹脂材料等の非磁性体により形成されており、第2の治具130の上面には、マグネットホルダ30を設置するための複数の凹部131及び132が設けられている。このため、図18に示すように、マグネットホルダ30の上面側である上面部分33には、第2の治具130の複数の凹部131及び132に対応している複数の凸部35及び36が設けられている。また、第2の治具130の中央部には、上下に貫通した貫通部133が形成されており、貫通部133の大きさは、第1の治具120の下部123よりも小さく設定されている。 As shown in FIG. 15, the second jig 130 is formed of a nonmagnetic material such as a resin material, and a plurality of magnet holders 30 are provided on the upper surface of the second jig 130. Recesses 131 and 132 are provided. Therefore, as shown in FIG. 18, on the upper surface portion 33 which is the upper surface side of the magnet holder 30, a plurality of convex portions 35 and 36 corresponding to the plurality of concave portions 131 and 132 of the second jig 130 are provided. It is provided. Further, a penetrating portion 133 penetrating vertically is formed at the central portion of the second jig 130, and the size of the penetrating portion 133 is set smaller than the lower portion 123 of the first jig 120. There is.
 本実施の形態におけるレンズ駆動装置の製造方法は、最初に、図19に示すように、第1の治具120の上面の開口部122に、磁性部材110を下部112側より入れる。 In the method of manufacturing the lens drive device according to the present embodiment, first, as shown in FIG. 19, the magnetic member 110 is inserted into the opening 122 on the upper surface of the first jig 120 from the lower portion 112 side.
 次に、図20A~図20Cに示すように、第1の治具120の基準側面124及び基準底面125に接するように永久磁石40を吸着させる。磁性部材110は磁性材料により形成されているため第1の治具120を介し、永久磁石40を第1の治具120の基準側面124及び基準底面125に磁力により吸着させることができる。具体的には、第1の治具120の基準側面124に永久磁石40の内側面40aを吸着させ、第1の治具120の基準底面125に永久磁石40の底面40fを吸着させる。尚、図20Aは、この状態を上面側から見た斜視図であり、図20Bは底面側から見た斜視図であり、図20Cは側面図である。また、本願においては、基準側面124を第1の基準面と記載し、基準底面125を第2の基準面と記載する場合がある。 Next, as shown in FIGS. 20A to 20C, the permanent magnet 40 is adsorbed so as to be in contact with the reference side surface 124 and the reference bottom surface 125 of the first jig 120. Since the magnetic member 110 is formed of a magnetic material, the permanent magnet 40 can be magnetically attracted to the reference side surface 124 and the reference bottom surface 125 of the first jig 120 via the first jig 120. Specifically, the inner side surface 40 a of the permanent magnet 40 is adsorbed to the reference side surface 124 of the first jig 120, and the bottom surface 40 f of the permanent magnet 40 is adsorbed to the reference bottom surface 125 of the first jig 120. 20A is a perspective view of this state as viewed from the top side, FIG. 20B is a perspective view of the bottom side, and FIG. 20C is a side view. In the present application, the reference side surface 124 may be described as a first reference surface, and the reference bottom surface 125 may be described as a second reference surface.
 本実施の形態においては、磁性部材110を用いて磁力により永久磁石40を第1の治具120の基準側面124及び基準底面125に吸着させる方法が好ましいが、永久磁石40を第1の治具120の基準側面124及び基準底面125に接触させ、この接触状態がある程度維持することができる方法であれば、他の方法であってもよい。また、磁性部材110及び第1の治具120は1つの磁性材料により形成してもよいが、製造上の観点からは、磁性部材110と非磁性部材の第1の治具120とを用いる方法が好ましい。 In the present embodiment, although it is preferable to use a magnetic member 110 to attract the permanent magnet 40 to the reference side surface 124 and the reference bottom surface 125 of the first jig 120 by magnetic force, the permanent magnet 40 is used as the first jig. Other methods may be used as long as they can contact the reference side surface 124 and the reference bottom surface 125 of 120 and maintain the contact state to some extent. Further, the magnetic member 110 and the first jig 120 may be formed of one magnetic material, but from the viewpoint of manufacturing, a method using the magnetic member 110 and the first jig 120 of the nonmagnetic member Is preferred.
 次に、図21A及び図21Bに示すように、第2の治具130の上面に設けられた凹部131及び132に、マグネットホルダ30に設けられた対応する凸部35及び36を入れて設置する。このとき、マグネットホルダ30は、上面部分33が第2の治具130の上面側に向いた姿勢(図4に示す状態と上下が逆の姿勢)とされ、上面部分33は、第2の治具130の上面と接している。尚、図21Aは、この状態を上面側から見た斜視図であり、図21Bは側面図である。この後、マグネットホルダ30の磁石設置領域32の天井面32a、奥壁面32b、側面32c、傾斜面32dに不図示の接着剤を塗布する。具体的には、図14に示されるような状態となるように、マグネットホルダ30の磁石設置領域32の天井面32aには、紫外線硬化性の接着剤を塗布し、マグネットホルダ30の磁石設置領域32の奥壁面32b、側面32c、傾斜面32dには、熱硬化性の接着剤を塗布する。このとき、熱硬化性の接着剤の一部は、天井面32aにも付着する。尚、上記のように2種類の接着剤を用いる方法が好ましいが、マグネットホルダ30の磁石設置領域32の天井面32a、奥壁面32b、側面32c、傾斜面32dに、紫外線硬化性の接着剤だけを塗布してもよい。また、図14に示す磁石設置領域32において、紫外線硬化性の接着剤を塗布する部分と、熱硬化性の接着剤を塗布する部分とを、逆にしても良い。ただし、図14に示す本実施の形態のように、マグネットホルダ30の磁石設置領域32を形成する複数の面(奥壁面32b、側面32c、傾斜面32d、及び天井面32aの一部)に、熱硬化性の接着剤を塗布して、永久磁石40を熱硬化性の接着剤によって磁石設置領域32に固定することで、接着面積が広くなり、接着強度を高めることができる。 Next, as shown in FIGS. 21A and 21B, the corresponding protrusions 35 and 36 provided on the magnet holder 30 are inserted into the recesses 131 and 132 provided on the upper surface of the second jig 130 and installed. . At this time, the magnet holder 30 is in a posture in which the upper surface portion 33 is directed to the upper surface side of the second jig 130 (a posture reverse to the state shown in FIG. 4). It is in contact with the upper surface of the tool 130. FIG. 21A is a perspective view of this state as viewed from the top, and FIG. 21B is a side view. Thereafter, an adhesive (not shown) is applied to the ceiling surface 32a, the back wall surface 32b, the side surface 32c, and the inclined surface 32d of the magnet installation area 32 of the magnet holder 30. Specifically, an ultraviolet curable adhesive is applied to the ceiling surface 32 a of the magnet installation area 32 of the magnet holder 30 so that the state as shown in FIG. 14 is obtained, and the magnet installation area of the magnet holder 30 is A thermosetting adhesive is applied to the back wall surface 32b, the side surface 32c, and the inclined surface 32d. At this time, a part of the thermosetting adhesive also adheres to the ceiling surface 32a. In addition, although the method of using two types of adhesives as mentioned above is preferable, only the ultraviolet curable adhesive is used on the ceiling surface 32a, the back wall surface 32b, the side surface 32c and the inclined surface 32d of the magnet installation area 32 of the magnet holder 30. May be applied. Moreover, in the magnet installation area | region 32 shown in FIG. 14, you may make the part which apply | coats an ultraviolet curable adhesive, and the part which apply | coats a thermosetting adhesive reverse. However, as in the present embodiment shown in FIG. 14, on a plurality of surfaces (back wall surface 32 b, side surface 32 c, inclined surface 32 d, and part of ceiling surface 32 a) forming magnet installation region 32 of magnet holder 30, By applying a thermosetting adhesive and fixing the permanent magnet 40 to the magnet installation area 32 with the thermosetting adhesive, the bonding area can be increased, and the bonding strength can be enhanced.
 尚、マグネットホルダ30の磁石設置領域32に接着剤を塗布する工程と、図20A~図20Cを参照して説明した、第1の治具120の基準側面124及び基準底面125に接するように永久磁石40を吸着させる工程とは、どちらを先に行っても良い。さらには、この2つの工程を並行して行っても構わない。 The step of applying an adhesive to the magnet installation area 32 of the magnet holder 30 and the permanent contact with the reference side surface 124 and the reference bottom surface 125 of the first jig 120 described with reference to FIG. 20A to FIG. Either of the step of adsorbing the magnet 40 may be performed first. Furthermore, the two steps may be performed in parallel.
 次に、図22A及び図22Bに示すように、第2の治具130に第1の治具120を近づけ、接着剤の塗布されているマグネットホルダ30の磁石設置領域32に、第1の治具120に吸着された状態の永久磁石40を入れる。このとき、第1の治具120の4つの基準側面124は、マグネットホルダ30の4つの磁石設置領域32の内側の周囲に位置する内側面37とそれぞれ接するものとなる。これにより、磁石設置領域32の周囲の内側面37と永久磁石40の内側面40aとが面一となる。また、第1の治具120の下部123の平坦な下面(先端面)は、貫通部133の周囲に位置する第2の治具130の上面に当接しており、永久磁石40の底面40fは、磁石設置領域32からわずかな一定寸法だけ突出している。これによって、マグネットホルダ30の上面部分33から永久磁石40の底面40fまでの距離が、精度良く定められる。尚、図22Aは、この状態を上面側から見た斜視図であり、図22Bは側面図である。 Next, as shown in FIGS. 22A and 22B, the first jig 120 is brought close to the second jig 130, and the first fixing step is performed on the magnet installation area 32 of the magnet holder 30 to which the adhesive is applied. The permanent magnet 40 in a state of being adsorbed to the tool 120 is inserted. At this time, the four reference side surfaces 124 of the first jig 120 are in contact with the inner side surface 37 located around the inside of the four magnet installation areas 32 of the magnet holder 30. Thus, the inner side surface 37 around the magnet installation area 32 and the inner side surface 40 a of the permanent magnet 40 become flush with each other. The flat lower surface (tip surface) of the lower portion 123 of the first jig 120 is in contact with the upper surface of the second jig 130 located around the penetrating portion 133, and the bottom surface 40f of the permanent magnet 40 is , Protrudes from the magnet mounting area 32 by a slight fixed dimension. Thus, the distance from the upper surface portion 33 of the magnet holder 30 to the bottom surface 40f of the permanent magnet 40 is accurately determined. FIG. 22A is a perspective view of this state as viewed from the top, and FIG. 22B is a side view.
 図22A及び図22Bに示すように、永久磁石40が吸着した状態の第1の治具120の下部123を、マグネットホルダ30の内側に入れることによって、光軸方向と垂直な方向において永久磁石40と磁石設置領域32を形成する面(奥壁面32b、傾斜面32d、側面32c)とが対向する第1の隙間(隙間41)に、熱硬化性の接着剤が介在されると共に、光軸方向において永久磁石40と磁石設置領域32を形成する面である天井面32aとが対向する第2の隙間(隙間43)に、紫外線硬化性の接着剤が介在するものとなる。この後、第2の治具130の貫通部133を介して、紫外線を斜め下方側から紫外線硬化性の接着剤に照射することにより、マグネットホルダ30の磁石設置領域32の天井面32aに塗布された紫外線硬化性の接着剤を硬化させる。これにより、マグネットホルダ30の磁石設置領域32に永久磁石40を接着剤により固定する。尚、紫外線で硬化させるために、第1の治具120は、紫外線を透過する樹脂材料、例えば、アクリル樹脂等により形成されている。また、第2の治具130も紫外線を透過する樹脂材料によって形成するのが好ましい。 As shown in FIGS. 22A and 22B, the permanent magnet 40 in the direction perpendicular to the optical axis direction is obtained by inserting the lower portion 123 of the first jig 120 in a state in which the permanent magnet 40 is adsorbed inside the magnet holder 30. The thermosetting adhesive is interposed in the first gap (the gap 41) where the surface forming the magnet installation area 32 (the back wall surface 32b, the inclined surface 32d, the side surface 32c) opposes, and the optical axis direction In the second gap (the gap 43) where the permanent magnet 40 and the ceiling surface 32a which is the surface forming the magnet installation area 32 are opposed to each other, an ultraviolet curable adhesive is interposed. Thereafter, ultraviolet light is applied to the ultraviolet curable adhesive from the obliquely lower side through the penetration portion 133 of the second jig 130 to apply it to the ceiling surface 32 a of the magnet installation area 32 of the magnet holder 30. Cure the UV curable adhesive. Thereby, the permanent magnet 40 is fixed to the magnet installation area 32 of the magnet holder 30 with an adhesive. In addition, in order to cure by ultraviolet light, the first jig 120 is formed of a resin material which transmits ultraviolet light, such as acrylic resin. The second jig 130 is also preferably formed of a resin material that transmits ultraviolet light.
 次に、図23に示すように、第1の治具120の開口部122に入れられている磁性部材110を外す。 Next, as shown in FIG. 23, the magnetic member 110 put in the opening 122 of the first jig 120 is removed.
 次に、図24に示すように、マグネットホルダ30から第1の治具120と第2の治具130を取り外す。この後、熱を加えることにより、マグネットホルダ30の磁石設置領域32の奥壁面32b、側面32c、傾斜面32d、及び天井面32aに塗布された熱硬化性の接着剤を硬化させる。これにより、マグネットホルダ30の磁石設置領域32に各々の永久磁石40が所定の領域に設置されているものを作製することができる。尚、第2の治具130からマグネットホルダ30を取り外す前に、磁性部材110が装着された状態の第1の治具120を、磁性部材110と一緒に取り外すことも可能である。 Next, as shown in FIG. 24, the first jig 120 and the second jig 130 are removed from the magnet holder 30. Thereafter, heat is applied to cure the thermosetting adhesive applied to the back wall surface 32b, the side surface 32c, the inclined surface 32d, and the ceiling surface 32a of the magnet installation area 32 of the magnet holder 30. As a result, it is possible to manufacture one in which each permanent magnet 40 is installed in a predetermined area in the magnet installation area 32 of the magnet holder 30. In addition, before removing the magnet holder 30 from the second jig 130, it is also possible to remove the first jig 120 with the magnetic member 110 attached together with the magnetic member 110.
 本実施の形態においては、上記の方法により、マグネットホルダ30に各々の永久磁石40を所望の位置に精度良く固定することができる。従って、図25に示されるように、第1のコイル60の側(第1のコイル60と対向する側)となるマグネットホルダ30の磁石設置領域32の周囲の内側面37と永久磁石40の内側面40aとが面一となる。また、対角に位置する永久磁石40の内側面40a同士は平行であって、光軸方向に沿った方向から見た平面視において、対角に位置する永久磁石40の内側面40aの中心同士を結ぶ直線211a及び211bの交点212から、各々の永久磁石40の内側面40aの中心までの距離B1は等しく形成されている。また、交点212から、各々の永久磁石40の外側面40bまでの距離B2のばらつきよりも、各々の永久磁石40の内側面40aの中心までの距離B1のばらつきの方が小さくなるように形成されている。尚、図25において、距離B1,B2の起点となる補助線211cは、永久磁石40の内側面40aと平行であって、かつ、交点212を通る直線である。また、距離B1及び距離B2を実線で示す寸法線は、直線211aと平行な直線である。従って、距離B2は、交点212と直線211aの延長線上に位置する外側面40bとの間の距離となる。 In the present embodiment, each permanent magnet 40 can be fixed at a desired position with high accuracy to the magnet holder 30 by the above method. Therefore, as shown in FIG. 25, the inside surface 37 and the permanent magnet 40 around the magnet installation area 32 of the magnet holder 30 on the side of the first coil 60 (the side facing the first coil 60). It becomes flush with the side surface 40a. Further, the inner side surfaces 40a of the permanent magnets 40 located diagonally are parallel to each other, and the centers of the inner side surfaces 40a of the permanent magnets 40 located diagonally in a plan view seen from the direction along the optical axis direction. The distance B1 from the intersection point 212 of the straight lines 211a and 211b connecting the two to the center of the inner side surface 40a of each permanent magnet 40 is equal. Also, the variation of the distance B1 to the center of the inner surface 40a of each permanent magnet 40 is smaller than the variation of the distance B2 from the intersection point 212 to the outer surface 40b of each permanent magnet 40. ing. In FIG. 25, the auxiliary line 211 c which is the starting point of the distances B 1 and B 2 is a straight line which is parallel to the inner side surface 40 a of the permanent magnet 40 and passes through the intersection point 212. Moreover, the dimension line which shows the distance B1 and the distance B2 with a continuous line is a straight line parallel to the straight line 211a. Therefore, the distance B2 is the distance between the intersection point 212 and the outer side surface 40b located on the extension of the straight line 211a.
 更に、図26に示すように、永久磁石40の内側面40aとマグネットホルダ30の磁石設置領域32の奥壁面32bとは平行であって、各々の永久磁石40において内側面40aとマグネットホルダ30の磁石設置領域32の奥壁面32bとの距離B3は等しく形成されている。 Furthermore, as shown in FIG. 26, the inner side surface 40 a of the permanent magnet 40 and the back wall surface 32 b of the magnet installation area 32 of the magnet holder 30 are parallel to each other. The distance B3 between the magnet installation area 32 and the back wall surface 32b is equal.
 また、永久磁石40の内側面40aと、この永久磁石40の対角に位置する永久磁石40が入れられるマグネットホルダ30の磁石設置領域32の周囲の内側面37との距離B4は、各々が等しく形成される。尚、図26において、距離B4を示す直線(寸法線)は、永久磁石40の内側面40a及びマグネットホルダ30の内側面37(天井面32aを有する壁部の内側面)と直交する直線である。 Further, the distances B4 between the inner side surface 40a of the permanent magnet 40 and the inner side surface 37 around the magnet installation area 32 of the magnet holder 30 in which the permanent magnet 40 located at the diagonal of the permanent magnet 40 is inserted are equal to each other. It is formed. 26, the straight line (dimension line) indicating the distance B4 is a straight line orthogonal to the inner side surface 40a of the permanent magnet 40 and the inner side surface 37 of the magnet holder 30 (the inner side surface of the wall having the ceiling surface 32a). .
 本実施の形態におけるレンズ駆動装置は、上記の製造方法により作製される。このため、図11から図13に示すように、マグネットホルダ30の磁石設置領域32の奥壁面32bと永久磁石40の外側面40b、磁石設置領域32の側面32cと永久磁石40の側面40c、磁石設置領域32の傾斜面32dと永久磁石40の傾斜面40dとの間に隙間41が形成され、光軸方向と垂直な方向におけるこの隙間41に設けられた熱硬化樹脂による接着剤42により永久磁石40が固定される。また、マグネットホルダ30の磁石設置領域32の天井面32aと永久磁石40の上面40eとの間に光軸方向における隙間43が形成されており、この隙間43に設けられた紫外線硬化樹脂による接着剤44により永久磁石40が固定されている。 The lens drive device in the present embodiment is manufactured by the above manufacturing method. Therefore, as shown in FIGS. 11 to 13, the back wall surface 32 b of the magnet installation area 32 of the magnet holder 30 and the outer surface 40 b of the permanent magnet 40, the side surface 32 c of the magnet installation area 32 and the side surface 40 c of the permanent magnet 40, the magnet A gap 41 is formed between the inclined surface 32 d of the installation area 32 and the inclined surface 40 d of the permanent magnet 40, and a permanent magnet is formed by the adhesive 42 of thermosetting resin provided in the gap 41 in the direction perpendicular to the optical axis direction. 40 is fixed. Further, a gap 43 in the optical axis direction is formed between the ceiling surface 32a of the magnet installation area 32 of the magnet holder 30 and the upper surface 40e of the permanent magnet 40, and an adhesive made of ultraviolet curing resin provided in the gap 43. The permanent magnet 40 is fixed by 44.
 この後、第1のコイル60が取り付けられたレンズホルダ50及びマグネットホルダ30の上面側及び下面側に、上側板バネ20及び下側板バネ70を取り付ける。更に、第2のコイル80を備えたコイル基板85の下面に磁気センサ81を取り付け、コイル基板85を支持体90に固定する。そして、支持体90と上側板バネ20とをサスペンションワイヤ91によって接続する。この後、ケース10を支持体90に被せて固定することにより、本実施の形態におけるレンズ駆動装置を作製することができる。 Thereafter, the upper plate spring 20 and the lower plate spring 70 are attached to the upper surface side and the lower surface side of the lens holder 50 and the magnet holder 30 to which the first coil 60 is attached. Further, the magnetic sensor 81 is attached to the lower surface of the coil substrate 85 provided with the second coil 80, and the coil substrate 85 is fixed to the support 90. Then, the support 90 and the upper leaf spring 20 are connected by the suspension wire 91. After that, the lens driving device in the present embodiment can be manufactured by covering the case 10 on the support body 90 and fixing it.
 上記においては、磁性部材110と第1の治具120とが分離する構造のものについて説明したが、磁性部材110と第1の治具120とが一体化したものを用いてもよい。 In the above, although the thing of the structure which the magnetic member 110 and the 1st jig | tool 120 isolate | separate was demonstrated, you may use what the magnetic member 110 and the 1st jig | tool 120 integrated.
 また、上記においては、マグネットホルダ30の磁石設置領域32に紫外線硬化性の接着剤と熱硬化性の接着剤を、同時に塗布する場合について説明したが、熱硬化性の接着剤の磁石設置領域32への塗布は、紫外線硬化性の接着剤と同時に行うものに限られない。例えば、紫外線硬化性の接着剤を硬化させ、マグネットホルダ30から第1の治具120と第2の治具130を取り外した後に、光軸方向と垂直な方向において永久磁石40と磁石設置領域32を形成する面とが対向する第1の隙間(隙間41)に熱硬化性の接着剤を入れて、その後、熱硬化性の接着剤を硬化させるために加熱するようにしてもよい。 Moreover, although the case where an ultraviolet curing adhesive and a thermosetting adhesive were simultaneously apply | coated to the magnet installation area 32 of the magnet holder 30 was demonstrated in the above, the magnet installation area 32 of a thermosetting adhesive was demonstrated. Coating is not limited to simultaneous application with an ultraviolet-curable adhesive. For example, after curing the ultraviolet curable adhesive and removing the first jig 120 and the second jig 130 from the magnet holder 30, the permanent magnet 40 and the magnet installation area 32 in the direction perpendicular to the optical axis direction. A thermosetting adhesive may be placed in the first gap (the gap 41) facing the surface forming the and then heated to cure the thermosetting adhesive.
 また、上記においては、永久磁石40が吸着した状態の第1の治具120の下部123を、マグネットホルダ30の内側に入れるものについて説明したが、これに限定されない。例えば、マグネットホルダ30の磁石設置領域32に2種類の接着剤を塗布した後に、永久磁石40を磁石設置領域32に入れ、その後に、第1の治具120及び磁性部材110をそれぞれマグネットホルダ30及び第1の治具120に装着することによって、永久磁石40を第1の治具120に吸着させ、その後に、紫外線硬化性の接着剤を硬化させることも可能である。 Moreover, in the above, although the thing which puts the lower part 123 of the 1st jig | tool 120 in the state which the permanent magnet 40 adsorb | sucked to the inner side of the magnet holder 30 was demonstrated, it is not limited to this. For example, after applying two kinds of adhesives to the magnet installation area 32 of the magnet holder 30, the permanent magnet 40 is put into the magnet installation area 32, and thereafter, the first jig 120 and the magnetic member 110 are respectively The permanent magnet 40 can be adsorbed to the first jig 120 by mounting it on the first jig 120, and then the UV curable adhesive can be cured.
 〔カメラモジュール〕
 次に、本実施の形態におけるカメラモジュールについて説明する。本実施の形態におけるカメラモジュールは、図27に示すように、本実施の形態におけるレンズ駆動装置を用いたものであり、レンズホルダ50には、不図示のレンズが組み込まれたレンズバレル210が取り付けられている。即ち、レンズ体となるレンズバレル210は、レンズホルダ50により、接着剤等の手段で保持されている。また、このレンズバレル210のレンズに光が入射する側(被写体側)とは反対側(撮像側)には、撮像素子220が取り付けられている。撮像素子220は、2次元の画像を撮像することのできるものであり、撮像基板221に半田付け等によって取り付けられている。本実施の形態におけるカメラモジュールは、レンズバレル210に入射した光により撮像素子220の撮像面に結像され画像を撮像することができる。
〔The camera module〕
Next, the camera module in the present embodiment will be described. As shown in FIG. 27, the camera module according to the present embodiment uses the lens driving device according to the present embodiment, and a lens barrel 210 in which a lens (not shown) is incorporated is attached to the lens holder 50. It is done. That is, the lens barrel 210 as a lens body is held by the lens holder 50 by means such as an adhesive. Further, an imaging element 220 is attached to the side (imaging side) opposite to the side (subject side) where light is incident on the lens of the lens barrel 210. The imaging element 220 can capture a two-dimensional image, and is attached to the imaging substrate 221 by soldering or the like. The camera module in the present embodiment can form an image by forming an image on the imaging surface of the imaging element 220 by the light incident on the lens barrel 210.
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 As mentioned above, although an embodiment was explained in full detail, it is not limited to a specific embodiment, and various modification and change are possible within the limits indicated in a claim.
 尚、本国際出願は、2017年9月7日に出願した日本国特許出願第2017-171901号に基づく優先権を主張するものであり、その出願の全内容は本国際出願に援用する。 The present international application claims priority based on Japanese Patent Application No. 2017-171901 filed on Sep. 7, 2017, and the entire contents of that application are incorporated in the present international application.
10    ケース
20    上側板バネ
30    マグネットホルダ
31    開口部
32    磁石設置領域
32a   天井面
32b   奥壁面
32c   側面
32d   傾斜面
33    上面部分
34    底面部分
35    凸部
36    凸部
37    内側面
40    永久磁石
40a   内側面
40b   外側面
40c   側面
40d   傾斜面
40e   上面
40f   底面
41    隙間(第1の隙間)
42    接着剤
43    隙間(第2の隙間)
44    接着剤
50    レンズホルダ
60    第1のコイル
70    下側板バネ
80    第2のコイル
81    磁気センサ
90    支持体
91    サスペンションワイヤ
110   磁性部材
120   第1の治具
121   上部
122   開口部
123   下部
124   基準側面(第1の基準面)
125   基準底面(第2の基準面)
130   第2の治具
10 case 20 upper plate spring 30 magnet holder 31 opening 32 magnet installation area 32a ceiling surface 32b back surface 32b back wall surface 32c side surface 32d inclined surface 33 top portion 34 bottom portion 35 convex portion 36 convex portion 37 inner side 40 permanent magnet 40a inner side 40b outside Side surface 40c Side surface 40d Inclination surface 40e Top surface 40f Bottom surface 41 Gap (first gap)
42 adhesive 43 gap (second gap)
44 adhesive 50 lens holder 60 first coil 70 lower flat spring 80 second coil 81 magnetic sensor 90 support 91 suspension wire 110 magnetic member 120 first jig 121 upper portion 122 opening portion 123 lower portion 124 reference side surface 1 reference plane)
125 Reference bottom (second reference surface)
130 Second jig

Claims (18)

  1.  レンズを備えたレンズ体を保持可能なレンズホルダと、
     前記レンズホルダの外周側に配置され、前記レンズホルダを前記レンズの光軸方向に動作させる第1のコイルと、
     前記第1のコイルの外周側に、前記第1のコイルと離間して配置された複数の磁石と、
     前記第1のコイルの外周側に設置され、前記磁石を保持するマグネットホルダと、
     前記レンズホルダ及び前記マグネットホルダを連結する上バネ及び下バネと、
     前記レンズの光軸方向において前記磁石と離間して配置され、前記レンズホルダを前記レンズの光軸方向と交差する方向に動作させる第2のコイルと、
     前記第2のコイルを支持する支持体と、
     前記支持体と前記上バネとを接続するサスペンションワイヤと、
     を有し、
     複数の前記磁石は、前記マグネットホルダの複数の磁石設置領域にそれぞれ設置されるものであって、
     それぞれの前記磁石と前記磁石設置領域を形成する面との間には、前記光軸方向と垂直な方向、及び、前記光軸方向において隙間が設けられていることを特徴とするレンズ駆動装置。
    A lens holder capable of holding a lens body provided with a lens;
    A first coil disposed on an outer peripheral side of the lens holder and operating the lens holder in the optical axis direction of the lens;
    A plurality of magnets spaced apart from the first coil on an outer peripheral side of the first coil;
    A magnet holder disposed on an outer peripheral side of the first coil and holding the magnet;
    Upper and lower springs connecting the lens holder and the magnet holder;
    A second coil disposed apart from the magnet in the optical axis direction of the lens, and operating the lens holder in a direction intersecting the optical axis direction of the lens;
    A support for supporting the second coil;
    A suspension wire connecting the support and the upper spring;
    Have
    The plurality of magnets are respectively installed in a plurality of magnet installation areas of the magnet holder, and
    A lens driving device characterized in that a gap is provided in a direction perpendicular to the optical axis direction and in the optical axis direction between each of the magnets and a surface forming the magnet installation area.
  2.  前記第1のコイルと各々の前記磁石との間の距離は等しいことを特徴とする請求項1に記載のレンズ駆動装置。 The lens driving device according to claim 1, wherein the distance between the first coil and each of the magnets is equal.
  3.  前記マグネットホルダの前記磁石設置領域の周囲の内側面と前記磁石の内側面とは、前記第1のコイルが設置される側において面一であることを特徴とする請求項1または2に記載のレンズ駆動装置。 The inner surface around the magnet installation area of the magnet holder and the inner surface of the magnet are flush with each other on the side where the first coil is installed. Lens drive device.
  4.  前記マグネットホルダは、光軸方向から見た平面視の外形形状が略矩形状をしており、前記マグネットホルダの前記磁石設置領域は、前記マグネットホルダの4隅に設けられており、
     前記磁石設置領域の各々に前記磁石が設置されており、
     対角に設置されている前記磁石の前記第1のコイル側の内側面同士は互いに平行であって、
     光軸方向から見た平面視において、対角に設置されている前記磁石の前記内側面の中心同士を結ぶ直線が交わる交点から各々の前記磁石の前記内側面の前記中心までの距離が、等しいことを特徴とする請求項1から3のいずれかに記載のレンズ駆動装置。
    The magnet holder has a substantially rectangular outer shape in a plan view when viewed from the optical axis direction, and the magnet installation area of the magnet holder is provided at four corners of the magnet holder,
    The magnet is installed in each of the magnet installation areas,
    The inner surfaces on the first coil side of the magnets disposed diagonally are parallel to each other,
    In a plan view as viewed from the optical axis direction, the distances from the intersection point at which the straight lines connecting the centers of the inner surfaces of the magnets disposed diagonally intersect to the centers of the inner surfaces of the magnets are equal. The lens drive device according to any one of claims 1 to 3, characterized in that:
  5.  前記マグネットホルダは、光軸方向から見た平面視の外形形状が略矩形状をしており、前記マグネットホルダの前記磁石設置領域は、前記マグネットホルダの4隅に設けられており、
     前記磁石設置領域の各々に前記磁石が設置されており、
     対角に設置されている前記磁石の前記第1のコイル側の内側面同士は互いに平行であって、
     前記マグネットホルダの前記磁石設置領域には、前記磁石の前記内側面に平行な奥壁面が形成されており、各々の前記磁石の内側面から前記マグネットホルダの前記磁石設置領域の前記奥壁面までの距離が、等しいことを特徴とする請求項1から3のいずれかに記載のレンズ駆動装置。
    The magnet holder has a substantially rectangular outer shape in a plan view when viewed from the optical axis direction, and the magnet installation area of the magnet holder is provided at four corners of the magnet holder,
    The magnet is installed in each of the magnet installation areas,
    The inner surfaces on the first coil side of the magnets disposed diagonally are parallel to each other,
    A back wall surface parallel to the inner side surface of the magnet is formed in the magnet installation region of the magnet holder, and from the inner side surface of each magnet to the back wall surface of the magnet installation region of the magnet holder The lens driving device according to any one of claims 1 to 3, wherein the distances are equal.
  6.  前記マグネットホルダは、光軸方向から見た平面視の外形形状が略矩形状をしており、前記マグネットホルダの前記磁石設置領域は、前記マグネットホルダの4隅に設けられており、
     前記磁石設置領域の各々に前記磁石が設置されており、
     前記磁石の前記第1のコイル側の内側面の反対側には外側面が形成されており、
     対角に設置されている前記磁石の前記第1のコイル側の内側面同士は互いに平行であって、
     光軸方向から見た平面視において、対角に設置されている前記磁石の前記内側面の中心同士を結ぶ直線が交わる交点から各々の前記磁石の内側面までの距離のバラツキよりも、前記交点から各々の前記磁石の外側面までの距離のバラツキの方が、大きいことを特徴とする請求項1から3のいずれかに記載のレンズ駆動装置。
    The magnet holder has a substantially rectangular outer shape in a plan view when viewed from the optical axis direction, and the magnet installation area of the magnet holder is provided at four corners of the magnet holder,
    The magnet is installed in each of the magnet installation areas,
    An outer surface is formed on the opposite side of the inner surface on the first coil side of the magnet,
    The inner surfaces on the first coil side of the magnets disposed diagonally are parallel to each other,
    In a planar view viewed from the optical axis direction, the intersection point is not the variation in the distance from the intersection point where the straight line connecting the centers of the inner side faces of the magnets disposed diagonally intersects to the inner side face of each of the magnets The lens driving device according to any one of claims 1 to 3, wherein variation in the distance from the lens to the outer surface of each of the magnets is larger.
  7.  前記マグネットホルダは、光軸方向から見た平面視の外形形状が略矩形状をしており、前記マグネットホルダの前記磁石設置領域は、前記マグネットホルダの4隅に設けられており、
     前記磁石設置領域の各々に前記磁石が設置されており、
     対角に設置されている前記磁石の前記第1のコイル側の内側面同士は互いに平行であって、
     光軸方向から見た平面視において、前記磁石のうちの一の磁石の前記内側面と、前記一の磁石に対角の他の磁石が設置される前記マグネットホルダの前記磁石設置領域の周囲の内側面との距離は、各々等しいことを特徴とする請求項1から3のいずれかに記載のレンズ駆動装置。
    The magnet holder has a substantially rectangular outer shape in a plan view when viewed from the optical axis direction, and the magnet installation area of the magnet holder is provided at four corners of the magnet holder,
    The magnet is installed in each of the magnet installation areas,
    The inner surfaces on the first coil side of the magnets disposed diagonally are parallel to each other,
    In a plan view viewed from the optical axis direction, the inner side surface of one of the magnets and the periphery of the magnet installation area of the magnet holder in which another magnet of the diagonal is installed on the one magnet The lens drive device according to any one of claims 1 to 3, wherein the distances to the inner surface are equal to one another.
  8.  前記第2のコイルは前記磁石に対応して複数設置されるものであって、
     各々の前記第2のコイルと各々の前記磁石との間の距離は等しいことを特徴とする請求項1から7のいずれかに記載のレンズ駆動装置。
    A plurality of second coils are provided corresponding to the magnets, and
    The lens driving device according to any one of claims 1 to 7, wherein the distance between each of the second coils and each of the magnets is equal.
  9.  前記光軸方向と垂直な方向における前記磁石と前記磁石設置領域を形成する面との間の隙間と、前記光軸方向における前記磁石と前記磁石設置領域を形成する面との間の隙間のうち、少なくともいずれか一方の隙間には、熱硬化性の接着剤が設けられ、他方の隙間には、紫外線硬化性の接着剤が設けられており、前記磁石と前記マグネットホルダとは、熱硬化性の接着剤と紫外線硬化性の接着剤によって固定されていることを特徴とする請求項1から8のいずれかに記載のレンズ駆動装置。 Of the gap between the magnet and the surface forming the magnet installation area in the direction perpendicular to the optical axis direction, and the gap between the magnet and the surface forming the magnet installation area in the optical axis direction A thermosetting adhesive is provided in at least one of the gaps, and an ultraviolet curable adhesive is provided in the other gap, and the magnet and the magnet holder are thermosetting The lens driving device according to any one of claims 1 to 8, wherein the lens driving device is fixed by an adhesive of the present invention and an ultraviolet curing adhesive.
  10.  前記光軸方向と垂直な方向における前記磁石と前記磁石設置領域を形成する面との間の隙間には、熱硬化性の接着剤が設けられており、
     前記光軸方向における前記磁石と前記磁石設置領域を形成する面との間の隙間には、紫外線硬化性の接着剤が設けられていることを特徴とする請求項9に記載のレンズ駆動装置。
    A thermosetting adhesive is provided in a gap between the magnet and a surface forming the magnet installation area in a direction perpendicular to the optical axis direction,
    The lens drive device according to claim 9, wherein an ultraviolet-curable adhesive is provided in a gap between the magnet and a surface forming the magnet installation area in the optical axis direction.
  11.  請求項1から10のいずれかに記載のレンズ駆動装置と、
     前記レンズホルダに保持されるレンズ体と、
     前記レンズ体のレンズを透過した光が入射する撮像素子と、
     を有することを特徴とするカメラモジュール。
    A lens driving device according to any one of claims 1 to 10.
    A lens body held by the lens holder;
    An imaging element on which light transmitted through the lens of the lens body is incident;
    A camera module characterized by having:
  12.  レンズを備えたレンズ体を保持可能なレンズホルダと、前記レンズホルダの外周側に配置され、前記レンズホルダを前記レンズの光軸方向に動作させる第1のコイルと、前記第1のコイルの外周側に、前記第1のコイルと離間して配置された磁石と、前記第1のコイルの外周側に設置され、前記磁石を保持するマグネットホルダと、前記レンズホルダ及び前記マグネットホルダを連結する上バネ及び下バネと、前記レンズの光軸方向において前記磁石と離間して配置され、前記レンズホルダを前記レンズの光軸方向と交差する方向に動作させる第2のコイルと、前記第2のコイルを支持する支持体と、前記支持体と前記上バネとを接続するサスペンションワイヤと、を有し、前記磁石は、前記マグネットホルダの磁石設置領域に設置されるレンズ駆動装置の製造方法において、
     前記磁石と前記磁石設置領域を形成する面との間の隙間に接着剤を設ける工程と、
     治具に形成された第1の基準面に、前記磁石の内側面を接触させた状態で前記接着剤を硬化させる工程と、
     前記磁石に接触している前記治具を外す工程と、
     を有することを特徴とするレンズ駆動装置の製造方法。
    A lens holder capable of holding a lens body provided with a lens, a first coil disposed on the outer peripheral side of the lens holder for operating the lens holder in the optical axis direction of the lens, and an outer periphery of the first coil On the side, a magnet spaced apart from the first coil, and a magnet holder installed on the outer peripheral side of the first coil for holding the magnet, and connecting the lens holder and the magnet holder A spring and a lower spring, and a second coil disposed apart from the magnet in the optical axis direction of the lens and operating the lens holder in a direction intersecting the optical axis direction of the lens, and the second coil And a suspension wire for connecting the support and the upper spring, and the magnet is installed in a magnet installation area of the magnet holder. The method of manufacturing a's drive,
    Providing an adhesive in a gap between the magnet and a surface forming the magnet installation area;
    Curing the adhesive in a state in which the inner surface of the magnet is in contact with a first reference surface formed on a jig;
    Removing the jig in contact with the magnet;
    A method of manufacturing a lens driving device, comprising:
  13.  前記接着剤を設ける工程は、前記マグネットホルダの前記磁石設置領域に前記接着剤を塗布し、前記治具の前記第1の基準面に前記内側面が接触している状態の前記磁石を前記磁石設置領域に入れることによって行うことを特徴とする請求項12に記載のレンズ駆動装置の製造方法。 In the step of providing the adhesive, the magnet is applied to the magnet installation area of the magnet holder, and the magnet with the inner surface in contact with the first reference surface of the jig is the magnet The method of manufacturing a lens drive device according to claim 12, wherein the method is performed by placing the lens in an installation area.
  14.  前記治具は、前記第1の基準面と直交する第2の基準面を有し、
     前記接着剤を硬化させる工程は、前記磁石の前記第2のコイルと対向する底面が前記第2の基準面に接触している状態で行うことを特徴とする請求項12または13に記載のレンズ駆動装置の製造方法。
    The jig has a second reference surface orthogonal to the first reference surface,
    The lens according to claim 12 or 13, wherein the step of curing the adhesive is performed in a state in which a bottom surface of the magnet facing the second coil is in contact with the second reference surface. Method of manufacturing drive device.
  15.  前記接着剤は紫外線硬化性の接着剤であって、
     前記治具の一部は紫外線を透過する材料により形成されており、
     前記接着剤を硬化させる工程においては紫外線を照射することを特徴とする請求項12から14のいずれかに記載のレンズ駆動装置の製造方法。
    The adhesive is a UV curable adhesive,
    A part of the jig is made of a material that transmits ultraviolet light,
    The method for manufacturing a lens driving device according to any one of claims 12 to 14, wherein ultraviolet light is irradiated in the step of curing the adhesive.
  16.  前記治具は、磁性部材と、前記磁性部材の周囲を囲む非磁性部材により形成されていることを特徴とする請求項12から15のいずれかに記載のレンズ駆動装置の製造方法。 The method for manufacturing a lens drive device according to any one of claims 12 to 15, wherein the jig is formed of a magnetic member and a nonmagnetic member surrounding the periphery of the magnetic member.
  17.  前記磁石と前記磁石設置領域を形成する面との間の隙間は、光軸方向と垂直な方向において、前記磁石と前記磁石設置領域を形成する面とが対向する第1の隙間と、光軸方向において、前記磁石と前記磁石設置領域を形成する面とが対向する第2の隙間とを有し、
     前記接着剤を設ける工程では、前記第2の隙間に紫外線硬化性の接着剤を介在させることを特徴とする請求項12から16のいずれかに記載のレンズ駆動装置の製造方法。
    The gap between the magnet and the surface forming the magnet installation area is a first gap where the magnet and the surface forming the magnet installation area face each other in the direction perpendicular to the optical axis direction, and the optical axis And a second gap in which the magnet and the surface forming the magnet installation area face each other in the direction,
    The method for manufacturing a lens drive device according to any one of claims 12 to 16, wherein in the step of providing the adhesive, an ultraviolet curable adhesive is interposed in the second gap.
  18.  前記第1の隙間に熱硬化性の接着剤を介在させる工程を有し、前記治具を外す工程の後に、前記熱硬化性の接着剤を硬化させるために加熱する工程を有することを特徴とする請求項17に記載のレンズ駆動装置の製造方法。 And a step of interposing a thermosetting adhesive in the first gap, and a step of heating to cure the thermosetting adhesive after the step of removing the jig. The manufacturing method of the lens drive device of Claim 17.
PCT/JP2018/028576 2017-09-07 2018-07-31 Lens drive device, camera module, and method for manufacturing lens drive device WO2019049555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-171901 2017-09-07
JP2017171901A JP2021004905A (en) 2017-09-07 2017-09-07 Lens drive device, camera module, and manufacturing method for lens drive device

Publications (1)

Publication Number Publication Date
WO2019049555A1 true WO2019049555A1 (en) 2019-03-14

Family

ID=65633985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028576 WO2019049555A1 (en) 2017-09-07 2018-07-31 Lens drive device, camera module, and method for manufacturing lens drive device

Country Status (2)

Country Link
JP (1) JP2021004905A (en)
WO (1) WO2019049555A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191812A1 (en) * 2019-03-22 2020-10-01 高瞻创新科技有限公司 Micro gimbal stabilizer with high performance and reliability
CN115220279A (en) * 2021-04-20 2022-10-21 日本电产三协株式会社 Optical unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274612A (en) * 2004-03-22 2005-10-06 Olympus Corp Imaging device and manufacturing method therefor
JP2012027086A (en) * 2010-07-20 2012-02-09 Alps Electric Co Ltd Manufacturing method of lens driving device, and lens driving device
JP2016095514A (en) * 2014-11-14 2016-05-26 エルジー イノテック カンパニー リミテッド Lens drive unit
JP2016206376A (en) * 2015-04-21 2016-12-08 新シコー科技株式会社 Lens drive device, camera device and electronic device
JP2017067909A (en) * 2015-09-29 2017-04-06 アルプス電気株式会社 Lens drive device
JP2017148884A (en) * 2016-02-23 2017-08-31 アキム株式会社 Component assembly device, method for assembly of component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274612A (en) * 2004-03-22 2005-10-06 Olympus Corp Imaging device and manufacturing method therefor
JP2012027086A (en) * 2010-07-20 2012-02-09 Alps Electric Co Ltd Manufacturing method of lens driving device, and lens driving device
JP2016095514A (en) * 2014-11-14 2016-05-26 エルジー イノテック カンパニー リミテッド Lens drive unit
JP2016206376A (en) * 2015-04-21 2016-12-08 新シコー科技株式会社 Lens drive device, camera device and electronic device
JP2017067909A (en) * 2015-09-29 2017-04-06 アルプス電気株式会社 Lens drive device
JP2017148884A (en) * 2016-02-23 2017-08-31 アキム株式会社 Component assembly device, method for assembly of component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191812A1 (en) * 2019-03-22 2020-10-01 高瞻创新科技有限公司 Micro gimbal stabilizer with high performance and reliability
CN115220279A (en) * 2021-04-20 2022-10-21 日本电产三协株式会社 Optical unit

Also Published As

Publication number Publication date
JP2021004905A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US11874523B2 (en) Lens moving apparatus
US20210199917A1 (en) Lens driving device, camera module, and portable device
US11009674B2 (en) Driving mechanism
EP3537703B1 (en) Camera module, dual camera module, optical device, and method for manufacturing dual camera module
CN111443455B (en) Lens moving device and camera module
US20210208361A1 (en) Lens driving device, camera module and optical apparatus
CN107664897B (en) Lens driving device and method for manufacturing the same
CN107664896B (en) Lens driving device and method for manufacturing the same
US8970781B2 (en) Camera module having MEMS actuator, connecting method for shutter coil of camera module and camera module manufactured by the same method
TWI579630B (en) Lens driving module
TWI620967B (en) Camera module
JP5912245B2 (en) Optical device manufacturing method
US11256063B2 (en) Optical component driving mechanism
CN106873119B (en) Lens assembly and camera module using thermal change driver and automatic focusing method thereof
KR20180002077A (en) Camera module
WO2018020723A1 (en) Lens-driving apparatus
WO2019049555A1 (en) Lens drive device, camera module, and method for manufacturing lens drive device
CN105911668A (en) Camera module
JP6600563B2 (en) Magnetic drive unit and method of manufacturing magnetic drive unit
JP2013254164A (en) Lens drive device
US10020342B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
KR102402900B1 (en) Camera module manufacturing method and camera module manufacturing kit
CN115348384A (en) Camera device and electronic apparatus
WO2014203611A1 (en) Position adjustment mechanism for imaging elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP