WO2019047868A1 - 一种信号传输方法、相关设备及系统 - Google Patents

一种信号传输方法、相关设备及系统 Download PDF

Info

Publication number
WO2019047868A1
WO2019047868A1 PCT/CN2018/104233 CN2018104233W WO2019047868A1 WO 2019047868 A1 WO2019047868 A1 WO 2019047868A1 CN 2018104233 W CN2018104233 W CN 2018104233W WO 2019047868 A1 WO2019047868 A1 WO 2019047868A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource set
uplink transmission
terminal
index
Prior art date
Application number
PCT/CN2018/104233
Other languages
English (en)
French (fr)
Inventor
贾琼
朱俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880057795.6A priority Critical patent/CN111066256B/zh
Priority to EP18853549.6A priority patent/EP3667930B1/en
Publication of WO2019047868A1 publication Critical patent/WO2019047868A1/zh
Priority to US16/808,891 priority patent/US11218273B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal transmission method, related device, and system.
  • the rapid development of wireless communication technology has led to an increasingly scarce spectrum resource, which has promoted the exploration of unlicensed frequency bands.
  • OCB channel bandwidth occupancy
  • ETSI European Telecommunications Standards Institute
  • the European Telecommunications Standards Institute stipulates that in the 2.4 GHz and 5 GHz bands, the transmission bandwidth of the signal is required to occupy more than 80% of the system bandwidth, while for the 60 GHz band, the transmission bandwidth of the signal is required to occupy the system bandwidth. More than 70%.
  • the maximum power spectral density of the signal is required to be 10 dBm/MHz in the 5150-5350 MHz band.
  • a device that transmits in an unlicensed frequency band needs to first monitor whether the unlicensed spectrum is idle. For example, the busy power state is determined by the size of the received power on the unlicensed spectrum. If the received power is less than a certain threshold, the device is considered as unauthorized. The spectrum is in an idle state, and a signal can be sent on the unlicensed spectrum, otherwise no signal is sent. This mechanism of sending after the first monitoring is called Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • the base station can make full use of the spectrum resources to meet the requirements of ESTI.
  • the above-mentioned restrictions undoubtedly pose a huge challenge to the allocation of uplink resources.
  • the eLAA adopts a resource interlace structure.
  • the uplink resource allocation is based on resource interlace, and the resources allocated to each terminal are at least one resource interlace.
  • the system bandwidth is 20 MHz
  • the system bandwidth of 20 MHz corresponds to 100 RBs (RB0 to RB99)
  • each resource interlace is composed of 10 resource blocks (Resource Block, RB) uniformly distributed over the entire bandwidth.
  • the composition, and the RBs in each resource interlace are separated by 10 RBs. This ensures that the frequency domain span formed by each interlace (the bandwidth span between the two RBs at the beginning and the end) is 91 RBs, which is about 16.38 MHz, which is greater than 80% of the system bandwidth of 20 MHz.
  • the present application provides a signal transmission method, related device and system, which can implement more flexible resource allocation, and the accumulated transmission bandwidth meets the OCB requirement within a certain time.
  • the present application provides a signal transmission method, which is applied to a network device side, and the method may include: the network device may send resource scheduling information and frequency hopping information to the terminal, where the resource scheduling information is used to indicate that the network device allocates And a second resource set of the terminal, where the frequency hopping information is used to indicate a frequency hopping pattern associated with the second resource set. Then, the network device can receive the uplink signal sent by the terminal.
  • the present application provides a signal transmission method, which is applied to a terminal side, and the method may include: the terminal may receive resource scheduling information and frequency hopping information sent by the network device, where the resource scheduling information is used to indicate that the network device allocates And a second resource set of the terminal, where the frequency hopping information is used to indicate a frequency hopping pattern associated with the second resource set. Then, the terminal may perform uplink transmission on the monitored idle frequency domain resource according to the resource scheduling information and the frequency hopping information.
  • the second resource set allocated to the terminal includes at least one resource block, where the at least one resource block is from the first resource set, where the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the second resource set block allocated to the terminal follows the specified frequency hopping pattern.
  • the prescribed frequency hopping pattern may be indicated by the above-mentioned frequency hopping information transmitted by the network device.
  • the uplink transmission occupies multiple time units, wherein the resource structure of the resource block for uplink transmission on each time unit is the same as the resource structure of the second resource set, and the adjacent time The frequency locations of the resource blocks for uplink transmission on the unit are different.
  • the time unit that is, the frequency hopping period, may be an integer multiple of at least one of the following: a symbol, a mini-slot, a slot, or a subframe.
  • the foregoing resource scheduling information may be implemented by:
  • the network device may carry the resource scheduling information in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • a field may be added in the DCI, where the field is used to indicate a second resource set allocated to the terminal.
  • the network device may also carry the resource scheduling information in other response messages for the scheduling request (SR) of the terminal, or the network device may separately encapsulate the resource scheduling information into a message, and return the message to the terminal.
  • SR scheduling request
  • the manner of how to send resource scheduling information is not limited in this application.
  • the resource scheduling information may include: an index of the first resource set to which the second resource set belongs, and an index of the second resource set in the first resource set.
  • the resource scheduling information may further include: a spacing between adjacent resource blocks in the first resource set.
  • the spacing between adjacent resource blocks in the first resource set may be defined by a protocol.
  • the resource scheduling information may include: an index of the first resource set to which the second resource set belongs, an index of the second resource set in the first resource set, and an index of the sub-band in which the second resource set is located.
  • the first resource set may be an integer number of resource blocks uniformly distributed on the sub-band.
  • the second set of resources allocated by the network device to the terminal may be composed of a partial resource block in the at least one first resource set on the same subband.
  • the second set of resources allocated by the network device to the terminal may be composed of partial resource blocks in the at least one first set of resources on different subbands.
  • the resource scheduling information may further include: a spacing between adjacent resource blocks in the first resource set.
  • the spacing between adjacent resource blocks in the first resource set may be defined by a protocol.
  • the resource scheduling information may include: a resource block number of the resource block in the second resource set.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the content of the resource scheduling information may also be implemented in other manners. That is, the network device and the terminal may also appoint other manners to instruct the network device to schedule the second resource set to the terminal.
  • the frequency hopping information may be implemented by:
  • the network device may carry the frequency hopping information and the resource scheduling information in the downlink control information (DCI).
  • DCI downlink control information
  • two fields may be added in the DCI, where a new field is used to indicate a second resource set allocated to the terminal, and another new field is used to indicate the frequency jump pattern.
  • the network device may simultaneously carry the frequency hopping information and the resource scheduling information in other response messages for the scheduling request (SR) of the terminal, or the network device may separately encapsulate the frequency hopping information and the resource scheduling information. Into a message, return the message to the terminal.
  • SR scheduling request
  • the network device may carry the frequency hopping information and the resource scheduling information in different messages, respectively.
  • the manner of how to send resource scheduling information is not limited in this application.
  • the frequency hopping information may include at least one of the following: a hopping offset N hopping_offset associated with the second resource set, a total hopping bandwidth associated with the second resource set, or a hopping period associated with the second resource set.
  • the network device and the terminal may pre-agreed the frequency hopping pattern, or the frequency hopping pattern is pre-defined by the protocol, and both the network device and the terminal follow the provisions of the protocol. Therefore, the network device is not required to transmit frequency hopping information to the terminal.
  • one or more of the frequency hopping information may be defined by a protocol.
  • the protocol may define a hopping offset of 10 RBs, or define a hopping period of 1 microslot, and the like.
  • the communication protocol may be embodied as a frequency hopping pattern, and the network device or the terminal performs frequency hopping according to the frequency hopping pattern.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the frequency hopping of the second resource set allocated by the network device to the terminal may be performed as follows:
  • the frequency hopping of the loop is based on the entire system bandwidth.
  • the system bandwidth is divided into a plurality of first resource sets, and the first resource set is composed of a plurality of RBs uniformly distributed over the entire system bandwidth.
  • the at least one resource block allocated by the network device to the terminal may be composed of an integer number of consecutive or non-contiguous resource blocks in the first resource set.
  • the second resource set allocated by the network device to the terminal may be composed of a part of the resource blocks in the at least one first resource set.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; L, the set L includes an index of the first resource set to which the second resource set belongs; N represents a spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes resources in the second resource set The index of the block in the first set of resources to which the second set of resources belongs.
  • the set of resource blocks used for uplink transmission in the p-th hopping period can be expressed as:
  • An index indicating a starting RB for uplink transmission in the pth (p>1) hopping period Represents the total number of resource blocks that can be used for frequency hopping transmission. And meet:
  • Nhopping_offset is the frequency hopping offset
  • the frequency hopping of the loop is performed based on the subband.
  • the first resource set may be an integer number of resource blocks uniformly distributed on a single sub-band.
  • the second resource set allocated by the network device to the terminal is formed by a part of the resource blocks in the at least one first resource set on the same subband.
  • the second resource set block allocated by the network device to the terminal is composed of a part of the resource blocks in the at least one first resource set on different sub-bands.
  • the structures of the first resource sets on the respective sub-bands may be the same or different.
  • the network device can schedule a portion of the RBs of the one or more first resource sets to the terminal.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; L, the set L includes an index of the first resource set to which the second resource set belongs on the single subband; N represents the spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes a single subband An index of a resource block in the second resource set in the first resource set to which the second resource set belongs.
  • the set of resource blocks used for uplink transmission in the p-th hop period can be expressed as:
  • Nhopping_offset is the frequency hopping offset
  • the first resource set may be an integer number of resource blocks uniformly distributed over the entire system bandwidth, where the resource structure of the integer resource block may be related to the system bandwidth. Associated with the subcarrier spacing.
  • the first resource set may include H resource blocks, H is a positive integer, and H can be corresponding to multiple transmission bandwidths corresponding to the unlicensed frequency band.
  • the total number of resource blocks is divisible.
  • the RB spacing in the first set of resources may be a fixed value.
  • the RB interval refers to an interval between any two adjacent RBs in the first resource set.
  • first resource sets eg, interlaces
  • a system bandwidth or subband
  • the resource structure may mainly refer to at least one of the number of resource blocks in the first resource set (eg, interlace) or the interval between adjacent resource blocks.
  • the terminal may further send a reference signal to the network device when transmitting the uplink signal.
  • the resource carrying the reference signal may be the same as the frequency domain location of the resource block carrying the uplink signal in each time unit occupied by the uplink transmission.
  • the reference signal may be located at a specified location (eg, the first symbol) in each time unit in the time domain.
  • a network device comprising a plurality of functional units for respectively performing the method provided by any one of the first aspect or the possible embodiments of the first aspect.
  • a terminal comprising a plurality of functional units for respectively performing the method provided by any one of the second aspect or the possible embodiments of the second aspect.
  • a network device for performing the signal transmission method described in the first aspect.
  • the network device can include a memory and a processor, a transmitter and a receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a terminal, the receiver is for Receiving, by the other wireless communication device, such as a terminal, a signal for storing an implementation code of a signal transmission method described in the first aspect, the processor for executing program code stored in the memory, ie A signal transmission method as described in any one of the first aspect or the possible embodiments of the first aspect.
  • a terminal for performing the signal transmission method described in the second aspect.
  • the terminal can include a memory and a processor, transmitter and receiver coupled to the memory, wherein: the transmitter is for transmitting a signal to another wireless communication device, such as a network device, the receiver is for Receiving, by the another wireless communication device, such as a network device, a signal for storing an implementation code of a signal transmission method described in the second aspect, the processor for executing program code stored in the memory, That is, the signal transmission method described in any one of the second aspect or the possible embodiments of the second aspect is performed.
  • a communication system comprising: a network device and a terminal, wherein: the network device may be the network device described in the third aspect or the fifth aspect.
  • the terminal may be the terminal described in the fourth aspect or the sixth aspect.
  • a computer readable storage medium having instructions thereon, when executed on a computer, causing the computer to perform the signal transmission method described in the first aspect above.
  • a ninth aspect there is provided another computer readable storage medium having instructions stored thereon that, when run on a computer, cause the computer to perform the signal transmission method described in the second aspect above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal transmission method described in the first aspect above.
  • FIG. 1 is a schematic diagram of an existing resource allocation manner according to the present application.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to the present application.
  • FIG. 3 is a schematic diagram of a hardware architecture of a terminal provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hardware architecture of a base station according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of at least one resource block provided by the present application in accordance with a prescribed frequency hopping pattern undergoing frequency hopping;
  • FIG. 6 is a schematic diagram of resources for performing frequency hopping on a system bandwidth according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of resources for performing frequency hopping on a system bandwidth according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of resources for performing frequency hopping on a system bandwidth according to still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of resources for performing frequency hopping on a subband provided by still another embodiment of the present application.
  • FIG. 10 is a schematic diagram of resources for performing frequency hopping on a subband provided by still another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a wireless communication system, a network device, and a terminal provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of resources for performing frequency hopping on a system bandwidth according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram of resources for performing frequency hopping on a system bandwidth according to still another embodiment of the present application.
  • the wireless communication system 200 can operate in a licensed band or in an unlicensed band. As can be appreciated, the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 200.
  • the wireless communication system 200 includes one or more base stations 201, such as a NodeB, an eNodeB, or a WLAN access point, one or more terminals (Terminal) 203, and a core network 215. among them:
  • Network device 201 can be used to communicate with terminal 203 under the control of a network device controller (e.g., a base station controller) (not shown).
  • a network device controller e.g., a base station controller
  • the network device controller may be part of the core network 230 or may be integrated into the network device 201.
  • Network device 201 can be used to transmit control information or user data to core network 215 via a blackhaul interface (e.g., S1 interface) 213.
  • a blackhaul interface e.g., S1 interface
  • Network device 201 can communicate wirelessly with terminal 203 via one or more antennas. Each network device 201 can provide communication coverage for each respective coverage area 207.
  • the coverage area 207 corresponding to the access point may be divided into a plurality of sectors, wherein one sector corresponds to a part of coverage (not shown).
  • the network device 201 and the network device 201 can also communicate with each other directly or indirectly via a blackhaul link 211.
  • the backhaul link 211 may be a wired communication connection or a wireless communication connection.
  • the network device 201 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (BSS), and an extended service set (Extended Service Set, ESS). ), NodeB, eNodeB, etc.
  • the wireless communication system 200 can include several different types of network devices 201, such as a macro base station, a micro base station, and the like.
  • the network device 201 can apply different wireless technologies, such as a cell radio access technology, or a WLAN radio access technology.
  • Terminals 203 may be distributed throughout wireless communication system 200, either stationary or mobile.
  • the terminal 203 may include: a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • the wireless communication system 200 may be an LTE communication system capable of operating in an unlicensed frequency band, such as LTE-U, or a communication system capable of operating in an unlicensed frequency band of 5G and a future new air interface.
  • the wireless communication system 200 can employ a grant assisted access (LAA) scheme to handle terminal access on unlicensed frequency bands.
  • LAA grant assisted access
  • the primary cell operates in the licensed frequency band to transmit key messages and services that require quality of service guarantees.
  • the secondary cell operates in an unlicensed frequency band to improve data plane performance.
  • the wireless communication system 200 can support multi-carrier (waveform signals of different frequencies) operations.
  • a multi-carrier transmitter can simultaneously transmit modulated signals on multiple carriers.
  • each communication connection 205 can carry multi-carrier signals modulated with different wireless technologies.
  • Each modulated signal can be transmitted on different carriers, and can also carry control information (such as reference signals, control channels, etc.), overhead information, data, and the like.
  • the wireless communication system 200 can also include a WiFi network.
  • the wireless communication system 200 can employ a Listen-Before-Talk (LBT) mechanism.
  • LBT Listen-Before-Talk
  • some terminals 203 may connect to the WiFi access point 209 through the WiFi communication connection 217 to use unlicensed spectrum resources, and some terminals 203 may also connect the network device 201 through the mobile communication connection 205 to use the unlicensed spectrum. Resources. When using an unlicensed band, any device must first listen to see if the band is occupied. If the band is not busy, it can occupy and transmit data.
  • the terminal 300 may include: an input and output module (including an audio input and output module 318, a key input module 316, and a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, and a receiving The 308, the coupler 310, the antenna 314, and the memory 312. These components can be connected by bus or other means, and FIG. 3 is exemplified by a bus connection. among them:
  • Communication interface 301 can be used by terminal 300 to communicate with other communication devices, such as base stations.
  • the base station may be the network device 400 shown in FIG.
  • Communication interface 301 refers to an interface between terminal processor 304 and a transceiver system (consisting of transmitter 306 and receiver 308), such as the X1 interface in LTE.
  • the communication interface 301 may include: a Global System for Mobile Communication (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and One or more of the Long Term Evolution (LTE) (4G) communication interfaces and the like may also be a communication interface of 4.5G, 5G or a future new air interface.
  • the terminal 300 may be configured with a wired communication interface 301, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • the antenna 314 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 310 is configured to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute it to a plurality of receivers 308.
  • Transmitter 306 can be used to transmit signals to signals output by terminal processor 304, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 206 may include an unlicensed spectrum transmitter 3061 and an authorized spectrum transmitter 3063.
  • the unlicensed spectrum transmitter 3061 can support the terminal 300 to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter 3063 can support the terminal 300 to transmit signals on one or more licensed spectrums.
  • Receiver 308 can be used to perform reception processing on the mobile communication signals received by antenna 314.
  • the receiver 308 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 308 can include an unlicensed spectrum receiver 3081 and an authorized spectrum receiver 3083.
  • the unlicensed spectrum receiver 3081 can support the terminal 300 to receive signals modulated on the unlicensed spectrum
  • the authorized spectrum receiver 3083 can support the terminal 300 to receive signals modulated on the licensed spectrum.
  • transmitter 306 and receiver 308 can be viewed as a wireless modem.
  • the number of the transmitter 306 and the receiver 308 may each be one or more.
  • the terminal 300 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the above-described wireless communication signals, the terminal 300 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal 300 may be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement interaction between the terminal 300 and the user/external environment, and can mainly include an audio input and output module 318, a key input module 316, a display 320, and the like.
  • the input and output module may further include: a camera, a touch screen, a sensor, and the like.
  • the input and output modules communicate with the terminal processor 304 through the user interface 302.
  • Memory 312 is coupled to terminal processor 304 for storing various software programs and/or sets of instructions.
  • memory 312 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 312 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 312 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 312 can be used to store an implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 300 side.
  • the signal transmission method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • Terminal processor 304 can be used to read and execute computer readable instructions. Specifically, the terminal processor 304 can be used to invoke a program stored in the memory 312, such as the implementation of the signal transmission method provided by one or more embodiments of the present application on the terminal 300 side, and execute the instructions contained in the program.
  • the terminal 300 can be the terminal 203 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a user agent. , mobile client and more.
  • the terminal 300 shown in FIG. 3 is only one implementation of the present application. In an actual application, the terminal 300 may further include more or fewer components, which are not limited herein.
  • network device 400 can include a communication interface 403, one or more base station processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected by bus or other means, and FIG. 4 is exemplified by a bus connection. among them:
  • Communication interface 403 can be used by network device 400 to communicate with other communication devices, such as terminal devices or other base stations.
  • the terminal device may be the terminal 300 shown in FIG. 3.
  • Communication interface 301 refers to an interface between base station processor 401 and a transceiver system (consisting of transmitter 407 and receiver 409), such as the S1 interface in LTE.
  • the communication interface 403 may include: a Global System for Mobile Communications (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a Long Term Evolution (LTE) (4G) communication interface, etc.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the network device 400 may also be configured with a wired communication interface 403 to support wired communication.
  • the backhaul link between one network device 400 and other network devices 400 may be a wired communication connection.
  • the antenna 413 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 411 can be used to divide the mobile pass signal into multiple channels and distribute it to a plurality of receivers 409.
  • the transmitter 407 can be used to transmit a signal output by the base station processor 401, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 407 can include an unlicensed spectrum transmitter 4071 and an authorized spectrum transmitter 4073.
  • the unlicensed spectrum transmitter 4071 can support the network device 400 to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter 4073 can support the network device 400 to transmit signals on one or more licensed spectrums.
  • the receiver 409 can be used to perform reception processing on the mobile communication signal received by the antenna 413.
  • the receiver 409 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 409 may include an unlicensed spectrum receiver 4091 and an authorized spectrum receiver 4093.
  • the unlicensed spectrum receiver 4091 can support the network device 400 to receive signals modulated on the unlicensed spectrum
  • the licensed spectrum receiver 4093 can support the network device 400 to receive signals modulated on the licensed spectrum.
  • transmitter 407 and receiver 409 can be viewed as a wireless modem.
  • the number of the transmitter 407 and the receiver 409 may each be one or more.
  • Memory 405 is coupled to base station processor 401 for storing various software programs and/or sets of instructions.
  • memory 405 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 405 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 405 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the base station processor 401 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and control the handoff of user equipment in the control area.
  • the base station processor 401 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for Complete call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) )and many more.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer
  • base station processor 401 can be used to read and execute computer readable instructions. Specifically, the base station processor 401 can be used to invoke a program stored in the memory 405, for example, the implementation of the signal transmission method provided by one or more embodiments of the present application on the network device 400 side, and execute the instructions included in the program.
  • the network device 400 can be the network device 201 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, etc.
  • Network device 400 can be implemented as several different types of base stations, such as macro base stations, micro base stations, and the like.
  • Network device 400 can apply different wireless technologies, such as cell radio access technology, or WLAN radio access technology.
  • the network device 400 shown in FIG. 4 is only one implementation of the present application. In actual applications, the network device 400 may further include more or fewer components, which are not limited herein.
  • the present application provides a signal transmission method.
  • the main inventive principles of the present application may include: for uplink transmission of an unlicensed frequency band, the network device allocates at least one resource block to the terminal.
  • the at least one resource block may be from a first set of resources, ie consisting of a partial resource block in the first set of resources.
  • the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the first resource set may be interlace.
  • the at least one resource block is compliant with a prescribed frequency hopping pattern. That is to say, the uplink transmission may occupy multiple time units, wherein the resource structure of the resource block for uplink transmission on each time unit is the same as the resource structure of the second resource set, and the adjacent time unit
  • the frequency blocks of the resource blocks used for uplink transmission are different. In this way, it can be ensured that the accumulated bandwidth occupied by the uplink transmission in a certain time (multiple frequency hopping periods) satisfies the OCB requirement, and more flexible resource allocation can be realized.
  • the at least one resource block allocated by the network device to the terminal may be referred to as a second resource set.
  • FIG. 5 exemplarily shows a resource pattern after the second resource set is subjected to a frequency hopping in accordance with a prescribed frequency hopping pattern.
  • the system bandwidth is 100 RBs
  • one interlace includes 10 RBs
  • the interval between adjacent RBs in the interlace is 10 RBs.
  • the system bandwidth is 106 RBs
  • one interlace includes 10 or 11 RBs
  • the interval between adjacent RBs in the interlace is 10 RBs.
  • the network device allocates three resource blocks (ie, a second resource set) to the terminal 1, and the three resource blocks may be the first three resource blocks in an interlace (ie, the first resource set): RB0, RB10, RB20.
  • the three resource blocks perform a frequency hopping every other frequency hopping period (in this embodiment, one hopping period is one time unit), and the frequency hopping offset is 20 RBs.
  • the resource blocks used for uplink transmission are: RB0, RB10, and RB20.
  • the resource blocks used for uplink transmission are RB20, RB30, and RB40.
  • the second resource set allocated by the network device to the terminal may represent a resource block for uplink transmission according to a specified frequency hopping pattern.
  • the resource blocks used for uplink transmission are distributed over multiple time units, wherein the resource structure of the resource block for uplink transmission on each time unit is the same as the resource structure of the second resource set.
  • the resource block for uplink transmission on the first time unit is the second resource set, and the frequency position of the resource block for uplink transmission on the adjacent time unit may be different from the specified hopping offset.
  • the same resource structure refers to the same number of resource blocks and the same spacing between adjacent resource blocks.
  • the number of resource blocks for uplink transmission on each hop period is three, which is the same as the number of resource blocks (RB0, RB10, RB20) allocated by the network device to the terminal.
  • the spacing between adjacent resource blocks for uplink transmission on each hop period is 10 RBs, which is the same as the spacing (10 RBs) between adjacent resource blocks allocated by the network device to the terminal.
  • the frequency hopping of the second resource set may be a cyclic hopping based on the entire hopping bandwidth (eg, system bandwidth or subband). For example, as shown in FIG. 5, in the 5th hopping period, RB60 hops to RB80, RB70 hops to RB90, and RB80 hops to RB0, where RB80 loops to RB0 because RB90 is the last RB in interlace .
  • the time unit may be a hopping period, and the hopping period may be an integer multiple of at least one of the following: a symbol, a mini-slot, a slot (slot) ) or a subframe.
  • a subband refers to one or more carriers, or a partial subcarrier or a partial resource block on one carrier.
  • a subband may also be a bandwidth part (BWP), which refers to a part of the bandwidth in the system bandwidth.
  • BWP bandwidth part
  • the network device may send resource scheduling information to the terminal, where the resource scheduling information may be used to indicate a second resource set allocated by the network device for the terminal, that is, the at least one resource block.
  • the terminal may perform frequency hopping on the at least one resource block allocated by the network device according to the specified frequency hopping pattern to determine a resource block used for uplink transmission.
  • the definition and description of the resource block used for the uplink transmission can refer to the foregoing content, and details are not described herein again.
  • the terminal can perform uplink transmission on the idle resource block for uplink transmission through the LBT. It can be understood that in the unlicensed frequency band, the network device and the terminal need to perform LBT before transmitting the signal. Finally, the terminal can perform uplink transmission on idle frequency resources.
  • the network device may carry the resource scheduling information in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • a field may be added in the DCI, where the field is used to indicate a second resource set allocated to the terminal, that is, at least one resource block.
  • the network device can carry the resource scheduling information in an uplink grant grant (UL grant) that is returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the network device may also carry the resource scheduling information in other response messages for the scheduling request (SR) of the terminal, or the network device may separately encapsulate the resource scheduling information into a message, and return the message to the terminal.
  • SR scheduling request
  • the manner of how to send resource scheduling information is not limited in this application.
  • the resource scheduling information may include: an index of the first resource set to which the second resource set belongs, and an index of the second resource set in the first resource set.
  • the resource scheduling information may include: an index “0” of interlace0, and RB0 and RB10.
  • RB20 has indices "0", "1, "2"" in interlace0, respectively.
  • the resource scheduling information may further include: a spacing between adjacent resource blocks in the first resource set.
  • the spacing between adjacent resource blocks in the first resource set may be defined by a protocol.
  • the resource scheduling information may include: an index of the first resource set to which the second resource set belongs, an index of the second resource set in the first resource set, and an index of the sub-band in which the second resource set is located.
  • the first resource set may be an integer number of resource blocks uniformly distributed on the sub-band.
  • the second set of resources allocated by the network device to the terminal may be composed of a partial resource block in the at least one first resource set on the same subband.
  • the second set of resources allocated by the network device to the terminal may be composed of partial resource blocks in the at least one first set of resources on different subbands.
  • the resource scheduling information may further include: a spacing between adjacent resource blocks in the first resource set.
  • the spacing between adjacent resource blocks in the first resource set may be defined by a protocol.
  • the resource scheduling information may include: a resource block number of the resource block in the second resource set.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the resource scheduling information may include: RB0, RB10, and RB20 numbers within the entire system bandwidth: "0", "10", "20". The examples are merely illustrative of the application and should not be construed as limiting.
  • the content of the resource scheduling information may also be implemented in other manners. That is, the network device and the terminal may also appoint other manners to indicate the second resource set that the network device schedules to the terminal, that is, the at least one resource block.
  • the specified frequency hopping pattern that the network device allocates to the second resource set of the terminal may be notified to the terminal by the network device.
  • the network device can send the frequency hopping information to the terminal.
  • the network device may carry the frequency hopping information and the resource scheduling information in the downlink control information (DCI).
  • DCI downlink control information
  • two fields may be added in the DCI, where a new field is used to indicate a second resource set allocated to the terminal, and another new field is used to indicate the frequency jump pattern.
  • the network device may carry both the frequency hopping information and the resource scheduling information in an uplink grant grant (UL grant) that is returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the network device may simultaneously carry the frequency hopping information and the resource scheduling information in other response messages for the scheduling request (SR) of the terminal, or the network device may separately encapsulate the frequency hopping information and the resource scheduling information. Into a message, return the message to the terminal.
  • SR scheduling request
  • the network device may carry the frequency hopping information and the resource scheduling information in different messages, respectively.
  • the manner of how to send resource scheduling information is not limited in this application.
  • the frequency hopping information may include at least one of the following: a hopping offset N hopping_offset associated with the second resource set, a total hopping bandwidth associated with the second resource set, or a hopping period associated with the second resource set.
  • the network device and the terminal may pre-agreed the frequency hopping pattern, or the frequency hopping pattern is pre-defined by the protocol, and both the network device and the terminal follow the provisions of the protocol. Therefore, the network device is not required to transmit frequency hopping information to the terminal.
  • one or more of the frequency hopping information may be defined by a protocol.
  • the protocol may define a hopping offset of 10 RBs, or define a hopping period of 1 microslot, and the like.
  • the communication protocol may be embodied as a frequency hopping pattern, and the network device or the terminal performs frequency hopping according to the frequency hopping pattern.
  • the examples are merely illustrative of the application and should not be construed as limiting.
  • the first resource set involved in the present application may also be a plurality of resource blocks that present other resource structures, as long as the resource blocks in the first resource set are evenly distributed in the frequency domain.
  • the technical solutions provided by the present application are equally applicable to scenarios in the future and other channel bandwidth occupancy rates for signals.
  • the system bandwidth is divided into a plurality of first resource sets, and the first resource set is composed of a plurality of RBs uniformly distributed over the entire system bandwidth.
  • the first resource set may adopt an interlace structure such as eLAA.
  • the network device adopts a part of consecutive RBs in the first resource set as the second resource set. That is to say, the second resource set resource block allocated by the network device to the terminal is composed of an integer number of consecutive resource blocks in the first resource set.
  • the network device may send the resource scheduling information and the frequency hopping information to the terminal, where the resource scheduling information is used to indicate the second resource set allocated by the network device to the terminal, and the frequency hopping information is used to indicate the frequency hopping mode associated with the second resource set.
  • the terminal may perform uplink frequency hopping transmission on the corresponding resource according to scheduling of the network device.
  • frequency hopping mode (such as frequency hopping offset N hopping_offset , total frequency hopping bandwidth
  • the frequency hopping period can also be defined by a protocol, and the network device does not need to send frequency hopping information to the terminal. It should be noted that in the unlicensed frequency band, the network device and the terminal need to perform LBT before transmitting the signal.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; l ⁇ L, set L An index including a first resource set to which the second resource set belongs; N represents a spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes the resource block in the second resource set in the second resource The index in the first resource collection to which the collection belongs.
  • the second resource set allocated by the network device to the terminal periodically performs hopping on the frequency domain.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • An index indicating a starting RB for uplink transmission in the pth (p>1) hopping period Represents the total number of resource blocks that can be used for frequency hopping transmission and satisfies:
  • Nhopping_offset is the frequency hopping offset
  • the resource blocks for uplink transmission in a plurality of frequency hopping periods include resource blocks for uplink transmission in each of the plurality of frequency hopping periods.
  • the frequency hopping period may be an integer multiple of at least one of the following: symbol, mini-slot, slot, or subframe.
  • the system bandwidth is 20MHz
  • the subcarrier spacing is 15kHZ
  • the transmission bandwidth is
  • the first resource set is an interlace composed of 10 RBs uniformly distributed in the frequency domain (such as RB#0, RB#10, RB#20, ..., RB#80, RB#90 in FIG. 6).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the resource blocks indicated by the above set are RB#0, RB#10, and RB#20 in FIG. 6, which are resource blocks for uplink transmission in the 0th hopping period.
  • the starting RB for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 20
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the resource blocks (RB#0, RB#10, RB#20) allocated by the network device to the terminal are accumulated in a certain period of time (in the 0th to 4th hopping periods) by frequency hopping.
  • the occupied bandwidth spans 91 RBs.
  • the network device does not need to use the entire interlace as a basic scheduling unit, which significantly reduces the granularity of resource scheduling and improves the flexibility of resource scheduling.
  • FIG. 12 As an example.
  • the system bandwidth is 20 MHz
  • the subcarrier spacing is 15 kHz
  • the transmission bandwidth is 106 RBs.
  • the first resource set is an interlace composed of 10 or 11 RBs uniformly distributed in the frequency domain (as shown in FIG. 6, interlace#0 corresponds to RB#0, RB#10, RB#20, ..., RB#80, RB). #90, RB#100
  • These 11 RBs, and interlace#9 corresponds to 10 RBs of RB#9, RB#19, RB#29, ..., RB#89, RB#99).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the resource blocks indicated by the above set are RB#0, RB#10, and RB#20 in FIG. 6, which are resource blocks for uplink transmission in the 0th hopping period.
  • the starting RB for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 20
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the frequency hopping can be a cyclic hopping based on the total frequency hopping bandwidth (106 RBs).
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the frequency hopping may also be a cyclic hopping based on the first resource set. That is, the RB index of the second resource set for the uplink transmission in each hop period is circulated according to the hopping offset in all the RB indexes corresponding to the first resource set to which the second resource set belongs.
  • the resource blocks (RB#0, RB#10, RB#20) allocated by the network device to the terminal are accumulated in a certain period of time (in the 0th to 4th hopping periods) by frequency hopping.
  • the occupied bandwidth spans 91 RBs.
  • the network device does not need to use the entire interlace as a basic scheduling unit, which significantly reduces the granularity of resource scheduling and improves the flexibility of resource scheduling.
  • the network device uses a part of the non-contiguous RBs in the first resource set as the basic scheduling unit. That is to say, the second resource set allocated by the network device to the terminal is composed of an integer number of non-contiguous resource blocks in the first resource set.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; l ⁇ L, set L An index including a first resource set to which the second resource set belongs; N represents a spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes the resource block in the second resource set in the second resource The index in the first resource collection to which the collection belongs.
  • the second resource set allocated by the network device to the terminal periodically performs hopping on the frequency domain.
  • the set of resource blocks used for uplink transmission in the p-th hopping period can be expressed as:
  • An index indicating a starting RB for uplink transmission in the pth (p>1) hopping period Represents the total number of resource blocks that can be used for frequency hopping transmission and satisfies:
  • Nhopping_offset is the frequency hopping offset
  • the system bandwidth is 20MHz
  • the subcarrier spacing is 15kHZ
  • the transmission bandwidth is
  • the first resource set is an interlace composed of 10 RBs uniformly distributed in the frequency domain (such as RB#0, RB#10, RB#20, ..., RB#80, RB#90 in FIG. 7).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the resource blocks indicated by the above set are RB#0, RB#10, and RB#30 in FIG. 7, which are resource blocks for uplink transmission in the 0th hopping period.
  • the starting RB for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 30
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the system bandwidth is 20 MHz
  • the subcarrier spacing is 15 kHz
  • the transmission bandwidth is 106 RBs.
  • the first resource set is an interlace composed of 10 or 11 RBs uniformly distributed in the frequency domain (for example, interlace#0 corresponds to RB#0, RB#10, RB#20, ..., RB#80, RB#90 , RB#100, 11 RBs
  • interlace#9 corresponds to RB#9, RB#19, RB#29, ..., RB#89, RB#99, 10 RBs).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the resource blocks indicated by the above set are RB#0, RB#10, and RB#30, which are resource blocks for uplink transmission in the 0th frequency hopping period.
  • the starting point for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 30
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the frequency hopping can be a cyclic hopping based on the total frequency hopping bandwidth (106 RBs).
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the frequency hopping may also be a cyclic hopping based on the first resource set. That is, the RB index of the second resource set for the uplink transmission in each hop period is circulated according to the hopping offset in all the RB indexes corresponding to the first resource set to which the second resource set belongs.
  • the resource blocks (RB#0, RB#10, RB#30) allocated by the network device to the terminal are accumulated in a certain period of time (in the 0th to the 3rd hopping period) by frequency hopping.
  • the occupied bandwidth spans 91 RBs.
  • the network device does not need to use the entire interlace as a basic scheduling unit, which significantly reduces the granularity of resource scheduling and improves the flexibility of resource scheduling.
  • the system bandwidth is divided into a plurality of first resource sets, and the first resource set is composed of a plurality of RBs uniformly distributed over the entire system bandwidth.
  • the first resource set may adopt an interlace structure such as eLAA.
  • the network device uses a part of the RBs in the plurality of first resource sets as the basic scheduling unit. That is to say, the second resource set allocated by the network device to the terminal is composed of an integer number of resource blocks in the at least two first resource sets.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; l ⁇ L, set L An index including a first resource set to which the second resource set belongs; N represents a spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes the resource block in the second resource set in the second resource The index in the first resource collection to which the collection belongs.
  • the second resource set allocated by the network device to the terminal periodically performs hopping on the frequency domain.
  • the set of resource blocks used for uplink transmission in the p-th hopping period can be expressed as:
  • An index indicating a starting RB for uplink transmission in the pth (p>1) hopping period Represents the total number of resource blocks that can be used for frequency hopping transmission. And meet:
  • Nhopping_offset is the frequency hopping offset
  • the system bandwidth is 20MHz
  • the subcarrier spacing is 15kHZ
  • the transmission bandwidth is
  • the first resource set is an interlace composed of 10 RBs uniformly distributed in the frequency domain (such as interlace #0 in FIG. 8 (RB#0, RB#10, RB#20, ..., RB#80, RB#90) , interlace#1 (RB#1, RB#11, RB#21, ..., RB#81, RB#91)).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the above two sets represent RB#0, RB#10, RB#20 in interlace#0 in FIG. 7, and RB#1 and RB#11 in interlace#1, respectively.
  • the starting point for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 20
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the system bandwidth is 20 MHz
  • the subcarrier spacing is 15 kHz
  • the transmission bandwidth is 106 RBs.
  • the first resource set is an interlace composed of 10 or 11 RBs uniformly distributed in the frequency domain (for example, interlace#0 corresponds to RB#0, RB#10, RB#20, ..., RB#80, RB#90 , RB#100, 11 RBs
  • interlace#9 corresponds to RB#9, RB#19, RB#29, ..., RB#89, RB#99, 10 RBs).
  • Hypothesis 2 The interval between adjacent two RBs in the first resource set (ie, the RB interval) is 10 RBs.
  • the hopping offset is 20 RBs.
  • the above two sets represent RB#0, RB#10, RB#20 in interlace#0, and RB#1 and RB#11 in interlace#1, respectively.
  • the starting point for uplink transmission in the p(p>1) hopping period for:
  • N hopping_offset 20
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hopping period is:
  • the frequency hopping can be a cyclic hopping based on the total frequency hopping bandwidth (106 RBs).
  • the resource blocks used for uplink transmission in each subsequent hopping period may be deduced by analogy and will not be described again.
  • the frequency hopping may also be a cyclic hopping based on the first resource set. That is, the RB index of the second resource set for the uplink transmission in each hop period is circulated according to the hopping offset in all the RB indexes corresponding to the first resource set to which the second resource set belongs.
  • the resource blocks allocated by the network device to the terminal by frequency hopping (RB#0, RB#10, RB#20 in interlace#0, and RB#1, RB#11 in interlace#0)
  • the network device does not need to use the entire interlace as a basic scheduling unit, which significantly reduces the granularity of resource scheduling and improves the flexibility of resource scheduling.
  • the first resource set is an integer number of resource blocks uniformly distributed over the entire system bandwidth, wherein the resource structure of the integer number of resource blocks may be related to system bandwidth and/or subcarrier spacing.
  • the first resource set may include H resource blocks, H is a positive integer, and H can be used by multiple unlicensed bands.
  • the total number of resource blocks corresponding to the transmission bandwidth is divisible.
  • the system bandwidth that can be supported in the new air interface (NR) communication technology is 20 MHz, 40 MHz, 80 MHz, 160 MHz, etc.
  • the optional subcarrier spacing is 15 kHz, 60 kHz, and the like.
  • the transmission bandwidth corresponding to each of the above various system bandwidth scenarios may be 100 RBs, 200 RBs, 400 RBs, and 800 RBs, respectively.
  • the resource interlace structure of a scenario compatible with the above various system bandwidths may be as follows:
  • Each resource interleave consists of 10 RBs.
  • the bandwidth occupied by one resource interleave is 91 RBs, 181 RBs, 361 RBs, and 721 RBs, respectively.
  • Each resource interleave consists of 25 RBs.
  • the bandwidth occupied by one resource interleave is 97 RBs, 193 RBs, 385 RBs, and 769 RBs, respectively.
  • the number of resource blocks included in the (1) and (2) resource interleaving can be divisible by the total number of resource blocks corresponding to the various system bandwidths described above.
  • the transmission bandwidth corresponding to the above various system bandwidth scenarios may be 25 RBs, 50 RBs, 100 RBs, and 200 RBs, respectively.
  • a resource interlace structure compatible with scenarios of various system bandwidths described above may be such that each resource interleave consists of 25 RBs.
  • the bandwidth occupied by one resource interlace is 25 RBs, 49 RBs, 97 RBs, and 193 RBs, respectively.
  • the second set of resources allocated to the terminal may be composed of partial RBs of multiple resource interlaces of different structures.
  • the system bandwidth that can be supported in the new air interface (NR) communication technology is 500 MHz, 1 GHz, 2 GHz, etc.
  • the optional subcarrier spacing is 480 kHz, 960 kHz (system bandwidth only 2 GHz support).
  • each resource interleave is composed of 6 RBs.
  • the bandwidth occupied by one resource interleave is 66 RBs, 131 RBs, and 261 RBs, respectively.
  • each resource interleave consists of 6 RBs.
  • a resource interleaving consumes 131 RBs.
  • a scheme of 6 RB/interlace (that is, each resource interlace includes 6 RBs) can be fixed.
  • the RB spacing in the first set of resources may be a fixed value.
  • the RB interval refers to an interval between any two adjacent RBs in the first resource set.
  • the interleave RB interval N of each resource is 10.
  • the terminal can also perform uplink transmission, and does not need to wait for the network device to perform resource scheduling again, thereby implementing flexible bandwidth transmission.
  • first resource sets eg, interlaces
  • a system bandwidth or subband
  • the resource structure may mainly refer to at least one of the number of resource blocks in the first resource set (eg, interlace) or the interval between adjacent resource blocks.
  • the first resource set may also be an integer number of resource blocks uniformly distributed on a single sub-band.
  • the following is illustrated by the embodiment of Figures 9-10.
  • the system bandwidth is divided into a plurality of sub-bands.
  • the resource allocations on each sub-band can be independent or the same.
  • the network device uses a part of the RBs in the first resource set on the same subband as the basic scheduling unit. That is to say, the second resource set allocated by the network device to the terminal is composed of partial resource blocks in the at least one first resource set on the same subband.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l + i ⁇ N, where RB START represents an index of the starting resource block allocated to the terminal; l ⁇ L, set L An index including a first resource set to which the second resource set belongs on a single subband; N represents a spacing between two adjacent RBs in the first resource set; i ⁇ M, the set M includes a single subband allocated to the terminal The index of the resource block in the first resource set to which the second resource set belongs.
  • the network device allocates a second resource set on the single subband to the terminal to periodically hop on the subband.
  • the set of resource blocks used for uplink transmission in the p-th hopping period can be expressed as:
  • Nhopping_offset is the frequency hopping offset
  • the system bandwidth is 40MHz and the subcarrier spacing is 15kHZ.
  • Transmission bandwidth is Consists of two 20MHz subbands, the bandwidth of each subband
  • the first resource set on each subband is an interlace composed of 10 RBs uniformly distributed in the frequency domain (interlace#0 on subband #0 in FIG. 9 is RB#0, RB#10, RB#20). ,..., RB#80, RB#90, interlace#0 on subband #1 is RB#100, RB#110, RB#120, ..., RB#180, RB#190.
  • the interval between adjacent two RBs in the first resource set on each subband (ie, the RB interval) is 10 RBs.
  • the hopping offset on subband #0 is 20 RBs, and the hopping offset on subband #1 is 30 RBs.
  • the resource blocks indicated by the above set are RB#0 and RB#10 in FIG. 9, which are resource blocks for uplink transmission in the 0th hop period of the terminal 1 on the subband #0.
  • the start of uplink transmission in the p(p>1) hopping period for:
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the set of resource blocks used for uplink transmission in the p-th hop period is:
  • the resource blocks used by the terminal 1 for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the resource blocks indicated by the above set are RB#100, RB#120, and RB#140 in FIG. 9, which are resource blocks for uplink transmission in the 0th hop period of the terminal 2 on the subband #1.
  • the starting RBs used for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the resource blocks used by the terminal 2 for uplink transmission in subsequent hopping periods may be deduced by analogy and will not be described again.
  • the system bandwidth is divided into a plurality of sub-bands.
  • the resource allocations on each sub-band can be independent or the same.
  • the network device uses a part of the RBs in the first resource set on different subbands as the basic scheduling unit. That is to say, the second resource set allocated by the network device to the terminal is composed of partial resource blocks in the at least one first resource set on different sub-bands.
  • the second resource set allocated by the network device to the terminal may be represented as: RB START + l+i ⁇ N, where RB START indicates that the network device is allocated to the terminal on a single subband.
  • An index of the starting resource block l ⁇ L, the set L includes an index of the first resource set to which the second resource set belongs on the single subband; N represents the spacing between two adjacent RBs in the first resource set; M, the set M includes an index of the resource block allocated to the terminal on the single subband in the first resource set to which the second resource set belongs.
  • the second resource set allocated by the network device to the terminal on a single subband periodically hops on the subband.
  • the set of resource blocks used for uplink transmission in the p-th hopping period can be expressed as:
  • Nhopping_offset is the hopping offset
  • the system bandwidth is 40MHz and the subcarrier spacing is 15kHZ.
  • Transmission bandwidth is Consists of two 20MHz subbands, the bandwidth of each subband
  • the first resource set on each subband is an interlace composed of 10 RBs uniformly distributed in the frequency domain (interlace#0 on subband #0 in FIG. 10 is RB#0, RB#10, RB#20). ,..., RB#80, RB#90, interlace#0 on subband #1 is RB#100, RB#110, RB#120, ..., RB#180, RB#190.
  • the interval between adjacent two RBs in the first resource set on each subband (ie, the RB interval) is 10 RBs.
  • the hopping offset on subband #0 is 20 RBs, and the hopping offset on subband #1 is 30 RBs.
  • the second resource set allocated by the network device to the terminal 1 is: ⁇ 0, 10 ⁇ & ⁇ 100, 120, 140 ⁇ .
  • the resource block set for uplink transmission in the first hop period is: ⁇ 20, 30 ⁇ & ⁇ 130, 150, 170 ⁇ .
  • the resource block set for uplink transmission in the second hop period is: ⁇ 40, 50 ⁇ & ⁇ 160, 180, 100 ⁇ .
  • the network device allocates resource blocks to the respective terminals on different subbands (eg, RB#0, RB#10, and subband# in interlace#0 on subband #0).
  • RB#100, RB#120, RB#140 in interlace#0 on 1 accumulated bandwidth occupied by 191 RBs in a certain period of time (0 to 3 hopping periods), 191 RBs
  • the granularity of resource scheduling is significantly reduced, and the flexibility of resource scheduling is improved.
  • the structures of the first resource sets on the respective sub-bands may be the same or different.
  • the network device can schedule a portion of the RBs of the one or more first resource sets to the terminal.
  • the example of the system transmission bandwidth is only for convenience of description and should not be limited.
  • the loop may be performed within a range of the total transmission bandwidth of the system, or may be performed within a range of the corresponding transmission bandwidth of the subband, or may be circulated within the first resource set of the second resource set.
  • the terminal may further send a reference signal to the network device when transmitting the uplink signal.
  • the resource carrying the reference signal may be the same as the frequency domain location of the resource block carrying the uplink signal in each time unit occupied by the uplink transmission.
  • the reference signal may be located at a specified location (e.g., the first symbol) in each upstream transmission interval in the time domain.
  • FIG. 11 is a wireless communication system 10 provided by an embodiment of the present application, and a network device 500 and a terminal 400 in the wireless communication system 10.
  • the network device 500 may be the foregoing network device in the foregoing method embodiment, and may be configured to receive a scheduling request of the terminal, and allocate an uplink signal transmission resource to the terminal on the unlicensed frequency band.
  • the terminal 400 may be the foregoing terminal in the foregoing method embodiment, and may perform uplink transmission according to the scheduling indication of the network device 500 in the idle bandwidth monitored by the LBT.
  • the network device 500 may include: a receiving unit 501 and a transmitting unit 503. among them:
  • the sending unit 503 is configured to send the resource scheduling information and the frequency hopping information to the terminal 400, where the resource scheduling information is used to indicate the second resource set allocated by the network device to the terminal 400, and the frequency hopping information is used to indicate the second resource set association.
  • the second resource set may be composed of a partial resource block in the first resource set, where the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the receiving unit 501 is configured to receive an uplink signal sent by the terminal 400, where the uplink signal is carried on an idle resource block for uplink transmission monitored by the terminal 400.
  • the resource blocks for uplink transmission are distributed over a plurality of time units, wherein the structure of the resource blocks for uplink transmission on each time unit is the same as the structure of the second resource set, and is used on adjacent time units.
  • the frequency positions of the resource blocks transmitted in the uplink differ by a first offset.
  • the terminal 400 may include a transmitting unit 401 and a receiving unit 403. among them:
  • the receiving unit 403 is configured to receive the resource scheduling information sent by the network device 500, where the resource scheduling information is used to indicate the second resource set allocated by the network device 500 to the terminal.
  • the second resource set may be composed of a partial resource block in the first resource set, where the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the sending unit 401 is configured to perform uplink transmission on the monitored resource block for uplink transmission according to the resource scheduling information.
  • the resource blocks for uplink transmission may be distributed over a plurality of time units, wherein the structure of the resource blocks for uplink transmission on each time unit is the same as the structure of the second resource set, on the adjacent time units
  • the frequency positions of the resource blocks used for uplink transmission differ by a first offset.
  • the network device 500 is not required to send the frequency hopping information to the terminal 400.
  • the frequency hopping pattern that the network device 500 allocates to the second resource set of the terminal 400 may also be defined by a protocol. That is to say, one or more of the frequency hopping information can be defined by a protocol.
  • the protocol may define a hopping offset of 10 RBs, or define a hopping period of 1 microslot, and the like. The examples are merely illustrative of the application and should not be construed as limiting.
  • the resource block allocated to the terminal 400 by the network device 500 can be frequency hopped as follows.
  • the frequency hopping of the loop is based on the entire system bandwidth.
  • the system bandwidth is divided into a plurality of first resource sets, and the first resource set is composed of a plurality of RBs uniformly distributed over the entire system bandwidth.
  • the second set of resources allocated by the network device 500 to the terminal 400 may be composed of an integer number of consecutive or non-contiguous resource blocks in the first set of resources.
  • the second resource set allocated by the network device 500 to the terminal 400 may be composed of a partial resource block in the at least one first resource set.
  • the frequency hopping of the loop is performed based on the subband.
  • the first resource set may be an integer number of resource blocks uniformly distributed on a single sub-band.
  • the second resource set allocated by the network device 500 to the terminal 400 is composed of a partial resource block in the at least one first resource set on the same subband.
  • the second resource set allocated by the network device 500 to the terminal 400 is composed of a partial resource block in the at least one first resource set on different subbands.
  • the embodiment of the present invention further provides a wireless communication system, which may be the wireless communication system 200 shown in FIG. 2 or the wireless communication system 10 shown in FIG. 11, and may include: a network device.
  • the terminal may be the terminal in the foregoing embodiment, and the network device may be the network device in the foregoing embodiment.
  • the terminal may be the terminal 300 shown in FIG. 3, and the network device may be the network device 400 shown in FIG. 4.
  • the terminal may also be the terminal 400 shown in FIG. 11, and the network device shown may also be the network device 500 shown in FIG.
  • the network and the terminal reference may be made to the foregoing embodiments, and details are not described herein again.
  • the terminal processor 304 is configured to invoke an instruction stored in the memory 312 to control the transmitter 306 to transmit in an unlicensed band and/or a licensed band and control the receiver 308 in an unlicensed band. And/or licensed bands for reception.
  • Transmitter 306 is used to support the terminal in performing the process of transmitting data and/or signaling.
  • Receiver 308 is used to support the process by which the terminal performs reception of data and/or signaling.
  • the memory 312 is used to store program codes and data of the terminal.
  • the receiver 308 is configured to receive resource scheduling information sent by the network device, where the resource scheduling information is used to indicate a second resource set allocated by the network device to the terminal.
  • the second resource set may include at least one resource block, where the at least one resource block is from the first resource set, where the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the transmitter 306 is configured to perform uplink transmission on the monitored idle frequency domain resource according to the resource scheduling information.
  • the uplink transmission occupies a plurality of time units, wherein a resource structure of the resource block for uplink transmission on each time unit is the same as a resource structure of the second resource set, and resources for uplink transmission on the adjacent time unit
  • the frequency positions of the blocks are different. In this way, it can be ensured that the accumulated bandwidth occupied by the uplink transmission in a certain time (multiple frequency hopping periods) satisfies the OCB requirement, and more flexible resource allocation can be realized.
  • the network device processor 405 is configured to control the transmitter 407 to transmit in the unlicensed band and/or the licensed band and control the receiver 409 to receive in the unlicensed band and/or the licensed band.
  • Transmitter 407 is used to support the network device to perform the process of transmitting data and/or signaling.
  • Receiver 409 is for supporting a network device to perform a process of receiving data and/or signaling.
  • the memory 405 is used to store program codes and data of the network device.
  • the transmitter 407 is configured to send the resource scheduling information and the frequency hopping information to the terminal device, where the resource scheduling information is used to indicate a second resource set allocated by the network device to the terminal, and the frequency hopping information can be used to indicate the second resource.
  • the second resource set includes at least one resource block, where the at least one resource block is from the first resource set, and the first resource set is an integer number of resource blocks uniformly distributed in the frequency domain.
  • the receiver 409 can be configured to receive an uplink signal sent by the terminal device.
  • the uplink signal is carried on the idle frequency domain resource for uplink transmission monitored by the terminal.
  • the uplink signal occupies a plurality of time units, wherein a resource structure of the resource block for uplink transmission on each time unit is the same as a resource structure of the second resource set, and resources for uplink transmission on the adjacent time unit The frequency positions of the blocks are different.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、相关设备及系统。该方法可包括:终端接收网络设备发送的资源调度信息,资源调度信息用于指示网络设备分配给终端的第二资源集合;其中,第二资源集合包括至少一个资源块,该至少一个资源块来自第一资源集合,第一资源集合为在频域上均匀分布的整数个资源块;终端根据资源调度信息,在监听到的空闲的频域资源上进行上行传输,上行传输占用多个时间单元;其中,每一个时间单元上的用于上行传输的资源块的资源结构与第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。采用本申请,可实现在一定时间内的累积传输带宽满足OCB要求,且实现更灵活的资源分配。

Description

一种信号传输方法、相关设备及系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信号传输方法、相关设备及系统。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。然而对于非授权频段的使用,有诸多法规限制。一方面,对非授权频段的信号的信道带宽占用率(Occupancy Channel Bandwidth,OCB)有所限制。欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)规定,在2.4GHz以及5GHz频段,要求信号的传输带宽要占用系统带宽的80%以上,而对于60GHz频段,则要求信号的传输带宽要占用系统带宽的70%以上。而对于传输功率,在5150-5350MHz频段,要求信号的最大功率谱密度为10dBm/MHz。另一方面,在非授权频段进行传输的设备需要先监听非授权频谱是否空闲,比如通过非授权频谱上的接收功率的大小来判断其忙闲状态,如果接收功率小于一定门限,则认为非授权频谱处于空闲状态,可以在所述非授权频谱上发送信号,否则不发送信号。这种先监听后发送的机制被称作先听后说(Listen Before Talk,简称LBT)。
对于下行传输而言,基站可以充分利用频谱资源满足ESTI的规定。但是,对于上行传输,上述规定的限制无疑给上行资源的分配带来巨大挑战。
在LTE Release13版本中,在上行传输时引入了增强型授权辅助接入(Enhanced Licensed Assisted Access,eLAA)技术。为了能够充分利用非授权频段,又能满足ESTI的OCB规定,eLAA采用资源交错(interlace)结构。上行资源分配以资源交错(interlace)为基本单位,分配给每个终端的资源至少为一个资源交错(interlace)。如图1所示,假设系统带宽是20MHz,20MHz的系统带宽对应100个RB(RB0~RB99),每个资源交错(interlace)由均匀分布在整个带宽上的10个资源块(Resource Block,RB)构成,而且每个资源交错(interlace)中的RB两两间隔10个RB。这样可以保证每个interlace形成的频域跨度(位于首尾的两个RB之间的带宽跨度)是91个RB,约16.38MHz,大于系统带宽20MHz的80%。
但是,现有的资源交错(interlace)的结构固定,不够灵活,难以适应未来灵活带宽的场景。
发明内容
本申请提供一种信号传输方法、相关设备及系统,可实现更灵活的资源分配,且在一定时间内累计传输带宽满足OCB要求。
第一方面,本申请提供了一种信号传输方法,应用于网络设备侧,该方法可包括:网络设备可以向终端发送资源调度信息和跳频信息,该资源调度信息用于指示网络设备分配给终端的第二资源集合,该跳频信息用于指示第二资源集合关联的频率跳变图样。然后,网络设备可以接收终端发送的上行信号。
第二方面,本申请提供了一种信号传输方法,应用于终端侧,该方法可包括:终端可 以接收网络设备发送的资源调度信息和跳频信息,该资源调度信息用于指示网络设备分配给终端的第二资源集合,该跳频信息用于指示第二资源集合关联的频率跳变图样。然后,终端可以根据资源调度信息和跳频信息在监听到的空闲的频域资源上进行上行传输。
具体的,分配给终端的第二资源集合包括至少一个资源块,该至少一个资源块来自第一资源集合,其中,第一资源集合为在频域上均匀分布的整数个资源块。
具体的,分配给终端的第二资源集合块依从规定的频率跳变图样。这里,该规定的频率跳变图样可由网络设备发送的上述跳频信息指示。
在本申请提供的频率跳变图样中,上行传输占用多个时间单元,其中,每一个时间单元上的用于上行传输的资源块的资源结构与第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。这里,时间单元即跳频周期,可以是以下至少一项的整数倍:符号(symbol)、微时隙(mini-slot)、时隙(slot)或子帧(subframe)。
实施第一方面和第二方面描述的方法,可以保证上行传输在一定时间(多个跳频周期)内累积占用的带宽满足OCB要求,而且可实现更灵活的资源分配。
结合第一方面或第二方面,在一些可选实施例中,上述资源调度信息可以通过下述方式实现:
(1)资源调度信息的信令实现
可选的,网络设备可以将资源调度信息携带在下行控制信息(Downlink Control Information,DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的第二资源集合。
可选的,网络设备还可以在针对终端的调度请求(SR)的其他应答消息中携带资源调度信息,或者网络设备还可以将资源调度信息独立封装成一个消息,返回该消息给终端。关于如何发送资源调度信息的方式(即信令实现),本申请不作限制。
(2)资源调度信息的内容实现。
第一种实现方式,资源调度信息可包括:第二资源集合所属的第一资源集合的索引、第二资源集合在第一资源集合中的索引。
可选的,资源调度信息还可包括:第一资源集合中相邻资源块之间的间距。可选的,第一资源集合中相邻资源块之间的间距可以由协议定义。
第二种实现方式,资源调度信息可包括:第二资源集合所属的第一资源集合的索引、第二资源集合在第一资源集合中的索引、第二资源集合所处的子带的索引。
在第二种实现方式中,第一资源集合可以为均匀分布在子带上的整数个资源块。网络设备分配给终端的第二资源集合可以由同一个子带上的至少一个第一资源集合中的部分资源块构成。网络设备分配给终端的第二资源集合可以由不同子带上的至少一个第一资源集合中的部分资源块构成。
可选的,资源调度信息还可包括:第一资源集合中相邻资源块之间的间距。可选的,第一资源集合中相邻资源块之间的间距可以由协议定义。
第三种实现方式,资源调度信息可包括:第二资源集合中的资源块的资源块编号。
具体实现中,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。
不限于上述几种实现方式,资源调度信息的内容还可以通过其他方式实现。即网络设备和终端之间还可以约定其他的方式来指示网络设备调度给终端的第二资源集合。
结合第一方面或第二方面,在一些可选实施例中,上述跳频信息可以通过下述方式实现:
(1)跳频信息的信令3实现
可选的,网络设备可以将跳频信息和资源调度信息都携带在下行控制信息(DCI)中。可选的,可以在DCI中新增两个字段,其中,一个新增字段用于指示分配给终端的第二资源集合,另一个新增字段用于指示上述频率跳变图样。
可选的,网络设备可以在针对终端的调度请求(scheduling request,SR)的其他应答消息中同时携带跳频信息和资源调度信息,或者网络设备还可以将跳频信息和资源调度信息一起独立封装成一个消息,返回该消息给终端。
可选的,网络设备可以将跳频信息和资源调度信息分别携带在不同的消息中。关于如何发送资源调度信息的方式(即信令实现),本申请不作限制。
(2)跳频信息的内容实现。
具体的,该跳频信息可包括以下至少一项:第二资源集合关联的跳频偏移量N hopping_offset、第二资源集合关联的跳频总带宽或第二资源集合关联的跳频周期。
在本申请的另一个实施例中,网络设备与终端可以预先约定频率跳变图样,或者该频率跳变图样由协议预先规定,网络设备与终端均遵循协议的规定。因此,无需网络设备向终端发送跳频信息。其中,跳频信息中的一项或多项可以由协议定义。例如,协议可以定义跳频偏移量为10个RB,或者定义跳频周期为1个微时隙等。在不同的实施例中,通讯协议中可以体现为频率跳变图样,网络设备或者终端依照该频率跳变图样来进行频率跳变。示例仅仅用于解释本申请,不应构成限定。
结合第一方面或第二方面,在一些可选实施例中,可以通过如下方式对网络设备分配给终端的第二资源集合进行频率跳变:
第一种方式,基于整个系统带宽进行循环的频率跳变。这里,系统带宽被划分成多个第一资源集合,第一资源集合由均匀分布在整个系统带宽上的多个RB组成。
可选的,网络设备分配给终端的至少一个资源块可以由第一资源集合中的整数个连续的或者非连续的资源块构成。
可选的,网络设备分配给终端的第二资源集合可以由至少一个第一资源集合中的部分资源块构成。
在第一种方式中,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括该第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括第二资源集合中的资源块在第二资源集合所属的第一资源集合中的索引。
在第一种方式中,第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000001
其中,
Figure PCTCN2018104233-appb-000002
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000003
表示能够用于跳频传输的资源块的总数量。且满足:
Figure PCTCN2018104233-appb-000004
Figure PCTCN2018104233-appb-000005
其中,
Figure PCTCN2018104233-appb-000006
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
第二种方式,基于子带进行循环的频率跳变。这里,第一资源集合可以为均匀分布在单个子带上的整数个资源块。
可选的,网络设备分配给终端的第二资源集合由同一个子带上的至少一个第一资源集合中的部分资源块构成。
可选的,网络设备分配给终端的第二资源集合块由不同子带上的至少一个第一资源集合中的部分资源块构成。
具体的,各个子带上的第一资源集合的结构可以相同或不同。在单个子带上,网络设备可以调度一个或多个第一资源集合中的部分RB给终端。
在第二种方式中,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括单个子带上第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括单个子带上第二资源集合中的资源块在第二资源集合所属的第一资源集合中的索引。
在第二种方式中,第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000007
其中,
Figure PCTCN2018104233-appb-000008
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000009
表示子带的带宽,k∈K,集合K包括第二资源集合所属子带的索引。且满足:
Figure PCTCN2018104233-appb-000010
Figure PCTCN2018104233-appb-000011
其中,
Figure PCTCN2018104233-appb-000012
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
结合第一方面或第二方面,在一些可选实施例中,第一资源集合可以为均匀分布在整个系统带宽上的整数个资源块,其中,这整数个资源块的资源结构可以与系统带宽和/或子载波间隔相关。
可选的,为了适应多种系统带宽和/或多种子载波间隔的场景,第一资源集合可以包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总 数量整除。
结合第一方面或第二方面,在一些可选实施例中,为了支持不同带宽之间的资源对齐,第一资源集合中的RB间隔(RB spacing)可以是固定值。这里,RB间隔是指第一资源集合中的任意2个相邻RB之间的间隔。
本申请中,系统带宽(或子带)上的多个第一资源集合(如interlace)可以采用相同的资源结构,也可以采用不同的资源结构。这里,资源结构可主要是指第一资源集合(如interlace)中的资源块数量或相邻资源块之间的间隔中的至少一项。
在本申请的任意一个实施例中,为了便于网络设备的正确接收,在发送上行信号时,终端还可以向网络设备发送参考信号。其中,在上行传输占用的每一个时间单元内,承载该参考信号的资源可以与承载上行信号的资源块的频域位置相同。可选的,参考信号在时域上可以位于每一个时间单元中的指定位置(例如第一个符号)上。
第三方面,提供了一种网络设备,包括多个功能单元,用于相应的执行第一方面或第一方面可能的实施方式中的任意一种所提供的方法。
第四方面,提供了一种终端,包括多个功能单元,用于相应的执行第二方面或第二方面可能的实施方式中的任意一种所提供的方法。
第五方面,提供了一种网络设备,用于执行第一方面描述的信号传输方法。所述网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如终端,发送信号,所述接收器用于接收所述另一无线通信设备,例如终端,发送的信号,所述存储器用于存储第一方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面或第一方面可能的实施方式中的任意一种所描述的信号传输方法。
第六方面,提供了一种终端,用于执行第二方面描述的信号传输方法。所述终端可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线通信设备,例如网络设备,发送信号,所述接收器用于接收所述另一无线通信设备,例如网络设备,发送的信号,所述存储器用于存储第二方面描述的信号传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面或第二方面可能的实施方式中的任意一种所描述的信号传输方法。
第七方面,提供了一种通信系统,所述通信系统包括:网络设备和终端,其中:所述网络设备可以是第三方面或第五方面描述的网络设备。所述终端可以是第四方面或第六方面描述的终端。
第八方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
第九方面,提供了另一种计算机可读存储介质,所述可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的信号传输方法。
结合第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的信号传输方法。
结合第十一方面,提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的信号传输方法。
附图说明
为了更清楚地说明本申请或背景技术中的技术方案,下面将对本申请或背景技术中所需要使用的附图进行说明。
图1是本申请涉及的一种现有资源分配方式的示意图;
图2是本申请涉及的一种无线通信系统的架构示意图;
图3是本申请的一个实施例提供的终端的硬件架构示意图;
图4是本申请的一个实施例提供的基站的硬件架构示意图;
图5是本申请提供的至少一个资源块依从规定的频率跳变图样经历频率跳变的示意图;
图6是本申请的一个实施例提供的系统带宽上进行频率跳变的资源示意图;
图7是本申请的另一个实施例提供的系统带宽上进行频率跳变的资源示意图;
图8是本申请的再一个实施例提供的系统带宽上进行频率跳变的资源示意图;
图9是本申请的再一个实施例提供的子带上进行频率跳变的资源示意图;
图10是本申请的再一个实施例提供的子带上进行频率跳变的资源示意图;
图11是本申请的一个实施例提供的无线通信系统、网络设备和终端的结构示意图;
图12是本申请的再一个实施例提供的系统带宽上进行频率跳变的资源示意图;
图13是本申请的再一个实施例提供的系统带宽上进行频率跳变的资源示意图。
具体实施方式
本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
为了便于了解本发明实施,首先介绍本申请涉及的无线通信系统。
参考图2,图2示出了本申请涉及的无线通信系统200。无线通信系统200可以工作在授权频段,也可以工作在非授权频段。可以理解的,非授权频段的使用可以提高无线通信系统200的系统容量。如图2所示,无线通信系统200包括:一个或多个网络设备(Base Station)201,例如NodeB、eNodeB或者WLAN接入点,一个或多个终端(Terminal)203,以及核心网215。其中:
网络设备201可用于在网络设备控制器(如基站控制器)(未示出)的控制下与终端203通信。在一些实施例中,所述网络设备控制器可以是核心网230的一部分,也可以集成到网络设备201中。
网络设备201可用于通过回程(blackhaul)接口(如S1接口)213向核心网215传输控制信息(control information)或者用户数据(user data)。
网络设备201可以通过一个或多个天线来和终端203进行无线通信。各个网络设备201均可以为各自对应的覆盖范围207提供通信覆盖。接入点对应的覆盖范围207可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
网络设备201与网络设备201之间也可以通过回程(blackhaul)链接211,直接地或者间接地,相互通信。这里,所述回程链接211可以是有线通信连接,也可以是无线通信连接。
在本申请的一些实施例中,网络设备201可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),NodeB,eNodeB等等。无线通信系统200可以包括几种不同类型的网络设备201,例如宏基站(macro base station)、微基站(micro base station)等。网络设备201可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
终端203可以分布在整个无线通信系统200中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端203可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请中,无线通信系统200可以是能够工作在非授权频段的LTE通信系统,例如LTE-U,也可以是能够工作在非授权频段的5G以及未来新空口等通信系统。无线通信系统200可以采用授权辅助接入(LAA)方案来处理终端在非授权频段上的接入。在LAA方案中,主小区(Primary Cell)工作在授权频段,传送关键的消息和需要服务质量保证的业务;辅小区(Secondary Cell)工作在非授权频段,用于实现数据平面性能的提升。
本申请中,无线通信系统200可以支持多载波(multi-carrier)(不同频率的波形信号)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接205都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息(例如参考信号、控制信道等),开销信息(Overhead Information),数据等等。
另外,无线通信系统200还可以包括WiFi网络。为了实现运营商网络和WiFi网络(工作在非授权频谱)之间的和谐共存,无线通信系统200可采用先听后说(LBT)机制。例如,在无线通信系统200中,一些终端203可以通过WiFi通信连接217连接WiFi接入点209来使用非授权频谱资源,一些终端203也可以通过移动通信连接205连接网络设备201来使用非授权频谱资源。在使用非授权频段时,任何设备必须先监听,看看该频段是否被占用,如果该频段不忙,才可以占用并传输数据。
参考图3,图3示出了本申请的一些实施例提供的终端300。如图3所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其它方式连接,图3以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述基站可以是图4所示的网络设备400。通信接口301是指终端处理器304与收发系统(由发射器306和接收器308构成)之间的接口,例如LTE中的X1接口。具体实现中,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器206可包括非授权频谱发射器3061和授权频谱发射器3063。其中,非授权频谱发射器3061可以支持终端300在一个或多个非授权频谱上发射信号,授权频谱发射器3063可以支持终端300在一个或多个授权频谱上发射信号。
接收器308可用于对天线314接收的移动通信信号进行接收处理。例如,接收器308可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器308可包括非授权频谱接收器3081和授权频谱接收器3083。其中,非授权频谱接收器3081可以支持终端300接收调制在非授权频谱上的信号,授权频谱接收器3083可以支持终端300接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图3所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体实现中,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的信号传输方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的信号传输方法在终端300侧的实现程序,并执行该程序包含的指令。
可以理解的,终端300可以是图2示出的无线通信系统200中的终端203,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图3所示的终端300仅仅是本申请的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图4,图4示出了本申请的一些实施例提供的网络设备400。如图4所示,网络设备400可包括:通信接口403、一个或多个基站处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其它方式连接,图4以通过总线连接为例。其中:
通信接口403可用于网络设备400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图3所示的终端300。通信接口301是指基站处理器401与收发系统(由发射器407和接收器409构成)之间的接口,例如LTE中的S1接口。具体实现中,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,网络设备400还可以配置有有线的通信接口403来支持有线通信,例如一个网络设备400与其他网络设备400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对基站处理器401输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器407可包括非授权频谱发射器4071和授权频谱发射器4073。其中,非授权频谱发射器4071可以支持网络设备400在一个或多个非授权频谱上发射信号,授权频谱发射器4073可以支持网络设备400在一个或多个授权频谱上发射信号。
接收器409可用于对天线413接收的移动通信信号进行接收处理。例如,接收器409可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器409可包括非授权频谱接收器4091和授权频谱接收器4093。其中,非授权频谱接收器4091可以支持网络设备400接收调制在非授权频谱上的信号,授权频谱接收器4093可以支持网络设备400接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在网络设备400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与基站处理器401耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终 端设备,一个或多个网络设备进行通信。
基站处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体实现中,基站处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请中,基站处理器401可用于读取和执行计算机可读指令。具体的,基站处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的信号传输方法在网络设备400侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备400可以是图2示出的无线通信系统200中的网络设备201,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。网络设备400可以实施为几种不同类型的基站,例如宏基站、微基站等。网络设备400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图4所示的网络设备400仅仅是本申请的一种实现方式,实际应用中,网络设备400还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信系统200、终端300以及网络设备400分别对应的实施例,本申请提供了一种信号传输方法。
本申请的主要发明原理可包括:对于非授权频段的上行传输,网络设备为终端分配至少一个资源块。该至少一个资源块可以来自第一资源集合,即由第一资源集合中的部分资源块构成。其中,第一资源集合为在频域上均匀分布的整数个资源块。可选的,第一资源集合可以为资源交错(interlace)。该至少一个资源块依从规定的频率跳变图样(frequency hopping pattern)。也即是说,上行传输可以占用多个时间单元,其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。这样,可以保证上行传输在一定时间(多个跳频周期)内累积占用的带宽满足OCB要求,而且可实现更灵活的资源分配。
本申请中,网络设备分配给终端的上述至少一个资源块可以称为第二资源集合。
为了便于理解本申请的主要发明原理,下面举例说明。
图5示例性的示出了第二资源集合依从规定的频率跳变图样经历频率跳变后的资源图样(pattern)。假设系统带宽为100个RB,一个interlace包括10个RB,interlace中相邻RB之间的间隔为10个RB。或者,假设系统带宽为106个RB,一个interlace包括10个或者11个RB,interlace中相邻RB之间的间隔为10个RB。
如图5所示,网络设备为终端1分配3个资源块(即第二资源集合),这3个资源块可以是一个interlace(即第一资源集合)中的前3个资源块:RB0、RB10、RB20。这3个资源块每隔一个跳频周期(在本实施例中,一个跳频周期为一个时间单元)进行一次频率跳变,且跳频偏移量为20个RB。具体的,在第0个跳频周期内,用于上行传输的资源块为: RB0、RB10、RB20。在第1个跳频周期内,RB0跳至RB20,RB10跳至RB30,RB20跳至RB40,即用于上行传输的资源块为RB20、RB30、RB40。依次类推,在第0-3个跳频周期内,用于上行传输的资源块为:RB0、RB10、RB20、RB30、RB40、…RB80。也即是说,第0-4个跳频周期内,上行传输累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/40M=81.9%。也即是说,这91个RB在系统带宽中的占比大于80%,满足OCB要求。
图5仅仅用于解释本申请,不应构成限定。
本申请中,网络设备分配给终端的第二资源集合依从规定的频率跳变图样(frequency hopping pattern)可表示用于上行传输的资源块。参考图5可以看出,用于上行传输的资源块分布在多个时间单元上,其中,每一个时间单元上的用于上行传输的资源块的资源结构与第二资源集合的资源结构相同,第1个时间单元上的用于上行传输的资源块即第二资源集合,相邻时间单元上的用于上行传输的资源块的频率位置可以相差指定的跳频偏移量(hopping offset)。
本申请中,上述资源结构相同是指资源块数量相同、相邻资源块之间的间距相同。在图5的示例中,每一个跳频周期上的用于上行传输的资源块的数量均是3个,与网络设备分配给终端的资源块(RB0、RB10、RB20)的数量相同。每一个跳频周期上的相邻的用于上行传输的资源块之间间距10个RB,与网络设备分配给终端的相邻资源块之间的间距(10个RB)相同。
本申请中,第二资源集合的频率跳变可以是基于整个跳频带宽(如系统带宽或子带)的循环跳频。例如,如图5所示,在第5个跳频周期内,RB60跳至RB80,RB70跳至RB90,RB80跳至RB0,其中,由于RB90是interlace中的最后一个RB,因此RB80循环跳至RB0。
这里,该时间单元可以为跳频周期(hopping period),跳频周期(hopping period)可以是以下至少一项的整数倍:符号(symbol)、微时隙(mini-slot)、时隙(slot)或子帧(subframe)。
本申请的实施方式中,子带(subband)是指一个或多个载波,或者一个载波上的部分子载波或者部分资源块等。在一些场景下,子带也可以是带宽子集(bandwidth part,BWP),是指系统带宽中的部分带宽。
本申请中,网络设备可以向终端发送资源调度信息,该资源调度信息可用于指示网络设备为终端分配的第二资源集合,即上述至少一个资源块。终端接收到该资源调度信息后,可以依据规定的频率跳变图样对网络设备分配的上述至少一个资源块进行跳频,确定用于上行传输的资源块。这里,用于上行传输的资源块的定义和说明可参考前述内容,这里不再赘述。最终,终端可以通过LBT在空闲的用于上行传输的资源块上进行上行传输。可以理解的,在非授权频段,网络设备和终端在传输信号前,均需要进行LBT。最终,终端可以在空闲的频率资源上进行上行传输。
(1)资源调度信息的信令实现
可选的,网络设备可以将资源调度信息携带在下行控制信息(Downlink Control Information,DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的第二资源集合,即至少一个资源块。
例如,网络设备可以将资源调度信息携带在返回给终端的上行调度授权(UL grant)中。 这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
可选的,网络设备还可以在针对终端的调度请求(scheduling request,SR)的其他应答消息中携带资源调度信息,或者网络设备还可以将资源调度信息独立封装成一个消息,返回该消息给终端。关于如何发送资源调度信息的方式(即信令实现),本申请不作限制。
(2)资源调度信息的内容实现。
第一种实现方式,资源调度信息可包括:第二资源集合所属的第一资源集合的索引、第二资源集合在第一资源集合中的索引。例如,在图5的示例中,假设网络设备从interlace0(即第一资源集合)中分配RB0、RB10、RB20给终端,那么,资源调度信息可包括:interlace0的索引“0”,以及RB0、RB10、RB20分别在interlace0中的索引“0”、“1、“2””。示例仅仅用于解释本申请,不应构成限定。
可选的,资源调度信息还可包括:第一资源集合中相邻资源块之间的间距。可选的,第一资源集合中相邻资源块之间的间距可以由协议定义。
第二种实现方式,资源调度信息可包括:第二资源集合所属的第一资源集合的索引、第二资源集合在第一资源集合中的索引、第二资源集合所处的子带的索引。
在第二种实现方式中,第一资源集合可以为均匀分布在子带上的整数个资源块。网络设备分配给终端的第二资源集合可以由同一个子带上的至少一个第一资源集合中的部分资源块构成。网络设备分配给终端的第二资源集合可以由不同子带上的至少一个第一资源集合中的部分资源块构成。关于第二种实现方式的详细说明,可参考后续图9和图10实施例,这里先不赘述。
可选的,资源调度信息还可包括:第一资源集合中相邻资源块之间的间距。可选的,第一资源集合中相邻资源块之间的间距可以由协议定义。
第三种实现方式,资源调度信息可包括:第二资源集合中的资源块的资源块编号。
具体实现中,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。例如,在图5的示例中,资源调度信息可包括:RB0、RB10、RB20分别在整个系统带宽内的编号:“0”、“10”、“20”。示例仅仅用于解释本申请,不应构成限定。
不限于上述几种实现方式,资源调度信息的内容还可以通过其他方式实现。即网络设备和终端之间还可以约定其他的方式来指示网络设备调度给终端的第二资源集合,即上述至少一个资源块。
本申请的一个实施例中,网络设备分配给终端的第二资源集合所依从的规定的频率跳变图样可以由网络设备通知给终端。具体的,网络设备可以向终端发送跳频信息。
(1)跳频信息的信令实现
可选的,网络设备可以将跳频信息和资源调度信息都携带在下行控制信息(DCI)中。可选的,可以在DCI中新增两个字段,其中,一个新增字段用于指示分配给终端的第二资源集合,另一个新增字段用于指示上述频率跳变图样。
例如,网络设备可以将跳频信息和资源调度信息都携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
可选的,网络设备可以在针对终端的调度请求(scheduling request,SR)的其他应答消 息中同时携带跳频信息和资源调度信息,或者网络设备还可以将跳频信息和资源调度信息一起独立封装成一个消息,返回该消息给终端。
可选的,网络设备可以将跳频信息和资源调度信息分别携带在不同的消息中。关于如何发送资源调度信息的方式(即信令实现),本申请不作限制。
(2)跳频信息的内容实现。
具体的,该跳频信息可包括以下至少一项:第二资源集合关联的跳频偏移量N hopping_offset、第二资源集合关联的跳频总带宽或第二资源集合关联的跳频周期。
在本申请的另一个实施例中,网络设备与终端可以预先约定频率跳变图样,或者该频率跳变图样由协议预先规定,网络设备与终端均遵循协议的规定。因此,无需网络设备向终端发送跳频信息。其中,跳频信息中的一项或多项可以由协议定义。例如,协议可以定义跳频偏移量为10个RB,或者定义跳频周期为1个微时隙等。在不同的实施例中,通讯协议中可以体现为频率跳变图样,网络设备或者终端依照该频率跳变图样来进行频率跳变。示例仅仅用于解释本申请,不应构成限定。
不限于资源交错(interlace),本申请中涉及的第一资源集合还可以为呈现其他资源结构的多个资源块,只要第一资源集合中的资源块在频域上均匀分布即可。不限于ESTI的OCB规定,对于未来以及其他针对信号的信道带宽占用率在规定和要求的场景,本申请提供的技术方案同样适用。
下面通过多个实施例详细介绍如何对分配给终端的资源块进行频率跳变。
(一)实施例一
本实施例中,系统带宽被划分成多个第一资源集合,第一资源集合由均匀分布在整个系统带宽上的多个RB组成。可选的,第一资源集合可以采用如eLAA中的interlace结构。在进行资源分配时,网络设备采用第一资源集合中的部分连续的RB作为第二资源集合。也即是说,网络设备分配给终端的第二资源集合资源块由第一资源集合中的整数个连续的资源块构成。
然后,网络设备可以向终端发送资源调度信息以及跳频信息,其中,资源调度信息用于指示网络设备分配给终端的第二资源集合,跳频信息用于指示第二资源集合关联的跳频方式。相应的,终端可以根据网络设备的调度,在相应的资源上进行上行跳频传输。可选的,跳频方式(如跳频偏移量N hopping_offset、跳频总带宽
Figure PCTCN2018104233-appb-000013
跳频周期)也可以由协议定义,网络设备无需向终端发送跳频信息。需要说明的是,在非授权频段,网络设备和终端在传输信号前,均需要进行LBT。
具体的,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括第二资源集合中的资源块在第二资源集合所属的第一资源集合中的索引。
具体的,在进行频率跳变时,网络设备分配给终端的第二资源集合周期性地在频域上 进行跳变。第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000014
其中,
Figure PCTCN2018104233-appb-000015
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000016
表示能够用于跳频传输的资源块的总数量,且满足:
Figure PCTCN2018104233-appb-000017
Figure PCTCN2018104233-appb-000018
其中,
Figure PCTCN2018104233-appb-000019
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
这里,多个跳频周期内用于上行传输的资源块包括该多个跳频周期中各个跳频周期内用于上行传输的资源块。
本实施例中,跳频周期可以是以下至少一项的整数倍:symbol、mini-slot、slot或subframe。
下面以图6为例,说明实施例一的具体实施。
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为
Figure PCTCN2018104233-appb-000020
第一资源集合为均匀分布在频域上的10个RB构成的interlace(如图6中的RB#0,RB#10,RB#20,…,RB#80,RB#90)。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1,2},N=10。那么,第二资源集合为:
0+{0}+{0,1,2}*10={0,10,20}
上面这个集合表示的资源块即图6中的RB#0、RB#10、RB#20,为第0个跳频周期内用于上行传输的资源块。
第p(p>1)个跳频周期内用于上行传输的起始RB
Figure PCTCN2018104233-appb-000021
为:
Figure PCTCN2018104233-appb-000022
Figure PCTCN2018104233-appb-000023
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=20,
Figure PCTCN2018104233-appb-000024
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000025
为:(0+20)mod100=20,即RB#20。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000026
为:(20+20)mod100=40,即RB#40。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000027
那么,
第1个跳频周期内用于上行传输的资源块为:20+{0}+{0,1,2}*10={20,30,40},即RB#20、RB#30、RB#40。
第2个跳频周期内用于上行传输的资源块为:40+{0}+{0,1,2}*10={40,50,60},即RB#40、RB#50、RB#60。
后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
参考图6可以看出,通过跳频,网络设备分配给终端的资源块(RB#0、RB#10、RB#20)在一定时间内(第0个至第4个跳频周期内)累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/20M=81.9%。也即是说,这91个RB在系统带宽中的占比大于80%,满足OCB要求。而且,网络设备无需以整个interlace为基本调度单元,显著缩小了资源调度的粒度,提高了资源调度的灵活性。
以下以图12为例,进一步说明实施例一的具体实施方式
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为106个RB。第一资源集合为均匀分布在频域上的10个或者11个RB构成的interlace(如图6中,interlace#0对应RB#0,RB#10,RB#20,…,RB#80,RB#90,RB#100这11个RB,而interlace#9对应RB#9,RB#19,RB#29,…,RB#89,RB#99这10个RB)。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1,2},N=10。那么,第二资源集合为:
0+{0}+{0,1,2}*10={0,10,20}
上面这个集合表示的资源块即图6中的RB#0、RB#10、RB#20,为第0个跳频周期内用于上行传输的资源块。
第p(p>1)个跳频周期内用于上行传输的起始RB
Figure PCTCN2018104233-appb-000028
为:
Figure PCTCN2018104233-appb-000029
Figure PCTCN2018104233-appb-000030
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=20,
Figure PCTCN2018104233-appb-000031
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000032
为:(0+20)mod106=20,即RB#20。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000033
为:(20+20)mod106=40,即RB#40。
第3个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000034
为:(40+20)mod106=60,即RB#60。
第4个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000035
为:(60+20)mod106=80,即RB#80。
第5个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000036
为:(80+20)mod106=100,即RB#100。
第6个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000037
为:(100+20)mod106=14,即RB#14。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000038
那么,
第1个跳频周期内用于上行传输的资源块为:(20+{0}+{0,1,2}*10)mod106={20,30,40},即RB#20、RB#30、RB#40。
第2个跳频周期内用于上行传输的资源块为:(40+{0}+{0,1,2}*10)mod106={40,50,60},即RB#40、RB#50、RB#60。
第3个跳频周期内用于上行传输的资源块为:(60+{0}+{0,1,2}*10)mod106={60,70,80},即RB#60、RB#70、RB#80。
第4个跳频周期内用于上行传输的资源块为:(80+{0}+{0,1,2}*10)mod106={80,90,100},即RB#80、RB#90、RB#100。
第5个跳频周期内用于上行传输的资源块为:(100+{0}+{0,1,2}*10)mod106={100,4,14},即RB#100、RB#4、RB#14。
第6个跳频周期内用于上行传输的资源块为:(14+{0}+{0,1,2}*10)mod106={14,24,34},即RB#14、RB#24、RB#34。
从此可以看出,跳频可以是基于跳频总带宽(106个RB)的循环跳频。
后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
可选的,如图13所示,跳频也可以是基于第一资源集合的循环跳频。即每个跳频周期内用于上行传输的第二资源集合的RB索引为根据跳频偏移在所述第二资源集合所属的第一资源集合对应的所有RB索引中进行循环。
参考图7可以看出,通过跳频,网络设备分配给终端的资源块(RB#0、RB#10、RB#20)在一定时间内(第0个至第4个跳频周期内)累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/20M=81.9%。也即是说,这91个RB在系统带宽中的占比大于80%,满足OCB要求。而且,网络设备无需以整个interlace为基本调度单元,显著缩小了资源调度的粒度,提高了资源调度的灵活性。
(二)实施例二
与实施例一的区别在于,网络设备采用第一资源集合中的部分非连续的RB作为基本调度单元。也即是说,网络设备分配给终端的第二资源集合由第一资源集合中的整数个非连续的资源块构成。
具体的,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括第二资源集合中的资源块在第二资源集合所属的第一资源集合中的索引。
具体的,在进行频率跳变时,网络设备分配给终端的第二资源集合周期性地在频域上 进行跳变。第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000039
其中,
Figure PCTCN2018104233-appb-000040
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000041
表示能够用于跳频传输的资源块的总数量,且满足:
Figure PCTCN2018104233-appb-000042
Figure PCTCN2018104233-appb-000043
其中,
Figure PCTCN2018104233-appb-000044
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
下面以图7为例,说明实施例二的具体实施。
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为
Figure PCTCN2018104233-appb-000045
第一资源集合为均匀分布在频域上的10个RB构成的interlace(如图7中的RB#0,RB#10,RB#20,…,RB#80,RB#90)。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1,3},N=10。那么,第二资源集合为:
0+{0}+{0,1,3}*10={0,10,30}
上面这个集合表示的资源块即图7中的RB#0、RB#10、RB#30,为第0个跳频周期内用于上行传输的资源块。
第p(p>1)个跳频周期内用于上行传输的起始RB
Figure PCTCN2018104233-appb-000046
为:
Figure PCTCN2018104233-appb-000047
Figure PCTCN2018104233-appb-000048
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=30,
Figure PCTCN2018104233-appb-000049
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000050
为:(0+30)mod100=30,即RB#30。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000051
为:(30+30)mod100=60,即RB#60。
第3个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000052
为:(60+30)mod100=90,即RB#90。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000053
那么,
第1个跳频周期内用于上行传输的资源块为:(30+{0}+{0,1,3}*10)mod100={30,40,60},即RB#30、RB#40、RB#60。
第2个跳频周期内用于上行传输的资源块为:(60+{0}+{0,1,3}*10)mod100={60,70,90},即RB#60、RB#70、RB#90。
第3个跳频周期内用于上行传输的资源块为:(90+{0}+{0,1,3}*10)mod100={90,0,20},即RB#90、RB#0、RB#20。从此可以看出,跳频可以是基于跳频总带宽(100个RB)的循环跳频。
后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
下面以其他举例,说明实施例二的具体实施。
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为106个RB。第一资源集合为均匀分布在频域上的10个或者11个RB构成的interlace构成(例如,interlace#0对应RB#0,RB#10,RB#20,…,RB#80,RB#90,RB#100这11个RB,而interlace#9对应RB#9,RB#19,RB#29,…,RB#89,RB#99这10个RB)。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1,3},N=10。那么,第二资源集合为:
0+{0}+{0,1,3}*10={0,10,30}
上面这个集合表示的资源块即RB#0、RB#10、RB#30,为第0个跳频周期内用于上行传输的资源块。
第p(p>1)个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000054
为:
Figure PCTCN2018104233-appb-000055
Figure PCTCN2018104233-appb-000056
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=30,
Figure PCTCN2018104233-appb-000057
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000058
为:(0+30)mod106=30,即RB#30。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000059
为:(30+30)mod106=60,即RB#60。
第3个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000060
为:(60+30)mod106=90,即RB#90。
第4个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000061
为:(90+30)mod106=14,即RB#14。
第5个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000062
为:(14+30)mod106=44,即RB#44。
第6个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000063
为:(34+30)mod106=64,即RB#64。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000064
那么,
第1个跳频周期内用于上行传输的资源块为:(30+{0}+{0,1,3}*10)mod106={30,40,60},即RB#30、RB#40、RB#60。
第2个跳频周期内用于上行传输的资源块为:(60+{0}+{0,1,3}*10)mod106={60,70,90},即RB#60、RB#70、RB#90。
第3个跳频周期内用于上行传输的资源块为:(90+{0}+{0,1,3}*10)mod106={90,0,20},即RB#90、RB#100、RB#14。
第4个跳频周期内用于上行传输的资源块为:(14+{0}+{0,1,3}*10)mod106={14,24,44},即RB#14、RB#24、RB#44。
第5个跳频周期内用于上行传输的资源块为:(44+{0}+{0,1,3}*10)mod106={44,54,74},即RB#44、RB#54、RB#74。
第6个跳频周期内用于上行传输的资源块为:(74+{0}+{0,1,3}*10)mod106={74,84,104},即RB#74、RB#84、RB#104。
从此可以看出,跳频可以是基于跳频总带宽(106个RB)的循环跳频。后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
可选的,跳频也可以是基于第一资源集合的循环跳频。即每个跳频周期内用于上行传输的第二资源集合的RB索引为根据跳频偏移在所述第二资源集合所属的第一资源集合对应的所有RB索引中进行循环。
参考图7可以看出,通过跳频,网络设备分配给终端的资源块(RB#0、RB#10、RB#30)在一定时间内(第0个至第3个跳频周期内)累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/20M=81.9%。也即是说,这91个RB在系统带宽中的占比大于80%,满足OCB要求。而且,网络设备无需以整个interlace为基本调度单元,显著缩小了资源调度的粒度,提高了资源调度的灵活性。
(三)实施例三
本实施例中,系统带宽被划分成多个第一资源集合,第一资源集合由均匀分布在整个系统带宽上的多个RB组成。可选的,第一资源集合可以采用如eLAA中的interlace结构。在进行资源分配时,网络设备采用多个第一资源集合中的部分RB作为基本调度单元。也即是说,网络设备分配给终端的第二资源集合由至少2个第一资源集合中的整数个资源块构成。
具体的,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括第二资源集合中的资源块在第二资源集合所属的第一资源集合中的索引。
具体的,在进行频率跳变时,网络设备分配给终端的第二资源集合周期性地在频域上进行跳变。第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000065
其中,
Figure PCTCN2018104233-appb-000066
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000067
表示能够用于跳频传输的资源块的总数量。且满足:
Figure PCTCN2018104233-appb-000068
Figure PCTCN2018104233-appb-000069
其中,
Figure PCTCN2018104233-appb-000070
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
下面以图8为例,说明实施例三的具体实施。
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为
Figure PCTCN2018104233-appb-000071
第一资源集合为均匀分布在频域上的10个RB构成的interlace(如图8中的interlace#0(RB#0,RB#10,RB#20,…,RB#80,RB#90)、interlace#1(RB#1,RB#11,RB#21,…,RB#81,RB#91))。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0,1},i∈M,M={0,1,2}&{0,1},N=10。那么,第二资源集合为:
0+{0,1}+{0,1,2}&{0,1}*10={0,10,20}&{1,11}
上面2个集合分别表示图7中interlace#0中的RB#0、RB#10、RB#20,以及interlace#1中的RB#1、RB#11。
第p(p>1)个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000072
为:
Figure PCTCN2018104233-appb-000073
Figure PCTCN2018104233-appb-000074
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=20,
Figure PCTCN2018104233-appb-000075
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000076
为:(0+20)mod100=30,即RB#20。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000077
为:(20+20)mod100=40,即RB#40。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000078
那么,
第1个跳频周期内用于上行传输的资源块为:(20+{0,1,2}&{0,1}*10)mod100={20,30,40}&{21,31},即RB#20、RB#30、RB#40,以及RB#21、RB#31。
第2个跳频周期内用于上行传输的资源块为(40+{0,1,2}&{0,1}*10)mod100= {40,50,60}&{41,51},即RB#40、RB#50、RB#60,以及RB#41、RB#51。
后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
下面以其他举例,说明实施例三的具体实施。
假设1:系统带宽为20MHz,子载波间隔为15kHZ,传输带宽为106个RB。第一资源集合为均匀分布在频域上的10个或者11个RB构成的interlace构成(例如,interlace#0对应RB#0,RB#10,RB#20,…,RB#80,RB#90,RB#100这11个RB,而interlace#9对应RB#9,RB#19,RB#29,…,RB#89,RB#99这10个RB)。资源分配从RB0开始(即RB START=0)。
假设2:第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。跳频偏移量(hopping offset)为20个RB。
网络设备分配给终端的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0,1},i∈M,M={0,1,2}&{0,1},N=10。那么,第二资源集合为:
0+{0,1}+{0,1,2}&{0,1}*10={0,10,20}&{1,11}
上面2个集合分别表示interlace#0中的RB#0、RB#10、RB#20,以及interlace#1中的RB#1、RB#11。
第p(p>1)个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000079
为:
Figure PCTCN2018104233-appb-000080
Figure PCTCN2018104233-appb-000081
其中,RB START=0(第0个跳频周期内用于上行传输的起始RB),N hopping_offset=20,
Figure PCTCN2018104233-appb-000082
那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000083
为:(0+20)mod106=30,即RB#20。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000084
为:(20+20)mod106=40,即RB#40。
第3个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000085
为:(40+20)mod106=60,即RB#60。
第4个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000086
为:(60+20)mod106=80,即RB#80。
第5个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000087
为:(80+20)mod106=100,即RB#100。
第6个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000088
为:(100+20)mod106=14,即RB#14。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000089
那么,
第1个跳频周期内用于上行传输的资源块为:(20+{0,1}+{0,1,2}&{0,1}*10)mod106={20,30,40}&{21,31},即RB#20、RB#30、RB#40,以及RB#21、RB#31。
第2个跳频周期内用于上行传输的资源块为(40+{0,1}+{0,1,2}&{0,1}*10)mod106={40,50,60}&{41,51},即RB#40、RB#50、RB#60,以及RB#41、RB#51。
第3个跳频周期内用于上行传输的资源块为:(60+{0,1}+{0,1,2}&{0,1}*10)mod106={60,70,80}&{61,71},即RB#60、RB#70、RB#80,以及RB#61、RB#71。
第4个跳频周期内用于上行传输的资源块为:(80+{0,1}+{0,1,2}&{0,1}*10)mod106={80,90,100}}&{81,91},即RB#80、RB#90、RB#100,以及RB#81、RB#91。
第5个跳频周期内用于上行传输的资源块为:(100+{0,1}+{0,1,2}&{0,1}*10)mod106={100,4,14}&{101,5},即RB#100、RB#4、RB#14,以及RB#101、RB#5。
第6个跳频周期内用于上行传输的资源块为:(14+{0,1}+{0,1,2}&{0,1}*10)mod106={14,24,34}&{15,25},即RB#14、RB#24、RB#34,以及RB#101、RB#5。
从此可以看出,跳频可以是基于跳频总带宽(106个RB)的循环跳频。后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
可选的,跳频也可以是基于第一资源集合的循环跳频。即每个跳频周期内用于上行传输的第二资源集合的RB索引为根据跳频偏移在所述第二资源集合所属的第一资源集合对应的所有RB索引中进行循环。
参考图8可以看出,通过跳频,网络设备分配给终端的资源块(interlace#0中的RB#0、RB#10、RB#20,以及interlace#0中的RB#1、RB#11)在一定时间内(第0个至第3个跳频周期内)累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/20M=81.9%。也即是说,这91个RB在系统带宽中的占比大于80%,满足OCB要求。而且,网络设备无需以整个interlace为基本调度单元,显著缩小了资源调度的粒度,提高了资源调度的灵活性。
在上述3个实施例中,第一资源集合为均匀分布在整个系统带宽上的整数个资源块,其中,这整数个资源块的资源结构可以与系统带宽和/或子载波间隔相关。
在本申请的一些实施例中,为了适应多种系统带宽和/或多种子载波间隔的场景,第一资源集合可以包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总数量整除。
下面举例说明。
首先,以5GHz频段为例,未来新空口(NR)通信技术中可支持的系统带宽有20MHz,40MHz,80MHz,160MHz等,可选的子载波间隔有15KHz,60KHz等。
(一)对于15KHz子载波间隔,上述各种系统带宽场景各自对应的传输带宽可能分别为100个RB,200个RB,400个RB,800个RB。兼容上述各种系统带宽的场景的资源交错(interlace)的结构可以有如下几种:
(1)每个资源交错由10个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为91个RB,181个RB,361个RB,721个RB。
(2)每个资源交错由25个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为97个RB,193个RB,385个RB,769个RB。
可以理解的,对于15KHz子载波间隔,(1)和(2)两种资源交错包含的资源块个数都可以被上述各种系统带宽对应的资源块总数整除。
(二)对于60KHz子载波间隔,上述各种系统带宽场景对应的传输带宽可能分别为25个RB,50个RB,100个RB,200个RB。兼容上述各种系统带宽的场景的资源交错(interlace)的结构可为:每个资源交错由25个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为25个RB,49个RB,97个RB,193个RB。
综上,对于5GHz频段的上行资源分配,可存在如下两种方案:
(1)为了兼容所有的场景(15KHz或60KHz子载波间隔),可以固定采用25RB/interlace(即每一个资源交错包含25个RB)的方案。
(2)为了适应多种业务需求,可以同时支持10RB/interlace和25RB/interlace这两种结构。在进行资源分配指示时,还需要interlace的类型信息(10RB/interlace或25RB/interlace)携带在所述资源指示信息中。
也即是说,在5GHz频段上,分配给终端的第二资源集合可以由不同结构的多个资源交错中的部分RB构成。
需要说明的,上述关于5GHz频段的举例分析仅仅用于解释本发明实施例,上述各种系统带宽场景中的传输带宽、子载波间隔等具体参数的实际取值均以未来标准中的定义为准。
其次,以60GHz频段为例,未来新空口(NR)通信技术中可支持的系统带宽有500MHz,1GHz,2GHz等,可选的子载波间隔有480kHz,960kHz(仅系统带宽2GHz支持)等。
(一)对于480kHz子载波间隔,上述各种系统带宽场景各自对应的传输带宽可能分别为78个RB,156个RB,312个RB。兼容上述各种系统带宽的场景的资源交错(interlace)的结构可如下:每个资源交错由6个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为66个RB,131个RB,261个RB。
(二)对于960kHz子载波间隔,2GHz系统带宽对应的传输带宽可为156个RB。适应2GHz系统带宽场景的资源交错(interlace)的结构可如下:每个资源交错由6个RB构成。在2GHz系统带宽场景中,一个资源交错占用的带宽为131个RB。
综上,对于60GHz频段的上行资源分配可以固定采用6RB/interlace(即每一个资源交错包含6个RB)的方案。
需要说明的,上述关于60GHz频段的举例分析仅仅用于解释本发明实施例,上述各种系统带宽场景中的传输带宽、子载波间隔等具体参数的实际取值均以未来标准中的定义为准。
在本申请的一些实施例中,为了支持不同带宽之间的资源对齐,第一资源集合中的RB间隔(RB spacing)可以是固定值。这里,RB间隔是指第一资源集合中的任意2个相邻RB之间的间隔。
例如,在20MHz、40MHz、80MHz或120MHz等带宽下,每个资源交错的RB间隔N均为10。这样,当终端通过LBT监听到的可接入带宽与网络设备调度的带宽不一致时,终端也可以进行上行传输,无需等待网络设备重新进行资源调度,可实现灵活带宽传输。
本申请中,系统带宽(或子带)上的多个第一资源集合(如interlace)可以采用相同的资源结构,也可以采用不同的资源结构。这里,资源结构可主要是指第一资源集合(如interlace)中的资源块数量或相邻资源块之间的间隔中的至少一项。
不限于上述3个实施例,第一资源集合也可以为均匀分布在单个子带上的整数个资源块。下面通过图9-图10实施例来说明。
(四)实施例四
本实施例中,系统带宽被划分成多个子带。各个子带上的资源分配可以是独立的或者相同的。在进行资源分配时,网络设备采用同一个子带上的第一资源集合中的部分RB作为基本调度单元。也即是说,网络设备分配给终端的第二资源集合由同一个子带上的至少一个第一资源集合中的部分资源块构成。
具体的,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示分配给所述终端的起始资源块的索引;l∈L,集合L包括单个子带上第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括单个子带上分配给终端的资源块在第二资源集合所属的第一资源集合中的索引。
具体的,在进行频率跳变时,网络设备分配在单个子带上给终端的第二资源集合周期性地在子带上进行跳变。第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000090
其中,
Figure PCTCN2018104233-appb-000091
表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000092
表示子带的带宽,k∈K,集合K包括第二资源集合所属子带的索引。且满足:
Figure PCTCN2018104233-appb-000093
Figure PCTCN2018104233-appb-000094
其中,
Figure PCTCN2018104233-appb-000095
表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
下面以图9为例,说明实施例四的具体实施。
假设1:系统带宽为40MHz,子载波间隔为15kHZ。传输带宽为
Figure PCTCN2018104233-appb-000096
由两个20MHz的子带构成,各个子带的带宽
Figure PCTCN2018104233-appb-000097
各个子带上的第一资源集合为均匀分布在频域上的10个RB构成的interlace(如图9中的子带#0上的interlace#0为RB#0,RB#10,RB#20,…,RB#80,RB#90、子带#1上的interlace#0为RB#100,RB#110,RB#120,…,RB#180,RB#190。
假设2:各个子带上的第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。子带#0上的跳频偏移量(hopping offset)为20个RB,子带#1上的跳频偏移量(hopping offset)为30个RB。子带#0上的资源分配从RB#0开始(即RB START=0)。子带#1上的资源分配从RB#100开始(即RB START=100)。
网络设备分配给终端1的第二资源集合为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1},N=10。那么,第二资源集合为:
0+{0}+{0,1}*10={0,10}
上面这个集合表示的资源块即图9中的RB#0、RB#10,为终端1在子带#0上的第0 个跳频周期内用于上行传输的资源块。
对于终端1,第p(p>1)个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000098
为:
Figure PCTCN2018104233-appb-000099
Figure PCTCN2018104233-appb-000100
其中,RB START=0(子带#0上的第0个跳频周期内用于上行传输的起始RB),N hopping_offset=20,
Figure PCTCN2018104233-appb-000101
k=0。那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000102
为:(0+20)mod100=20,即RB#20。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000103
为:(20+20)mod100=40,即RB#40。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
对于终端1,第p个跳频周期内用于上行传输的资源块集合为:
Figure PCTCN2018104233-appb-000104
那么,
第1个跳频周期内用于上行传输的资源块为:(20+{0}+{0,1}*10)mod100={20,30},即RB#20、RB#30。
第2个跳频周期内用于上行传输的资源块为:(40+{0}+{0,1}*10)mod100={40,50},即RB#40、RB#50。
终端1在后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
同样的,可以推导出:
网络设备分配给终端2的第二资源集合为:RB START+l+i·N,其中,RB START=100,l∈L,L={0},i∈M,M={0,2,4},N=10。那么,第二资源集合为:
100+{0}+{0,2,4}*10={100,120,140}
上面这个集合表示的资源块即图9中的RB#100、RB#120、RB#140,为终端2在子带#1上的第0个跳频周期内用于上行传输的资源块。
对于终端2,RB START=100(子带#1上的第0个跳频周期内用于上行传输的起始RB),N hopping_offset=30,
Figure PCTCN2018104233-appb-000105
k=1。那么,
第1个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000106
为:(100+30)mod100+100=130,即RB#130。
第2个跳频周期内用于上行传输的起始
Figure PCTCN2018104233-appb-000107
为:(130+30)mod100+100=160,即RB#160。
后续各个跳频周期内用于上行传输的起始RB可依此类推,不再赘述。
对于终端2,第1个跳频周期内用于上行传输的资源块集合为:(130+{0}+{0,2,4}*10)mod100+100={130,150,170},即RB#130、RB#150、RB#170。
对于终端2,第2个跳频周期内用于上行传输的资源块集合为:(160+{0}+{0,2,4}*10)mod100+100={160,180,100},即RB#160、RB#180、RB#100。从此可以看出,跳频可以是 基于子带为总跳频带宽的循环跳频。
终端2在后续各个跳频周期内用于上行传输的资源块可依此类推,不再赘述。
参考图9可以看出,通过跳频,网络设备在子带上分配给各个终端的资源块(如子带#0上的interlace#0中的RB#0、RB#10)在一定时间内(第0个至第4个跳频周期内)累积占用的带宽跨度为91个RB,这91个RB的带宽占用率等于90*0.18M/20M=81.9%。也即是说,这91个RB在单个子带中的占比大于80%,满足OCB要求。而且,资源调度的粒度显著缩小了,提高了资源调度的灵活性。
(五)实施例五
本实施例中,系统带宽被划分成多个子带。各个子带上的资源分配可以是独立的或者相同的。在进行资源分配时,网络设备采用不同子带上的第一资源集合中的部分RB作为基本调度单元。也即是说,网络设备分配给终端的第二资源集合由不同子带上的至少一个第一资源集合中的部分资源块构成。
具体的,在单个子带上,网络设备分配给终端的第二资源集合可表示为:RB START+l+i·N,其中,RB START表示在单个子带上网络设备分配给所述终端的起始资源块的索引;l∈L,集合L包括单个子带上第二资源集合所属的第一资源集合的索引;N表示第一资源集合中两个相邻RB之间的间距;i∈M,集合M包括单个子带上分配给终端的资源块在第二资源集合所属的第一资源集合中的索引。
具体的,在进行频率跳变时,网络设备在单个子带上分配给终端的第二资源集合周期性地在子带上进行跳变。第p个跳频周期内用于上行传输的资源块集合可表示为:
Figure PCTCN2018104233-appb-000108
其中,
Figure PCTCN2018104233-appb-000109
表示第p(p>1)个跳频周期内单个子带上用于上行传输的起始RB的索引;
Figure PCTCN2018104233-appb-000110
表示子带的带宽,k∈K,集合K包括第二资源集合所属子带的索引。且满足:
Figure PCTCN2018104233-appb-000111
Figure PCTCN2018104233-appb-000112
其中,
Figure PCTCN2018104233-appb-000113
表示第p-1个跳频周期内单个子带上用于上行传输的起始RB的索引;N hopping_offset为跳频偏移量。
下面以图10为例,说明实施例五的具体实施。
假设1:系统带宽为40MHz,子载波间隔为15kHZ。传输带宽为
Figure PCTCN2018104233-appb-000114
由两个20MHz的子带构成,各个子带的带宽
Figure PCTCN2018104233-appb-000115
各个子带上的第一资源集合为均匀分布在频域上的10个RB构成的interlace(如图10中的子带#0上的interlace#0为RB#0,RB#10,RB#20,…,RB#80,RB#90、子带#1上的interlace#0为RB#100,RB#110,RB#120,…,RB#180,RB#190。
假设2:各个子带上的第一资源集合中相邻两个RB之间的间隔(即RB间隔)为10个RB。子带#0上的跳频偏移量(hopping offset)为20个RB,子带#1上的跳频偏移量(hopping offset)为30个RB。子带#0上的资源分配从RB#0开始(即RB START=0)。子带#1上的资 源分配从RB#100开始(即RB START=100)。
在子带#0上,网络设备分配给终端1的资源块为:RB START+l+i·N,其中,RB START=0,l∈L,L={0},i∈M,M={0,1},N=10。那么,第二资源集合为:
0+{0}+{0,1}*10={0,10}
在子带#1上,网络设备分配给终端1的资源块为:RB START+l+i·N,其中,RB START=100,l∈L,L={0},i∈M,M={0,2,4},N=10。那么,第二资源集合为:
100+{0}+{0,2,4}*10={100,120,140}
也即是说,在子带#0和子带#1上,网络设备分配给终端1的第二资源集合为:{0,10}&{100,120,140}。
在子带#1上,第1个跳频周期内用于上行传输的资源块集合为:(20+{0}+{0,1}*10)mod100={20,30},即RB#20、RB#30。
在子带#2上,第1个跳频周期内用于上行传输的资源块集合为:(130+{0}+{0,2,4}*10)mod100+100={130,150,170},即RB#130、RB#150、RB#170。
也即是说,在子带#0和子带#1上,第1个跳频周期内用于上行传输的资源块集合为:{20,30}&{130,150,170}。
在子带#1上,第2个跳频周期内用于上行传输的资源块集合为:(40+{0}+{0,1}*10)mod100={40,50},即RB#40、RB#50。
在子带#2上,第2个跳频周期内用于上行传输的资源块集合为:(160+{0}+{0,2,4}*10)mod100+100={160,180,100},即RB#160、RB#180、RB#100。
也即是说,在子带#0和子带#1上,第2个跳频周期内用于上行传输的资源块集合为:{40,50}&{160,180,100}。
后续各个跳频周期内用于上行传输的资源块几个可依此类推,不再赘述。
参考图10可以看出,通过跳频,网络设备在不同子带上分配给各个终端的资源块(如子带#0上的interlace#0中的RB#0、RB#10,以及子带#1上的interlace#0中的RB#100、RB#120、RB#140)在一定时间内(第0个至第3个跳频周期内)累积占用的带宽跨度为191个RB,这191个RB的带宽占用率等于190*0.18M/40M=85.5%。也即是说,这191个RB在系统带宽中的占比大于80%,满足OCB要求。而且,资源调度的粒度显著缩小了,提高了资源调度的灵活性。
在实施例四或实施例五中,各个子带上的第一资源集合的结构可以相同或不同。在单个子带上,网络设备可以调度一个或多个第一资源集合中的部分RB给终端。
可以理解的,在实施例四或实施例五中,对于系统传输带宽的举例,仅为了便于描述方案,不应构成限定。进行跳频时,可以在系统总传输带宽的范围内进行循环,或者可以下子带对应的传输带宽范围内进行循环,或者,在所述第二资源集合所述的第一资源集合内进行循环。
另外,在上述任意一个实施例中,为了便于网络设备的正确接收,在发送上行信号时,终端还可以向网络设备发送参考信号。其中,在上行传输占用的每一个时间单元内,承载该参考信号的资源可以与承载上行信号的资源块的频域位置相同。可选的,参考信号在时 域上可以位于每一个上行传输间隔中的指定位置(例如第一个符号)上。
参见图11,图11是本申请的一个实施例提供的无线通信系统10,以及无线通信系统10中的网络设备500、终端400。网络设备500可以是前述方法实施例中的上述网络设备,可用于接收终端的调度请求,在非授权频段上为终端分配上行信号传输资源。终端400可以是前述方法实施例中的上述终端,可以按照网络设备500的调度指示在LBT监听到的空闲带宽进行上行传输。
如图11所示,网络设备500可包括:接收单元501和发送单元503。其中:
发送单元503,可用于用于向终端400发送资源调度信息和跳频信息,其中资源调度信息用于指示网络设备分配给终端400的第二资源集合,跳频信息用于指示第二资源集合关联的跳频方式。其中,第二资源集合可以由第一资源集合中的部分资源块构成,第一资源集合为在频域上均匀分布的整数个资源块。
接收单元501,可用于接收终端400发送的上行信号,该上行信号承载于终端400监听到的空闲的用于上行传输的资源块上。这里,用于上行传输的资源块分布在多个时间单元上,其中,每一个时间单元上的用于上行传输的资源块的结构与第二资源集合的结构相同,相邻时间单元上的用于上行传输的资源块的频率位置相差第一偏移量。
如图11所示,终端400可包括:发送单元401和接收单元403。其中:
接收单元403,可用于接收网络设备500发送的资源调度信息,资源调度信息用于指示网络设备500分配给终端的第二资源集合。其中,第二资源集合可以由第一资源集合中的部分资源块构成,第一资源集合为在频域上均匀分布的整数个资源块。
发送单元401,可用于根据资源调度信息,在监听到的空闲的用于上行传输的资源块上进行上行传输。这里,用于上行传输的资源块可以分布在多个时间单元上,其中,每一个时间单元上的用于上行传输的资源块的结构与第二资源集合的结构相同,相邻时间单元上的用于上行传输的资源块的频率位置相差第一偏移量。
可选的,无需网络设备500向终端400发送跳频信息,网络设备500分配给终端400的第二资源集合所依从的规定的频率跳变图样(frequency hopping pattern)也可以由协议定义的。也即是说,跳频信息中的一项或多项可以由协议定义。例如,协议可以定义跳频偏移量为10个RB,或者定义跳频周期为1个微时隙等。示例仅仅用于解释本申请,不应构成限定。
本申请中,可以通过如下方式对网络设备500分配给终端400的资源块进行频率跳变。
第一种方式,基于整个系统带宽进行循环的频率跳变。这里,系统带宽被划分成多个第一资源集合,第一资源集合由均匀分布在整个系统带宽上的多个RB组成。
可选的,网络设备500分配给终端400的第二资源集合可以由第一资源集合中的整数个连续的或者非连续的资源块构成。
可选的,网络设备500分配给终端400的第二资源集合可以由至少一个第一资源集合中的部分资源块构成。
第二种方式,基于子带进行循环的频率跳变。这里,第一资源集合可以为均匀分布在单个子带上的整数个资源块。
可选的,网络设备500分配给终端400的第二资源集合由同一个子带上的至少一个第一资源集合中的部分资源块构成。
可选的,网络设备500分配给终端400的第二资源集合由不同子带上的至少一个第一资源集合中的部分资源块构成。
可以理解的,网络设备500和终端400各自包括的各个功能单元的具体实现可参考前述实施例,这里不再赘述。
另外,本发明实施例还提供了一种无线通信系统,所述无线通信系统可以是图2所示的无线通信系统200,也可以是图11所示的无线通信系统10,可包括:网络设备和终端。其中,所述终端可以是前述实施例中的终端,所述网络设备可以是前述实施例中的网络设备。具体的,所述终端可以是图3所示的终端300,所述网络设备可以是图4所示的网络设备400。所述终端也可以是图11所示的终端400,所示网络设备也可以是图11所示的网络设备500。关于所述网络和所述终端的具体实现可参考前述实施例,这里不再赘述。
以图3所示终端为例,终端处理器304用于调用存储于所述存储器312中的指令来控制发射器306在非授权频段和/或授权频段进行发送以及控制接收器308在非授权频段和/或授权频段进行接收。发射器306用于支持终端执行对数据和/或信令进行发射的过程。接收器308用于支持终端执行对数据和/或信令进行接收的过程。存储器312用于存储终端的程序代码和数据。
具体的,接收器308可用于接收网络设备发送的资源调度信息,该资源调度信息可用于指示网络设备分配给终端的第二资源集合。其中,第二资源集合可包括至少一个资源块,该至少一个资源块来自第一资源集合,第一资源集合为在频域上均匀分布的整数个资源块。发射器306可用于根据所述资源调度信息,在监听到的空闲的频域资源上进行上行传输。这里,上行传输占用多个时间单元,其中,每一个时间单元上的用于上行传输的资源块的资源结构与第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。这样,可以保证上行传输在一定时间(多个跳频周期)内累积占用的带宽满足OCB要求,而且可实现更灵活的资源分配。
关于终端中各部件的具体实现,可参考图5-图10分别对应的实施例,这里不再赘述。
以图4所示网络设备为例,网络设备处理器405用于控制发射器407在非授权频段和/或授权频段进行发送以及控制接收器409在非授权频段和/或授权频段进行接收。发射器407用于支持网络设备执行对数据和/或信令进行发射的过程。接收器409用于支持网络设备执行对数据和/或信令进行接收的过程。存储器405用于存储网络设备的程序代码和数据。
具体的,发射器407可用于向终端设备发送资源调度信息和跳频信息,其中,资源调度信息可用于指示网络设备分配给所述终端的第二资源集合,跳频信息可用于指示第二资源集合关联的频率跳变图样。其中,第二资源集合包括至少一个资源块,该至少一个资源块来自第一资源集合,第一资源集合为在频域上均匀分布的整数个资源块。接收器409可用于接收终端设备发送的上行信号。这里,上行信号承载于终端监听到的空闲的用于上行传输的频域资源上。上行信号占用多个时间单元,其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行 传输的资源块的频率位置不同。
关于网络设备中各部件的具体实现,可参考图5-图10分别对应的实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (36)

  1. 一种信号传输方法,其特征在于,包括:
    终端设备接收网络设备发送的资源调度信息,所述资源调度信息用于指示网络设备分配给终端的第二资源集合;其中,所述第二资源集合包括至少一个资源块,所述至少一个资源块来自第一资源集合,所述第一资源集合为在频域上均匀分布的整数个资源块;
    所述终端设备根据所述资源调度信息,在监听到的空闲的频域资源上进行上行传输,所述上行传输占用多个时间单元;其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。
  2. 如权利要求1所述的方法,其特征在于,所述第一资源集合为均匀分布在系统带宽上的整数个资源块,其中,所述整数个资源块的资源结构与所述系统带宽和/或子载波间隔相关。
  3. 如权利要求2所述的方法,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引。
  4. 如权利要求1所述的方法,其特征在于,所述第一资源集合为均匀分布在子带上的整数个资源块;所述第二资源集合由同一个子带上的至少一个所述第一资源集合中的部分资源块构成,或者,所述第二资源集合由不同子带上的至少一个所述第一资源集合中的部分资源块构成。
  5. 如权利要求4所述的方法,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引、所述第二资源集合所处的子带的索引。
  6. 如权利要求1-3中任一项所述的方法,其特征在于,所述相邻时间单元上的用于上行传输的资源块的频率位置相差跳频偏移量;第p个跳频周期内用于上行传输的资源块集合为:
    Figure PCTCN2018104233-appb-100001
    其中,
    Figure PCTCN2018104233-appb-100002
    表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
    Figure PCTCN2018104233-appb-100003
    表示能够用于跳频传输的资源块的总数量;l∈L,集合L包括所述第二资源集合所属的第一资源集合的索引;i∈M,集合M包括所述第二资源集合中的资源块在所述第二资源集合所属的第一资源集合中的索引;N为所述第一资源集合中两个相邻RB之间的间距;且满足:
    Figure PCTCN2018104233-appb-100004
    Figure PCTCN2018104233-appb-100005
    其中,RB START表示分配给所述终端的起始资源块的索引;
    Figure PCTCN2018104233-appb-100006
    表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为所述跳频偏移量。
  7. 如权利要求4或5所述的方法,其特征在于,在单个子带上,所述相邻时间单元上的用于上行传输的资源块的频率位置相差跳频偏移量;在单个子带上,第p个跳频周期内用于上行传输的资源块集合为:
    Figure PCTCN2018104233-appb-100007
    其中,
    Figure PCTCN2018104233-appb-100008
    表示单个子带上第p(p>1)个跳频周期内用于上行传输的起始RB的索引;l∈L,集合L包括子带上分配给终端的资源块所属的第一资源集合的索引;i∈M,集合M包括单个子带上分配给终端的资源块在所述单个子带上分配给终端的资源块所属的第一资源集合中的索引;N为所述第一资源集合中两个相邻RB之间的间距;k∈K,集合K包括所述第二资源集合所处的子带的索引;
    Figure PCTCN2018104233-appb-100009
    表示子带的带宽;且满足:
    Figure PCTCN2018104233-appb-100010
    Figure PCTCN2018104233-appb-100011
    其中,RB START表示单个子带上分配给所述终端的起始资源块的索引;
    Figure PCTCN2018104233-appb-100012
    表示单个子带上第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为所述跳频偏移量。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,还包括:所述终端设备向所述网络设备发送参考信号;其中,在所述上行传输占用的每一个时间单元内,承载所述参考信号的资源与承载上行信号的资源块的频域位置相同。
  9. 一种信号传输方法,其特征在于,包括:
    网络设备向终端设备发送资源调度信息和跳频信息,其中所述资源调度信息用于指示网络设备分配给所述终端的第二资源集合,所述跳频信息用于指示所述第二资源集合关联的频率跳变图样;其中,所述第二资源集合包括至少一个资源块,所述至少一个资源块来自第一资源集合,所述第一资源集合为在频域上均匀分布的整数个资源块;
    所述网络设备接收所述终端设备发送的上行信号;所述上行信号承载于终端监听到的空闲的用于上行传输的频域资源上;所述上行信号占用多个时间单元;其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。
  10. 如权利要求9所述的方法,其特征在于,所述第一资源集合为均匀分布在系统带 宽上的整数个资源块,其中,所述整数个资源块的资源结构与所述系统带宽和/或子载波间隔相关。
  11. 如权利要求10所述的方法,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引。
  12. 如权利要求9所述的方法,其特征在于,所述第一资源集合为均匀分布在子带上的整数个资源块;所述第二资源集合由同一个子带上的至少一个所述第一资源集合中的部分资源块构成,或者,所述第二资源集合由不同子带上的至少一个所述第一资源集合中的部分资源块构成。
  13. 如权利要求12所述的方法,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引、所述第二资源集合所处的子带的索引。
  14. 权利要求9-13中任一项所述的方法,其特征在于,所述跳频信息包括以下至少一项:所述第二资源集合关联的跳频偏移量N hopping_offset、所述第二资源集合关联的跳频总带宽或所述第二资源集合关联的跳频周期。
  15. 权利要求9-13中任一项所述的方法,其特征在于,还包括:所述网络设备接收所述终端设备发送的参考信号;其中,在所述上行传输占用的每一个时间单元内,承载所述参考信号的资源与承载上行信号的资源块的频域位置相同。
  16. 一种终端,其特征在于,包括:
    接收单元,用于接收网络设备发送的资源调度信息,所述资源调度信息用于指示网络设备分配给终端的第二资源集合;其中,所述第二资源集合来自第一资源集合,所述第一资源集合为在频域上均匀分布的整数个资源块;
    发送单元,用于根据所述资源调度信息,在监听到的空闲的频域资源上进行上行传输,所述上行传输占用多个时间单元;其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。
  17. 如权利要求16所述的终端,其特征在于,所述第一资源集合为均匀分布在系统带宽上的整数个资源块,其中,所述整数个资源块的资源结构与所述系统带宽和/或子载波间隔相关。
  18. 如权利要求17所述的终端,其特征在于,所述资源调度信息包括:所述第二资源 集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引。
  19. 如权利要求16所述的终端,其特征在于,所述第一资源集合为均匀分布在子带上的整数个资源块;所述第二资源集合由同一个子带上的至少一个所述第一资源集合中的部分资源块构成,或者,所述第二资源集合由不同子带上的至少一个所述第一资源集合中的部分资源块构成。
  20. 如权利要求19所述的终端,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引、所述第二资源集合所处的子带的索引。
  21. 如权利要求16-18中任一项所述的终端,其特征在于,所述相邻时间单元上的用于上行传输的资源块的频率位置相差跳频偏移量;第p个跳频周期内用于上行传输的资源块集合为:
    Figure PCTCN2018104233-appb-100013
    其中,
    Figure PCTCN2018104233-appb-100014
    表示第p(p>1)个跳频周期内用于上行传输的起始RB的索引;
    Figure PCTCN2018104233-appb-100015
    表示能够用于跳频传输的资源块的总数量;l∈L,集合L包括所述第二资源集合所属的第一资源集合的索引;i∈M,集合M包括所述第二资源集合中的资源块在所述第二资源集合所属的第一资源集合中的索引;N为所述第一资源集合中两个相邻RB之间的间距;且满足:
    Figure PCTCN2018104233-appb-100016
    Figure PCTCN2018104233-appb-100017
    其中,RB START表示分配给所述终端的起始资源块的索引;
    Figure PCTCN2018104233-appb-100018
    表示第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为所述跳频偏移量。
  22. 如权利要求19或20所述的终端,其特征在于,所述相邻时间单元上的用于上行传输的资源块的频率位置相差跳频偏移量;在单个子带上,第p个跳频周期内用于上行传输的资源块集合为:
    Figure PCTCN2018104233-appb-100019
    其中,
    Figure PCTCN2018104233-appb-100020
    表示单个子带上第p(p>1)个跳频周期内用于上行传输的起始RB的索引;l∈L,集合L包括子带上分配给终端的资源块所属的第一资源集合的索引;i∈M,集合M包括单个子带上分配给终端的资源块在所述单个子带上分配给终端的资源块所属的第一资源集合中的索引;N为所述第一资源集合中两个相邻RB之间的间距;k∈K,集合K包括所述第二资源集合所处的子带的索引;
    Figure PCTCN2018104233-appb-100021
    表示子带的带宽;且满足:
    Figure PCTCN2018104233-appb-100022
    Figure PCTCN2018104233-appb-100023
    其中,RB START表示单个子带上分配给所述终端的起始资源块的索引;
    Figure PCTCN2018104233-appb-100024
    表示单个子带上第p-1个跳频周期内用于上行传输的起始RB的索引;N hopping_offset为所述跳频偏移量。
  23. 如权利要求16-22中任一项所述的终端,其特征在于,所述发送单元用于向所述网络设备发送参考信号;其中,在每一个上行传输间隔内,承载所述参考信号的资源与承载上行信号的资源块的频域位置相同。
  24. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送资源调度信息和跳频信息,其中所述资源调度信息用于指示网络设备分配给所述终端的第二资源集合,所述跳频信息用于指示所述第二资源集合关联的频率跳变图样;其中,所述第二资源集合包括至少一个资源块,所述至少一个资源块来自第一资源集合,所述第一资源集合为在频域上均匀分布的整数个资源块;
    接收单元,用于接收所述终端发送的上行信号;所述上行信号承载于终端监听到的空闲的用于上行传输的频域资源上;所述上行信号占用多个时间单元;其中,每一个时间单元上的用于上行传输的资源块的资源结构与所述第二资源集合的资源结构相同,相邻时间单元上的用于上行传输的资源块的频率位置不同。
  25. 如权利要求24所述的网络设备,其特征在于,所述第一资源集合为均匀分布在系统带宽上的整数个资源块,其中,所述整数个资源块的资源结构与所述系统带宽和/或子载波间隔相关。
  26. 如权利要求25所述的网络设备,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引。
  27. 如权利要求24所述的网络设备,其特征在于,所述第一资源集合为均匀分布在子带上的整数个资源块;所述第二资源集合由同一个子带上的至少一个所述第一资源集合中的部分资源块构成,或者,所述第二资源集合由不同子带上的至少一个所述第一资源集合中的部分资源块构成。
  28. 如权利要求27所述的网络设备,其特征在于,所述资源调度信息包括:所述第二资源集合所属的所述第一资源集合的索引、所述第二资源集合在所述第一资源集合中的索引、所述第二资源集合所处的子带的索引。
  29. 如权利要求24-28中任一项所述的网络设备,其特征在于,所述跳频信息包括以下至少一项:所述第二资源集合关联的跳频偏移量N hopping_offset、所述第二资源集合关联的跳频总带宽或所述第二资源集合关联的跳频周期。
  30. 如权利要求24-28中任一项所述的网络设备,其特征在于,所述接收单元还用于接收所述终端设备发送的参考信号;其中,在所述上行传输占用的每一个时间单元内,承载所述参考信号的资源与承载上行信号的资源块的频域位置相同。
  31. 一种计算机可读存储介质,其特征在于,所述可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-8中任一项所述的信号传输方法。
  32. 一种计算机可读存储介质,其特征在于,所述可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求9-15任一项所述的信号传输方法。
  33. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-8任一项所述的信号传输方法。
  34. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求9-15任一项所述的信号传输方法。
  35. 一种装置,其特征在于,包括:处理器,以及耦合于所述处理器的一个或多个接口;其中:
    所述处理器用于执行权利要求1-8任一项所述的信号传输方法,所述接口用于输出所述处理器的执行结果。
  36. 一种装置,其特征在于,包括:处理器,以及耦合于所述处理器的一个或多个接口;其中:
    所述处理器用于执行权利要求9-15任一项所述的信号传输方法,所述接口用于输出所述处理器的执行结果。
PCT/CN2018/104233 2017-09-05 2018-09-05 一种信号传输方法、相关设备及系统 WO2019047868A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880057795.6A CN111066256B (zh) 2017-09-05 2018-09-05 一种信号传输方法及相关设备
EP18853549.6A EP3667930B1 (en) 2017-09-05 2018-09-05 Signal transmission method, related device and system
US16/808,891 US11218273B2 (en) 2017-09-05 2020-03-04 Signal transmission method, related device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710794724.1A CN109428626B (zh) 2017-09-05 2017-09-05 一种信号传输方法、相关设备及系统
CN201710794724.1 2017-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/808,891 Continuation US11218273B2 (en) 2017-09-05 2020-03-04 Signal transmission method, related device, and system

Publications (1)

Publication Number Publication Date
WO2019047868A1 true WO2019047868A1 (zh) 2019-03-14

Family

ID=65514213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104233 WO2019047868A1 (zh) 2017-09-05 2018-09-05 一种信号传输方法、相关设备及系统

Country Status (4)

Country Link
US (1) US11218273B2 (zh)
EP (1) EP3667930B1 (zh)
CN (2) CN109428626B (zh)
WO (1) WO2019047868A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172504B2 (en) * 2018-09-27 2021-11-09 Qualcomm Incorporated Coordination of listen before talk structure in new radio-unlicensed multi-channel access
CN111385882B (zh) * 2018-12-28 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021098054A1 (en) * 2020-02-14 2021-05-27 Zte Corporation A system and method for signal transmission
CN114080043B (zh) * 2020-08-12 2023-11-10 维沃移动通信有限公司 资源传输方法、装置及通信设备
CN114286330A (zh) * 2020-09-28 2022-04-05 华为技术有限公司 一种定位参考信号prs的关联方法及设备通信装置
WO2022087957A1 (en) * 2020-10-29 2022-05-05 Apple Inc. Enhanced sidelink channel cellular coverage
CN114765859A (zh) * 2020-12-31 2022-07-19 维沃移动通信有限公司 数据传输方法、装置及通信设备
WO2022241745A1 (en) * 2021-05-21 2022-11-24 Zte Corporation Reference signal transmission techniques
CN115883290A (zh) * 2021-09-30 2023-03-31 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304280A (zh) * 2002-12-10 2008-11-12 艾达普特4有限公司 应用频谱再用收发器的无线电通信系统
US20170332440A1 (en) * 2016-05-10 2017-11-16 Qualcomm Incorporated Internet-of-things design for unlicensed spectrum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448653B1 (ko) * 2007-10-01 2014-10-15 엘지전자 주식회사 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
BR112012000271A2 (pt) * 2009-07-06 2016-02-16 Rockstar Bidco Lp atribuição de recursos baseada em sinalização de potência e prioridade
WO2011016252A1 (ja) * 2009-08-07 2011-02-10 パナソニック株式会社 無線基地局装置および無線通信方法
CN103067327B (zh) * 2011-10-24 2016-09-07 华为技术有限公司 信号传输方法和信号传输装置
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304280A (zh) * 2002-12-10 2008-11-12 艾达普特4有限公司 应用频谱再用收发器的无线电通信系统
US20170332440A1 (en) * 2016-05-10 2017-11-16 Qualcomm Incorporated Internet-of-things design for unlicensed spectrum

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Considerations on eLAA PRACH design", 3GPP TSG RAN WG1 MEETING #85 R1-165119, 27 May 2016 (2016-05-27), XP051089842 *
MEDIATEK INC: "Considerations on PRACH for LAA", 3GPP TSG RAN WG1 MEETING #84 R1-160975, 19 February 2016 (2016-02-19), XP051054281 *
MEDIATEK INC: "PRACH design in eLAA", 3GPP TSG RAN WG1 MEETING #84BIS R1-162940, 15 April 2016 (2016-04-15), XP051080424 *

Also Published As

Publication number Publication date
CN111066256B (zh) 2021-04-20
EP3667930A1 (en) 2020-06-17
EP3667930B1 (en) 2023-08-16
EP3667930A4 (en) 2020-08-26
US11218273B2 (en) 2022-01-04
US20200204327A1 (en) 2020-06-25
CN109428626A (zh) 2019-03-05
CN111066256A (zh) 2020-04-24
CN109428626B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
US11387969B2 (en) Signal transmission method, related device, and system
WO2019047868A1 (zh) 一种信号传输方法、相关设备及系统
WO2020248897A1 (zh) 功率配置方法及装置
CN108366424B (zh) 一种资源分配方法、相关设备及系统
JP7197700B2 (ja) ガード・バンド指示方法及び装置
CN111108800B (zh) 一种通信方法和装置
WO2018137697A1 (zh) 一种资源分配方法、相关设备及系统
CN113678534A (zh) 用于无线网络的针对带宽部分的资源配置
CN109275190B (zh) 一种通信方法及装置
WO2020164635A1 (zh) 初始信号传输方法、装置
CN112771974A (zh) 用于多时隙调度的harq过程管理
EP4022818B1 (en) A method for allocating frequency resources in a wideband system
CN112564873A (zh) 参考信号传输方法及通信装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2021134382A1 (zh) 一种资源指示方法、装置和系统
WO2019214577A1 (zh) 信号传输方法、装置
CN107113777A (zh) 一种多信道资源指示和确定方法、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853549

Country of ref document: EP

Effective date: 20200310