WO2011016252A1 - 無線基地局装置および無線通信方法 - Google Patents

無線基地局装置および無線通信方法 Download PDF

Info

Publication number
WO2011016252A1
WO2011016252A1 PCT/JP2010/004969 JP2010004969W WO2011016252A1 WO 2011016252 A1 WO2011016252 A1 WO 2011016252A1 JP 2010004969 W JP2010004969 W JP 2010004969W WO 2011016252 A1 WO2011016252 A1 WO 2011016252A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
rbg
allocation
frequency hopping
base station
Prior art date
Application number
PCT/JP2010/004969
Other languages
English (en)
French (fr)
Inventor
小川佳彦
西尾昭彦
岩井敬
中尾正悟
今村大地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/384,268 priority Critical patent/US20120115526A1/en
Priority to JP2011525803A priority patent/JP5580315B2/ja
Publication of WO2011016252A1 publication Critical patent/WO2011016252A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a radio base station apparatus and a radio communication method.
  • 3GPP LTE (3rd Generation Partnership Project Project Long Term Evolution) Uplink supports only continuous band allocation of data signals.
  • a radio base station apparatus hereinafter simply referred to as a base station
  • the terminal varies the transmission band to which the data signal is allocated between the slots. For this reason, in frequency hopping, even when a data signal is assigned to a continuous band in each slot, a frequency diversity effect can be obtained by changing the transmission band to which the data signal is assigned between slots.
  • the base station notifies the terminal of an offset for determining a band to which frequency hopping is applied.
  • a bandwidth of a band to which a control channel for example, PUCCH (PhysicalCHUplink Control CHannel)
  • control channels such as PUCCH are set at both ends in the system band. Therefore, the terminal determines a frequency band obtained by removing a frequency band indicated by an offset from both ends of the system band as a band to which frequency hopping is applied. Further, a band to which frequency hopping is applied is divided into a plurality of subbands based on information on the number of divisions notified from the base station (subband information).
  • the terminal performs frequency hopping on the transmission band of the data signal for each of the plurality of subbands.
  • a hopping pattern for frequency hopping the transmission band is defined in a long section (for example, in units of frames), and the frequency hopping patterns for different cells are different from each other.
  • LTE-A LTE-Advanced
  • LTE-Advanced LTE-Advanced
  • RB resource block
  • Type 0 allocation for example, a plurality of RBs constituting a system band are grouped into a plurality of RB groups (RBG: Resource Block Group) for every P consecutive RBs.
  • RBG Resource Block Group
  • a base station sets the signaling bit (1 or 0) which shows whether to allocate a resource with respect to each terminal in a RBG unit. For example, the base station sets an RBG signaling bit to be assigned as a transmission band of a certain terminal to 1, and sets an RBG signaling bit not to be assigned as a transmission band of a certain terminal to 0. Then, the base station notifies each terminal of a bitmap composed of signaling bits of each RBG.
  • the terminal assigns P RBs in the RBG with the signaling bit of 1 as the transmission band of the terminal, and transmits P RBs in the RBG with the signaling bit of 0 in the transmission of the terminal. It is determined that it cannot be allocated as a bandwidth.
  • RBG size P increases as the system bandwidth increases.
  • a terminal that performs frequency hopping occupies RBs corresponding to a plurality of RBGs in Type 0 assignment. There is a case. This will be specifically described below. In the following description, as shown in FIG. 2, it is assumed that the system bandwidth is 50 RBs.
  • the base station notifies the frequency hopping terminal of control information including an offset (3RB) corresponding to the PUCCH region and the number of subbands (four), and the frequency hopping terminal is similar to the base station in FIG. Bands (RB # 3 to # 46) to which the frequency hopping shown is applied are divided to set four subbands # 0 to # 3. Then, the frequency hopping terminal frequency hops the transmission band of the data signal to the adjacent subband. Specifically, as shown in FIG. 2, the frequency hopping terminal frequency-hops the transmission band of the data signal by 11 RBs (one subband) for each slot as a transmission time unit.
  • the RBG size P in Type 0 allocation is 3 RBs. Therefore, in FIG. 2, a base station and a terminal to which discontinuous band allocation is performed (hereinafter, referred to as a discontinuous band allocation target terminal) group a plurality of RBs in order from RB # 0 to obtain 16 RBG # Set 0 to # 15.
  • RBG # 0 including RB # 0 to RB # 0 and RBG # 15 including RB # 47 which are PUCCH regions are not allocated to the data signal of the discontinuous band allocation target terminal. That is, the base station sets RBGs # 1 to # 14 shown in FIG. 2 as RBGs that can be allocated to the discontinuous band allocation target terminals.
  • the base station allocates 2RBs RB # 3 and # 4 to the frequency hopping terminal UE # 1 before frequency hopping (slot # 1 shown in FIG. 2), and the frequency hopping terminal A case will be described in which 2RBs of RB # 30 and # 31 are allocated to UE # 2.
  • UE # 1 after frequency hopping (slot # 2 shown in FIG. 2), UE # 1 performs RB # 14 frequency hopping by 11 RB from RB # 3 and # 4 (that is, frequency hopping by one subband), Assigned to # 15. Similarly, UE # 2 is assigned to RB # 41 and # 42 that have been frequency hopped by 11 RB from RB # 30 and # 31. Also, UE # 1 and UE # 2 perform frequency hopping in slots (not shown) after slot # 2 shown in FIG. 2 in the same manner as frequency hopping in slot # 1 and slot # 2 shown in FIG. repeat.
  • UE # 1 (or UE # 2) is assigned to RB # 3 and # 4 (or RB # 30 and # 31) in the odd-numbered slots, as in slot # 1 shown in FIG.
  • the slots are assigned to RB # 14 and # 15 (or RB # 41 and # 42) as in slot # 2 shown in FIG.
  • RB # 3, # 4, # 14, # 15, RB # 30, # 31, # 41, and # 42 are occupied by the frequency hopping terminals UE # 1 and UE # 2 in the system band shown in FIG. Is done.
  • the base station assigns RB # 3, # 4, assigned to the frequency hopping terminals UE # 1 and UE # 2 among the RBGs # 1 to # 14 that can be assigned to the discontinuous band assignment target terminals.
  • An RBG that does not include # 14, # 15, # 30, # 31, # 41, and # 42 is used.
  • the base station selects RBG # 1 including RB # 3 and # 4, RBG # 4 and RB # 15 including RB # 14 among RBG # 1 to # 14.
  • RBG # 5 including RB # 30, RBG # 10 including RB # 31, RBG # 13 including RB # 41, and RBG # 14 including RB # 42 cannot be allocated to the discontinuous band allocation target terminals (allocation) Impossible). That is, the base station can allocate 8 RBGs of RBGs # 2, # 3, # 6 to # 9, # 11, and # 12 shown in FIG. 2 to the discontinuous band allocation target terminals.
  • the number of RBs allocated to the frequency hopping terminals UE # 1 and UE # 2 is two.
  • a voice communication terminal VoIP terminal
  • 2RB which is an intermediate value of the number of RBs (1 to 3RB) that are highly likely to be allocated, is assumed as the number of RBs allocated to each terminal (UE # 1 and UE # 2).
  • RB # 14 and RB # 15 allocated to UE # 1 are included in RBG # 4 and RBG # 5 which are different from each other. That is, in the slot 2 shown in FIG. 2, the two RBs (RB # 14, # 15) allocated to UE # 1 are two RBGs (RB # 14, # 15) regardless of the number of RBs that can be accommodated in one RBG in the Type0 allocation. RBG # 4 and # 5) are allocated. The same applies to UE # 2 shown in FIG.
  • An object of the present invention is to provide a radio base station apparatus and a radio communication method capable of suppressing the amount of RBG occupancy in Type 0 allocation by a terminal that performs frequency hopping and flexibly performing resource allocation in Type 0 allocation. .
  • a plurality of resource blocks constituting a system band are grouped into a plurality of resource block groups for each of P resource blocks, and control channels assigned to both ends in the system band are allocated.
  • a configuration is a natural number times.
  • a plurality of resource blocks constituting a system band are grouped into a plurality of resource block groups for every P resource blocks, and control channels allocated to both ends in the system band are allocated.
  • a wireless communication method used in a wireless communication system in which a second band other than a possible first band is divided into a plurality of subbands, and the plurality of resources for a non-continuous band allocation target terminal device Assigning blocks in units of resource block groups; extracting data signals frequency-hopped for each of the plurality of subbands by a frequency hopping terminal apparatus from the plurality of resource blocks in the second band;
  • the bandwidth of each of the plurality of subbands is P natural It was to be a double.
  • the amount of RBG occupancy in Type 0 allocation by a terminal that performs frequency hopping can be suppressed, and resource allocation in Type 0 allocation can be performed flexibly.
  • the figure which shows the relationship between the bandwidth of the system band in LTE, and RBG size of Type0 allocation The figure for demonstrating RBG which cannot be allocated in Type0 allocation, when using frequency hopping and Type0 allocation
  • the figure which shows the example of a setting of the subband which concerns on Embodiment 1 of this invention, and RBG The figure for demonstrating RB which cannot be allocated with respect to a frequency hopping terminal
  • a terminal for frequency hopping a transmission band of a data signal (uplink data) assigned to a continuous band, and a data signal (uplink data) are assigned to a discontinuous band.
  • Terminals discontinuous band allocation target terminals
  • a plurality of RBs constituting the system band are grouped into a plurality of RBGs for every P RBs. Then, the base station assigns a plurality of RBs to the non-continuous band assignment target terminal in units of RBGs, for example, Type 0 assignment, and indicates whether or not RBGs for transmitting data signals are assigned.
  • RBGs for example, Type 0 assignment
  • the base station notifies the frequency hopping terminal of an offset for determining a band to which frequency hopping is applied.
  • frequency hopping is applied in a band other than a band in which a control channel such as PUCCH can be allocated (hereinafter referred to as a PUCCH assignable area) in the system band. Therefore, in the following description, the offset for determining the band to which frequency hopping is applied is set to the same bandwidth as the PUCCH assignable area.
  • a band to which frequency hopping is applied is equally divided into a plurality of subbands.
  • the frequency hopping terminal performs frequency hopping on the transmission band of the data signal for each of a plurality of subbands. That is, the subband is a frequency interval of the minimum unit when the transmission band of the data signal is frequency hopped.
  • transmission data (downlink data) is input to the encoding unit 101.
  • the encoder 101 receives a response signal (ACK (Acknowledgment) signal or NACK (Negative Acknowledgment) signal) from the error detector 117, resource allocation information indicating the RB allocated to each terminal from the scheduling unit 110, and frequency hopping.
  • Control information such as hopping information and MCS (Modulation Coding Schemes) indicating information on a band to which is applied is input.
  • encoding section 101 encodes transmission data and control information, and outputs the encoded data to modulating section 102.
  • the modulation unit 102 modulates the encoded data and outputs a modulation signal to a transmission RF (Radio Frequency) unit 103.
  • RF Radio Frequency
  • the transmission RF unit 103 performs transmission processing such as D / A conversion, up-conversion, and amplification on the modulated signal, and wirelessly transmits the signal subjected to the transmission processing from the antenna 104 to each terminal.
  • the reception RF unit 105 performs reception processing such as down-conversion and A / D conversion on the signal received via the antenna 104, and outputs the signal subjected to the reception processing to the separation unit 106.
  • the separation unit 106 separates the signal input from the reception RF unit 105 into a pilot signal and a data signal. Separation section 106 then outputs the pilot signal to DFT (Discrete Fourier Transform) section 107 and outputs the data signal to DFT section 111.
  • DFT Discrete Fourier Transform
  • the DFT unit 107 performs DFT processing on the pilot signal input from the separation unit 106, and converts the signal from the time domain to the frequency domain. Then, DFT section 107 outputs the pilot signal converted into the frequency domain to demapping section 108.
  • demapping section 108 Based on the information input from scheduling section 110, demapping section 108 extracts a part of the pilot signal corresponding to the transmission band of each terminal from the pilot signal in the frequency domain input from DFT section 107. Then, demapping section 108 outputs each extracted pilot signal to propagation path estimation section 109.
  • the propagation path estimation unit 109 estimates a channel frequency fluctuation (channel frequency response) estimation value and a reception quality estimation value based on the pilot signal input from the demapping unit 108. Then, propagation path estimation section 109 outputs an estimated value of channel frequency fluctuation to frequency domain equalization section 113 and outputs an estimation value of reception quality to scheduling section 110.
  • the scheduling unit 110 includes a setting unit 1101 and an allocation unit 1102.
  • the setting unit 1101 of the scheduling unit 110 determines the number of PUCCH assignable regions to which a control channel such as PUCCH may be assigned, and the number of subbands constituting the band to which frequency hopping is applied, among the system bands. Set.
  • setting section 1101 determines that the PUCCH assignable region and the number of subbands are such that the bandwidth of subbands obtained by dividing the band to which frequency hopping is applied is a natural number multiple of RBG size P in Type 0 assignment.
  • Setting section 1101 determines a band to which frequency hopping is applied and a subband bandwidth based on the PUCCH assignable region and the number of subbands.
  • Setting section 1101 then outputs information indicating the band to which frequency hopping is applied and the bandwidth of the subband to demapping section 108 and demapping section 112.
  • Setting section 1101 generates hopping information including the offset corresponding to the set bandwidth of the PUCCH assignable area and the number of subbands, and outputs the generated hopping information to encoding section 101.
  • the allocation unit 1102 of the scheduling unit 110 allocates RBs to each terminal using the estimated value of reception quality input from the propagation path estimation unit 109. Specifically, allocating section 1102 allocates any RB constituting a continuous band to which frequency hopping is applied, determined by setting section 1101, to the frequency hopping terminal. Moreover, the allocation part 1102 allocates several RB which comprises a system band with respect to a non-continuous band allocation object terminal device per RBG. Note that assignment section 1102 assigns RBs to terminals that do not perform frequency hopping. Allocation section 1102 then outputs information on allocation RB of each terminal indicating RB allocated to each terminal to demapping section 108 and demapping section 112.
  • allocation section 1102 generates resource allocation information indicating allocation RB information, and outputs the generated resource allocation information to encoding section 101.
  • the allocating unit 1102 assigns a resource map to a bit map in which a signaling bit (1 or 0) indicating whether or not an RBG including the allocated RB is allocated to the transmission band is set for a discontinuous band allocation target terminal. Generate as information.
  • the DFT unit 111 performs DFT processing on the data signal input from the separation unit 106 and converts the data signal from the time domain to the frequency domain. Then, the DFT unit 111 outputs the data signal converted into the frequency domain to the demapping unit 112.
  • the demapping unit 112 Based on the information input from the scheduling unit 110, the demapping unit 112 extracts a data signal corresponding to the transmission band of each terminal from the signal input from the DFT unit 111. For example, the demapping unit 112 performs frequency hopping for each of a plurality of subbands at a frequency hopping terminal based on information indicating a band to which frequency hopping is applied and information indicating a subband bandwidth input from the scheduling unit 110. The extracted data signal is extracted from a plurality of RBs in a band to which frequency hopping is applied.
  • the demapping unit 112 extracts a data signal transmitted from the discontinuous band allocation target terminal in units of RBGs from a plurality of RBs in the system band, based on the allocation RB information input from the scheduling unit 110. . Then, the demapping unit 112 outputs the extracted signals to the frequency domain equalization unit 113.
  • the frequency domain equalization unit 113 performs an equalization process on the data signal input from the demapping unit 112 using the estimation value of the frequency variation of the channel input from the propagation path estimation unit 109, and performs the post-equalization process
  • the signal is output to an IFFT (Inverse Fast Fourier Transform) unit 114.
  • IFFT Inverse Fast Fourier Transform
  • the IFFT unit 114 performs IFFT processing on the data signal input from the frequency domain equalization unit 113 and outputs the signal after IFFT processing to the demodulation unit 115.
  • Demodulation section 115 performs demodulation processing on the signal input from IFFT section 114 and outputs the demodulated signal to decoding section 116.
  • the decoding unit 116 performs a decoding process on the signal input from the demodulation unit 115, and outputs the decoded signal (decoded bit string) to the error detection unit 117.
  • the error detection unit 117 performs error detection on the decoded bit string input from the decoding unit 116. For example, the error detection unit 117 performs error detection using CRC (Cyclic Redundancy Check). As a result of error detection, the error detection unit 117 generates a NACK signal as a response signal when there is an error in the decoded bit, and generates an ACK signal as a response signal when there is no error in the decoded bit. Then, error detection section 117 outputs the generated response signal to encoding section 101. Moreover, the error detection part 117 outputs a data signal as reception data, when there is no error in a decoding bit.
  • CRC Cyclic Redundancy Check
  • terminal 200 Next, the configuration of terminal 200 according to the embodiment of the present invention will be described with reference to FIG.
  • reception RF section 202 performs reception processing such as down-conversion and A / D conversion on the signal from base station 100 (FIG. 3) received via antenna 201, and performs reception processing.
  • the signal is output to the demodulator 203.
  • Demodulation section 203 performs equalization processing and demodulation processing on the signal input from reception RF section 202, and outputs the processed signal to decoding section 204.
  • the decoding unit 204 performs decoding processing on the signal input from the demodulation unit 203 and extracts received data and control information.
  • the control information includes a response signal (ACK signal or NACK signal), resource allocation information, hopping information, MCS information, and the like.
  • decoding section 204 outputs resource allocation information and hopping information to allocation RB determination section 208, and outputs MCS information and the like to encoding section 206 and modulation section 207.
  • Transmission data is input to the CRC unit 205. Then, CRC section 205 performs CRC encoding on the input transmission data to generate CRC encoded data, and outputs the generated CRC encoded data to encoding section 206.
  • Encoding section 206 encodes CRC encoded data input from CRC section 205 based on control information such as MCS information input from decoding section 204, and outputs the obtained encoded data to modulation section 207. To do.
  • Modulation section 207 modulates the encoded data input from encoding section 206 based on control information such as MCS information input from decoding section 204, and outputs the modulated data signal to RB allocation section 209. .
  • Allocation RB determination section 208 when the resource allocation for the terminal itself is continuous band allocation (that is, when terminal 200 is a frequency hopping terminal), includes an offset (PUCCH allocatable area included in hopping information input from decoding section 204 And the bandwidth of a plurality of subbands obtained by dividing the band to which frequency hopping is applied and the band to which frequency hopping is applied are determined on the basis of the number of subbands. Then, the allocation RB determination unit 208 performs frequency hopping on the RB (data signal transmission band) indicated in the resource allocation information input from the decoding unit 204 for each of a plurality of subbands for each slot as a transmission time unit. Thus, the RB (allocation RB) allocated as the transmission band of the own terminal is determined. Allocation RB determination section 208 then outputs allocation RB information indicating the determined RB to RB allocation section 209.
  • the allocation RB determination unit 208 when the resource allocation for the terminal is discontinuous band allocation (that is, when the terminal 200 is a discontinuous band allocation target terminal), the resource allocation information input from the decoding unit 204 Based on (bitmap), the RB (allocation RB) allocated to the own terminal is determined. Specifically, allocation RB determination section 208 determines an RB included in an RBG whose signaling is 1 in the bitmap indicated in the resource allocation information as an RB allocated as the transmission band of the own terminal. Allocation RB determination section 208 then outputs allocation RB information indicating the determined RB to RB allocation section 209.
  • the RB allocation unit 209 performs DFT processing on the data signal input from the modulation unit 207 and converts the data signal from the time domain to the frequency domain. Then, RB allocation section 209 allocates the data signal after DFT processing to RB based on allocation RB information input from allocation RB determination section 208. Then, RB allocation section 209 performs IFFT processing on the data signal allocated to RB, and outputs the data signal after IFFT processing to multiplexing section 210.
  • the multiplexing unit 210 time-multiplexes the pilot signal and the data signal input from the RB allocation unit 209 and outputs the result to the transmission RF unit 211.
  • the transmission RF unit 211 performs transmission processing such as D / A conversion, up-conversion, and amplification on the multiplexed signal input from the multiplexing unit 210, and transmits the signal subjected to the transmission processing from the antenna 201 to the base station 100 (FIG. 3). Wirelessly transmit to
  • the system bandwidth is 50 RB (for example, 10 MHz) as shown in FIG.
  • 3RBs at both ends of the system band are defined as PUCCH regions.
  • the RBG size P in Type 0 allocation is set to 3 RBs.
  • a plurality of RBs are grouped into RBGs # 0 to # 15 every P in order from RB # 0.
  • RBGs # 0 and # 15 are not allocated to the data signal of the non-continuous band allocation target terminal because they include RBs constituting the PUCCH region. That is, base station 100 sets RBGs # 1 to # 14 shown in FIG. 5 as RBGs that can be allocated to non-continuous band allocation target terminals.
  • the setting unit 1101 of the scheduling unit 110 of the base station 100 is configured so that the bandwidth of a plurality of subbands generated by dividing the band to which frequency hopping is applied is a natural number multiple of the RBG size P.
  • a PUCCH assignable area and the number of subbands are set.
  • the setting unit 1101 sets the PUCCH assignable area to 7 RBs and sets the number of subbands to 4.
  • Setting section 1101 sets the band to which frequency hopping is applied and the bandwidth of each subband based on PUCCH allocatable area 7RB and the number of subbands 4.
  • the allocation RB determination unit 208 of the terminal 200 when the resource allocation of the terminal 200 is continuous band allocation (when the terminal 200 is a frequency hopping terminal), from the base station 100 in the same manner as the setting unit 1101. Using the notified offset (corresponding to PUCCH assignable region, 7 RB in FIG. 5) and the number of subbands (4), the band to which frequency hopping is applied (36 RB) and the subband bandwidth (9 RB) are determined. To do. As a result, the RB allocation unit 209 of the terminal 200 (frequency hopping terminal) sets the data signal transmission band for one subband per slot (9 RB in FIG. 5), that is, frequency hopping by three times the RBG size in Type 0 allocation. To do.
  • the base station 100 allocates 2RBs RB # 3 and # 4 to the frequency hopping terminal UE # 1 before frequency hopping (slot # 1 shown in FIG. 2), and the frequency A case where 2 RBs of RB # 30 and # 31 are allocated to hopping terminal UE # 2 will be described.
  • UE # 1 performs RB # 18 frequency hopping by 9 RB from RB # 9 and # 10 (that is, frequency hopping by one subband), Assigned to # 19.
  • UE # 2 is assigned to RB # 36 and # 37 that are frequency-hopped by 9 RB from RB # 27 and # 28.
  • UE # 1 and UE # 2 have the same frequency as slot # 1 shown in FIG. 5 and slot # 2 shown in FIG. 5 in slots (not shown) after slot # 2 shown in FIG. Repeat hopping.
  • RB # 9, # 10, # 18, # 19, RB # 27, # 28, # 36, and # 37 are occupied by the frequency hopping terminals UE # 1 and UE # 2 in the system band shown in FIG. Is done.
  • allocation section 1102 of base station 100 in Type 0 allocation, RB # allocated to frequency hopping terminals UE # 1 and UE # 2 among RBG # 1 to # 14 that can be allocated to non-continuous band allocation target terminals. 9, R10 not including # 10, # 18, # 19, # 27, # 28, # 36 and # 37 (that is, RBGs other than RBG # 3, # 6, # 9 and # 12) are used. That is, allocating section 1102 assigns 10 RBGs of RBG # 1, # 2, # 4, # 5, # 7, # 8, # 10, # 11, # 13 and # 14 shown in FIG. Can be assigned to.
  • UE # 1 occupies only RB # 9 and # 10 included in RBG # 3 in slot # 1 (before frequency hopping) shown in FIG. 5, and also in slot # 2 (after frequency hopping) shown in FIG. Only RB # 18 and # 19 included in RBG # 6 are occupied. The same applies to UE # 2 shown in FIG.
  • base station 100 can secure more RBGs that can be allocated to non-continuous band allocation target terminals in Type 0 allocation. That is, in the base station 100, the resource allocation flexibility of Type 0 allocation can be improved.
  • the subband bandwidth in frequency hopping is a natural number multiple of the RBG size in Type 0 allocation. That is, the frequency interval of the transmission band to which the data signal is assigned before and after frequency hopping is a natural number multiple of the RBG size. As a result, the data signal allocated to occupy only 1 RBG before frequency hopping is allocated to occupy only 1 RBG after frequency hopping.
  • the RB configuration of the RBG in Type 0 allocation is the same between subbands.
  • the subband # 0 shown in FIG. 5 includes all 3RBs (RB # 9 to # 14) of the second half 2RB (RB # 7, # 8), RBG # 3, and # 4 of RBG # 2 in Type0 allocation. ) And 9RB of the first half 1RB (RB # 15) of RBG # 5.
  • subband # 1 shown in FIG. 5 includes all 3RBs (RB # 18 to # 23) of the second half 2RB (RB # 16, # 17), RBG # 6, # 7 of RBG # 5 in Type 0 allocation, and It consists of 9 RBs of the first half 1 RB (RB # 24) of RBG # 8. The same applies to subband # 2 and subband # 3.
  • 9 RBs constituting subbands # 0 to # 3 shown in FIG. 5 correspond to 9 RBs over 4 RBGs in Type 0 allocation.
  • the breakdown of RBs of 4RBGs in 9RBs constituting each subband is [second half 2RB, all 3RB, all 3RB, first half 1RB] in order from the first RBG (RBG having the smallest RBG number). That is, the band to which frequency hopping is applied (RB # 7 to RB # 42 in FIG. 5) is 9 times over 4 RBGs (the breakdown is [second half 2RB, all 3RB, all 3RB, first half 1RB]) four times ( In other words, the configuration is a repetition of 4 subbands.
  • the RB in the RBG to which the data signal is assigned before the frequency hopping is assigned before the frequency hopping.
  • the position and the position of the RB in the RBG to which the data signal is assigned after frequency hopping are the same.
  • the position of the RB to which the data signal is allocated before and after frequency hopping is the same position in two RBGs separated by a natural number (three in FIG. 5) in Type 0 allocation. For example, in FIG.
  • the position of the RB to which the data signal of UE # 1 is assigned is the first 2 RBs in RBG # 3 and two RBGs of RBG # 6 that are separated from RBG # 3 by 3 (in RBG # 3). RB # 9, # 10, and RB # 18, # 19 in RBG # 6). Therefore, a data signal allocated to occupy only 1 RBG before frequency hopping is allocated to occupy only 1 RBG after frequency hopping. As a result, when RBs are allocated in 1 RBG in Type 0 allocation to frequency hopping terminals before frequency hopping, the amount of RBG occupancy can be suppressed without straddling a plurality of RBGs even after frequency hopping. it can.
  • the bandwidth of the subband in frequency hopping is a natural number multiple of the RBG size in Type 0 allocation.
  • the structure of RBG in Type0 allocation becomes the same between subbands. That is, RBs assigned to one frequency hopping target terminal before and after frequency hopping correspond to RBs at the same position in the RBG separated by a natural number in Type 0 assignment. For this reason, when only RBs in one RBG are assigned to frequency hopping terminals before frequency hopping, only RBs in one RBG are necessarily assigned even after frequency hopping. That is, if only RBs in one RBG are allocated before frequency hopping, RBs are not allocated across a plurality of RBGs after frequency hopping. Therefore, according to the present embodiment, it is possible to flexibly perform resource allocation in Type 0 allocation by suppressing the amount of RBG occupancy in Type 0 allocation by frequency hopping terminals.
  • the frequency hopping terminal In a band to which frequency hopping described above is applied, if one frequency hopping terminal is allocated across a plurality of subbands before frequency hopping, the frequency hopping terminal is allocated to a discontinuous transmission band after frequency hopping. May end up. For example, in FIG. 5 described above, the data signal of the frequency hopping terminal is allocated to consecutive 3 RBs of RB # 33 (subband # 2), RB # 34 (subband # 3), and RB # 35 (subband # 3). Suppose that At this time, if the frequency hopping terminal performs frequency hopping for one subband (9 RBs), after the frequency hopping, the data signal of the frequency hopping terminal is RB # 42 (subband # 3), RB # 7 (subband # 0).
  • RB # 8 (subband # 0) are allocated to non-contiguous 3RBs.
  • the frequency hopping terminal is required to have a restriction (a restriction on subbands) that a data signal is not assigned across a plurality of subbands.
  • Embodiment 1 when only RBs in 1 RBG in Type 0 allocation are allocated to frequency hopping terminals before frequency hopping (that is, RBs are not allocated across multiple RBGs). In the case), only RBs in 1 RBG in Type 0 allocation are allocated even after frequency hopping. However, when an RB is allocated across a plurality of RBGs in Type 0 allocation before frequency hopping, the RB is allocated across a plurality of RBGs in Type 0 allocation even after frequency hopping. . That is, in the first embodiment, the frequency hopping terminal needs a restriction (restriction on RBG) that a data signal is not allocated across a plurality of RBGs before frequency hopping.
  • a restriction restriction
  • a data signal is allocated to RB # 15 located at the boundary between subbands # 0 and # 1 and located at the boundary between RBG # 4 and # 5.
  • RB # 24 located at the boundary between subbands # 1 and # 2 and located at the boundary between RBG # 7 and # 8, and between subbands # 2 and # 3
  • RB # 33 located at the boundary between RBG # 10 and # 11.
  • no data signal is assigned to RB # 42 located at the end of subband # 3 and located at the boundary between RBG # 13 and # 14.
  • the base station matches one of the boundaries between the plurality of RBGs with the boundary between the plurality of subbands, and assigns the plurality of RBs to the discontinuous band allocation target terminal apparatus. Assign in units. Accordingly, when RBs are allocated to frequency hopping terminals, it is possible to prevent RBs that can be allocated within a band to which frequency hopping is applied from being limited.
  • allocation section 1102 of scheduling section 110 has a plurality of system bandwidths constituting non-continuous band allocation target terminal devices in the same manner as in Embodiment 1. Are assigned in units of RBG. However, allocating section 1102 matches a boundary between a plurality of RBGs in Type 0 allocation with a boundary between a plurality of subbands in frequency hopping, and assigns a plurality of RBs to a discontinuous band allocation target terminal. Allocate in RBG units.
  • the assigning unit 1102 assigns the frequency position of one of the plurality of RBGs on the low frequency side (or high frequency side) to the low frequency side (or high frequency side) end of the band to which frequency hopping is applied. Match the frequency position.
  • allocation section 1102 uses a plurality of RBGs set such that the boundaries of a plurality of RBGs in Type 0 allocation and the boundaries of a plurality of subbands in frequency hopping coincide with each other, and the discontinuous band allocation target terminal RB allocation is performed for.
  • the subband boundary is a subband boundary that assumes a case where the bandwidth of the subband is a natural number multiple of the RBG size P.
  • allocation RB determination section 208 is the same as in Embodiment 1 in the case where resource allocation for the terminal is non-continuous band allocation (that is, terminal 200 Based on the resource allocation information (bitmap) input from the decoding unit 204, the RB (allocation RB) allocated to the terminal is determined.
  • allocation RB determination section 208 is set so that the boundary between a plurality of RBGs in Type 0 allocation matches the boundary between a plurality of subbands in frequency hopping, similar to allocation section 1102 according to the present embodiment.
  • the assigned RB is determined using the plurality of RBGs. More specifically, the subband boundary is a subband boundary that assumes a case where the bandwidth of the subband is a natural number multiple of the RBG size P.
  • the system bandwidth is set to 50 RB (for example, 10 MHz) as in the first embodiment (FIG. 5). Further, the RBG size P in Type 0 allocation is set to 3 RBs.
  • setting section 1101 equally divides a band (36 RBs) to which frequency hopping is applied into four subbands # 0 to # 3 having a bandwidth of 9 RBs. That is, as in the first embodiment, each bandwidth (9RB) of subbands # 0 to # 3 shown in FIG. 7 is a natural number multiple (3 times) of RBG size P (3RB).
  • the boundary between subbands # 0 and # 1 coincides with the boundary between RBG # 4 and # 5 (between RB # 15 and # 16)
  • the boundary between subbands # 1 and # 2 coincides with the boundary between RBGs # 7 and # 8 (between RB # 24 and # 25) and between subbands # 2 and # 3 Is the same as the boundary between RBG # 10 and # 11 (between RB # 33 and # 34).
  • the frequency position at both ends of the band to which frequency hopping is applied is also one of the boundaries between a plurality of RBGs (in FIG. 7, between RBG # 1 and # 2 and RBG # 13 and # 14).
  • the allocation RB determination unit 208 of the terminal 200 (FIG. 4) performs the same as the allocation unit 1102 when the resource allocation of the terminal 200 is discontinuous band allocation (when the terminal 200 is a discontinuous band allocation target terminal).
  • the RBG is set so that the boundary between the plurality of RBGs coincides with the boundary between the four subbands # 0 to # 3.
  • a location where a restriction on the subband occurs by matching a boundary between a plurality of subbands and a boundary between a plurality of RBGs for example, between subbands # 0 and # 1 shown in FIG. 7.
  • the base station 100 can perform RB allocation for the frequency hopping target terminal in consideration of only the restriction on the RBG even when the restriction on the subband and the restriction on the RBG described above are present.
  • the bandwidth (9RB) of subbands # 0 to # 3 is a natural number multiple (3 times) of RBG size P (3RB). Therefore, a data signal allocated to occupy only 1 RBG before frequency hopping is allocated to occupy only 1 RBG after frequency hopping.
  • the RBG does not straddle multiple RBGs even after frequency hopping. Occupancy can be reduced.
  • the base station and the terminal match the boundaries between the plurality of RBGs in the Type 0 allocation with the boundaries between the plurality of subbands in frequency hopping. That is, since all the boundaries between the plurality of subbands coincide with the boundaries between the plurality of RBGs, the base station does not consider the above-described constraints regarding the subbands with respect to the frequency hopping terminal.
  • RBs in a band to which frequency hopping is applied can be allocated according to the above. That is, since the restriction of RBs that can be allocated to frequency hopping terminals can be reduced, resource allocation can be flexibly performed for frequency hopping terminals.
  • Similar to Embodiment 1 it is possible to flexibly perform resource allocation in Type 0 allocation by suppressing the amount of RBG occupancy in Type 0 allocation by frequency hopping terminals.
  • the frequency position at the lower frequency side of RBG # 2 is the frequency position at the lower frequency side of the band to which frequency hopping is applied, RB # 7.
  • the frequency position of the low frequency side end of RBG # 5 (or RBG # 8, # 11) is set to the low frequency side of subband # 1 (or subband # 2, # 3). You may make it correspond to RB # 16 (or RB # 25, # 34) which is an end frequency position.
  • the frequency position of the high frequency end of any of the plurality of RBGs is set to the frequency position of the high frequency end of the band to which frequency hopping is applied (or the high frequency end of the subband).
  • Frequency position For example, in FIG. 7, the frequency position of the high frequency end of RBG # 4 (or RBG # 7, # 10, # 13) is subband # 0 (or subband # 1, # 2, # 3).
  • RB # 15 (or RB # 24, # 33, # 42 (where # 42 is the frequency position at the high frequency end of the band to which frequency hopping is applied) Yes)).
  • any of the boundaries between a plurality of RBGs in Type 0 allocation may be made to coincide with the center of the system band.
  • the system bandwidth is 50 RB (for example, 10 MHz)
  • the RBG size P in Type 0 allocation is 3 RBs
  • the number of subbands is 4 as in the present embodiment (FIG. 7). (Ie, even number).
  • the base station and the terminal set subbands # 0 to # 3 in frequency hopping as in the present embodiment.
  • the base station and the terminal may be configured such that one of the RBG boundaries in Type 0 allocation (between RBG # 7 and # 8 in FIG.
  • FIG. 8 is the center of the system band (in FIG. 8, RB # 24 and # 25).
  • the frequency position of the RBG is adjusted so as to coincide with (between).
  • a band having the same bandwidth is allocated from the center of the system band toward both sides.
  • 16 RBs (RB # 7 to # 24) are assigned from the center of the system band toward the low frequency side, and 16 RBs (RB # 25 to # 24) from the center of the system band toward the high frequency side. 42).
  • subbands are set symmetrically on both sides of the center of the system band (that is, even subbands are set as a whole), and a subband boundary is always set at the center of the system band. That is, when the number of subbands in frequency hopping is an even number, the center of the system band coincides with the subband boundary. Therefore, matching any one of the boundaries between the plurality of RBGs with the center of the system band is equivalent to matching any of the boundaries between the plurality of RBGs with the boundary between the plurality of subbands. Also in this case, the same effect as this embodiment can be obtained.
  • the present invention assumes that the number of subbands is even.
  • the format of Type 0 assignment of the invention may be designed. That is, the base station and the terminal may always use the same Type 0 allocation format regardless of whether the number of subbands is even or odd. For example, regardless of whether the number of subbands is an even number or an odd number, the boundary of the RBG in the Type 0 allocation may be made coincident with the center of the system band. This eliminates the need for the base station and the terminal to switch processing related to Type 0 allocation according to the number of subbands.
  • the present invention is not limited to the case where the bandwidth of the subband is three times the RBG size P.
  • the base station sets the bandwidth of the subband that maximizes the bandwidth to which frequency hopping is applied within the bandwidth of the system bandwidth among the bandwidth of the subband that is a natural number multiple of the RBG size P.
  • any of the boundaries between the plurality of RBGs may coincide with the boundary between the plurality of subbands.
  • the flexibility of resource allocation in Type 0 allocation can be improved, and the frequency diversity effect due to frequency hopping can be maximized.
  • the base station RBs (remaining RB groups) ) May be grouped into 1 RBG.
  • the base station may newly set one RBG including RB # 0 and # 49 and perform resource allocation in units of RBGs in the same manner as other RBGs # 0 to # 15.
  • the base station can notify the terminal of a plurality of remaining RBs in units of RBGs, so that an increase in the amount of signaling can be suppressed.
  • the base station may group the surplus RBs existing at both ends of the system band into 1 RBG for each RB at both ends of the system band.
  • the base station since the base station can perform resource allocation independently using the remaining RBs at both ends of the system band as different RBGs, the flexibility of resource allocation can be further improved.
  • the base station groups the RBs at one end of the remaining RBs at both ends of the system band into 1 RBG and performs resource allocation in units of RBGs, and the RB at the other end is assigned to the RBG. Resource allocation may be performed in units of RBs without grouping.
  • the base station can suppress the increase in the amount of signaling by reporting resource allocation information to the terminal in units of RBGs, and on the other hand, improves resource allocation flexibility by performing resource allocation in units of RBs. Can be made.
  • the base station does not group any surplus RBs existing at both ends of the system band into RBGs and does not have to perform resource allocation.
  • PUCCH regions are highly likely to be allocated to RBs located at both ends of the system band, and that the possibility of resource allocation is low. Therefore, the resource allocation signaling amount can be reduced by excluding any excess RBs existing at both ends of the system band from the resource allocation target.
  • the base station and the terminal use an offset (hereinafter referred to as RBG) for determining the RBG start position (that is, the start position of the first RBG) based on the number of RBs and the RBG size P constituting the system band. (Referred to as start position offset). For example, the base station and the terminal set the remainder of ((number of RBs constituting system band / 2) / RBG size P) as the RBG start position offset.
  • RBG an offset
  • RBGs of RBG size P are repeatedly allocated from the center of the system band toward both ends of the system band, and RBGs of RBG size P cannot be formed at both ends of the system band (RB less than RBG size P) (remainder )
  • the base station and the terminal correspond to the remainder of the start position of the head RBG among the plurality of RBGs from the head frequency position of the system band ((half the number of RBs constituting the system band) / RBG size P). Shift by RB. Specifically, as shown in FIG.
  • the RBG start position offset is 1 RB, which is the remainder of 25/3. Therefore, as shown in FIG. 9, the base station and the terminal shift the RBG start position by an RBG start position offset (1 RB) from the head of the system band. Then, the base station and the terminal set RBGs # 0 to # 15 by grouping every 3 RBs in order from RB # 1. Even in this case, as shown in FIG. 9, as in the present embodiment, all the boundaries between the plurality of subbands coincide with any of the boundaries between the plurality of RBGs. Note that ((the remainder of (the half of the number of RBs constituting the system band) / RBG size P)) + (a multiple of the RBG size P) may be used as the RBG start position offset.
  • the base station and the terminal may further calculate the RBG start position offset in consideration of the PUCCH region. For example, the base station and the terminal use the remainder of (((number of RBs constituting system band ⁇ number of RBs constituting PUCCH region) / 2) / RBG size P) as an RBG start position offset.
  • RBGs having an RBG size of P are repeatedly allocated from the center of the system band toward both ends of the system band, and within the band (system band-PUCCH area) other than the PUCCH region (both ends of the system band) of the system band.
  • an RB an RB less than the RBG size P
  • RBG size P RB that cannot constitute an RBG size P RBG at both ends corresponds to the RBG start position offset.
  • the base station and the terminal determine the start position of the head RBG among the plurality of RBGs from the frequency position in the PUCCH region (((number of RBs constituting the system band ⁇ number of RBs constituting the PUCCH region)) / Shift by RB corresponding to the remainder of RBG size P).
  • the system band is 50 RBs
  • the RBG size P is 3 RBs
  • the PUCCH region is 3 RBs at each end of the system band (that is, 6 RBs in total).
  • the RBG start position offset is 1 RB which is the remainder of ((50-6) / 2) / 3.
  • the base station and the terminal shift the RBG start position by the RBG start position offset (1RB) from the frequency position of the PUCCH region (RB # 2 in FIG. 10), as shown in FIG. Then, the base station and the terminal set RBGs # 0 to # 15 by grouping every 3 RBs in order from RB # 4. Even in this case, as shown in FIG. 10, as in the present embodiment, all the boundaries between the plurality of subbands coincide with any of the boundaries between the plurality of RBGs. Furthermore, in FIG. 10, it is possible to prevent the RBG from being set in the PUCCH region. The remainder of (((the number of RBs constituting the system band ⁇ the number of RBs constituting the PUCCH region) / RBG size P)) + (multiple of RBG size P) is used as the RBG start position offset. Also good.
  • the base station may hold a plurality of RBG start position offsets, select any one of the plurality of RBG start position offsets, and notify the selected RBG start position offset to the terminal.
  • the base station can adjust the RBG start position by the RBG size. That is, the base station can set the RBG at any frequency position. Therefore, the base station can reliably match any of the boundaries between the RBGs with the boundary of the subbands by adjusting the RBG start position offset regardless of the boundary between the multiple subbands. it can. Therefore, the base station can improve the flexibility of resource allocation to the frequency hopping terminal in the same manner as in the present embodiment, regardless of the boundary between the plurality of subbands.
  • PUCCH regions are allocated at both ends in the system band, and the bandwidth of the PUCCH region is changed according to the amount of uplink control information. That is, among the plurality of RBGs in Type 0 allocation, some RBs included in the RBGs at both ends may be occupied by the PUCCH region. That is, there is a problem that the base station cannot allocate the RBGs at both ends of the plurality of RBGs to the discontinuous band allocation target terminal, and the resource allocation flexibility in Type 0 allocation is reduced.
  • the base station in the system band, RBs constituting the band excluding the PUCCH area among bands other than the band to which frequency hopping is applied (that is, the PUCCH assignable area), RBG size P unit Alternatively, it may be assigned in units of RBG size different from RBG size P. That is, the base station may change the RBG size of some RBGs in a band other than the band to which frequency hopping is applied (the PUCCH assignable band) excluding the PUCCH region (the RBG size is P). It may be larger and the RBG size may be smaller than P).
  • the base station holds a plurality of RBG start position offsets. Then, the base station selects one RBG start position offset corresponding to the bandwidth of the PUCCH region, and notifies the terminal of the selected RBG start position offset. In FIG. 11, the base station sets the RBG start position offset to 2 RBs.
  • the base station regardless of the selected RBG start position offset, in the band to which frequency hopping is applied (RB # 7 to # 42 shown in FIG. 11), as in the present embodiment. , RBG boundaries are made to coincide with subband boundaries.
  • the base station uses the PUCCH region (FIG. 11) among the PUCCH assignable regions (RB # 0 to RB # 6 and RB # 43 to RB # 49 shown in FIG. 11) that are bands other than the band to which frequency hopping is applied.
  • a band other than RB # 0, # 1, # 48, and # 49) shown in FIG. 11 is set as an RBG allocation area (hereinafter referred to as an external RBG allocation area) other than the band to which frequency hopping is applied.
  • the base station changes the RBG sizes of RBG # 0 and RBG # 15 at both ends of RBG # 0 to # 15 that are resource allocation targets of Type0 allocation to a size smaller than RBG size P. To do. Thereby, as shown in FIG. 11, the base station can prevent the RBGs at both ends in the Type 0 allocation from being occupied by the PUCCH region. As a result, all the bands other than the PUCCH region (RBs # 2 to # 47 in FIG. 11) in the entire system band can be allocated to the discontinuous band allocation target terminals.
  • the base station sets RBG # 0 and RBG # set in bands (external RBG allocation area) other than the band to which frequency hopping is applied among RBG # 0 to # 15 that are resource allocation targets of Type0 allocation. Change the 15 RBG size.
  • the bandwidth of the subband is a natural number multiple (three times) of the RBG size P, and a plurality of All boundaries between subbands coincide with any of the boundaries between RBGs. Therefore, even when the RBG size of the RBG is changed, the same effects as in the present embodiment can be obtained in the band (RB # 7 to # 42) to which the frequency hopping shown in FIG. 11 is applied.
  • RBs included in RBGs whose RBG sizes have been changed are RBs corresponding to the RBG start position offsets in FIG. 10 is equivalent to 1RB of RB # 3). That is, in FIG. 10, the base station may set an RB corresponding to the RBG start position offset as one RBG.
  • the base station may set the RBG by increasing the RBG size in the external RBG allocation region.
  • the base station groups RBs # 2 to # 6 (or RBs # 43 to # 47) that are external RBG allocation areas, and one RBG with an RB size of 5 RB (> RBG size P). May be set.
  • the bandwidth of the subband is a natural number times the RBG size P.
  • the subband bandwidth becomes a natural number multiple of the RBG size P at the boundary of the RBG. It may be always coincident with the subband boundary of the case.
  • the base station and the terminal can always use the same type 0 allocation format. Then, the base station and the terminal can select whether to apply the present invention by controlling the bandwidth of the subband.
  • the base station and the terminal define the RBG format in Type 0 allocation in units of subbands in frequency hopping.
  • setting section 1101 of scheduling section 110 sets the number of PUCCH assignable areas and the number of subbands constituting the band to which frequency hopping is applied. Determine the bandwidth to which frequency hopping is applied and the bandwidth of the subband.
  • the bandwidth of the subband obtained by dividing the band to which frequency hopping is applied may be a natural number multiple of the RBG size P in Type 0 allocation, or may not be a natural number multiple of the RBG size P. Good. That is, setting section 1101 sets the PUCCH assignable area and the number of subbands to arbitrary values.
  • the allocation unit 1102 of the scheduling unit 110 defines an RBG format in Type 0 allocation that matches the number of RBs corresponding to the subband bandwidth determined by the setting unit 1101. For example, allocating section 1102 defines the RBG format by grouping a number of RBs corresponding to the bandwidth of the subband for each RBG size P. When the bandwidth of the subband is a natural number multiple of the RBG size P, the allocation unit 1102 defines a format composed of (subband bandwidth / RBG size P) RBGs. On the other hand, if the bandwidth of the subband is not a natural number multiple of RBG size P, allocation section 1102 changes the RBG size of some of the RBGs in accordance with the bandwidth of the subband. Define the format.
  • allocating section 1102 has RBG size P, the same number of RBGs as the quotient of (subband bandwidth / RBG size P), and the same number of RBG sizes as the remainder of (subband bandwidth / RBG size P).
  • RBG size P the same number of RBGs as the quotient of (subband bandwidth / RBG size P)
  • RBG sizes as the remainder of (subband bandwidth / RBG size P).
  • the assigning unit 1102 sets a plurality of RBGs over the entire system band by repeating the defined format in order from the top frequency position of the system band. Then, allocating section 1102 allocates a plurality of RBs constituting the system band in units of RBGs to the discontinuous band allocation target terminal apparatus in the same manner as in the first embodiment.
  • allocation RB determination section 208 is the same as in Embodiment 1 in the case where resource allocation for the terminal is non-continuous band allocation (that is, terminal 200 Based on the resource allocation information (bitmap) input from the decoding unit 204, the RB (allocation RB) allocated to the terminal is determined.
  • the allocation RB determination unit 208 defines the format of RBG in Type 0 allocation that matches the number of RBs corresponding to the bandwidth of the subband, similar to the allocation unit 1102 according to the present embodiment.
  • a plurality of RBGs are set over the entire system band by repeating in order from the first frequency position of the band.
  • the system bandwidth is set to 50 RB (for example, 10 MHz) as in the first embodiment (FIG. 5). Further, the RBG size P in Type 0 allocation is set to 3 RBs.
  • allocation section 1102 sets a plurality of RBGs # 0 to # 15 over the entire system band by repeating the defined format in order from the first frequency position RB # 0 of the system band.
  • the RBG size is set to [3RB, 3RB, RB # 0 to # 10, RB # 11 to # 21, RB # 22 to # 32, RB # 33 to # 43, respectively.
  • 4 RBGs, which are 3RB, 2RB] are set.
  • the format composed of four RBGs whose RBG sizes are [3RB, 3RB, 3RB, 2RB] respectively, is the subband bandwidth (11RB) interval. Is set repeatedly.
  • RBG # 16 (RB # 44 to # 46) is set as the RBG other than the RBG set by the defined format.
  • the allocation RB determination unit 208 of the terminal 200 (FIG. 4) performs the same as the allocation unit 1102 when the resource allocation of the terminal 200 is discontinuous band allocation (when the terminal 200 is a discontinuous band allocation target terminal).
  • An RBG format corresponding to 11RB corresponding to the bandwidth of the subband is defined.
  • the base station 100 performs RB # 3 and # 4 (the first half 2 RBs of RBG # 1) on the frequency hopping terminal UE # 1 before frequency hopping (slot # 1 illustrated in FIG. 12). And RB # 25 and # 26 are assigned to the frequency hopping terminal UE # 2.
  • UE # 1 is assigned to RB # 14 and # 15.
  • RB # 3 and # 4 before frequency hopping correspond to the first half 2RB of RBG # 1 which is the second RBG from the top of the defined format.
  • RB # 14 and # 15 after frequency hopping correspond to the second half 2RB of RBG # 5 which is the second RBG from the top of the defined format.
  • the data signal is transmitted before frequency hopping.
  • the position of the RB in the RBG to be allocated is the same as the position of the RB in the RBG to which the data signal is allocated after frequency hopping. That is, in FIG. 12, the RB allocated to UE # 1 before and after frequency hopping occupies the RBG set at the same position (here, second) in the format. The same applies to UE # 2 shown in FIG. In other words, the position of the RB to which the data signal is allocated before and after frequency hopping is the same position in two RBGs separated by the defined format length (11 RB in FIG. 12) in Type 0 allocation.
  • a data signal allocated to occupy only 1 RBG before frequency hopping is allocated to occupy only 1 RBG after frequency hopping.
  • the amount of RBG occupancy can be suppressed without straddling a plurality of RBGs even after frequency hopping. it can.
  • an RBG format composed of the number of RBs matching the bandwidth of the subband is defined.
  • the structure of RBG in Type0 allocation becomes the same between subbands. That is, the RB assigned to one frequency hopping target terminal before and after frequency hopping corresponds to the RB at the same position in the RBG separated by the format length defined in Type 0 assignment. Therefore, when only RBs in one RBG are assigned to frequency hopping terminals before frequency hopping, only RBs in one RBG are always assigned after frequency hopping as in the first embodiment. Therefore, according to the present embodiment, similarly to Embodiment 1, it is possible to flexibly perform resource allocation in Type 0 allocation by suppressing the amount of RBG occupancy in Type 0 allocation by frequency hopping terminals.
  • the base station may match any of the boundaries between the plurality of RBGs with all the boundaries between the plurality of subbands. Specifically, as shown in FIG. 13, the base station repeats the defined format in order from RB # 3, which is the frequency position at the end of the low frequency side of the band to which frequency hopping is applied. RBG may be set. In other words, the base station sets a format having the same bandwidth as the subband to the same frequency band as the frequency band in which each subband is set.
  • any of the boundaries between the plurality of RBGs can be matched with all the boundaries between the plurality of subbands. That is, as in Embodiment 2, each RBG in Type 0 allocation is not set across RBs corresponding to a plurality of subbands in frequency hopping. In other words, the base station can allocate RBs in a band to which frequency hopping is applied according to only the restrictions on RBG without considering the restrictions on subbands. That is, since the restriction of RBs that can be allocated to frequency hopping terminals can be reduced, resource allocation can be flexibly performed for frequency hopping terminals.
  • RBG # 0 (RB # 0 to # 2) is set as the RBG other than the RBG set by the defined format.
  • the RBG sizes of the four RBGs constituting the defined format are [3RB, 3RB, 3RB, 2RB], respectively.
  • the number of RBGs constituting the defined format is not limited to four, and the RBG number of each RBG may be any value.
  • RBs are allocated in RBG units according to Type 0 allocation.
  • the present invention is not limited to Type 0 allocation, and for example, a format in which RBs are allocated in units of P RBs may be used.
  • a plurality of RBs may not be grouped into a plurality of RBGs in units of P [RB], and the base station apparatus and the terminal apparatus share the number of RBs included in the group corresponding to the bitmap. If you do.
  • the present invention can be expected to greatly improve the flexibility of scheduling at the time of resource allocation, and the system bandwidth is relatively wide (for example, the system bandwidth is 10 MHz or 20 MHz). May apply only.
  • the present invention is not applied when the system bandwidth is relatively narrow (for example, less than 10 MHz), whereas the present invention is always applied when the system bandwidth is relatively wide (for example, 10 MHz or more). May be.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention is useful as a wireless communication apparatus, a wireless communication method, and the like in a wireless communication system that allocates data signals in non-continuous bands.
  • DESCRIPTION OF SYMBOLS 100 Base station 200 Terminal 101,206 Encoding part 102,207 Modulation part 103,211 Transmission RF part 104,201 Antenna 105,202 Reception RF part 106 Separation part 107,111 DFT part 108,112 Demapping part 109 Propagation path estimation Unit 110 scheduling unit 1101 setting unit 1102 allocation unit 113 frequency domain equalization unit 114 IFFT unit 115, 203 demodulation unit 116, 204 decoding unit 117 error detection unit 205 CRC unit 208 allocation RB determination unit 209 RB allocation unit 210 multiplexing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 周波数ホッピングを行う端末による、Type0割当におけるRBGの占有量を抑制して、Type0割当におけるリソース割当を柔軟に行うことができる基地局。システム帯域を構成する複数のリソースブロックがP個のリソースブロック毎に複数のリソースブロックグループにグループ化されるとともに、システム帯域内の両端に割り当てられるPUCCHを割当可能なPUCCH割当可能帯域以外の帯域が、複数のサブバンドに分割される無線通信システムにおいて使用される基地局(100)であって、割当部(1102)は非連続帯域割当対象端末装置に対して複数のリソースブロックをリソースブロックグループ単位で割り当て、デマッピング部(112)は周波数ホッピング端末装置で複数のサブバンド毎に周波数ホッピングされるデータ信号を、第2の帯域内の複数のリソースブロックから抽出する。ただし、複数のサブバンドそれぞれの帯域幅はPの自然数倍である。

Description

無線基地局装置および無線通信方法
 本発明は、無線基地局装置および無線通信方法に関する。
 3GPP LTE(3rd Generation Partnership Project Long Term Evolution)上り回線では、データ信号の連続帯域割当のみがサポートされている。ただし、LTEでは、無線基地局装置(以下、単に基地局という)は、無線端末装置(以下、単に端末という)が送信するデータ信号が割り当てられる送信帯域の周波数ホッピングを行うか否かを選択する。周波数ホッピングを行う場合には、端末は、データ信号が割り当てられる送信帯域をスロット間で異ならせる。このため、周波数ホッピングでは、各スロットにおいてデータ信号が連続帯域に割り当てられている場合でも、スロット間でデータ信号が割り当てられる送信帯域を異ならすことにより、周波数ダイバーシチ効果を得ることができる。
 LTEでは、基地局は、周波数ホッピングが適用される帯域を決定するためのオフセットを端末へ通知する。LTEでは、このオフセットとしては、例えば、システム帯域のうち制御チャネル(例えば、PUCCH(Physical Uplink Control CHannel))が割り当てられる帯域の帯域幅が設定される。ここで、PUCCH等の制御チャネルは、システム帯域内の両端に設定される。そこで、端末は、システム帯域の両端からオフセットで示される周波数帯域を取り除いた周波数帯域を、周波数ホッピングが適用される帯域として決定する。また、基地局から通知される分割数に関する情報(サブバンド情報)に基づいて、周波数ホッピングが適用される帯域が複数のサブバンドに分割される。そして、端末は、複数のサブバンド毎にデータ信号の送信帯域を周波数ホッピングする。なお、送信帯域を周波数ホッピングさせるホッピングパターンは、長区間(例えば、フレーム単位)で定義されており、かつ、異なるセル間では、周波数ホッピングのホッピングパターンは互いに異なる。
 一方、LTEの発展形であるLTE-A(LTE-Advanced)上り回線では、周波数スケジューリング効果を高めるために、データ信号の非連続帯域割当のサポートが検討されている。データ信号の非連続帯域割当は、LTE下り回線では既に適用されており、LTE下り回線では、非連続帯域割当時のリソースブロック(RB:Resource Block)割当通知をビットマップで通知するType0割当が用いられている(例えば、非特許文献1参照)。Type0割当では、RB割当通知のシグナリング量を抑えることができるため、LTE-A上り回線でも、非連続帯域割当時のRB割当通知にType0割当を流用することが有力である。
 Type0割当では、例えば、システム帯域を構成する複数のRBがP個の連続するRB毎に複数のRBグループ(RBG:Resource Block Group)にグループ化される。そして、基地局は、各端末に対して、リソースを割り当てるか否か示すシグナリングビット(1または0)をRBG単位で設定する。例えば、基地局は、ある端末の送信帯域として割り当てるRBGのシグナリングビットを1に設定し、ある端末の送信帯域として割り当てないRBGのシグナリングビットを0に設定する。そして、基地局は、各RBGのシグナリングビットから構成されるビットマップを各端末へ通知する。一方、端末は、受信したビットマップにおいて、シグナリングビットが1のRBG内のP個のRBが自端末の送信帯域として割り当てられ、シグナリングビットが0のRBG内のP個のRBが自端末の送信帯域として割り当てられないと判断する。
 なお、LTE下り回線では、図1に示すように、1つのRBGに含まれるRB数(以下、RBGサイズという)(=P)は、システム帯域の帯域幅毎に依存して変わる。図1に示すように、システム帯域の帯域幅が大きいほど、RBGサイズPはより大きくなる。
7.1.6 TS36.213 v8.7.0"3GPP TSG RAN; Evolved Universal Terrestrial Radio Access(E-UTRA); Physical layer procedures
 しかしながら、1つのシステム内において、周波数ホッピングおよびType0割当の双方を用いる場合、周波数ホッピングを行う端末(以下、周波数ホッピング端末という)がType0割当における複数のRBGに相当するRBを無駄に占有してしまう場合がある。以下、具体的に説明する。以下の説明では、図2に示すように、システム帯域の帯域幅を50RBとする。
 また、基地局は、システム帯域の両端に設定されるPUCCH領域をそれぞれ3RBとし、周波数ホッピングが適用される帯域を分割して得られるサブバンド数を4個とする。よって、図2では、基地局は、システム帯域のうち、PUCCH領域以外の帯域、すなわち、周波数ホッピングが適用される帯域を、44(=50RB-(3RB×2)))個のRB#3~#46に設定する。また、図2に示すように、基地局は、周波数ホッピングが適用される帯域を均等に4分割して、帯域幅(サブバンド帯域幅)が11RBである4つのサブバンド#0(RB#3~#13)、サブバンド#1(RB#14~#24)、サブバンド#2(RB#25~#35)およびサブバンド#3(RB#36~#46)を設定する。
 また、基地局は、PUCCH領域に相当するオフセット(3RB)およびサブバンド数(4個)を含む制御情報を周波数ホッピング端末へ通知し、周波数ホッピング端末は、基地局と同様にして、図2に示す周波数ホッピングが適用される帯域(RB#3~#46)を分割して4つのサブバンド#0~#3を設定する。そして、周波数ホッピング端末は、データ信号の送信帯域を隣接するサブバンドに周波数ホッピングする。具体的には、周波数ホッピング端末は、図2に示すように、データ信号の送信帯域を、送信時間単位であるスロット毎に11RB(1サブバンド分)だけ周波数ホッピングする。
 また、図2では、Type0割当におけるRBGサイズPを3RBとする。よって、図2では、基地局、および、非連続帯域割当が行われる端末(以下、非連続帯域割当対象端末という)は、RB#0から順に複数のRBをグループ化して、16個のRBG#0~#15を設定する。なお、図2において、PUCCH領域であるRB#0~#2を含むRBG#0およびRB#47を含むRBG#15は、非連続帯域割当対象端末のデータ信号に対して割り当てられない。つまり、基地局は、図2に示すRBG#1~#14を非連続帯域割当対象端末に割当可能なRBGとする。
 例えば、図2に示すように、基地局が、周波数ホッピング前(図2に示すスロット#1)に、周波数ホッピング端末UE#1に対してRB#3、#4の2RBを割り当て、周波数ホッピング端末UE#2に対してRB#30、#31の2RBを割り当てた場合について説明する。
 この場合、周波数ホッピング後(図2に示すスロット#2)では、UE#1は、RB#3、#4からそれぞれ11RBだけ周波数ホッピング(つまり、1サブバンド分だけ周波数ホッピング)したRB#14、#15に割り当てられる。同様に、UE#2は、RB#30、#31から11RBだけ周波数ホッピングしたRB#41、#42に割り当てられる。また、UE#1およびUE#2は、図2に示すスロット#1およびスロット#2の周波数ホッピングと同様にして、図2に示すスロット#2よりも後のスロット(図示せず)でも周波数ホッピング繰り返す。つまり、UE#1(またはUE#2)は、奇数番号のスロットでは、図2に示すスロット#1と同様、RB#3、#4(またはRB#30、#31)に割り当てられ、偶数番号のスロットでは、図2に示すスロット#2と同様、RB#14、#15(またはRB#41、#42)に割り当てられる。
 つまり、周波数ホッピング端末UE#1およびUE#2により、図2に示すシステム帯域のうち、RB#3、#4、#14、#15、RB#30、#31、#41および#42が占有される。
 一方、基地局は、Type0割当において、非連続帯域割当対象端末に割当可能なRBG#1~#14のうち、周波数ホッピング端末UE#1およびUE#2に割り当てられたRB#3、#4、#14、#15、#30、#31、#41および#42を含まないRBGを用いる。具体的には、図2に示すように、基地局は、RBG#1~#14のうち、RB#3、#4を含むRBG#1、RB#14を含むRBG#4、RB#15を含むRBG#5、RB#30、#31を含むRBG#10、RB#41を含むRBG#13、RB#42を含むRBG#14を非連続帯域割当対象端末に対して割り当てることができない(割当不可)。すなわち、基地局は、図2に示すRBG#2、#3、#6~#9、#11、#12の8RBGを非連続帯域割当対象端末に対して割り当てることができる。
 ここで、各スロットにおいて、周波数ホッピング端末UE#1およびUE#2に割り当てられるRB数はそれぞれ2個とした。なお、音声通信端末(VoIP端末)を想定した場合に各端末にそれぞれ割り当てられるRB数は1~3RBである可能性が高い。そのため、ここでは、各端末(UE#1およびUE#2)に割り当てられるRB数として、割り当てられる可能性が高いRB数(1~3RB)の中間値である2RBを想定した。この場合、各スロットにおいて、周波数ホッピング端末UE#1およびUE#2に割り当てられるRBは、Type0割当におけるRBGサイズP(=3RB)以下である。つまり、図2において、各周波数ホッピング端末は、Type0割当におけるRBGサイズ(=3RB)以下の2RBのみを占有する。よって、基地局は、周波数ホッピング前のスロット#1では、Type0割当における1RBG(図2ではRBG#1)内に含まれるRB(図2ではRB#3、#4)のみをUE#1に対して割り当てる。図2に示すUE#2についても同様である。
 しかしながら、図2に示すように、周波数ホッピング後のスロット#2では、UE#1に割り当てられたRB#14およびRB#15は、互いに異なるRBG#4とRBG#5とにそれぞれ含まれる。すなわち、図2に示すスロット2において、UE#1に割り当てられた2つのRB(RB#14、#15)は、Type0割当における1RBG内に収まるRB数であるにも関わらず、2つのRBG(RBG#4、#5)に跨って割り当てられる。図2に示すUE#2についても同様である。
 つまり、図2に示す周波数ホッピング後のスロット#2では、各周波数ホッピング端末に対してType0割当におけるRBGサイズP(=3RB)以下の2RBしか割り当てられないにも関わらず、2RBGに渡ってRBが割り当てられる。つまり、周波数ホッピング端末は、Type0割当における複数のRBGを無駄に占有してしまう。
 このようにして、周波数ホッピング端末に対して、周波数ホッピング前にType0割当における1RBG内のRBに相当するRBが割り当てられた場合でも、周波数ホッピング後には、Type0割当における複数のRBGに相当するRBが割り当てられてしまう場合がある。この場合、周波数ホッピング端末が占有するRBによって、Type0割当におけるRBGが無駄に占有されてしまうため、Type0割当におけるリソース割当を柔軟に行うことができなくなってしまう。
 本発明の目的は、周波数ホッピングを行う端末による、Type0割当におけるRBGの占有量を抑制し、Type0割当におけるリソース割当を柔軟に行うことができる無線基地局装置および無線通信方法を提供することである。
 本発明の無線基地局装置は、システム帯域を構成する複数のリソースブロックがP個のリソースブロック毎に複数のリソースブロックグループにグループ化されるとともに、前記システム帯域内の両端に割り当てられる制御チャネルを割当可能な第1の帯域以外の第2の帯域が、複数のサブバンドに分割される無線通信システムにおいて使用される無線基地局装置であって、非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てる割当手段と、周波数ホッピング端末装置で前記複数のサブバンド毎に周波数ホッピングされるデータ信号を、前記第2の帯域内の前記複数のリソースブロックから抽出する抽出手段と、を具備し、前記複数のサブバンドそれぞれの帯域幅は前記Pの自然数倍である構成を採る。
 本発明の無線通信方法は、システム帯域を構成する複数のリソースブロックがP個のリソースブロック毎に複数のリソースブロックグループにグループ化されるとともに、前記システム帯域内の両端に割り当てられる制御チャネルを割当可能な第1の帯域以外の第2の帯域が、複数のサブバンドに分割される無線通信システムにおいて使用される無線通信方法であって、非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てるステップと、周波数ホッピング端末装置で前記複数のサブバンド毎に周波数ホッピングされるデータ信号を、前記第2の帯域内の前記複数のリソースブロックから抽出するステップと、を具備し、前記複数のサブバンドそれぞれの帯域幅は前記Pの自然数倍であるようにした。
 本発明によれば、周波数ホッピングを行う端末による、Type0割当におけるRBGの占有量を抑制し、Type0割当におけるリソース割当を柔軟に行うことができる。
LTEにおけるシステム帯域の帯域幅とType0割当のRBGサイズとの関係を示す図 周波数ホッピングおよびType0割当を用いる場合に、Type0割当において割当不可となるRBGを説明するための図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明の実施の形態1に係る端末の構成を示すブロック図 本発明の実施の形態1に係るサブバンドおよびRBGの設定例を示す図 周波数ホッピング端末に対して割当不可となるRBを説明するための図 本発明の実施の形態2に係るサブバンドおよびRBGの設定例を示す図 本発明の実施の形態2に係るサブバンドおよびRBGのその他の設定例を示す図 本発明の実施の形態2に係るサブバンドおよびRBGのその他の設定例を示す図 本発明の実施の形態2に係るサブバンドおよびRBGのその他の設定例を示す図 本発明の実施の形態2に係るサブバンドおよびRBGのその他の設定例を示す図 本発明の実施の形態3に係るサブバンドおよびRBGの設定例を示す図 本発明の実施の形態3に係るサブバンドおよびRBGのその他の設定例を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 本発明に係る通信システムでは、連続帯域に割り当てられたデータ信号(上り回線データ)の送信帯域を周波数ホッピングする端末(周波数ホッピング端末)、および、データ信号(上り回線データ)が非連続帯域に割り当てられる端末(非連続帯域割当対象端末)が混在する。
 また、以下の説明では、システム帯域を構成する複数のRBがP個のRB毎に複数のRBGにグループ化される。そして、基地局は、例えば、Type0割当のように、非連続帯域割当対象端末に対して複数のRBをRBG単位で割り当て、データ信号の送信を行うためのRBGが割り当てられたか否かを示すシグナリングビット(1または0)を示すリソース割当情報を各端末へ通知する場合を一例として説明する。
 また、基地局は、周波数ホッピング端末に対して、周波数ホッピングが適用される帯域を決定するためのオフセットを通知する。ここで、周波数ホッピングは、システム帯域のうち、PUCCH等の制御チャネルの割当が可能な帯域(以下、PUCCH割当可能領域という)以外の帯域で適用される。そこで、以下の説明では、周波数ホッピングが適用される帯域を決定するためのオフセットは、PUCCH割当可能領域と同一の帯域幅に設定される。また、周波数ホッピングが適用される帯域は複数のサブバンドに均等に分割される。そして、周波数ホッピング端末は、データ信号の送信帯域を複数のサブバンド毎に周波数ホッピングする。すなわち、サブバンドは、データ信号の送信帯域が周波数ホッピングされる際の最小単位の周波数間隔である。
 (実施の形態1)
 本発明の実施の形態に係る基地局100の構成について、図3を用いて説明する。
 図3に示す基地局100において、符号化部101には、送信データ(下り回線データ)が入力される。また、符号化部101には、誤り検出部117から応答信号(ACK(Acknowledgment)信号またはNACK(Negative Acknowledgment)信号)、スケジューリング部110から各端末に割り当てられたRBを示すリソース割当情報、周波数ホッピングが適用される帯域に関する情報を示すホッピング情報およびMCS(Modulation Coding Schemes)等の制御情報が入力される。そして、符号化部101は、送信データおよび制御情報を符号化し、符号化データを変調部102に出力する。
 変調部102は、符号化データを変調し、変調信号を送信RF(Radio Frequency)部103に出力する。
 送信RF部103は、変調信号にD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理を施した信号をアンテナ104から各端末へ無線送信する。
 受信RF部105は、アンテナ104を介して受信した信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を分離部106に出力する。
 分離部106は、受信RF部105から入力される信号をパイロット信号とデータ信号とに分離する。そして、分離部106は、パイロット信号をDFT(Discrete Fourier Transform)部107に出力し、データ信号をDFT部111に出力する。
 DFT部107は、分離部106から入力されるパイロット信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部107は、周波数領域に変換したパイロット信号をデマッピング部108に出力する。
 デマッピング部108は、スケジューリング部110から入力される情報に基づいて、DFT部107から入力される周波数領域のパイロット信号から各端末の送信帯域に対応した部分のパイロット信号を抽出する。そして、デマッピング部108は、抽出した各パイロット信号を伝搬路推定部109に出力する。
 伝搬路推定部109は、デマッピング部108から入力されるパイロット信号に基づいて、チャネルの周波数変動(チャネルの周波数応答)の推定値および受信品質の推定値を推定する。そして、伝搬路推定部109は、チャネルの周波数変動の推定値を周波数領域等化部113に出力し、受信品質の推定値をスケジューリング部110に出力する。
 スケジューリング部110は、設定部1101および割当部1102を具備する。スケジューリング部110の設定部1101は、システム帯域のうち、PUCCH等の制御チャネルが割り当てられる可能性があるPUCCH割当可能領域、および、周波数ホッピングが適用される帯域を構成する複数のサブバンドの数を設定する。ここで、設定部1101は、周波数ホッピングが適用される帯域を分割して得られるサブバンドの帯域幅がType0割当におけるRBGサイズPの自然数倍となるように、PUCCH割当可能領域およびサブバンド数を設定する。そして、設定部1101は、PUCCH割当可能領域およびサブバンド数に基づいて、周波数ホッピングが適用される帯域、および、サブバンドの帯域幅を決定する。そして、設定部1101は、周波数ホッピングが適用される帯域、および、サブバンドの帯域幅を示す情報をデマッピング部108およびデマッピング部112に出力する。また、設定部1101は、設定したPUCCH割当可能領域の帯域幅に相当するオフセット、および、サブバンド数を含むホッピング情報を生成し、生成したホッピング情報を符号化部101に出力する。
 スケジューリング部110の割当部1102は、伝搬路推定部109から入力される受信品質の推定値を用いて各端末にRBを割り当てる。具体的には、割当部1102は、周波数ホッピング端末に対して、設定部1101で決定された、周波数ホッピングが適用される連続帯域を構成するいずれかのRBを割り当てる。また、割当部1102は、非連続帯域割当対象端末装置に対して、システム帯域を構成する複数のRBをRBG単位で割り当てる。なお、割当部1102は、周波数ホッピングしない端末に対してもRBを割り当てる。そして、割当部1102は、各端末に割り当てられたRBを示す各端末の割当RBの情報を、デマッピング部108およびデマッピング部112に出力する。また、割当部1102は、割当RBの情報を示すリソース割当情報を生成し、生成したリソース割当情報を符号化部101に出力する。例えば、割当部1102は、非連続帯域割当対象端末に対しては、割当RBを含むRBGが送信帯域に割り当てられたか否かを示すシグナリングビット(1または0)を立てたビットマップを、リソース割当情報として生成する。
 一方、DFT部111は、分離部106から入力されるデータ信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部111は、周波数領域に変換したデータ信号をデマッピング部112に出力する。
 デマッピング部112は、スケジューリング部110から入力される情報に基づいて、DFT部111から入力される信号から各端末の送信帯域に対応した部分のデータ信号を抽出する。例えば、デマッピング部112は、スケジューリング部110から入力される、周波数ホッピングが適用される帯域、および、サブバンドの帯域幅を示す情報に基づいて、周波数ホッピング端末で複数のサブバンド毎に周波数ホッピングされたデータ信号を、周波数ホッピングが適用される帯域内の複数のRBから抽出する。または、デマッピング部112は、スケジューリング部110から入力される割当RBの情報に基づいて、非連続帯域割当対象端末から送信されるデータ信号を、システム帯域内の複数のRBからRBG単位で抽出する。そして、デマッピング部112は、抽出した各信号を周波数領域等化部113に出力する。
 周波数領域等化部113は、伝搬路推定部109から入力されるチャネルの周波数変動の推定値を用いて、デマッピング部112から入力されるデータ信号に等化処理を施し、等化処理後の信号をIFFT(Inverse Fast Fourier Transform)部114に出力する。
 IFFT部114は、周波数領域等化部113から入力されるデータ信号にIFFT処理を施し、IFFT処理後の信号を復調部115に出力する。
 復調部115は、IFFT部114から入力される信号に復調処理を施し、復調処理後の信号を復号部116に出力する。
 復号部116は、復調部115から入力される信号に復号処理を施し、復号処理後の信号(復号ビット列)を誤り検出部117に出力する。
 誤り検出部117は、復号部116から入力される復号ビット列に対して誤り検出を行う。例えば、誤り検出部117は、CRC(Cyclic Redundancy Check)を用いて誤り検出を行う。誤り検出部117は、誤り検出の結果、復号ビットに誤りが有る場合には応答信号としてNACK信号を生成し、復号ビットに誤りが無い場合には応答信号としてACK信号を生成する。そして、誤り検出部117は、生成した応答信号を符号化部101に出力する。また、誤り検出部117は、復号ビットに誤りが無い場合は、データ信号を受信データとして出力する。
 次に、本発明の実施の形態に係る端末200の構成について、図4を用いて説明する。
 図4に示す端末200において、受信RF部202は、アンテナ201を介して受信した基地局100(図3)からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を復調部203に出力する。
 復調部203は、受信RF部202から入力される信号に等化処理および復調処理を施し、これら処理後の信号を復号部204に出力する。
 復号部204は、復調部203から入力される信号に復号処理を施し、受信データおよび制御情報を抽出する。ここで、制御情報には、応答信号(ACK信号又はNACK信号)、リソース割当情報、ホッピング情報、MCS情報等が含まれる。復号部204は、抽出した制御情報のうち、リソース割当情報およびホッピング情報を割当RB決定部208に出力し、MCS情報等を符号化部206および変調部207に出力する。
 CRC部205には、送信データが入力される。そして、CRC部205は、入力される送信データに対してCRC符号化を行ってCRC符号化データを生成し、生成したCRC符号化データを符号化部206に出力する。
 符号化部206は、復号部204から入力されるMCS情報等の制御情報に基づいて、CRC部205から入力されるCRC符号化データを符号化し、得られた符号化データを変調部207に出力する。
 変調部207は、復号部204から入力されるMCS情報等の制御情報に基づいて、符号化部206から入力される符号化データを変調し、変調後のデータ信号をRB割当部209に出力する。
 割当RB決定部208は、自端末に対するリソース割当が連続帯域割当の場合(つまり、端末200が周波数ホッピング端末の場合)、復号部204から入力されるホッピング情報に含まれる、オフセット(PUCCH割当可能領域に相当)およびサブバンド数に基づいて、周波数ホッピングを適用する帯域、および、周波数ホッピングを適用する帯域を分割して得られる複数のサブバンドの帯域幅を決定する。そして、割当RB決定部208は、送信時間単位であるスロット毎に、復号部204から入力されるリソース割当情報に示されるRB(データ信号の送信帯域)を複数のサブバンド毎に周波数ホッピングすることにより、自端末の送信帯域として割り当てられたRB(割当RB)を決定する。そして、割当RB決定部208は、決定したRBを示す割当RB情報をRB割当部209に出力する。
 これに対して、割当RB決定部208は、自端末に対するリソース割当が非連続帯域割当の場合(つまり、端末200が非連続帯域割当対象端末の場合)、復号部204から入力されるリソース割当情報(ビットマップ)に基づいて、自端末に割り当てられたRB(割当RB)を決定する。具体的には、割当RB決定部208は、リソース割当情報に示されるビットマップにおいて、シグナリングが1のRBGに含まれるRBを、自端末の送信帯域として割り当てられたRBとして決定する。そして、割当RB決定部208は、決定したRBを示す割当RB情報をRB割当部209に出力する。
 RB割当部209は、変調部207から入力されるデータ信号にDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、RB割当部209は、割当RB決定部208から入力される割当RB情報に基づいて、DFT処理後のデータ信号をRBに割り当てる。そして、RB割当部209は、RBに割り当てられたデータ信号にIFFT処理を施し、IFFT処理後のデータ信号を多重化部210に出力する。
 多重化部210は、パイロット信号とRB割当部209から入力されるデータ信号とを時間多重し、送信RF部211に出力する。
 送信RF部211は、多重化部210から入力される多重信号にD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理を施した信号をアンテナ201から基地局100(図3)へ無線送信する。
 次に、本実施の形態に係る基地局100(図3)および端末200(図4)の動作について詳細に説明する。
 以下の説明では、図5に示すように、システム帯域の帯域幅を50RB(例えば、10MHz)とする。また、図5において、システム帯域の両端の3RBをそれぞれPUCCH領域とする。また、Type0割当におけるRBGサイズPを3RBとする。
 よって、図5では、RB#0から順に複数のRBがP個毎にRBG#0~#15にグループ化される。ただし、RBG#0、#15は、PUCCH領域を構成するRBを含むため非連続帯域割当対象端末のデータ信号に対して割り当てられない。つまり、基地局100は、図5に示すRBG#1~#14を非連続帯域割当対象端末に割当可能なRBGとする。
 ここで、基地局100のスケジューリング部110の設定部1101は、周波数ホッピングが適用される帯域を分割して生成される複数のサブバンドの帯域幅がRBGサイズPの自然数倍となるように、PUCCH割当可能領域およびサブバンド数を設定する。
 例えば、設定部1101は、PUCCH割当可能領域を7RBに設定し、サブバンド数を4個に設定する。そして、設定部1101は、PUCCH割当可能領域7RBおよびサブバンド数4個に基づいて、周波数ホッピングが適用される帯域および各サブバンドの帯域幅を設定する。
 具体的には、図5に示すように、設定部1101は、まず、システム帯域(50RB)内の両端7RB(RB#0~#6およびRB#43~#49)を、PUCCH割当可能領域に設定する。よって、設定部1101は、図5に示すように、システム帯域(50RB)のうち、PUCCH割当可能領域以外の帯域、つまり、RB#7~#42の36RB(=50RB-(7RB×2))個のRBを周波数ホッピングが適用される帯域をとして設定する。また、サブバンド数が4個であるので、設定部1101は、周波数ホッピングが適用される帯域(36RB)を、帯域幅(サブバンド帯域幅)9RB(=36RB/4個)の4個のサブバンド#0~#3に均等に分割する。これにより、サブバンド#0~#3の各帯域幅(9RB)は、RBGサイズP(3RB)の自然数倍(3倍)となる。
 なお、端末200(図4)の割当RB決定部208は、自端末のリソース割当が連続帯域割当の場合(端末200が周波数ホッピング端末の場合)、設定部1101と同様にして、基地局100から通知されるオフセット(PUCCH割当可能領域に相当、図5では7RB)およびサブバンド数(4個)を用いて、周波数ホッピングが適用される帯域(36RB)およびサブバンドの帯域幅(9RB)を決定する。これにより、端末200(周波数ホッピング端末)のRB割当部209は、データ信号の送信帯域をスロット毎に1サブバンド分(図5では9RB)、つまり、Type0割当におけるRBGサイズの3倍だけ周波数ホッピングする。
 次に、図5に示すように、基地局100が、周波数ホッピング前(図2に示すスロット#1)に、周波数ホッピング端末UE#1に対してRB#3、#4の2RBを割り当て、周波数ホッピング端末UE#2に対してRB#30、#31の2RBを割り当てた場合について説明する。
 この場合、周波数ホッピング後(図5に示すスロット#2)では、UE#1は、RB#9、#10からそれぞれ9RBだけ周波数ホッピング(つまり、1サブバンド分だけ周波数ホッピング)したRB#18、#19に割り当てられる。同様に、UE#2は、RB#27、#28から9RBだけ周波数ホッピングしたRB#36、#37に割り当てられる。また、UE#1およびUE#2は、図5に示すスロット#1および図5に示すスロット#2と同様にして、図5に示すスロット#2よりも後のスロット(図示せず)でも周波数ホッピングを繰り返す。
 つまり、周波数ホッピング端末UE#1およびUE#2により、図5に示すシステム帯域のうち、RB#9、#10、#18、#19、RB#27、#28、#36および#37が占有される。
 よって、基地局100の割当部1102は、Type0割当において、非連続帯域割当対象端末に割当可能なRBG#1~#14のうち、周波数ホッピング端末UE#1およびUE#2に割り当てられたRB#9、#10、#18、#19、#27、#28、#36および#37を含まないRBG(つまり、RBG#3、#6、#9、#12以外のRBG)を用いる。すなわち、割当部1102は、図5に示すRBG#1、#2、#4、#5、#7、#8、#10、#11、#13および#14の10RBGを非連続帯域割当対象端末に対して割り当てることができる。
 ここで、周波数ホッピング端末UE#1およびUE#2が送信するデータ信号の送信帯域(各端末に対して各スロットあたり2RB)は、図5に示すように、周波数ホッピングの前後のいずれにおいても、Type0割当における1RBGのみを占有する。例えば、UE#1は、図5に示すスロット#1(周波数ホッピング前)ではRBG#3に含まれるRB#9、#10のみを占有し、図5に示すスロット#2(周波数ホッピング後)でもRBG#6に含まれるRB#18、#19のみを占有する。図5に示すUE#2についても同様である。
 すなわち、周波数ホッピング後において、周波数ホッピング端末に割り当てられるRBは、複数のRBGに跨って割り当てられることがなくなる。これにより、周波数ホッピング端末に割り当てられたRBによる、Type0割当におけるRBGの占有量を抑制することができる。よって、基地局100では、Type0割当において非連続帯域割当対象端末に対して割当可能なRBGをより多く確保することができる。つまり、基地局100では、Type0割当のリソース割当の柔軟性を向上させることができる。
 このように、本実施の形態では、周波数ホッピングにおけるサブバンドの帯域幅はType0割当におけるRBGサイズの自然数倍とする。つまり、周波数ホッピング前後にデータ信号が割り当てられる送信帯域の周波数間隔は、RBGサイズの自然数倍となる。これにより、周波数ホッピング前において1RBGのみを占有するように割り当てられたデータ信号は、周波数ホッピング後においても1RBGのみを占有して割り当てられる。
 換言すると、Type0割当におけるRBGのRB構成はサブバンド間で同一構成となる。具体的には、図5に示すサブバンド#0は、Type0割当におけるRBG#2の後半2RB(RB#7,#8)、RBG#3、#4それぞれの全3RB(RB#9~#14)およびRBG#5の前半1RB(RB#15)の9RBで構成される。同様に、図5に示すサブバンド#1は、Type0割当におけるRBG#5の後半2RB(RB#16,#17)、RBG#6、#7それぞれの全3RB(RB#18~#23)およびRBG#8の前半1RB(RB#24)の9RBで構成される。サブバンド#2およびサブバンド#3についても同様である。
 つまり、図5に示すサブバンド#0~#3をそれぞれ構成する9RBは、Type0割当では4RBGに渡る9RBに相当する。さらに、各サブバンドを構成する9RB内の4RBGそれぞれのRBの内訳は、先頭RBG(RBG番号が小さいRBG)から順に[後半2RB、全3RB、全3RB、前半1RB]となる。つまり、周波数ホッピングが適用される帯域(図5ではRB#7~RB#42)は、4RBGに渡る9RBの構成(内訳が[後半2RB、全3RB、全3RB、前半1RB])を4回(つまり、4サブバンド)繰り返した構成となる。
 これにより、データ信号の送信帯域が複数のサブバンド毎に周波数ホッピング(図5では1サブバンド分(9RB)だけ周波数ホッピング)されても、周波数ホッピング前にデータ信号が割り当てられるRBG内のRBの位置と、周波数ホッピング後にデータ信号が割り当てられるRBG内のRBの位置とが同一となる。換言すると、周波数ホッピング前後にデータ信号が割り当てられるRBの位置は、Type0割当において、自然数個(図5では3個)だけ離れた2つのRBG内の同一位置となる。例えば、図5では、UE#1のデータ信号が割り当てられるRBの位置は、RBG#3と、RBG#3から3個だけ離れたRBG#6の2つのRBG内の前半2RB(RBG#3内のRB#9、#10、および、RBG#6内のRB#18、#19)となる。よって、周波数ホッピング前において1RBGのみを占有するように割り当てられたデータ信号は、周波数ホッピング後においても1RBGのみを占有して割り当てられる。これにより、周波数ホッピング前に周波数ホッピング端末に対して、Type0割当における1RBG内にRBが割り当てられる場合には、周波数ホッピング後においても複数のRBGに跨ることなく、RBGの占有量を抑制することができる。
 このように、本実施の形態によれば、周波数ホッピングにおけるサブバンドの帯域幅は、Type0割当におけるRBGサイズの自然数倍となる。これにより、Type0割当におけるRBGの構成がサブバンド間で同一となる。つまり、周波数ホッピング前後に1つの周波数ホッピング対象端末に割り当てられるRBは、Type0割当において自然数個だけ離れたRBG内の同一位置のRBに相当する。このため、周波数ホッピング端末に対して、1RBG内のRBのみが周波数ホッピング前に割り当てられた場合には、周波数ホッピング後においても1RBG内のRBのみが必ず割り当てられる。すなわち、1RBG内のRBのみが周波数ホッピング前に割り当てられれば、周波数ホッピング後において複数のRBGに跨ってRBが割り当てられることは無い。よって、本実施の形態によれば、周波数ホッピング端末による、Type0割当におけるRBGの占有量を抑制して、Type0割当におけるリソース割当を柔軟に行うことができる。
 (実施の形態2)
 上述した周波数ホッピングが適用される帯域において、周波数ホッピング前に複数のサブバンドに跨って1つの周波数ホッピング端末が割り当てられると、周波数ホッピング後では、その周波数ホッピング端末が非連続な送信帯域に割り当てられてしまうことがある。例えば、上述した図5において、周波数ホッピング端末のデータ信号がRB#33(サブバンド#2)、RB#34(サブバンド#3)、RB#35(サブバンド#3)の連続する3RBに割り当てられたとする。このとき、周波数ホッピング端末が1サブバンド分(9RB)だけ周波数ホッピングすると、周波数ホッピング後には、周波数ホッピング端末のデータ信号は、RB#42(サブバンド#3)、RB#7(サブバンド#0)、RB#8(サブバンド#0)の非連続な3RBに割り当てられる。しかしながら、LTEの仕様上、データ信号の非連続割当を行うことができない。このため、周波数ホッピング端末には、複数のサブバンドに跨ってデータ信号を割り当てないという制約(サブバンドに関する制約)が必要となる。
 また、実施の形態1(図5)では、周波数ホッピング端末に対して、周波数ホッピング前に、Type0割当における1RBG内のRBのみが割り当てられる場合(つまり、複数のRBGに跨ってRBが割り当てられない場合)には、周波数ホッピング後でもType0割当における1RBG内のRBのみが割り当てられる。ただし、周波数ホッピング端末に対して、周波数ホッピング前に、Type0割当における複数のRBGに跨ってRBが割り当てられる場合には、周波数ホッピング後でもType0割当における複数のRBGに跨ってRBが割り当てられてしまう。つまり、実施の形態1では、周波数ホッピング端末には、周波数ホッピング前において複数のRBGに跨ってデータ信号を割り当てないという制約(RBGに関する制約)が必要となる。
 よって、上述したサブバンドに関する制約およびRBGに関する制約の双方を考慮すると、周波数ホッピング端末に対して割当可能なRBは、図6に示す一部のRBのみに限定されてしまう。具体的には、図6に示すように、周波数ホッピング前に、周波数ホッピング端末のデータ信号の送信帯域としてX(X=1~3)個のRBが割り当てられる場合について説明する。図6に示すように、X=1RBの場合には、上記制約を考慮することなくデータ信号が割り当てられる。
 一方、X=2RBの場合には、サブバンド#0と#1との間の境界に位置し、かつ、RBG#4と#5との間の境界に位置するRB#15にデータ信号が割り当てられない。また、サブバンド#1と#2との間の境界に位置し、かつ、RBG#7と#8との間の境界に位置するRB#24、および、サブバンド#2と#3との間の境界に位置し、かつ、RBG#10と#11との間の境界に位置するRB#33についても同様である。また、サブバンド#3の最後尾に位置し、かつ、RBG#13と#14との間の境界に位置するRB#42にもデータ信号が割り当てられない。
 また、X=3RBの場合には、1サブバンドを構成する、Type0割当における4RBGに渡る9RB[後半2RB、全3RB、全3RB、前半1RB]のうち、両端のRBGにデータ信号が割り当てられない。つまり、周波数ホッピング端末に対して、図6に示すサブバンド#0ではRBG#3、#4に対応するRB#9~#14のみが割当可能となり、サブバンド#1ではRBG#6、#7に対応するRB#18~#23のみが割当可能となる。図6に示すサブバンド#2、#3についても同様である。ただし、図6に示す割当可能なRBにおいても、周波数ホッピング端末によるRBGの占有量を抑制するためには、RBGサイズ以内の割当RBを複数のRBGに跨って割り当てないという制約は存在する。
 このように、周波数ホッピング端末のデータ信号に対して、複数のサブバンドに跨ることなく、かつ、Type0割当における複数のRBGに跨ることなくRBを割り当てる必要がある。この場合、基地局では、周波数ホッピング端末に対してRBを割り当てる際、周波数ホッピングが適用される帯域内で割り当てることができるRBが限られてしまう課題がある。
 そこで、本実施の形態に係る基地局は、複数のRBG間の境界のいずれかを、複数のサブバンド間の境界と一致させて、非連続帯域割当対象端末装置に対して複数のRBをRBG単位で割り当てる。これにより、周波数ホッピング端末に対してRBを割り当てる際、周波数ホッピングが適用される帯域内で割り当てることができるRBが限定されてしまうことを防ぐ。
 以下、本実施の形態について具体的に説明する。
 本実施の形態に係る基地局100(図3)において、スケジューリング部110の割当部1102は、実施の形態1と同様にして、非連続帯域割当対象端末装置に対して、システム帯域を構成する複数のRBをRBG単位で割り当てる。ただし、割当部1102は、Type0割当における複数のRBG間の境界のいずれかを、周波数ホッピングにおける複数のサブバンド間の境界と一致させて、非連続帯域割当対象端末に対して、複数のRBをRBG単位で割り当てる。例えば、割当部1102は、複数のRBGのいずれかの低周波数側(または高周波数側)の端の周波数位置を、周波数ホッピングが適用される帯域の低周波数側(または高周波数側)の端の周波数位置と一致させる。このように、割当部1102は、Type0割当における複数のRBGの境界と、周波数ホッピングにおける複数のサブバンドの境界とが一致するように設定された複数のRBGを用いて、非連続帯域割当対象端末に対してRB割当を行う。より詳細には、上記サブバンドの境界は、サブバンドの帯域幅がRBGサイズPの自然数倍となる場合を想定したサブバンドの境界とする。
 一方、本実施の形態に係る端末200(図4)において、割当RB決定部208は、実施の形態1と同様にして、自端末に対するリソース割当が非連続帯域割当の場合(つまり、端末200が非連続帯域割当対象端末の場合)、復号部204から入力されるリソース割当情報(ビットマップ)に基づいて、自端末に割り当てられたRB(割当RB)を決定する。ただし、割当RB決定部208は、本実施の形態に係る割当部1102と同様、Type0割当における複数のRBG間の境界と、周波数ホッピングにおける複数のサブバンド間の境界とが一致するように設定された複数のRBGを用いて割当RBを決定する。より詳細には、上記サブバンドの境界は、サブバンドの帯域幅がRBGサイズPの自然数倍となる場合を想定したサブバンドの境界とする。
 次に、本実施の形態に係る基地局100(図3)および端末200(図4)の動作について詳細に説明する。
 以下の説明では、図7に示すように、システム帯域の帯域幅を実施の形態1(図5)と同様、50RB(例えば、10MHz)とする。また、Type0割当におけるRBGサイズPを3RBとする。
 また、基地局100のスケジューリング部110の設定部1101は、実施の形態1と同様、周波数ホッピングが適用される帯域を36RB(=50RB-(7RB×2))個のRB(RB#7~#42)に設定する。また、設定部1101は、実施の形態1と同様、周波数ホッピングが適用される帯域(36RB)を、帯域幅9RBの4個のサブバンド#0~#3に均等に分割する。つまり、実施の形態1と同様、図7に示すサブバンド#0~#3の各帯域幅(9RB)は、RBGサイズP(3RB)の自然数倍(3倍)となる。
 そこで、割当部1102は、まず、複数のRBG間の境界が4個のサブバンド#0~#3間の境界と一致するようにRBGを設定する。例えば、図7に示すように、割当部1102は、複数のRBGのうちいずれかの低周波数側の端の周波数位置が、周波数ホッピングが適用される帯域の低周波数側の端の周波数位置(つまり、サブバンド#1の低周波数側の端の周波数位置)と一致するようにRBGの周波数位置を調整する。具体的には、図7に示すように、割当部1102は、RBG#2の低周波数側の端の周波数位置を、周波数ホッピングが適用される帯域の低周波数側の端の周波数位置であるRB#7と一致させるように、RBGの周波数位置を調整する。これにより、図7に示すように、割当部1102は、RB#1~#48を、RB#1から順に3(=P)個毎にRBG#0~#15にグループ化する。
 これにより、図7に示すように、サブバンド#0と#1との間の境界は、RBG#4と#5との間の境界と一致し(RB#15と#16との間)、サブバンド#1と#2との間の境界は、RBG#7と#8との間の境界と一致し(RB#24と#25との間)、サブバンド#2と#3との間の境界は、RBG#10と#11との間の境界と一致する(RB#33と#34との間)。また、図7に示すように、周波数ホッピングが適用される帯域の両端の周波数位置についても、複数のRBG間の境界のいずれか(図7では、RBG#1と#2との間、および、RBG#13と#14との間)と一致する。
 なお、端末200(図4)の割当RB決定部208は、自端末のリソース割当が非連続帯域割当の場合(端末200が非連続帯域割当対象端末の場合)、割当部1102と同様にして、複数のRBG間の境界が4個のサブバンド#0~#3間の境界と一致するようにRBGを設定する。
 ここで、図7では、サブバンドの帯域幅(9RB)は、実施の形態1と同様、RBGサイズP(3RB)の自然数倍(3倍)である。よって、複数のRBGのうちいずれかの低周波数側の端の周波数位置が、周波数ホッピングが適用される帯域の低周波数側の端の周波数位置と一致する場合には、複数のサブバンド間のすべての境界は、複数のRBG間の境界のいずれかと必ず一致する。換言すると、Type0割当におけるRBGは、周波数ホッピングにおけるサブバンドに相当するRBに跨って設定されない。例えば、図7では、周波数ホッピングにおける各サブバンドを構成する9RBは、Type0割当における3個のRBGに含まれる9RB(=3RB×3RBG)に相当する。
 すなわち、複数のサブバンド間の境界と複数のRBG間の境界とを一致させることにより、上記サブバンドに関する制約が発生する箇所(例えば、図7に示すサブバンド#0と#1との間)を、上記RBGに関する制約が発生する箇所のいずれか(例えば、図7に示すRBG#4と#5との間)と必ず一致する。これにより、基地局100は、上述したサブバンドに関する制約およびRBGに関する制約がある場合でも、RBGに関する制約のみを考慮して、周波数ホッピング対象端末に対するRB割当を行うことができる。
 よって、図7に示すように、周波数ホッピング端末のデータ信号の送信帯域X(X=1RB~3RB)がいずれの場合でも、周波数ホッピング前に、データ信号をサブバンド内のいずれのRBに割り当てることが可能となる。ただし、図7に示す各サブバンド内の割当可能なRBにおいても、周波数ホッピング端末によるRBGの占有量を抑制するためには、RBGサイズP(=3RB)以内の割当RBを複数のRBGに跨って割り当てないという制約は存在する。
 また、図7では、実施の形態1と同様、サブバンド#0~#3の帯域幅(9RB)はRBGサイズP(3RB)の自然数倍(3倍)である。よって、周波数ホッピング前において1RBGのみを占有するように割り当てられたデータ信号は、周波数ホッピング後においても1RBGのみを占有して割り当てられる。これにより、周波数ホッピング前に周波数ホッピング端末に対して、Type0割当における1RBG内にRBが割り当てられる場合には、実施の形態1と同様、周波数ホッピング後においても複数のRBGに跨ることなく、RBGの占有量を抑制することができる。
 このようにして、本実施の形態では、基地局および端末は、Type0割当にける複数のRBG間の境界を、周波数ホッピングにおける複数のサブバンド間の境界と一致させる。すなわち、複数のサブバンド間のすべての境界が、複数のRBG間の境界と一致するため、基地局は、周波数ホッピング端末に対して、上述したサブバンドに関する制約を考慮せずに、RBGに関する制約のみに従って周波数ホッピングが適用される帯域内のRBを割り当てることができる。すなわち、周波数ホッピング端末に対して割り当てることができるRBの制約を少なくすることができるため、周波数ホッピング端末に対して、リソース割当を柔軟に行うことができる。さらに、本実施の形態によれば、実施の形態1と同様、周波数ホッピング端末による、Type0割当におけるRBGの占有量を抑制して、Type0割当におけるリソース割当を柔軟に行うことができる。
 なお、本実施の形態では、図7に示すように、RBG#2の低周波数側の端の周波数位置を、周波数ホッピングが適用される帯域の低周波数側の端の周波数位置であるRB#7に一致させる場合について説明した。しかし、本発明では、複数のRBG間の境界のいずれかと、複数のサブバンド間の境界(または周波数ホッピングが適用される帯域の端)のいずれかとが一致すればよい。例えば、図7において、RBG#5(または、RBG#8、#11)の低周波数側の端の周波数位置を、サブバンド#1(または、サブバンド#2、#3)の低周波数側の端の周波数位置であるRB#16(または、RB#25、#34)に一致させてもよい。
 または、本発明では、複数のRBGのいずれかの高周波数側の端の周波数位置を、周波数ホッピングが適用される帯域の高周波数側の端の周波数位置(または、サブバンドの高周波数側の端の周波数位置)に一致させてもよい。例えば、図7において、RBG#4(または、RBG#7、#10、#13)の高周波数側の端の周波数位置を、サブバンド#0(または、サブバンド#1、#2、#3)の高周波数側の端の周波数位置であるRB#15(または、RB#24、#33、#42(なお、#42は周波数ホッピングが適用される帯域の高周波数側の端の周波数位置である))に一致させてもよい。
 または、本発明では、周波数ホッピングにおけるサブバンドの数が偶数である場合には、Type0割当における複数のRBG間の境界のいずれかをシステム帯域の中心と一致させてもよい。例えば、図8に示すように、システム帯域の帯域幅を、本実施の形態(図7)と同様、50RB(例えば、10MHz)とし、Type0割当におけるRBGサイズPを3RBとし、サブバンド数を4個(つまり、偶数個)とする。このとき、基地局および端末は、本実施の形態と同様にして、周波数ホッピングにおけるサブバンド#0~#3を設定する。また、基地局および端末は、Type0割当におけるRBGの境界のいずれか(図8ではRBG#7と#8との間)が、システム帯域の中心(図8では、RB#24と#25との間)と一致するように、RBGの周波数位置を調整する。例えば、LTEでは、周波数ホッピングが適用される帯域として、システム帯域の中心から両側に向かって同一帯域幅となる帯域を割り当てる。具体的には、図8では、システム帯域の中心から低周波数側に向かって16RB(RB#7~#24)を割り当て、システム帯域の中心から高周波数側に向かって16RB(RB#25~#42)を割り当てる。よって、LTEでは、システム帯域の中心の両側に対称にサブバンドが設定され(つまり、全体で偶数のサブバンドが設定され)、システム帯域の中心にはサブバンドの境界が常に設定される。つまり、周波数ホッピングにおけるサブバンドの数が偶数である場合には、システム帯域の中心はサブバンドの境界と一致する。よって、複数のRBG間の境界のいずれかをシステム帯域の中心に一致させることは、複数のRBG間の境界のいずれかを複数のサブバンド間の境界に一致させることと等価である。この場合にも、本実施の形態と同様の効果を得ることができる。なお、サブバンド数として4個(偶数)を使用する可能性が高く、サブバンド数が偶数の場合を最適化するために、本発明では、サブバンド数が偶数の場合のみを想定して本発明のType0割当のフォーマットを設計してもよい。すなわち、基地局および端末は、サブバンド数が偶数であるか奇数であるかに関わらず、同一のType0割当のフォーマットを常に用いてもよい。例えば、サブバンド数が偶数であるか奇数であるかに関わらず、Type0割当におけるRBGの境界をシステム帯域の中心と一致させてもよい。これにより、基地局および端末は、サブバンド数に応じてType0割当に関する処理を切り替える必要がなくなる。ここで、サブバンド数が奇数である可能性は低いため、サブバンド数が奇数の場合に、上述したサブバンド数が偶数の場合に生じる効果が得られないことによるシステム全体に与える影響は少ない。
 また、本実施の形態では、サブバンドの帯域幅がRBGサイズPの3倍となる場合に、複数のRBG間の境界のいずれかを複数のサブバンド間の境界と一致させる場合について説明した。しかし、本発明では、サブバンドの帯域幅がRBGサイズPの3倍となる場合に限らない。例えば、基地局は、RBGサイズPの自然数倍となるサブバンドの帯域幅のうち、システム帯域の帯域幅内で周波数ホッピングが適用される帯域が最も大きくなるようなサブバンドの帯域幅を設定しつつ、複数のRBG間の境界のいずれかを複数のサブバンド間の境界と一致させてもよい。この場合、本実施の形態と同様、Type0割当におけるリソース割当の柔軟性を向上させることができ、さらに、周波数ホッピングによる周波数ダイバーシチ効果を最大限得ることができる。
 また、本実施の形態において、基地局は、RBGの周波数位置の調整により、システム帯域の両端でRBGを構成できなくなったRB(余りのRB)が存在する場合、両端のRB(余りのRB群)をグループ化して1RBGとしてもよい。例えば、図7では、RB#0および#49は、いずれのRBGにも含まれない、余りのRBである。そこで、基地局は、RB#0および#49を含む1つのRBGを新たに設定して、他のRBG#0~#15と同様にして、RBG単位でリソース割当を行ってもよい。これにより、基地局は、複数の余りのRBをRBG単位で端末へ通知することができるため、シグナリング量の増加を抑えることができる。
 または、基地局は、システム帯域の両端に存在する余りのRBを、システム帯域の両端のRB毎にそれぞれ1RBGにグループ化してもよい。これにより、基地局は、システム帯域の両端の余りのRBを、異なるRBGとして独立にリソース割当を行うことができるため、リソース割当の柔軟性をさらに向上させることができる。または、基地局は、システム帯域の両端に存在する余りのRBのうち、一方の端に存在するRBを1RBGにグループ化してRBG単位でリソース割当を行い、他方の端に存在するRBをRBGにグループ化しないでRB単位でリソース割当を行ってもよい。これにより、基地局は、一方ではRBG単位で端末へリソース割当情報を通知することでシグナリング量の増加を抑えることができ、他方ではRB単位でリソース割当を行うことでリソース割当の柔軟性を向上させることができる。なお、基地局は、システム帯域の両端に存在する余りのRBのいずれもRBGにグループ化せず、かつ、リソース割当を行わなくてもよい。LTEでは、システム帯域の両端に位置するRBには、PUCCH領域が割り当てられる可能性が高く、リソース割当を行う可能性が低いことが考えられる。よって、システム帯域の両端に存在する余りのRBのいずれもリソース割当の対象外とすることでリソース割当のシグナリング量を削減することができる。
 また、本発明において、基地局および端末は、システム帯域を構成するRB数およびRBGサイズPに基づいて、RBGの開始位置(すなわち、先頭RBGの開始位置)を決定するためのオフセット(以下、RBG開始位置オフセットという)を算出してもよい。例えば、基地局および端末は、((システム帯域を構成するRB数/2)/RBGサイズP)の余りを、RBG開始位置オフセットとする。これは、システム帯域の中心からシステム帯域の両端に向かってRBGサイズPのRBGが繰り返し割り当てられ、システム帯域の両端においてRBGサイズPのRBGを構成できないRB(RBGサイズP未満のRB)分(余り)がRBG開始位置オフセットに相当することを意味する。つまり、基地局および端末は、複数のRBGのうち先頭RBGの開始位置を、システム帯域の先頭の周波数位置から、((システム帯域を構成するRB数の半数)/RBGサイズP)の余りに相当するRBだけずらす。具体的には、図9に示すように、システム帯域の帯域幅を50RBとし、RBGサイズPを3RBとすると、RBG開始位置オフセットは、25/3の余りである1RBとなる。よって、基地局および端末は、図9に示すように、RBGの開始位置をシステム帯域の先頭からRBG開始位置オフセット(1RB)だけずらす。そして、基地局および端末は、RB#1から順に3RB毎にグループ化してRBG#0~#15を設定する。この場合でも、図9に示すように、本実施の形態と同様、複数のサブバンド間のすべての境界は、複数のRBG間の境界のいずれかと一致する。なお、RBG開始位置オフセットとして、(((システム帯域を構成するRB数の半数)/RBGサイズP)の余り)+(RBGサイズPの倍数)を用いてもよい。
 また、本発明では、基地局および端末は、さらに、PUCCH領域を考慮して、RBG開始位置オフセットを算出してもよい。例えば、基地局および端末は、(((システム帯域を構成するRB数-PUCCH領域を構成するRB数)/2)/RBGサイズP)の余りを、RBG開始位置オフセットとする。これは、システム帯域の中心からシステム帯域の両端に向かってRBGサイズPのRBGが繰り返し割り当てられ、システム帯域のうちPUCCH領域(システム帯域の両端部分)以外の帯域(システム帯域-PUCCH領域)内の両端においてRBGサイズPのRBGを構成できないRB(RBGサイズP未満のRB)分(余り)がRBG開始位置オフセットに相当することを意味する。つまり、基地局および端末は、複数のRBGのうち先頭RBGの開始位置を、PUCCH領域の周波数位置から、(((システム帯域を構成するRB数-PUCCH領域を構成するRB数)の半数)/RBGサイズP)の余りに相当するRBだけずらす。具体的には、図10に示すように、システム帯域を50RBとし、RBGサイズPを3RBとし、PUCCH領域をシステム帯域の両端それぞれ3RB(つまり、合計6RB)とする場合について説明する。この場合、RBG開始位置オフセットは、((50-6)/2)/3の余りである1RBとなる。よって、基地局および端末は、図10に示すように、RBGの開始位置をPUCCH領域の周波数位置(図10ではRB#2)からRBG開始位置オフセット(1RB)だけずらす。そして、基地局および端末は、RB#4から順に3RB毎にグループ化してRBG#0~#15を設定する。この場合でも、図10に示すように、本実施の形態と同様、複数のサブバンド間のすべての境界は、複数のRBG間の境界のいずれかと一致する。さらに、図10では、PUCCH領域においてRBGが設定されることを防ぐことができる。なお、RBG開始位置オフセットとして、((((システム帯域を構成するRB数-PUCCH領域を構成するRB数)の半数)/RBGサイズP)の余り)+(RBGサイズPの倍数)を用いてもよい。
 また、上記図9および図10では、RBG開始位置オフセットが固定の場合について説明した。しかし、本発明では、基地局は、複数のRBG開始位置オフセットを保持し、複数のRBG開始位置オフセットからいずれか1つを選択し、選択したRBG開始位置オフセットを端末へ通知すればよい。
 また、本発明において、RBG開始位置オフセットとしては、0RB以上RBGサイズP未満の取り得るすべての値(つまり、P種類)を用いてもよい。これにより、基地局は、RBGの開始位置をRBGサイズ分だけ調整することができる。つまり、基地局は、RBGをいずれの周波数位置にも設定することが可能となる。そのため、基地局は、複数のサブバンド間の境界がいずれの場合でも、RBG開始位置オフセットを調整することにより、複数のRBG間の境界のいずれかをサブバンドの境界と確実に一致させることができる。よって、基地局は、複数のサブバンド間の境界がいずれの場合でも、本実施の形態と同様にして、周波数ホッピング端末に対するリソース割当の柔軟性を向上させることができる。
 また、LTEでは、PUCCH領域はシステム帯域内の両端に割り当てられ、PUCCH領域の帯域幅は、上り回線の制御情報量に応じて変更される。すなわち、Type0割当における複数のRBGのうち、両端のRBGに含まれる一部のRBがPUCCH領域によって占有されてしまう可能性がある。つまり、基地局が複数のRBGのうち両端のRBGを非連続帯域割当対象端末に対して割り当てることができず、Type0割当におけるリソース割当の柔軟性が低下してしまう課題がある。そこで、本発明では、基地局は、システム帯域において、周波数ホッピングが適用される帯域以外の帯域(つまり、PUCCH割当可能領域)のうちPUCCH領域を除いた帯域を構成するRBを、RBGサイズP単位、または、RBGサイズPと異なるRBGサイズ単位で割り当ててもよい。つまり、基地局は、周波数ホッピングが適用される帯域以外の帯域(PUCCH割当可能帯域)のうちPUCCH領域を除いた帯域では、一部のRBGのRBGサイズを変更してもよい(RBGサイズをPより大きくしてもよく、RBGサイズをPより小さくしてもよい)。
 以下、図11に示すように、システム帯域を50RBとし、RBGサイズPを3RBとし、PUCCH領域をシステム帯域の両端それぞれ2RBとする場合について説明する。なお、基地局は、複数のRBG開始位置オフセットを保持する。そして、基地局は、PUCCH領域の帯域幅に対応する1つのRBG開始位置オフセットを選択し、選択したRBG開始位置オフセットを端末へ通知する。図11では、基地局は、RBG開始位置オフセットを2RBとする。
 図11に示すように、基地局は、選択したRBG開始位置オフセットに関わらず、本実施の形態と同様にして、周波数ホッピングが適用される帯域(図11に示すRB#7~#42)において、RBGの境界をサブバンドの境界と一致させる。また、基地局は、周波数ホッピングが適用される帯域以外の帯域であるPUCCH割当可能領域(図11に示すRB#0~RB#6、RB#43~RB#49)のうち、PUCCH領域(図11に示すRB#0、#1、#48、#49)以外の帯域を、周波数ホッピングが適用される帯域以外のRBG割当領域(以下、外部RBG割当領域)とする。そして、基地局は、外部RBG割当領域(図11に示すRB#2~#6、RB#43~#47)のRB数に基づいて、外部RBG割当領域におけるRBGサイズを調整する。具体的には、基地局は、図11に示すように、外部RBG割当領域であるRB#2~#6の5RBをRBGサイズPまたはRBGサイズPと異なるRBGサイズ毎にグループ化して、RBGサイズP(=3RB)のRBG#1およびRBGサイズが2RB(<P)のRBG#0を設定する。同様に、基地局は、図11に示すように、外部RBG割当領域であるRB#43~#47の5RBをグループ化して、RBGサイズP(=3RB)のRBG#14およびRBGサイズが2RB(<P)のRBG#15を設定する。
 つまり、図11では、基地局は、Type0割当のリソース割当対象であるRBG#0~#15のうち、両端のRBG#0およびRBG#15のRBGサイズを、RBGサイズPよりも小さいサイズに変更する。これにより、図11に示すように、基地局は、Type0割当における両端のRBGがPUCCH領域によって占有されることを防ぐことができる。これにより、システム帯域全体のうちPUCCH領域以外のすべての帯域(図11では、RB#2~#47)を、非連続帯域割当対象端末に対して割り当てることが可能となる。
 換言すると、基地局は、Type0割当のリソース割当対象であるRBG#0~#15のうち、周波数ホッピングが適用される帯域以外の帯域(外部RBG割当領域)に設定されるRBG#0およびRBG#15のRBGサイズを変更する。これにより、図11に示すように、周波数ホッピングが適用される帯域(RB#7~#42)では、サブバンドの帯域幅はRBGサイズPの自然数倍(3倍)となり、かつ、複数のサブバンド間すべての境界は複数のRBG間の境界のいずれかと一致する。よって、RBGのRBGサイズを変更する場合でも、図11に示す周波数ホッピングが適用される帯域(RB#7~#42)では、本実施の形態と同様の効果を得ることができる。
 また、図11において外部RBG割当領域のうち、RBGサイズを変更したRBG(図11に示すRBG#0、#15)に含まれるRBは、上記図10におけるRBG開始位置オフセットに相当するRB(図10ではRB#3の1RB)と等価である。すなわち、基地局は、図10において、RBG開始位置オフセットに相当するRBを1つのRBGとして設定してもよい。
 また、図11では、一例として、基地局が、外部RBG割当領域において、RBGサイズを減少させてRBGを設定する場合について説明した。しかし、本発明では、基地局は、外部RBG割当領域において、RBGサイズを増加させてRBGを設定してもよい。例えば、基地局は、図11において、外部RBG割当領域であるRB#2~#6(またはRB#43~#47)をグループ化して、RBサイズが5RB(>RBGサイズP)の1つのRBGを設定してもよい。
 また、本実施の形態では、サブバンドの帯域幅がRBGサイズPの自然数倍となる場合について説明した。しかし、本発明では、サブバンドの帯域幅がRBGサイズPの自然数倍に設定されるか否かに関わらず、RBGの境界を、サブバンドの帯域幅がRBGサイズPの自然数倍となる場合のサブバンドの境界に常に一致させてもよい。これにより、基地局および端末は、同一のType0割当のフォーマットを常に用いることができる。そして、基地局および端末は、サブバンドの帯域幅を制御することにより、本発明を適用するか否かを選択することができる。
 (実施の形態3)
 本実施の形態では、基地局および端末は、Type0割当におけるRBGのフォーマットを、周波数ホッピングにおけるサブバンド単位で定義する。
 以下、本実施の形態について具体的に説明する。
 本実施の形態に係る基地局100(図3)において、スケジューリング部110の設定部1101は、PUCCH割当可能領域、および、周波数ホッピングが適用される帯域を構成する複数のサブバンドの数を設定し、周波数ホッピングが適用される帯域およびサブバンドの帯域幅を決定する。ただし、周波数ホッピングが適用される帯域を分割して得られるサブバンドの帯域幅は、Type0割当におけるRBGサイズPの自然数倍となってもよく、RBGサイズPの自然数倍とならなくてもよい。つまり、設定部1101は、PUCCH割当可能領域およびサブバンド数を任意の値に設定する。
 スケジューリング部110の割当部1102は、設定部1101で決定されるサブバンドの帯域幅に相当するRB数と一致する、Type0割当におけるRBGのフォーマットを定義する。例えば、割当部1102は、サブバンドの帯域幅に相当する数のRBを、RBGサイズP毎にグループ化することで、RBGのフォーマットを定義する。なお、サブバンドの帯域幅がRBGサイズPの自然数倍である場合には、割当部1102は、(サブバンドの帯域幅/RBGサイズP)個のRBGで構成されるフォーマットを定義する。一方、サブバンドの帯域幅がRBGサイズPの自然数倍でない場合には、割当部1102は、サブバンドの帯域幅に合わせて、複数のRBGのうち一部のRBGのRBGサイズを変更して、フォーマットを定義する。例えば、割当部1102は、RBGサイズPを有する、(サブバンドの帯域幅/RBGサイズP)の商と同数のRBGと、(サブバンドの帯域幅/RBGサイズP)の余りと同数のRBGサイズを有する1つのRBGとからなるフォーマットを定義する。
 また、割当部1102は、定義したフォーマットをシステム帯域の先頭の周波数位置から順に繰り返すことにより、システム帯域全体に渡って複数のRBGを設定する。そして、割当部1102は、実施の形態1と同様にして、非連続帯域割当対象端末装置に対して、システム帯域を構成する複数のRBをRBG単位で割り当てる。
 一方、本実施の形態に係る端末200(図4)において、割当RB決定部208は、実施の形態1と同様にして、自端末に対するリソース割当が非連続帯域割当の場合(つまり、端末200が非連続帯域割当対象端末の場合)、復号部204から入力されるリソース割当情報(ビットマップ)に基づいて、自端末に割り当てられたRB(割当RB)を決定する。ただし、割当RB決定部208は、本実施の形態に係る割当部1102と同様、サブバンドの帯域幅に相当するRB数と一致する、Type0割当におけるRBGのフォーマットを定義し、定義したフォーマットをシステム帯域の先頭の周波数位置から順に繰り返すことにより、システム帯域全体に渡って複数のRBGを設定する。
 次に、本実施の形態に係る基地局100(図3)および端末200(図4)の動作について詳細に説明する。
 以下の説明では、図12に示すように、システム帯域の帯域幅を実施の形態1(図5)と同様、50RB(例えば、10MHz)とする。また、Type0割当におけるRBGサイズPを3RBとする。
 また、基地局100のスケジューリング部110の設定部1101は、PUCCH割当可能領域を3RBとし、サブバンドの数を4個とする。よって、設定部1101は、周波数ホッピングが適用される帯域を44RB(=50RB-(3RB×2))個のRB(RB#3~#46)に設定する。また、設定部1101は、周波数ホッピングが適用される帯域(44RB)を、帯域幅11RBの4個のサブバンド#0~#3に均等に分割する。
 よって、割当部1102は、サブバンドの帯域幅に相当する11RBと一致するRBGのフォーマットを定義する。例えば、図12に示すように、割当部1102は、RBGサイズP=3RBに基づいて、RBGサイズがそれぞれ[3RB、3RB、3RB、2RB]である4個のRBGで構成されるフォーマットを定義する。つまり、ここでは、図12に示すように、割当部1102は、RBGサイズP=3RBを有する、3個(=(サブバンドの帯域幅11RB/RBGサイズ3RB)の商)のRBGと、RBGサイズ2RB(=((サブバンドの帯域幅11RB/RBGサイズ3RB)の余り)を有する1つのRBGとからなるフォーマットを定義する。
 そして、図12に示すように、割当部1102は、定義したフォーマットをシステム帯域の先頭の周波数位置RB#0から順に繰り返すことにより、システム帯域全体に渡って複数のRBG#0~#15を設定する。つまり、図12に示すように、RB#0~#10、RB#11~#21、RB#22~#32、RB#33~#43のいずれにおいても、RBGサイズがそれぞれ[3RB、3RB、3RB、2RB]である4個のRBGが設定される。換言すると、図12に示すRB#0~#43では、RBGサイズがそれぞれ[3RB、3RB、3RB、2RB]である4個のRBGで構成されるフォーマットが、サブバンドの帯域幅(11RB)間隔で繰り返し設定されている。なお、図12では、定義したフォーマットにより設定されるRBG以外のRBGとして、RBG#16(RB#44~#46)が設定されている。
 また、端末200(図4)の割当RB決定部208は、自端末のリソース割当が非連続帯域割当の場合(端末200が非連続帯域割当対象端末の場合)、割当部1102と同様にして、サブバンドの帯域幅に相当する11RBと一致するRBGのフォーマットを定義する。
 例えば、図12に示すように、基地局100が、周波数ホッピング前(図12に示すスロット#1)に、周波数ホッピング端末UE#1に対してRB#3、#4(RBG#1の前半2RBに相当)を割り当て、周波数ホッピング端末UE#2に対してRB#25、#26を割り当てる場合について説明する。この場合、周波数ホッピング後(図12に示すスロット#2)では、UE#1は、RB#14、#15に割り当てられる。ここで、周波数ホッピング前におけるRB#3、#4は、定義したフォーマットの先頭から2番目のRBGであるRBG#1の前半2RBに相当する。また、周波数ホッピング後におけるRB#14、#15は、定義したフォーマットの先頭から2番目のRBGであるRBG#5の後半2RBに相当する。
 つまり、実施の形態1と同様、データ信号の送信帯域が複数のサブバンド毎に周波数ホッピング(図12では1サブバンド分(11RB)だけ周波数ホッピング)される場合でも、周波数ホッピング前にデータ信号が割り当てられるRBG内のRBの位置と、周波数ホッピング後にデータ信号が割り当てられるRBG内のRBの位置とが同一となる。すなわち、図12において、UE#1に対して周波数ホッピングの前後に割り当てられるRBは、フォーマット内の同一位置(ここでは2番目)に設定されたRBGを占有する。図12に示すUE#2についても同様である。換言すると、周波数ホッピング前後にデータ信号が割り当てられるRBの位置は、Type0割当において、定義されたフォーマット長(図12では11RB)だけ離れた2つのRBG内の同一位置となる。
 つまり、周波数ホッピング前において1RBGのみを占有するように割り当てられたデータ信号は、周波数ホッピング後においても1RBGのみを占有して割り当てられる。これにより、周波数ホッピング前に周波数ホッピング端末に対して、Type0割当における1RBG内にRBが割り当てられる場合には、周波数ホッピング後においても複数のRBGに跨ることなく、RBGの占有量を抑制することができる。
 このようにして、本実施の形態によれば、サブバンドの帯域幅と一致するRB数から構成されるRBGのフォーマットが定義される。これにより、Type0割当におけるRBGの構成がサブバンド間で同一となる。つまり、周波数ホッピング前後に1つの周波数ホッピング対象端末に割り当てられるRBは、Type0割当において定義されたフォーマット長だけ離れたRBG内の同一位置のRBに相当する。そのため、周波数ホッピング端末に対して、1RBG内のRBのみが周波数ホッピング前に割り当てられた場合には、実施の形態1と同様、周波数ホッピング後においても1RBG内のRBのみが必ず割り当てられる。よって、本実施の形態によれば、実施の形態1と同様、周波数ホッピング端末による、Type0割当におけるRBGの占有量を抑制して、Type0割当におけるリソース割当を柔軟に行うことができる。
 なお、本実施の形態では、システム帯域の先頭の周波数位置(図12ではRB#0)から順にフォーマットを繰り返す場合について説明した。しかし、本発明では、図13に示すように、実施の形態1と同様、基地局は、複数のRBG間の境界のいずれかを複数のサブバンド間のすべての境界と一致させてもよい。具体的には、図13に示すように、基地局は、周波数ホッピングが適用される帯域の低周波数側の端の周波数位置であるRB#3から順に、定義したフォーマットを繰り返すことで、複数のRBGを設定してもよい。換言すると、基地局は、サブバンドの帯域幅と同一の帯域幅を有するフォーマットを、各サブバンドが設定された周波数帯域と同一の周波数帯域に設定する。これにより、実施の形態2と同様にして、複数のRBG間の境界のいずれかを、複数のサブバンド間のすべての境界と一致させることができる。つまり、実施の形態2と同様、Type0割当における各RBGが、周波数ホッピングにおける複数のサブバンドに相当するRBに跨って設定されることが無くなる。換言すると、基地局は、サブバンドに関する制約を考慮せずに、RBGに関する制約のみに従って周波数ホッピングが適用される帯域内のRBを割り当てることができる。すなわち、周波数ホッピング端末に対して割り当てることができるRBの制約を少なくすることができるため、周波数ホッピング端末に対して、リソース割当を柔軟に行うことができる。なお、図13では、定義したフォーマットにより設定されるRBG以外のRBGとして、RBG#0(RB#0~#2)が設定されている。
 また、本実施の形態では、図12および図13に示すように、定義されるフォーマットを構成する4個のRBGのRBGサイズがそれぞれ[3RB、3RB、3RB、2RB]である場合について説明した。しかし、本発明では、定義されるフォーマットを構成するRBG数は4個に限らず、かつ、各RBGのRBG数はいずれの値でもよい。
 以上、本発明の各実施の形態について説明した。
 なお、上記実施の形態では、Type0割当に従い、RBG単位でRBを割り当てる場合について説明した。しかし、本発明では、Type0割当に限らず、例えば、P個のRB単位でRBを割り当てられるフォーマットを用いてもよい。また、本発明において、複数のRBをP[RB]単位で複数のRBGにグループ化されていなくてもよく、ビットマップが対応するグループに含まれるRB数を、基地局装置および端末装置が共有していればよい。
 また、本発明は、リソース割当時のスケジューリングの柔軟性を大幅に改善することが期待できる、システム帯域の帯域幅が比較的広い場合(例えば、システム帯域の帯域幅が10MHz、20MHzの場合)についてのみ適用してもよい。また、システム帯域の帯域幅が比較的狭い場合(例えば10MHz未満)には本発明を適用しないのに対し、システム帯域の帯域幅が比較的広い場合(例えば10MHz以上)には本発明を必ず適用してもよい。
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2009年8月7日出願の特願2009-184698の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、データ信号を非連続帯域割り当てる無線通信システムにおける無線通信装置及び無線通信方法等として有用である。
 100 基地局
 200 端末
 101,206 符号化部
 102,207 変調部
 103,211 送信RF部
 104,201 アンテナ
 105,202 受信RF部
 106 分離部
 107,111 DFT部
 108,112 デマッピング部
 109 伝搬路推定部
 110 スケジューリング部
 1101 設定部
 1102 割当部
 113 周波数領域等化部
 114 IFFT部
 115,203 復調部
 116,204 復号部
 117 誤り検出部
 205 CRC部
 208 割当RB決定部
 209 RB割当部
 210 多重化部

Claims (7)

  1.  システム帯域を構成する複数のリソースブロックがP個のリソースブロック毎に複数のリソースブロックグループにグループ化されるとともに、前記システム帯域内の両端に割り当てられる制御チャネルを割当可能な第1の帯域以外の第2の帯域が、複数のサブバンドに分割される無線通信システムにおいて使用される無線基地局装置であって、
     非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てる割当手段と、
     周波数ホッピング端末装置で前記複数のサブバンド毎に周波数ホッピングされるデータ信号を、前記第2の帯域内の前記複数のリソースブロックから抽出する抽出手段と、を具備し、
     前記複数のサブバンドそれぞれの帯域幅は前記Pの自然数倍である、
     無線基地局装置。
  2.  前記割当手段は、前記複数のリソースブロックグループ間の境界のいずれかを、前記複数のサブバンド間の境界と一致させて、前記非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てる、
     請求項1記載の無線基地局装置。
  3.  前記割当手段は、前記複数のリソースブロックグループのいずれかの低周波数側の端の周波数位置を、前記第2の帯域の低周波数側の端の周波数位置と一致させて、前記非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てる、
     請求項2記載の無線基地局装置。
  4.  前記割当手段は、前記複数のリソースブロックグループのいずれかの高周波数側の端の周波数位置を、前記第2の帯域の高周波数側の端の周波数位置と一致させて、前記非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当てる、
     請求項2記載の無線基地局装置。
  5.  前記割当手段は、前記第1の帯域のうち、前記制御チャネルが割り当てられる帯域以外の帯域を構成するリソースブロックを、前記非連続帯域割当対象端末に対して割り当てる、
     請求項1記載の無線基地局装置。
  6.  前記割当手段は、前記第1の帯域のうち、前記制御チャネルが割り当てられる帯域以外の帯域を構成するリソースブロックを、前記P個でグループ化されたリソースブロックグループ単位または前記P以外の個数でグループ化されたリソースブロックグループ単位で割り当てる、
     請求項5記載の無線基地局装置。
  7.  システム帯域を構成する複数のリソースブロックがP個のリソースブロック毎に複数のリソースブロックグループにグループ化されるとともに、前記システム帯域内の両端に割り当てられる制御チャネルを割当可能な第1の帯域以外の第2の帯域が、複数のサブバンドに分割される無線通信システムにおいて使用される無線通信方法であって、
     非連続帯域割当対象端末装置に対して前記複数のリソースブロックを前記リソースブロックグループ単位で割り当て、
     周波数ホッピング端末装置で前記複数のサブバンド毎に周波数ホッピングされるデータ信号を、前記第2の帯域内の前記複数のリソースブロックから抽出し、
     前記複数のサブバンドそれぞれの帯域幅は前記Pの自然数倍である、
     無線通信方法。
PCT/JP2010/004969 2009-08-07 2010-08-06 無線基地局装置および無線通信方法 WO2011016252A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/384,268 US20120115526A1 (en) 2009-08-07 2010-08-06 Radio base station and radio communication method
JP2011525803A JP5580315B2 (ja) 2009-08-07 2010-08-06 無線基地局装置および無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009184698 2009-08-07
JP2009-184698 2009-08-07

Publications (1)

Publication Number Publication Date
WO2011016252A1 true WO2011016252A1 (ja) 2011-02-10

Family

ID=43544158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004969 WO2011016252A1 (ja) 2009-08-07 2010-08-06 無線基地局装置および無線通信方法

Country Status (3)

Country Link
US (1) US20120115526A1 (ja)
JP (1) JP5580315B2 (ja)
WO (1) WO2011016252A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166559A (ja) * 2010-02-12 2011-08-25 Sharp Corp 基地局装置、移動局装置および集積回路
WO2013029419A1 (zh) * 2011-09-01 2013-03-07 中兴通讯股份有限公司 一种配置分片载波后rbg大小和编号的确定方法和装置
EP2579670A1 (en) * 2011-03-25 2013-04-10 ZTE Corporation Method, device and terminal for indicating multi-port frequency domain resource location allocation information
JP2017519381A (ja) * 2015-04-03 2017-07-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送受信する方法及びそのための装置
CN110582118A (zh) * 2018-06-11 2019-12-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
JPWO2018173483A1 (ja) * 2017-03-23 2020-01-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20075937A0 (fi) * 2007-12-19 2007-12-19 Nokia Siemens Networks Oy Radiojärjestelmän konfigurointi
CN102340875B (zh) * 2010-07-23 2014-03-26 华为技术有限公司 资源分配方法和装置
WO2012021098A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Dual operation of user equipment in licensed and unlicensed spectrum
US8897253B2 (en) 2011-08-12 2014-11-25 Interdigital Patent Holdings, Inc. Flexible bandwidth operation in wireless systems
CN106664691B (zh) * 2015-01-27 2020-04-28 华为技术有限公司 一种公共信息的传输方法及装置
BR112019025750A2 (pt) 2017-06-08 2020-06-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de transmissão de dados, dispositivo terminal e dispositivo de rede
KR101950995B1 (ko) * 2017-06-08 2019-02-22 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
CN109428626B (zh) * 2017-09-05 2021-02-12 华为技术有限公司 一种信号传输方法、相关设备及系统
CN109548149B (zh) * 2017-09-21 2020-11-10 电信科学技术研究院 一种rbg的划分方法和用户终端
US11201702B2 (en) * 2018-11-13 2021-12-14 At&T Intellectual Property I, L.P. Facilitating hybrid automatic repeat request reliability improvement for advanced networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236430A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 基地局装置、移動局及び無線通信システム並びに通信制御方法
JP2009049541A (ja) * 2007-08-14 2009-03-05 Ntt Docomo Inc 基地局装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213367B2 (en) * 2005-11-02 2012-07-03 Texas Instruments Incorporated Methods for dimensioning the control channel for transmission efficiency in communication systems
WO2009040763A2 (en) * 2007-09-26 2009-04-02 Nokia Corporation Apparatus, methods, and computer program products providing a dynamic header structure for signaling resource allocations
KR101448653B1 (ko) * 2007-10-01 2014-10-15 엘지전자 주식회사 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
US8270435B2 (en) * 2008-03-10 2012-09-18 Zte (Usa) Inc. Method and system for variable-sized resource block allocation within OFDMA communication systems
AU2010208778B2 (en) * 2009-01-30 2014-05-15 Samsung Electronics Co., Ltd. Control signaling for transmissions over contiguous and non-contiguous frequency bands
US8817726B2 (en) * 2009-07-26 2014-08-26 Lg Electronics Inc. Uplink transmission method and apparatus in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236430A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 基地局装置、移動局及び無線通信システム並びに通信制御方法
JP2009049541A (ja) * 2007-08-14 2009-03-05 Ntt Docomo Inc 基地局装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166559A (ja) * 2010-02-12 2011-08-25 Sharp Corp 基地局装置、移動局装置および集積回路
EP2579670A1 (en) * 2011-03-25 2013-04-10 ZTE Corporation Method, device and terminal for indicating multi-port frequency domain resource location allocation information
EP2579670A4 (en) * 2011-03-25 2015-04-22 Zte Corp METHOD, DEVICE AND DEVICE FOR DISPLAYING INFORMATION ABOUT MULTIPORT FREQUENCY-DOMAIN-RESOURCE LOCATION ASSIGNMENTS
US9066332B2 (en) 2011-03-25 2015-06-23 Zte Corporation Method, device and terminal for indicating multi-port frequency domain resource location allocation information
WO2013029419A1 (zh) * 2011-09-01 2013-03-07 中兴通讯股份有限公司 一种配置分片载波后rbg大小和编号的确定方法和装置
US10091631B2 (en) 2015-04-03 2018-10-02 Lg Electronics Inc. Method of transmitting and receiving signal in wireless communication system and apparatus therefor
JP2017519381A (ja) * 2015-04-03 2017-07-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送受信する方法及びそのための装置
JPWO2018173483A1 (ja) * 2017-03-23 2020-01-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法
US11432268B2 (en) 2017-03-23 2022-08-30 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
JP7206185B2 (ja) 2017-03-23 2023-01-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、通信方法及び集積回路
US11785605B2 (en) 2017-03-23 2023-10-10 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
CN110582118A (zh) * 2018-06-11 2019-12-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110582118B (zh) * 2018-06-11 2023-04-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
JP5580315B2 (ja) 2014-08-27
JPWO2011016252A1 (ja) 2013-01-10
US20120115526A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5580315B2 (ja) 無線基地局装置および無線通信方法
US11825477B2 (en) System and method for performing resource allocation in radio communication
JP7345098B2 (ja) 通信装置、通信方法、及び、集積回路
JP5954721B2 (ja) 端末装置、マッピング方法及び集積回路
WO2018230133A1 (ja) 送信機、受信機、送信方法及び受信方法
JP5717737B2 (ja) 基地局装置、端末装置、無線送信方法及び無線受信方法
JPWO2018203440A1 (ja) 端末及び通信方法
CN113439422A (zh) 发送装置、接收装置、发送方法及接收方法
JP2010219793A (ja) 無線送信装置、無線受信装置および送信方法
WO2011052192A1 (ja) 無線通信端末装置、無線通信基地局装置および系列番号決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525803

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13384268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806252

Country of ref document: EP

Kind code of ref document: A1