WO2019047282A1 - 水凝胶在制备检测脑皮层电图的电极中的应用 - Google Patents

水凝胶在制备检测脑皮层电图的电极中的应用 Download PDF

Info

Publication number
WO2019047282A1
WO2019047282A1 PCT/CN2017/102849 CN2017102849W WO2019047282A1 WO 2019047282 A1 WO2019047282 A1 WO 2019047282A1 CN 2017102849 W CN2017102849 W CN 2017102849W WO 2019047282 A1 WO2019047282 A1 WO 2019047282A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
hydrogel
electrode
use according
electrocorticography
Prior art date
Application number
PCT/CN2017/102849
Other languages
English (en)
French (fr)
Inventor
汪浩
盛浩
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2019047282A1 publication Critical patent/WO2019047282A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the present invention relates to the use of hydrogels having low electrical conductivity, and more particularly to the use of hydrogels in the preparation of electrodes for detecting electroencephalographic cortex.
  • the cortical electrogram is an indispensable technical tool in the Montreal treatment (for the treatment of epilepsy in critically ill patients). Cortical potentials were recorded by recording EEG to determine the cortical area where seizures occurred. This cortical region is then surgically removed to remove the source of seizures. It is generally considered that the signal emitted by the brain cells is weak, and those skilled in the art usually use a metal material having high conductivity as a detection electrode of a brain signal.
  • metal electrodes have extremely high hardness and poor biocompatibility, as well as different electrical conduction principles from the brain (the brain is ion-conducting and the metal is electronically conductive). During use, metal electrodes are prone to damage brain tissue and do not closely conform to the cerebral cortex. In addition, long-term in vivo recording is not possible due to the poor biocompatibility of metal electrodes and the different conductive principles of the brain.
  • the present invention overcomes the technical bias and provides a use of a hydrogel in the preparation of an electrode for detecting a cortical electrogram.
  • the first brain cortical electrogram acquisition technique using a gel as an electrode. Since the conductive principle of gel and brain tissue is the same as ion conduction, even if the conductivity of the gel is relatively low, the ion concentration difference of the brain can still be transmitted to the outside.
  • the head of the gel electrode is in direct contact with the cerebral cortex, and the posterior portion is connected to an externally collected electrode wire.
  • the gel is wrapped in a flexible dielectric material for protection and insulation. With this method, the cerebral cortex is only in contact with the gel and the dielectric material.
  • the gel has a low modulus of elasticity and is adjustable to match the excellent mechanical properties of the brain tissue.
  • the soft gel fits tightly to the cerebral cortex.
  • gel has excellent biocompatibility. This method not only greatly improves the physiology of traditional cortical electrograms, but also hopes to achieve long-term cerebral cortex electrogram recording to achieve more functions.
  • the technical solution adopted by the present invention is: a use of a hydrogel for preparing an electrode for detecting a cortical electrogram, which is a biocompatible water having an elastic modulus of less than 100 MPa. gel.
  • the hydrogel is a hydrogel obtained by polymerizing a polymer monomer dissolved in a biocompatible liquid.
  • biocompatible liquid is cerebrospinal fluid or physiological saline.
  • the polymer monomer is an ester, an alcohol, an amide or an organic salt.
  • the polymer monomer is one of sodium acrylate, acrylic acid, hydroxyethyl methacrylate, sodium methacrylate, dimethyl acrylamide, vinyl alcohol, ethylene glycol, sodium styrene sulfonate. kind or more.
  • the electrode comprises a flexible substrate composed of a dielectric material, a gel sheet made of a hydrogel, and an inert metal sheet embedded in the flexible substrate, the gel sheet being disposed on the surface of the flexible substrate, condensed
  • the electrical signal collected by the film is output through an inert metal sheet.
  • an interface for connecting an external instrument is also included, the interface being connected to an inert metal piece.
  • the flexible substrate is made of polydimethylsiloxane or platinum silica gel.
  • the inert metal piece is platinum, gold, silver, or a metal plate having a platinum, gold, silver plating.
  • the gel sheets are arranged in an array of m*n, where m, n are positive integers.
  • the gel sheet is in direct contact with the cortex.
  • Excitability of the cerebral cortex pumpes positive ions outside the brain cells into the cells through the ion channels on the cells, causing a decrease in the concentration of extracellular ions, causing the positive ions in the gel sheet to move toward the cortex.
  • the positive ions are less in the contact portion between the gel sheet and the inert metal sheet, and the amount of negative ions is constant, and the portion of the inert metal sheet in contact with the gel sheet generates an induced potential and is conducted to the outside via an external instrument joint. instrument.
  • the present invention has the following advantages:
  • the gel electrode has a very low modulus of elasticity, and the elastic modulus can be adjusted by changing the degree of crosslinking of the gel to make it have the same elastic modulus as that of the cerebral cortex. Therefore, compared with the traditional hard metal electrode, the mechanical properties of the gel electrode are more closely matched with the brain tissue, and the damage to the cerebral cortex can be reduced in the process of recording the signals in the cerebral cortex.
  • the surface of the cerebral cortex is not flat, it is covered with groove back, and in the measurement of cortical field potential, the electrode and the cerebral cortex are required to achieve a good fit. Since the gel electrode has a very low modulus of elasticity, the gel can better conform to the cerebral cortex and achieve field potential recording compared to conventional metal electrodes.
  • the gel is a solid polymer network filled with a liquid environment. This molecular composition is similar to biological tissue. As a traditional tissue culture material, the gel has good biocompatibility. By using a neutral gel polymer network plus cerebrospinal fluid, the gel electrode can provide the cerebral cortical cells with a liquid state close to the original state when they are attached to the cerebral cortex. Therefore, compared with the traditional metal electrode, it has excellent biocompatibility and can reduce the production of glial cells in the cerebral cortex.
  • the gel is a solid polymer network filled with a liquid environment.
  • the gel conducts electricity by free ions in the liquid environment. Due to the contact with the cortex, the gel conducts the movement of ions during the conduction of the signal, and does not involve the conversion of electrical signals from ions to electrons. Therefore, the gel with weak conductivity has a detection effect comparable to that of highly conductive materials. .
  • Fig. 1 and Fig. 2 are schematic plan views, front elevational views showing the structure of a cortical electrogram gel electrode of the present invention.
  • Figure 3 is a plot of mouse cortical field potential recorded by electrodes after two weeks of implantation of a cortical electrogram gel electrode in the mouse cortex;
  • Figure 4 shows the results of immunohistochemistry after implantation of gel and platinum in the brain of mice for two weeks
  • Figure 5 is a stress-strain curve of the gel
  • the gel sheet 1 the flexible substrate 2, the metal sheet 3, and the external instrument connector 4.
  • the above electrode was placed in the mouse (line C57) intracranial, and after 3 weeks, the field potential of the external instrument detector cortex was connected to obtain a field potential signal as shown in FIG.
  • the field potential clearly shows different activity states such as waking and sleep in mice. It is proved by experiments that the electrode is still available after 2 weeks in mice and has good biocompatibility. The time for the general cortical electrogram electrode to be implanted in the human body is 2 weeks, indicating the practicality of the electrode.
  • the polyethylene glycol diacrylate was dissolved in the cerebrospinal fluid, an initiator was added to form a gel, and the gel was injected into the brain of the mouse (line C57).
  • the filamentous material of platinum which is used for the conventional electrocortical electrode, was inserted into the same mouse brain.
  • immunohistochemical staining was performed to observe glial cell proliferation.
  • the left picture is the gel and the right picture is the wire.
  • Glial cells are under the microscope The laser excites fluorescence. It can be found that the glial cells of the gel are significantly less than the glial cells of platinum silk. It shows that the gel has good biocompatibility in the brain environment.
  • the polyethylene glycol diacrylate was dissolved in the cerebrospinal fluid, and an initiator was added to prepare a gel.
  • the stress-strain curve of the gel measured by a stretching machine is shown in Fig. 5.
  • the elastic modulus is 200 Kpa
  • the elastic modulus of the conventional metal electrode is on the order of 100 Gpa
  • the elastic modulus of the brain tissue is 10 Kpa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

水凝胶在制备检测脑皮层电图的电极中的应用,首创的使用了低导电性能的凝胶作为电极的脑皮层电图采集技术。该凝胶在大脑液体环境中,通过其游离的离子实现导电,离子的定向移动形成电流,达到了可与高导电材料相媲美的检测效果。同时,凝胶可以与脑组织形成极好的力学性能匹配,可以紧密贴合大脑皮层。其极好的生物相容性可以避免生物排异。这种方法不仅极大的提高了传统脑皮层电图的生理性,而且有望实现长期的脑皮层电图记录,以实现更多功能。

Description

[根据细则37.2由ISA制定的发明名称] 水凝胶在制备检测脑皮层电图的电极中的应用 技术领域
本发明涉及低导电性能的水凝胶的应用,尤其涉及一种水凝胶在制备检测脑皮层电图的电极中的应用。
背景技术
脑皮层电图是蒙特利尔疗程(用于治疗重症患者的癫痫)中必不可少的技术手段。通过记录脑电图皮质电位用来确定产生癫痫发作的皮层区域。再通过手术将这一皮层区域切除,从而将癫痫发作源头去除。通常认为,脑细胞发放的信号微弱,本领域技术人员通常采用具有高导电性能的金属材料作为脑信号的检测电极。但金属电极具有极高的硬度和较差的生物相容性,以及与大脑不同的导电原理(脑为离子导电而金属为电子导电)。在使用过程中,金属电极容易损坏脑组织并且无法紧密贴合大脑皮层。此外,由于金属电极较差的生物相容性以及与大脑不同的导电原理,无法实现长期的在体记录。
发明内容
为了克服上述现有技术存在的问题,本发明克服技术偏见,提供一种水凝胶在制备检测脑皮层电图的电极中的应用。首创的使用了凝胶作为电极的脑皮层电图采集技术。由于凝胶和脑组织的导电原理同为离子导电,因此即使凝胶的导电性能比较低,依旧可以将大脑的离子浓度差传导到外部。凝胶电极的头部与大脑皮层直接接触,后部与外接采集的电极金属丝相连。将凝胶包裹在柔性介电材料中,起到保护和绝缘作用。利用这种方法,大脑皮层仅仅与凝胶以及介电材料相接处。凝胶的弹性模量很低并且可调,可以与脑组织形成极好的力学性能匹配。柔软的凝胶可以紧密贴合大脑皮层。凝胶作为传统的细胞培养材料,具有极好的生物相容性。这种方法不仅极大的提高了传统脑皮层电图的生理性,而且有望实现长期的脑皮层电图记录,以实现更多功能。
为达到上述目的,本发明所采用的技术方案是:一种水凝胶在制备检测脑皮层电图的电极中的应用,所述水凝胶为弹性模量低于100MPa且生物相容的水凝胶。
进一步地,所述水凝胶为由溶解在生物相容液中的高分子单体聚合而成的水凝胶。
进一步地,所述生物相容液为脑脊液或生理盐水。
进一步地,所述高分子单体为酯类、醇类、酰胺类或有机盐。
进一步地,所述高分子单体为丙烯酸钠、丙烯酸、甲基丙烯酸羟乙酯、甲基丙烯磺酸钠、二甲基丙烯酰胺、乙烯醇、乙二醇、苯乙烯磺酸钠中的一种或多种。
进一步地,所述电极包括由介电材料构成的柔性基底,由水凝胶制成的凝胶片,以及嵌于柔性基底内的惰性金属片,所述凝胶片设置在柔性基底表面,凝胶片采集的电信号通过惰性金属片输出。
进一步地,还包括用于连接外部仪器的接口,所述接口与惰性金属片相连。
进一步地,所述柔性基底由聚二甲基硅氧烷或铂金硅胶制成。
进一步地,所述惰性金属片为铂金、金、银片,或具有铂金,金,银镀层的金属片。
进一步地,所述凝胶片布置为m*n的阵列,其中m、n为正整数。
上述所述的使用凝胶的脑皮层电图柔性电极的工作原理为:
凝胶片与脑皮层直接接触。脑皮层兴奋将脑细胞外的正电离子通过细胞上离子通道泵入细胞内,造成胞外离子浓度的降低,引起凝胶片中的正电离子向脑皮层方向定向移动。正电离子在在凝胶片与惰性金属片的接触部分会变少,而负电离子数量不变,惰性金属片与凝胶片接触的部分便产生了感应电势,并经由外部仪器接头传导到外部仪器。
和现有技术相比较,本发明具有如下优点:
1、凝胶电极具有极低的弹性模量,并且可以通过改变凝胶的交联度进行弹性模量的调整,使之与大脑皮层组织的弹性模量相同。因此,相较于传统坚硬的金属电极,凝胶电极的力学性能与脑组织更加匹配,在贴合大脑皮层记录信号的过程中,能够减少对大脑皮层的损伤。
2、大脑皮层表面并不平整,其上布满沟回,而在皮层场电位测量时,要求电极与大脑皮层实现很好的贴合。由于凝胶电极具有极低的弹性模量,因此相较于传统的金属电极,凝胶能够更好的贴合大脑皮层,实现场电位记录。
3、凝胶是固体的高分子网络,在其间充满液体环境。这一分子构成与生物组织类似。作为传统的组织培养材料,凝胶具有很好的生物相容性。 通过采用中性凝胶高分子网络加上脑脊液,凝胶电极可以在贴合大脑皮层时提供给大脑皮层细胞的接近原本状态液体环境。因此相较于传统金属电极,具有极佳的生物相容性,能够减少大脑皮层胶质细胞的产生。
4、凝胶是固体的高分子网络,在其间充满液体环境。凝胶通过液体环境中游离的离子实现导电。由于在与脑皮层接触,传导信号的过程中,凝胶传导了离子的移动,并不涉及电信号由离子到电子的转换,因此导电性能微弱的凝胶具有与高导电材料相媲美的检测效果。
附图说明
图1,图2为本发明脑皮层电图凝胶电极的结构示意俯视图,正视图。
图3为埋植脑皮层电图凝胶电极于小鼠脑皮层两周后,电极记录到的小鼠皮层场电位;
图4为凝胶和铂金埋植如小鼠脑中两周后的免疫组化结果;
图5为凝胶的应力应变曲线;
图中,凝胶片1、柔性基底2、金属片3、外部仪器接头4。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
将聚乙二醇双丙烯酸酯溶解于脑脊液中,加入引发剂制成凝胶片1,嵌入由聚二甲基硅氧烷制成的柔性基底2中,与事前嵌置的由银片制成的惰性金属片3紧密贴合,惰性金属片3和外部仪器接头4相连。制成柔性电极如图1所示。
将上述电极置于小鼠(品系C57)颅内,经过3周时间后,连接外部仪器检测器皮层场电位,得到场电位信号如图3所示。
通过对场电位的分析可以发现,场电位明显显示出了小鼠清醒,睡眠等不同的活动状态,通过实验证明,该电极在小鼠体内2周后依旧可用,具有良好的生物相容性。而一般脑皮层电图电极埋植在人体内的时间是2周,说明了该电极的实用性。
实施例2
将聚乙二醇双丙烯酸酯溶解于脑脊液中,加入引发剂制成凝胶,并将凝胶打入小鼠(品系C57)脑内。将传统脑皮层电图电极所用的材料铂金的丝状材料插入同一老鼠脑内。经过2周后进行免疫组化染色,观察胶质细胞增生。如图4所示,左图为凝胶,右图为金属丝。胶质细胞在显微镜下被 激光激发出荧光。可以发现凝胶的胶质细胞明显少于铂金丝的胶质细胞。说明了凝胶在脑部环境中具有良好的生物相容性。
实施例3
将聚乙二醇双丙烯酸酯溶解于脑脊液中,加入引发剂制成凝胶。用拉伸机测得凝胶的应力应变曲线如图5所示,可以得到其弹性模量为200Kpa,而传统的金属电极其弹性模量在100Gpa量级,脑组织的弹性模量为10Kpa。此实验证明凝胶与脑组织的弹性模量更为匹配,与脑接触时对脑造成的损伤相对于金属电极更小。
以上所述,仅为发明的具体实施方式,但发明的保护范围并不局限于此,水凝胶等的材料并不局限于申请人所列的示例性类型,根据病人的实际检测需要,电极的凝胶片数量和位置可灵活调整,其对应的惰性金属片也可根据电极凝胶片的排布相应设置,任何不经过创造性劳动想到的变化或替换,都应涵盖在发明的保护范围之内。

Claims (10)

  1. 一种水凝胶在制备检测脑皮层电图的电极中的应用,所述水凝胶为弹性模量低于100MPa且生物相容的水凝胶。
  2. 根据权利要求1所述的应用,其特征在于:所述水凝胶为由溶解在生物相容液中的高分子单体聚合而成的水凝胶。
  3. 根据权利要求2所述的应用,其特征在于:所述生物相容液为脑脊液或生理盐水。
  4. 根据权利要求2所述的应用,其特征在于:所述高分子单体为酯类、醇类、酰胺类或有机盐。
  5. 根据权利要求4所述的应用,其特征在于:所述高分子单体为丙烯酸钠、丙烯酸、甲基丙烯酸羟乙酯、甲基丙烯磺酸钠、二甲基丙烯酰胺、乙烯醇、乙二醇、苯乙烯磺酸钠中的一种或多种。
  6. 根据权利要求1所述的应用,其特征在于:所述电极包括由介电材料构成的柔性基底(2),由水凝胶制成的凝胶片(1),以及嵌于柔性基底内的惰性金属片(3),所述凝胶片(1)设置在柔性基底(2)表面,凝胶片(1)与惰性金属片(3)一一对应,凝胶片(1)采集的电信号通过惰性金属片(3)输出。
  7. 根据权利要求6所述的应用,其特征在于:还包括用于连接外部仪器的接口(4),所述接口(4)与惰性金属片(3)相连。
  8. 根据权利要求6所述的应用,其特征在于:所述柔性基底(2)由聚二甲基硅氧烷或铂金硅胶制成。
  9. 根据权利要求6所述的应用,其特征在于:所述惰性金属片(3)为铂金、金、银片,或具有铂金,金,银镀层的金属片。
  10. 根据权利要求6所述的应用,其特征在于:所述凝胶片(1)布置为m*n的阵列,其中m、n为正整数。
PCT/CN2017/102849 2017-09-08 2017-09-22 水凝胶在制备检测脑皮层电图的电极中的应用 WO2019047282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710806112.XA CN107638176B (zh) 2017-09-08 2017-09-08 一种水凝胶在制备检测脑皮层电图的电极中的应用
CN201710806112.X 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019047282A1 true WO2019047282A1 (zh) 2019-03-14

Family

ID=61111042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102849 WO2019047282A1 (zh) 2017-09-08 2017-09-22 水凝胶在制备检测脑皮层电图的电极中的应用

Country Status (2)

Country Link
CN (1) CN107638176B (zh)
WO (1) WO2019047282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224129A (zh) * 2023-11-15 2023-12-15 之江实验室 电极及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109620539A (zh) * 2018-10-31 2019-04-16 北京大学 一种将视觉信息直接输入到大脑视皮层的装置及方法
CN113057637B (zh) * 2021-03-08 2022-06-03 电子科技大学 一种基于水凝胶的柔性生物电极阵列及其制作方法
CN117645733A (zh) * 2021-08-31 2024-03-05 中山优感科技有限公司 一种高强度氧化石墨烯纳米复合水凝胶脑电极及其应用
CN116763318A (zh) * 2023-08-24 2023-09-19 北京脑科学与类脑研究中心 一种凝胶层及设有该凝胶层的植入式柔性脑机接口电极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028003A2 (en) * 2005-08-31 2007-03-08 The Regents Of The University Of Michigan Biologically integrated electrode devices
CN105153359A (zh) * 2015-08-25 2015-12-16 东莞市万康医疗器械有限公司 一种导电水凝胶和导电水凝胶卷材及其制备方法
CN107106606A (zh) * 2014-09-12 2017-08-29 杜雷安教育基金会行政处 神经微生理系统和使用其的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194246B1 (ko) * 2013-11-27 2020-12-22 삼성전자주식회사 생체용 전극 및 이를 포함하는 생체 신호 측정 장치
JP6510388B2 (ja) * 2015-11-17 2019-05-08 日本電信電話株式会社 生体適合性ゲル材料、生体適合性ゲル材料の製造方法、生体適合性ゲル電極、及び生体組織吸着デバイス
CN106008799B (zh) * 2016-05-23 2018-08-17 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028003A2 (en) * 2005-08-31 2007-03-08 The Regents Of The University Of Michigan Biologically integrated electrode devices
CN107106606A (zh) * 2014-09-12 2017-08-29 杜雷安教育基金会行政处 神经微生理系统和使用其的方法
CN105153359A (zh) * 2015-08-25 2015-12-16 东莞市万康医疗器械有限公司 一种导电水凝胶和导电水凝胶卷材及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU , YI ET AL.: "Poly (Vinyl Alcohol)/Poly (Acrylic Acid) Hydrogel Coatings for Improving Electrode-Neural Tissue Interface", BIOMATERIALS, vol. 30, 20 May 2009 (2009-05-20), pages 4143 - 4151, XP026338540, DOI: doi:10.1016/j.biomaterials.2009.04.030 *
ZHOU, HAIHAN ET AL.: "Reduce Impedance of Intracortical Iridium Oxide Microelectrodes by Hydrogel Coatings", SENSORS AND ACTUATORS B: CHEMICAL, vol. 161, 17 October 2011 (2011-10-17), pages 198 - 202, XP028447715, DOI: doi:10.1016/j.snb.2011.10.019 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224129A (zh) * 2023-11-15 2023-12-15 之江实验室 电极及其制备方法和应用
CN117224129B (zh) * 2023-11-15 2024-03-26 之江实验室 电极及其制备方法和应用

Also Published As

Publication number Publication date
CN107638176B (zh) 2020-05-08
CN107638176A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2019047282A1 (zh) 水凝胶在制备检测脑皮层电图的电极中的应用
Lee et al. Soft high-resolution neural interfacing probes: Materials and design approaches
US9955881B2 (en) Electrode systems, devices and methods
Mota et al. Development of a quasi-dry electrode for EEG recording
Xia et al. Intrinsically electron conductive, antibacterial, and anti‐swelling hydrogels as implantable sensors for bioelectronics
JPH06181894A (ja) 導電性高分子ゲルおよびその製法
Luo et al. A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics
Li et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain–computer interfaces
CN106983507A (zh) 一种用于人体电信号测量的柔性微电极阵列及制作方法
KR20140043565A (ko) 다중 스터브 전극 구조의 건식 생체전극센서 및 이의 제조방법
Perez et al. Human caudate nucleus subdivisions in tinnitus modulation
Brosch et al. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale
Song et al. Recent advances in 1D nanomaterial‐based bioelectronics for healthcare applications
Jakab et al. EEG sensor system development consisting of solid polyvinyl alcohol–glycerol–NaCl contact gel and 3D-printed, silver-coated polylactic acid electrode for potential brain–computer interface use
Dubaniewicz et al. Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation
Wang et al. Integrated bilayer microneedle dressing and triboelectric nanogenerator for intelligent management of infected wounds
Wei et al. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon neuroimaging and electrocorticogram analysis
Tian et al. Ultrapermeable and wet-adhesive monolayer porous film for stretchable epidermal electrode
Zhao et al. Stretchable Multi‐Channel Ionotronic Electrodes for In Situ Dual‐Modal Monitoring of Muscle–Vascular Activity
CN116763318A (zh) 一种凝胶层及设有该凝胶层的植入式柔性脑机接口电极
Liu et al. Transparent artifact-free graphene electrodes for compact closed-loop optogenetics systems
Dong et al. Fabrication of barbed-microneedle array for bio-signal measurement
CN107354087A (zh) 一种基于可降解生物传感器的心肌细胞生长状态监控系统
CN114196044A (zh) 导电仿生水凝胶及便携式心电监测智能装置
Ge et al. High-Conductivity, Low-Impedance, and High-Biological-Adaptability Ionic Conductive Hydrogels for Ear-EEG Acquisition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924491

Country of ref document: EP

Kind code of ref document: A1