WO2019047114A1 - 一种液晶显示伽马曲线调试方法及调试系统 - Google Patents

一种液晶显示伽马曲线调试方法及调试系统 Download PDF

Info

Publication number
WO2019047114A1
WO2019047114A1 PCT/CN2017/100937 CN2017100937W WO2019047114A1 WO 2019047114 A1 WO2019047114 A1 WO 2019047114A1 CN 2017100937 W CN2017100937 W CN 2017100937W WO 2019047114 A1 WO2019047114 A1 WO 2019047114A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
gamma curve
display terminal
curve
Prior art date
Application number
PCT/CN2017/100937
Other languages
English (en)
French (fr)
Inventor
叶智军
Original Assignee
深圳传音通讯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音通讯有限公司 filed Critical 深圳传音通讯有限公司
Priority to PCT/CN2017/100937 priority Critical patent/WO2019047114A1/zh
Publication of WO2019047114A1 publication Critical patent/WO2019047114A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to the field of liquid crystal display terminals, and in particular, to a liquid crystal display gamma curve debugging method and a debugging system.
  • liquid crystal display terminals such as liquid crystal televisions, liquid crystal displays, and intelligent terminals have become increasingly popular. Whether in people's homes, offices, or public places, video playback based on liquid crystal display terminals can be seen anytime and anywhere. device.
  • display terminal technology the display effect of display terminals has also received more and more attention.
  • the display terminal can be required to have high contrast and low flicker capabilities.
  • the input voltage signal will produce a brightness output on the screen, but the brightness of the liquid crystal display terminal is not proportional to the input voltage signal, and there is a distortion. If the black and white image signal is input, the distortion will be displayed. The middle of the image is dark, so that the adjustment of the image is darker than the original scene. If the input is a color image signal, the distortion will shift the hue of the displayed image in addition to the darkness of the displayed image. .
  • Gamma is a measure of this distortion, which characterizes the nonlinear relationship between the luminance output and the input voltage signal (Input), which can usually be expressed by:
  • the liquid crystal display terminal has its own original gamma value, and the gamma optimum value of the liquid crystal display terminal is generally in the range of 2.2 ⁇ 0.2, which can significantly improve the display quality of the liquid crystal display terminal. This is because the human eye feels about 1/2.2 of Gamma. If the gamma value of the liquid crystal display terminal just compensates for the nonlinearity of the human eye, the linear RGB signal can be linearly visually perceived. Due to the saturation distortion, the gamma value of the liquid crystal display terminal must be measured and well controlled, in order to have good color reproduction capability, improve the color transparency of the liquid crystal display terminal and the color reproduction ability of each gray scale, and improve the liquid crystal display. The picture quality of the terminal.
  • the gamma value of the liquid crystal display terminal is generally debugged and configured according to a unified standard before leaving the factory, so that the liquid crystal display terminal can display the best display effect.
  • the traditional debugging method used to obtain the target gamma curve it is impossible to debug only one sample, because the manufacturing and cutting process of the current liquid crystal display terminal will inevitably cause a certain difference between the liquid crystal display terminal samples, so It is necessary to select a batch of samples for debugging one by one.
  • the existing debugging technology is to separately debug each sample. The parameters that are debugged each time must be verified in all the samples that have been debugged before.
  • the existing debugging method has the following problems: low debugging efficiency and large debugging workload; relying on manual debugging to grasp the Gamma curve of the whole sample, the parameters finally debugged are not necessarily optimal; 3. Because of debugging The parameters may not be optimal, so the overall coverage of the sample is greatly reduced.
  • the present invention provides a liquid crystal display gamma curve debugging method and debugging system, which tests the actual response Gamma curve of all samples at one time, and uses mathematical tools to perform regression analysis on these actual response Gamma curves to obtain an optimal one.
  • Gamma curve the standard sample was selected for the optimal Gamma curve, and the actual response Gamma curve of the standard sample was adjusted to an exponential curve of 2.2 ⁇ 0.2 to obtain an optimal parameter.
  • the debugging efficiency is high, the debugging workload is small; the mathematical tool is used for sample analysis, and the final debugged parameters are optimal parameters; and the overall coverage of the sample is high.
  • an object of the present invention is to provide a liquid crystal display gamma curve debugging method and a debugging system.
  • the invention discloses a liquid crystal display gamma curve debugging method, which comprises the following steps:
  • the step of sequentially obtaining the actual gamma curves of the liquid crystal display of all the liquid crystal display terminals comprises:
  • the chromaticity analyzer collects optical data of the liquid crystal display terminal under the test signals of the different gray levels
  • the step of transmitting test signals of different gray levels to the liquid crystal display terminal comprises:
  • N being one of 8, 16, 32, 64, 128, 256;
  • a test signal of N gray scales is sent to the liquid crystal display terminal.
  • the color analyzer collects optical data of the liquid crystal display terminal under the test signals of the different gray levels
  • the step of drawing an actual gamma curve of the liquid crystal display terminal includes:
  • the color analyzer collects spectral tristimulus values of the liquid crystal display terminal under the test signals of the different gray levels
  • An actual gamma curve of the liquid crystal display terminal is drawn using an interpolation calculation method according to the three-color luminance value.
  • the step of drawing an actual gamma curve of the liquid crystal display terminal by using an interpolation calculation method according to the three-color brightness value comprises:
  • N is greater than or equal to 64
  • the actual gamma curve of the liquid crystal display terminal is drawn by a linear interpolation calculation method
  • N is less than 64
  • the actual gamma curve of the liquid crystal display terminal is drawn using a Bezier interpolation calculation method.
  • the invention also discloses a liquid crystal display gamma curve debugging system, which comprises a preliminary testing module, a regression analysis module, a sample selection module, a parameter determination module and an actual debugging module;
  • the preliminary test module sequentially obtains an actual gamma curve of liquid crystal display of all liquid crystal display terminals
  • the regression analysis module performs regression analysis on the actual gamma curve of all the liquid crystal display terminals, and uses curve fitting to obtain an optimal gamma curve;
  • the sample selection module compares the actual gamma curve and the optimal gamma curve of all the liquid crystal display terminals, and selects the actual gamma curve and the optimal gamma in all the liquid crystal display terminals.
  • the liquid crystal display terminal with the closest curve is used as a standard sample;
  • the parameter determining module adjusts the actual gamma curve of the standard sample to an exponential curve of 2.2 powers to obtain standard debugging parameters of the standard sample;
  • the actual debugging module debugs all the liquid crystal display terminals by using the standard debugging parameters.
  • the preliminary test module includes a signal delivery unit, a data acquisition unit, and a curve drawing unit;
  • the signal conveying unit sends test signals of different gray levels to the liquid crystal display terminal
  • the data acquisition unit controls a colorimetric analyzer to collect optical data of the liquid crystal display terminal under test signals of different gray levels;
  • the curve drawing unit draws an actual gamma curve of the liquid crystal display terminal according to the optical data.
  • the signal conveying unit sets the sampling order of the liquid crystal display terminal to be N, N is one of 8, 16, 32, 64, 128, 256; and sends N grays to the liquid crystal display terminal The test signal of the order.
  • the data acquisition unit controls a color analyzer to collect spectral tristimulus values of the liquid crystal display terminal under the test signals of different gray levels; and calculates respective gray scale images according to the spectral tristimulus values.
  • a color analyzer to collect spectral tristimulus values of the liquid crystal display terminal under the test signals of different gray levels; and calculates respective gray scale images according to the spectral tristimulus values.
  • the curve drawing unit draws an actual gamma curve of the liquid crystal display terminal by using an interpolation calculation method according to the three-color brightness value.
  • the curve drawing unit when N is greater than or equal to 64, draws an actual gamma curve of the liquid crystal display terminal by using a linear interpolation calculation method; when N is less than 64, the method is drawn by using a Bezier curve interpolation calculation method The actual gamma curve of the liquid crystal display terminal.
  • the final debugged parameters are optimal parameters
  • the sample has a high coverage of the whole.
  • FIG. 1 is a schematic flow chart of a gamma curve debugging method according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic flow chart of determining an actual gamma curve in the gamma curve debugging method of FIG. 1;
  • FIG. 3 is a schematic flow chart showing steps of transmitting test signals of different gray levels in the gamma curve debugging method of FIG. 2;
  • FIG. 4 is a schematic flow chart of steps of acquiring optical data and drawing an actual gamma curve in the gamma curve debugging method of FIG. 3;
  • FIG. 5 is a schematic flow chart of a step of drawing an actual gamma curve in the gamma curve debugging method in FIG. 4;
  • FIG. 6 is a block diagram showing the structure of a gamma curve debugging system in accordance with a preferred embodiment of the present invention.
  • the gamma curve debugging method and debugging system of the present invention can be applied to liquid crystal display terminals such as smart terminals, and the smart terminals can be implemented in various forms.
  • the liquid crystal display terminal described in the present invention may include, for example, a mobile phone, a smart phone, a notebook computer, a PDA (Personal Digital Assistant), a PAD (Tablet), a PMP (Portable Multimedia Player), a navigation device, a smart watch, or the like.
  • Mobile terminals, as well as fixed terminals such as digital TVs, desktop computers, and the like.
  • the present invention will be described assuming that the terminal is a mobile terminal and assuming that the mobile terminal is a smart phone.
  • Gamma is derived from the response curve of a CRT display and reflects the nonlinear relationship between the brightness of the CRT display and the input voltage.
  • Gamma correction is a transfer function introduced to overcome the nonlinear relationship of the human visual system to brightness or RGB three-color signal perception.
  • the liquid crystal device also needs to perform correction for each gray scale color error and nonlinear correction of the luminance by Gamma correction.
  • a liquid crystal display gamma curve debugging method of the present invention includes the following steps:
  • Step S100 sequentially obtaining actual gamma curves of liquid crystal displays of all liquid crystal display terminals
  • liquid crystal display gamma curve debugging method of the present invention a part of samples are randomly selected from a batch of liquid crystal display terminals. Obviously, the more samples are selected, the longer the test time is consumed, and the corresponding data accuracy is higher, so the sample is selected. The principle is that based on the accuracy of the data, it is better to select a smaller number of samples. During the test, the Gamma curves of all samples were tested at one time.
  • S100 the steps of sequentially obtaining the actual gamma curves of the liquid crystal display of all liquid crystal display terminals include:
  • S120 transmitting test signals of different gray levels to the liquid crystal display terminal
  • the chromaticity analyzer collects optical data of the liquid crystal display terminal under the test signals of the different gray levels
  • the liquid crystal display terminal is quickly measured and corrected for myopia during pipeline production.
  • the computer commands the driving module to send a test signal whose brightness is continuously changed from low to high to the liquid crystal display terminal to be tested, that is, measures the actual optical characteristics of the liquid crystal display terminal, that is, the gamma curve; the color analyzer collects the liquid crystal.
  • the optical data on the terminal is displayed, and the data is sent to the computer; the computer draws a gamma curve of the liquid crystal display terminal according to the received optical data.
  • the step of transmitting test signals of different gray levels to the liquid crystal display terminal includes:
  • S121 setting a sampling order of the liquid crystal display terminal to be N, and N is one of 8, 16, 32, 64, 128, and 256;
  • S122 Send N gray scale test signals to the liquid crystal display terminal.
  • the actual operation does not collect all the data of 256 gray levels, but only a part of them are selected for measurement.
  • the sampling order is generally a multiple of 2, such as 16 gray levels, 32 gray levels, and 64 gray levels.
  • the sampling order is usually only one of 256, 128, 64, 32, 16, and 8.
  • the sampling order directly affects the data acquisition time and data accuracy. Obviously, the more sampling orders, the longer the test time consumed, and accordingly, the higher the accuracy of the data, The principle of taking the order is that the sampling order is less on the basis of the accuracy of the data.
  • the number of gray scales indicates how many copies of the gray scale from 0 to 255, for example, 16 gray scales, that is, the gray scale of 0 to 255 is divided into 16 copies, and for the case of 16 gray scales, 17 gray scale value lists are stored.
  • Grayscale values where the grayscale values are ⁇ 0, 15, 31, 47, 63...223, 239, 255 ⁇ , respectively, and as for 64 grayscales, for the 64 grayscales, the grayscale value array is ⁇ 0,3,7,11,15,19...243,247,251,255 ⁇ .
  • S130 a colorimetric analyzer collects optical data of the liquid crystal display terminal under test signals of different gray levels; and S140: draw the liquid crystal according to the optical data
  • the steps of displaying the actual gamma curve of the terminal include:
  • the color analyzer collects a spectral tristimulus value of the liquid crystal display terminal under the test signals of the different gray levels;
  • S141 Draw an actual gamma curve of the liquid crystal display terminal by using an interpolation calculation method according to the three-color brightness value.
  • the measurement method of the Gamma curve includes:
  • Color data collection That is, the spectral tristimulus value of a set of gray scale changes (0-255) of the color analyzer is received, and according to the color space, the spectral tristimulus values can be divided into: X, Y, Z or x, y, Y, etc. .
  • the actual response curve is drawn. According to the RGB three-color brightness value, the actual response gamma curve is quickly drawn using the interpolation calculation method.
  • S141 the step of drawing an actual gamma curve of the liquid crystal display terminal by using an interpolation calculation method according to the three-color brightness value includes:
  • N is greater than or equal to 64
  • the actual gamma curve of the liquid crystal display terminal is drawn by a linear interpolation calculation method
  • N is less than 64
  • the actual gamma curve of the liquid crystal display terminal is drawn using a Bezier interpolation calculation method.
  • Linear interpolation is the simplest interpolation algorithm. It is suitable for use when the sampled data exceeds 64. It is usually inferior.
  • the conformal interpolation algorithm can better restore the original appearance of the whole line, but the algorithm is more complicated.
  • the Bezier curve conformal interpolation method can better restore the original appearance of the curve, and is more suitable in the case of poor sampling data.
  • the Bezier curve can be represented either by a vector of the feature polygon or by the vertex position vector of the feature polygon, the latter being used here. Give any point on the Bezier curve
  • B i,n (u) is the Bernstein basis function
  • P i constitutes a characteristic polygon of a Bezier curve
  • I the ordinary binomial coefficient
  • De Castejau gives a discretization algorithm for the Bezier curve, commonly referred to as the de Castejau algorithm:
  • Step S200 performing regression analysis on the actual gamma curve of all the liquid crystal display terminals, and using curve fitting to obtain an optimal gamma curve
  • regression analysis refers to a statistical analysis method that determines the quantitative relationship between two or more variables. Its application is very extensive. Regression analysis is divided into one-way regression and multiple regression analysis according to the variables involved. According to the number of dependent variables, it can be divided into simple regression analysis and multiple regression analysis; according to the relationship between independent variables and dependent variables Types can be divided into linear regression analysis and nonlinear regression analysis. If in the regression analysis, only one independent variable and one dependent variable are included, and the relationship between the two can be approximated by a straight line, this regression analysis is called a linear regression analysis. If two or more independent variables are included in the regression analysis and there is a linear correlation between the independent variables, it is called multiple linear regression analysis.
  • Linear Regression is one of the best known modeling techniques. Linear regression is often one of the preferred techniques for people to learn predictive models. In this technique, the dependent variable is continuous, the independent variable can be continuous or discrete, and the nature of the regression line is linear. Linear regression uses the best fit straight line (that is, the regression line) to establish a relationship between the dependent variable (Y) and one or more independent variables (X).
  • Polynomial Regression polynomial regression, for a regression equation, if the index of the independent variable is greater than 1, then it is the polynomial regression equation.
  • the best fit line is not a straight line. It is a curve used to fit data points.
  • Step S300 comparing the actual gamma curve and the optimal gamma curve of all the liquid crystal display terminals, selecting the actual gamma curve and the optimal gamma curve in all the liquid crystal display terminals a similar liquid crystal display terminal as a standard sample;
  • Step S400 adjusting the actual gamma curve of the standard sample to an exponential curve of 2.2 power, to obtain standard debugging parameters of the standard sample;
  • Step S500 Debugging all of the liquid crystal display terminals using the standard debugging parameters.
  • step S300-500 a standard sample is selected for the optimal Gamma curve fitted in the above step S200, and the Gamma curve of the standard sample is adjusted to an exponential curve of 2.2 ⁇ 0.2, thereby obtaining an optimal parameter.
  • the debugging efficiency is high, the debugging workload is small; the mathematical tool is used for sample analysis, and the final debugged parameters are optimal parameters; and the overall coverage of the sample is high.
  • the present invention further provides a liquid crystal display gamma curve debugging system 100, which includes a preliminary testing module 11, a regression analysis module 12, a sample selection module 13, a parameter determination module 14, and an actual debugging module 15;
  • the preliminary testing module 11 sequentially obtains actual gamma curves of liquid crystal displays of all liquid crystal display terminals
  • the regression analysis module 12 performs regression analysis on the actual gamma curve of all the liquid crystal display terminals, and uses curve fitting to obtain an optimal gamma curve;
  • the sample selection module 13 compares the actual gamma curve and the optimal gamma curve of all the liquid crystal display terminals, and selects the actual gamma curve and the optimal gamma in all the liquid crystal display terminals.
  • the liquid crystal display terminal with the closest horse curve is used as a standard sample;
  • the parameter determining module 14 adjusts the actual gamma curve of the standard sample to an exponential curve of 2.2 power to obtain standard debugging parameters of the standard sample;
  • the actual debugging module 15 debugs all the liquid crystal display terminals by using the standard debugging parameters.
  • the preliminary test module 11 includes a signal delivery unit, a data acquisition unit, and a curve drawing unit;
  • the signal conveying unit sends test signals of different gray levels to the liquid crystal display terminal
  • the data acquisition unit controls a colorimetric analyzer to collect optical data of the liquid crystal display terminal under test signals of different gray levels;
  • the curve drawing unit draws an actual gamma curve of the liquid crystal display terminal according to the optical data.
  • the signal transmission unit sets the sampling order of the liquid crystal display terminal to N, N is one of 8, 16, 32, 64, 128, 256; to the liquid crystal display terminal A test signal of N gray scales is delivered.
  • the data acquisition unit controls a color analyzer to collect spectral tristimulus values of the liquid crystal display terminal under the test signals of the different gray levels; and calculates each according to the spectral tristimulus values.
  • the curve drawing unit draws an actual gamma curve of the liquid crystal display terminal by using an interpolation calculation method according to the three-color brightness value.
  • the curve drawing unit calculates the actual gamma curve of the liquid crystal display terminal by using a linear interpolation calculation method when N is greater than or equal to 64; and calculates the Bezier curve interpolation when N is less than 64 The method plots the actual gamma curve of the liquid crystal display terminal.

Abstract

一种液晶显示伽马曲线调试方法及调试系统(100),一次性将所有样本的实际响应Gamma曲线测试出来,运用数学工具对这些实际响应Gamma曲线进行回归分析,得出一最优Gamma曲线,针对该最优Gamma曲线挑选出标准样本,将该标准样本的实际响应Gamma曲线调整至2.2±0.2的指数曲线,从而获得一最优参数。利用该调试方法及调试系统(100),调试效率高,调试工作量小;使用数学工具进行样本分析,最终调试出的参数为最优参数;而且样品对整体的覆盖率较高。

Description

一种液晶显示伽马曲线调试方法及调试系统 技术领域
本发明涉及液晶显示终端领域,尤其涉及一种液晶显示伽马曲线调试方法及调试系统。
背景技术
随着显示终端技术的快速发展,液晶电视、液晶显示器、智能终端等液晶显示终端已日益普及,不管是人们的家中、办公室还是公共场所,随时随地都可见到以液晶显示终端为主的视频播放设备。而随着显示终端技术的发展,显示终端的显示效果也受到了越来越多的重视。显示效果上,一般地,可以要求显示终端具有高对比度和低闪烁(flicker)等能力。进一步地,在对显示效果有更高要求时,需要注重画面图片颜色的过渡。画面颜色的过渡,普遍使用伽马(Gamma)曲线进行描述。
对于液晶显示终端,输入电压信号将在屏幕上产生亮度输出,但是液晶显示终端的亮度与输入的电压信号不成正比,存在一种失真,如果输入的是黑白图像信号,这种失真将使被显示的图像的中间偏暗,从而使图像的调整体比原始场景偏暗,如果输入的是彩色图像信号,这种失真除了使显示的图像偏暗以外,还会使显示的图像的色调发生偏移。Gamma就是这种失真的度量参数,表征了亮度输出(Output)与输入电压信号(Input)的非线性关系,通常可以用下式来表示:
Output=InputGamma,由此可知,Gamma为指数函数中的幂。
液晶显示终端有其自身的原始Gamma值,而液晶显示终端的Gamma最佳值一般在2.2±0.2范围内,这样能显著提升液晶显示终端的显示质量。这是因为人眼对亮度的感受约为1/2.2的Gamma。若液晶显示终端的Gamma值恰好能补偿人眼的非线性,则对于线性的RGB信号,在视觉感受上便可以达到线性。由于存在饱和失真,必须对液晶显示终端的Gamma值进行测量和良好的控制,才能具备良好的颜色复现能力,提高液晶显示终端的颜色透亮度和各灰阶的颜色复现能力,改善液晶显示终端的画质。
因此,液晶显示终端在出厂前,一般要将其亮度相对于控制电压的响应调整为上述的目标Gamma曲线,也即Output=InputGamma(Gamma=2.2±0.2),或者调整为所需要的其他关系。
液晶显示终端的Gamma值一般在出厂前按照统一的标准进行调试与配置,从而使液晶显示终端发挥最佳的显示效果。传统的得到目标Gamma曲线所采用的调试方法中,不可能仅仅针对一件样品进行调试,因为现行液晶显示终端的制造及切割工艺,必然会使得液晶显示终端样品之间存在一定的差异性,因此,就需要选取一批样品进行逐个调试。而现有的调试技术是针对每一件样品进行单独调试,每次调试出来的参数又要验证到之前已调试完成的所有样品中,这个过程中,只要有一件样品调试失败时,就需要对所有样品全部重新调试,可想而知,这是一个工作量巨大且非常乏味过程。因此,现有的上述调试方法存在以下问题:调试效率低,调试工作量大;依靠人工调试来把握整体样品的Gamma曲线,最终调试出来的参数不一定是最优的;3、因为调试出的参数可能不是最优的,所以导致样品对整体的覆盖率大大降低。
因此,本发明提供了一种液晶显示伽马曲线调试方法及调试系统,一次性将所有样本的实际响应Gamma曲线测试出来,运用数学工具对这些实际响应Gamma曲线进行回归分析,得出最优的Gamma曲线,针对该最优Gamma曲线挑选出其标准样本,将该标准样本的实际响应Gamma曲线调整至2.2±0.2的指数曲线,从而获得一最优参数。利用该调试方法及调试系统,调试效率高,调试工作量小;使用数学工具进行样本分析,最终调试出的参数为最优参数;而且样品对整体的覆盖率较高。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种液晶显示伽马曲线调试方法及调试系统。
本发明公开了一种液晶显示伽马曲线调试方法,包括以下步骤:
依次获得全部液晶显示终端液晶显示的实际伽马曲线;
对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
使用所述标准调试参数对全部所述液晶显示终端进行调试。
优选地,依次获得全部液晶显示终端的液晶显示的实际伽马曲线的步骤包括:
选取全部所述液晶显示终端中任一所述液晶显示终端;
向所述液晶显示终端输送不同灰阶的测试信号;
色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线;
重复上述步骤,直至获得全部所述液晶显示终端液晶显示的实际伽马曲线。
优选地,向所述液晶显示终端输送不同灰阶的测试信号的步骤包括:
设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;
向所述液晶显示终端输送N个灰阶的测试信号。
优选地,色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线的步骤包括:
色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;
根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
优选地,根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线的步骤包括:
当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;
当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
本发明还公开了一种液晶显示伽马曲线调试系统,包括初步测试模块、回归分析模块、样本选取模块、参数确定模块、实际调试模块;
所述初步测试模块,依次获得全部液晶显示终端液晶显示的实际伽马曲线;
所述回归分析模块,对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
所述样本选取模块,对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
所述参数确定模块,将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
所述实际调试模块,使用所述标准调试参数对全部所述液晶显示终端进行调试。
优选地,所述初步测试模块,包括信号输送单元、数据采集单元、曲线绘制单元;
所述信号输送单元,向所述液晶显示终端输送不同灰阶的测试信号;
所述数据采集单元,控制色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
所述曲线绘制单元,根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线。
优选地,所述信号输送单元,设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;向所述液晶显示终端输送N个灰阶的测试信号。
优选地,所述数据采集单元,控制色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;并根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
所述曲线绘制单元,根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
优选地,所述曲线绘制单元,当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.调试效率高,调试工作量小;
2.使用数学工具进行样本分析,最终调试出的参数为最优参数;
3.样品对整体的覆盖率较高。
附图说明
图1为符合本发明一优选实施例的伽马曲线调试方法的流程示意图;
图2为图1中的伽马曲线调试方法中测定实际伽马曲线的流程示意图;
图3为图2中的伽马曲线调试方法中输送不同灰阶的测试信号步骤的流程示意图;
图4为图3中的伽马曲线调试方法中采集光学数据及绘制实际伽马曲线步骤的流程示意图;
图5为图4中的伽马曲线调试方法中绘制实际伽马曲线步骤的流程示意图;
图6为符合本发明一优选实施例的伽马曲线调试系统的结构示意图。
附图标记:
100-伽马曲线调试系统;11-初步测试模块;12-回归分析模块;13-样本选取模块;14-参数确定模块;15-实际调试模块。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本发明和所附权利要求书中所使用的单数形式的“一”、“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
在本发明的描述中,除非另有规定和限定,对于本领域的普通技术人员而言,可以根据具体情况理解术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
本发明的伽马曲线调试方法及调试系统,可以应用于智能终端等液晶显示终端,智能终端可以以各种形式来实施。例如,本发明中描述的液晶显示终端可以包括诸如移动电话、智能电话、笔记本电脑、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置、智能手表等的移动终端,以及诸如数字TV、台式计算机等的固定终端。下面,假设终端是移动终端,并假设该移动终端为智能手机,对本发明进行说明。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。为便于描述,本发明实施例均以智能手机为例进行说明,其它应用场景相互参照即可。
Gamma源于CRT显示器的响应曲线,反应的是CRT显示器的亮度与输入电压之间的非线性关系。Gamma校正就是为了克服人类视觉系统对于亮度或者说是对于RGB三色信号感觉的非线性关系,而引入的一种传输函数。同样地,液晶设备也需要通过Gamma校正来完成对各个灰阶颜色误差的校正,对亮度的非线性校正。参考图1,本发明的液晶显示伽马曲线调试方法,包括以下步骤:
S100:依次获得全部液晶显示终端液晶显示的实际伽马曲线;
S200:对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
S300:对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示 终端作为标准样本;
S400:将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
S500:使用所述标准调试参数对全部所述液晶显示终端进行调试。
-步骤S100:依次获得全部液晶显示终端液晶显示的实际伽马曲线;
本发明的液晶显示伽马曲线调试方法,首先从一批液晶显示终端中随机选取一部分样本,显然选取的样本数量越多,消耗的测试时间越长,相应地数据准确性越高,因此选取样本的原则是在数据准确性基础上,选取样本数量较少为佳。在测试过程中,一次性将所有样本的Gamma曲线测试出来。
参考图2,在一优选实施例中,S100:依次获得全部液晶显示终端的液晶显示的实际伽马曲线的步骤包括:
S110:选取全部所述液晶显示终端中任一所述液晶显示终端;
S120:向所述液晶显示终端输送不同灰阶的测试信号;
S130:色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
S140:根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线;
S150:重复上述步骤,直至获得全部所述液晶显示终端液晶显示的实际伽马曲线。
为了克服当前Gamma校正技术的缺点,对液晶显示终端在流水线生产时近视快速测量和校正计算。具体地,首先计算机命令驱动模块发出亮度不断由低向高变化的测试信号给待测试的液晶显示终端,即测量液晶显示终端的实际光学特性,也就是灰度系数曲线;色度分析仪采集液晶显示终端上的光学数据,并将所述的数据发送到计算机中;计算机根据接收的光学数据画出液晶显示终端的灰度系数曲线。
参考图3,在一优选实施例中,S120:向所述液晶显示终端输送不同灰阶的测试信号的步骤包括:
S121:设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;
S122:向所述液晶显示终端输送N个灰阶的测试信号。
为了使得完成绘制单次实际响应Gamma曲线的速度更快,实际操作中并不会采集全部的256个灰阶的数据,而是仅仅选取其中的一部分进行测量。采样阶数一般是2的倍数,例如16个灰阶、32个灰阶以及64个灰阶等。为了灰阶画面切换比较平滑,采样阶数通常只取256、128、64、32、16、8其中之一,采样阶数直接影响数据采集时间和数据准确性。显然采样阶数越多,消耗的测试时间越长,相应地,数据准确性越高,选 取阶数的原则是在数据准确性基础上,采样阶数较少为佳。
灰阶个数表示把0至255的灰度分成多少份,例如16个灰阶,就是把0至255的灰度分成16份,对于16个灰阶的情况,灰阶数值列表中存储17个灰阶值,其中灰度数值分别为{0,15,31,47,63……223,239,255},再如64个灰阶,对64个灰阶的测试,其灰阶数值数组为{0,3,7,11,15,19……243,247,251,255}。
参考图4,在一优选实施例中,S130:色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;以及S140:根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线的步骤包括:
S131:色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;
S132:根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
S141:根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
该实施例中,进一步地,按照实际的应用要求,Gamma曲线的测量方法包括:
(1)颜色数据采集。即接收色彩分析仪的一组灰阶变化(0-255)的光谱三刺激值,而根据色彩空间的不同,光谱三刺激值可以分为:X、Y、Z或x、y、Y等模式。
(2)色彩空间转换。由X、Y、Z或x、y、Y三刺激值,获取或计算各个灰阶画面下的RGB三色亮度值。
(3)实际响应曲线绘制。根据RGB三色亮度值,利用插值计算方法快速绘制实际响应Gamma曲线。
参考图5,在一优选实施例中,S141:根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线的步骤包括:
当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;
当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
实际操作中并不会采集全部的256个灰阶的数据,而是仅仅选取其中的一部分进行测试,但是在绘制实际响应Gamma曲线时还需要1024个测量点数据,进行插值计算,恢复并扩充响应曲线上的数据。
线性插值是最简单的插值算法,适宜在采样数据超过64个的情况下使用,通常效果较差。保形插值算法能更好地恢复全线的原本面貌,但是算法较为复杂。贝赛尔(Bezier)曲线保形插值法能较好地恢复曲线的原来面貌,在采样数据贫乏的情况更加适合。
贝赛尔曲线既可以用特征多边形的矢量表示,也可以用特征多边形的顶点位置矢量表示,此处采用的是后者。给出贝赛尔曲线上的任意一点
Figure PCTCN2017100937-appb-000001
式中,Bi,n(u)是Bernstein基函数,
Figure PCTCN2017100937-appb-000002
Pi构成Bezier曲线的特征多边形;
Figure PCTCN2017100937-appb-000003
是普通的二项式系数,
Figure PCTCN2017100937-appb-000004
当i=0和u=0时,ui=0,且0!=1。由此可知,对于(n+1)个定点,Bi,n(u)产生一个n次多项式。
使用de Casteljau提出的递推算法计算贝赛尔曲线上的点,要比使用贝赛尔曲线方程简单得多。de Castejau给出了贝赛尔曲线的离散化算法,通常称为de Castejau算法:
(1)给定t∈[0,1];
(2)计算
Figure PCTCN2017100937-appb-000005
Figure PCTCN2017100937-appb-000006
由上可知,当t从0变到1时,可得到整条贝赛尔曲线上的点,由贝赛尔曲线的de Castejau算法容易给出贝赛尔曲线的作图过程。
-步骤S200:对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线
运用matlab等数学工具对这些实际响应Gamma曲线进行回归分析(regression analysis),得出最优的Gamma曲线。
在统计学中,回归分析指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。其运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。
Linear Regression,线性回归它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
Polynomial Regression,多项式回归,对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。在这种回归技术中,最佳拟合线不是直线。而是一个用于拟合数据点的曲线。
-步骤S300:对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
-步骤S400:将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
-步骤S500:使用所述标准调试参数对全部所述液晶显示终端进行调试。
步骤S300-500,针对上述步骤S200中拟合出的最优Gamma曲线挑选出标准样本,将该标准样本的Gamma曲线调整至2.2±0.2的指数曲线,从而获得一最优参数。利用该调试方法及调试系统,调试效率高,调试工作量小;使用数学工具进行样本分析,最终调试出的参数为最优参数;而且样品对整体的覆盖率较高。
参考图6,本发明还提供了一种液晶显示伽马曲线调试系统100,其特征在于,包括初步测试模块11、回归分析模块12、样本选取模块13、参数确定模块14、实际调试模块15;
所述初步测试模块11,依次获得全部液晶显示终端液晶显示的实际伽马曲线;
所述回归分析模块12,对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
所述样本选取模块13,对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
所述参数确定模块14,将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
所述实际调试模块15,使用所述标准调试参数对全部所述液晶显示终端进行调试。
在一优选实施例中,所述初步测试模块11,包括信号输送单元、数据采集单元、曲线绘制单元;
所述信号输送单元,向所述液晶显示终端输送不同灰阶的测试信号;
所述数据采集单元,控制色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
所述曲线绘制单元,根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线。
在一优选实施例中,所述信号输送单元,设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;向所述液晶显示终端输送N个灰阶的测试信号。
在一优选实施例中,所述数据采集单元,控制色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;并根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
所述曲线绘制单元,根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
在一优选实施例中,所述曲线绘制单元,当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
对于上述控制系统实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种液晶显示伽马曲线调试方法,其特征在于,包括以下步骤:
    依次获得全部液晶显示终端液晶显示的实际伽马曲线;
    对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
    对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
    将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
    使用所述标准调试参数对全部所述液晶显示终端进行调试。
  2. 如权利要求1所述的调试方法,其特征在于,
    依次获得全部液晶显示终端的液晶显示的实际伽马曲线的步骤包括:
    选取全部所述液晶显示终端中任一所述液晶显示终端;
    向所述液晶显示终端输送不同灰阶的测试信号;
    色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
    根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线;
    重复上述步骤,直至获得全部所述液晶显示终端液晶显示的实际伽马曲线。
  3. 如权利要求2所述的调试方法,其特征在于,
    向所述液晶显示终端输送不同灰阶的测试信号的步骤包括:
    设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;
    向所述液晶显示终端输送N个灰阶的测试信号。
  4. 如权利要求3所述的调试方法,其特征在于,
    色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
    根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线的步骤包括:
    色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;
    根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
    根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
  5. 如权利要求4所述的调试方法,其特征在于,
    根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线的步骤包括:
    当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;
    当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
  6. 一种液晶显示伽马曲线调试系统,其特征在于,包括初步测试模块、回归分析模块、样本选取模块、参数确定模块、实际调试模块;
    所述初步测试模块,依次获得全部液晶显示终端液晶显示的实际伽马曲线;
    所述回归分析模块,对全部所述液晶显示终端的所述实际伽马曲线进行回归分析,使用曲线拟合,获得一最优伽马曲线;
    所述样本选取模块,对比全部所述液晶显示终端的所述实际伽马曲线与所述最优伽马曲线,选取全部所述液晶显示终端中所述实际伽马曲线与所述最优伽马曲线最相近的所述液晶显示终端作为标准样本;
    所述参数确定模块,将所述标准样本的所述实际伽马曲线调整至2.2次方的指数曲线,获得所述标准样本的标准调试参数;
    所述实际调试模块,使用所述标准调试参数对全部所述液晶显示终端进行调试。
  7. 如权利要求6所述的调试系统,其特征在于,
    所述初步测试模块,包括信号输送单元、数据采集单元、曲线绘制单元;
    所述信号输送单元,向所述液晶显示终端输送不同灰阶的测试信号;
    所述数据采集单元,控制色度分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光学数据;
    所述曲线绘制单元,根据所述光学数据,绘制所述液晶显示终端的实际伽马曲线。
  8. 如权利要求7所述的调试系统,其特征在于,
    所述信号输送单元,设定所述液晶显示终端的采样阶数为N,N为8、16、32、64、128、256中的一个;向所述液晶显示终端输送N个灰阶的测试信号。
  9. 如权利要求8所述的调试系统,其特征在于,
    所述数据采集单元,控制色彩分析仪采集所述液晶显示终端在所述不同灰阶的测试信号下的光谱三刺激值;并根据所述光谱三刺激值,计算各个灰阶画面下的三色亮度值;
    所述曲线绘制单元,根据所述三色亮度值,利用插值计算方法绘制所述液晶显示终端的实际伽马曲线。
  10. 如权利要求9所述的调试系统,其特征在于,
    所述曲线绘制单元,当N大于等于64时,利用线性插值计算方法绘制所述液晶显示终端的实际伽马曲线;当N小于64时,利用贝塞尔曲线插值计算方法绘制所述液晶显示终端的实际伽马曲线。
PCT/CN2017/100937 2017-09-07 2017-09-07 一种液晶显示伽马曲线调试方法及调试系统 WO2019047114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100937 WO2019047114A1 (zh) 2017-09-07 2017-09-07 一种液晶显示伽马曲线调试方法及调试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100937 WO2019047114A1 (zh) 2017-09-07 2017-09-07 一种液晶显示伽马曲线调试方法及调试系统

Publications (1)

Publication Number Publication Date
WO2019047114A1 true WO2019047114A1 (zh) 2019-03-14

Family

ID=65634635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100937 WO2019047114A1 (zh) 2017-09-07 2017-09-07 一种液晶显示伽马曲线调试方法及调试系统

Country Status (1)

Country Link
WO (1) WO2019047114A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067435A1 (en) * 2001-10-04 2003-04-10 Hong-Da Liu Adaptive gamma curve correction apparatus and method for a liquid crystal display
CN101046567A (zh) * 2004-02-13 2007-10-03 钰瀚科技股份有限公司 液晶显示器亮度补偿方法及其装置
CN101211035A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示器伽马校正系统与校正方法
CN101840689A (zh) * 2010-05-14 2010-09-22 中兴通讯股份有限公司 校正LCD屏gamma值的方法和装置
CN103325357A (zh) * 2013-07-05 2013-09-25 合肥京东方光电科技有限公司 一种伽玛电压调整方法、系统及电子设备
US20170061889A1 (en) * 2015-08-25 2017-03-02 Samsung Display Co., Ltd. Transparent display device and method of compensating an image for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067435A1 (en) * 2001-10-04 2003-04-10 Hong-Da Liu Adaptive gamma curve correction apparatus and method for a liquid crystal display
CN101046567A (zh) * 2004-02-13 2007-10-03 钰瀚科技股份有限公司 液晶显示器亮度补偿方法及其装置
CN101211035A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 液晶显示器伽马校正系统与校正方法
CN101840689A (zh) * 2010-05-14 2010-09-22 中兴通讯股份有限公司 校正LCD屏gamma值的方法和装置
CN103325357A (zh) * 2013-07-05 2013-09-25 合肥京东方光电科技有限公司 一种伽玛电压调整方法、系统及电子设备
US20170061889A1 (en) * 2015-08-25 2017-03-02 Samsung Display Co., Ltd. Transparent display device and method of compensating an image for the same

Similar Documents

Publication Publication Date Title
US10798373B2 (en) Display correction apparatus, program, and display correction system
CN109166559B (zh) 显示面板的伽马值调试方法及装置
WO2019001353A1 (zh) 一种显示面板的灰阶调整方法及装置
CN112289280B (zh) 屏幕亮度调整方法及装置、计算机可读介质和电子设备
CN102629379B (zh) 一种基于视觉特性的图像质量评价方法
CN102509541B (zh) 色彩调整装置、色彩调整方法以及显示器
US20130120589A1 (en) Methods, Systems and Apparatus for Jointly Calibrating Multiple Displays in a Display Ensemble
US11711486B2 (en) Image capture method and systems to preserve apparent contrast of an image
KR100918749B1 (ko) 색온도 점을 획득하는 방법 및 장치
CN102667899A (zh) 图像显示装置
WO2017080015A1 (zh) 控制低灰阶白平衡的方法及装置
US20110148902A1 (en) Evaluation method of display device
US10819885B2 (en) Gamma value tuning method and device of display panel
CN104320714A (zh) 一种显示装置及其显示调节方法
CN108376532A (zh) 一种显示装置的亮度补偿方法及装置
CN105810157B (zh) 一种显示器校正装置及方法
CN104394404A (zh) 图像暗场亮度的jnd值测定方法、预测方法
KR101341007B1 (ko) 표시 장치의 색 보정 방법 및 장치
CN108932936B (zh) 灰阶亮度的调节方法及显示装置
CN101720046A (zh) 一种利用人眼实现从显示器到投影仪颜色再现的方法
JP2003216942A (ja) 画像カラー校正の装置と方法
US11763777B2 (en) Image display device, image display system, image display method, and computer program for providing a low-luminance grayscale standard display function (GSDF) display
KR100859937B1 (ko) 디스플레이의 그레이 레벨 대 휘도 곡선을 신속히 생성하는방법 및 장치
WO2019047114A1 (zh) 一种液晶显示伽马曲线调试方法及调试系统
JP2013098900A (ja) 表示装置の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924746

Country of ref document: EP

Kind code of ref document: A1