WO2019047057A1 - Led封装结构及其封装方法 - Google Patents

Led封装结构及其封装方法 Download PDF

Info

Publication number
WO2019047057A1
WO2019047057A1 PCT/CN2017/100692 CN2017100692W WO2019047057A1 WO 2019047057 A1 WO2019047057 A1 WO 2019047057A1 CN 2017100692 W CN2017100692 W CN 2017100692W WO 2019047057 A1 WO2019047057 A1 WO 2019047057A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
chip holder
bracket
holder
electrode
Prior art date
Application number
PCT/CN2017/100692
Other languages
English (en)
French (fr)
Inventor
何宗江
贾志强
Original Assignee
深圳前海小有技术有限公司
深圳佑荟半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海小有技术有限公司, 深圳佑荟半导体有限公司 filed Critical 深圳前海小有技术有限公司
Priority to PCT/CN2017/100692 priority Critical patent/WO2019047057A1/zh
Publication of WO2019047057A1 publication Critical patent/WO2019047057A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly to an LED package structure and a packaging method thereof.
  • an LED material is usually packaged using an organic material such as an epoxy resin, or an epoxy resin or the like is used as an organic binder, and a glass cover or the like is used for packaging.
  • a commonly used package structure as shown in Figure 1, includes a bottom plate and an upper cover plate in which the chip is placed, and then a sealant is used to form a closed space between the bottom plate and the upper cover plate.
  • the sealing structure of this package is not good.
  • the light emitted by the LED chip especially deep ultraviolet light, may cause degradation of the organic glue, thereby causing damage to the package structure, thereby causing failure of the semiconductor component.
  • it is necessary to add a quartz plate for protection at the front thereby also causing light loss and an increase in manufacturing cost.
  • the present invention provides a pure inorganic package structure in view of the disadvantage that the organic sealant in the existing package structure is easily deteriorated by illumination.
  • An aspect of the invention provides an LED package structure, including:
  • the chip is disposed on the chip holder;
  • the chip holder is further provided with a groove, and the chip is located in the groove.
  • the bracket includes a bracket bottom and a bracket wall, and a cavity is formed between the bracket wall and the chip holder.
  • the bracket further includes one or more fixing arms extending from the bracket wall toward the chip holder.
  • the aluminum nitride layer on the chip is a patterned deposited aluminum nitride layer.
  • Another aspect of the present invention provides a method of packaging an LED package structure, the package method comprising:
  • the high-purity quartz is melted, cooled and solidified to form a quartz cover
  • a package electrode is used to electrically connect the chip to the outside.
  • the chip holder is further provided with a groove, and the chip is placed in the groove.
  • the step of "depositing aluminum nitride on the chip holder and the chip on the chip holder” further comprises:
  • the protective layer and the aluminum nitride layer thereon are removed.
  • aluminum nitride is deposited at a temperature of 400 to 800 °C.
  • the chip holder further includes a carrier electrode, the chip being fixedly coupled to the carrier electrode.
  • the step of "making a package electrode” further comprises:
  • a package electrode is fabricated in the via hole to electrically connect the package electrode to the chip.
  • Another aspect of the present invention also provides a method of packaging an LED package structure, the package method comprising:
  • the high-purity quartz is melted and then solidified to form a quartz cover.
  • the package structure of the invention realizes good sealing and stability by using the fused silica to seal the LED chip, and realizes the complete inorganic package without using the organic binder.
  • the design of the aluminum nitride layer can be used for the LED
  • the chip is fixed and protected while also increasing the amount of light emitted.
  • the package structure of the package structure of the present invention can conveniently obtain the package structure of the present invention.
  • FIG. 1 is a schematic view of a prior art package structure
  • FIG. 2 is a schematic view of a bracket of a package structure according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of a bracket of a package structure according to Embodiment 1 of the present invention.
  • Embodiment 4 is a cross-sectional view showing a package structure of Embodiment 1 of the present invention.
  • An aspect of the invention provides an LED package structure, including:
  • the chip is disposed on the chip holder;
  • the package structure of the invention comprises a bracket, a chip, an aluminum nitride layer, a package electrode and a quartz cover.
  • the quartz cover is formed by solidification of fused silica, covering the upper surface of the bracket, and covering and sealing, and sealing by using fused silica can be avoided.
  • the use of an organic sealant that is susceptible to light degradation improves the sealing and stability of the package structure, and the quartz material has good light transmittance, especially for deep ultraviolet light.
  • the shape of the quartz cover is determined by the mold to be used, and is not particularly limited as long as it can provide a sealing effect, and any suitable shape can be selected.
  • the quartz cover can be formed in the shape of a convex lens, which can concentrate light and improve light extraction rate.
  • the bracket is made of a material resistant to high temperature, preferably a sapphire material.
  • the sapphire material is a commonly used substrate material, has good stability, can be used in a high temperature growth process, and has high mechanical strength of sapphire.
  • the carrier of the present invention has a chip holder on which the chip is placed, and further, the chip holder is further provided with a recess in which the chip is located.
  • the bracket of the present invention is not particularly limited, and a suitable shape can be employed as needed.
  • the bracket includes a bracket bottom and a bracket wall, and a cavity is formed between the bracket wall and the chip holder.
  • the bracket may be circular, square or irregular in shape without particular limitation.
  • the quartz cover can be embedded in the cavity of the carrier to completely encapsulate the chip on the chip holder to obtain a good sealing property.
  • the chip holder may be located at a central location of the carrier.
  • the bracket further includes one or more fixing arms extending from the bracket wall toward the chip holder.
  • the fixed arm is embedded in the quartz cover and integrated with the quartz cover, thereby increasing the stability of the quartz cover and preventing the quartz cover from being detached from the surface of the carrier.
  • the fixed arms may be provided one or more, preferably evenly spaced along the wall of the bracket. The fixed arm can be arranged to extend onto the chip holder or not to the chip holder.
  • an aluminum nitride layer can be deposited on the entire chip holder and on the chip thereon, and the aluminum nitride layer has excellent high temperature resistance, and The aluminum nitride film also has good light transmission and is very suitable for deposition on and around the chip to fix and protect the chip.
  • the aluminum nitride layer on the chip may be a patterned deposited aluminum nitride layer.
  • Pattern The aluminum nitride layer can be formed by providing a protective layer with a hollow pattern on the chip before depositing the aluminum nitride layer and removing the protective layer after depositing the aluminum nitride layer.
  • the arrangement of the patterned aluminum nitride layer ie, the arrangement of the aluminum nitride layer having a hollow pattern) can reduce the total reflection of light emitted by the LED chip and increase the amount of light emitted.
  • the package structure also includes a package electrode for electrically connecting the chip to the outside.
  • the specific formation manner of the package electrode is not particularly limited and may be formed in various suitable manners.
  • the package electrode may be formed in a through hole formed in the chip holder through a through hole in the chip holder.
  • the number of the package electrodes is also not particularly limited, and is preferably two.
  • the LED chip of the package structure of the present application may preferably be an ultraviolet LED chip, more preferably a deep ultraviolet LED chip.
  • Another aspect of the present invention provides a method of packaging an LED package structure, the package method comprising:
  • the high-purity quartz is melted, cooled and solidified to form a quartz cover
  • a package electrode is used to electrically connect the chip to the outside.
  • the package structure of the present invention can be conveniently obtained by the packaging method of the present invention.
  • "cooling and solidifying high-purity quartz to form a quartz cover” can be carried out in a suitable manner.
  • a high-purity quartz and quartz cover mold can be placed on a carrier to cool the quartz and then cool to form a quartz cover. The mold is removed, and the raw material of the high-purity quartz used may be high-purity quartz sand.
  • the high-purity quartz raw material and the quartz cover mold can be placed on the bracket, the temperature is raised or the quartz sand is melted by the laser to cover the upper surface of the bracket, and after cooling, the quartz cover is formed according to the shape of the quartz cover mold.
  • the shape of the quartz cover may be formed in a convex lens shape.
  • the chip holder may further be provided with a groove, and the chip may be placed in the groove when the chip is fixed on the chip holder of the bracket.
  • the chip holder may further include a carrier electrode for fixedly connecting the chip to the carrier electrode, that is, fixing the chip by the carrier electrode.
  • the carrier electrode and the chip can be connected in a suitable manner.
  • the carrier electrode and the chip can be fixedly connected by metal.
  • the carrier electrode can also be placed in the recess of the chip holder.
  • an aluminum nitride film can be deposited on the chip holder and the chip thereon.
  • aluminum nitride may be deposited at a lower temperature of 400 to 800 ° C, preferably at a temperature of 500 to 700 ° C, more preferably 600 ° C.
  • the method of depositing aluminum nitride is not particularly limited, and a suitable method can be selected as needed. Especially in the case where the chip is fixed by the carrier electrode, aluminum nitride is deposited at a lower temperature, and the carrier electrode and the metal for connecting the carrier electrode are not melted.
  • the electrode can be formed again. Will not affect the electrical connection.
  • the patterned aluminum nitride layer may be performed by: forming a patterned protective layer on the chip; depositing aluminum nitride on the chip holder and a chip on the chip holder; removing the protective layer And an aluminum nitride layer thereon. That is, a patterned protective layer (with a hollow protective layer) is first formed on the chip, and then aluminum nitride is deposited.
  • the void of the protective layer may be Aluminum nitride is deposited on the chip, deposited on the protective layer elsewhere, and finally, after removing the protective layer and the aluminum nitride layer thereon, a patterned aluminum nitride layer is formed on the chip.
  • the arrangement of the patterned aluminum nitride layer can reduce the total reflection of light emitted by the LED chip and increase the amount of light emitted.
  • the step of "making a package electrode” further includes: forming a through hole penetrating the chip holder; forming a package electrode in the through hole, the package electrode and the chip Electrical connection.
  • a through hole is formed in the chip holder, and a package electrode is formed in the through hole to electrically connect the package electrode to the chip.
  • electrical connection to the chip is achieved by connecting the package electrode to the carrier electrode.
  • the package electrodes are two.
  • Another aspect of the present invention also provides a method of packaging an LED package structure, the package method comprising:
  • the high-purity quartz is melted and then solidified to form a quartz cover.
  • a through hole penetrating through the chip holder is formed on the chip holder of the carrier, and a package electrode is formed in the through hole. Since the fused silica needs a high temperature of up to 1800 ° C, the package electrode in the through hole is extremely It may melt. Therefore, it is necessary to firmly fix the bracket to a package base. Even if the package electrode is melted, it will not flow or overflow. After cooling, the package electrode will be reformed without affecting the electrical connection. After the package electrode is formed, the chip can be mounted on the chip holder and electrically connected to the package electrode. Finally, the high-purity quartz is melted and solidified to form a quartz cover. The high-purity quartz and quartz cover mold can be placed on the carrier, and the quartz crystal is melted and cooled after heating to form a quartz cover to remove the mold and the package base.
  • Embodiment 1 provides a package structure
  • FIG. 2 shows a schematic view of a bracket used in the package structure of Embodiment 1
  • FIG. 3 shows a plan view of the bracket
  • FIG. 4 shows the package of Embodiment 1.
  • the package structure of Embodiment 1 includes a square bracket 1 including a square bracket bottom and a bracket wall composed of four square sides and a chip holder 2 located in the middle of the bracket.
  • a cavity 3 is formed between the wall and the chip holder, and four fixed arms 4 are respectively extended from the four sides of the bracket wall, and the two fixed arms are symmetrically arranged, wherein the two fixed arms extend to the chip holder and the chip holder, and the other two Not connected to the chip holder.
  • a groove 5 is provided on the top of the chip holder, and two carrier electrodes 6 are disposed in the center of the groove 5. As shown in FIG. 4, in the recess 5, the two carrier electrodes 6 are provided with a chip 7, which is connected to the two carrier electrodes 6, and an aluminum nitride layer 9 is deposited on the chip holder 6 and the chip 7.
  • the chip 7 is a patterned aluminum nitride layer, not shown in the drawing), and the aluminum nitride layer fixes the carrier electrode 6 in the middle to protect the carrier electrode which is also melted due to high temperature when the quartz is melted. Flow or overflow.
  • the quartz cover 8 covers the upper surface of the bracket 1 in the shape of a convex lens, and the chip is completely covered therein, and the fixed arm is also embedded in the quartz cover to be integrated with the quartz cover so that the quartz cover cannot be detached from the bracket.
  • the package structure also includes package electrodes that electrically connect the chip to the outside, not shown.
  • the package structure realizes the sealing of the chip, and the organic sealant is not used at all, so there is no defect that the organic sealant is deteriorated by the light.
  • Embodiment 2 provides a packaging method of the package structure of Embodiment 1, comprising the following steps:
  • the chip holder is further provided with a groove and a bracket electrode, the chip is placed in the groove, and the chip is fixedly connected with the bracket electrode;
  • the high-purity quartz and quartz cover mold is placed on the bracket, the quartz is melted and then cooled, and the quartz cover is formed to remove the mold;
  • a package electrode is fabricated in the via hole to electrically connect the package electrode to the chip.
  • the chip holder of the bracket is provided with a groove and a bracket electrode, and the bracket electrode is also disposed in the groove.
  • the chip is fixedly connected with the bracket electrode to fix the chip on the chip holder.
  • an aluminum nitride layer is deposited at a temperature of about 600 ° C.
  • the carrier electrode is not melted, so that it does not have an effect, and when the quartz cover is formed, although the quartz melting is performed at a high temperature of 1800 ° C, at this time, Due to the protection of the aluminum nitride layer, the carrier electrode does not flow or overflow even if it is melted, and solidifies to form an electrode after cooling, without affecting the electrical connection.
  • a through hole penetrating the chip holder is formed in the chip holder, and a package electrode is formed in the through hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

提供一种LED封装结构及其封装方法,该封装结构包括:托架(1),托架具有芯片座(2);芯片(7),芯片设置于芯片座上;氮化铝层(9),氮化铝层沉积在芯片座及位于该芯片座上的芯片上;封装电极,封装电极用于使芯片与外部电连接;以及石英罩(8),石英罩由熔融石英固化形成,覆盖托架的上表面。通过采用熔融石英对LED芯片进行密封,实现了不采用有机粘合剂的全无机封装,可以获得良好的密封性和稳定性,通过氮化铝层的设计,可以对LED芯片进行固定和保护,同时也可以增加出光量。

Description

LED封装结构及其封装方法 技术领域
本发明涉及半导体技术领域,更具体而言涉及一种LED封装结构及其封装方法。
背景技术
目前,通常使用有机材料例如环氧树脂等来进行LED器件的封装,或者使用环氧树脂等作为有机粘合剂,结合玻璃罩等进行封装。一种常用的封装结构如图1所示,包括底板和上盖板,芯片置于其中,然后使用密封胶在底板和上盖板之间形成封闭空间。但是,这种封装结构的密封性不佳。同时,在使用时,尤其是用于封装紫外LED芯片时,LED芯片发出的光特别是深紫外光会造成有机胶的劣化,从而导致封装结构的破坏,由此也带来半导体元器件的故障。另外,这种封装结构在使用时,需要在前面增加石英板进行保护,由此也会导致光损失以及制备成本的上升。
为了解决这种问题,尤其是对于UV-LED的封装,正在尝试不使用有机材料的纯无机封装结构,目前对于这一方面的研究仍然较少。
因此,希望开发一种可以解决有机密封剂容易劣化的问题的无机封装结构。
发明内容
针对现有的封装结构中有机密封剂易于由于光照而劣化的缺点,本发明提供了一种纯无机封装结构。
本发明一方面提供了一种LED封装结构,包括:
托架,所述托架具有芯片座;
芯片,所述芯片设置于所述芯片座上;
氮化铝层,所述氮化铝层沉积在所述芯片座及位于该芯片座上的芯片上;
封装电极,所述封装电极用于使所述芯片与外部电连接;以及
石英罩,所述石英罩由熔融石英固化形成,覆盖托架的上表面。
进一步地,所述芯片座上还设置有凹槽,所述芯片位于所述凹槽中。
根据本发明的一个实施方案,所述托架包括托架底和托架壁,在所述托架壁和芯片座之间形成腔体。
进一步地,所述托架还包括一个或多个从托架壁向芯片座方向延伸形成的固定臂。
根据本发明的一个实施方案,所述芯片上的氮化铝层为图案化沉积的氮化铝层。
本发明另一方面提供了一种LED封装结构的封装方法,所述封装方法包括:
将芯片固定于托架的芯片座上;
在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
将高纯石英熔融后冷却固化形成石英罩;
制作封装电极,所述封装电极用于使所述芯片与外部电连接。
进一步地,所述芯片座上还设置有凹槽,将所述芯片置于所述凹槽中。
根据本发明的一个实施方案,所述“在所述芯片座及位于该芯片座上的芯片上沉积氮化铝”步骤进一步包括:
在所述芯片上形成图案化保护层;
在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
去除所述保护层及其上的氮化铝层。
根据本发明的另一个实施方案,在400至800℃的温度下沉积氮化铝。
根据本发明的另一个实施方案,所述芯片座上还包括托架电极,所述芯片与所述托架电极固定连接。
根据本发明的另一个实施方案,所述“制作封装电极”的步骤进一步包括:
形成贯穿所述芯片座的通孔;
在所述通孔内制作封装电极,使所述封装电极与所述芯片电连接。
本发明另一方面还提供了一种LED封装结构的封装方法,所述封装方法包括:
在托架的芯片座上形成贯穿芯片座的通孔,并形成封装电极;
将所述托架紧固于封装底座上;
将芯片置于托架的芯片座上,并使所述芯片与所述封装电极电连接;
在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
将高纯石英熔融后冷却固化形成石英罩。
有益效果
本发明的封装结构,通过采用熔融石英对LED芯片进行密封,实现了不采用有机粘合剂的全无机封装,可以获得良好的密封性和稳定性,通过氮化铝层的设计,可以对LED芯片进行固定和保护,同时也可以增加出光量。本发明的封装结构的封装方法,可以方便地获得本发明的封装结构。
附图说明
从下面结合附图的详细描述中,将会更加清楚的理解本发明的上述及其他目的、特征和其他优点,其中,
图1为一种现有技术的封装结构的示意图
图2为本发明实施例1的封装结构的托架的示意图;
图3为本发明实施例1的封装结构的托架的俯视图;
图4为本发明实施例1的封装结构的剖视图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方案,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方案仅用以解释本发明,并不用于限定本发明。
本发明一方面提供了一种LED封装结构,包括:
托架,所述托架具有芯片座;
芯片,所述芯片设置于所述芯片座上;
氮化铝层,所述氮化铝层沉积在所述芯片座及位于该芯片座上的芯片上;
封装电极,所述封装电极用于使所述芯片与外部电连接;以及
石英罩,所述石英罩由熔融石英固化形成,覆盖托架的上表面。
本发明的封装结构包括托架、芯片、氮化铝层、封装电极和石英罩,石英罩由熔融石英固化形成,覆盖托架的上表面,起包覆密封作用,采用熔融石英进行密封可以避免使用易受光照劣化的有机密封剂,提高封装结构的密封性和稳定性,而且石英材料具有良好的透光率,尤其是对于深紫外光。石英罩的形状由所采用的模具决定,没有特别限制,只要能起到密封的效果,可以选择任何合适的形状。优选地,可以将石英罩形成为凸透镜的形状,可以集中光线,提高出光率。
所述托架由耐高温的材料制成,优选为蓝宝石材料,蓝宝石材料是常用的衬底材料,稳定性很好,能够运用在高温生长过程中,同时蓝宝石的机械强度高。
本发明的托架具有安置芯片的芯片座,进一步地,所述芯片座上还设置有凹槽,所述芯片位于所述凹槽中。通过在芯片座上设置凹槽,将芯片放置在凹槽中,可以避免操作过程中芯片位置的移动。
对本发明的托架的具体形状没有特殊限制,可以根据需要采用合适的形状。优选地,所述托架包括托架底和托架壁,在所述托架壁和芯片座之间形成腔体。此外,所述托架可以为圆形、方形或者不规则形状而没有特殊限制。在形成石英罩时,石英罩可以嵌入托架的腔体中,从而将位于芯片座上的芯片完整包覆在其中,获得良好的密封性。优选地,所述芯片座可以位于所述托架的中心位置。
进一步地,所述托架还包括一个或多个从托架壁向芯片座方向延伸形成的固定臂。在将石英熔融固化形成石英罩时,所述固定臂会嵌入石英罩中,与石英罩形成一体,从而可以增加石英罩的稳定性,避免石英罩从所述托架表面脱离。所述固定臂可以设置一个或多个,优选沿托架壁均匀地间隔设置。所述固定臂可以设置为延伸到芯片座上,或者不延伸到芯片座上。
在将芯片置于芯片座上后,为了更好地固定和保护芯片,可以在整个芯片座上和其上的芯片上沉积氮化铝层,氮化铝层具有很好的耐高温性,而且氮化铝薄膜也具有良好的透光性,非常适合沉积于芯片上和四周,以固定和保护芯片。
进一步地,所述芯片上的氮化铝层可以为图案化沉积的氮化铝层。图案 化的氮化铝层可以通过在沉积氮化铝前,在芯片上设置带有镂空图案的保护层并在沉积氮化铝层之后,去掉该保护层实现。图案化的氮化铝层的设置(即,有镂空图案的氮化铝层的设置),可以减少LED芯片发出的光的全反射现象,增加出光量。
所述封装结构还包括用于将芯片与外部电连接的封装电极。封装电极的具体形成方式没有特别限制,可以采用各种合适的方式形成。例如,所述封装电极可以通过在芯片座中形成贯穿芯片座的通孔,并在该通孔中形成。所述封装电极的数量也没有特殊限制,优选为2个。
本申请的封装结构的LED芯片优选可以为紫外LED芯片,更优选为深紫外LED芯片。
本发明另一方面提供了一种LED封装结构的封装方法,所述封装方法包括:
将芯片固定于托架的芯片座上;
在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
将高纯石英熔融后冷却固化形成石英罩;
制作封装电极,所述封装电极用于使所述芯片与外部电连接。
通过本发明的封装方法,可以方便地获得本发明的封装结构。本申请中“将高纯石英熔融后冷却固化形成石英罩”可以采用合适的方式进行,例如,可以将高纯石英和石英罩模具置于托架上,使石英熔融后冷却,形成石英罩后去除模具,所用的高纯石英的原料可以为高纯石英砂。封装时可以将高纯石英原料和石英罩模具置于托架上,升温或者采用激光使石英砂熔融,覆盖托架的上表面,冷却后,根据石英罩模具的形状形成石英罩。优选地,石英罩的形状可以形成为凸透镜形状。
进一步地,所述芯片座上还可以设置有凹槽,在将芯片固定于托架的芯片座上时,可以将所述芯片置于所述凹槽中。通过在芯片座上设置凹槽,将芯片放置在凹槽中,可以避免操作过程中芯片位置的移动。
或者,根据本发明的另一个实施方案,所述芯片座上还可以包括托架电极,使所述芯片与所述托架电极固定连接,即,通过托架电极来固定芯片。托架电极与芯片可以采用合适的方式连接,例如,可以通过金属将托架电极和芯片固定连接起来。托架电极也可以设置于芯片座的凹槽中。
在将芯片固定于芯片座上后,为了固定和保护芯片,可以在芯片座及其上的芯片上沉积氮化铝薄膜。本发明中,可以在400至800℃的较低温度下沉积氮化铝,优选在500至700℃、更优选600℃的温度下沉积氮化铝。具体沉积氮化铝的方法没有特殊限制,可以根据需要选择合适的方法。尤其对于采用托架电极固定芯片的情况,在较低温度下沉积氮化铝,托架电极和用于连接托架电极的金属不会融化。而且,在后面熔融石英的高温下,即使托架电极和金属融化,由于沉积有氮化铝层,熔融的托架电极和金属也不会流动和溢出,在温度降低后,可以再次形成电极,不会影响电连接。
在沉积氮化铝层时,优选形成图案化的氮化铝层。该图案化的氮化铝层,可以采用如下方法进行:在所述芯片上形成图案化保护层;在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;去除所述保护层及其上的氮化铝层。即首先在芯片上形成图案化的保护层(带有镂空的保护层),然后再进行氮化铝的沉积,此时由于芯片上形成有图案化的保护层,则保护层的镂空处会有氮化铝沉积至芯片上,在其他地方则沉积至保护层上,最后去除保护层及其上的氮化铝层后,芯片上即形成了图案化的氮化铝层。图案化的氮化铝层的设置,可以减少LED芯片发出的光的全反射现象,增加出光量。
在使用石英罩完成对芯片的密封后,制作封装电极,使得所述芯片可以与外部电连接。根据本发明的另一个实施方案,所述“制作封装电极”的步骤进一步包括:形成贯穿所述芯片座的通孔;在所述通孔内制作封装电极,使所述封装电极与所述芯片电连接。在芯片座上形成通孔,在通孔内制作封装电极,使封装电极与芯片电连接。在有托架电极与芯片连接的情况下,通过使封装电极与托架电极连接,从而实现与芯片的电连接。优选封装电极为两个。
本发明另一方面还提供了一种LED封装结构的封装方法,所述封装方法包括:
在托架的芯片座上形成贯穿芯片座的通孔,并形成封装电极;
将所述托架紧固于封装底座上;
将芯片置于托架的芯片座上,并使所述芯片与所述封装电极电连接;
在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
将高纯石英熔融后冷却固化形成石英罩。
在这种方法中,首先在托架的芯片座上形成贯穿芯片座的通孔,在通孔中形成封装电极,由于熔融石英需要高达1800℃的高温,此时位于通孔中封装电极极有可能会融化,因此,需要将托架牢固地固定于一个封装底座上,此时即使封装电极融化,也不会流动或溢出,在冷却之后会重新形成封装电极,不会影响电连接。在封装电极形成后,可以在芯片座上安装芯片,并使芯片与所述封装电极电连接。最后,将高纯石英熔融后冷却固化形成石英罩,可以将高纯石英和石英罩模具置于托架上,升温使石英熔融后冷却,形成石英罩后去除模具和封装底座。
本方法中其他步骤与前面描述相似,不再详述。
实施例1
实施例1提供了一种封装结构,图2示出了实施例1的封装结构中所用的托架的示意图,图3示出了该托架的俯视图,图4示出了实施例1的封装结构的剖视图。如图2所示,实施例1的封装结构包括方形的托架1,该托架包括方形的托架底和由方形的四条边构成的托架壁以及位于托架中间的芯片座2,托架壁和芯片座之间形成腔体3,从四边的托架壁上分别延伸出四条固定臂4,两两成对称设置,其中两条固定臂延伸至芯片座与芯片座相连,另两条不与芯片座相连。芯片座顶上设置有凹槽5,在凹槽5的中央设置有两个托架电极6。如图4所示,在凹槽5中,两个托架电极6上设置有芯片7,芯片7与两个托架电极6连接,在芯片座6和芯片7上沉积有氮化铝层9(芯片7上为图案化的氮化铝层,图中未示出),氮化铝层将托架电极6固定在中间,以在石英熔融时,保护同样由于高温融化的托架电极不至于流动或溢出。石英罩8覆盖在托架1的上表面,成凸透镜的形状,将芯片完全地包覆在其中,同时固定臂也嵌入石英罩中,与石英罩一体化,使得石英罩不能与托架脱离。该封装结构还包括将芯片与外部电连接的封装电极,图中未示出。
该封装结构实现了对芯片的密封,而且完全没有使用有机密封胶,因此不会有有机密封胶由于光照劣化的缺陷。
实施例2
实施例2提供了一种实施例1的封装结构的封装方法,包括如下步骤:
将芯片固定于托架的芯片座上,所述芯片座上还设置有凹槽和托架电极,将所述芯片置于所述凹槽中,并使芯片与所述托架电极固定连接;
在所述芯片上形成图案化保护层;
在所述芯片座及位于该芯片座上的芯片上在约600℃的温度下沉积氮化铝;
去除所述保护层及其上的氮化铝层;
将高纯石英和石英罩模具置于托架上,使石英熔融后冷却,形成石英罩后去除模具;
形成贯穿所述芯片座的通孔;
在所述通孔内制作封装电极,使所述封装电极与所述芯片电连接。
该方法中,托架的芯片座上设置有凹槽和托架电极,托架电极也设置于凹槽中,放置芯片时,使芯片与托架电极固定连接从而将芯片固定在芯片座上,之后在约600℃的温度下沉积氮化铝层,此时托架电极不会熔融,因此不会有影响,而在形成石英罩时,虽然石英熔融在1800℃的高温下进行,但此时由于氮化铝层的保护,托架电极即使熔融也不会流动或溢出,在冷却后再次凝固形成电极,不会影响电连接。最后,在芯片座形成贯穿该芯片座的通孔,并在通孔内制作封装电极。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种LED封装结构,包括:
    托架,所述托架具有芯片座;
    芯片,所述芯片设置于所述芯片座上;
    氮化铝层,所述氮化铝层沉积在所述芯片座及位于该芯片座上的芯片上;
    封装电极,所述封装电极用于使所述芯片与外部电连接;以及
    石英罩,所述石英罩由熔融石英固化形成,覆盖托架的上表面。
  2. 如权利要求1所述的LED封装结构,其中,所述芯片座上还设置有凹槽,所述芯片位于所述凹槽中。
  3. 如权利要求1所述的LED封装结构,其中,所述托架包括托架底和托架壁,在所述托架壁和芯片座之间形成腔体。
  4. 如权利要求3所述的LED封装结构,其中,所述托架还包括一个或多个从托架壁向芯片座方向延伸形成的固定臂。
  5. 如权利要求1所述的LED封装结构,其中,所述芯片上的氮化铝层为图案化沉积的氮化铝层。
  6. 一种LED封装结构的封装方法,所述封装方法包括:
    将芯片固定于托架的芯片座上;
    在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
    将高纯石英熔融后冷却固化形成石英罩;
    制作封装电极,所述封装电极用于使所述芯片与外部电连接。
  7. 如权利要求6所述的LED封装结构的封装方法,其中,所述芯片座上还设置有凹槽,将所述芯片置于所述凹槽中。
  8. 如权利要求6或7所述的LED封装结构的封装方法,其中,所述“在所述芯片座及位于该芯片座上的芯片上沉积氮化铝”步骤进一步包括:
    在所述芯片上形成图案化保护层;
    在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
    去除所述保护层及其上的氮化铝层。
  9. 如权利要求6所述的LED封装结构的封装方法,其中,在400至800℃的温度下沉积氮化铝。
  10. 如权利要求6所述的LED封装结构的封装方法,其中,所述芯片座上还包括托架电极,所述芯片与所述托架电极固定连接。
  11. 如权利要求6所述的LED封装结构的封装方法,其中,所述“制作封装电极”的步骤进一步包括:
    形成贯穿所述芯片座的通孔;
    在所述通孔内制作封装电极,使所述封装电极与所述芯片电连接。
  12. 一种LED封装结构的封装方法,所述封装方法包括:
    在托架的芯片座上形成贯穿芯片座的通孔,并形成封装电极;
    将所述托架紧固于封装底座上;
    将芯片置于托架的芯片座上,并使所述芯片与所述封装电极电连接;
    在所述芯片座及位于该芯片座上的芯片上沉积氮化铝;
    将高纯石英熔融后冷却固化形成石英罩。
PCT/CN2017/100692 2017-09-06 2017-09-06 Led封装结构及其封装方法 WO2019047057A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100692 WO2019047057A1 (zh) 2017-09-06 2017-09-06 Led封装结构及其封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100692 WO2019047057A1 (zh) 2017-09-06 2017-09-06 Led封装结构及其封装方法

Publications (1)

Publication Number Publication Date
WO2019047057A1 true WO2019047057A1 (zh) 2019-03-14

Family

ID=65633408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100692 WO2019047057A1 (zh) 2017-09-06 2017-09-06 Led封装结构及其封装方法

Country Status (1)

Country Link
WO (1) WO2019047057A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213675A (zh) * 2005-06-30 2008-07-02 松下电工株式会社 发光装置
CN101681965A (zh) * 2007-05-30 2010-03-24 旭硝子株式会社 光学元件覆盖用玻璃、覆盖有玻璃的发光元件及覆盖有玻璃的发光装置
CN103730431A (zh) * 2014-01-07 2014-04-16 宝钢金属有限公司 一种大功率阵列led芯片表面散热结构及制作方法
CN103855149A (zh) * 2014-02-20 2014-06-11 中国科学院半导体研究所 倒装高压发光二极管及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213675A (zh) * 2005-06-30 2008-07-02 松下电工株式会社 发光装置
CN101681965A (zh) * 2007-05-30 2010-03-24 旭硝子株式会社 光学元件覆盖用玻璃、覆盖有玻璃的发光元件及覆盖有玻璃的发光装置
CN103730431A (zh) * 2014-01-07 2014-04-16 宝钢金属有限公司 一种大功率阵列led芯片表面散热结构及制作方法
CN103855149A (zh) * 2014-02-20 2014-06-11 中国科学院半导体研究所 倒装高压发光二极管及其制作方法

Similar Documents

Publication Publication Date Title
CN208045473U (zh) 芯片封装结构
CN208014673U (zh) 芯片封装结构
CN106299084B (zh) Led封装结构
CN104851961B (zh) 发光器件的芯片级封装方法及结构
CN103915393B (zh) 光电封装体及其制造方法
US20080169480A1 (en) Optoelectronic device package and packaging method thereof
TWI597786B (zh) 半導體封裝結構及其製法
TWI796522B (zh) 半導體器件封裝方法及半導體器件
CN106025037B (zh) 一种紫外发光二极管封装结构及其制作方法
US20080105941A1 (en) Sensor-type semiconductor package and fabrication
WO2017000852A1 (zh) 一种晶圆级扇出封装的制作方法
US4025716A (en) Dual in-line package with window frame
TW201624769A (zh) 發光元件封裝結構及其製造方法
CN110197864A (zh) 半导体发光器件及其制造方法
CN108807636A (zh) 紫外光发光二极管封装结构、紫外光发光单元及其制造方法
TW201403873A (zh) 發光二極體封裝結構之製造方法
WO2019047057A1 (zh) Led封装结构及其封装方法
TWI528596B (zh) 發光二極體封裝結構及其製造方法
CN102347420A (zh) 发光二极管制造方法
WO2023151379A1 (zh) 一种紫外灯珠封装结构及其制备方法
CN107123721A (zh) 一种带透镜式led封装结构及封装方法
CN104485319B (zh) 用于感光芯片的封装结构及工艺方法
CN110010481A (zh) 一种密闭型系统级光电模块封装方式和工艺
TWI400823B (zh) 發光二極體封裝結構及其製造方法
CN204375728U (zh) 用于感光芯片的封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17924368

Country of ref document: EP

Kind code of ref document: A1