WO2019044745A1 - Method and device for monitoring condition of rolling bearing - Google Patents

Method and device for monitoring condition of rolling bearing Download PDF

Info

Publication number
WO2019044745A1
WO2019044745A1 PCT/JP2018/031517 JP2018031517W WO2019044745A1 WO 2019044745 A1 WO2019044745 A1 WO 2019044745A1 JP 2018031517 W JP2018031517 W JP 2018031517W WO 2019044745 A1 WO2019044745 A1 WO 2019044745A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
grease
oil separation
vibration data
separation rate
Prior art date
Application number
PCT/JP2018/031517
Other languages
French (fr)
Japanese (ja)
Inventor
英之 筒井
正嗣 北井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018154048A external-priority patent/JP6997051B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019044745A1 publication Critical patent/WO2019044745A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a method and a device for monitoring the state of a rolling bearing.
  • Patent Document 1 discloses a rolling bearing having a simple configuration efficiently and accurately by using a background noise component having no peak such as a rotational speed proportional component in a frequency spectrum.
  • a diagnostic method of a rolling bearing capable of determining the presence or absence of an abnormality is disclosed.
  • Patent Document 1 discloses a configuration in which it is determined that the grease sealed in the rolling bearing has deteriorated when the frequency spectrum of the vibration data of the rolling bearing exceeds a threshold. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-347401
  • the present invention has been made to solve the above-mentioned problems, and its object is to estimate the remaining life of the grease sealed in the rolling bearing.
  • the rolling bearing state monitoring method includes the steps of creating a classifier by machine learning and monitoring the rolling bearing state.
  • the step of creating a classifier includes the steps of calculating feature quantities of the first to third vibration data, and machine learning of the feature quantities of the first to third vibration data to create a classifier.
  • the first vibration data is vibration data of the rolling bearing in which the first oil separation rate grease is enclosed.
  • the second vibration data is vibration data of a rolling bearing in which a grease having a second oil separation rate smaller than the first oil separation rate is sealed.
  • the third vibration data is vibration data of a rolling bearing in which normal grease is sealed.
  • the operation time of the rolling bearing until the oil separation rate of the normal grease becomes the first oil separation rate is the first operation time.
  • the operation time of the rolling bearing until the oil separation rate of the normal grease becomes the second oil separation rate is a second operation time which is shorter than the first operation time.
  • the step of monitoring the state includes the steps of calculating the feature quantity of the fourth vibration data, calculating the first to third fitness factors, and calculating the remaining life of the grease sealed in the rolling bearing. .
  • the fourth vibration data is vibration data of the rolling bearing measured during monitoring.
  • the first to third relevance factors are calculated by the classifier.
  • the first to third adaptation rates are adaptation rates between the feature quantities of the fourth vibration data and the feature quantities of the first to third oscillation data.
  • the remaining life of the grease sealed in the rolling bearing is calculated using the first and second operation times and the first to third fitness factors. The remaining life is the operating time of the rolling bearing until the oil separation rate of the grease sealed in the rolling bearing becomes the first oil separation rate.
  • the method of monitoring the state of a rolling bearing it is possible to estimate the remaining life of the grease sealed in the rolling bearing by using the classifier created by machine learning of the feature amount of the vibration data.
  • FIG. 1 It is a figure which shows collectively the sectional view of the rolling bearing monitored by the state monitoring apparatus which concerns on embodiment, and a state monitoring apparatus. It is a functional block diagram of the state monitoring apparatus of FIG. It is a flowchart which shows the outline
  • FIG. 1 is a view showing a cross-sectional view of a state monitoring device 1 and a rolling bearing 10 monitored by the state monitoring device 1 according to the embodiment.
  • the rolling bearing 10 includes an inner ring 12, an outer ring 14, a cage 16, and a plurality of rolling elements 18.
  • Rolling bearing 10 includes, for example, self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings, and ball bearings.
  • the rolling bearing 10 may be a single row or multiple rows.
  • the inner ring 12 is a rotating ring which is fitted and fixed to the main shaft 11 and rotates integrally with the main shaft 11 in the direction of the arrow D.
  • the outer ring 14 is a stationary ring disposed on the outer peripheral side of the inner ring 12.
  • the holder 16 is provided with a plurality of pockets for holding a plurality of rolling elements 18 at equal intervals.
  • the cage 16 is disposed between the outer peripheral surface of the inner ring 12 and the inner peripheral surface of the outer ring 14 while holding the plurality of rolling elements 18.
  • the state monitoring device 1 monitors the state of the rolling bearing by measuring the physical quantity of the rolling bearing 10 by the vibration sensor.
  • Examples of physical quantities of the rolling bearing 10 measured by the vibration sensor include acceleration, velocity, displacement, sound, AE (Acoustic Emission), and power.
  • the grease Grc deteriorates and the oil separation rate of the grease Grc increases.
  • the oil separation ratio of the grease Grc increases, it becomes difficult to form a sufficient oil film around the rolling elements 18 and the like, and metal-to-metal contact is likely to occur inside the rolling bearing 10. If the metals are welded together by the frictional heat due to the contact between the metals, the rotation of the rolling bearing 10 becomes difficult.
  • the life (lubrication life) of the rolling bearing 10 due to the deterioration of the grease Grc is shorter than the life of the rolling bearing 10 due to damage (rolling fatigue) formed on the raceway surface by the plurality of rolling elements 18.
  • the matching rate between a certain feature amount and a plurality of machine-learned feature amounts by machine learning the feature amounts of the vibration data of a rolling bearing in which greases having different oil separation rates are enclosed.
  • FIG. 2 is a functional block diagram of the state monitoring device 1 of FIG. As shown in FIG. 2, the state monitoring device 1 includes a vibration sensor 20, a control unit 40, and a storage unit 50.
  • the vibration sensor 20 measures vibration data of the rolling bearing 10 and outputs it to the control unit 40.
  • the control unit 40 machine-learns feature amounts of vibration data of the rolling bearing 10 in which greases having different oil separation rates are sealed, and creates a classifier.
  • the classifier calculates the matching rate between a certain feature amount and each feature amount that has been machine-learned.
  • Classifiers can include, for example, support vector machines, neural networks, naive Bayes, and decision trees. In the embodiment, a neural network is used as a classifier.
  • the control unit 40 calculates the feature quantity of the vibration data measured at the sampling time in the monitoring period, and calculates the remaining life of the grease Grc using the classifier created in the learning period.
  • the control unit 40 includes a computer such as a central processing unit (CPU).
  • the storage unit 50 stores, for example, vibration data, feature quantities calculated from the vibration data, and a classifier created by machine learning.
  • FIG. 3 is a flowchart showing an outline of the process of estimating the remaining life of grease performed by the control unit 40.
  • the step is simply described as S.
  • the control unit 40 creates a classifier at S1.
  • S1 is a process performed in the learning period.
  • the control unit 40 calculates the remaining life of the grease using a classifier at S2.
  • S2 is a process performed in the monitoring period.
  • the classifier created by machine learning may be created at the start of the monitoring period, and the learning period and the monitoring period may not be continuous.
  • FIG. 4 is a flowchart specifically showing the flow of processing (S1 in FIG. 3) performed in the learning period.
  • the behavior of the rolling bearing 10 is not stable for a while after the rolling bearing 10 starts operation. Therefore, in the learning period, a break-in operation period (for example, 5 days) has elapsed since the operation of the rolling bearing 10 was started, and measurement is performed for a fixed period (for example, 1 month) with the behavior of the rolling bearing 10 stabilized. It is desirable that vibration data be used.
  • the control unit 40 generates a short time Fourier transform (STFT) image of the vibration data of the rolling bearing in which the grease having the oil separation rate of oil separation level 2 is enclosed in S11, The feature amount corresponding to the oil separation level 2 is calculated, and the process proceeds to S12.
  • the oil separation rate of oil separation level 2 is set as the oil separation rate of the grease which has almost exhausted the lubrication life and needs to be replaced.
  • the oil separation rate at oil separation level 2 is, for example, 50% or more and 80% or less, and is 70% in the embodiment.
  • the control unit 40 calculates the STFT image of the vibration data of the rolling bearing in which the grease having an oil separation rate of oil separation level 1 is enclosed as a measurement corresponding to oil separation level 1, and the process proceeds to S13.
  • the oil separation rate of oil separation level 1 is set as the oil separation rate of the grease, which is deteriorated due to the grease but the need for replacement is low because the lubrication life is maintained to some extent.
  • the ratio of the oil separation rate of oil separation level 1 to the oil separation rate of oil separation level 2 is, for example, a value of 40% or more and 60% or less. In the embodiment, the oil separation rate at oil separation level 1 is 30%.
  • Oil separation level 0 grease is normal grease.
  • a normal grease is a grease that hardly undergoes deterioration, for example, after the operation of a rolling bearing filled with unused grease, grease with an oil separation rate below the standard value, or unused grease is started. Grease within the threshold time.
  • the grease of oil separation level 0 is used as the grease within 5 hours after the start of operation of the rolling bearing in which the unused grease is sealed.
  • control unit 40 machine-learns the STFT image of each grease of oil separation levels 0 to 2 to create a classifier, and advances the process to S15.
  • the classifier calculates the matching rate of a certain STFT image with that of each oil separation level.
  • control unit 40 associates the STFT images of oil separation levels 0 to 2 with operation times L0 to L2 and stores them in storage unit 50, and ends the processing.
  • the grease having the oil separation level 0 is a normal grease, so in the embodiment, the operating time L0 is set to 0.
  • the operation time L1 is the operation time of the rolling bearing until the oil separation rate of the normal grease reaches the oil separation rate of oil separation level 1.
  • the operating time L2 is the operating time of the rolling bearing until the oil separation rate of the normal grease reaches the oil separation rate of oil separation level 2.
  • the operating time L1 may be the operating time when the rolling bearing is actually operated until the oil separation rate of unused grease reaches the oil separation rate of oil separation level 1, or the relationship between the operating time and the oil separation rate It may be the operating time obtained from The same applies to the operating time L2.
  • the operating time L1 is 1000 hours
  • the operating time L2 is 2000 hours.
  • S11 to S13 may be performed before S14, and need not be performed in the order shown in FIG. Also, S11 to S13 may be performed not simultaneously but concurrently.
  • FIG. 5 is a diagram showing together (a) vibration data (acceleration data) of oil separation level 2 (oil separation rate 70%) and (b) STFT image.
  • FIG. 6 is a diagram showing a time chart of (a) vibration data (acceleration data) of oil separation level 1 (oil separation rate 30%) and (b) STFT image together.
  • FIG. 7 is a diagram showing together a normal (a) time chart of vibration data (acceleration data) and a (b) STFT image.
  • the vibration data shown in FIGS. 5 to 7 is data obtained by measuring the vibration acceleration of an NTA angular contact ball bearing 7216 operating at a rotational speed of 1500 min ⁇ 1 at a sampling speed of 50 kHz. In the measurement of the vibration data shown in FIGS. 5 to 7, the radial load and the axial load are both 1.3 kN, and the temperature is 150.degree.
  • FIG. 5A to FIG. 5B are calculated.
  • FIG. 6A to FIG. 6B are calculated.
  • FIG. 7A to FIG. 7B are calculated.
  • S14 of FIG. 4 the machine learning of FIG. 5 (b), FIG. 6 (b) and FIG. 7 (b) is performed.
  • the greases of oil separation levels 1 and 2 may be greases obtained by actually operating the rolling bearings to be monitored, or greases having an artificially adjusted oil separation ratio OS.
  • a method of artificially adjusting the oil separation rate OS of grease for example, a method of removing oil separated by a centrifugal separator from grease using the following formula (1), or heating grease by a thermostat or the like A method of evaporating the oil or separating the oil.
  • T0 is a thickener amount (%) of unused grease
  • T1 is a thickener amount (%) of grease to be adjusted.
  • the amount of thickener is measured by diluting the weighed grease with petroleum benzine, separating it with a centrifugal separator, removing the supernatant oil and petroleum benzine several times, The weight of the thickener may be measured to determine the proportion of the weight of thickener to the weight of grease.
  • the enclosed amount G1 can be determined, for example, from the following equation (2).
  • G0 is the enclosed amount (initial enclosed amount) of the grease enclosed at the time of the driving
  • the enclosed amounts G0 and G1 in the equation (2) are ratios of the volume of the enclosed grease to the total volume inside the rolling bearing in which the grease is enclosed. In the embodiment, the initial enclosed amount G0 is 27%.
  • FIG. 8 is a flowchart specifically showing the flow of the process (S2 in FIG. 3) performed in the monitoring period. The process shown in FIG. 8 is executed at each sampling time by a main routine (not shown).
  • the control unit 40 calculates an STFT image of the vibration data (measurement data) measured at the sampling time in S21, and advances the process to S22.
  • the control unit 40 uses the classifier created in the learning period to calculate the relevance factors P0 to P2 between the STFT image of measurement data and each of three machine-learned STFT images, and advances the process to step S23.
  • the matching rate P0 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 0.
  • the matching rate P1 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 1.
  • the matching rate P2 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 2.
  • the sum of the relevance factors P0 to P2 is one.
  • control unit 40 calculates the remaining life ⁇ L until the oil separation rate of the grease becomes the oil separation rate of oil separation level 2 using the following equation (3), and returns the process to the main routine.
  • control unit 40 If remaining life ⁇ L is smaller than the threshold, control unit 40 notifies the user of, for example, a message prompting replacement of grease.
  • FIG. 9 is a time chart of the matching rate of the STFT image of vibration data measured during monitoring and the STFT image of each oil separation level.
  • a curve C0 shows a time change of the matching rate P0 of the STFT image of vibration data measured during monitoring and the STFT image of oil separation level 0.
  • the curve C1 shows the time change of the matching rate P1 of the STFT image of the vibration data measured during monitoring and the STFT image of oil separation level 1.
  • a curve C2 shows the time change of the matching rate P2 of the STFT image of vibration data measured during monitoring and the STFT image of oil separation level 2.
  • the operating time L10 (0 ⁇ L10 ⁇ 500) is closest to the operating time L0 (0) associated with the oil separation level 0, and is then associated with the oil separation level 1 It is close to operating time L1 (1000).
  • the actual state of the grease at the operation time L10 is closest to the state of the oil separation level 0 grease and next to the state of the oil separation level 1 grease.
  • the values of the fitness factors P0 to P2 at the operating time L10 are 0.9, 0.1, and 0, respectively. From the magnitude relationship P0> P1> P2 of the fitness ratio P0 to P2, it is assumed that the state of the grease at the operating time L10 is closest to the state of the oil separation level 0 grease and next to the state of the oil separation level 1 grease It can be estimated.
  • the actual condition of the grease in the operating time L10 is reflected in the adaptation rates P0 to P2 of the operating time L10.
  • the operating time L20 (1000 ⁇ L20 ⁇ 1500) is closest to the operating time L1, and next to the operating time L2 (2000) associated with the oil separation level 2.
  • the actual state of the grease at the operation time L20 is closest to the state of the oil separation level 1 grease and next to the state of the oil separation level 2 grease.
  • the values of the fitness factors P0 to P2 at the operating time L20 are 0, 0.9, and 0.1, respectively. From the magnitude relationship P1> P2> P0 of the fitness ratio P0 to P2, the state of the grease at the operating time L20 is closest to the state of the oil separation level 1 grease and next to the state of the oil separation level 2 grease It can be estimated.
  • the actual condition of the grease at the operating time L20 is reflected in the adaptation rates P0 to P2 of the operating time L20.
  • the operating time L30 (1500 ⁇ L30 ⁇ 2000) is closest to the operating time L2, and is next closest to the operating time L1.
  • the actual state of the grease at the operation time L30 is closest to the state of the oil separation level 2 grease and next to the state of the oil separation level 1 grease.
  • the values of the fitness factors P0 to P2 at the operating time L30 are 0, 0.1, and 0.9, respectively. According to the relationship P2> P1> P0 of the fitness ratio P0 to P2, the state of the grease at the operating time L30 is closest to the state of the oil separation level 2 grease and next to the state of the oil separation level 1 grease It can be estimated.
  • the actual condition of the grease in the operating time L30 is reflected in the adaptation rates P0 to P2 of the operating time L30.
  • FIG. 10 is a view showing the relationship between the operation time of the rolling bearing and the remaining life estimated by the condition monitoring device according to the embodiment. As shown in FIG. 10, the remaining life corresponding to the state of the grease which is deteriorated with the increase of the operation time is estimated.
  • the inner ring is a rotating ring and the outer ring is a stationary ring has been described.
  • the inner ring may be a stationary ring and the outer ring may be a rotating ring.
  • the oil separation rate is divided into three levels, and the case where the STFT image of each level is machine-learned in the learning period has been described.
  • the oil separation rate may be divided into four or more levels.
  • the feature amount of the vibration data may be other than the STFT image, and may be, for example, an effective value, a maximum value, a crest factor, a kurtosis, and a skewness.
  • the remaining life of the grease sealed in the rolling bearing can be estimated by using the classifier created by machine learning of the feature amount of the vibration data.

Abstract

The present invention estimates the remaining service life of grease sealed in a rolling bearing. A rolling bearing state monitoring method according to the present invention includes a step for producing a classifier by machine learning, and a step for monitoring the condition of rolling bearings. The step for producing a classifier includes steps (S11-S13) for calculating a feature amount for first through third vibration data, and a step (S14) for producing a classifier by machine learning of the feature amounts of the first through third vibration data. The first vibration data is vibration data of a rolling bearing in which grease having a first oil separation rate is sealed. The second vibration data is vibration data of a rolling bearing in which grease having a second oil separation rate, which is lower than the first oil separation rate, is sealed. The third vibration data is vibration data of a rolling bearing in which normal grease is sealed. The monitoring step includes a step for using the classifier to calculate the remaining service life until the oil separation rate of the grease reaches the first oil separation rate.

Description

転がり軸受の状態監視方法および状態監視装置Method and apparatus for monitoring state of rolling bearing
 この発明は、転がり軸受の状態監視方法および状態監視装置に関する。 The present invention relates to a method and a device for monitoring the state of a rolling bearing.
 従来、転がり軸受の状態監視方法が知られている。たとえば特開2004-347401号公報(特許文献1)には、周波数スペクトルにおいて回転速度比例成分等のピークを持たないバックグラウンドノイズ成分を用いることにより、簡素な構成で効率的に精度良く転がり軸受の異常の有無を判断することができる転がり軸受の診断方法が開示されている。 Conventionally, a method of monitoring the state of a rolling bearing is known. For example, Japanese Patent Application Laid-Open No. 2004-347401 (Patent Document 1) discloses a rolling bearing having a simple configuration efficiently and accurately by using a background noise component having no peak such as a rotational speed proportional component in a frequency spectrum. A diagnostic method of a rolling bearing capable of determining the presence or absence of an abnormality is disclosed.
特開2004-347401号公報Unexamined-Japanese-Patent No. 2004-347401
 特開2004-347401号公報(特許文献1)には、転がり軸受の振動データの周波数スペクトルが閾値を超えたときに、転がり軸受に封入されたグリースが劣化したと判断する構成が開示されている。 Japanese Patent Laid-Open No. 2004-347401 (Patent Document 1) discloses a configuration in which it is determined that the grease sealed in the rolling bearing has deteriorated when the frequency spectrum of the vibration data of the rolling bearing exceeds a threshold. .
 グリースの交換時期を適切に判断するためには、劣化度合いに応じたグリースの余寿命を推定する必要がある。しかし、特開2004-347401号公報(特許文献1)においては、劣化度合いに応じたグリースの余寿命の推定については考慮されていない。 In order to properly determine the grease replacement time, it is necessary to estimate the remaining life of the grease according to the degree of deterioration. However, in Japanese Patent Application Laid-Open No. 2004-347401 (Patent Document 1), the estimation of the remaining life of the grease according to the degree of deterioration is not taken into consideration.
 本発明は上記のような課題を解決するためになされたものであり、その目的は、転がり軸受に封入されたグリースの余寿命を推定することである。 The present invention has been made to solve the above-mentioned problems, and its object is to estimate the remaining life of the grease sealed in the rolling bearing.
 本発明に係る転がり軸受の状態監視方法は、機械学習によって分類器を作成するステップと、転がり軸受の状態を監視するステップとを含む。分類器を作成するステップは、第1~第3振動データの特徴量を算出するステップと、第1~第3振動データの特徴量を機械学習して分類器を作成するステップとを含む。第1振動データは、第1油分離率のグリースが封入された転がり軸受の振動データである。第2振動データは、第1油分離率より小さい第2油分離率のグリースが封入された転がり軸受の振動データである。第3振動データは、正常なグリースが封入された転がり軸受の振動データである。正常なグリースの油分離率が第1油分離率となるまでの転がり軸受の運転時間は、第1運転時間である。正常なグリースの油分離率が第2油分離率となるまでの転がり軸受の運転時間は、第1運転時間よりも短い第2運転時間である。状態を監視するステップは、第4振動データの特徴量を算出するステップと、第1~第3適合率を算出するステップと、転がり軸受に封入されたグリースの余寿命を算出するステップとを含む。第4振動データは、監視中に測定された転がり軸受の振動データである。第1~第3適合率は、分類器によって算出される。第1~第3適合率は、第4振動データの特徴量と、第1~第3振動データの特徴量それぞれとの適合率である。転がり軸受に封入されたグリースの余寿命は、第1および第2運転時間と、第1~第3適合率とを用いて算出される。当該余寿命は、転がり軸受に封入されたグリースの油分離率が第1油分離率となるまでの転がり軸受の運転時間である。 The rolling bearing state monitoring method according to the present invention includes the steps of creating a classifier by machine learning and monitoring the rolling bearing state. The step of creating a classifier includes the steps of calculating feature quantities of the first to third vibration data, and machine learning of the feature quantities of the first to third vibration data to create a classifier. The first vibration data is vibration data of the rolling bearing in which the first oil separation rate grease is enclosed. The second vibration data is vibration data of a rolling bearing in which a grease having a second oil separation rate smaller than the first oil separation rate is sealed. The third vibration data is vibration data of a rolling bearing in which normal grease is sealed. The operation time of the rolling bearing until the oil separation rate of the normal grease becomes the first oil separation rate is the first operation time. The operation time of the rolling bearing until the oil separation rate of the normal grease becomes the second oil separation rate is a second operation time which is shorter than the first operation time. The step of monitoring the state includes the steps of calculating the feature quantity of the fourth vibration data, calculating the first to third fitness factors, and calculating the remaining life of the grease sealed in the rolling bearing. . The fourth vibration data is vibration data of the rolling bearing measured during monitoring. The first to third relevance factors are calculated by the classifier. The first to third adaptation rates are adaptation rates between the feature quantities of the fourth vibration data and the feature quantities of the first to third oscillation data. The remaining life of the grease sealed in the rolling bearing is calculated using the first and second operation times and the first to third fitness factors. The remaining life is the operating time of the rolling bearing until the oil separation rate of the grease sealed in the rolling bearing becomes the first oil separation rate.
 本発明に係る転がり軸受の状態監視方法によれば、振動データの特徴量の機械学習によって作成された分類器を用いることにより、転がり軸受に封入されたグリースの余寿命を推定することができる。 According to the method of monitoring the state of a rolling bearing according to the present invention, it is possible to estimate the remaining life of the grease sealed in the rolling bearing by using the classifier created by machine learning of the feature amount of the vibration data.
実施の形態に係る状態監視装置および状態監視装置によって監視される転がり軸受の断面図を併せて示す図である。It is a figure which shows collectively the sectional view of the rolling bearing monitored by the state monitoring apparatus which concerns on embodiment, and a state monitoring apparatus. 図1の状態監視装置の機能ブロック図である。It is a functional block diagram of the state monitoring apparatus of FIG. 制御部によって行なわれるグリースの余寿命の推定処理の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the estimation process of the remaining life of the grease performed by a control part. 学習期間に行なわれる処理の流れを具体的に示すフローチャートである。It is a flowchart which shows concretely the flow of the process performed in a learning period. 油分離レベル2(油分離率70%)の(a)振動データ(加速度データ)、および(b)STFT画像を併せて示す図である。It is a figure which shows together (a) vibration data (acceleration data) of oil separation level 2 (oil separation rate 70%), and (b) STFT image. 油分離レベル1(油分離率30%)の(a)振動データ(加速度データ)のタイムチャート、および(b)STFT画像を併せて示す図である。It is a figure which shows together the time chart of (a) vibration data (acceleration data) of oil separation level 1 (oil separation rate 30%), and (b) STFT image. 正常な(a)振動データ(加速度データ)のタイムチャート、および(b)STFT画像を併せて示す図である。It is a figure which shows the time chart of normal (a) vibration data (acceleration data), and the (b) STFT image collectively. 監視期間に行なわれる処理の流れを具体的に示すフローチャートである。It is a flowchart which shows concretely the flow of the process performed in a monitoring period. 監視中に測定された振動データのSTFT画像と各油分離レベルのSTFT画像との適合率のタイムチャートである。It is a time chart of the matching rate of the STFT image of vibration data measured during monitoring, and the STFT image of each oil separation level. 転がり軸受の運転時間と実施の形態に係る状態監視装置によって推定された余寿命との関係を示す図である。It is a figure which shows the relationship between the driving | running time of a rolling bearing, and the remaining life estimated by the state monitoring apparatus which concerns on embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
 図1は、実施の形態に係る状態監視装置1および状態監視装置1によって監視される転がり軸受10の断面図を併せて示す図である。図1に示されるように、転がり軸受10は、内輪12と、外輪14と、保持器16と、複数の転動体18とを含む。転がり軸受10は、たとえば、自動調芯ころ軸受、円すいころ軸受、円筒ころ軸受、および玉軸受などを含む。転がり軸受10は、単列のものでも複列のものでもよい。 FIG. 1 is a view showing a cross-sectional view of a state monitoring device 1 and a rolling bearing 10 monitored by the state monitoring device 1 according to the embodiment. As shown in FIG. 1, the rolling bearing 10 includes an inner ring 12, an outer ring 14, a cage 16, and a plurality of rolling elements 18. Rolling bearing 10 includes, for example, self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings, and ball bearings. The rolling bearing 10 may be a single row or multiple rows.
 内輪12は、主軸11にはめ込まれて固定され、主軸11と一体となって矢印Dの方向に回転する回転輪である。外輪14は、内輪12の外周側に配置されている静止輪である。 The inner ring 12 is a rotating ring which is fitted and fixed to the main shaft 11 and rotates integrally with the main shaft 11 in the direction of the arrow D. The outer ring 14 is a stationary ring disposed on the outer peripheral side of the inner ring 12.
 保持器16には、複数の転動体18を保持するための複数のポケットが等間隔に設けられている。保持器16は、複数の転動体18を保持した状態で内輪12の外周面と外輪14の内周面との間に配置される。内輪12の回転に伴って転動体18が外輪14の内周面(軌道面)に沿って回転すると、保持器16は複数の転動体18とともに内輪12の外周面と外輪14の内周面との間を回転する。 The holder 16 is provided with a plurality of pockets for holding a plurality of rolling elements 18 at equal intervals. The cage 16 is disposed between the outer peripheral surface of the inner ring 12 and the inner peripheral surface of the outer ring 14 while holding the plurality of rolling elements 18. When the rolling element 18 rotates along the inner circumferential surface (track surface) of the outer ring 14 along with the rotation of the inner ring 12, the cage 16 together with the plurality of rolling elements 18 and the outer circumferential surface of the inner ring 12 and the inner circumferential surface of the outer ring 14 Rotate between
 転がり軸受10の内部には、金属である構成要素(たとえば内輪12、外輪14、保持器16、および転動体18)の周囲に油膜を形成して、金属同士の接触を抑制するために、グリースGrcが封入されている。 In order to form an oil film around metal components (for example, the inner ring 12, the outer ring 14, the cage 16, and the rolling elements 18) inside the rolling bearing 10, grease is used to inhibit metal-to-metal contact. Grc is enclosed.
 状態監視装置1は、振動センサによって転がり軸受10の物理量を測定して、転がり軸受の状態を監視する。振動センサによって測定される転がり軸受10の物理量としては、たとえば、加速度、速度、変位、音、AE(Acoustic Emission)、および電力を挙げることができる。 The state monitoring device 1 monitors the state of the rolling bearing by measuring the physical quantity of the rolling bearing 10 by the vibration sensor. Examples of physical quantities of the rolling bearing 10 measured by the vibration sensor include acceleration, velocity, displacement, sound, AE (Acoustic Emission), and power.
 転がり軸受10の運転時間の増加に伴い、グリースGrcが劣化してグリースGrcの油分離率が増加する。グリースGrcの油分離率が増加すると、転動体18等の周囲に十分な油膜を形成することが困難になり、転がり軸受10の内部で金属同士の接触が生じ易くなる。金属同士の接触による摩擦熱によって金属同士が溶着すると、転がり軸受10の回転が困難になる。 As the operating time of the rolling bearing 10 increases, the grease Grc deteriorates and the oil separation rate of the grease Grc increases. When the oil separation ratio of the grease Grc increases, it becomes difficult to form a sufficient oil film around the rolling elements 18 and the like, and metal-to-metal contact is likely to occur inside the rolling bearing 10. If the metals are welded together by the frictional heat due to the contact between the metals, the rotation of the rolling bearing 10 becomes difficult.
 グリースGrcの劣化に伴う転がり軸受10の寿命(潤滑寿命)は、複数の転動体18によって軌道面に形成された損傷(転動疲労)による転がり軸受10の寿命よりも短い。転がり軸受10をできるだけ長期間使用するためには、残されている潤滑寿命(余寿命)がどの程度であるかを推定し、グリースGrcを適切な時期に交換する必要がある。 The life (lubrication life) of the rolling bearing 10 due to the deterioration of the grease Grc is shorter than the life of the rolling bearing 10 due to damage (rolling fatigue) formed on the raceway surface by the plurality of rolling elements 18. In order to use the rolling bearing 10 for as long as possible, it is necessary to estimate what the remaining lubrication life (remaining life) is and to replace the grease Grc at an appropriate time.
 そこで、実施の形態においては、異なる油分離率のグリースが封入された転がり軸受の振動データの特徴量を機械学習することにより、或る特徴量と、機械学習した複数の特徴量との適合率をそれぞれ算出する分類器を作成する。当該分類器を用いることにより、転がり軸受に封入されたグリースの余寿命を推定することができる。 Therefore, in the embodiment, the matching rate between a certain feature amount and a plurality of machine-learned feature amounts by machine learning the feature amounts of the vibration data of a rolling bearing in which greases having different oil separation rates are enclosed. Create a classifier that calculates By using the classifier, the remaining life of the grease sealed in the rolling bearing can be estimated.
 図2は、図1の状態監視装置1の機能ブロック図である。図2に示されるように、状態監視装置1は、振動センサ20と、制御部40と、記憶部50とを含む。振動センサ20は、転がり軸受10の振動データを測定し、制御部40に出力する。 FIG. 2 is a functional block diagram of the state monitoring device 1 of FIG. As shown in FIG. 2, the state monitoring device 1 includes a vibration sensor 20, a control unit 40, and a storage unit 50. The vibration sensor 20 measures vibration data of the rolling bearing 10 and outputs it to the control unit 40.
 制御部40は、学習期間において、異なる油分離率のグリースが封入された転がり軸受10の振動データの特徴量を機械学習し、分類器を作成する。分類器は、或る特徴量と機械学習した各特徴量との適合率を算出する。分類器としては、たとえばサポートベクターマシン、ニューラルネットワーク、ナイーブベイズ、および決定木を挙げることができる。実施の形態においては分類器としてニューラルネットワークを用いる。制御部40は、監視期間において、サンプリング時刻において測定された振動データの特徴量を算出し、学習期間において作成した分類器を用いてグリースGrcの余寿命を算出する。制御部40は、CPU(Central Processing Unit)のようなコンピュータを含む。 In the learning period, the control unit 40 machine-learns feature amounts of vibration data of the rolling bearing 10 in which greases having different oil separation rates are sealed, and creates a classifier. The classifier calculates the matching rate between a certain feature amount and each feature amount that has been machine-learned. Classifiers can include, for example, support vector machines, neural networks, naive Bayes, and decision trees. In the embodiment, a neural network is used as a classifier. The control unit 40 calculates the feature quantity of the vibration data measured at the sampling time in the monitoring period, and calculates the remaining life of the grease Grc using the classifier created in the learning period. The control unit 40 includes a computer such as a central processing unit (CPU).
 記憶部50には、たとえば、振動データ、当該振動データから算出される特徴量、および機械学習によって作成される分類器が保存される。 The storage unit 50 stores, for example, vibration data, feature quantities calculated from the vibration data, and a classifier created by machine learning.
 図3は、制御部40によって行なわれるグリースの余寿命の推定処理の概要を示すフローチャートである。以下ではステップを単にSと記載する。図3に示されるように、制御部40は、S1において分類器を作成する。S1は、学習期間において行なわれる処理である。制御部40は、S2において分類器を用いてグリースの余寿命を算出する。S2は、監視期間において行なわれる処理である。機械学習によって作成された分類器が監視期間の開始時に作成されていればよく、学習期間と監視期間とは連続していなくてもよい。 FIG. 3 is a flowchart showing an outline of the process of estimating the remaining life of grease performed by the control unit 40. Hereinafter, the step is simply described as S. As shown in FIG. 3, the control unit 40 creates a classifier at S1. S1 is a process performed in the learning period. The control unit 40 calculates the remaining life of the grease using a classifier at S2. S2 is a process performed in the monitoring period. The classifier created by machine learning may be created at the start of the monitoring period, and the learning period and the monitoring period may not be continuous.
 図4は、学習期間に行なわれる処理(図3のS1)の流れを具体的に示すフローチャートである。なお、転がり軸受10が運転を開始してからしばらくの間は、転がり軸受10の挙動が安定しない。そのため、学習期間においては、転がり軸受10の運転を開始してから慣らし運転期間(たとえば5日間)を経過し、転がり軸受10の挙動が安定した状態で一定期間(たとえば1ヶ月間)測定された振動データが用いられることが望ましい。 FIG. 4 is a flowchart specifically showing the flow of processing (S1 in FIG. 3) performed in the learning period. The behavior of the rolling bearing 10 is not stable for a while after the rolling bearing 10 starts operation. Therefore, in the learning period, a break-in operation period (for example, 5 days) has elapsed since the operation of the rolling bearing 10 was started, and measurement is performed for a fixed period (for example, 1 month) with the behavior of the rolling bearing 10 stabilized. It is desirable that vibration data be used.
 図4に示されるように、制御部40は、S11において油分離率が油分離レベル2のグリースが封入された転がり軸受の振動データの短時間フーリエ変換(STFT:Short Time Fourier Transform)画像を、油分離レベル2に対応する特徴量として算出し、処理をS12へ進める。油分離レベル2の油分離率は、潤滑寿命がほとんど尽きており交換の必要性が高いグリースの油分離率として設定される。油分離レベル2の油分離率は、たとえば50%以上80%以下の値であり、実施の形態では70%とする。 As shown in FIG. 4, the control unit 40 generates a short time Fourier transform (STFT) image of the vibration data of the rolling bearing in which the grease having the oil separation rate of oil separation level 2 is enclosed in S11, The feature amount corresponding to the oil separation level 2 is calculated, and the process proceeds to S12. The oil separation rate of oil separation level 2 is set as the oil separation rate of the grease which has almost exhausted the lubrication life and needs to be replaced. The oil separation rate at oil separation level 2 is, for example, 50% or more and 80% or less, and is 70% in the embodiment.
 制御部40は、S12において、油分離率が油分離レベル1であるグリースが封入された転がり軸受の振動データのSTFT画像を、油分離レベル1に対応する徴量として算出し、処理をS13へ進める。油分離レベル1の油分離率は、グリースの劣化は生じているが潤滑寿命がある程度残されているため交換の必要性は低いグリースの油分離率として設定される。油分離レベル2の油分離率に対する油分離レベル1の油分離率の割合はたとえば40%以上60%以下の値である。実施の形態において油分離レベル1の油分離率は、30%である。 In S12, the control unit 40 calculates the STFT image of the vibration data of the rolling bearing in which the grease having an oil separation rate of oil separation level 1 is enclosed as a measurement corresponding to oil separation level 1, and the process proceeds to S13. Advance. The oil separation rate of oil separation level 1 is set as the oil separation rate of the grease, which is deteriorated due to the grease but the need for replacement is low because the lubrication life is maintained to some extent. The ratio of the oil separation rate of oil separation level 1 to the oil separation rate of oil separation level 2 is, for example, a value of 40% or more and 60% or less. In the embodiment, the oil separation rate at oil separation level 1 is 30%.
 制御部40は、S13において、油分離レベル0のグリースが封入された転がり軸受の振動データのSTFT画像を、油分離レベル0に対応する特徴量として算出し、処理をS14に進める。油分離レベル0のグリースとは、正常なグリースである。正常なグリースとは、劣化がほとんど生じていないグリースであり、たとえば未使用のグリース、油分離率が基準値以下のグリース、あるいは未使用のグリースが封入された転がり軸受の運転が開始されてから閾値時間以内のグリースである。実施の形態においては、油分離レベル0のグリースを、未使用のグリースが封入された転がり軸受の運転が開始されてから5時間以内のグリースとする。 In S13, the control unit 40 calculates the STFT image of the vibration data of the rolling bearing in which the oil separation level 0 grease is enclosed as a feature corresponding to the oil separation level 0, and advances the process to S14. Oil separation level 0 grease is normal grease. A normal grease is a grease that hardly undergoes deterioration, for example, after the operation of a rolling bearing filled with unused grease, grease with an oil separation rate below the standard value, or unused grease is started. Grease within the threshold time. In the embodiment, the grease of oil separation level 0 is used as the grease within 5 hours after the start of operation of the rolling bearing in which the unused grease is sealed.
 制御部40は、S14において、油分離レベル0~2の各グリースのSTFT画像を機械学習して分類器を作成し、処理をS15に進める。分類器は、或るSTFT画像と、各油分離レベルのSTFT画像との適合率を算出する。 In S14, the control unit 40 machine-learns the STFT image of each grease of oil separation levels 0 to 2 to create a classifier, and advances the process to S15. The classifier calculates the matching rate of a certain STFT image with that of each oil separation level.
 制御部40は、S15において、油分離レベル0~2のSTFT画像と運転時間L0~L2とをそれぞれ関連付けて記憶部50に保存し、処理を終了する。油分離レベル0のグリースは正常なグリースであるため、実施の形態においては、運転時間L0を0とする。運転時間L1は、正常なグリースの油分離率が油分離レベル1の油分離率になるまでの転がり軸受の運転時間である。運転時間L2は、正常なグリースの油分離率が油分離レベル2の油分離率になるまでの転がり軸受の運転時間である。運転時間L1は、未使用のグリースの油分離率が油分離レベル1の油分離率になるまで転がり軸受を実際に運転した場合の運転時間でもよいし、運転時間と油分離率との関係式から求められた運転時間でもよい。運転時間L2についても同様である。実施の形態においては、運転時間L1を1000時間とし、運転時間L2を2000時間とする。 At S15, control unit 40 associates the STFT images of oil separation levels 0 to 2 with operation times L0 to L2 and stores them in storage unit 50, and ends the processing. The grease having the oil separation level 0 is a normal grease, so in the embodiment, the operating time L0 is set to 0. The operation time L1 is the operation time of the rolling bearing until the oil separation rate of the normal grease reaches the oil separation rate of oil separation level 1. The operating time L2 is the operating time of the rolling bearing until the oil separation rate of the normal grease reaches the oil separation rate of oil separation level 2. The operating time L1 may be the operating time when the rolling bearing is actually operated until the oil separation rate of unused grease reaches the oil separation rate of oil separation level 1, or the relationship between the operating time and the oil separation rate It may be the operating time obtained from The same applies to the operating time L2. In the embodiment, the operating time L1 is 1000 hours, and the operating time L2 is 2000 hours.
 S11~S13は、S14より前に実行されていればよく、図4に示される順序で行なわれる必要はない。また、S11~S13は、遂次的ではなく同時並行的に行なわれても良い。 S11 to S13 may be performed before S14, and need not be performed in the order shown in FIG. Also, S11 to S13 may be performed not simultaneously but concurrently.
 図5は、油分離レベル2(油分離率70%)の(a)振動データ(加速度データ)、および(b)STFT画像を併せて示す図である。図6は、油分離レベル1(油分離率30%)の(a)振動データ(加速度データ)のタイムチャート、および(b)STFT画像を併せて示す図である。図7は、正常な(a)振動データ(加速度データ)のタイムチャート、および(b)STFT画像を併せて示す図である。図5~図7に示される振動データは、回転速度1500min-1で運転しているNTN社製のアンギュラ玉軸受7216の振動加速度がサンプリング速度50kHzで測定されたデータである。図5~図7に示される振動データの測定において、ラジアル負荷およびアキシアル負荷は共に1.3kNであり、温度は150℃である。 FIG. 5 is a diagram showing together (a) vibration data (acceleration data) of oil separation level 2 (oil separation rate 70%) and (b) STFT image. FIG. 6 is a diagram showing a time chart of (a) vibration data (acceleration data) of oil separation level 1 (oil separation rate 30%) and (b) STFT image together. FIG. 7 is a diagram showing together a normal (a) time chart of vibration data (acceleration data) and a (b) STFT image. The vibration data shown in FIGS. 5 to 7 is data obtained by measuring the vibration acceleration of an NTA angular contact ball bearing 7216 operating at a rotational speed of 1500 min −1 at a sampling speed of 50 kHz. In the measurement of the vibration data shown in FIGS. 5 to 7, the radial load and the axial load are both 1.3 kN, and the temperature is 150.degree.
 図4のS11においては、図5(a)から図5(b)が算出される。図4のS12においては、図6(a)から図6(b)が算出される。図4のS13においては、図7(a)から図7(b)が算出される。図4のS14においては、図5(b)、図6(b)、図7(b)が機械学習される。 In S11 of FIG. 4, FIG. 5A to FIG. 5B are calculated. In S12 of FIG. 4, FIG. 6A to FIG. 6B are calculated. In S13 of FIG. 4, FIG. 7A to FIG. 7B are calculated. In S14 of FIG. 4, the machine learning of FIG. 5 (b), FIG. 6 (b) and FIG. 7 (b) is performed.
 油分離レベル1および2の各グリースは、監視対象の転がり軸受を実際に運転することによって得られたグリースでもよいし、人工的に油分離率OSが調整されたグリースでもよい。グリースの油分離率OSを人工的に調整する方法としては、たとえば以下の式(1)を用いて、遠心分離器で分離した油をグリースから除去する方法、あるいは恒温槽などでグリースを加熱して油を蒸発あるいは油を分離させる方法を挙げることができる。式(1)において、T0は未使用グリースの増ちょう剤量(%)であり、T1は調整対象のグリースの増ちょう剤量(%)である。 The greases of oil separation levels 1 and 2 may be greases obtained by actually operating the rolling bearings to be monitored, or greases having an artificially adjusted oil separation ratio OS. As a method of artificially adjusting the oil separation rate OS of grease, for example, a method of removing oil separated by a centrifugal separator from grease using the following formula (1), or heating grease by a thermostat or the like A method of evaporating the oil or separating the oil. In Formula (1), T0 is a thickener amount (%) of unused grease, and T1 is a thickener amount (%) of grease to be adjusted.
 OS=(1-T0/T1)×100  …(1)
 増ちょう剤量の測定方法としては、重量を測定したグリースを石油ベンジンで希釈し、それを遠心分離器で分離させ、上澄みの油と石油ベンジンとを除去するという作業を数回繰り返して、残存した増ちょう剤の重量を測定し、増ちょう剤重量のグリース重量に占める割合を求めるという方法を挙げることができる。
OS = (1-T0 / T1) × 100 (1)
The amount of thickener is measured by diluting the weighed grease with petroleum benzine, separating it with a centrifugal separator, removing the supernatant oil and petroleum benzine several times, The weight of the thickener may be measured to determine the proportion of the weight of thickener to the weight of grease.
 図4のS11およびS12においては、設定された油分離率で油が分離することによる重量変化を想定した封入量G1のグリースが封入さえた転がり軸受の振動データが参照される。封入量G1は、たとえば以下の式(2)から求めることができる。式(2)において、G0は転がり軸受の運転開始時に封入されるグリースの封入量(初期封入量)である。式(2)における封入量G0およびG1は、グリースが封入される転がり軸受内部の全容積に対する封入されるグリースの容積の比である。実施の形態においては、初期封入量G0を27%とする。 In S11 and S12 of FIG. 4, the vibration data of the rolling bearing in which the grease of the enclosed amount G1 is enclosed assuming the weight change due to the oil separation at the set oil separation rate is referred to. The enclosed amount G1 can be determined, for example, from the following equation (2). In Formula (2), G0 is the enclosed amount (initial enclosed amount) of the grease enclosed at the time of the driving | operation start of a rolling bearing. The enclosed amounts G0 and G1 in the equation (2) are ratios of the volume of the enclosed grease to the total volume inside the rolling bearing in which the grease is enclosed. In the embodiment, the initial enclosed amount G0 is 27%.
 G1=G0×(100-OS)/100  …(2)
 図8は、監視期間に行なわれる処理(図3のS2)の流れを具体的に示すフローチャートである。図8に示される処理は、不図示のメインルーチンによって各サンプリング時刻に実行される。
G1 = G0 × (100−OS) / 100 (2)
FIG. 8 is a flowchart specifically showing the flow of the process (S2 in FIG. 3) performed in the monitoring period. The process shown in FIG. 8 is executed at each sampling time by a main routine (not shown).
 図8に示されるように、制御部40は、S21においてサンプリング時刻に測定された振動データ(測定データ)のSTFT画像を算出し、処理をS22に進める。制御部40は、S22において、学習期間に作成した分類器を用いて、測定データのSTFT画像と、機械学習した3つのSTFT画像それぞれとの適合率P0~P2を算出し、処理をS23へ進める。適合率P0は、測定データのSTFT画像と油分離レベル0のSTFT画像の適合率である。適合率P1は、測定データのSTFT画像と油分離レベル1のSTFT画像の適合率である。適合率P2は、測定データのSTFT画像と油分離レベル2のSTFT画像の適合率である。適合率P0~P2の総和は1である。 As shown in FIG. 8, the control unit 40 calculates an STFT image of the vibration data (measurement data) measured at the sampling time in S21, and advances the process to S22. In step S22, the control unit 40 uses the classifier created in the learning period to calculate the relevance factors P0 to P2 between the STFT image of measurement data and each of three machine-learned STFT images, and advances the process to step S23. . The matching rate P0 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 0. The matching rate P1 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 1. The matching rate P2 is a matching rate between the STFT image of the measurement data and the STFT image of oil separation level 2. The sum of the relevance factors P0 to P2 is one.
 制御部40は、S23において、以下の式(3)を用いて、グリースの油分離率が油分離レベル2の油分離率となるまでの余寿命ΔLを算出し、処理をメインルーチンに戻す。 In S23, the control unit 40 calculates the remaining life ΔL until the oil separation rate of the grease becomes the oil separation rate of oil separation level 2 using the following equation (3), and returns the process to the main routine.
 ΔL=L2-(L0×P0+L1×P1+L2×P2)  …(3)
 制御部40は、余寿命ΔLが、閾値よりも小さい場合には、たとえばグリースの交換を促すメッセージをユーザに報知する。
ΔL = L2− (L0 × P0 + L1 × P1 + L2 × P2) (3)
If remaining life ΔL is smaller than the threshold, control unit 40 notifies the user of, for example, a message prompting replacement of grease.
 以下では、実施の形態に係る状態監視装置を用いて、転がり軸受のグリースの余寿命を推定した実験の結果を示す。当該実験においては、NTN社製のアンギュラ玉軸受7216を回転速度1500min-1で運転させ、2時間毎に20秒間、サンプリング速度50kHzでアンギュラ玉軸受7216の振動加速度を測定した。ラジアル負荷およびアキシアル負荷は共に1.3kNとし、温度はヒータ加熱によって150℃とした。アンギュラ玉軸受7216の内部に封入されたグリースの油分離率は、運転時間が2000時間となった時点で70%であった。 Below, the result of the experiment which estimated the remaining life of the grease of a rolling bearing is shown using the state monitoring apparatus which concerns on embodiment. In the experiment, an angular contact ball bearing 7216 manufactured by NTN was operated at a rotational speed of 1500 min -1 , and vibrational acceleration of the angular contact ball bearing 7216 was measured at a sampling speed of 50 kHz for 20 seconds every two hours. Both radial load and axial load were 1.3 kN, and the temperature was 150 ° C. by heater heating. The oil separation rate of the grease enclosed inside the angular contact ball bearing 7216 was 70% when the operating time reached 2000 hours.
 図9は、監視中に測定された振動データのSTFT画像と各油分離レベルのSTFT画像との適合率のタイムチャートである。図9において、曲線C0は、監視中に測定された振動データのSTFT画像と油分離レベル0のSTFT画像との適合率P0の時間変化を示す。曲線C1は、監視中に測定された振動データのSTFT画像と油分離レベル1のSTFT画像との適合率P1の時間変化を示す。曲線C2は、監視中に測定された振動データのSTFT画像と油分離レベル2のSTFT画像との適合率P2の時間変化を示す。 FIG. 9 is a time chart of the matching rate of the STFT image of vibration data measured during monitoring and the STFT image of each oil separation level. In FIG. 9, a curve C0 shows a time change of the matching rate P0 of the STFT image of vibration data measured during monitoring and the STFT image of oil separation level 0. The curve C1 shows the time change of the matching rate P1 of the STFT image of the vibration data measured during monitoring and the STFT image of oil separation level 1. A curve C2 shows the time change of the matching rate P2 of the STFT image of vibration data measured during monitoring and the STFT image of oil separation level 2.
 図9に示されるように、運転時間L10(0<L10<500)は、油分離レベル0に対応付けられた運転時間L0(0)に最も近く、その次に油分離レベル1に対応付けられた運転時間L1(1000)に近い。運転時間L10におけるグリースの実際の状態は、油分離レベル0のグリースの状態に最も近く、その次に油分離レベル1のグリースの状態に近い。運転時間L10における適合率P0~P2の値は、それぞれ0.9、0.1、および0である。適合率P0~P2の大小関係P0>P1>P2から、運転時間L10におけるグリースの状態は、油分離レベル0のグリースの状態に最も近く、その次に油分離レベル1のグリースの状態に近いと推定することができる。運転時間L10の適合率P0~P2には、運転時間L10における実際のグリースの状態が反映されている。 As shown in FIG. 9, the operating time L10 (0 <L10 <500) is closest to the operating time L0 (0) associated with the oil separation level 0, and is then associated with the oil separation level 1 It is close to operating time L1 (1000). The actual state of the grease at the operation time L10 is closest to the state of the oil separation level 0 grease and next to the state of the oil separation level 1 grease. The values of the fitness factors P0 to P2 at the operating time L10 are 0.9, 0.1, and 0, respectively. From the magnitude relationship P0> P1> P2 of the fitness ratio P0 to P2, it is assumed that the state of the grease at the operating time L10 is closest to the state of the oil separation level 0 grease and next to the state of the oil separation level 1 grease It can be estimated. The actual condition of the grease in the operating time L10 is reflected in the adaptation rates P0 to P2 of the operating time L10.
 運転時間L20(1000<L20<1500)は、運転時間L1に最も近く、その次に油分離レベル2に対応付けられた運転時間L2(2000)に近い。運転時間L20におけるグリースの実際の状態は、油分離レベル1のグリースの状態に最も近く、その次に油分離レベル2のグリースの状態に近い。運転時間L20における適合率P0~P2の値は、それぞれ0、0.9、および0.1である。適合率P0~P2の大小関係P1>P2>P0から、運転時間L20におけるグリースの状態は、油分離レベル1のグリースの状態に最も近く、その次に油分離レベル2のグリースの状態に近いと推定することができる。運転時間L20の適合率P0~P2には、運転時間L20における実際のグリースの状態が反映されている。 The operating time L20 (1000 <L20 <1500) is closest to the operating time L1, and next to the operating time L2 (2000) associated with the oil separation level 2. The actual state of the grease at the operation time L20 is closest to the state of the oil separation level 1 grease and next to the state of the oil separation level 2 grease. The values of the fitness factors P0 to P2 at the operating time L20 are 0, 0.9, and 0.1, respectively. From the magnitude relationship P1> P2> P0 of the fitness ratio P0 to P2, the state of the grease at the operating time L20 is closest to the state of the oil separation level 1 grease and next to the state of the oil separation level 2 grease It can be estimated. The actual condition of the grease at the operating time L20 is reflected in the adaptation rates P0 to P2 of the operating time L20.
 運転時間L30(1500<L30<2000)は、運転時間L2に最も近く、その次に運転時間L1に近い。運転時間L30におけるグリースの実際の状態は、油分離レベル2のグリースの状態に最も近く、その次に油分離レベル1のグリースの状態に近い。運転時間L30における適合率P0~P2の値は、それぞれ0、0.1、および0.9である。適合率P0~P2の大小関係P2>P1>P0から、運転時間L30におけるグリースの状態は、油分離レベル2のグリースの状態に最も近く、その次に油分離レベル1のグリースの状態に近いと推定することができる。運転時間L30の適合率P0~P2には、運転時間L30における実際のグリースの状態が反映されている。 The operating time L30 (1500 <L30 <2000) is closest to the operating time L2, and is next closest to the operating time L1. The actual state of the grease at the operation time L30 is closest to the state of the oil separation level 2 grease and next to the state of the oil separation level 1 grease. The values of the fitness factors P0 to P2 at the operating time L30 are 0, 0.1, and 0.9, respectively. According to the relationship P2> P1> P0 of the fitness ratio P0 to P2, the state of the grease at the operating time L30 is closest to the state of the oil separation level 2 grease and next to the state of the oil separation level 1 grease It can be estimated. The actual condition of the grease in the operating time L30 is reflected in the adaptation rates P0 to P2 of the operating time L30.
 図10は、転がり軸受の運転時間と実施の形態に係る状態監視装置によって推定された余寿命との関係を示す図である。図10に示されるように、運転時間の増加に伴って劣化するグリースの状態に対応する余寿命が推定されている。 FIG. 10 is a view showing the relationship between the operation time of the rolling bearing and the remaining life estimated by the condition monitoring device according to the embodiment. As shown in FIG. 10, the remaining life corresponding to the state of the grease which is deteriorated with the increase of the operation time is estimated.
 実施の形態においては、内輪が回転輪であり、外輪が静止輪である場合について説明した。実施の形態に係る状態監視装置の監視対象となる転がり軸受は、内輪が静止輪であり、外輪が回転輪であってもよい。 In the embodiment, the case where the inner ring is a rotating ring and the outer ring is a stationary ring has been described. In the rolling bearing to be monitored by the state monitoring device according to the embodiment, the inner ring may be a stationary ring and the outer ring may be a rotating ring.
 実施の形態においては油分離率を3レベルに分けて、学習期間において各レベルのSTFT画像を機械学習する場合について説明した。油分離率は、4レベル以上に分けられてもよい。また、振動データの特徴量は、STFT画像以外でもよく、たとえば、実効値、最大値、波高率、尖度、および歪度であってもよい。 In the embodiment, the oil separation rate is divided into three levels, and the case where the STFT image of each level is machine-learned in the learning period has been described. The oil separation rate may be divided into four or more levels. Also, the feature amount of the vibration data may be other than the STFT image, and may be, for example, an effective value, a maximum value, a crest factor, a kurtosis, and a skewness.
 以上、実施の形態に係る状態監視装置によれば、振動データの特徴量の機械学習によって作成された分類器を用いることにより、転がり軸受に封入されたグリースの余寿命を推定することができる。 As described above, according to the state monitoring device according to the embodiment, the remaining life of the grease sealed in the rolling bearing can be estimated by using the classifier created by machine learning of the feature amount of the vibration data.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 1 状態監視装置、10 転がり軸受、11 主軸、12 内輪、14 外輪、16 保持器、18 転動体、20 振動センサ、40 制御部、50 記憶部、Grc グリース。 1 condition monitoring device, 10 rolling bearing, 11 spindle, 12 inner ring, 14 outer ring, 16 cage, 18 rolling element, 20 vibration sensor, 40 control unit, 50 storage unit, Grc grease.

Claims (7)

  1.  機械学習によって分類器を作成するステップと、
     転がり軸受の状態を監視するステップとを含み、
     前記分類器を作成するステップは、
     第1油分離率のグリースが封入された前記転がり軸受の第1振動データの特徴量を算出するステップと、
     前記第1油分離率より小さい第2油分離率のグリースが封入された前記転がり軸受の第2振動データの特徴量を算出するステップと、
     正常なグリースが封入された前記転がり軸受の第3振動データの特徴量を算出するステップと、
     前記第1~第3振動データの特徴量を機械学習して前記分類器を作成するステップとを含み、
     前記正常なグリースの油分離率が前記第1油分離率となるまでの前記転がり軸受の運転時間は、第1運転時間であり、
     前記正常なグリースの油分離率が前記第2油分離率となるまでの前記転がり軸受の運転時間は、前記第1運転時間よりも短い第2運転時間であり、
     前記状態を監視するステップは、
     監視中に測定された前記転がり軸受の第4振動データの特徴量を算出するステップと、
     前記分類器を用いて、前記第4振動データの特徴量と、前記第1~第3振動データの特徴量それぞれとの第1~第3適合率を算出するステップと、
     前記第1および第2運転時間と、前記第1~第3適合率とを用いて、前記転がり軸受に封入されたグリースの油分離率が前記第1油分離率となるまでの余寿命を算出するステップとを含む、転がり軸受の状態監視方法。
    Creating a classifier by machine learning;
    Monitoring the state of the rolling bearing,
    The step of creating the classifier comprises
    Calculating a feature amount of the first vibration data of the rolling bearing in which the first oil separation rate grease is enclosed;
    Calculating a feature amount of the second vibration data of the rolling bearing in which the grease having the second oil separation rate smaller than the first oil separation rate is enclosed;
    Calculating a feature amount of third vibration data of the rolling bearing in which normal grease is sealed;
    Machine learning the feature quantities of the first to third vibration data to create the classifier;
    The operation time of the rolling bearing until the oil separation rate of the normal grease becomes the first oil separation rate is a first operation time,
    The operation time of the rolling bearing until the oil separation rate of the normal grease becomes the second oil separation rate is a second operation time shorter than the first operation time,
    The step of monitoring the condition may
    Calculating a feature of the fourth vibration data of the rolling bearing measured during monitoring;
    Calculating, using the classifier, first to third fitness factors of the feature quantities of the fourth vibration data and the feature quantities of the first to third vibration data;
    The remaining life until the oil separation rate of the grease enclosed in the rolling bearing reaches the first oil separation rate is calculated using the first and second operation times and the first to third compatibility rates. And monitoring the state of the rolling bearing.
  2.  前記第1~第3適合率の総和は、1であり、
     前記余寿命を算出するステップは、前記第1および第2適合率と前記第1および第2運転時間とをそれぞれ乗じた値の総和を、前記第1運転時間から引いた値を、前記余寿命として算出する、請求項1に記載の転がり軸受の状態監視方法。
    The sum of the first to third precisions is 1,
    In the step of calculating the remaining life, the remaining life is obtained by subtracting the sum of the values obtained by multiplying the first and second adaptation rates by the first and second operating times, respectively, from the first operating time. The state monitoring method of the rolling bearing according to claim 1, which is calculated as
  3.  前記第1油分離率のグリースおよび前記第2油分離率のグリースは、人工的に調整されたグリースである、請求項1または2に記載の転がり軸受の状態監視方法。 The method of monitoring the condition of the rolling bearing according to claim 1 or 2, wherein the grease of the first oil separation rate and the grease of the second oil separation rate are artificially adjusted greases.
  4.  前記第1油分離率のグリースは、前記正常なグリースが封入された前記転がり軸受を前記第1運転時間だけ運転させることによって得られたグリースであり、
     前記第2油分離率のグリースは、前記正常なグリースが封入された前記転がり軸受を前記第2運転時間だけ運転させることによって得られたグリースである、請求項1または2に記載の転がり軸受の状態監視方法。
    The grease of the first oil separation rate is a grease obtained by operating the rolling bearing in which the normal grease is enclosed for the first operation time,
    The rolling bearing according to claim 1 or 2, wherein the grease having the second oil separation rate is a grease obtained by operating the rolling bearing in which the normal grease is enclosed for the second operation time. State monitoring method.
  5.  前記第1~第4振動データの特徴量は、前記第1~第4振動データを短時間フーリエ変換したデータをそれぞれ含む、請求項1~4のいずれか1項に記載の転がり軸受の状態監視方法。 The state monitoring of the rolling bearing according to any one of claims 1 to 4, wherein the feature amounts of the first to fourth vibration data respectively include data obtained by subjecting the first to fourth vibration data to short time Fourier transform. Method.
  6.  前記第1~第3振動データは、前記転がり軸受の運転が開始されてから慣らし運転期間経過後に測定された振動データである、請求項1~5のいずれか1項に記載の転がり軸受の状態監視方法。 The state of the rolling bearing according to any one of claims 1 to 5, wherein the first to third vibration data are vibration data measured after lapse of a break-in operation period after operation of the rolling bearing is started. How to monitor.
  7.  請求項1~6のいずれか1項に記載の転がり軸受の状態監視方法を用いて、前記転がり軸受の状態を監視する、状態監視装置。 A state monitoring device that monitors the state of the rolling bearing using the method of monitoring the state of the rolling bearing according to any one of claims 1 to 6.
PCT/JP2018/031517 2017-08-31 2018-08-27 Method and device for monitoring condition of rolling bearing WO2019044745A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017166823 2017-08-31
JP2017-166823 2017-08-31
JP2018-154048 2018-08-20
JP2018154048A JP6997051B2 (en) 2017-08-31 2018-08-20 Rolling bearing condition monitoring method and condition monitoring device

Publications (1)

Publication Number Publication Date
WO2019044745A1 true WO2019044745A1 (en) 2019-03-07

Family

ID=65525504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031517 WO2019044745A1 (en) 2017-08-31 2018-08-27 Method and device for monitoring condition of rolling bearing

Country Status (1)

Country Link
WO (1) WO2019044745A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477189A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Bearing trouble inspector
JP2005291738A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Method and apparatus for assessing remaining life of antifriction bearing
JP4605132B2 (en) * 2006-09-29 2011-01-05 パナソニック電工株式会社 Anomaly detection device and anomaly detection method
JP2015515002A (en) * 2012-04-24 2015-05-21 アクティエボラゲット・エスコーエッフ Bearing monitoring method and system
US20160313228A1 (en) * 2013-12-17 2016-10-27 Aktiebolaget Skf Viscosity estimation from demodulated acoustic emission
JP2018025450A (en) * 2016-08-09 2018-02-15 オークマ株式会社 Bearing diagnostic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477189A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Bearing trouble inspector
JP2005291738A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Method and apparatus for assessing remaining life of antifriction bearing
JP4605132B2 (en) * 2006-09-29 2011-01-05 パナソニック電工株式会社 Anomaly detection device and anomaly detection method
JP2015515002A (en) * 2012-04-24 2015-05-21 アクティエボラゲット・エスコーエッフ Bearing monitoring method and system
US20160313228A1 (en) * 2013-12-17 2016-10-27 Aktiebolaget Skf Viscosity estimation from demodulated acoustic emission
JP2018025450A (en) * 2016-08-09 2018-02-15 オークマ株式会社 Bearing diagnostic device

Similar Documents

Publication Publication Date Title
Han et al. Skidding behavior of cylindrical roller bearings under time-variable load conditions
JP5725833B2 (en) Rolling bearing abnormality diagnosis device, wind power generation device and abnormality diagnosis system
Radil et al. An experimental investigation into the temperature profile of a compliant foil air bearing
Selvaraj et al. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing
Choe et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part II: Effects of cage mass imbalance
JP2019045241A (en) State monitoring method and state monitoring device of rolling bearing
JP2017180819A (en) Bearing device
US20220252104A1 (en) System, apparatus, and method of determining condition of a bearing
Machado et al. Electromechanical modeling by DEM for assessing internal ball bearing loading
JP6997054B2 (en) Rolling bearing condition monitoring method and condition monitoring device
JP5990729B1 (en) General-purpose deterioration curve creation method and machine life prediction method, and general-purpose deterioration curve creation program and machine life prediction program
JP2017026020A (en) State monitoring apparatus of rolling bearing and state monitoring method of rolling bearing
JP2005351363A (en) Lubricant feeder
JP2019045487A (en) State monitoring method and state monitoring device of rolling bearing
WO2017013998A1 (en) Device for monitoring state of rolling bearing, and method for setting abnormality determination threshold value for rolling bearing
WO2019044745A1 (en) Method and device for monitoring condition of rolling bearing
US20190017899A1 (en) Method and measuring assembly for detecting slip in rolling bearings
WO2019044744A1 (en) State monitoring method and state monitoring device for rolling bearing
WO2021117752A1 (en) Rolling bearing state monitoring method and rolling bearing state monitoring device
EP3088790B1 (en) Method of bearing re-lubrication
WO2021009973A1 (en) Data collection device
US20220364955A1 (en) Remaining life prediction system, remaining life prediction device, and remaining life prediction program
Shetty et al. Vibrations and film thickness in grease-lubricated deep groove ball bearings
Jamadar et al. A new damage diagnostic approach for deep groove ball bearings having localized surface defects in the raceways
JP2020143947A (en) State monitoring device of rolling bearing and state monitoring method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849646

Country of ref document: EP

Kind code of ref document: A1