WO2019044496A1 - Method and device for monitoring state of rolling bearing - Google Patents
Method and device for monitoring state of rolling bearing Download PDFInfo
- Publication number
- WO2019044496A1 WO2019044496A1 PCT/JP2018/030301 JP2018030301W WO2019044496A1 WO 2019044496 A1 WO2019044496 A1 WO 2019044496A1 JP 2018030301 W JP2018030301 W JP 2018030301W WO 2019044496 A1 WO2019044496 A1 WO 2019044496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling bearing
- damage
- vibration data
- length
- state
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
Definitions
- the present invention relates to a method and a device for monitoring the state of a rolling bearing.
- Patent Document 1 discloses a rolling bearing having a simple configuration efficiently and accurately by using a background noise component having no peak such as a rotational speed proportional component in a frequency spectrum.
- a diagnostic method of a rolling bearing capable of determining the presence or absence of an abnormality is disclosed.
- Patent Document 1 discloses a configuration for detecting damage when periodical peaks occur in the frequency spectrum of vibration data of a rolling bearing.
- Patent Document 1 Japanese Patent Laid-Open No. 2004-347401
- the present invention has been made to solve the problems as described above, and its object is to estimate the remaining life of a rolling bearing according to the degree of damage.
- the rolling bearing state monitoring method includes the steps of creating a classifier by machine learning and monitoring the rolling bearing state.
- the rolling bearing includes a rotating wheel, a stationary wheel, and a plurality of rolling elements.
- the plurality of rolling elements are disposed between the rotating wheel and the stationary wheel, and move along the raceway surface of the stationary wheel as the rotating wheel rotates.
- the step of creating a classifier includes the steps of calculating a feature amount set of the first to third vibration data, and machine learning of the feature amount set of the feature amount set of the first to third vibration data to create a classifier.
- the first vibration data is vibration data of the rolling bearing in a state in which the damage of the first length is formed in the circumferential direction of the raceway surface.
- the second vibration data is vibration data of the rolling bearing in a state in which damage of a second length smaller than the first length is formed in the circumferential direction of the raceway surface.
- the third vibration data is vibration data of the rolling bearing when the raceway surface is normal.
- the number of times of loading until the first length of damage is formed in the circumferential direction of the raceway surface is the first number of times of loading.
- the number of times of loading until the second length of damage is formed in the circumferential direction of the raceway surface is the second number of times of loading less than the first number of times of loading.
- the step of monitoring the state includes the steps of calculating a feature amount set of the fourth vibration data, calculating the first to third precisions, and calculating the remaining life of the rolling bearing.
- the fourth vibration data is vibration data of the rolling bearing measured during monitoring.
- the first to third relevance factors are calculated by the classifier.
- the first to third adaptation rates are adaptation rates between the feature amount set of the fourth vibration data and the feature amount sets of the first to third oscillation data.
- the remaining life of the rolling bearing is calculated using the first and second number of loads and the first to third fitness factors. The remaining life is the number of remaining loads of the rolling bearing until the first length of damage is formed in the circumferential direction of the raceway surface.
- the state monitoring method of a rolling bearing it is possible to estimate the remaining life of the rolling bearing by using a classifier created by machine learning of a feature amount set of vibration data.
- FIG. 1 It is a figure which shows collectively the sectional view of the rolling bearing monitored by the state monitoring apparatus which concerns on embodiment, and a state monitoring apparatus. It is a functional block diagram of the state monitoring apparatus of FIG. It is a figure which shows the feature-value set calculated by the control part. It is a flowchart which shows the outline
- FIG. 1 is a view showing a cross-sectional view of a state monitoring device 1 and a rolling bearing 10 monitored by the state monitoring device 1 according to the embodiment.
- the rolling bearing 10 includes an inner ring 12, an outer ring 14, and a plurality of rolling elements 18.
- Rolling bearing 10 includes, for example, self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings, and ball bearings.
- the rolling bearing 10 may be a single row or multiple rows.
- the inner ring 12 is a stationary ring externally fitted to the non-rotating shaft 11.
- the outer ring 14 is a rotating ring provided on the outer peripheral side of the inner ring 12 and integrally rotating with a rotating body (not shown).
- Each of the plurality of rolling elements 18 is interposed between the inner ring 12 and the outer ring 14 while being held at equal intervals to the adjacent rolling elements 18 by a cage (not shown).
- the state monitoring device 1 monitors the state of the rolling bearing by measuring the physical quantity of the rolling bearing 10 by the vibration sensor.
- Examples of physical quantities of the rolling bearing 10 measured by the vibration sensor include acceleration, velocity, displacement, sound, AE (Acoustic Emission), and power.
- a load area that receives a radial load from the plurality of rolling elements 18 is formed on the upper side in the vertical direction (X-axis direction) of the outer peripheral surface (track surface) of the inner ring 12 which is a stationary wheel.
- the radial load is maximum at the center of the load area. Therefore, damage to the raceway surface often occurs first at the center of the load area.
- the vibration of the outer ring 14 may increase in accordance with the progress of the damage generated on the raceway surface. As a result, for example, an adverse effect such as an abnormal contact between a component supported by the rolling bearing 10 and a component adjacent thereto may occur.
- a set of feature quantities and a plurality of machine-learned sets are machine-learned by machine-learning feature sets of vibration data of a rolling bearing in which damage having different lengths in the circumferential direction is formed on the raceway surface.
- a classifier is calculated to calculate the matching rate with the feature quantity set of. The remaining life of the rolling bearing 10 can be estimated by using the classifier.
- FIG. 2 is a functional block diagram of the state monitoring device 1 of FIG.
- the state monitoring device 1 includes a vibration sensor 20, an LPF (Low Pass Filter) 31, a BPF (Band Pass Filter) 32, a HPF (High Pass Filter) 33, and a control unit 40. , Storage unit 50.
- the vibration sensor 20 measures vibration data of the rolling bearing 10, and outputs the measured data to the control unit 40, the LPF 31, the BPF 32, and the HPF 33.
- the LPF 31 outputs vibration data of a frequency smaller than a predetermined frequency to the control unit 40.
- the LPF 31 outputs vibration data of a frequency of less than 1000 Hz to the control unit 40.
- the BPF 32 outputs vibration data of a frequency within a predetermined range to the control unit 40.
- the BPF 32 outputs vibration data of a frequency of 1000 Hz or more and 5000 Hz or less to the control unit 40.
- the HPF 33 outputs vibration data of a frequency higher than a predetermined frequency to the control unit 40.
- the HPF 33 outputs vibration data of a frequency higher than 5000 Hz to the control unit 40.
- the control unit 40 machine-learnings the feature value set of the vibration data of the rolling bearing in which the damage whose circumferential length is different in the circumferential direction is formed in the learning period, and creates a classifier.
- the classifier calculates the matching rate between a certain feature amount set and each machine-learned feature amount set.
- Classifiers can include, for example, support vector machines, neural networks, naive Bayes, and decision trees.
- the control unit 40 calculates a feature amount set of vibration data measured at the sampling time in the monitoring period, and calculates the remaining life of the rolling bearing.
- the control unit 40 includes a computer such as a central processing unit (CPU).
- the storage unit 50 stores, for example, vibration data, feature quantities calculated from the vibration data, and a classifier created by machine learning.
- FIG. 3 is a diagram showing a feature amount set calculated by the control unit 40.
- the feature amount set includes the feature amounts F1 to F60 shown in FIG.
- the control unit 40 determines each of the time domain (F1 to F5), the frequency domain (F6 to F10), and the quefrance domain (F11 to F15) from the vibration data from the vibration sensor 20.
- the effective value, the maximum value, the crest factor, the kurtosis, and the skewness are calculated as feature amounts.
- control unit 40 determines the effective value, maximum value, crest factor, peak in each of the time domain (F16 to F20), the frequency domain (F21 to F25), and the quefrance domain (F26 to F30)
- the degree and skewness are calculated as feature quantities.
- the control unit 40 determines the effective value, maximum value, crest factor, and peak in each of the time domain (F31 to F35), the frequency domain (F36 to F40), and the quefrance domain (F41 to F45)
- the degree and skewness are calculated as feature quantities.
- the control unit 40 determines the effective value, maximum value, crest factor, peak in each of the time domain (F46 to F50), the frequency domain (F51 to F55), and the quefrance domain (F56 to F60)
- the degree and skewness are calculated as feature quantities.
- FIG. 4 is a flowchart showing an outline of the estimation processing of the remaining life of the rolling bearing performed by the control unit 40.
- the step is simply described as S.
- the control unit 40 creates a classifier at S1.
- S1 is a process performed in the learning period.
- the control unit 40 calculates the remaining life of the rolling bearing using a classifier at S2.
- S2 is a process performed in the monitoring period.
- the classifier created by machine learning may be created at the start of the monitoring period, and the learning period and the monitoring period may not be continuous.
- the circumferential length (damage length) of the damage formed on the raceway surface is classified into three levels of damage levels 0 to 2.
- FIG. 5 is a view schematically showing how the center of the load area is normal.
- FIG. 6 is a view schematically showing how damage at damage level 1 occurs near the center of the load area.
- FIG. 7 is a view schematically showing how damage at level 2 damage occurs near the center of the load area.
- the center of the load area of the rolling bearing 10 is enlarged and shown, and the outer peripheral surface of the inner ring 12 and the inner peripheral surface of the outer ring 14 are straight for ease of illustration. It is drawn on.
- the damage level is 0 when the vicinity of the center of the load area is normal.
- the condition that the center of the load area is normal means that no damage occurs near the center of the load area or the length of the damage is smaller than a threshold.
- the ratio of the damage length L1 of damage level 1 shown in FIG. 6 to the damage length L2 of damage level 2 shown in FIG. 7 is 40% or more and 60% or less.
- a plurality of rolling elements 18 pass damage level 2 damage, two or more rolling elements 18 simultaneously receive no load from the inner ring 12 and the outer ring 14. .
- FIG. 8 is a diagram showing the result of actually measuring the relationship between the effective value of the vibration data of the rolling bearing 10 and the number of loads.
- the number of times of loading is 0, N1, and N2 (> N1)
- the lengths of damage occurring in the center of the load area are the damage levels 0 to 2 Do.
- the number of times of loading is the total number of times that the plurality of rolling elements 18 loaded a radial load to the center of the load area (passed through the center of the load area) after the rolling bearing 10 started operation.
- the term “remaining life” refers to the number of times of loading (the number of remaining loads) from a certain measurement time during status monitoring until damage of damage level 2 is formed.
- the remaining life NL0 of the rolling bearing 10 at the damage level 0 (the number of loads is 0) is N2.
- the remaining life NL1 of the damage level 1 rolling bearing is N2-N1.
- the remaining life NL2 of the damage level 2 rolling bearing is zero.
- FIG. 9 is a flowchart specifically showing the flow of the process (S1 in FIG. 4) performed in the learning period.
- the control unit 40 calculates a feature amount set of vibration data of a rolling bearing whose damage length is damage level 2, and advances the process to S12.
- control unit 40 calculates a feature amount set of vibration data of the rolling bearing whose damage length is damage level 1, and advances the process to S13.
- control unit 40 calculates a feature amount set of vibration data of a rolling bearing whose damage length is damage level 0, and advances the process to S14.
- control unit 40 performs machine learning on the feature amount set of damage levels 0 to 2 to create a classifier, and advances the process to S15.
- the classifier calculates the matching rate between a certain feature set and the feature set for each damage level.
- control unit 40 associates the feature amount sets of damage levels 0 to 2 with the remaining lives NL0 to NL2 and stores them in the storage unit 50, and ends the processing.
- S11 to S13 may be performed before S14, and need not be performed in the order shown in FIG. Also, S11 to S13 may be performed not simultaneously but concurrently.
- FIG. 10 is a flowchart specifically showing the flow of the process (S2 in FIG. 9) performed in the monitoring period.
- the process shown in FIG. 10 is executed at each sampling time by a main routine (not shown).
- the control unit 40 calculates a feature amount set of vibration data (measurement data) measured at sampling time in S21, and advances the process to S22.
- the control unit 40 uses the classifier created in the learning period to calculate the relevance ratios R0 to R2 between the feature data set of the measurement data and each of the three feature data sets that have been machine-learned. Go to
- the matching rate R0 is a matching rate between the feature quantity set of measurement data and the feature quantity set of damage level 0.
- the matching rate R1 is a matching rate between the feature quantity set of measurement data and the feature quantity set of damage level 1.
- the matching rate R2 is a matching rate between the feature amount set of measurement data and the feature amount set of damage level 2.
- the sum of the relevance factors R0 to R2 is one.
- control unit 40 calculates the remaining life NL until the length of the damage at the sampling time becomes the length of the damage level 2 using the following equation (1), and returns the process to the main routine.
- control unit 40 If remaining life NL is smaller than the threshold, control unit 40 notifies the user of, for example, a message prompting replacement of the rolling bearing.
- FIG. 11 is a view showing the relationship between the number of times of loading of the rolling bearing and the remaining life estimated by the state monitoring device according to the embodiment. As shown in FIG. 11, the remaining life corresponding to the state of damage caused to the raceway surface which develops with the increase of the number of times of loading is estimated.
- the inner ring is a stationary ring and the outer ring is a rotating ring has been described.
- the inner ring may be a rotating ring and the outer ring may be a stationary ring.
- the length of the damage is divided into three levels, and the feature amount set of each level is machine-learned in the learning period.
- the length of injury may be divided into four or more levels.
- the feature value set of vibration data may include feature values other than the effective value, maximum value, crest factor, kurtosis, and skewness, for example, Short Time Fourier Transform (STFT) data May be included.
- STFT Short Time Fourier Transform
- the raceway surface of the rolling bearing may be artificially damaged, and the feature amount set in the state in which the damage is formed may be machine-learned.
- the number of loads until the damage is formed may be set by past operation results or simulation of the same type or similar rolling bearing. it can.
- FIG. 12 shows the relationship between the damage levels 0 to 2 and the remaining life in the case where the rolling bearing is actually operated to form a damage and the case where the damage is artificially formed.
- a broken line C20 indicates the correspondence when the rolling bearing is actually operated to form a damage
- a broken line C21 indicates the correspondence when the damage is artificially formed.
- the change of the remaining life with respect to the change of each damage level 0 to 2 is the same tendency at the broken lines C20 and C21. Even when artificially formed damage is used, the remaining life of the rolling bearing can be estimated with the same degree of accuracy as when using the damage formed by actually operating the rolling bearing.
- the remaining life of the rolling bearing can be estimated by using the classifier created by machine learning of the feature amount set of the vibration data.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
According to the present invention, the remaining service life of a rolling bearing is estimated. A method for monitoring the state of a rolling bearing according to the present invention comprises: a step for creating a classifier by means of machine learning; and a step for monitoring the state of the rolling bearing. The step for creating the classifier includes: steps (S11-S13) for calculating a set of features about first to third vibration data; and a step (S14) for creating the classifier by machine learning the first to third vibration data. The first vibration data is vibration data about the rolling bearing in a state in which damage of a first length is formed in the circumferential direction of a raceway surface. The second vibration data is vibration data about the rolling bearing in a state in which damage of a second length shorter than the first length is formed in the circumferential direction of the raceway surface. The third vibration data is vibration data about the rolling bearing for when the raceway surface is normal. The step for monitoring the state includes a step for using the classifier to calculate the remaining service life until the length of the damage reaches the second length.
Description
この発明は、転がり軸受の状態監視方法および状態監視装置に関する。
The present invention relates to a method and a device for monitoring the state of a rolling bearing.
従来、転がり軸受の状態監視方法が知られている。たとえば特開2004-347401号公報(特許文献1)には、周波数スペクトルにおいて回転速度比例成分等のピークを持たないバックグラウンドノイズ成分を用いることにより、簡素な構成で効率的に精度良く転がり軸受の異常の有無を判断することができる転がり軸受の診断方法が開示されている。
Conventionally, a method of monitoring the state of a rolling bearing is known. For example, Japanese Patent Application Laid-Open No. 2004-347401 (Patent Document 1) discloses a rolling bearing having a simple configuration efficiently and accurately by using a background noise component having no peak such as a rotational speed proportional component in a frequency spectrum. A diagnostic method of a rolling bearing capable of determining the presence or absence of an abnormality is disclosed.
特開2004-347401号公報(特許文献1)には、転がり軸受の振動データの周波数スペクトルに周期的なピークが発生したときに、損傷を検出する構成が開示されている。
Japanese Patent Laying-Open No. 2004-347401 (Patent Document 1) discloses a configuration for detecting damage when periodical peaks occur in the frequency spectrum of vibration data of a rolling bearing.
転がり軸受の交換時期を適切に判断するためには、損傷の程度に応じた転がり軸受の余寿命を推定する必要がある。しかし、特開2004-347401号公報(特許文献1)においては、損傷の程度に応じた転がり軸受の余寿命の推定については考慮されていない。
In order to properly determine the rolling bearing replacement time, it is necessary to estimate the remaining life of the rolling bearing according to the degree of damage. However, in Japanese Patent Laid-Open No. 2004-347401 (Patent Document 1), the estimation of the remaining life of the rolling bearing according to the degree of damage is not taken into consideration.
本発明は上記のような課題を解決するためになされたものであり、その目的は、損傷の程度に応じた転がり軸受の余寿命を推定することである。
The present invention has been made to solve the problems as described above, and its object is to estimate the remaining life of a rolling bearing according to the degree of damage.
本発明に係る転がり軸受の状態監視方法は、機械学習によって分類器を作成するステップと、転がり軸受の状態を監視するステップとを含む。転がり軸受は、回転輪と、静止輪と、複数の転動体とを含む。複数の転動体は、回転輪と静止輪との間に配置され、回転輪の回転に伴って静止輪の軌道面を移動する。分類器を作成するステップは、第1~第3振動データの特徴量セットを算出するステップと、第1~第3振動データの特徴量セットの特徴量セットを機械学習して分類器を作成するステップとを含む。第1振動データは、軌道面の周方向に第1長さの損傷が形成された状態での転がり軸受の振動データである。第2振動データは、軌道面の周方向に、第1長さより小さい第2長さの損傷が形成された状態での転がり軸受の振動データである。第3振動データは、軌道面が正常である場合の転がり軸受の振動データである。軌道面の周方向に第1長さの損傷が形成されるまでの負荷回数は、第1負荷回数である。軌道面の周方向に第2長さの損傷が形成されるまでの負荷回数は、第1負荷回数よりも少ない第2負荷回数である。状態を監視するステップは、第4振動データの特徴量セットを算出するステップと、第1~第3適合率を算出するステップと、転がり軸受の余寿命を算出するステップとを含む。第4振動データは、監視中に測定された転がり軸受の振動データである。第1~第3適合率は、分類器によって算出される。第1~第3適合率は、第4振動データの特徴量セットと、第1~第3振動データの特徴量セットそれぞれとの適合率である。転がり軸受の余寿命は、第1および第2負荷回数と、第1~第3適合率とを用いて算出される。当該余寿命は、軌道面の周方向に第1長さの損傷が形成されるまでの転がり軸受の残存負荷回数である。
The rolling bearing state monitoring method according to the present invention includes the steps of creating a classifier by machine learning and monitoring the rolling bearing state. The rolling bearing includes a rotating wheel, a stationary wheel, and a plurality of rolling elements. The plurality of rolling elements are disposed between the rotating wheel and the stationary wheel, and move along the raceway surface of the stationary wheel as the rotating wheel rotates. The step of creating a classifier includes the steps of calculating a feature amount set of the first to third vibration data, and machine learning of the feature amount set of the feature amount set of the first to third vibration data to create a classifier. And step. The first vibration data is vibration data of the rolling bearing in a state in which the damage of the first length is formed in the circumferential direction of the raceway surface. The second vibration data is vibration data of the rolling bearing in a state in which damage of a second length smaller than the first length is formed in the circumferential direction of the raceway surface. The third vibration data is vibration data of the rolling bearing when the raceway surface is normal. The number of times of loading until the first length of damage is formed in the circumferential direction of the raceway surface is the first number of times of loading. The number of times of loading until the second length of damage is formed in the circumferential direction of the raceway surface is the second number of times of loading less than the first number of times of loading. The step of monitoring the state includes the steps of calculating a feature amount set of the fourth vibration data, calculating the first to third precisions, and calculating the remaining life of the rolling bearing. The fourth vibration data is vibration data of the rolling bearing measured during monitoring. The first to third relevance factors are calculated by the classifier. The first to third adaptation rates are adaptation rates between the feature amount set of the fourth vibration data and the feature amount sets of the first to third oscillation data. The remaining life of the rolling bearing is calculated using the first and second number of loads and the first to third fitness factors. The remaining life is the number of remaining loads of the rolling bearing until the first length of damage is formed in the circumferential direction of the raceway surface.
本発明に係る転がり軸受の状態監視方法によれば、振動データの特徴量セットの機械学習によって作成された分類器を用いることにより、転がり軸受の余寿命を推定することができる。
According to the state monitoring method of a rolling bearing according to the present invention, it is possible to estimate the remaining life of the rolling bearing by using a classifier created by machine learning of a feature amount set of vibration data.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
図1は、実施の形態に係る状態監視装置1および状態監視装置1によって監視される転がり軸受10の断面図を併せて示す図である。図1に示されるように、転がり軸受10は、内輪12と、外輪14と、複数の転動体18とを含む。転がり軸受10は、たとえば、自動調芯ころ軸受、円すいころ軸受、円筒ころ軸受、および玉軸受などを含む。転がり軸受10は、単列のものでも複列のものでもよい。
FIG. 1 is a view showing a cross-sectional view of a state monitoring device 1 and a rolling bearing 10 monitored by the state monitoring device 1 according to the embodiment. As shown in FIG. 1, the rolling bearing 10 includes an inner ring 12, an outer ring 14, and a plurality of rolling elements 18. Rolling bearing 10 includes, for example, self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings, and ball bearings. The rolling bearing 10 may be a single row or multiple rows.
内輪12は、非回転の軸体11に外嵌された静止輪である。外輪14は、内輪12の外周側に設けられ、図示しない回転体と一体的に回転する回転輪である。複数の転動体18の各々は、図示されない保持器によって隣接の転動体18と等間隔に保持されつつ内輪12と外輪14との間に介在する。
The inner ring 12 is a stationary ring externally fitted to the non-rotating shaft 11. The outer ring 14 is a rotating ring provided on the outer peripheral side of the inner ring 12 and integrally rotating with a rotating body (not shown). Each of the plurality of rolling elements 18 is interposed between the inner ring 12 and the outer ring 14 while being held at equal intervals to the adjacent rolling elements 18 by a cage (not shown).
状態監視装置1は、振動センサによって転がり軸受10の物理量を測定して、転がり軸受の状態を監視する。振動センサによって測定される転がり軸受10の物理量としては、たとえば、加速度、速度、変位、音、AE(Acoustic Emission)、および電力を挙げることができる。
The state monitoring device 1 monitors the state of the rolling bearing by measuring the physical quantity of the rolling bearing 10 by the vibration sensor. Examples of physical quantities of the rolling bearing 10 measured by the vibration sensor include acceleration, velocity, displacement, sound, AE (Acoustic Emission), and power.
静止輪である内輪12の外周面(軌道面)の鉛直方向(X軸方向)上側に、複数の転動体18からラジアル荷重を受ける負荷域が形成される。ラジアル荷重は、負荷域中央において最大となる。そのため、軌道面に生じる損傷は、負荷域の中央に最初に発生することが多い。
A load area that receives a radial load from the plurality of rolling elements 18 is formed on the upper side in the vertical direction (X-axis direction) of the outer peripheral surface (track surface) of the inner ring 12 which is a stationary wheel. The radial load is maximum at the center of the load area. Therefore, damage to the raceway surface often occurs first at the center of the load area.
軌道面に生じた損傷の進展に応じて、外輪14の振動が大きくなり得る。その結果、たとえば転がり軸受10が支持している部品とそれに隣接する部品との異常接触等の弊害が生じ得る。転がり軸受10を出来る限り長く使用するためには、軌道面に生じた損傷の程度に応じた転がり軸受10の余寿命を推定し、転がり軸受10の交換時期を適切に判断する必要がある。
The vibration of the outer ring 14 may increase in accordance with the progress of the damage generated on the raceway surface. As a result, for example, an adverse effect such as an abnormal contact between a component supported by the rolling bearing 10 and a component adjacent thereto may occur. In order to use the rolling bearing 10 as long as possible, it is necessary to estimate the remaining life of the rolling bearing 10 according to the degree of damage to the raceway surface, and to appropriately determine the replacement time of the rolling bearing 10.
そこで、実施の形態においては、軌道面に周方向の長さが異なる損傷が形成された転がり軸受の振動データの特徴量セットを機械学習することにより、或る特徴量セットと、機械学習した複数の特徴量セットとの適合率をそれぞれ算出する分類器を作成する。当該分類器を用いることにより、転がり軸受10の余寿命を推定することができる。
Therefore, in the embodiment, a set of feature quantities and a plurality of machine-learned sets are machine-learned by machine-learning feature sets of vibration data of a rolling bearing in which damage having different lengths in the circumferential direction is formed on the raceway surface. A classifier is calculated to calculate the matching rate with the feature quantity set of. The remaining life of the rolling bearing 10 can be estimated by using the classifier.
図2は、図1の状態監視装置1の機能ブロック図である。図2に示されるように、状態監視装置1は、振動センサ20と、LPF(Low Pass Filter)31と、BPF(Band Pass Filter)32と、HPF(High Pass Filter)33と、制御部40と、記憶部50とを含む。振動センサ20は、転がり軸受10の振動データを測定し、制御部40、LPF31、BPF32、およびHPF33に出力する。
FIG. 2 is a functional block diagram of the state monitoring device 1 of FIG. As shown in FIG. 2, the state monitoring device 1 includes a vibration sensor 20, an LPF (Low Pass Filter) 31, a BPF (Band Pass Filter) 32, a HPF (High Pass Filter) 33, and a control unit 40. , Storage unit 50. The vibration sensor 20 measures vibration data of the rolling bearing 10, and outputs the measured data to the control unit 40, the LPF 31, the BPF 32, and the HPF 33.
LPF31は、所定の周波数より小さい周波数の振動データを制御部40へ出力する。実施の形態においては、LPF31は、1000Hz未満の周波数の振動データを制御部40へ出力する。
The LPF 31 outputs vibration data of a frequency smaller than a predetermined frequency to the control unit 40. In the embodiment, the LPF 31 outputs vibration data of a frequency of less than 1000 Hz to the control unit 40.
BPF32は、所定の範囲の周波数の振動データを制御部40へ出力する。実施の形態においては、BPF32は、1000Hz以上5000Hz以下の周波数の振動データを制御部40へ出力する。
The BPF 32 outputs vibration data of a frequency within a predetermined range to the control unit 40. In the embodiment, the BPF 32 outputs vibration data of a frequency of 1000 Hz or more and 5000 Hz or less to the control unit 40.
HPF33は、所定の周波数より高い周波数の振動データを制御部40へ出力する。実施の形態においては、HPF33は、5000Hzより高い周波数の振動データを制御部40へ出力する。
The HPF 33 outputs vibration data of a frequency higher than a predetermined frequency to the control unit 40. In the embodiment, the HPF 33 outputs vibration data of a frequency higher than 5000 Hz to the control unit 40.
制御部40は、学習期間において、軌道面に周方向の長さが異なる損傷が形成された転がり軸受の振動データの特徴量セットを機械学習し、分類器を作成する。分類器は、或る特徴量セットと機械学習した各特徴量セットとの適合率を算出する。分類器としては、たとえばサポートベクターマシン、ニューラルネットワーク、ナイーブベイズ、および決定木を挙げることができる。制御部40は、監視期間において、サンプリング時刻において測定された振動データの特徴量セットを算出し、転がり軸受の余寿命を算出する。制御部40は、CPU(Central Processing Unit)のようなコンピュータを含む。
The control unit 40 machine-learnings the feature value set of the vibration data of the rolling bearing in which the damage whose circumferential length is different in the circumferential direction is formed in the learning period, and creates a classifier. The classifier calculates the matching rate between a certain feature amount set and each machine-learned feature amount set. Classifiers can include, for example, support vector machines, neural networks, naive Bayes, and decision trees. The control unit 40 calculates a feature amount set of vibration data measured at the sampling time in the monitoring period, and calculates the remaining life of the rolling bearing. The control unit 40 includes a computer such as a central processing unit (CPU).
記憶部50には、たとえば、振動データ、当該振動データから算出される特徴量、および機械学習によって作成される分類器が保存される。
The storage unit 50 stores, for example, vibration data, feature quantities calculated from the vibration data, and a classifier created by machine learning.
図3は、制御部40によって算出される特徴量セットを示す図である。実施の形態において特徴量セットには、図3に示される特徴量F1~F60が含まれる。
FIG. 3 is a diagram showing a feature amount set calculated by the control unit 40. In the embodiment, the feature amount set includes the feature amounts F1 to F60 shown in FIG.
図2および図3を参照しながら、制御部40は、振動センサ20からの振動データから、時間領域(F1~F5)、周波数領域(F6~F10)、およびケフレンシ領域(F11~F15)の各領域において、実効値、最大値、波高率、尖度、および歪度を特徴量として算出する。
Referring to FIGS. 2 and 3, the control unit 40 determines each of the time domain (F1 to F5), the frequency domain (F6 to F10), and the quefrance domain (F11 to F15) from the vibration data from the vibration sensor 20. In the region, the effective value, the maximum value, the crest factor, the kurtosis, and the skewness are calculated as feature amounts.
制御部40は、LPF31からの振動データから、時間領域(F16~F20)、周波数領域(F21~F25)、およびケフレンシ領域(F26~F30)の各領域において実効値、最大値、波高率、尖度、および歪度を特徴量として算出する。
From the vibration data from the LPF 31, the control unit 40 determines the effective value, maximum value, crest factor, peak in each of the time domain (F16 to F20), the frequency domain (F21 to F25), and the quefrance domain (F26 to F30) The degree and skewness are calculated as feature quantities.
制御部40は、BPF32からの振動データから、時間領域(F31~F35)、周波数領域(F36~F40)、およびケフレンシ領域(F41~F45)の各領域において実効値、最大値、波高率、尖度、および歪度を特徴量として算出する。
From the vibration data from the BPF 32, the control unit 40 determines the effective value, maximum value, crest factor, and peak in each of the time domain (F31 to F35), the frequency domain (F36 to F40), and the quefrance domain (F41 to F45) The degree and skewness are calculated as feature quantities.
制御部40は、HPF33からの振動データから、時間領域(F46~F50)、周波数領域(F51~F55)、およびケフレンシ領域(F56~F60)の各領域において実効値、最大値、波高率、尖度、および歪度を特徴量として算出する。
From the vibration data from the HPF 33, the control unit 40 determines the effective value, maximum value, crest factor, peak in each of the time domain (F46 to F50), the frequency domain (F51 to F55), and the quefrance domain (F56 to F60) The degree and skewness are calculated as feature quantities.
図4は、制御部40によって行なわれる転がり軸受の余寿命の推定処理の概要を示すフローチャートである。以下ではステップを単にSと記載する。図4に示されるように、制御部40は、S1において分類器を作成する。S1は、学習期間において行なわれる処理である。制御部40は、S2において分類器を用いて転がり軸受の余寿命を算出する。S2は、監視期間において行なわれる処理である。機械学習によって作成された分類器が監視期間の開始時に作成されていればよく、学習期間と監視期間とは連続していなくてもよい。
FIG. 4 is a flowchart showing an outline of the estimation processing of the remaining life of the rolling bearing performed by the control unit 40. Hereinafter, the step is simply described as S. As shown in FIG. 4, the control unit 40 creates a classifier at S1. S1 is a process performed in the learning period. The control unit 40 calculates the remaining life of the rolling bearing using a classifier at S2. S2 is a process performed in the monitoring period. The classifier created by machine learning may be created at the start of the monitoring period, and the learning period and the monitoring period may not be continuous.
実施の形態においては、軌道面に形成された損傷の周方向の長さ(損傷の長さ)を損傷レベル0~2の3レベルに分類する。図5は、負荷域中央付近が正常である様子を模式的に示す図である。図6は、負荷域中央付近に損傷レベル1の損傷が生じている様子を模式的に示す図である。図7は、負荷域中央付近に損傷レベル2の損傷が生じている様子を模式的に示す図である。なお、この図5~図7では、転がり軸受10の負荷域中央付近が拡大されて示されており、図示を容易にするために、内輪12の外周面および外輪14の内周面が直線状に描かれている。
In the embodiment, the circumferential length (damage length) of the damage formed on the raceway surface is classified into three levels of damage levels 0 to 2. FIG. 5 is a view schematically showing how the center of the load area is normal. FIG. 6 is a view schematically showing how damage at damage level 1 occurs near the center of the load area. FIG. 7 is a view schematically showing how damage at level 2 damage occurs near the center of the load area. In FIGS. 5 to 7, the center of the load area of the rolling bearing 10 is enlarged and shown, and the outer peripheral surface of the inner ring 12 and the inner peripheral surface of the outer ring 14 are straight for ease of illustration. It is drawn on.
実施の形態においては、図5に示されるように負荷域中央付近が正常である場合を損傷レベル0とする。負荷域中央付近が正常であるとは、負荷域中央付近に損傷が生じていない場合、あるいは損傷の長さが閾値より小さい場合である。図6に示される損傷レベル1の損傷の長さL1の、図7に示される損傷レベル2の損傷の長さL2に対する割合は、40%以上60%以下である。図7に示されるように、複数の転動体18が損傷レベル2の損傷を通過するとき、同時に2個以上の転動体18が、内輪12および外輪14からほとんど負荷を受けない無負荷状態となる。
In the embodiment, as shown in FIG. 5, the damage level is 0 when the vicinity of the center of the load area is normal. The condition that the center of the load area is normal means that no damage occurs near the center of the load area or the length of the damage is smaller than a threshold. The ratio of the damage length L1 of damage level 1 shown in FIG. 6 to the damage length L2 of damage level 2 shown in FIG. 7 is 40% or more and 60% or less. As shown in FIG. 7, when a plurality of rolling elements 18 pass damage level 2 damage, two or more rolling elements 18 simultaneously receive no load from the inner ring 12 and the outer ring 14. .
図8は、転がり軸受10の振動データの実効値と負荷回数との関係を実際に測定した結果を示す図である。図8に示されるように、実施の形態においては、負荷回数が0、N1、N2(>N1)である場合に負荷域中央に生じている損傷の長さを、それぞれ損傷レベル0~2とする。なお、負荷回数とは、転がり軸受10が運転を開始してから、複数の転動体18が負荷域中央へラジアル荷重を負荷した(負荷域中央を通過した)総回数である。
FIG. 8 is a diagram showing the result of actually measuring the relationship between the effective value of the vibration data of the rolling bearing 10 and the number of loads. As shown in FIG. 8, in the embodiment, when the number of times of loading is 0, N1, and N2 (> N1), the lengths of damage occurring in the center of the load area are the damage levels 0 to 2 Do. The number of times of loading is the total number of times that the plurality of rolling elements 18 loaded a radial load to the center of the load area (passed through the center of the load area) after the rolling bearing 10 started operation.
実施の形態において余寿命とは、状態監視中の或る測定時点から、損傷レベル2の損傷が形成されるまでの負荷回数(残存負荷回数)である。図8において、損傷レベル0(負荷回数0)の転がり軸受10の余寿命NL0は、N2である。損傷レベル1の転がり軸受の余寿命NL1は、N2-N1である。損傷レベル2の転がり軸受の余寿命NL2は、0である。
In the embodiment, the term “remaining life” refers to the number of times of loading (the number of remaining loads) from a certain measurement time during status monitoring until damage of damage level 2 is formed. In FIG. 8, the remaining life NL0 of the rolling bearing 10 at the damage level 0 (the number of loads is 0) is N2. The remaining life NL1 of the damage level 1 rolling bearing is N2-N1. The remaining life NL2 of the damage level 2 rolling bearing is zero.
図9は、学習期間に行なわれる処理(図4のS1)の流れを具体的に示すフローチャートである。図9に示されるように、制御部40は、S11において、損傷の長さが損傷レベル2である転がり軸受の振動データの特徴量セットを算出し、処理をS12へ進める。
FIG. 9 is a flowchart specifically showing the flow of the process (S1 in FIG. 4) performed in the learning period. As shown in FIG. 9, in S11, the control unit 40 calculates a feature amount set of vibration data of a rolling bearing whose damage length is damage level 2, and advances the process to S12.
制御部40は、S12において、損傷の長さが損傷レベル1である転がり軸受の振動データの特徴量セットを算出し、処理をS13へ進める。
At S12, the control unit 40 calculates a feature amount set of vibration data of the rolling bearing whose damage length is damage level 1, and advances the process to S13.
制御部40は、S13において、損傷の長さが損傷レベル0である転がり軸受の振動データの特徴量セットを算出し、処理をS14に進める。
In S13, the control unit 40 calculates a feature amount set of vibration data of a rolling bearing whose damage length is damage level 0, and advances the process to S14.
制御部40は、S14において、損傷レベル0~2の特徴量セットを機械学習して分類器を作成し、処理をS15に進める。分類器は、或る特徴量セットと、各損傷レベルの特徴量セットとの適合率を算出する。
In S14, the control unit 40 performs machine learning on the feature amount set of damage levels 0 to 2 to create a classifier, and advances the process to S15. The classifier calculates the matching rate between a certain feature set and the feature set for each damage level.
制御部40は、S15において、損傷レベル0~2の特徴量セットと余寿命NL0~NL2とをそれぞれ関連付けて記憶部50に保存し、処理を終了する。
In S15, the control unit 40 associates the feature amount sets of damage levels 0 to 2 with the remaining lives NL0 to NL2 and stores them in the storage unit 50, and ends the processing.
S11~S13は、S14より前に実行されていればよく、図9に示される順序で行なわれる必要はない。また、S11~S13は、遂次的ではなく同時並行的に行なわれても良い。
S11 to S13 may be performed before S14, and need not be performed in the order shown in FIG. Also, S11 to S13 may be performed not simultaneously but concurrently.
図10は、監視期間に行なわれる処理(図9のS2)の流れを具体的に示すフローチャートである。図10に示される処理は、不図示のメインルーチンによって各サンプリング時刻に実行される。
FIG. 10 is a flowchart specifically showing the flow of the process (S2 in FIG. 9) performed in the monitoring period. The process shown in FIG. 10 is executed at each sampling time by a main routine (not shown).
図10に示されるように、制御部40は、S21においてサンプリング時刻に測定された振動データ(測定データ)の特徴量セットを算出し、処理をS22に進める。制御部40は、S22において、学習期間に作成した分類器を用いて、測定データの特徴量セットと、機械学習した3つの特徴量セットそれぞれとの適合率R0~R2を算出し、処理をS23へ進める。
As shown in FIG. 10, the control unit 40 calculates a feature amount set of vibration data (measurement data) measured at sampling time in S21, and advances the process to S22. In S22, the control unit 40 uses the classifier created in the learning period to calculate the relevance ratios R0 to R2 between the feature data set of the measurement data and each of the three feature data sets that have been machine-learned. Go to
適合率R0は、測定データの特徴量セットと損傷レベル0の特徴量セットとの適合率である。適合率R1は、測定データの特徴量セットと損傷レベル1の特徴量セットとの適合率である。適合率R2は、測定データの特徴量セットと損傷レベル2の特徴量セットとの適合率である。適合率R0~R2の総和は1である。
The matching rate R0 is a matching rate between the feature quantity set of measurement data and the feature quantity set of damage level 0. The matching rate R1 is a matching rate between the feature quantity set of measurement data and the feature quantity set of damage level 1. The matching rate R2 is a matching rate between the feature amount set of measurement data and the feature amount set of damage level 2. The sum of the relevance factors R0 to R2 is one.
制御部40は、S23において、以下の式(1)を用いて、サンプリング時刻における損傷の長さが損傷レベル2の長さとなるまでの余寿命NLを算出し、処理をメインルーチンに戻す。
In S23, the control unit 40 calculates the remaining life NL until the length of the damage at the sampling time becomes the length of the damage level 2 using the following equation (1), and returns the process to the main routine.
NL=NL0×R0+NL1×R1+0×R2 …(1)
制御部40は、余寿命NLが、閾値よりも小さい場合には、たとえば転がり軸受の交換を促すメッセージをユーザに報知する。 NL = NL0 × R0 + NL1 × R1 + 0 × R2 (1)
If remaining life NL is smaller than the threshold,control unit 40 notifies the user of, for example, a message prompting replacement of the rolling bearing.
制御部40は、余寿命NLが、閾値よりも小さい場合には、たとえば転がり軸受の交換を促すメッセージをユーザに報知する。 NL = NL0 × R0 + NL1 × R1 + 0 × R2 (1)
If remaining life NL is smaller than the threshold,
以下では、実施の形態に係る状態監視装置を用いて、転がり軸受の転がり軸受の余寿命を推定した実験の結果を示す。当該実験においては、NTN社製の円筒ころ軸受NU224を回転速度1500min-1で運転させ、2時間毎に20秒間、サンプリング速度50kHzで鉛直方向の振動加速度を測定した。ラジアル負荷は、90kNとした。
Below, the result of the experiment which estimated the remaining life of the rolling bearing of a rolling bearing is shown using the state monitoring apparatus which concerns on embodiment. In the experiment, a cylindrical roller bearing NU224 manufactured by NTN Co. was operated at a rotational speed of 1500 min -1 , and vibration acceleration in the vertical direction was measured at a sampling speed of 50 kHz for 20 seconds every two hours. The radial load was 90 kN.
図11は、転がり軸受の負荷回数と実施の形態に係る状態監視装置によって推定された余寿命との関係を示す図である。図11に示されるように、負荷回数の増加に伴って進展する軌道面に生じた損傷の状態に対応する余寿命が推定されている。
FIG. 11 is a view showing the relationship between the number of times of loading of the rolling bearing and the remaining life estimated by the state monitoring device according to the embodiment. As shown in FIG. 11, the remaining life corresponding to the state of damage caused to the raceway surface which develops with the increase of the number of times of loading is estimated.
実施の形態においては、内輪が静止輪であり、外輪が回転輪である場合について説明した。実施の形態に係る状態監視装置の監視対象となる転がり軸受は、内輪が回転輪であり、外輪が静止輪であってもよい。
In the embodiment, the case where the inner ring is a stationary ring and the outer ring is a rotating ring has been described. In the rolling bearing to be monitored by the state monitoring device according to the embodiment, the inner ring may be a rotating ring and the outer ring may be a stationary ring.
実施の形態においては、損傷の長さを3レベルに分けて、学習期間において各レベルの特徴量セットを機械学習する場合について説明した。損傷の長さは、4レベル以上に分けられてもよい。また、振動データの特徴量セットは、実効値、最大値、波高率、尖度、および歪度以外の特徴量を含んでいてもよく、たとえば短時間フーリエ変換(STFT:Short Time Fourier Transform)データを含んでいてもよい。
In the embodiment, the case has been described in which the length of the damage is divided into three levels, and the feature amount set of each level is machine-learned in the learning period. The length of injury may be divided into four or more levels. Also, the feature value set of vibration data may include feature values other than the effective value, maximum value, crest factor, kurtosis, and skewness, for example, Short Time Fourier Transform (STFT) data May be included.
実施の形態においては、転がり軸受を実際に運転させることにより形成された損傷と、当該損傷が形成された状態での特徴量セットを機械学習する場合について説明した。転がり軸受の軌道面に人工的に損傷を形成し、当該損傷が形成された状態での特徴量セットを機械学習してもよい。転がり軸受を実際に運転させることなく、損傷を人工的に形成する場合、当該損傷が形成されるまでの負荷回数を、同型あるいは類似の転がり軸受の過去の運転実績あるいはシミュレーション等によって設定することができる。
In the embodiment, the case where machine learning is performed on the damage formed by actually operating the rolling bearing and the feature amount set in the state where the damage is formed has been described. The raceway surface of the rolling bearing may be artificially damaged, and the feature amount set in the state in which the damage is formed may be machine-learned. When the damage is artificially formed without actually operating the rolling bearing, the number of loads until the damage is formed may be set by past operation results or simulation of the same type or similar rolling bearing. it can.
図12は、転がり軸受を実際に運転させて損傷を形成した場合および損傷を人工的に形成した場合それぞれにおける損傷レベル0~2と余寿命との関係を併せて示す。図12において、折れ線C20は転がり軸受を実際に運転させて損傷を形成した場合の対応関係を示し、折れ線C21は人工的に損傷を形成した場合の対応関係を示している。図12に示されるように、各損傷レベル0~2の変化に対する余寿命の変化は、折れ線C20とC21とで同様の傾向である。人工的に形成された損傷を用いる場合も、転がり軸受を実際に運転することにより形成された損傷を用いる場合と同程度の精度で、転がり軸受の余寿命を推定することができる。
FIG. 12 shows the relationship between the damage levels 0 to 2 and the remaining life in the case where the rolling bearing is actually operated to form a damage and the case where the damage is artificially formed. In FIG. 12, a broken line C20 indicates the correspondence when the rolling bearing is actually operated to form a damage, and a broken line C21 indicates the correspondence when the damage is artificially formed. As shown in FIG. 12, the change of the remaining life with respect to the change of each damage level 0 to 2 is the same tendency at the broken lines C20 and C21. Even when artificially formed damage is used, the remaining life of the rolling bearing can be estimated with the same degree of accuracy as when using the damage formed by actually operating the rolling bearing.
以上、実施の形態に係る状態監視装置によれば、振動データの特徴量セットの機械学習によって作成された分類器を用いることにより、転がり軸受の余寿命を推定することができる。
As described above, according to the state monitoring device according to the embodiment, the remaining life of the rolling bearing can be estimated by using the classifier created by machine learning of the feature amount set of the vibration data.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
1 状態監視装置、10 転がり軸受、11 軸体、12 内輪、14 外輪、18 転動体、20 振動センサ、40 制御部、50 記憶部。
1 state monitoring device, 10 rolling bearing, 11 shaft, 12 inner ring, 14 outer ring, 18 rolling element, 20 vibration sensor, 40 control unit, 50 storage unit.
Claims (7)
- 機械学習によって分類器を作成するステップと、
転がり軸受の状態を監視するステップとを含み、
前記転がり軸受は、
回転輪と、
静止輪と、
前記回転輪と前記静止輪との間に配置され、前記回転輪の回転に伴って前記静止輪の軌道面を移動する複数の転動体とを含み、
前記分類器を作成するステップは、
前記軌道面の周方向に第1長さの損傷が形成された状態での前記転がり軸受の第1振動データの特徴量セットを算出するステップと、
前記周方向に、前記第1長さより小さい第2長さの損傷が形成された状態での前記転がり軸受の第2振動データの特徴量セットを算出するステップと、
前記軌道面が正常である場合の前記転がり軸受の第3振動データの特徴量セットを算出するステップと、
前記第1~第3振動データの各特徴量セットを機械学習して前記分類器を作成するステップとを含み、
前記周方向に前記第1長さの損傷が形成されるまでの前記軌道面への負荷回数は、第1負荷回数であり、
前記周方向に前記第2長さの損傷が形成されるまでの前記軌道面への負荷回数は、前記第1負荷回数よりも少ない第2負荷回数であり、
前記転がり軸受の状態を監視するステップは、
監視中に測定された前記転がり軸受の第4振動データの特徴量セットを算出するステップと、
前記分類器を用いて、前記第4振動データの特徴量セットと、前記第1~第3振動データの特徴量セットとの第1~第3適合率をそれぞれ算出するステップと、
前記第1および第2負荷回数と、前記第1~第3適合率とを用いて、前記軌道面の周方向に前記第1長さの損傷が形成されるまでの前記転がり軸受の余寿命を算出するステップとを含む、転がり軸受の状態監視方法。 Creating a classifier by machine learning;
Monitoring the state of the rolling bearing,
The rolling bearing is
With a rotating wheel,
With the stationary wheel,
And a plurality of rolling elements disposed between the rotating wheel and the stationary wheel and moving along a raceway surface of the stationary wheel as the rotating wheel rotates.
The step of creating the classifier comprises
Calculating a feature amount set of the first vibration data of the rolling bearing in a state in which the damage of the first length is formed in the circumferential direction of the raceway surface;
Calculating a feature amount set of the second vibration data of the rolling bearing in a state where a damage of a second length smaller than the first length is formed in the circumferential direction;
Calculating a feature amount set of third vibration data of the rolling bearing when the raceway surface is normal;
Machine learning each feature amount set of the first to third vibration data to create the classifier;
The number of times of loading on the raceway surface until the first length of damage is formed in the circumferential direction is a first number of times of loading,
The number of times of loading on the raceway surface until the second length of damage is formed in the circumferential direction is a second number of times of loading less than the first number of times of loading,
The step of monitoring the condition of the rolling bearing is:
Calculating a feature quantity set of the fourth vibration data of the rolling bearing measured during monitoring;
Calculating, using the classifier, first to third fitness factors of the feature quantity set of the fourth vibration data and the feature quantity sets of the first to third vibration data, respectively;
The remaining life of the rolling bearing until the damage of the first length is formed in the circumferential direction of the raceway surface using the first and second number of loadings and the first to third fitness factors A method of monitoring the state of a rolling bearing, comprising the steps of: calculating. - 前記第1長さは、前記複数の転動体のうち、隣接する2つの転動体が前記第1長さの損傷を通過するときに前記2つの転動体が同時に無負荷となる長さである、請求項1に記載の転がり軸受の状態監視方法。 The first length is a length at which the two rolling elements are simultaneously unloaded when two adjacent rolling elements out of the plurality of rolling elements pass the damage of the first length. The state monitoring method of the rolling bearing according to claim 1.
- 前記第1~第3適合率の総和は、1であり、
前記余寿命を算出するステップは、前記第2および第3適合率と、前記第1負荷回数から前記第2負荷回数を引いた残存負荷回数および前記第1負荷回数とをそれぞれ乗じた値の総和を前記余寿命として算出する、請求項1または2に記載の転がり軸受の状態監視方法。 The sum of the first to third precisions is 1,
The step of calculating the remaining life is a sum of values obtained by multiplying the second and third fitness factors, the number of remaining loads obtained by subtracting the number of second loads from the number of first loads, and the number of first loads. The rolling bearing state monitoring method according to claim 1, wherein the remaining life is calculated. - 前記周方向に形成された前記第1および第2長さの損傷の各々は、人工的に形成された損傷である、請求項1~3のいずれか1項に記載の転がり軸受の状態監視方法。 The method of monitoring the condition of a rolling bearing according to any one of claims 1 to 3, wherein each of the first and second lengths of damage formed in the circumferential direction is an artificially generated damage. .
- 前記周方向に形成された前記第1長さの損傷は、前記軌道面への負荷回数が前記第1負荷回数となるまで前記転がり軸受を運転させることによって形成された損傷であり、
前記周方向に形成された前記第2長さの損傷は、前記軌道面への負荷回数が前記第2負荷回数となるまで前記転がり軸受を運転させることによって形成された損傷である、請求項1~3のいずれか1項に記載の転がり軸受の状態監視方法。 The damage of the first length formed in the circumferential direction is a damage formed by operating the rolling bearing until the number of times of loading on the raceway surface becomes the first number of loading,
The damage of the second length formed in the circumferential direction is a damage formed by operating the rolling bearing until the number of times of loading on the raceway surface becomes the number of times of second loading. A method of monitoring the state of a rolling bearing according to any one of items 1 to 3. - 前記第1~第4振動データの各特徴量セットは、実効値、最大値、波高率、尖度、および歪度を含む、請求項1~5のいずれか1項に記載の転がり軸受の状態監視方法。 The state of the rolling bearing according to any one of claims 1 to 5, wherein each feature value set of the first to fourth vibration data includes an effective value, a maximum value, a crest factor, a kurtosis, and a skewness. How to monitor.
- 請求項1~6のいずれか1項に記載の転がり軸受の状態監視方法を用いて、前記転がり軸受の状態を監視する、状態監視装置。 A state monitoring device that monitors the state of the rolling bearing using the method of monitoring the state of the rolling bearing according to any one of claims 1 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017166825A JP2019045241A (en) | 2017-08-31 | 2017-08-31 | State monitoring method and state monitoring device of rolling bearing |
JP2017-166825 | 2017-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019044496A1 true WO2019044496A1 (en) | 2019-03-07 |
Family
ID=65527481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030301 WO2019044496A1 (en) | 2017-08-31 | 2018-08-14 | Method and device for monitoring state of rolling bearing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019045241A (en) |
WO (1) | WO2019044496A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065449A1 (en) * | 2019-09-30 | 2021-04-08 | 国立大学法人大阪大学 | Remaining life prediction system, remaining life prediction device, and remaining life prediction program |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7430317B2 (en) | 2019-09-30 | 2024-02-13 | 国立大学法人大阪大学 | Remaining life prediction system, remaining life prediction device, and remaining life prediction program |
JP2021056153A (en) * | 2019-10-01 | 2021-04-08 | 国立大学法人大阪大学 | Remaining life prediction device, remaining life prediction system, and remaining life prediction program |
WO2021117752A1 (en) * | 2019-12-11 | 2021-06-17 | Ntn株式会社 | Rolling bearing state monitoring method and rolling bearing state monitoring device |
JP7375584B2 (en) * | 2020-01-30 | 2023-11-08 | オムロン株式会社 | Simulation devices, methods, programs, and diagnostic systems |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003005822A (en) * | 2001-06-25 | 2003-01-08 | Mitsubishi Chemicals Corp | System for managing equipment |
US20100280772A1 (en) * | 2007-10-24 | 2010-11-04 | Abb Research Ltd. | Method for detection and automatic identification of damage to rolling bearings |
JP2011107093A (en) * | 2009-11-20 | 2011-06-02 | Jx Nippon Oil & Energy Corp | Apparatus and method for diagnosing abnormality of vibrating body |
JP2016062258A (en) * | 2014-09-17 | 2016-04-25 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Detection device, detection method, and program |
JP2017026020A (en) * | 2015-07-22 | 2017-02-02 | Ntn株式会社 | State monitoring apparatus of rolling bearing and state monitoring method of rolling bearing |
-
2017
- 2017-08-31 JP JP2017166825A patent/JP2019045241A/en active Pending
-
2018
- 2018-08-14 WO PCT/JP2018/030301 patent/WO2019044496A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003005822A (en) * | 2001-06-25 | 2003-01-08 | Mitsubishi Chemicals Corp | System for managing equipment |
US20100280772A1 (en) * | 2007-10-24 | 2010-11-04 | Abb Research Ltd. | Method for detection and automatic identification of damage to rolling bearings |
JP2011107093A (en) * | 2009-11-20 | 2011-06-02 | Jx Nippon Oil & Energy Corp | Apparatus and method for diagnosing abnormality of vibrating body |
JP2016062258A (en) * | 2014-09-17 | 2016-04-25 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Detection device, detection method, and program |
JP2017026020A (en) * | 2015-07-22 | 2017-02-02 | Ntn株式会社 | State monitoring apparatus of rolling bearing and state monitoring method of rolling bearing |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065449A1 (en) * | 2019-09-30 | 2021-04-08 | 国立大学法人大阪大学 | Remaining life prediction system, remaining life prediction device, and remaining life prediction program |
JP2021056124A (en) * | 2019-09-30 | 2021-04-08 | 国立大学法人大阪大学 | Remaining life prediction system, remaining life prediction device, and remaining life prediction program |
JP7290221B2 (en) | 2019-09-30 | 2023-06-13 | 国立大学法人大阪大学 | Remaining life prediction system, remaining life prediction device, and remaining life prediction program |
Also Published As
Publication number | Publication date |
---|---|
JP2019045241A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019044496A1 (en) | Method and device for monitoring state of rolling bearing | |
US10399821B2 (en) | Vibration-based elevator tension member wear and life monitoring system | |
RU2550307C2 (en) | Method of assessment for electric arc discharges and corresponding test stand | |
JP6816456B2 (en) | Bearing equipment | |
JP6605865B2 (en) | Rolling bearing state monitoring device and rolling bearing state monitoring method | |
JP3997528B2 (en) | Rolling bearing diagnostic method and diagnostic device | |
JPWO2016175322A1 (en) | Abnormality diagnosis system | |
US9863852B2 (en) | Failure prediction in a rotating device | |
US20150292937A1 (en) | Integrated, predictive vibration analysis of rotational machine within electronics rack | |
JP5067121B2 (en) | Rolling bearing abnormality determination method and abnormality determination apparatus | |
WO2016133100A1 (en) | Abnormality diagnosis system | |
JP2017026445A (en) | State monitoring device of rolling bearing, and method of setting abnormal condition determining threshold value of rolling bearing | |
JP6997054B2 (en) | Rolling bearing condition monitoring method and condition monitoring device | |
JP6997051B2 (en) | Rolling bearing condition monitoring method and condition monitoring device | |
JP2020143947A (en) | State monitoring device of rolling bearing and state monitoring method thereof | |
JP2020153926A (en) | Belt conveyer monitoring system, belt conveyer monitoring device, belt conveyer monitoring method, and program | |
WO2019044744A1 (en) | State monitoring method and state monitoring device for rolling bearing | |
WO2021009973A1 (en) | Data collection device | |
US6412339B1 (en) | Monitoring of bearing performance | |
JP2010025826A (en) | Abnormality determining method for linear motion screw device | |
CN113056620B (en) | Bearing device | |
JP2004170318A (en) | Method and apparatus for diagnosing anomaly of rotator | |
JP7290221B2 (en) | Remaining life prediction system, remaining life prediction device, and remaining life prediction program | |
WO2019044745A1 (en) | Method and device for monitoring condition of rolling bearing | |
JP6460030B2 (en) | Rotating bearing state determination device and state determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18851527 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18851527 Country of ref document: EP Kind code of ref document: A1 |