WO2019044443A1 - Water bottom installed flap gate - Google Patents

Water bottom installed flap gate Download PDF

Info

Publication number
WO2019044443A1
WO2019044443A1 PCT/JP2018/029816 JP2018029816W WO2019044443A1 WO 2019044443 A1 WO2019044443 A1 WO 2019044443A1 JP 2018029816 W JP2018029816 W JP 2018029816W WO 2019044443 A1 WO2019044443 A1 WO 2019044443A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
buoyancy chamber
air
state
opening
Prior art date
Application number
PCT/JP2018/029816
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 森井
京一 仲保
雄一郎 木村
訓兄 宮本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2019044443A1 publication Critical patent/WO2019044443A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/40Swinging or turning gates

Definitions

  • the present invention relates to a bottom-mounted undulating gate.
  • a relief gate is provided on the bottom of the entrance of the port or the like.
  • air is supplied to the inside of the door which is lying down on the bottom of the water, so that the door pivots around the rotation axis provided on the bottom of the bottom.
  • a relief gate type in which a door body in which a plurality of door body blocks are arranged in parallel in the width direction is raised by the buoyancy of an air chamber provided at the tip of the door body.
  • a breakwater and a mooring device for mooring the doors of the relief gate breakwater are described.
  • the door in the fallen state can stand up by the buoyancy of the air chamber, and the fallen state is maintained by the mooring device. Therefore, when mooring by the mooring device is released, the door body stands up due to the buoyancy of the air chamber.
  • the present invention is directed to a bottom-mounted relief gate, and it is possible to quickly erect a fallen door even if the ability of the air supply device for supplying air to the air chamber inside the door is not very high.
  • the main purpose is to
  • a water floor installation type hoisting gate comprising: a door body which rises and falls when the movable end portion pivots with a supporting end portion disposed at the water bottom as a fulcrum; And a mooring section to be moored.
  • a first buoyancy chamber disposed between the movable end and the support end, and a second buoyancy chamber disposed between the first buoyancy chamber and the support end; And a buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber.
  • the buoyancy chamber connection is opened in an overturned state in which the door body is laid down more than in a moored state where the door body is moored to the mooring portion. According to the bottom mounted lift gate, the fallen door can be quickly returned to the moored state.
  • a water floor installation type hoisting gate comprising: a door body which rises and falls when the movable end portion pivots with a supporting end portion disposed at the water bottom as a fulcrum; And a mooring section to be moored.
  • a first buoyancy chamber disposed between the movable end and the support end, and a second buoyancy chamber disposed between the first buoyancy chamber and the support end; And a buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber.
  • the air in the first buoyancy chamber is replaced with water, whereby the door moves to an overturned state which is more laid than in the moored state moored at the mooring portion.
  • the buoyancy chamber connection is opened, and part of the air in the second buoyancy chamber is moved to the first buoyancy chamber via the buoyancy chamber connection.
  • the buoyancy chamber connection is closed by the transition of the door from the over-collapsed state to the moored state.
  • the bottom mounted undulation gate further includes a door contact portion installed at the bottom of the water.
  • the buoyancy chamber connecting portion includes a partition opening provided in a partition between the first buoyancy chamber and the second buoyancy chamber, and a partition gate overlapping the partition opening and closing the partition opening.
  • the door contact portion contacts the partition gate to move the partition gate from a position overlapping the partition opening, and the buoyancy chamber connection is opened.
  • the door when the door is in the over-collapsed state and the buoyancy chamber connection portion is opened, the door is transferred from the over-collapsed state to the moored state.
  • the underwater floor-mounted relief gate further includes an underwater storage unit that stores air below the door in the over-collapsed state.
  • the air stored in the underwater storage unit is used to replenish air to the second buoyancy chamber.
  • the underwater floor-mounted relief gate further includes a lift measurement unit that measures the lift of the door in the moored state. If the lift force of the door is less than a predetermined threshold, air is supplied to the first buoyancy chamber.
  • the bottom mounted undulation gate further comprises an air supply unit for supplying air to the second buoyancy chamber.
  • the first buoyancy chamber has a first opening that opens to the lower surface of the door.
  • the second buoyancy chamber has a second opening that opens to the lower surface of the door.
  • a guide portion extending from the second opening to the first opening is provided on the lower surface of the door. Air supplied from the air supply unit to the second buoyancy chamber overflows downward from the second opening, is guided to the guide unit, and is supplied from the first opening to the first buoyancy chamber.
  • an exhaust unit is provided for openably connecting the first buoyancy chamber and the outside of the door.
  • the position of the exhaust port in the first buoyancy chamber of the exhaust unit is variable with respect to the thickness direction of the door.
  • a bottom mounted lift gate according to the present invention, comprises a door body which stands up and falls when the movable end portion pivots with a supporting end portion located at the bottom of the water as a fulcrum; And an air supply unit for supplying the air.
  • the door includes a buoyancy chamber disposed between the movable end and the support end.
  • the air supply unit includes an underwater storage unit having a lid-like cylindrical shape that stores air at a lower side than the door in a collapsed state. The air stored in the underwater storage portion is supplied to the buoyancy chamber of the door in the collapsed state.
  • FIG. 1 is a longitudinal sectional view showing a corrugated gate 1 according to an embodiment of the present invention.
  • the relief gate 1 is a bottom-mounted relief gate provided on the bottom of the entrance of a port or waterway or the like in order to prevent a tsunami or storm surge or the like from flowing into the port or waterway or the like.
  • the application of parallel oblique lines is omitted in part of the configuration of the relief gate 1. The same applies to FIGS. 4 to 8 described later.
  • the side on which water flows in at the time of water increase in the undulation gate 1 (that is, the upstream side of the inflow direction of water, for example, the offshore side of the undulation gate 1) is referred to as the “front side”.
  • the downstream side of the inflow direction of water in 1 (for example, the land side of the undulating gate 1) is called “rear side”. That is, the left-right direction in FIG. 1 is the “front-rear direction”, and the left side and the right side in FIG. 1 are the “front side” and the “rear side”, respectively.
  • a direction perpendicular to the paper surface in FIG. 1 is referred to as “width direction”.
  • the width direction is perpendicular to the longitudinal direction, and the longitudinal direction and the width direction are perpendicular to the vertical direction.
  • the vertical direction in FIG. 1 is substantially parallel to the gravity direction.
  • the relief gate 1 includes a box 11, a door 2, a mooring portion 31, a lift measurement portion 32, a door contact portion 4, and an air supply portion 5.
  • the box 11 is a structure having a recess 12 on the upper surface, and is embedded in the water bottom. The upper surface of the box 11 is located at substantially the same height as the water bottom.
  • a door 2, a mooring portion 31, a lift measurement portion 32, a door contact portion 4 and the like are disposed in the recess 12 of the box 11, a door 2, a mooring portion 31, a lift measurement portion 32, a door contact portion 4 and the like are disposed.
  • the mooring portion 31 and the levitation force measurement portion 32 are installed, for example, on the front side surface of the recess 12.
  • the door contact portion 4 is installed, for example, on the bottom surface (that is, the bottom of the water) of the recess 12.
  • the door 2 is a substantially rectangular parallelepiped member.
  • the door 2 stands up and falls by the rotation of the movable end 24 around the rotation axis J1 of the support end 23 disposed in the recess 12 (that is, in the bottom of the water).
  • the support end 23 is the rear end of the door 2
  • the movable end 24 is the front end of the door 2.
  • a solid line indicates a state in which the door 2 falls into water and is moored by the mooring portion 31.
  • the direction perpendicular to the width direction and connecting the supporting end 23 of the door 2 and the movable end 24 is referred to as the “longitudinal direction” of the door 2.
  • the state of the door 2 (that is, the posture of the door 2) shown by a solid line in FIG.
  • the longitudinal direction of the door 2 is the same as the longitudinal direction.
  • the state of the door 2 shown with a dashed-two dotted line in FIG. 1 is called "a standing state.”
  • the moored door 2 is turned clockwise in FIG. 1 about the rotation axis J1 extending substantially in parallel in the width direction by being released from mooring by the mooring portion 31 to be in an upright state.
  • the door 2 is maintained in an upright state by the balance between its own weight and the buoyancy.
  • the door 2 in the upright state is supported by, for example, a door stopper or a tension rod (not shown).
  • the angle between the upright door 2 and the horizontal surface may be set as appropriate in a range of greater than 0 degrees and not more than 90 degrees.
  • the door 2 in the moored state extends in the front-rear direction and the width direction. As described above, the door 2 in the moored state is accommodated in the recess 12 of the box 11.
  • the position in the vertical direction of the upper surface (hereinafter referred to as "first main surface 21") of the door 2 in the moored state is, for example, substantially the same as the position in the vertical direction of the upper surface of the box 11 around the recess 12. is there.
  • the lower surface (hereinafter, referred to as “second main surface 22”) of the door 2 in the moored state is separated upward from the bottom surface of the recess 12.
  • the first main surface 21 and the second main surface 22 of the door 2 are substantially flat members substantially perpendicular to the vertical direction.
  • the door 2 includes a first buoyancy chamber 25, a second buoyancy chamber 26, a buoyancy chamber connection portion 27, and an exhaust portion 28.
  • the first buoyancy chamber 25 is disposed between the movable end 24 and the support end 23 of the door 2.
  • the second buoyancy chamber 26 is disposed between the first buoyancy chamber 25 and the support end 23.
  • the first buoyancy chamber 25 and the second buoyancy chamber 26 are formed by dividing a space between the first major surface 21 and the second major surface 22 by a partition 270 extending in the width direction.
  • the surface on the first buoyancy chamber 25 side of the partition wall 270 is inclined from the support end 23 to the movable end 24 as it goes from the first major surface 21 to the second major surface 22. It is a face.
  • the buoyancy chamber connection portion 27 is disposed between the first buoyancy chamber 25 and the second buoyancy chamber 26 and opensably connects the first buoyancy chamber 25 and the second buoyancy chamber 26.
  • the buoyancy chamber connection 27 is closed, and the first buoyancy chamber 25 and the second buoyancy chamber 26 are It does not communicate. Further, when the door 2 is in the over-folded state described later, the buoyancy chamber connection portion 27 is opened, and the first buoyancy chamber 25 and the second buoyancy chamber 26 communicate with each other through the buoyancy chamber connection portion 27.
  • the buoyancy chamber connection portion 27 is provided in the partition wall 270 between the first buoyancy chamber 25 and the second buoyancy chamber 26.
  • the buoyancy chamber connection 27 includes a partition opening 271 and a partition gate 272.
  • the partition opening 271 is an opening provided in the partition 270.
  • the partition gate 272 is, for example, a plate-like member larger than the partition opening 271, and overlaps the partition opening 271 to close the partition opening 271.
  • the partition gate 272 is attached to the surface of the partition 270 on the side of the first buoyancy chamber 25.
  • the partition gate 272 is pivotable about a rotation axis provided at the upper end.
  • the lower end of the partition gate 272 is a movable end that can be separated from the partition 270. That is, the partition gate 272 is an upper hinge type flap gate.
  • the partition gate 272 contacts the surface on the first buoyancy chamber 25 side of the partition 270 by its own weight. And the partition opening 271 is closed.
  • the partition gate 272 pivots clockwise in FIG. 1 and separates from the partition 270, the closure of the partition opening 271 by the partition gate 272 is released, and the buoyancy chamber connection 27 is opened.
  • the first buoyancy chamber 25 has a first opening 251 opened to the second major surface 22.
  • the first opening 251 is disposed in the vicinity of the partition wall 270.
  • the first opening 251 is provided on the second major surface 22 at the lower end portion of the first buoyancy chamber 25 in the door 2 in the upright state.
  • the first buoyancy chamber 25 has an airtight structure except for the first opening 251.
  • the partition gate 272 of the buoyancy chamber connection portion 27 is located above the first opening 251. In the door 2, the buoyancy chamber connection 27 can be accessed through the first opening 251.
  • the second buoyancy chamber 26 has a second opening 261 opened to the second major surface 22.
  • the second opening 261 is disposed in the vicinity of the support end 23.
  • the second opening 261 is provided on the second main surface 22 at the lower end portion of the second buoyancy chamber 26 in the door 2 in the upright state.
  • the second opening 261 is provided at the longitudinal end of the second buoyancy chamber 26 opposite to the first buoyancy chamber 25.
  • the second buoyancy chamber 26 has an airtight structure except for the second opening 261.
  • FIG. 2 is a perspective view showing a part of the second main surface 22 of the door 2.
  • portions of the second major surface 22 in the vicinity of the first opening 251 and the second opening 261 are shown.
  • the first opening 251 and the second opening 261 are hatched in parallel.
  • the first opening 251 and the second opening 261 are located, for example, at the central portion in the width direction of the door 2.
  • Each of the first opening 251 and the second opening 261 is, for example, a substantially rectangular opening.
  • the shapes of the first opening 251 and the second opening 261 may be variously changed.
  • a guide portion 221 extending from the first opening 251 to the second opening 261 is provided on the second main surface 22 of the door 2 (that is, the lower surface of the door 2 in the moored state).
  • the guide portion 221 includes a pair of first guide members 222 and a pair of second guide members 223.
  • Each of the first guide member 222 and the second guide member 223 is a plate which protrudes substantially vertically downward from the second main surface 22 (that is, protrudes toward the outside of the door 2) in the door 2 in the moored state Shaped members.
  • illustration of the guide portion 221 is omitted.
  • the pair of first guide members 222 are disposed on both sides in the width direction of the first opening 251 and the second opening 261, and extend substantially parallel to the longitudinal direction.
  • the pair of guide portions 221 extend substantially in parallel in the longitudinal direction from the front end of the first opening 251 to the rear end of the second opening 261 in the door 2 in the anchored state.
  • the pair of second guide members 223 extend substantially in parallel in the width direction. In the door 2 in the anchored state, one second guide member 223 is disposed along the front end edge of the first opening 251, and the other second guide member 223 is along the rear end edge of the second opening 261. Be placed.
  • the pair of first guide members 222 and the pair of second guide members 223 surround a region extending in the longitudinal direction from the first opening 251 to the second opening 261 on the second major surface 22.
  • the pair of second guide members 223 may be omitted.
  • FIG. 3 is a perspective view showing the vicinity of the movable end 24 of the door 2.
  • An exhaust unit 28 is provided at the movable end 24 of the door 2 (that is, the upper end of the first buoyancy chamber 25 of the door 2 in the upright state).
  • the exhaust unit 28 opensably connects the first buoyancy chamber 25 and the space outside the door 2. In the moored door 2, the exhaust 28 is closed.
  • the exhaust unit 28 includes an exhaust pipe 281 and an exhaust valve 282.
  • the exhaust pipe 281 includes a first portion 283 extending in the longitudinal direction of the door 2 and a second portion 284 extending in a direction substantially perpendicular to the first portion 283 from an end of the first portion 283.
  • the exhaust pipe 281 is a substantially L-shaped pipe.
  • the second portion 284 is disposed in the first buoyancy chamber 25.
  • the second portion 284 indicated by a broken line in FIG. 3 extends in the width direction substantially parallel to the first major surface 21 of the door 2 in the anchored state.
  • the end opening of the second portion 284 is an exhaust port 285 in the first buoyancy chamber 25 of the exhaust unit 28.
  • the first portion 283 penetrates the front end wall of the first buoyancy chamber 25 in the moored door 2 and protrudes from the inside of the first buoyancy chamber 25 to the outside of the door 2.
  • the space between the first portion 283 and the movable end 24 is sealed in a watertight and airtight manner.
  • the exhaust valve 282 is provided, for example, at the first portion 283 of the exhaust pipe 281 outside the first buoyancy chamber 25. By opening the exhaust valve 282, the first buoyancy chamber 25 and the space outside the door 2 communicate with each other through the exhaust pipe 281. When the exhaust valve 282 is closed, the first buoyancy chamber 25 and the space outside the door 2 do not communicate with each other at the exhaust portion 28.
  • the exhaust pipe 281 is pivotable about the first portion 283 from a position shown by a solid line and a broken line in FIG. 3 to a position shown by a two-dot chain line.
  • the second portion 284 indicated by a two-dot chain line in FIG. 3 extends in a direction (that is, downward) away from the first major surface 21 of the door 2 in the anchored state.
  • the thickness direction of the door 2 that is, a direction perpendicular to the longitudinal direction and the width direction of the door 2
  • the position of the exhaust port 285 is changed.
  • the mooring portion 31 shown in FIG. 1 anchors the door 2 to the bottom of the water by locking the movable end 24 of the door 2 with a hook member or the like.
  • water is present to about half the thickness of the door 2 on the bottom of the first buoyancy chamber 25 (that is, on the second main surface 22)
  • About half of the volume of the first buoyancy chamber 25 is stored in the upper part of the first buoyancy chamber 25.
  • a small amount of water is present on the bottom of the second buoyancy chamber 26 (that is, on the second major surface 22), and air is stored in substantially the entire second buoyancy chamber 26.
  • the force acting on is larger than the force acting in the direction of settling the door 2 like the weight of the door 2 or the like.
  • the force obtained by subtracting the force acting in the direction of sinking the door 2 from the force acting in the direction of lifting the door 2 is referred to as “lifting force”.
  • a moment hereinafter, referred to as a “rising moment” that acts in the direction of raising the door 2 is generated by the lifting force.
  • the levitation force measurement unit 32 measures the levitation force of the door 2 in the moored state, for example, by measuring the force applied from the door 2 to the mooring portion 31.
  • the levitation force measurement unit 32 indirectly estimates the levitation force of the door 2 by estimating the force applied from the door 2 to the mooring portion 31 based on, for example, the state of the mooring portion 31 (the inclination of the hook member or the like). It may be measured.
  • the door contact portion 4 is disposed in the space between the second main surface 22 of the door 2 and the bottom of the recess 12 below the door 2 in the moored state.
  • the door contact portion 4 is, for example, a substantially cylindrical or substantially rectangular columnar member that protrudes upward substantially perpendicularly from the bottom surface of the recess 12.
  • the upper end of the door contact portion 4 is located below the second main surface 22 of the door 2 in the moored state, and the door contact portion 4 is not in contact with the door 2 in the moored state.
  • the door contact portion 4 is located below the first opening 251 of the door 2 in the moored state.
  • the door contact portion 4 protrudes from the bottom surface of the recess 12 toward the first opening 251 of the door 2 in the anchored state. Furthermore, in other words, the door contact portion 4 overlaps the first opening 251 of the door 2 in a moored state in plan view. In plan view, the door contact portion 4 is smaller than the first opening 251 of the door 2 in the moored state.
  • the air supply unit 5 supplies air to the door 2.
  • the air supply unit 5 includes an underwater storage unit 51, a compressor 52, a pressure gauge 53, and an air supply pipe 54.
  • the compressor 52 and the pressure gauge 53 are disposed on land. In FIG. 1, for the sake of convenience, the compressor 52 and the pressure gauge 53 are drawn above the water surface 91 outside the door 2.
  • the underwater storage portion 51 is disposed in a space between the second main surface 22 of the door 2 and the bottom surface of the recess 12 below the door 2 in the moored state (that is, the door 2 in the collapsed state). .
  • the underwater storage portion 51 is fixed to the bottom surface of the recess 12.
  • the upper end of the underwater storage unit 51 is located below the second main surface 22 of the door 2 in the moored state.
  • the underwater storage unit 51 is not in contact with the moored door 2.
  • the air supply pipe 54 connects the compressor 52 and the underwater storage unit 51.
  • the compressor 52 is driven so that air is supplied to the underwater storage unit 51 via the air supply pipe 54 and is stored in the underwater storage unit 51.
  • the underwater storage portion 51 is a cylindrical member with a lid that extends in the vertical direction, and opens downward.
  • the underwater storage unit 51 is a covered substantially cylindrical member.
  • the air supplied from the compressor 52 to the underwater storage unit 51 is stored in a space surrounded by the canopy and the side wall of the underwater storage unit 51.
  • the pressure gauge 53 is connected to, for example, the air supply pipe 54, and measures the pressure in the water reservoir 51.
  • the air supply unit 5 based on the measurement value by the pressure gauge 53, it is determined whether or not a predetermined amount of air is stored in the underwater storage unit 51.
  • the compressor 52 is driven and air is supplied to the underwater storage unit 51.
  • the compressor 52 is stopped.
  • the air supply unit 5 when the amount of air in the underwater storage unit 51 decreases more than a predetermined amount due to, for example, air leaking from the underwater storage unit 51 against the intention, the compressor 52 based on the measured value by the pressure gauge 53. Is driven to supply air to the underwater storage unit 51. As a result, it is possible to maintain the state where the predetermined amount of air is stored in the underwater storage unit 51.
  • the underwater storage unit 51 is located below the second opening 261 of the door 2 in the moored state. In other words, the underwater storage portion 51 protrudes from the bottom surface of the recess 12 toward the second opening 261 of the door 2 in the moored state.
  • the canopy of the underwater storage unit 51 is provided with an air discharge port that releases the air in the underwater storage unit 51 by opening the canopy. The air discharge port overlaps the second opening 261 of the door 2 in a moored state in plan view.
  • the air stored in the water storage portion 51 is used for the replenishment of air to the second buoyancy chamber 26 as described later.
  • the door 2 in which the rising moment is acting by the air in the first buoyancy chamber 25 and the second buoyancy chamber 26 is moored by the mooring portion 31.
  • the door 2 shown by a solid line in FIG. 1 is in a standby state where it can stand up.
  • the door 2 is turned clockwise in FIG. 1 by releasing the mooring of the door 2 by the mooring portion 31, and stands up as shown in FIG.
  • the upper part of the door 2 in the upright state protrudes upward from the water surface 91 of the outside of the door 2.
  • the water surface 91 is located above the first opening 251 of the door 2.
  • the door 2 which stood up is supported from the front by the door stopper (illustration omitted) which stood up in the front side of the door 2 as mentioned above.
  • the above-mentioned door stopper is separated from the door 2 and laid on the bottom of the recess 12. Subsequently, when the exhaust unit 28 is opened, water flows into the first buoyancy chamber 25 from the first opening 251 located below the water surface 91, and the air in the first buoyancy chamber 25 is exhausted. Is discharged to the outside of the door 2 through the In other words, the air in the first buoyancy chamber 25 is replaced by water. As described above, since the buoyancy chamber connection 27 is closed, the water in the first buoyancy chamber 25 does not flow into the second buoyancy chamber 26 via the buoyancy chamber connection 27.
  • the air in the first buoyancy chamber 25 is replaced with water, so that the weight of the door 2 is larger than the buoyancy acting on the door, and the door 2 starts to fall. .
  • the door 2 falls toward the bottom of the water while most of the air in the first buoyancy chamber 25 is released, and the door 2 is also referred to as a position shown in FIG. After passing through), as shown in FIG. 6, it shifts to a fallen state (hereinafter referred to as “over-collapsed state”) rather than a moored state.
  • the above-described predetermined amount of air is stored in advance in the underwater storage portion 51 located below the door 2 in the excessively fallen state.
  • the upper end portion of the door contact portion 4 enters the first buoyancy chamber 25 through the first opening 251.
  • the upper end portion of the door contact portion 4 contacts the lower end portion of the partition gate 272 in the first buoyancy chamber 25 and moves the lower end portion of the partition gate 272 upward.
  • the partition gate 272 pivots clockwise in FIG. 6 about the rotation axis of the upper end, and moves from a position overlapping the partition opening 271 to a position away from the partition opening 271.
  • the buoyancy chamber connection 27 is automatically opened in the overturned door 2.
  • the door 2 moved to the mooring position is moored by the mooring portion 31 and is in a moored state.
  • the door 2 in the moored state shown in FIG. 8 has a floating force and is in a standby state where it can stand up.
  • the door contact portion 4 is separated from the bulkhead gate 272 by the transition of the door 2 from the overturned state to the moored state.
  • the partition gate 272 pivots by its own weight and returns to a position overlapping the partition opening 271, closing the partition opening 271.
  • the buoyancy chamber connection 27 is automatically closed.
  • the air discharge port of the water storage portion 51 is opened, whereby the air stored in advance in the water storage portion 51 flows upward and is supplied to the second buoyancy chamber 26 through the second opening 261. Be done. Thereby, the floating force of the door 2 is increased.
  • the amount of air supplied from the underwater storage unit 51 to the second buoyancy chamber 26 is, for example, air moved from the second buoyancy chamber 26 to the first buoyancy chamber 25 in a state where the buoyancy chamber connection 27 is open. Approximately equal to the amount of (hereinafter referred to as "moving air volume").
  • moving air volume Approximately equal to the amount of (hereinafter referred to as "moving air volume").
  • the second buoyancy chamber 26 an amount of water corresponding to the inflow of air from the underwater storage unit 51 flows out from the second opening 261. As a result, as shown in FIG. 1, air is stored in substantially the entire second buoyancy chamber 26. On the bottom of the second buoyancy chamber 26, a small amount of water is present. As described above, since the buoyancy chamber connection portion 27 is closed, the air in the second buoyancy chamber 26 does not move to the first buoyancy chamber 25 via the buoyancy chamber connection portion 27.
  • the lifting force of the door 2 is continuously measured by the lifting force measurement unit 32.
  • the door body 2 comes to have a predetermined levitation force by replenishing the second buoyancy chamber 26 with air from the underwater storage portion 51
  • the door is obtained based on the output from the levitation force measurement portion 32. It is determined that the body 2 is in a moored state having a predetermined lift.
  • the supply of air from the underwater storage unit 51 to the second buoyancy chamber 26 is stopped. Further, air is supplied to the underwater storage unit 51 by the compressor 52 of the air supply unit 5 and stored in the underwater storage unit 51.
  • the air discharge port of the underwater storage unit 51 is slightly opened, and the air that is slowly leaked from the underwater storage unit 51 is the second buoyancy chamber 26. May be supplied continuously.
  • the relief gate 1 includes the door 2 and the mooring portion 31.
  • the door 2 stands up and falls when the movable end 24 pivots with the support end 23 disposed at the bottom of the water as a fulcrum.
  • the mooring portion 31 moors the door 2 to the bottom of the water.
  • the door 2 includes a first buoyancy chamber 25, a second buoyancy chamber 26, and a buoyancy chamber connection 27.
  • the first buoyancy chamber 25 is disposed between the movable end 24 and the support end 23.
  • the second buoyancy chamber 26 is disposed between the first buoyancy chamber 25 and the support end 23.
  • the buoyancy chamber connection portion 27 opensably connects the first buoyancy chamber 25 and the second buoyancy chamber 26.
  • the buoyancy chamber connection portion 27 is opened in the over-falling state in which the door 2 is folded more than the mooring state in which the door 2 is moored to the mooring portion 31.
  • the door 2 that has fallen from the upright state can be promptly returned to the moored state (that is, the standby state in which the door can be stood up).
  • the function loss period that is, the period in which the door 2 can not be raised
  • the safety of the harbor where the relief gate 1 is installed can be improved.
  • the air in the first buoyancy chamber 25 is replaced with water in the door 2 in the upright state, so that the door 2 is more moored than in the moored state anchored to the mooring portion 31. Transition to a fallen overfall state.
  • the buoyancy chamber connection 27 is opened, and part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25 via the buoyancy chamber connection 27. Do. And, by moving the door 2 from the overturned state to the moored state, the buoyancy chamber connection portion 27 is closed.
  • the function loss period of the undulation gate 1 can be shortened, and the safety of the port or the like where the undulation gate 1 is installed can be improved.
  • the relief gate 1 further includes a door contact portion 4 installed at the bottom of the water.
  • the buoyancy chamber connection 27 includes a partition opening 271 and a partition gate 272.
  • the partition opening 271 is provided in the partition 270 between the first buoyancy chamber 25 and the second buoyancy chamber 26.
  • the partition gate 272 overlaps the partition opening 271 and closes the partition opening 271.
  • the door contact portion 4 contacts the partition gate 272 and moves the partition gate 272 from a position overlapping the partition opening 271.
  • the buoyancy chamber connection 27 is opened.
  • the buoyancy chamber connection 27 can be automatically opened without power by using the change in the attitude of the door 2.
  • the structure of the undulating gate 1 can be simplified as compared with the case where the opening mechanism of the buoyancy chamber connection portion 27 is remotely driven by electric power or the like. Also, the failure rate of the relief gate 1 can be reduced.
  • the door 2 In the undulating gate 1, the door 2 is in the overturned state and the buoyancy chamber connection portion 27 is opened, whereby the door 2 shifts from the overturned state to the moored state.
  • the door 2 can be promptly returned to the moored state without supplying air from the outside to the door 2 in the overturned state.
  • the relief gate 1 further includes an underwater storage unit 51 that stores air at a lower side than the over-falling door 2.
  • the air stored in the water storage portion 51 is used to replenish air to the second buoyancy chamber 26.
  • the underwater storage part 51 is opened in the lower side by a covered cylinder shape. Thereby, the required amount of air can be easily stored in the underwater storage unit 51 while simplifying the structure of the underwater storage unit 51.
  • an exhaust unit 28 is provided at the upper end portion of the first buoyancy chamber 25 in the door 2 in the upright state, for connecting the first buoyancy chamber 25 and the outside of the door 2 in an openable manner.
  • the position of the exhaust port 285 in the first buoyancy chamber 25 of the exhaust unit 28 is variable with respect to the thickness direction of the door 2.
  • the falling speed of the door 2 at the time when the door 2 is in an overturned state that is, at the time of landing on the water bottom of the door 2 It is possible to reduce the impact applied to the door 2 at the time of landing.
  • the sediment carried by the water flow and the like is accumulated on the door 2 in a moored state, and the floating force of the door 2 is reduced.
  • the measurement value of the lifting force of the door 2 output from the lifting force measurement unit 32 decreases.
  • air is supplied from the air supply unit 5 to the first buoyancy chamber 25.
  • the air discharge port of the water reservoir 51 is opened, and air is supplied to the second buoyancy chamber 26 first.
  • a small amount of water remaining in the second buoyancy chamber 26 flows out through the second opening 261, and the second buoyancy chamber 26 is filled with air.
  • the air overflowing downward from the second opening 261 that is, the air overflowing from the inside of the second buoyancy chamber 26 via the second opening 261, and can flow into the second buoyancy chamber 26 from the second opening 261
  • the air (which was not) is guided by the guide portion 221 along the second main surface 22 to the first opening 251, and is supplied from the first opening 251 to the first buoyancy chamber 25.
  • the lift of the door 2 is increased.
  • the measurement value of the levitation force by the levitation force measurement unit 32 becomes equal to or more than the above-described threshold value, the supply of air from the underwater storage unit 51 is stopped.
  • the relief gate 1 further includes a lift force measurement unit 32 that measures the lift force of the door 2 in the moored state. As a result, it is possible to check whether the door 2 can be raised without actually raising the door 2.
  • air is supplied to the first buoyancy chamber 25 when the lift force of the door 2 is less than the predetermined threshold. As a result, even if the floating force of the door 2 is reduced due to dirt and the like accumulated on the door 2, the floating force of the door 2 can be recovered easily and quickly.
  • the relief gate 1 further includes the air supply unit 5 that supplies air to the second buoyancy chamber 26.
  • the first buoyancy chamber 25 has a first opening 251 opened to the second main surface 22 of the door 2 (that is, the lower surface of the door 2 in the collapsed state).
  • the second buoyancy chamber 26 has a second opening 261 that opens to the second main surface 22 of the door 2.
  • the second main surface 22 of the door 2 is provided with a guide portion 221 extending from the second opening 261 to the first opening 251. Then, the air supplied from the air supply unit 5 to the second buoyancy chamber 26 overflows downward from the second opening 261, is guided to the guide portion 221, and is supplied from the first opening 251 to the first buoyancy chamber 25.
  • the mechanism can be used to supply air to the second buoyancy chamber 26 (that is, the water reservoir 51 or the like), and air can also be supplied to the first buoyancy chamber 25 with a simple structure.
  • the structure which changes the position of the exhaust port 285 regarding the thickness direction of the door 2 may be changed variously.
  • a plurality of exhaust ports 285 are provided at different positions in the thickness direction of the door 2, and one exhaust port 285 is selectively used among the plurality of exhaust ports 285.
  • the position of the exhaust port 285 in the thickness direction of the door 2 may be made variable.
  • the position of the exhaust port 285 does not necessarily have to be variable, and may be fixed.
  • the bulkhead gate 272 does not have to be an upper hinged flap gate, but may be a gate of various structures.
  • the partition gate 272 may be a slide gate sliding along the partition 270.
  • the partition gate 272 may be a roller gate having rollers attached on both sides in the width direction and moving along the partition 270 as the roller rotates.
  • the amount of air supplied from the submersible storage unit 51 to the second buoyancy chamber 26 after the door 2 shifts from the overturned state to the moored state is the first amount of air from the second buoyancy chamber 26 via the buoyancy chamber connection 27. It may be larger than the amount of air moved to the buoyancy chamber 25 (ie, the amount of moving air). In this case, the air overflowing downward from the second opening 261 is, for example, guided by the guide portion 221 along the second main surface 22 to the first opening 251, and from the first opening 251 to the first buoyancy chamber 25. Supplied.
  • the door 2 in the door 2 in the excessively fallen state, the door 2 is moored by moving part of the air of the second buoyancy chamber 26 to the first buoyancy chamber 25 via the buoyancy chamber connection 27.
  • the door 2 does not necessarily need to transfer to an anchoring state only by the movement of the air between buoyancy chambers.
  • the door 2 may be maintained in the over-collapsed state. In this case, air is supplied from the submersible storage unit 51 to the second buoyancy chamber 26 of the door 2 in the overturned state, whereby the door 2 shifts from the overturned state to the moored state.
  • the air overflowing downward from the second opening 261 is By being guided to the guide portion 221 and being supplied to the first buoyancy chamber 25 from the first opening 251, the door 2 may transition from the over-falling state to the mooring state.
  • the structure of the guide portion 221 for guiding the air overflowing downward from the second opening 261 to the first opening 251 may be variously changed.
  • a substantially semi-cylindrical member extending in the longitudinal direction may be attached to the second main surface 22 of the door 2 as a guide portion 221 extending from the second opening 261 to the first opening 251.
  • the air overflowing downward from the second opening 261 is led to the first opening 251 through the substantially semi-cylindrical space between the substantially semi-cylindrical member and the second major surface 22.
  • the supply of air from the air supply unit 5 to the first buoyancy chamber 25 does not necessarily have to go through the guide portion 221.
  • another underwater storage unit 51 is provided below the first opening 251 of the door 2 in the moored state, and air is directly supplied from the other underwater storage unit 51 to the first buoyancy chamber 25. May be In this case, the guide portion 221 may be omitted.
  • the shape of the water storage portion 51 does not necessarily have to be in the form of a cylindrical lid that opens downward, and may be variously changed.
  • the underwater storage unit 51 may be an airtight tank that does not open toward the outside.
  • the supply of air from the air supply unit 5 to the second buoyancy chamber 26 does not necessarily have to go through the underwater storage unit 51.
  • the air delivered from the compressor 52 may be supplied directly to the second buoyancy chamber 26 via a pipe connecting the compressor 52 and the second buoyancy chamber 26.
  • the structure of the buoyancy chamber connection 27 may be varied in many ways.
  • the buoyancy chamber connection part 27 may be provided with piping which connects the 1st buoyancy chamber 25 and the 2nd buoyancy chamber 26, for example, and a valve provided in the piping concerned.
  • the door contact portion 4 contacts the drive portion of the valve to open the valve.
  • a part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25.
  • the door contact part 4 will be separated from the drive part of the said valve, and a valve will be closed.
  • the opening and closing of the buoyancy chamber connection 27 need not necessarily be performed by the contact and separation of the door contact 4.
  • a sensor for detecting whether or not the door 2 is in the over-falling state is provided in the box 11 or the like, and when the sensor detects that the door 2 is in the over-falling state, the above-described valve
  • the drive unit (for example, a motorized valve) may be driven based on the output from the sensor to open the valve. Then, when the door 2 shifts from the overturned state to the moored state, the drive portion of the valve is driven based on the output from the sensor, and the valve is closed.
  • the above-described structure of the air supply unit 5 is applicable if it is a bottom-mounted undulating gate having one or more buoyancy chambers in the door body.
  • the water bottom installation type hoisting gate includes a door body which stands up and falls when the movable end portion is pivoted around a supporting end portion disposed on the water bottom, and an air supply unit which supplies air to the door body. .
  • the door includes a buoyancy chamber disposed between the movable end and the support end.
  • the said air supply part is provided with the underwater storage part opened below with a covered cylindrical shape which stores air on the lower side than the door in the fallen state. Then, the air stored in the underwater storage portion is supplied to the buoyancy chamber of the door which is in the lying state.
  • the bottom-mounted undulation gate air can be supplied to the buoyancy chamber only by releasing the air stored in the water storage section into the water, and therefore, compared to the case where the air is pumped from land equipment or the like. Air can be quickly supplied to the fallen door. In addition, the required amount of air can be easily stored in the underwater storage while simplifying the structure of the underwater storage.
  • the mooring part which moors a door body may be provided in the said water bottom installation type undulation gate, and does not need to be provided.
  • the number of buoyancy chambers may be one or two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)

Abstract

A flap gate (1) comprises a door (2) and a mooring (31). The door (2) rises up or drops down by way of a movable end (24) pivoting about a fulcrum constituted by a support end (23) disposed on the water bottom. The mooring (31) anchors the door (2) to the water bottom. The door (2) comprises a first buoyancy chamber (25), a second buoyancy chamber (26), and a buoyancy chamber connector (27). The first buoyancy chamber (25) is disposed between the movable end (24) and the support end (23). The second buoyancy chamber (26) is disposed between the first buoyancy chamber (25) and the support end (23). The buoyancy chamber connector (27) connects the first buoyancy chamber (25) and the second buoyancy chamber (26) in a manner in which both chambers remain openable. The buoyancy chamber connector (27) is released in a state in which the door (2) has dropped down further than an anchored state of being anchored by the mooring (31). In this way, the door (2) that has dropped down from a risen state can be reset to the anchored state quickly.

Description

水底設置型起伏ゲートBottom-mounted undulation gate
 本発明は、水底設置型起伏ゲートに関する。 The present invention relates to a bottom-mounted undulating gate.
 従来、津波または高潮等が港湾等に流入することを防止するために、港湾等の出入口の水底に起伏ゲートが設けられている。水底設置型起伏ゲートでは、水底に倒伏している扉体の内部に空気を供給することにより、水底に設けられた回転軸を中心として扉体が回動して起立する。 Conventionally, in order to prevent a tsunami or high tide and the like from flowing into a port or the like, a relief gate is provided on the bottom of the entrance of the port or the like. In the bottom mounted lift gate, air is supplied to the inside of the door which is lying down on the bottom of the water, so that the door pivots around the rotation axis provided on the bottom of the bottom.
 例えば、文献1(特開2010-133095号公報)では、幅方向に複数組の扉体ブロックを並設した扉体が、扉体の先端に設けられた空気室の浮力により起立する起伏ゲート式防波堤と、当該起伏ゲート式防波堤の扉体を係留する係留装置が記載されている。 For example, in the document 1 (Japanese Patent Laid-Open No. 2010-133095), a relief gate type in which a door body in which a plurality of door body blocks are arranged in parallel in the width direction is raised by the buoyancy of an air chamber provided at the tip of the door body. A breakwater and a mooring device for mooring the doors of the relief gate breakwater are described.
 ここで、文献1の係留装置を備える起伏ゲート式防波堤では、扉体の先端部に空気室を設けていることから、扉体を起立させるために必要な空気量を比較的少なくすることができる。 Here, in the undulating gate type breakwater provided with the mooring device of Document 1, since the air chamber is provided at the tip of the door, the amount of air necessary for raising the door can be relatively reduced. .
 また、倒伏状態の扉体は空気室の浮力により起立可能な状態となっており、係留装置により倒伏状態が維持されている。このため、係留装置による係留を解除すると、扉体は空気室の浮力により起立する。 In addition, the door in the fallen state can stand up by the buoyancy of the air chamber, and the fallen state is maintained by the mooring device. Therefore, when mooring by the mooring device is released, the door body stands up due to the buoyancy of the air chamber.
 ところで、文献1の起伏ゲート式防波堤において、動作確認などで一旦扉体を倒伏させた場合、倒伏した扉体が再度起立可能な状態となるためには、給気装置から空気室に空気を供給して空気室内の水を排出する必要がある。そして、扉体が起立するために必要な量の空気を空気室に供給する時間は、給気装置の給気能力に依存することになる。 By the way, in the relief gate type breakwater of literature 1, when the door is laid down once by operation check etc., in order for the fallen door to be able to stand up again, air is supplied to the air chamber from the air supply device. It is necessary to drain the water in the air chamber. The time for supplying the air chamber with an amount of air necessary for the door to stand up depends on the air supply capacity of the air supply device.
 このため、給気装置の能力を十分に高くすれば、空気室への空気の供給に要する時間を短くすることができる。一方、経済的な観点から、給気装置の能力をできるだけ小さくしたいという要望もある。 For this reason, if the capacity of the air supply device is sufficiently high, the time required to supply the air to the air chamber can be shortened. On the other hand, there is also a demand to make the capacity of the air supply device as small as possible from an economic point of view.
 本発明は、水底設置型起伏ゲートに向けられており、扉体内部の空気室に給気する給気装置の能力がさほど高くない場合であっても、倒伏した扉体を速やかに起立可能状態にすることを主な目的としている。 The present invention is directed to a bottom-mounted relief gate, and it is possible to quickly erect a fallen door even if the ability of the air supply device for supplying air to the air chamber inside the door is not very high. The main purpose is to
 本発明の好ましい一の形態に係る水底設置型起伏ゲートは、水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、前記扉体を水底に係留する係留部とを備える。前記扉体が、前記可動端部と前記支持端部との間に配置される第1浮力室と、前記第1浮力室と前記支持端部との間に配置される第2浮力室と、前記第1浮力室と前記第2浮力室とを開放可能に接続する浮力室接続部とを備える。前記扉体が前記係留部に係留される係留状態よりも倒伏した過倒伏状態において、前記浮力室接続部が開放される。当該水底設置型起伏ゲートによれば、倒伏した扉体を速やかに係留状態に復帰させることができる。 According to a preferred embodiment of the present invention, there is provided a water floor installation type hoisting gate comprising: a door body which rises and falls when the movable end portion pivots with a supporting end portion disposed at the water bottom as a fulcrum; And a mooring section to be moored. A first buoyancy chamber disposed between the movable end and the support end, and a second buoyancy chamber disposed between the first buoyancy chamber and the support end; And a buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber. The buoyancy chamber connection is opened in an overturned state in which the door body is laid down more than in a moored state where the door body is moored to the mooring portion. According to the bottom mounted lift gate, the fallen door can be quickly returned to the moored state.
 本発明の好ましい他の形態に係る水底設置型起伏ゲートは、水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、前記扉体を水底に係留する係留部とを備える。前記扉体が、前記可動端部と前記支持端部との間に配置される第1浮力室と、前記第1浮力室と前記支持端部との間に配置される第2浮力室と、前記第1浮力室と前記第2浮力室とを開放可能に接続する浮力室接続部とを備える。起立状態の前記扉体において、前記第1浮力室内の空気を水に置換することにより、前記扉体が、前記係留部に係留される係留状態よりも倒伏した過倒伏状態へと移行する。前記扉体が前記過倒伏状態になることにより、前記浮力室接続部が開放されて前記第2浮力室内の空気の一部が前記浮力室接続部を介して前記第1浮力室へと移動し、前記扉体が前記過倒伏状態から前記係留状態へと移行することにより、前記浮力室接続部が閉鎖される。 According to a preferred embodiment of the present invention, there is provided a water floor installation type hoisting gate comprising: a door body which rises and falls when the movable end portion pivots with a supporting end portion disposed at the water bottom as a fulcrum; And a mooring section to be moored. A first buoyancy chamber disposed between the movable end and the support end, and a second buoyancy chamber disposed between the first buoyancy chamber and the support end; And a buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber. In the door in the upright state, the air in the first buoyancy chamber is replaced with water, whereby the door moves to an overturned state which is more laid than in the moored state moored at the mooring portion. When the door is in the over-collapsed state, the buoyancy chamber connection is opened, and part of the air in the second buoyancy chamber is moved to the first buoyancy chamber via the buoyancy chamber connection. The buoyancy chamber connection is closed by the transition of the door from the over-collapsed state to the moored state.
 好ましくは、水底設置型起伏ゲートは、水底に設置された扉体接触部をさらに備える。前記浮力室接続部が、前記第1浮力室と前記第2浮力室との間の隔壁に設けられた隔壁開口と、前記隔壁開口に重なって前記隔壁開口を閉鎖する隔壁ゲートとを備える。前記扉体が前記過倒伏状態になることにより、前記扉体接触部が前記隔壁ゲートに接触して前記隔壁ゲートを前記隔壁開口と重なる位置から移動させ、前記浮力室接続部が開放される。 Preferably, the bottom mounted undulation gate further includes a door contact portion installed at the bottom of the water. The buoyancy chamber connecting portion includes a partition opening provided in a partition between the first buoyancy chamber and the second buoyancy chamber, and a partition gate overlapping the partition opening and closing the partition opening. When the door is in the over-collapsed state, the door contact portion contacts the partition gate to move the partition gate from a position overlapping the partition opening, and the buoyancy chamber connection is opened.
 好ましくは、前記扉体が前記過倒伏状態になって前記浮力室接続部が開放されることにより、前記扉体が前記過倒伏状態から前記係留状態へと移行する。 Preferably, when the door is in the over-collapsed state and the buoyancy chamber connection portion is opened, the door is transferred from the over-collapsed state to the moored state.
 好ましくは、水底設置型起伏ゲートは、前記過倒伏状態の前記扉体よりも下側にて空気を貯留する水中貯留部をさらに備える。前記水中貯留部に貯留されている空気が、前記第2浮力室への空気の補充に利用される。 Preferably, the underwater floor-mounted relief gate further includes an underwater storage unit that stores air below the door in the over-collapsed state. The air stored in the underwater storage unit is used to replenish air to the second buoyancy chamber.
 好ましくは、水底設置型起伏ゲートは、前記係留状態の前記扉体の浮上力を測定する浮上力測定部をさらに備える。前記扉体の浮上力が所定の閾値未満の場合、前記第1浮力室に空気が供給される。 Preferably, the underwater floor-mounted relief gate further includes a lift measurement unit that measures the lift of the door in the moored state. If the lift force of the door is less than a predetermined threshold, air is supplied to the first buoyancy chamber.
 好ましくは、水底設置型起伏ゲートは、前記第2浮力室に空気を供給する空気供給部をさらに備える。前記第1浮力室が前記扉体の下面に開口する第1開口を有する。前記第2浮力室が前記扉体の前記下面に開口する第2開口を有する。前記扉体の前記下面に、前記第2開口から前記第1開口に至るガイド部が設けられる。前記空気供給部から前記第2浮力室に供給された空気が、前記第2開口から下方に溢れ、前記ガイド部に導かれて前記第1開口から前記第1浮力室へと供給される。 Preferably, the bottom mounted undulation gate further comprises an air supply unit for supplying air to the second buoyancy chamber. The first buoyancy chamber has a first opening that opens to the lower surface of the door. The second buoyancy chamber has a second opening that opens to the lower surface of the door. A guide portion extending from the second opening to the first opening is provided on the lower surface of the door. Air supplied from the air supply unit to the second buoyancy chamber overflows downward from the second opening, is guided to the guide unit, and is supplied from the first opening to the first buoyancy chamber.
 好ましくは、起立状態の前記扉体における前記第1浮力室の上端部に、前記第1浮力室と前記扉体の外部とを開放可能に接続する排気部が設けられる。前記扉体の厚さ方向に関して、前記排気部の前記第1浮力室内における排気口の位置が可変である。 Preferably, at the upper end portion of the first buoyancy chamber in the upright door, an exhaust unit is provided for openably connecting the first buoyancy chamber and the outside of the door. The position of the exhaust port in the first buoyancy chamber of the exhaust unit is variable with respect to the thickness direction of the door.
 本発明の好ましい他の形態に係る水底設置型起伏ゲートは、水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、前記扉体に空気を供給する空気供給部とを備える。前記扉体が、前記可動端部と前記支持端部との間に配置される浮力室を備える。前記空気供給部が、倒伏した状態の前記扉体よりも下側にて空気を貯留する有蓋筒状で下方に開口した水中貯留部を備える。倒伏した状態の前記扉体の前記浮力室に、前記水中貯留部に貯留されている空気が供給される。 According to another preferred embodiment of the present invention, a bottom mounted lift gate according to the present invention comprises a door body which stands up and falls when the movable end portion pivots with a supporting end portion located at the bottom of the water as a fulcrum; And an air supply unit for supplying the air. The door includes a buoyancy chamber disposed between the movable end and the support end. The air supply unit includes an underwater storage unit having a lid-like cylindrical shape that stores air at a lower side than the door in a collapsed state. The air stored in the underwater storage portion is supplied to the buoyancy chamber of the door in the collapsed state.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above objects and other objects, features, aspects and advantages of the present invention will become apparent from the detailed description of the present invention given below with reference to the attached drawings.
一の実施の形態に係る起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of the uneven | corrugated gate which concerns on one Embodiment. 扉体の第2主面の一部を示す斜視図である。It is a perspective view which shows a part of 2nd main surface of a door. 扉体の可動端部近傍を示す斜視図である。It is a perspective view which shows the movable edge part vicinity of a door. 起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of a relief gate. 起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of a relief gate. 起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of a relief gate. 起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of a relief gate. 起伏ゲートの縦断面図である。It is a longitudinal cross-sectional view of a relief gate.
 図1は、本発明の一の実施の形態に係る起伏ゲート1を示す縦断面図である。起伏ゲート1は、津波または高潮等が港湾または水路等に流入することを防止するために、港湾または水路等の出入口の水底に設けられる水底設置型起伏ゲートである。図1では、起伏ゲート1の構成の一部において、平行斜線の付与を省略している。後述する図4ないし図8においても同様である。 FIG. 1 is a longitudinal sectional view showing a corrugated gate 1 according to an embodiment of the present invention. The relief gate 1 is a bottom-mounted relief gate provided on the bottom of the entrance of a port or waterway or the like in order to prevent a tsunami or storm surge or the like from flowing into the port or waterway or the like. In FIG. 1, the application of parallel oblique lines is omitted in part of the configuration of the relief gate 1. The same applies to FIGS. 4 to 8 described later.
 以下の説明では、起伏ゲート1において増水時に水が流入してくる側(すなわち、水の流入方向の上流側であり、例えば、起伏ゲート1よりも沖側)を「前側」と呼び、起伏ゲート1における水の流入方向の下流側(例えば、起伏ゲート1よりも陸側)を「後側」と呼ぶ。すなわち、図1中の左右方向が「前後方向」であり、図1中の左側および右側がそれぞれ、「前側」および「後側」である。また、図1中の紙面に垂直な方向を「幅方向」と呼ぶ。幅方向は前後方向に垂直であり、前後方向および幅方向は、上下方向に垂直である。図1中の上下方向は、重力方向に略平行である。 In the following description, the side on which water flows in at the time of water increase in the undulation gate 1 (that is, the upstream side of the inflow direction of water, for example, the offshore side of the undulation gate 1) is referred to as the “front side”. The downstream side of the inflow direction of water in 1 (for example, the land side of the undulating gate 1) is called "rear side". That is, the left-right direction in FIG. 1 is the “front-rear direction”, and the left side and the right side in FIG. 1 are the “front side” and the “rear side”, respectively. Further, a direction perpendicular to the paper surface in FIG. 1 is referred to as “width direction”. The width direction is perpendicular to the longitudinal direction, and the longitudinal direction and the width direction are perpendicular to the vertical direction. The vertical direction in FIG. 1 is substantially parallel to the gravity direction.
 起伏ゲート1は、函体11と、扉体2と、係留部31と、浮上力測定部32と、扉体接触部4と、空気供給部5とを備える。函体11は、上面に凹部12を有する構造物であり、水底に埋設される。函体11の上面は、水底と略同じ高さに位置する。函体11の凹部12内には、扉体2、係留部31、浮上力測定部32、扉体接触部4等が配置される。係留部31および浮上力測定部32は、例えば、凹部12の前側の側面に設置される。扉体接触部4は、例えば、凹部12の底面(すなわち、水底)に設置される。 The relief gate 1 includes a box 11, a door 2, a mooring portion 31, a lift measurement portion 32, a door contact portion 4, and an air supply portion 5. The box 11 is a structure having a recess 12 on the upper surface, and is embedded in the water bottom. The upper surface of the box 11 is located at substantially the same height as the water bottom. In the recess 12 of the box 11, a door 2, a mooring portion 31, a lift measurement portion 32, a door contact portion 4 and the like are disposed. The mooring portion 31 and the levitation force measurement portion 32 are installed, for example, on the front side surface of the recess 12. The door contact portion 4 is installed, for example, on the bottom surface (that is, the bottom of the water) of the recess 12.
 扉体2は、略直方体状の部材である。扉体2は、凹部12内に(すなわち、水底に)配置された支持端部23の回転軸J1を支点として、可動端部24が回動することにより起立および倒伏する。図1に示す例では、支持端部23は扉体2の後端部であり、可動端部24は扉体2の前端部である。図1では、扉体2が水中に倒伏して係留部31により係留されている状態を実線にて示す。以下の説明では、幅方向に垂直、かつ、扉体2の支持端部23と可動端部24とを結ぶ方向を、扉体2の「長手方向」という。 The door 2 is a substantially rectangular parallelepiped member. The door 2 stands up and falls by the rotation of the movable end 24 around the rotation axis J1 of the support end 23 disposed in the recess 12 (that is, in the bottom of the water). In the example shown in FIG. 1, the support end 23 is the rear end of the door 2, and the movable end 24 is the front end of the door 2. In FIG. 1, a solid line indicates a state in which the door 2 falls into water and is moored by the mooring portion 31. In the following description, the direction perpendicular to the width direction and connecting the supporting end 23 of the door 2 and the movable end 24 is referred to as the “longitudinal direction” of the door 2.
 また、以下の説明では、図1中において実線にて示す扉体2の状態(すなわち、扉体2の姿勢)を「係留状態」と呼ぶ。係留状態の扉体2では、扉体2の長手方向は、前後方向と同じ方向である。また、図1中において二点鎖線にて示す扉体2の状態を「起立状態」という。係留状態の扉体2は、係留部31による係留が解除されることにより、幅方向に略平行に延びる回転軸J1を中心として、図1中における時計回りに回動して起立状態となる。扉体2の前後において水位差がない場合、扉体2は、自重と浮力との釣り合いにより起立状態にて維持される。扉体2の前後の水位が異なる場合、起立状態の扉体2は、例えば、図示省略の扉体ストッパまたはテンションロッドにより支持される。起立状態の扉体2と水平面との成す角度は、0度よりも大きく、かつ、90度以下の範囲で適宜設定されてよい。 Moreover, in the following description, the state of the door 2 (that is, the posture of the door 2) shown by a solid line in FIG. In the door 2 in the moored state, the longitudinal direction of the door 2 is the same as the longitudinal direction. Moreover, the state of the door 2 shown with a dashed-two dotted line in FIG. 1 is called "a standing state." The moored door 2 is turned clockwise in FIG. 1 about the rotation axis J1 extending substantially in parallel in the width direction by being released from mooring by the mooring portion 31 to be in an upright state. When there is no water level difference in front and back of the door 2, the door 2 is maintained in an upright state by the balance between its own weight and the buoyancy. When the water levels before and after the door 2 are different, the door 2 in the upright state is supported by, for example, a door stopper or a tension rod (not shown). The angle between the upright door 2 and the horizontal surface may be set as appropriate in a range of greater than 0 degrees and not more than 90 degrees.
 係留状態の扉体2は、前後方向および幅方向に広がる。上述のように、係留状態の扉体2は、函体11の凹部12内に収容される。係留状態の扉体2の上面(以下、「第1主面21」と呼ぶ。)の上下方向における位置は、例えば、凹部12の周囲における函体11の上面の上下方向の位置と略同じである。係留状態の扉体2の下面(以下、「第2主面22」と呼ぶ。)は、凹部12の底面から上方に離間している。図1に示す例では、扉体2の第1主面21および第2主面22は、上下方向に略垂直な略平板状の部材である。 The door 2 in the moored state extends in the front-rear direction and the width direction. As described above, the door 2 in the moored state is accommodated in the recess 12 of the box 11. The position in the vertical direction of the upper surface (hereinafter referred to as "first main surface 21") of the door 2 in the moored state is, for example, substantially the same as the position in the vertical direction of the upper surface of the box 11 around the recess 12. is there. The lower surface (hereinafter, referred to as “second main surface 22”) of the door 2 in the moored state is separated upward from the bottom surface of the recess 12. In the example shown in FIG. 1, the first main surface 21 and the second main surface 22 of the door 2 are substantially flat members substantially perpendicular to the vertical direction.
 扉体2は、第1浮力室25と、第2浮力室26と、浮力室接続部27と、排気部28とを備える。第1浮力室25は、扉体2の可動端部24と支持端部23との間に配置される。第2浮力室26は、第1浮力室25と支持端部23との間に配置される。第1浮力室25および第2浮力室26は、第1主面21と第2主面22との間の空間を、幅方向に延びる隔壁270により分割することにより形成されている。係留状態の扉体2において、隔壁270の第1浮力室25側の面は、第1主面21から第2主面22へと向かうに従って、支持端部23から可動端部24へと向かう傾斜面である。 The door 2 includes a first buoyancy chamber 25, a second buoyancy chamber 26, a buoyancy chamber connection portion 27, and an exhaust portion 28. The first buoyancy chamber 25 is disposed between the movable end 24 and the support end 23 of the door 2. The second buoyancy chamber 26 is disposed between the first buoyancy chamber 25 and the support end 23. The first buoyancy chamber 25 and the second buoyancy chamber 26 are formed by dividing a space between the first major surface 21 and the second major surface 22 by a partition 270 extending in the width direction. In the door 2 in the moored state, the surface on the first buoyancy chamber 25 side of the partition wall 270 is inclined from the support end 23 to the movable end 24 as it goes from the first major surface 21 to the second major surface 22. It is a face.
 浮力室接続部27は、第1浮力室25と第2浮力室26との間に配置され、第1浮力室25と第2浮力室26とを開放可能に接続する。扉体2が係留状態、起立状態、および、係留状態と起立状態との間の状態である場合、浮力室接続部27は閉鎖されており、第1浮力室25と第2浮力室26とは連通していない。また、扉体2が後述する過倒伏状態である場合、浮力室接続部27は開放され、第1浮力室25と第2浮力室26とが、浮力室接続部27を介して連通する。 The buoyancy chamber connection portion 27 is disposed between the first buoyancy chamber 25 and the second buoyancy chamber 26 and opensably connects the first buoyancy chamber 25 and the second buoyancy chamber 26. When the door 2 is in the moored state, the standing state, and the state between the moored state and the standing state, the buoyancy chamber connection 27 is closed, and the first buoyancy chamber 25 and the second buoyancy chamber 26 are It does not communicate. Further, when the door 2 is in the over-folded state described later, the buoyancy chamber connection portion 27 is opened, and the first buoyancy chamber 25 and the second buoyancy chamber 26 communicate with each other through the buoyancy chamber connection portion 27.
 図1に示す例では、浮力室接続部27は、第1浮力室25と第2浮力室26との間の隔壁270に設けられる。浮力室接続部27は、隔壁開口271と、隔壁ゲート272とを備える。隔壁開口271は、隔壁270に設けられた開口である。隔壁ゲート272は、例えば、隔壁開口271よりも大きい板状部材であり、隔壁開口271に重なって隔壁開口271を閉鎖する。隔壁ゲート272は、隔壁270の第1浮力室25側の面に取り付けられている。隔壁ゲート272は、上端部に設けられた回転軸を中心として回動可能である。隔壁ゲート272の下端部は、隔壁270から離間可能な可動端部である。すなわち、隔壁ゲート272は、上ヒンジ式のフラップゲートである。 In the example shown in FIG. 1, the buoyancy chamber connection portion 27 is provided in the partition wall 270 between the first buoyancy chamber 25 and the second buoyancy chamber 26. The buoyancy chamber connection 27 includes a partition opening 271 and a partition gate 272. The partition opening 271 is an opening provided in the partition 270. The partition gate 272 is, for example, a plate-like member larger than the partition opening 271, and overlaps the partition opening 271 to close the partition opening 271. The partition gate 272 is attached to the surface of the partition 270 on the side of the first buoyancy chamber 25. The partition gate 272 is pivotable about a rotation axis provided at the upper end. The lower end of the partition gate 272 is a movable end that can be separated from the partition 270. That is, the partition gate 272 is an upper hinge type flap gate.
 係留状態の扉体2では、隔壁270の第1浮力室25側の面が上述のように傾斜しているため、隔壁ゲート272は、自重により隔壁270の第1浮力室25側の面に接触し、隔壁開口271を閉鎖する。隔壁ゲート272が図1中の時計回りに回動して隔壁270から離間すると、隔壁ゲート272による隔壁開口271の閉鎖が解除され、浮力室接続部27が開放される。 In the door 2 in the moored state, since the surface on the first buoyancy chamber 25 side of the partition 270 is inclined as described above, the partition gate 272 contacts the surface on the first buoyancy chamber 25 side of the partition 270 by its own weight. And the partition opening 271 is closed. When the partition gate 272 pivots clockwise in FIG. 1 and separates from the partition 270, the closure of the partition opening 271 by the partition gate 272 is released, and the buoyancy chamber connection 27 is opened.
 第1浮力室25は、第2主面22に開口する第1開口251を有する。第1開口251は、隔壁270の近傍に配置される。換言すれば、第1開口251は、起立状態の扉体2における第1浮力室25の下端部において、第2主面22に設けられる。第1浮力室25は、第1開口251を除いて、気密な構造を有する。図1に示す例では、係留状態の扉体2において、第1開口251の上方に浮力室接続部27の隔壁ゲート272が位置する。扉体2では、第1開口251を介して浮力室接続部27にアクセス可能である。 The first buoyancy chamber 25 has a first opening 251 opened to the second major surface 22. The first opening 251 is disposed in the vicinity of the partition wall 270. In other words, the first opening 251 is provided on the second major surface 22 at the lower end portion of the first buoyancy chamber 25 in the door 2 in the upright state. The first buoyancy chamber 25 has an airtight structure except for the first opening 251. In the example illustrated in FIG. 1, in the door 2 in the moored state, the partition gate 272 of the buoyancy chamber connection portion 27 is located above the first opening 251. In the door 2, the buoyancy chamber connection 27 can be accessed through the first opening 251.
 第2浮力室26は、第2主面22に開口する第2開口261を有する。第2開口261は、支持端部23の近傍に配置される。換言すれば、第2開口261は、起立状態の扉体2における第2浮力室26の下端部において、第2主面22に設けられる。さらに換言すれば、第2開口261は、第2浮力室26のうち、第1浮力室25とは反対側の長手方向の端部に設けられる。第2浮力室26は、第2開口261を除いて、気密な構造を有する。 The second buoyancy chamber 26 has a second opening 261 opened to the second major surface 22. The second opening 261 is disposed in the vicinity of the support end 23. In other words, the second opening 261 is provided on the second main surface 22 at the lower end portion of the second buoyancy chamber 26 in the door 2 in the upright state. Furthermore, in other words, the second opening 261 is provided at the longitudinal end of the second buoyancy chamber 26 opposite to the first buoyancy chamber 25. The second buoyancy chamber 26 has an airtight structure except for the second opening 261.
 図2は、扉体2の第2主面22の一部を示す斜視図である。図2では、第2主面22のうち、第1開口251および第2開口261の近傍の部位を示す。また、図2では、第1開口251および第2開口261に平行斜線を付す。第1開口251および第2開口261は、例えば、扉体2の幅方向の中央部に位置する。第1開口251および第2開口261はそれぞれ、例えば略矩形状の開口である。第1開口251および第2開口261の形状は、様々に変更されてよい。 FIG. 2 is a perspective view showing a part of the second main surface 22 of the door 2. In FIG. 2, portions of the second major surface 22 in the vicinity of the first opening 251 and the second opening 261 are shown. Further, in FIG. 2, the first opening 251 and the second opening 261 are hatched in parallel. The first opening 251 and the second opening 261 are located, for example, at the central portion in the width direction of the door 2. Each of the first opening 251 and the second opening 261 is, for example, a substantially rectangular opening. The shapes of the first opening 251 and the second opening 261 may be variously changed.
 扉体2の第2主面22(すなわち、係留状態の扉体2の下面)には、第1開口251から第2開口261に至るガイド部221が設けられる。ガイド部221は、一対の第1ガイド部材222と、一対の第2ガイド部材223とを備える。第1ガイド部材222および第2ガイド部材223はそれぞれ、係留状態の扉体2において、第2主面22から下方に略垂直に突出する(すなわち、扉体2の外部に向かって突出する)板状の部材である。なお、図1および後述する図4ないし図8では、ガイド部221の図示を省略している。 A guide portion 221 extending from the first opening 251 to the second opening 261 is provided on the second main surface 22 of the door 2 (that is, the lower surface of the door 2 in the moored state). The guide portion 221 includes a pair of first guide members 222 and a pair of second guide members 223. Each of the first guide member 222 and the second guide member 223 is a plate which protrudes substantially vertically downward from the second main surface 22 (that is, protrudes toward the outside of the door 2) in the door 2 in the moored state Shaped members. In FIG. 1 and FIGS. 4 to 8 described later, illustration of the guide portion 221 is omitted.
 一対の第1ガイド部材222は、第1開口251および第2開口261の幅方向の両側に配置され、長手方向に略平行に延びる。一対のガイド部221は、係留状態の扉体2における第1開口251の前端から第2開口261の後端まで長手方向に略平行に延びる。一対の第2ガイド部材223は、幅方向に略平行に延びる。係留状態の扉体2において、一方の第2ガイド部材223は、第1開口251の前端縁に沿って配置され、他方の第2ガイド部材223は、第2開口261の後端縁に沿って配置される。換言すれば、一対の第1ガイド部材222および一対の第2ガイド部材223は、第2主面22において、第1開口251から第2開口261に至る長手方向に延びる領域を囲む。なお、ガイド部221では、一対の第2ガイド部材223は省略されてもよい。 The pair of first guide members 222 are disposed on both sides in the width direction of the first opening 251 and the second opening 261, and extend substantially parallel to the longitudinal direction. The pair of guide portions 221 extend substantially in parallel in the longitudinal direction from the front end of the first opening 251 to the rear end of the second opening 261 in the door 2 in the anchored state. The pair of second guide members 223 extend substantially in parallel in the width direction. In the door 2 in the anchored state, one second guide member 223 is disposed along the front end edge of the first opening 251, and the other second guide member 223 is along the rear end edge of the second opening 261. Be placed. In other words, the pair of first guide members 222 and the pair of second guide members 223 surround a region extending in the longitudinal direction from the first opening 251 to the second opening 261 on the second major surface 22. In the guide portion 221, the pair of second guide members 223 may be omitted.
 図3は、扉体2の可動端部24近傍を示す斜視図である。図3では、扉体2の第1主面21の一部の図示を省略している。扉体2の可動端部24(すなわち、起立状態の扉体2における第1浮力室25の上端部)には、排気部28が設けられる。排気部28は、第1浮力室25と扉体2の外部の空間とを開放可能に接続する。係留状態の扉体2では、排気部28は閉鎖されている。図3に示す例では、排気部28は、排気管281と、排気バルブ282とを備える。 FIG. 3 is a perspective view showing the vicinity of the movable end 24 of the door 2. In FIG. 3, illustration of a part of the first main surface 21 of the door 2 is omitted. An exhaust unit 28 is provided at the movable end 24 of the door 2 (that is, the upper end of the first buoyancy chamber 25 of the door 2 in the upright state). The exhaust unit 28 opensably connects the first buoyancy chamber 25 and the space outside the door 2. In the moored door 2, the exhaust 28 is closed. In the example shown in FIG. 3, the exhaust unit 28 includes an exhaust pipe 281 and an exhaust valve 282.
 排気管281は、扉体2の長手方向に延びる第1部位283と、第1部位283の端部から第1部位283に略垂直な方向に延びる第2部位284とを含む。換言すれば、排気管281は、略L字状の配管である。第2部位284は、第1浮力室25内に配置される。図3中において破線にて示す第2部位284は、係留状態の扉体2の第1主面21に略平行に幅方向に延びる。第2部位284の端部開口は、排気部28の第1浮力室25内における排気口285である。第1部位283は、係留状態の扉体2における第1浮力室25の前端壁を貫通して、第1浮力室25内から扉体2の外部へと突出している。第1部位283と可動端部24との間は、水密かつ気密にシールされている。 The exhaust pipe 281 includes a first portion 283 extending in the longitudinal direction of the door 2 and a second portion 284 extending in a direction substantially perpendicular to the first portion 283 from an end of the first portion 283. In other words, the exhaust pipe 281 is a substantially L-shaped pipe. The second portion 284 is disposed in the first buoyancy chamber 25. The second portion 284 indicated by a broken line in FIG. 3 extends in the width direction substantially parallel to the first major surface 21 of the door 2 in the anchored state. The end opening of the second portion 284 is an exhaust port 285 in the first buoyancy chamber 25 of the exhaust unit 28. The first portion 283 penetrates the front end wall of the first buoyancy chamber 25 in the moored door 2 and protrudes from the inside of the first buoyancy chamber 25 to the outside of the door 2. The space between the first portion 283 and the movable end 24 is sealed in a watertight and airtight manner.
 排気バルブ282は、例えば、第1浮力室25の外部において、排気管281の第1部位283に設けられる。排気バルブ282が開放されることにより、第1浮力室25と扉体2の外部の空間とが、排気管281を介して連通する。排気バルブ282が閉鎖された状態では、排気部28において第1浮力室25と扉体2の外部の空間とは連通していない。 The exhaust valve 282 is provided, for example, at the first portion 283 of the exhaust pipe 281 outside the first buoyancy chamber 25. By opening the exhaust valve 282, the first buoyancy chamber 25 and the space outside the door 2 communicate with each other through the exhaust pipe 281. When the exhaust valve 282 is closed, the first buoyancy chamber 25 and the space outside the door 2 do not communicate with each other at the exhaust portion 28.
 排気管281は、第1部位283を中心として、図3中において実線および破線にて示す位置から二点鎖線にて示す位置まで回動可能である。図3中において二点鎖線にて示す第2部位284は、係留状態の扉体2の第1主面21から離れる方向(すなわち、下方)へと延びる。排気部28では、排気管281を回動することにより、扉体2の厚さ方向(すなわち、扉体2の長手方向および幅方向に垂直な方向であり、係留状態の扉体2における上下方向)に関して、排気口285の位置が変更される。 The exhaust pipe 281 is pivotable about the first portion 283 from a position shown by a solid line and a broken line in FIG. 3 to a position shown by a two-dot chain line. The second portion 284 indicated by a two-dot chain line in FIG. 3 extends in a direction (that is, downward) away from the first major surface 21 of the door 2 in the anchored state. In the exhaust unit 28, by rotating the exhaust pipe 281, the thickness direction of the door 2 (that is, a direction perpendicular to the longitudinal direction and the width direction of the door 2), and the vertical direction of the door 2 in the moored state ), The position of the exhaust port 285 is changed.
 図1に示す係留部31は、フック部材等により扉体2の可動端部24を係止することにより、扉体2を水底に係留する。図1に例示する係留状態の扉体2では、第1浮力室25の底部上(すなわち、第2主面22上)に扉体2の厚さの半分程度まで水が存在しており、第1浮力室25の容量の半分程度の空気が第1浮力室25の上部に貯留されている。また、第2浮力室26の底部上(すなわち、第2主面22上)には少量の水が存在し、第2浮力室26のほぼ全体に空気が貯留されている。 The mooring portion 31 shown in FIG. 1 anchors the door 2 to the bottom of the water by locking the movable end 24 of the door 2 with a hook member or the like. In the door 2 in the moored state illustrated in FIG. 1, water is present to about half the thickness of the door 2 on the bottom of the first buoyancy chamber 25 (that is, on the second main surface 22) About half of the volume of the first buoyancy chamber 25 is stored in the upper part of the first buoyancy chamber 25. In addition, a small amount of water is present on the bottom of the second buoyancy chamber 26 (that is, on the second major surface 22), and air is stored in substantially the entire second buoyancy chamber 26.
 このように、係留状態の扉体2では、第1浮力室25内および第2浮力室26内に空気が貯留されているため、扉体2の浮力等のように扉体2を浮上させる方向に働く力が、扉体2の重量等のように扉体2を沈降させる方向に働く力よりも大きい。以下の説明では、扉体2を浮上させる方向に働く力から、扉体2を沈降させる方向に働く力を減算したものを「浮上力」という。係留状態の扉体2では、当該浮上力により、扉体2を起立させる方向に働くモーメント(以下、「起立モーメント」と呼ぶ。)が生じている。 As described above, in the moored door 2, since air is stored in the first buoyancy chamber 25 and the second buoyancy chamber 26, the direction in which the door 2 floats up like the buoyancy of the door 2. The force acting on is larger than the force acting in the direction of settling the door 2 like the weight of the door 2 or the like. In the following description, the force obtained by subtracting the force acting in the direction of sinking the door 2 from the force acting in the direction of lifting the door 2 is referred to as “lifting force”. In the door 2 in the moored state, a moment (hereinafter, referred to as a “rising moment”) that acts in the direction of raising the door 2 is generated by the lifting force.
 浮上力測定部32は、例えば、扉体2から係留部31に加わる力を測定することにより、係留状態の扉体2の浮上力を測定する。浮上力測定部32では、例えば、係留部31の状態(フック部材の傾き等)に基づいて扉体2から係留部31に加わる力を推定することにより、扉体2の浮上力が間接的に測定されてもよい。 The levitation force measurement unit 32 measures the levitation force of the door 2 in the moored state, for example, by measuring the force applied from the door 2 to the mooring portion 31. The levitation force measurement unit 32 indirectly estimates the levitation force of the door 2 by estimating the force applied from the door 2 to the mooring portion 31 based on, for example, the state of the mooring portion 31 (the inclination of the hook member or the like). It may be measured.
 扉体接触部4は、係留状態の扉体2の下方において、扉体2の第2主面22と凹部12の底面との間の空間に配置される。扉体接触部4は、例えば、凹部12の底面から略垂直に上方へと突出する略円柱状または略矩形柱状の部材である。扉体接触部4の上端は、係留状態の扉体2の第2主面22よりも下側に位置しており、扉体接触部4は係留状態の扉体2と非接触である。扉体接触部4は、係留状態の扉体2の第1開口251の下方に位置する。換言すれば、扉体接触部4は、凹部12の底面から、係留状態の扉体2の第1開口251に向かって突出している。さらに換言すれば、扉体接触部4は、平面視において、係留状態の扉体2の第1開口251と重なっている。平面視において、扉体接触部4は、係留状態の扉体2の第1開口251よりも小さい。 The door contact portion 4 is disposed in the space between the second main surface 22 of the door 2 and the bottom of the recess 12 below the door 2 in the moored state. The door contact portion 4 is, for example, a substantially cylindrical or substantially rectangular columnar member that protrudes upward substantially perpendicularly from the bottom surface of the recess 12. The upper end of the door contact portion 4 is located below the second main surface 22 of the door 2 in the moored state, and the door contact portion 4 is not in contact with the door 2 in the moored state. The door contact portion 4 is located below the first opening 251 of the door 2 in the moored state. In other words, the door contact portion 4 protrudes from the bottom surface of the recess 12 toward the first opening 251 of the door 2 in the anchored state. Furthermore, in other words, the door contact portion 4 overlaps the first opening 251 of the door 2 in a moored state in plan view. In plan view, the door contact portion 4 is smaller than the first opening 251 of the door 2 in the moored state.
 空気供給部5は、扉体2に空気を供給する。空気供給部5は、水中貯留部51と、コンプレッサ52と、圧力計53と、給気管54とを備える。コンプレッサ52および圧力計53は陸上に配置される。図1では、便宜上、コンプレッサ52および圧力計53を、扉体2の外部の水面91の上方に描いている。水中貯留部51は、係留状態の扉体2(すなわち、倒伏した状態の扉体2)の下方において、扉体2の第2主面22と凹部12の底面との間の空間に配置される。水中貯留部51は、凹部12の底面に固定される。水中貯留部51の上端は、係留状態の扉体2の第2主面22よりも下側に位置している。水中貯留部51は、係留状態の扉体2と非接触である。給気管54は、コンプレッサ52と水中貯留部51とを接続する。空気供給部5では、コンプレッサ52が駆動されることにより、給気管54を介して水中貯留部51に空気が供給され、水中貯留部51にて貯留される。 The air supply unit 5 supplies air to the door 2. The air supply unit 5 includes an underwater storage unit 51, a compressor 52, a pressure gauge 53, and an air supply pipe 54. The compressor 52 and the pressure gauge 53 are disposed on land. In FIG. 1, for the sake of convenience, the compressor 52 and the pressure gauge 53 are drawn above the water surface 91 outside the door 2. The underwater storage portion 51 is disposed in a space between the second main surface 22 of the door 2 and the bottom surface of the recess 12 below the door 2 in the moored state (that is, the door 2 in the collapsed state). . The underwater storage portion 51 is fixed to the bottom surface of the recess 12. The upper end of the underwater storage unit 51 is located below the second main surface 22 of the door 2 in the moored state. The underwater storage unit 51 is not in contact with the moored door 2. The air supply pipe 54 connects the compressor 52 and the underwater storage unit 51. In the air supply unit 5, the compressor 52 is driven so that air is supplied to the underwater storage unit 51 via the air supply pipe 54 and is stored in the underwater storage unit 51.
 水中貯留部51は、上下方向に延びる有蓋筒状の部材であり、下方に向かって開口する。図1に示す例では、水中貯留部51は、有蓋略円筒状の部材である。コンプレッサ52から水中貯留部51に供給された空気は、水中貯留部51の天蓋部と側壁部とにより囲まれた空間に貯留される。圧力計53は、例えば、給気管54に接続され、水中貯留部51内の圧力を測定する。 The underwater storage portion 51 is a cylindrical member with a lid that extends in the vertical direction, and opens downward. In the example illustrated in FIG. 1, the underwater storage unit 51 is a covered substantially cylindrical member. The air supplied from the compressor 52 to the underwater storage unit 51 is stored in a space surrounded by the canopy and the side wall of the underwater storage unit 51. The pressure gauge 53 is connected to, for example, the air supply pipe 54, and measures the pressure in the water reservoir 51.
 空気供給部5では、圧力計53による測定値に基づいて、水中貯留部51内に所定量の空気が貯留されているか否かが判断される。水中貯留部51内の空気量が所定量未満である場合、コンプレッサ52が駆動され、水中貯留部51に空気が供給される。水中貯留部51内の空気量が所定量に達すると、コンプレッサ52が停止される。空気供給部5では、水中貯留部51から意図に反して空気が漏出する等して水中貯留部51内の空気量が所定量よりも減少した場合、圧力計53による測定値に基づいてコンプレッサ52が駆動され、水中貯留部51へと空気が供給される。これにより、水中貯留部51に所定量の空気が貯留されている状態を維持することができる。 In the air supply unit 5, based on the measurement value by the pressure gauge 53, it is determined whether or not a predetermined amount of air is stored in the underwater storage unit 51. When the amount of air in the underwater storage unit 51 is less than the predetermined amount, the compressor 52 is driven and air is supplied to the underwater storage unit 51. When the amount of air in the water reservoir 51 reaches a predetermined amount, the compressor 52 is stopped. In the air supply unit 5, when the amount of air in the underwater storage unit 51 decreases more than a predetermined amount due to, for example, air leaking from the underwater storage unit 51 against the intention, the compressor 52 based on the measured value by the pressure gauge 53. Is driven to supply air to the underwater storage unit 51. As a result, it is possible to maintain the state where the predetermined amount of air is stored in the underwater storage unit 51.
 水中貯留部51は、係留状態の扉体2の第2開口261の下方に位置する。換言すれば、水中貯留部51は、凹部12の底面から、係留状態の扉体2の第2開口261に向かって突出している。水中貯留部51の天蓋部には、開放することにより水中貯留部51内の空気を放出する空気放出口が設けられている。当該空気放出口は、平面視において、係留状態の扉体2の第2開口261と重なっている。水中貯留部51に貯留されている空気は、後述するように、第2浮力室26への空気の補充に利用される。 The underwater storage unit 51 is located below the second opening 261 of the door 2 in the moored state. In other words, the underwater storage portion 51 protrudes from the bottom surface of the recess 12 toward the second opening 261 of the door 2 in the moored state. The canopy of the underwater storage unit 51 is provided with an air discharge port that releases the air in the underwater storage unit 51 by opening the canopy. The air discharge port overlaps the second opening 261 of the door 2 in a moored state in plan view. The air stored in the water storage portion 51 is used for the replenishment of air to the second buoyancy chamber 26 as described later.
 次に、図4ないし図8を参照しつつ、扉体2の起立および倒伏の様子について説明する。上述のように、図1に示す係留状態では、第1浮力室25内および第2浮力室26内の空気等により起立モーメントが働いている扉体2が、係留部31により係留されている。換言すれば、図1中において実線にて示す扉体2は、起立可能な待機状態である。起伏ゲート1では、係留部31による扉体2の係留が解除されることにより、扉体2が図1中における時計回りに回動して、図4に示すように起立する。起立状態の扉体2の上部は、扉体2の外部の水面91から上方に突出している。水面91は、扉体2の第1開口251よりも上方に位置する。起立した扉体2は、上述のように、扉体2の前側に起立した扉体ストッパ(図示省略)により前方から支持される。 Next, with reference to FIG. 4 to FIG. 8, the rising and falling states of the door 2 will be described. As described above, in the moored state shown in FIG. 1, the door 2 in which the rising moment is acting by the air in the first buoyancy chamber 25 and the second buoyancy chamber 26 is moored by the mooring portion 31. In other words, the door 2 shown by a solid line in FIG. 1 is in a standby state where it can stand up. In the undulating gate 1, the door 2 is turned clockwise in FIG. 1 by releasing the mooring of the door 2 by the mooring portion 31, and stands up as shown in FIG. The upper part of the door 2 in the upright state protrudes upward from the water surface 91 of the outside of the door 2. The water surface 91 is located above the first opening 251 of the door 2. The door 2 which stood up is supported from the front by the door stopper (illustration omitted) which stood up in the front side of the door 2 as mentioned above.
 起立状態の扉体2では、第1浮力室25の下部に、第1浮力室25の長手方向の長さの半分程度まで水が存在しており、第1浮力室25の容量の半分程度の空気が第1浮力室25の上部に貯留されている。また、第2浮力室26の下部には、例えば、第2開口261の上端近傍まで少量の水が存在し、第2浮力室26のほぼ全体に(具体的には、第2開口261の上端近傍よりも上側の領域に)空気が貯留されている。浮力室接続部27の隔壁ゲート272は、自重により隔壁270上に載置され、隔壁開口271に重なっている。このため、浮力室接続部27は閉鎖されており、第2浮力室26内の空気は、第1浮力室25には移動しない。なお、隔壁ゲート272は、第2浮力室26内の空気の圧力により持ち上がることはない。 In the door 2 in the upright state, water is present in the lower part of the first buoyancy chamber 25 to about half the length of the first buoyancy chamber 25 in the longitudinal direction, and about half the volume of the first buoyancy chamber 25 Air is stored in the upper part of the first buoyancy chamber 25. In addition, a small amount of water exists, for example, in the lower part of the second buoyancy chamber 26 to the vicinity of the upper end of the second opening 261, and substantially the entire second buoyancy chamber 26 (specifically, the upper end of the second aperture 261) Air is stored in the area above the vicinity). The partition gate 272 of the buoyancy chamber connection portion 27 is placed on the partition 270 by its own weight and overlaps the partition opening 271. Therefore, the buoyancy chamber connection 27 is closed, and the air in the second buoyancy chamber 26 does not move to the first buoyancy chamber 25. The partition gate 272 is not lifted by the pressure of the air in the second buoyancy chamber 26.
 起立状態の扉体2が倒伏される際には、まず、上述の扉体ストッパが扉体2から離れ、凹部12の底面に倒伏する。続いて、排気部28が開放されることにより、水面91よりも下側に位置する第1開口251から第1浮力室25に水が流入し、第1浮力室25内の空気が排気部28を介して扉体2の外部に放出される。換言すれば、第1浮力室25内の空気が水に置換される。上述のように、浮力室接続部27は閉鎖されているため、第1浮力室25内の水は、浮力室接続部27を介して第2浮力室26に流入することはない。 When the upright door 2 is laid down, first, the above-mentioned door stopper is separated from the door 2 and laid on the bottom of the recess 12. Subsequently, when the exhaust unit 28 is opened, water flows into the first buoyancy chamber 25 from the first opening 251 located below the water surface 91, and the air in the first buoyancy chamber 25 is exhausted. Is discharged to the outside of the door 2 through the In other words, the air in the first buoyancy chamber 25 is replaced by water. As described above, since the buoyancy chamber connection 27 is closed, the water in the first buoyancy chamber 25 does not flow into the second buoyancy chamber 26 via the buoyancy chamber connection 27.
 起立状態の扉体2において、第1浮力室25内の空気が水に置換されることにより、扉体に働く浮力よりも扉体2の自重が大きくなり、扉体2の倒伏が開始される。扉体2は、図5に示すように、第1浮力室25内の空気の大部分が放出された状態で水底に向かって倒伏し、図1に示す位置(以下、「係留位置」とも呼ぶ。)を過ぎて、図6に示すように、係留状態よりも倒伏した状態(以下、「過倒伏状態」と呼ぶ。)へと移行する。過倒伏状態の扉体2よりも下側に位置する水中貯留部51には、上記所定量の空気が予め貯留されている。 In the door 2 in the upright state, the air in the first buoyancy chamber 25 is replaced with water, so that the weight of the door 2 is larger than the buoyancy acting on the door, and the door 2 starts to fall. . As shown in FIG. 5, the door 2 falls toward the bottom of the water while most of the air in the first buoyancy chamber 25 is released, and the door 2 is also referred to as a position shown in FIG. After passing through), as shown in FIG. 6, it shifts to a fallen state (hereinafter referred to as “over-collapsed state”) rather than a moored state. The above-described predetermined amount of air is stored in advance in the underwater storage portion 51 located below the door 2 in the excessively fallen state.
 過倒伏状態の扉体2では、第1浮力室25の上部に少量の空気が残存しており、第1浮力室25の大部分に水が存在する。また、第2浮力室26の底部上には少量の水が存在し、第2浮力室26のほぼ全体に空気が貯留されている。扉体2が倒伏している間、第1浮力室25では、排気部28の排気口285(図3参照)が水没するまで、第1浮力室25内の空気が排気部28を介して、扉体2の外部へと流出する。したがって、過倒伏状態の扉体2において第1浮力室25内に残存する空気の量は、排気口285の位置を変更することにより調整される。排気部28の排気バルブ282(図3参照)は、扉体2が過倒伏状態になるよりも前に、あるいは、扉体2が過倒伏状態になると同時に閉鎖される。排気バルブ282は、例えば、扉体2が係留位置を過ぎて過倒伏状態になるまでの間に閉鎖される。 In the door 2 in the excessively fallen state, a small amount of air remains in the upper part of the first buoyancy chamber 25, and water is present in most of the first buoyancy chamber 25. In addition, a small amount of water is present on the bottom of the second buoyancy chamber 26, and air is stored in substantially the entire second buoyancy chamber 26. While the door 2 is lying down, in the first buoyancy chamber 25, the air in the first buoyancy chamber 25 passes through the exhaust unit 28 until the exhaust port 285 (see FIG. 3) of the exhaust unit 28 is submerged. It leaks out of the door 2. Therefore, the amount of air remaining in the first buoyancy chamber 25 in the overturned door 2 is adjusted by changing the position of the exhaust port 285. The exhaust valve 282 (see FIG. 3) of the exhaust unit 28 is closed before or at the same time as the door 2 is in the over-collapsed state. The exhaust valve 282 is closed, for example, before the door 2 passes the mooring position and becomes over-collapsed.
 扉体2が過倒伏状態になることにより、扉体接触部4の上端部が、第1開口251を介して第1浮力室25内へと進入する。扉体接触部4の上端部は、第1浮力室25内において隔壁ゲート272の下端部に接触し、隔壁ゲート272の下端部を上方へと移動する。これにより、隔壁ゲート272が、上端部の回転軸を中心として図6中における時計回りに回動し、隔壁開口271と重なる位置から、隔壁開口271から離れた位置へと移動する。その結果、過倒伏状態の扉体2において、浮力室接続部27が自動的に開放される。 When the door 2 is in the overturned state, the upper end portion of the door contact portion 4 enters the first buoyancy chamber 25 through the first opening 251. The upper end portion of the door contact portion 4 contacts the lower end portion of the partition gate 272 in the first buoyancy chamber 25 and moves the lower end portion of the partition gate 272 upward. Thus, the partition gate 272 pivots clockwise in FIG. 6 about the rotation axis of the upper end, and moves from a position overlapping the partition opening 271 to a position away from the partition opening 271. As a result, the buoyancy chamber connection 27 is automatically opened in the overturned door 2.
 浮力室接続部27が開放されると、第2浮力室26内の空気の一部が、浮力室接続部27の隔壁開口271を介して第1浮力室25へと移動する。第1浮力室25では、第2浮力室26からの空気の流入量に相当する量の水が、第1開口251および隔壁開口271から流出する。第2浮力室26では、第1浮力室25へと移動した空気の量に相当する量の水が、隔壁開口271および第2開口261から第2浮力室26内に流入する。 When the buoyancy chamber connection 27 is opened, part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25 through the partition opening 271 of the buoyancy chamber connection 27. In the first buoyancy chamber 25, an amount of water corresponding to the inflow of air from the second buoyancy chamber 26 flows out from the first opening 251 and the partition opening 271. In the second buoyancy chamber 26, an amount of water corresponding to the amount of air moved to the first buoyancy chamber 25 flows into the second buoyancy chamber 26 from the partition opening 271 and the second opening 261.
 これにより、図7に示すように、第1浮力室25の容量の半分程度の空気が第1浮力室25の上部に貯留される。また、第1浮力室25の底部上には、扉体2の厚さの半分程度まで水が存在している。第2浮力室26では、底部上に扉体2の厚さの半分程度まで水が存在しており、第2浮力室26の容量の半分程度の空気が第2浮力室26の上部に貯留されている。 Thereby, as shown in FIG. 7, about half of the volume of the first buoyancy chamber 25 is stored in the upper part of the first buoyancy chamber 25. Further, water is present on the bottom of the first buoyancy chamber 25 to about half the thickness of the door 2. In the second buoyancy chamber 26, water is present on the bottom to about half the thickness of the door 2, and about half the volume of the second buoyancy chamber 26 is stored in the upper part of the second buoyancy chamber 26. ing.
 第2浮力室26から第1浮力室25へと空気が移動することにより、扉体2に働く起立モーメントが増加し、扉体2が過倒伏状態から回動して図8に示す係留位置へと移動する。係留位置へと移動した扉体2は、係留部31により係留されて係留状態となる。図8に示す係留状態の扉体2は、浮上力を有しており、起立可能な待機状態である。 By moving air from the second buoyancy chamber 26 to the first buoyancy chamber 25, the rising moment acting on the door 2 is increased, and the door 2 pivots from the over-falling state to the mooring position shown in FIG. And move. The door 2 moved to the mooring position is moored by the mooring portion 31 and is in a moored state. The door 2 in the moored state shown in FIG. 8 has a floating force and is in a standby state where it can stand up.
 扉体2が過倒伏状態から係留状態へと移行することにより、扉体接触部4が隔壁ゲート272から離れる。これにより、隔壁ゲート272が、自重により回動して隔壁開口271と重なる位置へと戻り、隔壁開口271を閉鎖する。その結果、浮力室接続部27が自動的に閉鎖される。 The door contact portion 4 is separated from the bulkhead gate 272 by the transition of the door 2 from the overturned state to the moored state. As a result, the partition gate 272 pivots by its own weight and returns to a position overlapping the partition opening 271, closing the partition opening 271. As a result, the buoyancy chamber connection 27 is automatically closed.
 その後、水中貯留部51の空気放出口が開放されることにより、水中貯留部51に予め貯留されている空気が上方へと流出し、第2開口261を介して第2浮力室26へと供給される。これにより、扉体2の浮上力が増加する。水中貯留部51から第2浮力室26に供給される空気の量は、例えば、浮力室接続部27が開放されている状態で、第2浮力室26から第1浮力室25へと移動した空気の量(以下、「移動空気量」と呼ぶ。)におよそ等しい。水中貯留部51には、移動空気量以上の所定量の空気が予め貯留されている。 Thereafter, the air discharge port of the water storage portion 51 is opened, whereby the air stored in advance in the water storage portion 51 flows upward and is supplied to the second buoyancy chamber 26 through the second opening 261. Be done. Thereby, the floating force of the door 2 is increased. The amount of air supplied from the underwater storage unit 51 to the second buoyancy chamber 26 is, for example, air moved from the second buoyancy chamber 26 to the first buoyancy chamber 25 in a state where the buoyancy chamber connection 27 is open. Approximately equal to the amount of (hereinafter referred to as "moving air volume"). In the underwater storage unit 51, air of a predetermined amount equal to or more than the moving air amount is stored in advance.
 第2浮力室26では、水中貯留部51からの空気の流入量に相当する量の水が、第2開口261から流出する。その結果、図1に示すように、第2浮力室26のほぼ全体に空気が貯留される。第2浮力室26の底部上には、少量の水が存在する。なお、上述のように、浮力室接続部27は閉鎖されているため、第2浮力室26内の空気が、浮力室接続部27を介して第1浮力室25へと移動することはない。 In the second buoyancy chamber 26, an amount of water corresponding to the inflow of air from the underwater storage unit 51 flows out from the second opening 261. As a result, as shown in FIG. 1, air is stored in substantially the entire second buoyancy chamber 26. On the bottom of the second buoyancy chamber 26, a small amount of water is present. As described above, since the buoyancy chamber connection portion 27 is closed, the air in the second buoyancy chamber 26 does not move to the first buoyancy chamber 25 via the buoyancy chamber connection portion 27.
 起伏ゲート1では、浮上力測定部32により扉体2の浮上力が継続的に測定されている。上述のように水中貯留部51から第2浮力室26に空気が補充されることにより、扉体2が所定の浮上力を有するようになると、浮上力測定部32からの出力に基づいて、扉体2が所定の浮上力を有する係留状態になったと判断される。扉体2が所定の浮上力を有する係留状態になると、水中貯留部51から第2浮力室26への空気の供給が停止される。また、空気供給部5のコンプレッサ52により水中貯留部51へと空気が供給され、水中貯留部51に貯留される。なお、扉体2が所定の浮上力を有する係留状態になった後も、水中貯留部51の空気放出口が僅かに開放され、水中貯留部51からスローリークする空気が、第2浮力室26に継続的に供給されてもよい。 In the undulating gate 1, the lifting force of the door 2 is continuously measured by the lifting force measurement unit 32. As described above, when the door body 2 comes to have a predetermined levitation force by replenishing the second buoyancy chamber 26 with air from the underwater storage portion 51, the door is obtained based on the output from the levitation force measurement portion 32. It is determined that the body 2 is in a moored state having a predetermined lift. When the door 2 is in a moored state having a predetermined lift force, the supply of air from the underwater storage unit 51 to the second buoyancy chamber 26 is stopped. Further, air is supplied to the underwater storage unit 51 by the compressor 52 of the air supply unit 5 and stored in the underwater storage unit 51. In addition, even after the door 2 is in the moored state having a predetermined lift force, the air discharge port of the underwater storage unit 51 is slightly opened, and the air that is slowly leaked from the underwater storage unit 51 is the second buoyancy chamber 26. May be supplied continuously.
 以上に説明したように、起伏ゲート1は、扉体2と、係留部31とを備える。扉体2は、水底に配置された支持端部23を支点として可動端部24が回動することにより、起立および倒伏する。係留部31は、扉体2を水底に係留する。扉体2は、第1浮力室25と、第2浮力室26と、浮力室接続部27とを備える。第1浮力室25は、可動端部24と支持端部23との間に配置される。第2浮力室26は、第1浮力室25と支持端部23との間に配置される。浮力室接続部27は、第1浮力室25と第2浮力室26とを開放可能に接続する。扉体2が係留部31に係留される係留状態よりも倒伏した過倒伏状態において、浮力室接続部27が開放される。 As described above, the relief gate 1 includes the door 2 and the mooring portion 31. The door 2 stands up and falls when the movable end 24 pivots with the support end 23 disposed at the bottom of the water as a fulcrum. The mooring portion 31 moors the door 2 to the bottom of the water. The door 2 includes a first buoyancy chamber 25, a second buoyancy chamber 26, and a buoyancy chamber connection 27. The first buoyancy chamber 25 is disposed between the movable end 24 and the support end 23. The second buoyancy chamber 26 is disposed between the first buoyancy chamber 25 and the support end 23. The buoyancy chamber connection portion 27 opensably connects the first buoyancy chamber 25 and the second buoyancy chamber 26. The buoyancy chamber connection portion 27 is opened in the over-falling state in which the door 2 is folded more than the mooring state in which the door 2 is moored to the mooring portion 31.
 これにより、起立状態から倒伏した扉体2を、速やかに係留状態(すなわち、起立可能な待機状態)へと復帰させることができる。その結果、起伏ゲート1の機能喪失期間(すなわち、扉体2を起立させることができない期間)を短くすることができ、起伏ゲート1が設置される港湾等の安全性を向上することができる。 As a result, the door 2 that has fallen from the upright state can be promptly returned to the moored state (that is, the standby state in which the door can be stood up). As a result, the function loss period (that is, the period in which the door 2 can not be raised) of the relief gate 1 can be shortened, and the safety of the harbor where the relief gate 1 is installed can be improved.
 上述のように、起伏ゲート1では、起立状態の扉体2において、第1浮力室25内の空気を水に置換することにより、扉体2が、係留部31に係留される係留状態よりも倒伏した過倒伏状態へと移行する。扉体2が過倒伏状態になることにより、浮力室接続部27が開放されて、第2浮力室26内の空気の一部が浮力室接続部27を介して第1浮力室25へと移動する。そして、扉体2が過倒伏状態から係留状態へと移動することにより、浮力室接続部27が閉鎖される。これにより、上述のように、起立状態から倒伏した扉体2を、速やかに係留状態へと復帰させることができる。その結果、起伏ゲート1の機能喪失期間を短くすることができ、起伏ゲート1が設置される港湾等の安全性を向上することができる。 As described above, in the undulating gate 1, the air in the first buoyancy chamber 25 is replaced with water in the door 2 in the upright state, so that the door 2 is more moored than in the moored state anchored to the mooring portion 31. Transition to a fallen overfall state. When the door 2 is in the overturned state, the buoyancy chamber connection 27 is opened, and part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25 via the buoyancy chamber connection 27. Do. And, by moving the door 2 from the overturned state to the moored state, the buoyancy chamber connection portion 27 is closed. Thus, as described above, the door 2 that has fallen from the upright state can be quickly returned to the moored state. As a result, the function loss period of the undulation gate 1 can be shortened, and the safety of the port or the like where the undulation gate 1 is installed can be improved.
 起伏ゲート1は、水底に設置された扉体接触部4をさらに備える。浮力室接続部27は、隔壁開口271と、隔壁ゲート272とを備える。隔壁開口271は、第1浮力室25と第2浮力室26との間の隔壁270に設けられる。隔壁ゲート272は、隔壁開口271に重なって隔壁開口271を閉鎖する。扉体2が過倒伏状態になることにより、扉体接触部4が、隔壁ゲート272に接触して、隔壁ゲート272を隔壁開口271と重なる位置から移動させる。これにより、浮力室接続部27が開放される。このように、起伏ゲート1では、扉体2の姿勢の変化を利用して、浮力室接続部27を無動力にて自動的に開放することができる。その結果、浮力室接続部27の開放機構を電力等により遠隔駆動する場合に比べて、起伏ゲート1の構造を簡素化することができる。また、起伏ゲート1の故障率を低減することもできる。 The relief gate 1 further includes a door contact portion 4 installed at the bottom of the water. The buoyancy chamber connection 27 includes a partition opening 271 and a partition gate 272. The partition opening 271 is provided in the partition 270 between the first buoyancy chamber 25 and the second buoyancy chamber 26. The partition gate 272 overlaps the partition opening 271 and closes the partition opening 271. When the door 2 is in an overturned state, the door contact portion 4 contacts the partition gate 272 and moves the partition gate 272 from a position overlapping the partition opening 271. Thus, the buoyancy chamber connection 27 is opened. As described above, in the undulating gate 1, the buoyancy chamber connection 27 can be automatically opened without power by using the change in the attitude of the door 2. As a result, the structure of the undulating gate 1 can be simplified as compared with the case where the opening mechanism of the buoyancy chamber connection portion 27 is remotely driven by electric power or the like. Also, the failure rate of the relief gate 1 can be reduced.
 起伏ゲート1では、扉体2が過倒伏状態になって浮力室接続部27が開放されることにより、扉体2が過倒伏状態から係留状態へと移行する。このように、起伏ゲート1では、過倒伏状態の扉体2に対して外部からの空気の供給を行うことなく、扉体2を速やかに係留状態へと復帰させることができる。 In the undulating gate 1, the door 2 is in the overturned state and the buoyancy chamber connection portion 27 is opened, whereby the door 2 shifts from the overturned state to the moored state. Thus, in the undulating gate 1, the door 2 can be promptly returned to the moored state without supplying air from the outside to the door 2 in the overturned state.
 起伏ゲート1は、過倒伏状態の扉体2よりも下側にて空気を貯留する水中貯留部51をさらに備える。水中貯留部51に貯留されている空気は、第2浮力室26への空気の補充に利用される。このように、水中貯留部51に貯留されている空気を水中に放出するのみで第2浮力室26への空気の供給ができるため、陸上設備等から空気を圧送する場合に比べて、第2浮力室26への空気の補充を速やかに行うことができる。また、水中貯留部51は、有蓋筒状で下方に開口している。これにより、水中貯留部51の構造を簡素化しつつ、必要量の空気を水中貯留部51に容易に貯留することができる。 The relief gate 1 further includes an underwater storage unit 51 that stores air at a lower side than the over-falling door 2. The air stored in the water storage portion 51 is used to replenish air to the second buoyancy chamber 26. As described above, since air can be supplied to the second buoyancy chamber 26 only by releasing the air stored in the water storage portion 51 into the water, compared with the case where the air is pumped from land equipment etc., the second The air can be quickly replenished to the buoyancy chamber 26. Moreover, the underwater storage part 51 is opened in the lower side by a covered cylinder shape. Thereby, the required amount of air can be easily stored in the underwater storage unit 51 while simplifying the structure of the underwater storage unit 51.
 起伏ゲート1では、起立状態の扉体2における第1浮力室25の上端部に、第1浮力室25と扉体2の外部とを開放可能に接続する排気部28が設けられる。扉体2の厚さ方向に関して、排気部28の第1浮力室25内における排気口285の位置は可変である。これにより、扉体2が倒伏する際に第1浮力室25に残留する空気の量を容易に調節することができる。換言すれば、扉体2が倒伏する際に第1浮力室25に流入する水の量を調節することができる。その結果、扉体2が速やかに係留状態へと復帰するために必要な適量の空気を、過倒伏状態の扉体2の第1浮力室25内に残留させることができる。また、第1浮力室25内に適量の空気を残留させることにより、扉体2が過倒伏状態となる際(すなわち、扉体2の水底への着床時)における扉体2の倒伏速度を抑制し、扉体2に着床時に加わる衝撃を低減することができる。 In the undulating gate 1, an exhaust unit 28 is provided at the upper end portion of the first buoyancy chamber 25 in the door 2 in the upright state, for connecting the first buoyancy chamber 25 and the outside of the door 2 in an openable manner. The position of the exhaust port 285 in the first buoyancy chamber 25 of the exhaust unit 28 is variable with respect to the thickness direction of the door 2. Thus, the amount of air remaining in the first buoyancy chamber 25 can be easily adjusted when the door 2 falls. In other words, when the door 2 falls, the amount of water flowing into the first buoyancy chamber 25 can be adjusted. As a result, an appropriate amount of air necessary for the door 2 to quickly return to the moored state can be left in the first buoyancy chamber 25 of the over-folded state of the door 2. In addition, by leaving an appropriate amount of air in the first buoyancy chamber 25, the falling speed of the door 2 at the time when the door 2 is in an overturned state (that is, at the time of landing on the water bottom of the door 2) It is possible to reduce the impact applied to the door 2 at the time of landing.
 起伏ゲート1では、例えば、係留状態の扉体2上に水流に運ばれた土砂等が溜まって、扉体2の浮上力が減少することが考えられる。この場合、浮上力測定部32から出力される扉体2の浮上力の測定値が低下する。当該測定値が所定の閾値未満になると、空気供給部5から第1浮力室25に空気が供給される。具体的には、水中貯留部51の空気放出口が開放され、まず、第2浮力室26へと空気が供給される。これにより、第2浮力室26内に残留していた少量の水が第2開口261を介して流出し、第2浮力室26に空気が充満する。そして、第2開口261から下方に溢れた空気(すなわち、第2浮力室26内から第2開口261を介して溢れた空気、および、第2開口261から第2浮力室26内に流入し得なかった空気)が、ガイド部221により第2主面22に沿って第1開口251へと導かれ、第1開口251から第1浮力室25へと供給される。その結果、扉体2の浮上力が増大する。浮上力測定部32による浮上力の測定値が上述の閾値以上になると、水中貯留部51からの空気の供給が停止される。 In the undulating gate 1, for example, it is conceivable that the sediment carried by the water flow and the like is accumulated on the door 2 in a moored state, and the floating force of the door 2 is reduced. In this case, the measurement value of the lifting force of the door 2 output from the lifting force measurement unit 32 decreases. When the measured value is less than a predetermined threshold value, air is supplied from the air supply unit 5 to the first buoyancy chamber 25. Specifically, the air discharge port of the water reservoir 51 is opened, and air is supplied to the second buoyancy chamber 26 first. As a result, a small amount of water remaining in the second buoyancy chamber 26 flows out through the second opening 261, and the second buoyancy chamber 26 is filled with air. Then, the air overflowing downward from the second opening 261 (that is, the air overflowing from the inside of the second buoyancy chamber 26 via the second opening 261, and can flow into the second buoyancy chamber 26 from the second opening 261 The air (which was not) is guided by the guide portion 221 along the second main surface 22 to the first opening 251, and is supplied from the first opening 251 to the first buoyancy chamber 25. As a result, the lift of the door 2 is increased. When the measurement value of the levitation force by the levitation force measurement unit 32 becomes equal to or more than the above-described threshold value, the supply of air from the underwater storage unit 51 is stopped.
 このように、起伏ゲート1は、係留状態の扉体2の浮上力を測定する浮上力測定部32をさらに備える。これにより、扉体2を実際に起立させることなく、扉体2が起立可能な状態であるか否かを確認することができる。また、起伏ゲート1では、扉体2の浮上力が所定の閾値未満の場合、第1浮力室25に空気が供給される。これにより、扉体2上に溜まった土砂等により扉体2の浮上力が減少した場合であっても、扉体2の浮上力を容易かつ速やかに回復させることができる。 Thus, the relief gate 1 further includes a lift force measurement unit 32 that measures the lift force of the door 2 in the moored state. As a result, it is possible to check whether the door 2 can be raised without actually raising the door 2. In the undulating gate 1, air is supplied to the first buoyancy chamber 25 when the lift force of the door 2 is less than the predetermined threshold. As a result, even if the floating force of the door 2 is reduced due to dirt and the like accumulated on the door 2, the floating force of the door 2 can be recovered easily and quickly.
 上述のように、起伏ゲート1は、第2浮力室26に空気を供給する空気供給部5をさらに備える。第1浮力室25は、扉体2の第2主面22(すなわち、倒伏した状態の扉体2の下面)に開口する第1開口251を有する。第2浮力室26は、扉体2の第2主面22に開口する第2開口261を有する。扉体2の第2主面22には、第2開口261から第1開口251に至るガイド部221が設けられる。そして、空気供給部5から第2浮力室26に供給された空気が、第2開口261から下方に溢れ、ガイド部221に導かれて第1開口251から第1浮力室25へと供給される。これにより、第2浮力室26に空気を供給する機構(すなわち、水中貯留部51等)を利用して、簡素な構造により第1浮力室25にも空気を供給することができる。 As described above, the relief gate 1 further includes the air supply unit 5 that supplies air to the second buoyancy chamber 26. The first buoyancy chamber 25 has a first opening 251 opened to the second main surface 22 of the door 2 (that is, the lower surface of the door 2 in the collapsed state). The second buoyancy chamber 26 has a second opening 261 that opens to the second main surface 22 of the door 2. The second main surface 22 of the door 2 is provided with a guide portion 221 extending from the second opening 261 to the first opening 251. Then, the air supplied from the air supply unit 5 to the second buoyancy chamber 26 overflows downward from the second opening 261, is guided to the guide portion 221, and is supplied from the first opening 251 to the first buoyancy chamber 25. . Thus, the mechanism can be used to supply air to the second buoyancy chamber 26 (that is, the water reservoir 51 or the like), and air can also be supplied to the first buoyancy chamber 25 with a simple structure.
 上述の起伏ゲート1では、様々な変更が可能である。 In the above-described relief gate 1, various modifications are possible.
 例えば、排気部28では、扉体2の厚さ方向に関する排気口285の位置を変更する構造は、様々に変更されてよい。例えば、第1浮力室25内において、扉体2の厚さ方向の異なる位置に複数の排気口285が設けられ、当該複数の排気口285のうち1つの排気口285が選択的に使用されることにより、扉体2の厚さ方向に関する排気口285の位置が可変とされてもよい。なお、起伏ゲート1では、排気口285の位置は、必ずしも可変である必要はなく、固定されていてもよい。 For example, in the exhaust part 28, the structure which changes the position of the exhaust port 285 regarding the thickness direction of the door 2 may be changed variously. For example, in the first buoyancy chamber 25, a plurality of exhaust ports 285 are provided at different positions in the thickness direction of the door 2, and one exhaust port 285 is selectively used among the plurality of exhaust ports 285. Thereby, the position of the exhaust port 285 in the thickness direction of the door 2 may be made variable. In the undulating gate 1, the position of the exhaust port 285 does not necessarily have to be variable, and may be fixed.
 隔壁ゲート272は、必ずしも上ヒンジ式のフラップゲートである必要はなく、様々な構造のゲートであってよい。例えば、隔壁ゲート272は、隔壁270に沿って摺動するスライドゲートであってもよい。あるいは、隔壁ゲート272は、幅方向の両側にローラが取り付けられ、当該ローラが回転することにより隔壁270に沿って移動するローラゲートであってもよい。 The bulkhead gate 272 does not have to be an upper hinged flap gate, but may be a gate of various structures. For example, the partition gate 272 may be a slide gate sliding along the partition 270. Alternatively, the partition gate 272 may be a roller gate having rollers attached on both sides in the width direction and moving along the partition 270 as the roller rotates.
 扉体2が過倒伏状態から係留状態へと移行した後に水中貯留部51から第2浮力室26に供給される空気の量は、第2浮力室26から浮力室接続部27を介して第1浮力室25へと移動した空気の量(すなわち、移動空気量)よりも多くてもよい。この場合、第2開口261から下方に溢れた空気は、例えば、ガイド部221により第2主面22に沿って第1開口251へと導かれ、第1開口251から第1浮力室25へと供給される。 The amount of air supplied from the submersible storage unit 51 to the second buoyancy chamber 26 after the door 2 shifts from the overturned state to the moored state is the first amount of air from the second buoyancy chamber 26 via the buoyancy chamber connection 27. It may be larger than the amount of air moved to the buoyancy chamber 25 (ie, the amount of moving air). In this case, the air overflowing downward from the second opening 261 is, for example, guided by the guide portion 221 along the second main surface 22 to the first opening 251, and from the first opening 251 to the first buoyancy chamber 25. Supplied.
 上述の例では、過倒伏状態の扉体2において、第2浮力室26の空気の一部が浮力室接続部27を介して第1浮力室25へと移動することにより、扉体2は係留状態へと移行するが、扉体2は、必ずしも浮力室間の空気の移動のみにより係留状態に移行しなくてもよい。例えば、第2浮力室26の空気の一部が浮力室接続部27を介して第1浮力室25へと移動した後も、扉体2は過倒伏状態のままで維持されてもよい。この場合、過倒伏状態の扉体2の第2浮力室26に水中貯留部51から空気が供給されることにより、扉体2が過倒伏状態から係留状態へと移行する。あるいは、過倒伏状態の扉体2の第2浮力室26に水中貯留部51から空気が供給されて第2浮力室26に空気が充満した後、第2開口261から下方に溢れた空気が、ガイド部221に導かれて第1開口251から第1浮力室25に供給されることにより、扉体2が過倒伏状態から係留状態へと移行してもよい。 In the above-mentioned example, in the door 2 in the excessively fallen state, the door 2 is moored by moving part of the air of the second buoyancy chamber 26 to the first buoyancy chamber 25 via the buoyancy chamber connection 27. Although it transfers to a state, the door 2 does not necessarily need to transfer to an anchoring state only by the movement of the air between buoyancy chambers. For example, even after part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25 via the buoyancy chamber connection 27, the door 2 may be maintained in the over-collapsed state. In this case, air is supplied from the submersible storage unit 51 to the second buoyancy chamber 26 of the door 2 in the overturned state, whereby the door 2 shifts from the overturned state to the moored state. Alternatively, after the air is supplied from the submersible storage unit 51 to the second buoyancy chamber 26 of the over-folded door 2 and the second buoyancy chamber 26 is filled with air, the air overflowing downward from the second opening 261 is By being guided to the guide portion 221 and being supplied to the first buoyancy chamber 25 from the first opening 251, the door 2 may transition from the over-falling state to the mooring state.
 第2開口261から下方に溢れた空気を第1開口251へと導くガイド部221の構造は、様々に変更されてよい。例えば、長手方向に延びる略半円筒状の部材が、第2開口261から第1開口251に至るガイド部221として、扉体2の第2主面22に取り付けられてもよい。この場合、第2開口261から下方に溢れた空気は、当該略半円筒状の部材と第2主面22との間の略半円柱状の空間を通過して第1開口251へと導かれ、第1開口251を介して第1浮力室25へと供給される。 The structure of the guide portion 221 for guiding the air overflowing downward from the second opening 261 to the first opening 251 may be variously changed. For example, a substantially semi-cylindrical member extending in the longitudinal direction may be attached to the second main surface 22 of the door 2 as a guide portion 221 extending from the second opening 261 to the first opening 251. In this case, the air overflowing downward from the second opening 261 is led to the first opening 251 through the substantially semi-cylindrical space between the substantially semi-cylindrical member and the second major surface 22. , And supplied to the first buoyancy chamber 25 through the first opening 251.
 空気供給部5から第1浮力室25への空気の供給は、必ずしもガイド部221を経由する必要はない。例えば、係留状態の扉体2の第1開口251の下方にもう1つの水中貯留部51が設けられ、当該もう1つの水中貯留部51から第1浮力室25へと直接的に空気が供給されてもよい。この場合、ガイド部221は省略されてもよい。 The supply of air from the air supply unit 5 to the first buoyancy chamber 25 does not necessarily have to go through the guide portion 221. For example, another underwater storage unit 51 is provided below the first opening 251 of the door 2 in the moored state, and air is directly supplied from the other underwater storage unit 51 to the first buoyancy chamber 25. May be In this case, the guide portion 221 may be omitted.
 水中貯留部51の形状は、必ずしも、下方に向かって開口する有蓋筒状である必要はなく、様々に変更されてよい。例えば、水中貯留部51は、外部に向かって開口しない気密タンクであってもよい。また、空気供給部5から第2浮力室26への空気の供給は、必ずしも水中貯留部51を経由する必要はない。例えば、コンプレッサ52から送出された空気が、コンプレッサ52と第2浮力室26とを接続する配管を介して、直接的に第2浮力室26に供給されてもよい。 The shape of the water storage portion 51 does not necessarily have to be in the form of a cylindrical lid that opens downward, and may be variously changed. For example, the underwater storage unit 51 may be an airtight tank that does not open toward the outside. Moreover, the supply of air from the air supply unit 5 to the second buoyancy chamber 26 does not necessarily have to go through the underwater storage unit 51. For example, the air delivered from the compressor 52 may be supplied directly to the second buoyancy chamber 26 via a pipe connecting the compressor 52 and the second buoyancy chamber 26.
 浮力室接続部27の構造は、様々に変更されてよい。浮力室接続部27は、例えば、第1浮力室25と第2浮力室26とを接続する配管と、当該配管に設けられたバルブとを備えていてもよい。この場合、扉体2が過倒伏状態になると、扉体接触部4が当該バルブの駆動部に接触してバルブを開放する。これにより、第2浮力室26内の空気の一部が第1浮力室25へと移動する。そして、扉体2が過倒伏状態から係留状態へと移行することにより、扉体接触部4が当該バルブの駆動部から離れ、バルブが閉鎖される。 The structure of the buoyancy chamber connection 27 may be varied in many ways. The buoyancy chamber connection part 27 may be provided with piping which connects the 1st buoyancy chamber 25 and the 2nd buoyancy chamber 26, for example, and a valve provided in the piping concerned. In this case, when the door 2 is in an overturned state, the door contact portion 4 contacts the drive portion of the valve to open the valve. Thereby, a part of the air in the second buoyancy chamber 26 moves to the first buoyancy chamber 25. And when the door 2 transfers to a mooring state from an overturned state, the door contact part 4 will be separated from the drive part of the said valve, and a valve will be closed.
 また、浮力室接続部27の開放および閉鎖は、必ずしも扉体接触部4の接触および離間により行われる必要はない。例えば、扉体2が過倒伏状態であるか否かを検出するセンサが函体11等に設けられ、当該センサにより扉体2が過倒伏状態になったことが検出されると、上述のバルブ(例えば、電動バルブ)の駆動部が、センサからの出力に基づいて駆動されてバルブが開放されてもよい。そして、扉体2が過倒伏状態から係留状態へと移行すると、上記センサからの出力に基づいてバルブの駆動部が駆動され、バルブが閉鎖される。 Further, the opening and closing of the buoyancy chamber connection 27 need not necessarily be performed by the contact and separation of the door contact 4. For example, a sensor for detecting whether or not the door 2 is in the over-falling state is provided in the box 11 or the like, and when the sensor detects that the door 2 is in the over-falling state, the above-described valve The drive unit (for example, a motorized valve) may be driven based on the output from the sensor to open the valve. Then, when the door 2 shifts from the overturned state to the moored state, the drive portion of the valve is driven based on the output from the sensor, and the valve is closed.
 上述の空気供給部5の構造は、扉体内に1つ以上の浮力室を有する水底設置型起伏ゲートであれば適用可能である。当該水底設置型起伏ゲートは、水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、当該扉体に空気を供給する空気供給部とを備える。扉体は、可動端部と支持端部との間に配置される浮力室を備える。当該空気供給部は、倒伏した状態の扉体よりも下側にて空気を貯留する有蓋円筒状で下方に開口した水中貯留部を備える。そして、倒伏した状態の扉体の浮力室に、当該水中貯留部に貯留されている空気が供給される。 The above-described structure of the air supply unit 5 is applicable if it is a bottom-mounted undulating gate having one or more buoyancy chambers in the door body. The water bottom installation type hoisting gate includes a door body which stands up and falls when the movable end portion is pivoted around a supporting end portion disposed on the water bottom, and an air supply unit which supplies air to the door body. . The door includes a buoyancy chamber disposed between the movable end and the support end. The said air supply part is provided with the underwater storage part opened below with a covered cylindrical shape which stores air on the lower side than the door in the fallen state. Then, the air stored in the underwater storage portion is supplied to the buoyancy chamber of the door which is in the lying state.
 このように、当該水底設置型起伏ゲートでは、水中貯留部に貯留されている空気を水中に放出するのみで浮力室への空気の供給ができるため、陸上設備等から空気を圧送する場合に比べて、倒伏した扉体に速やかに空気を供給することができる。また、水中貯留部の構造を簡素化しつつ、必要量の空気を水中貯留部に容易に貯留することができる。なお、当該水底設置型起伏ゲートでは、扉体を係留する係留部は設けられてもよく、設けられなくてもよい。また、浮力室の数は1であってもよく、2以上であってもよい。 As described above, in the bottom-mounted undulation gate, air can be supplied to the buoyancy chamber only by releasing the air stored in the water storage section into the water, and therefore, compared to the case where the air is pumped from land equipment or the like. Air can be quickly supplied to the fallen door. In addition, the required amount of air can be easily stored in the underwater storage while simplifying the structure of the underwater storage. In addition, the mooring part which moors a door body may be provided in the said water bottom installation type undulation gate, and does not need to be provided. In addition, the number of buoyancy chambers may be one or two or more.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as no contradiction arises.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described and described in detail, the foregoing description is illustrative and not restrictive. Accordingly, numerous modifications and variations are possible without departing from the scope of the present invention.
 1  起伏ゲート
 2  扉体
 4  扉体接触部
 5  空気供給部
 22  (扉体の)第2主面
 23  支持端部
 24  可動端部
 25  第1浮力室
 26  第2浮力室
 27  浮力室接続部
 28  排気部
 31  係留部
 32  浮上力測定部
 51  水中貯留部
 221  ガイド部
 251  第1開口
 261  第2開口
 270  隔壁
 271  隔壁開口
 272  隔壁ゲート
 285  排気口
DESCRIPTION OF SYMBOLS 1 undulation gate 2 door 4 door contact part 5 air supply part 22 2nd main surface (of door) 23 support end 24 movable end 25 1st buoyancy room 26 2nd buoyancy room 27 buoyancy room connection part 28 exhaust air Part 31 mooring part 32 levitation force measuring part 51 underwater storage part 221 guide part 251 first opening 261 second opening 270 partition 271 partition opening 272 partition gate 285 exhaust port

Claims (9)

  1.  水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、
     前記扉体を水底に係留する係留部と、を備えた水底設置型起伏ゲートであって、
     前記扉体が、
     前記可動端部と前記支持端部との間に配置される第1浮力室と、
     前記第1浮力室と前記支持端部との間に配置される第2浮力室と、
     前記第1浮力室と前記第2浮力室とを開放可能に接続する浮力室接続部と、
    を備え、
     前記扉体が前記係留部に係留される係留状態よりも倒伏した過倒伏状態において、前記浮力室接続部が開放される。
    A door body that stands up and falls when the movable end pivots about a supporting end disposed at the bottom of the water;
    And a mooring section for mooring the door body to the bottom of the water.
    The door is
    A first buoyancy chamber disposed between the movable end and the support end;
    A second buoyancy chamber disposed between the first buoyancy chamber and the support end;
    A buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber;
    Equipped with
    The buoyancy chamber connection is opened in an overturned state in which the door body is laid down more than in a moored state where the door body is moored to the mooring portion.
  2.  水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、
     前記扉体を水底に係留する係留部と、を備えた水底設置型起伏ゲートであって、
     前記扉体が、
     前記可動端部と前記支持端部との間に配置される第1浮力室と、
     前記第1浮力室と前記支持端部との間に配置される第2浮力室と、
     前記第1浮力室と前記第2浮力室とを開放可能に接続する浮力室接続部と、
    を備え、
     起立状態の前記扉体において、前記第1浮力室内の空気を水に置換することにより、前記扉体が、前記係留部に係留される係留状態よりも倒伏した過倒伏状態へと移行し、
     前記扉体が前記過倒伏状態になることにより、前記浮力室接続部が開放されて前記第2浮力室内の空気の一部が前記浮力室接続部を介して前記第1浮力室へと移動し、
     前記扉体が前記過倒伏状態から前記係留状態へと移行することにより、前記浮力室接続部が閉鎖される。
    A door body that stands up and falls when the movable end pivots about a supporting end disposed at the bottom of the water;
    And a mooring section for mooring the door body to the bottom of the water.
    The door is
    A first buoyancy chamber disposed between the movable end and the support end;
    A second buoyancy chamber disposed between the first buoyancy chamber and the support end;
    A buoyancy chamber connecting portion for openably connecting the first buoyancy chamber and the second buoyancy chamber;
    Equipped with
    In the door in the upright state, the air in the first buoyancy chamber is replaced with water, whereby the door is shifted to an overturned state which is more laid than the moored state moored to the mooring portion,
    When the door is in the over-collapsed state, the buoyancy chamber connection is opened, and part of the air in the second buoyancy chamber is moved to the first buoyancy chamber via the buoyancy chamber connection. ,
    The buoyancy chamber connection is closed by the transition of the door from the overturned state to the moored state.
  3.  請求項1または2に記載の水底設置型起伏ゲートであって、
     水底に設置された扉体接触部をさらに備え、
     前記浮力室接続部が、
     前記第1浮力室と前記第2浮力室との間の隔壁に設けられた隔壁開口と、
     前記隔壁開口に重なって前記隔壁開口を閉鎖する隔壁ゲートと、
    を備え、
     前記扉体が前記過倒伏状態になることにより、前記扉体接触部が前記隔壁ゲートに接触して前記隔壁ゲートを前記隔壁開口と重なる位置から移動させ、前記浮力室接続部が開放される。
    A bottom mounted undulation gate according to claim 1 or 2,
    It further has a door contact part installed at the bottom of the water,
    The buoyancy chamber connection is
    A partition opening provided in a partition between the first buoyancy chamber and the second buoyancy chamber;
    A partition gate overlapping the partition opening to close the partition opening;
    Equipped with
    When the door is in the over-collapsed state, the door contact portion contacts the partition gate to move the partition gate from a position overlapping the partition opening, and the buoyancy chamber connection is opened.
  4.  請求項1ないし3のいずれか1つに記載の水底設置型起伏ゲートであって、
     前記扉体が前記過倒伏状態になって前記浮力室接続部が開放されることにより、前記扉体が前記過倒伏状態から前記係留状態へと移行する。
    A bottom mounted relief gate according to any one of claims 1 to 3, comprising:
    When the door is in the over-collapsed state and the buoyancy chamber connection portion is opened, the door is shifted from the over-collapsed state to the moored state.
  5.  請求項1ないし4のいずれか1つに記載の水底設置型起伏ゲートであって、
     前記過倒伏状態の前記扉体よりも下側にて空気を貯留する水中貯留部をさらに備え、
     前記水中貯留部に貯留されている空気が、前記第2浮力室への空気の補充に利用される。
    A bottom mounted relief gate according to any one of claims 1 to 4, comprising:
    The water storage unit further includes an underwater storage unit that stores air on the lower side of the door in the excessively fallen state,
    The air stored in the underwater storage unit is used to replenish air to the second buoyancy chamber.
  6.  請求項1ないし5のいずれか1つに記載の水底設置型起伏ゲートであって、
     前記係留状態の前記扉体の浮上力を測定する浮上力測定部をさらに備え、
     前記扉体の浮上力が所定の閾値未満の場合、前記第1浮力室に空気が供給される。
    A bottom mounted relief gate according to any one of claims 1 to 5, comprising:
    It further comprises a levitation force measurement unit that measures the levitation force of the door in the moored state,
    If the lift force of the door is less than a predetermined threshold, air is supplied to the first buoyancy chamber.
  7.  請求項1ないし6のいずれか1つに記載の水底設置型起伏ゲートであって、
     前記第2浮力室に空気を供給する空気供給部をさらに備え、
     前記第1浮力室が前記扉体の下面に開口する第1開口を有し、
     前記第2浮力室が前記扉体の前記下面に開口する第2開口を有し、
     前記扉体の前記下面に、前記第2開口から前記第1開口に至るガイド部が設けられ、
     前記空気供給部から前記第2浮力室に供給された空気が、前記第2開口から下方に溢れ、前記ガイド部に導かれて前記第1開口から前記第1浮力室へと供給される。
    A bottom mounted relief gate according to any one of claims 1 to 6, comprising:
    The air conditioner further comprises an air supply unit for supplying air to the second buoyancy chamber,
    The first buoyancy chamber has a first opening that opens to the lower surface of the door;
    The second buoyancy chamber has a second opening that opens to the lower surface of the door;
    A guide portion extending from the second opening to the first opening is provided on the lower surface of the door body,
    Air supplied from the air supply unit to the second buoyancy chamber overflows downward from the second opening, is guided to the guide unit, and is supplied from the first opening to the first buoyancy chamber.
  8.  請求項1ないし7のいずれか1つに記載の水底設置型起伏ゲートであって、
     起立状態の前記扉体における前記第1浮力室の上端部に、前記第1浮力室と前記扉体の外部とを開放可能に接続する排気部が設けられ、
     前記扉体の厚さ方向に関して、前記排気部の前記第1浮力室内における排気口の位置が可変である。
    A bottom mounted relief gate according to any one of the preceding claims, wherein
    The upper end portion of the first buoyancy chamber of the door in the upright state is provided with an exhaust unit that can openably connect the first buoyancy chamber and the outside of the door;
    The position of the exhaust port in the first buoyancy chamber of the exhaust unit is variable with respect to the thickness direction of the door.
  9.  水底設置型起伏ゲートであって、
     水底に配置された支持端部を支点として可動端部が回動することにより起立および倒伏する扉体と、
     前記扉体に空気を供給する空気供給部と、
    を備え、
     前記扉体が、前記可動端部と前記支持端部との間に配置される浮力室を備え、
     前記空気供給部が、倒伏した状態の前記扉体よりも下側にて空気を貯留する有蓋筒状で下方に開口した水中貯留部を備え、
     倒伏した状態の前記扉体の前記浮力室に、前記水中貯留部に貯留されている空気が供給される。
    It is a bottom-mounted undulation gate,
    A door body that stands up and falls when the movable end pivots about a supporting end disposed at the bottom of the water;
    An air supply unit for supplying air to the door;
    Equipped with
    The door includes a buoyancy chamber disposed between the movable end and the support end;
    The air supply unit includes a submerged cylindrical opening in the form of a lidded cylinder which stores air on the lower side of the door in a collapsed state, and which is open downward.
    The air stored in the underwater storage portion is supplied to the buoyancy chamber of the door in the collapsed state.
PCT/JP2018/029816 2017-08-30 2018-08-08 Water bottom installed flap gate WO2019044443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017165251A JP6846315B2 (en) 2017-08-30 2017-08-30 Underwater installation type undulating gate
JP2017-165251 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044443A1 true WO2019044443A1 (en) 2019-03-07

Family

ID=65525246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029816 WO2019044443A1 (en) 2017-08-30 2018-08-08 Water bottom installed flap gate

Country Status (2)

Country Link
JP (1) JP6846315B2 (en)
WO (1) WO2019044443A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016087B1 (en) * 1971-09-01 1975-06-10
JPS5325182B2 (en) * 1974-05-31 1978-07-25
JP2000144696A (en) * 1998-11-10 2000-05-26 Akio Iida Derricking gate
JP2003227125A (en) * 2002-02-04 2003-08-15 Hitachi Zosen Corp Luffing gate
JP2003239261A (en) * 2002-02-08 2003-08-27 Penta Ocean Constr Co Ltd Flap gate type tide prevention device
JP2010133095A (en) * 2008-12-02 2010-06-17 Hitachi Zosen Corp Door body mooring device of derricking gate breakwater
JP2011111722A (en) * 2009-11-24 2011-06-09 Hitachi Zosen Corp Mooring device of flap gate-type breakwater
JP2011241543A (en) * 2010-05-14 2011-12-01 Hitachi Zosen Corp Floating type flap gate
JP2014009560A (en) * 2012-07-02 2014-01-20 Hitachi Zosen Corp Mooring hook of seabed installation-type flap gate
US20160369469A1 (en) * 2014-02-13 2016-12-22 Bluewater Design Associates Limited Self-activating flood protection barrier

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016087B1 (en) * 1971-09-01 1975-06-10
JPS5325182B2 (en) * 1974-05-31 1978-07-25
JP2000144696A (en) * 1998-11-10 2000-05-26 Akio Iida Derricking gate
JP2003227125A (en) * 2002-02-04 2003-08-15 Hitachi Zosen Corp Luffing gate
JP2003239261A (en) * 2002-02-08 2003-08-27 Penta Ocean Constr Co Ltd Flap gate type tide prevention device
JP2010133095A (en) * 2008-12-02 2010-06-17 Hitachi Zosen Corp Door body mooring device of derricking gate breakwater
JP2011111722A (en) * 2009-11-24 2011-06-09 Hitachi Zosen Corp Mooring device of flap gate-type breakwater
JP2011241543A (en) * 2010-05-14 2011-12-01 Hitachi Zosen Corp Floating type flap gate
JP2014009560A (en) * 2012-07-02 2014-01-20 Hitachi Zosen Corp Mooring hook of seabed installation-type flap gate
US20160369469A1 (en) * 2014-02-13 2016-12-22 Bluewater Design Associates Limited Self-activating flood protection barrier

Also Published As

Publication number Publication date
JP2019044351A (en) 2019-03-22
JP6846315B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
CA2045139C (en) Automatic swing fishway apparatus
JP5225930B2 (en) Undulating wave breaker
JP4987750B2 (en) Flap gate
CN108797527A (en) Bulkhgead gate on checkdam
KR101355949B1 (en) Flap gate
WO2019044443A1 (en) Water bottom installed flap gate
JP5051588B2 (en) Flap gate, water channel temporary wall, and water channel connection method
JP2010101097A (en) Flap gate-type breakwater, and method for raising, bringing-down-and-mooring and mooring the same
JP5476209B2 (en) Floating flap gate
RU2307890C1 (en) Sluice
US2375739A (en) Automatic lock gate
JP2011153567A (en) Wave power generator
JP5208844B2 (en) breakwater
CN114134866B (en) Method for considering both drainage of ecological flow of diversion tunnel in water storage period and water filling and air exhausting of tunnel after completion of permanent plug
KR20100043797A (en) Watergate control apparatus
JP7224946B2 (en) undulating gate breakwater
SU1716491A1 (en) Water regulator in hydrotechnical constructions
TWI842964B (en) Gate
KR20140006102U (en) System for adjusting filling and draining of seawater in upper casing of submarine
JP2002339317A (en) Pontoon
KR20170099717A (en) Water gate system
JP5931581B2 (en) Floating land gate
CN207109779U (en) A kind of self-floating anchor head structure for being used to block bleaching device
JPH0247458Y2 (en)
NO326904B1 (en) Ballastable buoyancy device and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852558

Country of ref document: EP

Kind code of ref document: A1