WO2019044326A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019044326A1
WO2019044326A1 PCT/JP2018/028525 JP2018028525W WO2019044326A1 WO 2019044326 A1 WO2019044326 A1 WO 2019044326A1 JP 2018028525 W JP2018028525 W JP 2018028525W WO 2019044326 A1 WO2019044326 A1 WO 2019044326A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
discharge pipe
compression mechanism
oil discharge
closed container
Prior art date
Application number
PCT/JP2018/028525
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 船越
里 和哉
努 昆
大典 大城
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019539093A priority Critical patent/JP7117607B2/en
Priority to CN201880052830.5A priority patent/CN111033045A/en
Publication of WO2019044326A1 publication Critical patent/WO2019044326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the present disclosure relates to a cooling device such as a cooling and heating air conditioner and a refrigerator, and a compressor used for a heat pump water heater and the like.
  • a hermetic compressor used for a cooling device and a water heater etc. compresses the refrigerant gas returned from the refrigeration cycle by the compression mechanism section and feeds it to the refrigeration cycle. At that time, oil is supplied to the compression mechanism portion, the sliding portion is lubricated by the oil, and the oil after lubrication is returned to the oil storage portion (see, for example, Patent Document 1).
  • the present disclosure provides a compressor that suppresses noise generation associated with oil discharge from the compression mechanism, suppresses oil outflow to the refrigeration cycle, and reduces noise and oil spillage to the refrigeration cycle. It is a thing.
  • the compressor of the present disclosure is connected to a hermetic container, a compression mechanism unit provided in the hermetic container, a motor unit that drives the compression mechanism unit, a pump that supplies oil to the compression mechanism unit, and a compression mechanism unit And an oil discharge pipe for returning the oil after lubricating the compression mechanism portion to a space below the motor portion in the hermetic container. And the end of the oil discharge pipe is fixed to the closed container.
  • the oil discharge pipe returns the oil to the space below the motor in the closed vessel, this oil can be prevented from being caught by the turbulent refrigerant generated in the space above the motor, and the oil flows out to the refrigeration cycle Oil can be reduced.
  • FIG. 1 is a side cross-sectional view of a compressor according to a first embodiment of the present disclosure.
  • FIG. 2 is an enlarged sectional view showing an essential part of the same compressor.
  • FIG. 3 is an enlarged cross-sectional view showing a configuration of a compressor of a comparative example.
  • FIG. 3 is a cross-sectional view showing a compression mechanism portion of a scroll compressor of a comparative example, which has a configuration similar to that of Patent Document 1 described above.
  • the low-temperature low-pressure refrigerant gas is introduced to the suction chamber of the fixed scroll 102 through the suction pipe 101, and compressed by the volume change of the compression chamber 104 formed between the fixed scroll 102 and the orbiting scroll 103. It becomes high pressure. Thereafter, the high-temperature and high-pressure refrigerant gas is discharged into the muffler space 106 through the discharge port 105 at the upper part of the fixed scroll 102, and from the muffler space 106 through the inside of the closed container 107 to the refrigeration cycle from the discharge pipe 108. It is sent out.
  • a sliding portion of the compression mechanism including the fixed scroll 102 and the orbiting scroll 103 for example, a meshing portion between the stationary scroll 102 and the orbiting scroll 103, between the shaft 109 and its bearing member 110, and Oil is supplied to the back pressure chamber and the like to lubricate each sliding portion.
  • Oil for lubricating each sliding portion is supplied via an oil passage 112 in a shaft 109 for driving the orbiting scroll 103, and after lubricating each sliding portion of the compression mechanism portion, the oil provided on the bearing member 110 is exhausted.
  • the oil is discharged into the closed container 107 below the compression mechanism via the oil passage 113. Then, the oil discharged into the sealed container 107 falls downward by gravity and is accumulated in an oil storage portion (not shown) provided at the lower part in the sealed container 107.
  • the high-pressure refrigerant gas discharged from the discharge port 105 of the fixed scroll 102 is in a turbulent state in the closed container 107.
  • the oil discharged from the oil discharge passage 113 of the bearing member 110 into the closed container 107 below the compression mechanism is partially mixed with the refrigerant gas on the way down and flows out from the discharge pipe 108 to the refrigeration cycle Resulting in.
  • an oil guide plate 114 along the inner wall surface of the closed container 107 is provided at the outlet portion of the oil discharge passage 113.
  • the oil from the oil discharge passage 113 is released between the oil guide plate 114 and the inner wall surface of the sealed container 107.
  • the oil released from the oil discharge passage 113 can be prevented from being mixed with the turbulent flow refrigerant in the closed container 107 and flowing out to the refrigeration cycle.
  • the oil discharged from the oil discharge passage 113 is at high pressure, and is pulsating due to eccentric rotation of the orbiting scroll 103 and the shaft eccentric shaft 109a. For this reason, there is a problem that the oil guide plate 114 vibrates and emits noise.
  • the oil guide plate 114 can be provided only up to the upper end portion of the coil portion of the motor 115 for driving the shaft 109. Therefore, below that, oil is dropped through the gap between the coil portion of the motor 115 and the inner wall surface of the closed vessel 107 or the like. Therefore, a part of the oil falling from between the lower end of the oil guide plate 114 and the inner wall surface of the sealed container 107 is caught in the turbulent flow of cold air generated in the upper space 116 of the motor 115 in the sealed container 107. Flow out into the refrigeration cycle. Therefore, according to the configuration of FIG. 3, although the oil spill to the refrigeration cycle is reduced, there is still room for improvement. The present disclosure is made based on such findings.
  • a compressor includes: an airtight container; a compression mechanism provided in the airtight container; a motor unit for driving the compression mechanism; a pump for supplying oil to the compression mechanism;
  • the oil discharge pipe is connected to the mechanism unit and returns the oil after lubricating the compression mechanism unit to the space below the motor unit in the hermetic container. And the end of the oil discharge pipe is fixed to the closed container.
  • the oil released from the compression mechanism portion is discharged below the motor portion of the closed container via the oil discharge pipe.
  • the oil discharge pipe is fixed to the closed container, it is possible to suppress the generation of noise due to the vibration of the oil discharge pipe, and low noise Can be
  • the oil discharge pipe returns the oil to the space below the motor in the sealed container, it is possible to suppress the oil from being caught in the turbulent air flow of the refrigerant in the space above the motor, and to the refrigeration cycle It is possible to reduce the oil spilled.
  • the second aspect of the present disclosure may be configured such that the oil discharge pipe is fixed to the closed container by TIG welding.
  • TIG welding hardly generates spatter at the time of welding as compared with other welding methods. Therefore, it is possible to prevent the spatter from adhering to the coil portion or the like of the motor portion and affecting the performance of the motor, and a highly reliable compressor can be realized.
  • the third aspect further comprises an oil reservoir provided in the sealed container, the oil discharge pipe having an opening, and the opening opens into the oil accumulated in the oil reservoir. It may be configured.
  • the motor unit may further include a shaft and a lower bearing member supporting the shaft, and a position at which the oil discharge pipe is fixed to the closed container may be below the lower bearing member.
  • the dimension from the position where the oil discharge pipe is fixed to the opening is further shortened, and vibration of the oil discharge pipe can be effectively suppressed from the fixing portion to the opening, thereby preventing noise It can be raised.
  • the position for fixing the oil discharge pipe to the closed container may be an open edge located in the oil accumulated in the closed container.
  • FIG. 1 is a cross-sectional view seen from the side of a compressor 50 according to a first embodiment of the present disclosure
  • FIG. 2 is an enlarged cross-sectional view showing the main part of the compressor 50.
  • the compressor 50 includes a sealed container 1, a compression mechanism 2 provided therein, and an electric motor 3.
  • the main bearing member 4 and the lower bearing member 4a are fixed in the sealed container 1 by welding, shrink fitting, or the like.
  • the main bearing member 4 and the lower bearing member 4 a pivotally support the shaft 5.
  • a fixed scroll 6 is bolted onto the main bearing member 4. Between the fixed scroll 6 and the main bearing member 4, a orbiting scroll 7 engaged with the fixed scroll 6 is sandwiched, and a scroll-type compression mechanism unit 2 is configured.
  • a rotation restraint mechanism 8 including an Oldham ring or the like is provided which guides the orbiting scroll 7 so that it orbits circularly while preventing the rotation of the orbiting scroll 7.
  • the eccentric scroll 5 is eccentrically driven by the eccentric shaft 5 a at the upper end of the shaft 5 to cause the orbiting scroll 7 to make a circular orbit motion.
  • the compression chamber 9 formed between the fixed scroll 6 and the orbiting scroll 7 moves from the outer peripheral side toward the central portion while reducing the volume.
  • the refrigerant gas is drawn from the suction pipe 10 leading to the refrigeration cycle outside the closed container 1 through the suction chamber 11 provided in the fixed scroll 6, and the refrigerant gas is confined in the compression chamber 9 After being compressed, it is compressed.
  • the refrigerant gas that has reached the predetermined pressure is discharged from the discharge port 12 at the central portion of the fixed scroll 6 by pushing the reed valve 13 open.
  • the refrigerant gas discharged by pushing open the reed valve 13 is discharged into the muffler space 14, and the discharge pipe 17 passes through the in-container space 15 between the compression mechanism portion 2 and the motor portion 3 of the closed container 1. Are sent out to the refrigeration cycle.
  • a positive displacement oil pump 18 is provided at the lower end of the shaft 5 which drives the rotary scroll 7 to turn, and the suction port of the positive displacement oil pump 18 is arranged to be present in the oil of the oil reservoir 19 There is.
  • the displacement type oil pump 18 Since the displacement type oil pump 18 is driven simultaneously with the scroll compressor, the displacement type oil pump 18 operates the oil in the oil reservoir 19 provided at the bottom of the closed container 1 regardless of the pressure condition and the operating speed. It sucks up surely.
  • the oil sucked up by the positive displacement oil pump 18 is supplied to the compression mechanism portion 2 through an oil supply passage 20 passing through the inside of the shaft 5.
  • the positive displacement oil pump 18 if foreign matter is removed from the oil by an oil filter or the like, the foreign matter can be prevented from being mixed into the compression mechanism portion 2 and reliability can be improved. it can.
  • the pressure of the oil introduced to the compression mechanism 2 is approximately equal to the discharge pressure of the scroll compressor, and also serves as a back pressure source for the orbiting scroll 7. As a result, the orbiting scroll 7 does not leave the fixed scroll 6 or collide with one another, and stably exerts a predetermined compression function.
  • a portion of the oil is a fitting portion between the eccentric shaft portion 5a and the orbiting scroll 7, a bearing portion 21 between the shaft 5 and the main bearing member 4 so as to obtain a relief by the supply pressure and self weight. 2) and lubricate the respective parts, and then return to the oil reservoir 19.
  • Another part of the oil supplied from the oil supply passage 20 to the high pressure area 22 is formed in the orbiting scroll 7 and passes through a path having one open end in the high pressure area 22 so that the rotation restraint mechanism 8 is positioned.
  • the oil that has infiltrated acts as a back pressure application to the orbiting scroll 7 in the back pressure chamber 23 as it lubricates the thrust sliding portion and the sliding portion of the rotation restraint mechanism 8.
  • the oil that has lubricated the compression mechanism 2 is returned to the oil reservoir 19 in the closed container 1.
  • the oil discharge pipe 25 is connected to the oil discharge hole 24 provided in the main bearing member 4 of the compression mechanism 2, and the oil is stored in the oil reservoir 19 via the oil discharge pipe 25. Will be returned to
  • the oil discharge pipe 25 is bent in a substantially L-shape, and one end thereof is fitted and mounted to the oil discharge hole 24 of the main bearing member 4, and the other end is directed downward along the inner wall surface of the sealed container 1. , And is drawn to the lower side of the motor unit 3.
  • the lower end of the oil discharge pipe 25 is fixed to the inner wall surface of the sealed container 1 at least at a fixed position 26 described later.
  • the fixed position 26 of the oil discharge pipe 25 is fixed by TIG welding in the present embodiment.
  • the oil discharge pipe 25 is fixed by TIG welding with the edge of the opening 27 which is the lower end of the oil discharge pipe 25 as the fixed position 26.
  • the oil discharge pipe 25 is pulled out to the oil reservoir 19 in the closed container 1, and the opening 27 is located in the oil accumulated in the oil reservoir 19 in the closed container 1. Is configured.
  • the oil discharge pipe 25 is formed of an iron pipe, and is disposed using one of a plurality of notch gaps 3 a formed in the vertical direction on the outer periphery of the coil of the motor unit 3. ing.
  • the present disclosure is not limited to this example, and the pipe material and the arrangement location are not limited to this.
  • the refrigerant sucked from the suction pipe 10 is compressed by the compression chamber 9 formed by the fixed scroll 6 and the orbiting scroll 7, and the reed valve 13 is pushed open to be discharged into the closed container 1.
  • the refrigerant discharged into the closed container 1 passes through the in-container space 15 between the compression mechanism unit 2 and the motor unit 3 and is delivered from the discharge pipe 17 to the refrigeration cycle.
  • each portion of the compression mechanism portion 2 for compressing the refrigerant such as an engagement portion between the fixed scroll 6 and the orbiting scroll 7, between the shaft 5 and its main bearing member 4, and a back pressure chamber 23 of the orbiting scroll 7.
  • the oil is supplied via the oil supply passage 20 of the shaft 5.
  • the oil after lubricating each part of the compression mechanism 2 flows to the oil discharge hole 24 provided in the main bearing member 4 of the compression mechanism 2, and from the opening 27 via the oil discharge pipe 25. And is discharged to the oil reservoir 19 in the closed container 1.
  • the oil flowing to the oil discharge pipe 25 causes pressure fluctuation and pulsates due to the lubrication of each part of the compression mechanism 2, and tries to vibrate the oil discharge pipe 25.
  • the end of the oil discharge pipe 25 of the present disclosure is fixed to the inner wall surface of the sealed container 1 at the fixed position 26, vibration is suppressed. Therefore, the generation of noise due to the vibration of the oil discharge pipe 25 can be prevented.
  • the end of the oil discharge pipe 25 refers to a portion lower than the lower bearing member 4a of the oil discharge pipe 25 (see a hatched portion near the fixed position 26 in FIG. 1).
  • the fixed position 26 of the oil discharge pipe 25 is located below the lower bearing member 4 a that supports the shaft 5 of the motor unit 3, so the noise prevention effect can be enhanced.
  • the dimension from the fixed position 26 to the opening 27 at the lower end of the pipe becomes short.
  • the effect of suppressing the vibration of the oil discharge pipe 25 is enhanced. Therefore, the effect of preventing noise generation due to the vibration of the oil discharge pipe 25 can be enhanced.
  • the fixed position 26 of the oil discharge pipe 25 is the edge of the opening 27 at the lower end of the pipe. Therefore, there is no room for vibration generation starting from the fixed position 26 portion, and noise prevention by vibration suppression of the oil discharge pipe 25 can be made reliable.
  • the fixing of the oil discharge pipe 25 at the fixing position 26 to the closed container 1 is performed by TIG welding. Therefore, even if it is used for a long time, the oil discharge pipe 25 continues to be firmly fixed to the sealed container 1, and the fixed part is loosened by long-term use, and noise generation can be prevented from starting.
  • TIG welding hardly generates spatter at the time of welding as compared with other welding methods. Therefore, even if the oil discharge pipe 25 is welded and fixed to the closed container 1 in a state where the motor unit 3 is incorporated together with the compression mechanism unit 2, spatter is prevented from adhering to the magnet portion and coil portion of the motor unit 3. it can. Therefore, the performance of the motor unit 3 can be prevented from being affected, and a highly reliable compressor can be realized.
  • the opening 27 of the oil discharge pipe 25 is drawn to a space below the motor unit 3 so as to return the oil to the space below the motor.
  • oil can be prevented from being caught in the turbulent air flow of the refrigerant generated in the space above the motor unit 3, and oil flowing out to the refrigeration cycle can be reduced.
  • the opening 27 of the oil discharge pipe 25 is configured to be opened in the oil formed in the oil reservoir 19 in the closed container 1. Thereby, the outflow of oil to the refrigeration cycle can be significantly reduced.
  • the oil flowing out of the opening 27 of the oil discharge pipe 25 is all returned to the oil.
  • This makes it possible to prevent the oil from splashing back due to a collision with the oil surface, which occurs when the opening is opened above the oil surface in the motor lower space. Therefore, a part of the oil droplets of the rebound oil generated in the lower space of the motor is caught in the turbulent air flow of the refrigerant generated in the container space 15 between the compression mechanism 2 and the motor 3 and flows out to the refrigeration cycle It is also possible to prevent oil spillage into the refrigeration cycle.
  • the configuration of the compressor of the present disclosure is not limited to the shape of the present embodiment. That is, the embodiments disclosed herein are illustrative in all respects and not restrictive. The scope of the present disclosure is indicated not by the above description but by the scope of the claims, and is intended to include all modifications within the meaning and the scope of equivalents of the claims.
  • the present disclosure it is possible to realize a compressor with low noise and less oil spillage into the refrigeration cycle. Therefore, the present disclosure can be widely used for various devices using a refrigeration cycle and is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor (50) comprises a sealed container (1), a compression mechanism part (2) provided inside the sealed container (1), an electric motor part (3) that drives the compression mechanism part (2), and a pump (18) that supplies oil to the electric motor part (3). The compressor (50) also comprises an oil discharge pump (25) that is connected to the compression mechanism part (2) and that returns oil to a space below the electric motor part (3) inside the sealed container (1) after the oil has lubricated the compression mechanism part (2). An end part of the oil discharge pump (25) is secured to the sealed container (1).

Description

圧縮機Compressor
 本開示は、冷暖房空調装置および冷蔵庫等の冷却装置、ならびに、ヒートポンプ式の給湯装置等に用いられる圧縮機に関する。 The present disclosure relates to a cooling device such as a cooling and heating air conditioner and a refrigerator, and a compressor used for a heat pump water heater and the like.
 従来、冷却装置および給湯装置等に用いられる密閉型圧縮機は、冷凍サイクルから戻ってきた冷媒ガスを圧縮機構部で圧縮し、冷凍サイクルへと送り込む。その際、圧縮機構部には油が供給されて、その摺動部分を油が潤滑し、潤滑した後の油は、油貯留部に戻る(例えば、特許文献1参照)。 Conventionally, a hermetic compressor used for a cooling device and a water heater etc. compresses the refrigerant gas returned from the refrigeration cycle by the compression mechanism section and feeds it to the refrigeration cycle. At that time, oil is supplied to the compression mechanism portion, the sliding portion is lubricated by the oil, and the oil after lubrication is returned to the oil storage portion (see, for example, Patent Document 1).
特開2012-207541号公報JP, 2012-207541, A
 本開示は、圧縮機構部からの油の放出に伴う騒音発生を抑制するともに、冷凍サイクルへの油の流出を抑制し、低騒音、かつ、冷凍サイクルへの油流出も少ない圧縮機を提供するものである。 The present disclosure provides a compressor that suppresses noise generation associated with oil discharge from the compression mechanism, suppresses oil outflow to the refrigeration cycle, and reduces noise and oil spillage to the refrigeration cycle. It is a thing.
 本開示の圧縮機は、密閉容器と、密閉容器内に設けられた圧縮機構部と、圧縮機構部を駆動する電動機部と、圧縮機構部に油を供給するポンプと、圧縮機構部に接続され、圧縮機構部を潤滑した後の油を、密閉容器内の電動機部の下方空間へ戻す油排出パイプとを備えている。そして、油排出パイプの端部が、密閉容器に固定されている。 The compressor of the present disclosure is connected to a hermetic container, a compression mechanism unit provided in the hermetic container, a motor unit that drives the compression mechanism unit, a pump that supplies oil to the compression mechanism unit, and a compression mechanism unit And an oil discharge pipe for returning the oil after lubricating the compression mechanism portion to a space below the motor portion in the hermetic container. And the end of the oil discharge pipe is fixed to the closed container.
 これにより、圧縮機構部から放出された油は、油排出パイプを介して密閉容器の電動機部下方へと排出される。その際、圧縮機構部から放出される油が脈動等していても、油排出パイプが密閉容器に固定されているので、油排出パイプが振動して騒音が発生することを抑制でき、低騒音化できる。 As a result, the oil released from the compression mechanism portion is discharged below the motor portion of the closed container via the oil discharge pipe. At that time, even if the oil discharged from the compression mechanism part is pulsating, the oil discharge pipe is fixed to the closed container, so it is possible to suppress the generation of noise due to the vibration of the oil discharge pipe. Can be
 さらに、油排出パイプは、密閉容器内の電動機よりも下方の空間に油を戻すので、この油が、電動機の上方空間に生じている乱流冷媒に巻き込まれることを抑制でき、冷凍サイクルへ流出する油を低減できる。 Furthermore, since the oil discharge pipe returns the oil to the space below the motor in the closed vessel, this oil can be prevented from being caught by the turbulent refrigerant generated in the space above the motor, and the oil flows out to the refrigeration cycle Oil can be reduced.
 本開示によれば、低騒音で、冷凍サイクルへの油流出も少ない圧縮機を提供することができる。 According to the present disclosure, it is possible to provide a compressor that is low in noise and low in oil spillage into the refrigeration cycle.
図1は、本開示の第1の実施の形態における圧縮機を側方から見た断面図である。FIG. 1 is a side cross-sectional view of a compressor according to a first embodiment of the present disclosure. 図2は、同圧縮機の要部を示す拡大断面図である。FIG. 2 is an enlarged sectional view showing an essential part of the same compressor. 図3は、比較例の圧縮機の構成を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing a configuration of a compressor of a comparative example.
 (本開示の基礎となる知見)
 図3は、上述した特許文献1と類似した構成を有する、比較例のスクロール圧縮機の圧縮機構部を示す断面図である。
(Findings underlying the present disclosure)
FIG. 3 is a cross-sectional view showing a compression mechanism portion of a scroll compressor of a comparative example, which has a configuration similar to that of Patent Document 1 described above.
 低温低圧の冷媒ガスは、吸入管101を通って、固定スクロール102の吸入室に導かれて、固定スクロール102と旋回スクロール103との間に形成された圧縮室104の容積変化により圧縮され、高温高圧となる。その後、高温高圧の冷媒ガスは、固定スクロール102上部の吐出口105を通って、マフラー空間106へと吐出され、マフラー空間106から密閉容器107内を経由して、吐出管108より冷凍サイクルへと送出される。 The low-temperature low-pressure refrigerant gas is introduced to the suction chamber of the fixed scroll 102 through the suction pipe 101, and compressed by the volume change of the compression chamber 104 formed between the fixed scroll 102 and the orbiting scroll 103. It becomes high pressure. Thereafter, the high-temperature and high-pressure refrigerant gas is discharged into the muffler space 106 through the discharge port 105 at the upper part of the fixed scroll 102, and from the muffler space 106 through the inside of the closed container 107 to the refrigeration cycle from the discharge pipe 108. It is sent out.
 このとき、固定スクロール102および旋回スクロール103からなる圧縮機構部の摺動部分、例えば固定スクロール102と旋回スクロール103との噛み合い部分、シャフト109とその軸受部材110との間、および、旋回スクロール103の背圧室等には、油が供給され、各摺動部分を潤滑している。 At this time, a sliding portion of the compression mechanism including the fixed scroll 102 and the orbiting scroll 103, for example, a meshing portion between the stationary scroll 102 and the orbiting scroll 103, between the shaft 109 and its bearing member 110, and Oil is supplied to the back pressure chamber and the like to lubricate each sliding portion.
 各摺動部分を潤滑する油は、旋回スクロール103を駆動するシャフト109内の油通路112を介して供給され、圧縮機構部の各摺動部分を潤滑した後、軸受部材110に設けられた排油通路113を介して、圧縮機構部の下方の密閉容器107内に排出される。そして、密閉容器107内に排出された油は、重力で下方に落下し、密閉容器107内の下部に設けられている油貯留部(図示せず)に溜まる。 Oil for lubricating each sliding portion is supplied via an oil passage 112 in a shaft 109 for driving the orbiting scroll 103, and after lubricating each sliding portion of the compression mechanism portion, the oil provided on the bearing member 110 is exhausted. The oil is discharged into the closed container 107 below the compression mechanism via the oil passage 113. Then, the oil discharged into the sealed container 107 falls downward by gravity and is accumulated in an oil storage portion (not shown) provided at the lower part in the sealed container 107.
 しかしながら、図3の構成の圧縮機においては、固定スクロール102の吐出口105から吐出された高圧の冷媒ガスが、密閉容器107内で乱流状態となっている。このため、軸受部材110の排油通路113から、圧縮機構部の下方の密閉容器107内に排出された油は、落下途中でその一部が冷媒ガスに混ざり、吐出管108から冷凍サイクルへ流出してしまう。 However, in the compressor having the configuration of FIG. 3, the high-pressure refrigerant gas discharged from the discharge port 105 of the fixed scroll 102 is in a turbulent state in the closed container 107. For this reason, the oil discharged from the oil discharge passage 113 of the bearing member 110 into the closed container 107 below the compression mechanism is partially mixed with the refrigerant gas on the way down and flows out from the discharge pipe 108 to the refrigeration cycle Resulting in.
 そのため、図3の構成においては、排油通路113の出口部分に、密閉容器107の内壁面に沿う油案内板114が設けられている。この油案内板114と密閉容器107の内壁面との間に、排油通路113からの油が放出される。 Therefore, in the configuration of FIG. 3, an oil guide plate 114 along the inner wall surface of the closed container 107 is provided at the outlet portion of the oil discharge passage 113. The oil from the oil discharge passage 113 is released between the oil guide plate 114 and the inner wall surface of the sealed container 107.
 これにより、排油通路113から放出された油が、密閉容器107内の乱流冷媒に混ざり、冷凍サイクルへ流出することを抑制することができる。 Thus, the oil released from the oil discharge passage 113 can be prevented from being mixed with the turbulent flow refrigerant in the closed container 107 and flowing out to the refrigeration cycle.
 しかしながら、排油通路113から放出される油は高圧であって、旋回スクロール103およびシャフト偏芯軸109aの偏芯回転等により脈動している。このため、油案内板114が振動して、騒音を発するという問題がある。 However, the oil discharged from the oil discharge passage 113 is at high pressure, and is pulsating due to eccentric rotation of the orbiting scroll 103 and the shaft eccentric shaft 109a. For this reason, there is a problem that the oil guide plate 114 vibrates and emits noise.
 また、油案内板114は、シャフト109を駆動する電動機115のコイル部上端部分までしか設けることができない。よって、それより下方へは、油を、電動機115のコイル部と、密閉容器107の内壁面との間の間隙等を通して落下させる。そのため、油案内板114の下端と、密閉容器107の内壁面との間から落下する油の一部は、密閉容器107内の電動機115の上方空間116に生じている冷気の乱流に巻き込まれて、冷凍サイクルに流出される。よって、図3の構成によれば、冷凍サイクルへの油流出は少なくなるものの、未だ改善の余地が残る。本開示は、このような知見に基づいてなされたものである。 Further, the oil guide plate 114 can be provided only up to the upper end portion of the coil portion of the motor 115 for driving the shaft 109. Therefore, below that, oil is dropped through the gap between the coil portion of the motor 115 and the inner wall surface of the closed vessel 107 or the like. Therefore, a part of the oil falling from between the lower end of the oil guide plate 114 and the inner wall surface of the sealed container 107 is caught in the turbulent flow of cold air generated in the upper space 116 of the motor 115 in the sealed container 107. Flow out into the refrigeration cycle. Therefore, according to the configuration of FIG. 3, although the oil spill to the refrigeration cycle is reduced, there is still room for improvement. The present disclosure is made based on such findings.
 (本開示の態様の一例)
 本開示の第1の態様の圧縮機は、密閉容器と、密閉容器内に設けられた圧縮機構部と、圧縮機構部を駆動する電動機部と、圧縮機構部に油を供給するポンプと、圧縮機構部に接続され、圧縮機構部を潤滑した後の油を、密閉容器内の電動機部の下方空間へ戻す油排出パイプとを備えている。そして、油排出パイプの端部が、密閉容器に固定されている。
(An example of the aspect of this indication)
A compressor according to a first aspect of the present disclosure includes: an airtight container; a compression mechanism provided in the airtight container; a motor unit for driving the compression mechanism; a pump for supplying oil to the compression mechanism; The oil discharge pipe is connected to the mechanism unit and returns the oil after lubricating the compression mechanism unit to the space below the motor unit in the hermetic container. And the end of the oil discharge pipe is fixed to the closed container.
 これにより、圧縮機構部から放出された油は、油排出パイプを介して密閉容器の電動機部下方へと排出される。その際、圧縮機構部から排出される油が脈動等していても、油排出パイプが密閉容器に固定されているので、油排出パイプが振動して騒音が発生することを抑制でき、低騒音化できる。 As a result, the oil released from the compression mechanism portion is discharged below the motor portion of the closed container via the oil discharge pipe. At that time, even if the oil discharged from the compression mechanism part is pulsating, since the oil discharge pipe is fixed to the closed container, it is possible to suppress the generation of noise due to the vibration of the oil discharge pipe, and low noise Can be
 さらに、油排出パイプが、密閉容器内の、電動機より下方の空間に油を戻すので、この油が、電動機の上方空間に生じている、冷媒の乱気流に巻き込まれることを抑制でき、冷凍サイクルへ流出する油を低減できる。 Furthermore, since the oil discharge pipe returns the oil to the space below the motor in the sealed container, it is possible to suppress the oil from being caught in the turbulent air flow of the refrigerant in the space above the motor, and to the refrigeration cycle It is possible to reduce the oil spilled.
 本開示の第2の態様は、油排出パイプが、TIG溶接により、密閉容器に固定された構成であってもよい。 The second aspect of the present disclosure may be configured such that the oil discharge pipe is fixed to the closed container by TIG welding.
 これにより、さらに、油排出パイプは、長期間使用されていても、密閉容器に強固に固定保持されるので、固定部が緩んで騒音を発生し始めることを防止できる。 Thereby, even if the oil discharge pipe is used for a long time, since it is firmly fixed and held in the closed container, it is possible to prevent the fixed part from becoming loose and starting to generate noise.
 さらに、TIG溶接は、他の溶接方法に比べて、溶接時にスパッタがほとんど発生しない。よって、スパッタが電動機部のコイル部等に付着して、電動機の性能に影響を与えることも防止でき、信頼性の高い圧縮機を実現することができる。 Furthermore, TIG welding hardly generates spatter at the time of welding as compared with other welding methods. Therefore, it is possible to prevent the spatter from adhering to the coil portion or the like of the motor portion and affecting the performance of the motor, and a highly reliable compressor can be realized.
 第3の態様は、さらに、密閉容器内に設けられた油貯留部を備え、油排出パイプは、開口部を有し、開口部は、油貯留部に溜まった油の中に開口するように構成されていてもよい。 The third aspect further comprises an oil reservoir provided in the sealed container, the oil discharge pipe having an opening, and the opening opens into the oil accumulated in the oil reservoir. It may be configured.
 これにより、さらに、油排出パイプから流出する油は、そのすべてが油中に戻る。よって、油面上方で油排出パイプを開口させたときに生じる、油の油面への衝突により跳ね返った油滴の一部が、冷媒の乱気流に巻き込まれて冷凍サイクルへと流出することも防止でき、冷凍サイクルへの油の流出を大幅に低減することができる。 This, in turn, causes all of the oil flowing out of the oil discharge pipe to return to the oil. Therefore, it is also prevented that a part of the oil droplets, which are generated when the oil discharge pipe is opened above the oil surface, and which bounces back due to the collision of the oil with the oil surface, is caught in the turbulent air flow of the refrigerant and flows out to the refrigeration cycle It is possible to significantly reduce the outflow of oil to the refrigeration cycle.
 第4の態様は、さらに、電動機部は、シャフト、および、シャフトを支持する下軸受部材を有し、油排出パイプを密閉容器に固定する位置は、下軸受部材より下方であってもよい。 In the fourth aspect, the motor unit may further include a shaft and a lower bearing member supporting the shaft, and a position at which the oil discharge pipe is fixed to the closed container may be below the lower bearing member.
 これにより、さらに、油排出パイプを固定した位置から開口までの寸法が短くなり、固定部を起点として開口までの間で、油排出パイプが振動することを効果的に抑制でき、騒音防止効果を高くすることができる。 As a result, the dimension from the position where the oil discharge pipe is fixed to the opening is further shortened, and vibration of the oil discharge pipe can be effectively suppressed from the fixing portion to the opening, thereby preventing noise It can be raised.
 第5の態様は、さらに、油排出パイプを密閉容器に固定する位置が、密閉容器内に溜まった油の中に位置する開口縁部であってもよい。 In the fifth aspect, the position for fixing the oil discharge pipe to the closed container may be an open edge located in the oil accumulated in the closed container.
 これにより、さらに、油排出パイプの固定部を起点とした振動発生の余地がなくなり、振動抑制による騒音防止効果を、より確実なものとすることができる。 As a result, there is no room for vibration generation starting from the fixed portion of the oil discharge pipe, and the noise prevention effect by the vibration suppression can be made more reliable.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited by the embodiment.
 (第1の実施の形態)
 図1は、本開示の第1の実施の形態における圧縮機50の側方から見た断面図であり、図2は、同圧縮機50の要部を示す拡大断面図である。
First Embodiment
FIG. 1 is a cross-sectional view seen from the side of a compressor 50 according to a first embodiment of the present disclosure, and FIG. 2 is an enlarged cross-sectional view showing the main part of the compressor 50.
 図1に示すように、本実施の形態の圧縮機50は、密閉容器1と、その内部に設けられた圧縮機構部2と、電動機部3とを備えている。 As shown in FIG. 1, the compressor 50 according to the present embodiment includes a sealed container 1, a compression mechanism 2 provided therein, and an electric motor 3.
 密閉容器1内には、主軸受部材4と下軸受部材4aが、溶接または焼き嵌め等により固定されている。この主軸受部材4および下軸受部材4aが、シャフト5を軸支している。 The main bearing member 4 and the lower bearing member 4a are fixed in the sealed container 1 by welding, shrink fitting, or the like. The main bearing member 4 and the lower bearing member 4 a pivotally support the shaft 5.
 主軸受部材4上には、固定スクロール6がボルト止めされている。固定スクロール6と主軸受部材4との間に、固定スクロール6と噛み合う旋回スクロール7が挟み込まれて、スクロール式の圧縮機構部2が構成されている。 A fixed scroll 6 is bolted onto the main bearing member 4. Between the fixed scroll 6 and the main bearing member 4, a orbiting scroll 7 engaged with the fixed scroll 6 is sandwiched, and a scroll-type compression mechanism unit 2 is configured.
 旋回スクロール7と主軸受部材4との間には、旋回スクロール7の自転を防止して円軌道運動するように案内する、オルダムリング等を含む自転拘束機構8が設けられている。 Between the orbiting scroll 7 and the main bearing member 4, a rotation restraint mechanism 8 including an Oldham ring or the like is provided which guides the orbiting scroll 7 so that it orbits circularly while preventing the rotation of the orbiting scroll 7.
 シャフト5の上端にある偏心軸部5aによって、旋回スクロール7を偏心駆動させることにより、旋回スクロール7を円軌道運動させる。これにより、固定スクロール6と旋回スクロール7との間に形成されている圧縮室9が、外周側から中央部に向かって、容積を縮めながら移動する。この動きを利用して、密閉容器1外の冷凍サイクルに通じた吸入管10から、固定スクロール6に設けられた吸入室11を経て冷媒ガスが吸入され、冷媒ガスは、圧縮室9に閉じ込まれた後、圧縮される。所定の圧力に到達した冷媒ガスは、固定スクロール6の中央部の吐出口12から、リード弁13を押し開けて、吐出される。 The eccentric scroll 5 is eccentrically driven by the eccentric shaft 5 a at the upper end of the shaft 5 to cause the orbiting scroll 7 to make a circular orbit motion. As a result, the compression chamber 9 formed between the fixed scroll 6 and the orbiting scroll 7 moves from the outer peripheral side toward the central portion while reducing the volume. Using this movement, the refrigerant gas is drawn from the suction pipe 10 leading to the refrigeration cycle outside the closed container 1 through the suction chamber 11 provided in the fixed scroll 6, and the refrigerant gas is confined in the compression chamber 9 After being compressed, it is compressed. The refrigerant gas that has reached the predetermined pressure is discharged from the discharge port 12 at the central portion of the fixed scroll 6 by pushing the reed valve 13 open.
 リード弁13を押し開けて吐出された冷媒ガスは、マフラー空間14に吐出され、密閉容器1の、圧縮機構部2と電動機部3との間の容器内空間15を経由して、吐出管17から冷凍サイクルへと送出される。 The refrigerant gas discharged by pushing open the reed valve 13 is discharged into the muffler space 14, and the discharge pipe 17 passes through the in-container space 15 between the compression mechanism portion 2 and the motor portion 3 of the closed container 1. Are sent out to the refrigeration cycle.
 一方、旋回スクロール7を旋回駆動させるシャフト5の下端には、容積型オイルポンプ18が設けられ、容積型オイルポンプ18の吸い込み口は、油貯留部19の油中に存在するように配置されている。 On the other hand, a positive displacement oil pump 18 is provided at the lower end of the shaft 5 which drives the rotary scroll 7 to turn, and the suction port of the positive displacement oil pump 18 is arranged to be present in the oil of the oil reservoir 19 There is.
 容積型オイルポンプ18がスクロール圧縮機と同時に駆動されるため、容積型オイルポンプ18は、密閉容器1の底部に設けられた油貯留部19にある油を、圧力条件および運転速度に関係なく、確実に吸い上げる。 Since the displacement type oil pump 18 is driven simultaneously with the scroll compressor, the displacement type oil pump 18 operates the oil in the oil reservoir 19 provided at the bottom of the closed container 1 regardless of the pressure condition and the operating speed. It sucks up surely.
 容積型オイルポンプ18で吸い上げられた油は、シャフト5内を貫通している油供給通路20を通じて、圧縮機構部2に供給される。なお、油を容積型オイルポンプ18で吸い上げる前、または、吸い上げた後に、油フィルタ等により、油から異物を除去すると、圧縮機構部2への異物混入が防止でき、信頼性向上を図ることができる。 The oil sucked up by the positive displacement oil pump 18 is supplied to the compression mechanism portion 2 through an oil supply passage 20 passing through the inside of the shaft 5. Before or after the oil is sucked by the positive displacement oil pump 18, if foreign matter is removed from the oil by an oil filter or the like, the foreign matter can be prevented from being mixed into the compression mechanism portion 2 and reliability can be improved. it can.
 圧縮機構部2に導かれた油の圧力は、スクロール圧縮機の吐出圧力とほぼ同等であり、旋回スクロール7に対する背圧源ともなる。これにより、旋回スクロール7は、固定スクロール6から離れたり、片当たりしたりするようなことはなく、所定の圧縮機能を安定して発揮する。 The pressure of the oil introduced to the compression mechanism 2 is approximately equal to the discharge pressure of the scroll compressor, and also serves as a back pressure source for the orbiting scroll 7. As a result, the orbiting scroll 7 does not leave the fixed scroll 6 or collide with one another, and stably exerts a predetermined compression function.
 さらに、油の一部は、供給圧および自重によって、逃げ場を求めるように、偏心軸部5aと旋回スクロール7との嵌合部、シャフト5と主軸受部材4との間の軸受部21(図2参照)に浸入して、それぞれの部分を潤滑した後、油貯留部19へ戻る。 Furthermore, a portion of the oil is a fitting portion between the eccentric shaft portion 5a and the orbiting scroll 7, a bearing portion 21 between the shaft 5 and the main bearing member 4 so as to obtain a relief by the supply pressure and self weight. 2) and lubricate the respective parts, and then return to the oil reservoir 19.
 油供給通路20から高圧領域22に供給された油の、別の一部は、旋回スクロール7に形成されかつ高圧領域22に一開口端を有する経路を通って、自転拘束機構8が位置している背圧室23に浸入する。浸入した油は、スラスト摺動部および自転拘束機構8の摺動部を潤滑するのに併せて、背圧室23においては、旋回スクロール7への背圧印加の役割を果たしている。 Another part of the oil supplied from the oil supply passage 20 to the high pressure area 22 is formed in the orbiting scroll 7 and passes through a path having one open end in the high pressure area 22 so that the rotation restraint mechanism 8 is positioned. Into the back pressure chamber 23 which is The oil that has infiltrated acts as a back pressure application to the orbiting scroll 7 in the back pressure chamber 23 as it lubricates the thrust sliding portion and the sliding portion of the rotation restraint mechanism 8.
 圧縮機構部2を潤滑した油は、密閉容器1内の油貯留部19へと戻される。本実施の形態では、圧縮機構部2の主軸受部材4に設けられた油排出孔24に、油排出パイプ25が接続されており、油は、油排出パイプ25を介して、油貯留部19に戻される。 The oil that has lubricated the compression mechanism 2 is returned to the oil reservoir 19 in the closed container 1. In the present embodiment, the oil discharge pipe 25 is connected to the oil discharge hole 24 provided in the main bearing member 4 of the compression mechanism 2, and the oil is stored in the oil reservoir 19 via the oil discharge pipe 25. Will be returned to
 油排出パイプ25は、略L字状に屈曲しており、その一端が、主軸受部材4の油排出孔24に嵌合装着され、他端側が、密閉容器1の内壁面に沿って、下向きに配置されており、電動機部3の下方まで引き出されている。そして、油排出パイプ25の下方端部は、密閉容器1の内壁面に、少なくとも、後述する固定位置26において固定されている。 The oil discharge pipe 25 is bent in a substantially L-shape, and one end thereof is fitted and mounted to the oil discharge hole 24 of the main bearing member 4, and the other end is directed downward along the inner wall surface of the sealed container 1. , And is drawn to the lower side of the motor unit 3. The lower end of the oil discharge pipe 25 is fixed to the inner wall surface of the sealed container 1 at least at a fixed position 26 described later.
 油排出パイプ25の固定位置26は、本実施の形態ではTIG溶接によって固定されている。そして、油排出パイプ25は、油排出パイプ25の下端となる開口27の縁部を固定位置26として、TIG溶接することによって固定されている。 The fixed position 26 of the oil discharge pipe 25 is fixed by TIG welding in the present embodiment. The oil discharge pipe 25 is fixed by TIG welding with the edge of the opening 27 which is the lower end of the oil discharge pipe 25 as the fixed position 26.
 さらに、本実施の形態では、油排出パイプ25は、密閉容器1内の油貯留部19まで引き出され、その開口27は、密閉容器1内の油貯留部19に溜まる油の中に位置するように構成されている。 Furthermore, in the present embodiment, the oil discharge pipe 25 is pulled out to the oil reservoir 19 in the closed container 1, and the opening 27 is located in the oil accumulated in the oil reservoir 19 in the closed container 1. Is configured.
 なお、油排出パイプ25は、鉄パイプによって構成されており、電動機部3のコイル部外周の、上下方向に形成されている複数の切欠き間隙部3aのうちの一つを利用して配置されている。しかしながら、本開示はこの例に限定されず、パイプ材料および配置箇所はこれに限られるものではない。 The oil discharge pipe 25 is formed of an iron pipe, and is disposed using one of a plurality of notch gaps 3 a formed in the vertical direction on the outer periphery of the coil of the motor unit 3. ing. However, the present disclosure is not limited to this example, and the pipe material and the arrangement location are not limited to this.
 以上のように構成された圧縮機50において、以下、その作用および効果について説明する。 Hereinafter, the operation and effects of the compressor 50 configured as described above will be described.
 吸入管10より吸入された冷媒は、固定スクロール6および旋回スクロール7によって形成される圧縮室9によって圧縮されて、リード弁13を押し開けて、密閉容器1内に吐出される。密閉容器1内に吐出された冷媒は、圧縮機構部2と電動機部3との間の容器内空間15を経て、吐出管17から冷凍サイクルへ送出される。 The refrigerant sucked from the suction pipe 10 is compressed by the compression chamber 9 formed by the fixed scroll 6 and the orbiting scroll 7, and the reed valve 13 is pushed open to be discharged into the closed container 1. The refrigerant discharged into the closed container 1 passes through the in-container space 15 between the compression mechanism unit 2 and the motor unit 3 and is delivered from the discharge pipe 17 to the refrigeration cycle.
 一方、冷媒を圧縮する圧縮機構部2の、固定スクロール6と旋回スクロール7との噛み合い部分、シャフト5とその主軸受部材4との間、および、旋回スクロール7の背圧室23等の各部分に、シャフト5の油供給通路20を介して、油が供給される。 On the other hand, each portion of the compression mechanism portion 2 for compressing the refrigerant, such as an engagement portion between the fixed scroll 6 and the orbiting scroll 7, between the shaft 5 and its main bearing member 4, and a back pressure chamber 23 of the orbiting scroll 7. The oil is supplied via the oil supply passage 20 of the shaft 5.
 そして、圧縮機構部2の各部を潤滑した後の油は、圧縮機構部2の主軸受部材4に設けられた油排出孔24へと流れて、油排出パイプ25を介して、その開口27から、密閉容器1内の油貯留部19へ排出される。 Then, the oil after lubricating each part of the compression mechanism 2 flows to the oil discharge hole 24 provided in the main bearing member 4 of the compression mechanism 2, and from the opening 27 via the oil discharge pipe 25. And is discharged to the oil reservoir 19 in the closed container 1.
 ここで、油排出パイプ25へと流れる油は、圧縮機構部2の各部の潤滑によって、圧力変動を起こして脈動し、油排出パイプ25を振動させようとする。 Here, the oil flowing to the oil discharge pipe 25 causes pressure fluctuation and pulsates due to the lubrication of each part of the compression mechanism 2, and tries to vibrate the oil discharge pipe 25.
 しかしながら、本開示の油排出パイプ25は、その端部が、密閉容器1の内壁面に、固定位置26で固定されているので、振動が抑制される。したがって、油排出パイプ25の振動による、騒音発生を防止することができる。ここで、油排出パイプ25の端部とは、油排出パイプ25の下軸受部材4aよりも下方部分のことをいう(図1の固定位置26付近のハッチング部分を参照)。 However, since the end of the oil discharge pipe 25 of the present disclosure is fixed to the inner wall surface of the sealed container 1 at the fixed position 26, vibration is suppressed. Therefore, the generation of noise due to the vibration of the oil discharge pipe 25 can be prevented. Here, the end of the oil discharge pipe 25 refers to a portion lower than the lower bearing member 4a of the oil discharge pipe 25 (see a hatched portion near the fixed position 26 in FIG. 1).
 油排出パイプ25の固定位置26は、電動機部3のシャフト5を支持する下軸受部材4aよりも下方部分に位置しているので、騒音防止効果を高くできる。 The fixed position 26 of the oil discharge pipe 25 is located below the lower bearing member 4 a that supports the shaft 5 of the motor unit 3, so the noise prevention effect can be enhanced.
 すなわち、油排出パイプ25を、下軸受部材4aよりも下方部分の固定位置26で固定することにより、固定位置26からパイプ下端の開口27までの寸法が短いものとなって、固定位置26を起点として、開口27までの間で、油排出パイプ25が振動するのを抑制する効果が高まる。よって、油排出パイプ25の振動による、騒音発生の防止効果を高めることができる。 That is, by fixing the oil discharge pipe 25 at the fixed position 26 in the lower portion than the lower bearing member 4a, the dimension from the fixed position 26 to the opening 27 at the lower end of the pipe becomes short. As a result, the effect of suppressing the vibration of the oil discharge pipe 25 is enhanced. Therefore, the effect of preventing noise generation due to the vibration of the oil discharge pipe 25 can be enhanced.
 本実施の形態では、油排出パイプ25の固定位置26を、パイプ下端の開口27の縁部としている。よって、固定位置26部分を起点とした、振動発生の余地がなくなり、油排出パイプ25の振動抑制による騒音防止を確実なものとすることができる。 In the present embodiment, the fixed position 26 of the oil discharge pipe 25 is the edge of the opening 27 at the lower end of the pipe. Therefore, there is no room for vibration generation starting from the fixed position 26 portion, and noise prevention by vibration suppression of the oil discharge pipe 25 can be made reliable.
 また、油排出パイプ25の密閉容器1への固定位置26での固定は、TIG溶接で行われている。よって、長期間使用していても、油排出パイプ25は密閉容器1に強固に固定保持され続け、長期間の使用により固定部が緩んで、騒音が発生し始めることを防止できる。 Further, the fixing of the oil discharge pipe 25 at the fixing position 26 to the closed container 1 is performed by TIG welding. Therefore, even if it is used for a long time, the oil discharge pipe 25 continues to be firmly fixed to the sealed container 1, and the fixed part is loosened by long-term use, and noise generation can be prevented from starting.
 TIG溶接は、他の溶接方法に比べて、溶接時に、スパッタがほとんど発生しない。よって、圧縮機構部2とともに電動機部3が組み込まれた状態の密閉容器1に油排出パイプ25を溶接固定しても、スパッタが、電動機部3の磁石部分およびコイル部分等に付着することを防止できる。したがって、電動機部3の性能に影響を与えることを防止でき、信頼性の高い圧縮機を実現することができる。 TIG welding hardly generates spatter at the time of welding as compared with other welding methods. Therefore, even if the oil discharge pipe 25 is welded and fixed to the closed container 1 in a state where the motor unit 3 is incorporated together with the compression mechanism unit 2, spatter is prevented from adhering to the magnet portion and coil portion of the motor unit 3. it can. Therefore, the performance of the motor unit 3 can be prevented from being affected, and a highly reliable compressor can be realized.
 また、油排出パイプ25の開口27は、電動機部3よりも下方の空間まで引き出されて、電動機下方空間に油を戻すように構成されている。これにより、油が、電動機部3の上方空間に生じている冷媒の乱気流に巻き込まれることを抑制でき、冷凍サイクルへ流出する油を低減することができる。 Further, the opening 27 of the oil discharge pipe 25 is drawn to a space below the motor unit 3 so as to return the oil to the space below the motor. As a result, oil can be prevented from being caught in the turbulent air flow of the refrigerant generated in the space above the motor unit 3, and oil flowing out to the refrigeration cycle can be reduced.
 本実施の形態では、油排出パイプ25の開口27を、密閉容器1内の油貯留部19に形成される油の中に開口させる構成としている。これにより、冷凍サイクルへの油の流出を大幅に低減することができる。 In the present embodiment, the opening 27 of the oil discharge pipe 25 is configured to be opened in the oil formed in the oil reservoir 19 in the closed container 1. Thereby, the outflow of oil to the refrigeration cycle can be significantly reduced.
 すなわち、油排出パイプ25の開口27から流出する油は、そのすべてが油中に戻る。これにより、開口を、電動機下方空間の油面上方で開口させたときに生じる、油の油面への衝突による跳ね返りを防止できる。よって、電動機下方空間に生じた跳ね返り油の油滴の一部が、圧縮機構部2と電動機部3との間の容器内空間15に生じている冷媒の乱気流に巻き込まれて、冷凍サイクルへ流出することも防止でき、冷凍サイクルへの油の流出を大幅に低減することができる。 That is, the oil flowing out of the opening 27 of the oil discharge pipe 25 is all returned to the oil. This makes it possible to prevent the oil from splashing back due to a collision with the oil surface, which occurs when the opening is opened above the oil surface in the motor lower space. Therefore, a part of the oil droplets of the rebound oil generated in the lower space of the motor is caught in the turbulent air flow of the refrigerant generated in the container space 15 between the compression mechanism 2 and the motor 3 and flows out to the refrigeration cycle It is also possible to prevent oil spillage into the refrigeration cycle.
 本開示によれば、低騒音で、冷凍サイクルへの油流も少ない圧縮機を実現することができる。しかしながら、本開示の圧縮機の構成は、本実施の形態の形状に限定されるものではない。つまり、今回開示された実施の形態は、すべての点で例示であって、制限的なものではない。本開示の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および均等の範囲内でのすべての変更が含まれることが意図される。 According to the present disclosure, it is possible to realize a compressor that has low noise and less oil flow to the refrigeration cycle. However, the configuration of the compressor of the present disclosure is not limited to the shape of the present embodiment. That is, the embodiments disclosed herein are illustrative in all respects and not restrictive. The scope of the present disclosure is indicated not by the above description but by the scope of the claims, and is intended to include all modifications within the meaning and the scope of equivalents of the claims.
 本開示によれば、低騒音で冷凍サイクルへの油流出も少ない圧縮機を実現することができる。よって、本開示は、冷凍サイクルを利用した各種機器に幅広く使用することができ、有用である。 According to the present disclosure, it is possible to realize a compressor with low noise and less oil spillage into the refrigeration cycle. Therefore, the present disclosure can be widely used for various devices using a refrigeration cycle and is useful.
 1,107  密閉容器
 2  圧縮機構部
 3  電動機部
 3a  切欠き間隙部
 4  主軸受部材
 4a  下軸受部材
 5,109  シャフト
 6,102  固定スクロール
 7,103  旋回スクロール
 8  自転拘束機構
 9,104  圧縮室
 10,101  吸入管
 11  吸入室
 12,105  吐出口
 13  リード弁
 14,106  マフラー空間
 15  容器内空間
 17,108  吐出管
 18  ポンプ(容積型オイルポンプ)
 19  油貯留部
 20  油供給通路
 21  軸受部
 22  高圧領域
 23  背圧室
 24  油排出孔
 25  油排出パイプ
 26  固定位置
 27  開口
 50  圧縮機
 109a  シャフト偏芯軸
 110  軸受部材
 112  油通路
 113  排油通路
 114  油案内板
 115  電動機
 116  上方空間
1, 107 Sealed container 2 Compression mechanism portion 3 Motor portion 3a Notched gap portion 4 Main bearing member 4a Lower bearing member 5, 109 Shaft 6, 102 Fixed scroll 7, 103 Rotating scroll 8 Rotation restraint mechanism 9, 104 Compression chamber 10, DESCRIPTION OF SYMBOLS 101 Suction pipe 11 Suction chamber 12, 105 Discharge port 13 Reed valve 14, 106 Muffler space 15 Space in container 17, 108 Discharge pipe 18 Pump (volume-type oil pump)
Reference Signs List 19 oil reservoir 20 oil supply passage 21 bearing portion 22 high pressure region 23 back pressure chamber 24 oil discharge hole 25 oil discharge pipe 26 fixed position 27 opening 50 compressor 109a shaft eccentric shaft 110 bearing member 112 oil passage 113 oil discharge passage 114 Oil guide plate 115 Motor 116 Upper space

Claims (5)

  1. 密閉容器と、
    前記密閉容器内に設けられた圧縮機構部と、
    前記圧縮機構部を駆動する電動機部と、
    前記圧縮機構部に油を供給するポンプと、
    前記圧縮機構部に接続され、前記圧縮機構部を潤滑した後の油を、前記密閉容器内の前記電動機部の下方空間へ戻す油排出パイプとを備え、
    前記油排出パイプの端部が、密閉容器に固定された
    圧縮機。
    A closed container,
    A compression mechanism unit provided in the sealed container;
    A motor unit for driving the compression mechanism unit;
    A pump for supplying oil to the compression mechanism;
    An oil discharge pipe connected to the compression mechanism and returning the oil after lubricating the compression mechanism to a space below the electric motor in the sealed container;
    A compressor in which an end of the oil discharge pipe is fixed to a closed container.
  2. 前記油排出パイプは、TIG溶接により、前記密閉容器に固定された
    請求項1に記載の圧縮機。
    The compressor according to claim 1, wherein the oil discharge pipe is fixed to the closed container by TIG welding.
  3. さらに、前記密閉容器内に設けられた油貯留部を備え、
    前記油排出パイプは、開口部を有し、
    前記開口部は、前記油貯留部に溜まった前記油の中に開口するように構成された
    請求項1または請求項2に記載の圧縮機。
    And an oil reservoir provided in the sealed container,
    The oil discharge pipe has an opening,
    The compressor according to claim 1, wherein the opening is configured to open into the oil accumulated in the oil reservoir.
  4. 前記電動機部は、シャフト、および、前記シャフトを支持する下軸受部材を有し、
    前記油排出パイプを前記密閉容器に固定する位置は、前記下軸受部材より下方である
    請求項1から請求項3までのいずれか1項に記載の圧縮機。
    The motor unit includes a shaft and a lower bearing member supporting the shaft.
    The compressor according to any one of claims 1 to 3, wherein a position at which the oil discharge pipe is fixed to the closed container is below the lower bearing member.
  5. 前記油排出パイプを前記密閉容器に固定する前記位置は、前記密閉容器内に溜まった前記油の中に位置する開口縁部である
    請求項4に記載の圧縮機。
    The compressor according to claim 4, wherein the position for fixing the oil discharge pipe to the closed container is an opening edge located in the oil accumulated in the closed container.
PCT/JP2018/028525 2017-09-04 2018-07-31 Compressor WO2019044326A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019539093A JP7117607B2 (en) 2017-09-04 2018-07-31 compressor
CN201880052830.5A CN111033045A (en) 2017-09-04 2018-07-31 Compressor with a compressor housing having a plurality of compressor blades

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169083 2017-09-04
JP2017169083 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019044326A1 true WO2019044326A1 (en) 2019-03-07

Family

ID=65524963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028525 WO2019044326A1 (en) 2017-09-04 2018-07-31 Compressor

Country Status (3)

Country Link
JP (1) JP7117607B2 (en)
CN (1) CN111033045A (en)
WO (1) WO2019044326A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216278499U (en) 2021-03-31 2022-04-12 丹佛斯(天津)有限公司 Oil pipe mounting assembly and scroll compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227892A (en) * 1988-03-04 1989-09-12 Matsushita Refrig Co Ltd Rotary type compressor
US20070160488A1 (en) * 2005-11-28 2007-07-12 Yoo Byung K Scroll compressor
JP2007283290A (en) * 2006-04-12 2007-11-01 Mann & Hummel Gmbh Air/oil separation element for separating liquid droplet from air and air compressor equipped therewith
US20090148328A1 (en) * 2007-12-06 2009-06-11 Chung-Hung Yeh Lubricant backflow structure of compressor
WO2013145018A1 (en) * 2012-03-30 2013-10-03 日立アプライアンス株式会社 Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608401B2 (en) * 1998-10-19 2005-01-12 ダイキン工業株式会社 Scroll compressor
JP4433184B2 (en) * 2004-11-05 2010-03-17 株式会社富士通ゼネラル Compressor
JP2015086829A (en) * 2013-11-01 2015-05-07 ダイキン工業株式会社 Scroll compressor
JP6302813B2 (en) * 2014-09-30 2018-03-28 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigeration cycle apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227892A (en) * 1988-03-04 1989-09-12 Matsushita Refrig Co Ltd Rotary type compressor
US20070160488A1 (en) * 2005-11-28 2007-07-12 Yoo Byung K Scroll compressor
JP2007283290A (en) * 2006-04-12 2007-11-01 Mann & Hummel Gmbh Air/oil separation element for separating liquid droplet from air and air compressor equipped therewith
US20090148328A1 (en) * 2007-12-06 2009-06-11 Chung-Hung Yeh Lubricant backflow structure of compressor
WO2013145018A1 (en) * 2012-03-30 2013-10-03 日立アプライアンス株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP7117607B2 (en) 2022-08-15
CN111033045A (en) 2020-04-17
JPWO2019044326A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US7645129B2 (en) Oil pump for a scroll compressor
US8834139B2 (en) Lubrication of a scroll compressor
JP6300829B2 (en) Rotary compressor
JP5655850B2 (en) Scroll compressor
CN101663485A (en) Compressor and oil supplying structure therefor
JP2017053285A (en) Compressor
JP4992862B2 (en) Compressor
JP2015105638A (en) Compressor
JP2009162078A (en) Scroll type compressor
WO2019044326A1 (en) Compressor
JP2015105637A (en) Compressor
JP2008082272A (en) Fluid compressor
JP2013241847A (en) Scroll compressor
JP2013024129A (en) Compressor
WO2020170886A1 (en) Hermetically sealed compressor
JPWO2017002212A1 (en) Scroll compressor
JP2014070622A (en) Compressor
JP5114708B2 (en) Hermetic scroll compressor
JP2006090180A (en) Hermetic compressor
JP2014202133A (en) Compressor
JP2019105195A (en) Compressor
JP2014206060A (en) Scroll compressor
JP2017101557A (en) Hermetic type compressor
JP2021014812A (en) Compressor and refrigeration device
JP2006070807A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019539093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850252

Country of ref document: EP

Kind code of ref document: A1