WO2019044094A1 - Working medium for absorption refrigerator and absorption refrigerator using same - Google Patents

Working medium for absorption refrigerator and absorption refrigerator using same Download PDF

Info

Publication number
WO2019044094A1
WO2019044094A1 PCT/JP2018/021412 JP2018021412W WO2019044094A1 WO 2019044094 A1 WO2019044094 A1 WO 2019044094A1 JP 2018021412 W JP2018021412 W JP 2018021412W WO 2019044094 A1 WO2019044094 A1 WO 2019044094A1
Authority
WO
WIPO (PCT)
Prior art keywords
propanol
corrosion
water
absorption refrigerator
concentration
Prior art date
Application number
PCT/JP2018/021412
Other languages
French (fr)
Japanese (ja)
Inventor
勝美 馬渕
聡 小田島
藤居 達郎
久幸 折田
武田 伸之
英彦 野田
高橋 晋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019044094A1 publication Critical patent/WO2019044094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a working medium for absorption refrigerator and an absorption refrigerator using the same.
  • the working medium generally used in the conventional absorption refrigerator is a lithium bromide-water system
  • the refrigerant is water
  • the absorbing liquid is lithium bromide. Therefore, since the refrigerant is water, the water which is the refrigerant freezes in the evaporator in the evaporator producing cold heat, and in the absorption refrigerator of the normal specification, the heat medium of the temperature below the freezing point is manufactured It is difficult.
  • Patent Document 1 discloses a method using a lower alcohol such as methanol, ethanol, propanol or the like, or a mixed solution of the alcohol and water as a refrigerant for generating a temperature below the ice temperature with an absorption refrigerator. .
  • a lower alcohol such as methanol, ethanol, propanol or the like
  • a mixed solution of the alcohol and water as a refrigerant for generating a temperature below the ice temperature with an absorption refrigerator.
  • Patent Document 2 discloses a composition containing an alkali metal hydroxide and an organic acid such as an organic phosphonic acid or a phosphonocarboxylic acid as a corrosion inhibitor of a circulating cooling water system.
  • Water or lower alcohols alone such as propanol are not as corrosive to structural materials, for example, SS400, but when water is added to form an aqueous solution, the corrosiveness, particularly in the gas phase, is significantly increased. This increase in corrosion is caused by iron ions eluted in water and iron oxides generated by corrosion acting as a catalyst to accelerate corrosion and oxidize alcohol to acidify (in the case of primary alcohol) or aldehyde (secondary alcohol) Is considered to be the case). Therefore, in the case of using a propanol-water mixed refrigerant as the refrigerant to configure the absorption refrigerator, it is essential to establish a technique for preventing corrosion by the mixed refrigerant.
  • Patent Document 1 there is no description regarding a corrosion inhibitor.
  • Patent Document 2 does not describe a refrigerant system containing a lower alcohol.
  • an object of the present invention is to provide a working medium for absorption-type refrigerator capable of highly suppressing the corrosion of a structural material and an absorption-type refrigerator using the same.
  • a working medium for an absorption refrigerator includes a propanol aqueous solution as a refrigerant and a corrosion inhibitor.
  • the working medium for absorption-type refrigerators which can highly suppress corrosion of a structural material, and the absorption-type refrigerator using the same can be provided.
  • FIG. 1 shows a cycle diagram of an absorption refrigerator.
  • the cycle systematic diagram of an absorption-type refrigerator is shown. It is a graph which shows the temperature dependence of the saturation vapor pressure in various organic solvents. It is a graph which shows the temperature dependence of the vapor pressure of 1-propanol aqueous solution and water. It is a graph which shows the concentration dependence of the freezing point of 1-propanol, 2-propanol, 1-butanol, and 2-butanol. It is a graph which shows the LiOH concentration dependence of the freezing point at the time of adding LiOH of each concentration as a corrosion inhibitor to 1-propanol aqueous solution.
  • the present invention relates to a working medium for an absorption refrigerator that generates cold energy below the freezing point (ice temperature) of water and an absorption refrigerator using the same, and particularly when a water-alcohol aqueous solution is used as the refrigerant.
  • a water-alcohol aqueous solution is used as the refrigerant.
  • aqueous salt solution such as LiBr-water used in a conventional low-temperature absorption refrigerator
  • the mixed refrigerant as shown in FIG. 1A, only the water component in the refrigerant is evaporated and absorbed in the evaporator. Absorbed into the aqueous LiBr solution.
  • the condensate is water, and the salt concentration in the refrigerant is determined by the balance between the amount of refrigerant evaporation (amount of water vapor) in the evaporator and the amount of liquid returned from the condenser (amount of water).
  • the concentration of salt in the mixed refrigerant decreases, and the freezing point of the mixed refrigerant rises, which may cause freezing.
  • the concentration of salt in the mixed refrigerant increases and the freezing point of the refrigerant drops, but if this tendency progresses too much, the concentration above the salt solubility As a result, the mixed refrigerant may be crystallized.
  • the alcohol has 3 or less carbon atoms, it completely dissolves in water. Further, the solidification point of the lower alcohol is about -100 ° C. or less, and even when it is mixed with water to form an aqueous solution, it can be expected that the solidification point will be 0 ° C. or less.
  • lower alcohols are also highly safe except methanol. However, if the vapor pressure of the alcohol used is higher than the vapor pressure of water and the boiling point is lower than the boiling point of water, the concentration of alcohol will increase on the vapor side. Conversely, if the vapor pressure of alcohol is lower than the vapor pressure of water and the boiling point is higher than the boiling point of water, the concentration of alcohol will be lower on the vapor side. From this, in order to keep the balance with water constant at all times and to stabilize the alcohol concentration of the mixed refrigerant and its vapor, it is necessary that the vapor pressures of water and the corresponding alcohol be close.
  • 1-propanol is most suitable as the refrigerant.
  • 2-propanol has a vapor pressure slightly different from that of water (FIG. 3), it can be used as a mixed refrigerant because it dissolves with water in the entire concentration range.
  • the main component is preferably 1-propanol or 2-propanol for these reasons, but not only single-use but also alcohols other than propanol, such as ethanol having 2 or less carbon atoms, methanol, and vice versa
  • alcohols other than propanol such as ethanol having 2 or less carbon atoms, methanol, and vice versa
  • alcohols such as butanol, haxanol and octanol may be mixed.
  • those isomers may be added as well.
  • their concentration needs to be lower than the concentration of propanol which is the main component.
  • the corrosion inhibitor conventionally used in cooling water is roughly divided based on the mechanism, and is classified into the following types.
  • alkali metal salts alkali metal hydroxides
  • alkaline earth metal salts water, etc.
  • an absorption refrigerator which can exhibit a sufficient corrosion inhibiting effect by adding an alkaline earth metal oxide or an oxy acid salt and which generates a subfreezing heat using a propanol-water mixed refrigerant Is possible. It is also effective to use an alkali metal hydroxide or an alkaline earth metal hydroxide in combination with an oxy acid salt.
  • any of LiOH, NaOH, KOH, RbOH and CsOH exhibits a corrosion inhibitory effect.
  • LiOH, NaOH and KOH are preferable from the viewpoint of solubility and corrosion inhibition effect.
  • LiBr is used as the absorbing solution, it is particularly preferable to use a hydroxide of Li which is the same alkali metal.
  • a 0.1 M addition of an alkali metal hydroxide provides the anticorrosion effect, but a 0.02 M thinner than that can provide a sufficient corrosion inhibition effect. Even if 0.1 M or more is added, the effect is obtained but it becomes expensive.
  • the optimum concentration range is 0.02 to 0.15 M.
  • hydroxides of alkali metal earth metals which are an example of the alkali earth metal salts include Be (OH) 2 , Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , and Ba (OH) There is OH) 2 and both show corrosion inhibitory effect.
  • Ca (OH) 2 is preferable from the viewpoint of solubility and corrosion inhibitory effect.
  • Alkaline earth metal hydroxides when added at a concentration of 0.1 M, provide anticorrosion effects, but even thinner than 0.02 M can provide sufficient corrosion control effects. Even if 0.1 M or more is added, the effect is obtained but it becomes expensive.
  • the corrosion inhibiting action of the hydroxide of the alkaline earth metal becomes small, and there is a possibility that the corrosion inhibiting action may be lost due to exhaustion. From these, the optimum concentration range is 0.02 to 0.15 M. Saturated solutions may be used because Ca (OH) 2 has low solubility (approximately 0.02 M at 25 ° C.).
  • molybdate, tungstate, vanadate, silicate, phosphate, polyphosphate, phosphonate, hypochlorite, chlorite, perchlorate there are sulfonates and the like.
  • Ammonium dihydrogen, sodium hydrogen pyrophosphate, sodium metaphosphate, sodium polyphosphate, sodium hypochlorite, sodium chlorite, sodium perchlorate, etc. but if it is the above-mentioned oxy acid salt, there is no particular limitation and corrosion It exhibits a suppressive action.
  • the oxyacid salt can provide anticorrosion when it is added at a concentration of 0.01M. Even at a smaller thickness of 0.002 M, a sufficient corrosion inhibiting effect can be obtained, but the corrosion inhibiting effect decreases with the decrease in concentration. In addition, when it is 0.002 M or less, the corrosion inhibiting action is reduced, and there is a possibility that the corrosion inhibiting action may be lost due to exhaustion. From these facts, the optimum concentration range is 0.002 to 0.01M. Although the corrosion can be suppressed by adding these alkali metal hydroxides and oxalates, the other effect is that the freezing point is lowered by the addition. The freezing point decreases with increasing concentration of these substances.
  • the dissolution inhibitor for copper consists of a compound that forms an insoluble compound with copper and a surfactant.
  • examples of compounds which form insoluble complexes with copper include triazoles such as benzotriazole, triazol derivatives, quinaldinates, compounds having a heterocyclic ring such as oxine, benzoin oxime, anthranilic acid, salicylaldoxime, nitrosonaphthol, cuperone , Haloacetic acid, and cysteine.
  • the content of these is preferably 0.005 to 0.2 M, and most preferably 0.02 to 0.1 M or so.
  • FIG. 2 shows a cycle diagram of the absorption refrigerator 10. As shown in FIG.
  • the absorption refrigerator 10 includes an evaporator 1, an absorber 2, a high temperature regenerator 3, a low temperature regenerator 4, a condenser 5, a heat exchanger 6, and a drain cooler 7. Among them, the inside of the evaporator 1, the absorber 2 and the condenser 5 is maintained at a vacuum of about several mmHg.
  • a mixed refrigerant of water-1-propanol (hereinafter, also simply referred to as “mixed refrigerant”) is used as a refrigerant in the evaporator 1, and the molar fraction of water is 0.85 at the time of sealing.
  • 0.3% LiOH is added as a corrosion inhibitor in order to alleviate the high corrosiveness of the water-1-propanol mixed refrigerant.
  • As the absorption liquid of the absorber 2 a concentrated LiBr solution having a very small water vapor pressure is used.
  • the high temperature regenerator 3 and the low temperature regenerator 4 are also collectively referred to as a "regenerator".
  • a pump 8 for dispersing the mixed refrigerant staying at the bottom of the evaporator 1 from the upper part of the evaporator 1 is installed.
  • a pump 9 for dispersing the absorbent remaining in the bottom of the absorber 2 from the top of the absorber 2 is installed at the lower part of the absorber 2.
  • the water 1-propanol mixed refrigerant generated in the condenser 5 from the top of the evaporator 1 and the water 1-propanol mixed refrigerant staying at the bottom in the evaporator 1 are dispersed to
  • the mixed refrigerant is vacuum evaporated on the outer surface of the cooling pipe installed in The refrigerant in the cooling pipe is cooled by the heat of vaporization to obtain a low temperature medium of -10.degree.
  • the degree of vacuum is lowered by the mixed refrigerant vapor generated and the cooling efficiency is lowered. Therefore, in order to continue vacuum evaporation efficiently, it is necessary to remove the mixed refrigerant vapor generated in the evaporator 1 and maintain a vacuum. For this reason, the mixed refrigerant vapor generated in the evaporator 1 is absorbed by the absorber 2 in the concentrated LiBr solution.
  • the absorbent (diluted solution) diluted by the absorption of the mixed refrigerant vapor is heated by the heat exchanger 6 and then sent to the high temperature regenerator 3 and the low temperature regenerator 4.
  • the absorbing liquid is heated and concentrated by steam or the like supplied from the outside as a heat source.
  • the mixed refrigerant vapor generated thereby is condensed by heating the low temperature regenerator 4 to become a mixed refrigerant, and is dispersed in the condenser 5.
  • the steam or the like of the heat source which has passed through the high temperature regenerator 3 becomes condensed water, is used for heating the dilute solution by the drain cooler 7, is further cooled, and is discharged as a drain.
  • the mixed refrigerant vapor generated by heating the absorbing liquid in the low temperature regenerator 4 is condensed by cooling water in the condenser 5 and then sent to the evaporator 1.
  • the warmed cooling water is cooled by heat radiation to the atmosphere by a cooling tower or the like.
  • FIG. 3 is a graph showing the calculated temperature dependence of saturated vapor pressure in various organic solvents.
  • 1-Propanol and 2-Butanol exhibit similar vapor pressure characteristics to water in the operating temperature range of the absorption refrigerator.
  • the results in FIG. 3 can be used as reference for selecting an organic solvent as a refrigerant, but the vapor pressure as an alcohol aqueous solution is actually measured at each aqueous solution concentration There is a need.
  • FIG. 4 is a graph showing the temperature dependence of the vapor pressure of 1-propanol aqueous solution (water molar fraction: X) and water.
  • the water molar fraction X is a value represented by X1 / (X1 + X2), where X1 is the molar concentration of water and X2 is the molar concentration of 1-propanol. Since the vapor pressures of 1-propanol aqueous solution (water molar fraction: X) and water are close to each other, it can be understood that 1-propanol aqueous solution has excellent characteristics as a refrigerant from the viewpoint of stability of alcohol concentration of mixed refrigerant .
  • Table 3 shows the alcohol concentration in the condenser 5 when the concentration and type of the alcohol in the mixed refrigerant sealed in the absorption refrigerator 10 shown in FIG. 2 after initial and after 1000 hours of operation (cycle) are changed There is.
  • FIG. 5 is a graph showing concentration dependence of freezing points of 1-propanol, 2-propanol, 1-butanol and 2-butanol.
  • 1-Butanol and 2-butanol slightly lower their freezing point as their concentration increases, but they do not decrease when the water mole fraction is 0.9 or less. This is because butanol does not dissolve in water, and it is difficult to obtain the target temperature of -5 ° C or less.
  • the freezing point decreases with increasing concentration.
  • Propanol dissolves completely with water. In order to achieve the target of -5.degree. C., it can be achieved by setting the concentration to 0.95 or less in water mole fraction. Thereby, the working refrigerant below freezing point can be provided. In order to completely dissolve it with water, problems such as solution separation can be avoided even if the concentration balance of alcohol is broken.
  • FIG. 6 is a graph showing the LiOH concentration dependency of the freezing point when LiOH of each concentration is added as a corrosion inhibitor to a 1-propanol aqueous solution.
  • the addition of LiOH lowers the freezing point, and the degree increases with the increase of LiOH concentration.
  • the propanol concentration must be a water molar fraction as high as 0.6 or less without adding LiOH.
  • the propanol concentration may be about 0.85 in water mole fraction, and the target temperature can be achieved with low concentration of 1-propanol.
  • FIG. 7 is a graph showing the Li 2 MoO 4 concentration dependency of the freezing point when Li 2 MoO 4 of each concentration is added as a corrosion inhibitor to 1-propanol aqueous solution.
  • the addition of Li 2 MoO 4 lowers the freezing point, and the degree increases with the increase of the Li 2 MoO 4 concentration. However, the degree is not as low as that of LiOH, and it is overshot at about 0.3 wt%, and the freezing point is not lowered by more than that.
  • a corrosion test of the structural member SS400 was carried out in a solution in which various alkalis were added to the mixed refrigerant, and the amount of gas generated by the corrosion was measured.
  • the anodic reaction of corrosion is a dissolution reaction of iron shown in the following reaction formula (1).
  • the cathode reaction paired with that is a hydrogen gas generation reaction shown by the following reaction formula (2) because it is under degassing conditions.
  • the amount of generated hydrogen gas is in proportion to the amount of corrosion, the magnitude of the corrosion can be determined from the amount of generated hydrogen gas.
  • the corrosion test and the measurement of the gas generation amount were performed as follows.
  • a sealed tube glass ampoule made of Pyrex (registered trademark) glass was used. Connect a bottomed glass tube containing a test piece (length 10 x width 4 x thickness 0.5 mm, SS400) and 20 ml of mixed refrigerant as a test solution to a vacuum pump and apply ultrasonic waves to the tube under a reduced pressure of 2 mmHg at 298 K After degassing for 15 minutes while applying vibration, the mouth of the tube was sealed to produce a sealed tube. The sealed tube was held in a thermostat kept at 90 ° C. for 500 hours.
  • the glass ampoule was placed in a glass ampoule grinding container connected to a mercury manometer, and the pressure in the grinding container was reduced to 2 mmHg or less. After crushing the glass ampoule, the amount of gas generation was determined from the change of the value of the mercury maometer.
  • SS400 is used as a representative example of carbon steel, but the steel used as a structural material of the absorption refrigerator is not limited to this, and other carbon steels and various low alloy steels Also, stainless steel etc. can be used.
  • water-1-propanol was used as a mixed refrigerant.
  • Table 4 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added.
  • the molar fraction of water in the mixed refrigerant is 0.85.
  • Comparative Example 1 is the result of examining the amount of gas generated by the corrosion test in the mixed refrigerant to which the corrosion inhibitor is not added.
  • the amount of gas generation is 150 ml / dm 2 .
  • the amount of gas generation when 0.3 wt% of LiOH is added as a corrosion inhibitor is 0.48 ml / dm 2 , and the amount of gas generation is about 1 as compared with Comparative Example 1. It is reduced to / 300, and the corrosion is significantly suppressed. As shown in FIG. 6, the freezing point can be lowered by 3 ° C. by adding a corrosion inhibitor.
  • Example 2 shows the case where the LiOH concentration is reduced to 0.048 wt%. Even if the concentration is reduced, the gas generation amount is 0.25 ml / dm 2 , and even if the concentration is reduced, the corrosion amount can be maintained at a low level.
  • Examples 3 and 4 show the case where the type of cation is changed from Li to Ca and Na. Even if the type of cation is changed, the amount of gas generation is 0.29 and 0.157 ml / dm 2 , and even if the concentration is reduced, the amount of corrosion can be kept low. Even if the cation is changed, the freezing point is lowered by the addition of the corrosion inhibitor as in FIG. Comparative Examples 2 and 3 show the case where NH 3 is added to the mixed refrigerant. The concentrations were 1.0 M and 0.1 M.
  • the amount of gas generation is 120 ml / dm 2 and 110 ml / dm 2 , and the level is the same as in the case of no addition shown in Comparative Example 1, so that corrosion is not suppressed.
  • the pH of these solutions is about 11, which is the same as in the case of Examples 1-4. It is thought that corrosion is not suppressed from this because it is alkali.
  • Comparative Example 4 is the case where Na 2 CO 3 was added.
  • the pH is the same as in Examples 1 to 4 (pH 11.5), but the gas generation amount is 90 ml / dm 2 and the corrosion is not suppressed as in the case of NH 3 .
  • Table 5 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added.
  • the molar fraction of water in the mixed refrigerant is 0.95.
  • the comparative example 5 is the result of having examined the gas quantity generate
  • the amount of gas generation is 90 ml / dm 2 .
  • Examples 5 and 6 are cases where LiOH was added as a corrosion inhibitor.
  • the water mole fraction shown in Table 4 is 0.85, by adding the hydroxide of an alkali metal, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 7 is the case where Ca (OH) 2 is added as a corrosion inhibitor. As in the case where the water mole fraction shown in Table 4 is 0.85, the amount of gas generation is extremely reduced and corrosion is suppressed.
  • Example 8 is the case where NaOH is added as a corrosion inhibitor. As in the case where the water mole fraction shown in Table 4 is 0.85, the amount of gas generation is extremely reduced and corrosion is suppressed.
  • Table 6 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added.
  • the molar fraction of water in the mixed refrigerant is 0.85. Note that Comparative Example 1 is also shown in the table.
  • Example 9 is the case where Li 2 MoO 4 is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 10 is the case where sodium orthovanadate (Na 3 VO 4 ) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 11 is the case where sodium metasilicate (Na 2 SiO 3 ) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 12 is the case where sodium phosphonate (HNa 2 O 3 P (disodium hydrogen phosphite)) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • HNa 2 O 3 P sodium hydrogen phosphite
  • Example 13 is the case where sodium benzenesulfonate (C 6 H 5 NaO 3 S) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 14 is the case where sodium perchlorate (NaClO 4 ) is added as a corrosion inhibitor. It shows in Comparative Example 1. Compared with the case where the corrosion inhibitor is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • NaClO 4 sodium perchlorate
  • the corrosion inhibitors of Examples 9-14 are collectively referred to herein as "oxygen acid salts.” As shown in these examples, the addition of various low concentrations of oxyacid salts shows a remarkable corrosion inhibiting action as in the case of adding an alkali, even if the pH hardly changes.
  • Table 7 shows the amount of gas (hydrogen) generated in the corrosion test by adding various adsorption type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant as a test solution. There is. The mole fraction of water in the mixed refrigerant is 0.85. The test temperature is 90 ° C. Note that Comparative Example 1 is also shown in the table.
  • Comparative Example 9 is the case where hexamethylenetetramine used as a corrosion inhibitor in cooling water is added. Even when hexamethylenetetramine, which has a corrosion inhibiting effect in cooling water, is added, it does not exhibit a corrosion inhibiting effect in a water-1-propanol mixed refrigerant.
  • Comparative Example 10 is the case where thiourea used as a corrosion inhibitor in cooling water is added. Even if thiourea having a corrosion inhibiting effect is added to the cooling water, it does not exhibit the corrosion inhibiting effect in the water-1-propanol mixed refrigerant.
  • Comparative Example 11 is the case of sorbitan monooleate used as a corrosion inhibitor in cooling water. Even if sorbitan monooleate, which has a corrosion inhibiting effect in cooling water, is added, it does not exhibit a corrosion inhibiting effect in a water-1-propanol mixed refrigerant.
  • Comparative Example 12 is the case where aminotrimethylene phosphonic acid used as a corrosion inhibitor in cooling water is added. Even when aminotrimethylene phosphonic acid having a corrosion inhibiting action is added in cooling water, it does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
  • Table 8 shows the amount of gas (hydrogen) generated in the corrosion test by adding various oxidation type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant to make a test solution. There is. The molar fraction of water in the mixed refrigerant was 0.85. The test temperature is 90 ° C.
  • Comparative Example 13 is the case where hydrogen peroxide, which is an oxidizing agent, is added. Even if hydrogen peroxide is added, it does not show a corrosion inhibitory effect in the water-1-propanol mixed refrigerant.
  • the comparative example 14 is a case where nitrate ion (potassium nitrate) is added.
  • nitrate ion which is used as a corrosion inhibitor in cooling water, does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
  • Comparative Example 15 is the case where nitrite ion (sodium nitrite) is added.
  • nitrite ion sodium nitrite
  • Comparative Example 16 is the case where nitrate ion (cerium ammonium nitrate) is added.
  • nitrate ion cerium ammonium nitrate
  • Table 9 shows the amount of gas (hydrogen) generated in the corrosion test by adding various precipitation-type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant as a test solution. There is. The molar fraction of water in the mixed refrigerant was 0.85. The test temperature is 90 ° C. Note that Comparative Example 1 is also described in this table.
  • Comparative Example 17 is the case where cerium nitrate is added. Even if cerium nitrate is added to the cooling water, it does not show a corrosion suppressing action in the water-1-propanol mixed refrigerant.
  • Comparative Example 18 is the case where 8-quinolinol is added. Even if 8-quinolinol is added to cooling water, it does not exhibit corrosion inhibition in a water-1-propanol mixed refrigerant.
  • Comparative Example 19 is the case where sodium octyl propionate was added. Even if sodium octyl propionate is added to cooling water, it does not exhibit corrosion inhibition in a water-1-propanol mixed refrigerant.
  • Table 10 shows the amount of gas (hydrogen) generated by the corrosion of SS400 immersed in a water-1-propanol mixed refrigerant to which an oxyacid salt and an alkali metal hydroxide are added. Note that Comparative Example 1 is also described in this table.
  • Example 15 is the case where lithium hydroxide and lithium molybdate were added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 16 is the case where lithium hydroxide and sodium benzenesulfonate were added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 17 is the case where calcium hydroxide and sodium orthovanadate are added as corrosion inhibitors. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • Example 18 is the case where sodium hydroxide and sodium phosphonate are added as corrosion inhibitors. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
  • FIG. 8 is a gram showing the LiOH concentration dependency of the amount of gas generated in the corrosion test in a water-1-propanol mixed refrigerant added with LiOH.
  • SS400 is used as a test piece.
  • Figure 9 is a graph showing the Li 2 MoO 4 concentration dependence of the generated gas amount of the corrosion test in water-1-propanol mixed refrigerant with the addition of Li 2 MoO 4.
  • SS400 is used as a test piece.
  • the gas generation amount decreases linearly in logarithm. It can be seen that when 0.002 M is added, the amount of gas generation decreases to about 1/10 as compared with the case where it is not added and corrosion can be sufficiently suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Provided is a working medium for an absorption refrigerator that enables corrosion of a structural member to be greatly suppressed; also provided is an absorption refrigerator using this working medium. The working medium for an absorption refrigerator includes a propanol aqueous solution as a refrigerant and a corrosion inhibitor. The corrosion inhibitor includes one or more of an alkali metal salt, an alkaline earth metal salt, and an oxyacid salt. The alkali metal salt is a hydroxide of an alkali metal, and the alkaline earth metal salt is a hydroxide of an alkaline earth metal.

Description

吸収式冷凍機用作動媒体及びこれを用いた吸収式冷凍機Working medium for absorption refrigerator and absorption refrigerator using the same
 本発明は、吸収冷凍機用作動媒体およびこれを用いた吸収式冷凍機に関する。 The present invention relates to a working medium for absorption refrigerator and an absorption refrigerator using the same.
 従来の吸収式冷凍機に一般的に用いられている作動媒体は、臭化リチウム-水系であり、冷媒が水、吸収液が臭化リチウムである。したがって、冷媒が水であるために、冷熱を製造する蒸発器において冷媒である水が蒸発器内で凍結することから、通常の仕様の吸収式冷凍機では氷点以下の温度の熱媒体を製造することは困難である。 The working medium generally used in the conventional absorption refrigerator is a lithium bromide-water system, the refrigerant is water, and the absorbing liquid is lithium bromide. Therefore, since the refrigerant is water, the water which is the refrigerant freezes in the evaporator in the evaporator producing cold heat, and in the absorption refrigerator of the normal specification, the heat medium of the temperature below the freezing point is manufactured It is difficult.
 氷温以下の温度を吸収式冷凍機で発生させるための冷媒として、メタノール、エタノール、プロパノール等の低級アルコールまたは該アルコールと水との混合溶液を使用する方法が、特許文献1に開示されている。 Patent Document 1 discloses a method using a lower alcohol such as methanol, ethanol, propanol or the like, or a mixed solution of the alcohol and water as a refrigerant for generating a temperature below the ice temperature with an absorption refrigerator. .
 循環冷却水系の腐食抑制剤として、アルカリ金属水酸化物と、有機ホスホン酸、ホスホノカルボン酸等の有機酸とを含む組成物が、特許文献2に開示されている。 Patent Document 2 discloses a composition containing an alkali metal hydroxide and an organic acid such as an organic phosphonic acid or a phosphonocarboxylic acid as a corrosion inhibitor of a circulating cooling water system.
特許第2512095号公報Patent No. 2512095 特開2005-290424号公報JP 2005-290424 A
 水またはプロパノール等の低級アルコール単体では、構造材料、たとえばSS400に対する腐食性はそれほど強くないが、水を添加し水溶液にした場合、腐食性特に気相部においての腐食性が著しく増加する。この腐食性の増加は、水に溶出した鉄イオンや腐食により生成した鉄酸化物が触媒となって腐食を加速させ、アルコールを酸化させ酸(1級アルコールの場合)やアルデヒド(2級アルコールの場合)が生成するためであると考えられる。したがって、冷媒にプロパノール-水混合冷媒を使用して吸収冷凍機を構成する場合は、混合冷媒による腐食を防止する技術を確立することが不可欠である。 Water or lower alcohols alone such as propanol are not as corrosive to structural materials, for example, SS400, but when water is added to form an aqueous solution, the corrosiveness, particularly in the gas phase, is significantly increased. This increase in corrosion is caused by iron ions eluted in water and iron oxides generated by corrosion acting as a catalyst to accelerate corrosion and oxidize alcohol to acidify (in the case of primary alcohol) or aldehyde (secondary alcohol) Is considered to be the case). Therefore, in the case of using a propanol-water mixed refrigerant as the refrigerant to configure the absorption refrigerator, it is essential to establish a technique for preventing corrosion by the mixed refrigerant.
 特許文献1においては、腐食抑制剤に関する記載はない。特許文献2においては、低級アルコールが含まれる冷媒系に関する記載はない。 In patent document 1, there is no description regarding a corrosion inhibitor. Patent Document 2 does not describe a refrigerant system containing a lower alcohol.
 そこで、本発明の目的は、構造材の腐食を高度に抑制可能な吸収式冷凍機用作動媒体およびこれを用いた吸収式冷凍機を提供することを目的とする。 Therefore, an object of the present invention is to provide a working medium for absorption-type refrigerator capable of highly suppressing the corrosion of a structural material and an absorption-type refrigerator using the same.
 上記の目的を達成するために、本発明の一形態に係る吸収式冷凍機用作動媒体は、冷媒としてのプロパノール水溶液と、腐食抑制剤と、を含む。 In order to achieve the above object, a working medium for an absorption refrigerator according to an aspect of the present invention includes a propanol aqueous solution as a refrigerant and a corrosion inhibitor.
 本発明によれば、構造材の腐食を高度に抑制可能な吸収式冷凍機用作動媒体およびこれを用いた吸収式冷凍機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the working medium for absorption-type refrigerators which can highly suppress corrosion of a structural material, and the absorption-type refrigerator using the same can be provided.
吸収式冷凍機のサイクル図を示す。1 shows a cycle diagram of an absorption refrigerator. 吸収式冷凍機のサイクル系統図を示す。The cycle systematic diagram of an absorption-type refrigerator is shown. 種々の有機溶剤における飽和蒸気圧の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the saturation vapor pressure in various organic solvents. 1-プロパノール水溶液と水の蒸気圧の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the vapor pressure of 1-propanol aqueous solution and water. 1-プロパノール、2-プロパノール、1-ブタノール、および2-ブタノールの凝固点の濃度依存性を示すグラフである。It is a graph which shows the concentration dependence of the freezing point of 1-propanol, 2-propanol, 1-butanol, and 2-butanol. 1-プロパノール水溶液に、腐食抑制剤として各濃度のLiOHを添加した場合の凝固点のLiOH濃度依存性を示すグラフである。It is a graph which shows the LiOH concentration dependence of the freezing point at the time of adding LiOH of each concentration as a corrosion inhibitor to 1-propanol aqueous solution. 1-プロパノール水溶液に腐食抑制剤として各濃度のLiMoOを添加した場合の凝固点のLiMoO濃度依存性を示すグラフである。It is a graph showing the Li 2 MoO 4 concentration dependence of the freezing point of the case of adding Li 2 MoO 4 of each concentration as a corrosion inhibitor in 1-propanol solution. LiOHを添加した水-1-プロパノール混合冷媒中での腐食試験で発生したガス量のLiOH濃度依存性を示すグラフである。It is a graph which shows the LiOH concentration dependence of the amount of gas generated by the corrosion test in the water 1-propanol mixed refrigerant which added LiOH. LiMoOを添加した水-1-プロパノール混合冷媒中での腐食試験で発生したガス量のLiMoO濃度依存性を示すグラフである。Is a graph showing the Li 2 MoO 4 concentration dependence of the generated gas amount of the corrosion test in Li 2 MoO 4 water-1-propanol mixed refrigerant was added.
 本発明は、水の凝固点(氷温)以下の冷熱を発生させる吸収冷凍機用作動媒体およびこれを用いた吸収式冷凍機に係り、特に冷媒に水-アルコール水溶液を使用した場合に、この冷媒にさらに腐食抑制剤としてアルカリ金属塩(アルカリ金属の水酸化物)、アルカリ土類金属塩(アルカリ土類金属の水酸化物)または酸素酸塩を添加することにより、アルコール水溶液以上の低い凝固温度を有し、さらに冷凍機の主要構成部材を高度に腐食抑制した耐食性に優れた吸収式冷凍機用作動媒体およびこれを用いた吸収式冷凍機に関する。 The present invention relates to a working medium for an absorption refrigerator that generates cold energy below the freezing point (ice temperature) of water and an absorption refrigerator using the same, and particularly when a water-alcohol aqueous solution is used as the refrigerant. By adding an alkali metal salt (hydroxide of alkali metal), an alkaline earth metal salt (hydroxide of alkaline earth metal) or an oxy acid salt as a corrosion inhibitor to a lower solidification temperature than the aqueous alcohol solution Further, the present invention relates to a working medium for an absorption type refrigerator excellent in corrosion resistance which highly suppresses corrosion of main components of the refrigerator, and an absorption type refrigerator using the same.
 従来の低温吸収式冷凍機で使用していたLiBr-水のような塩水溶液を混合冷媒とした場合、図1(a)に示すように、蒸発器では冷媒中の水成分のみが蒸発し吸収器においてLiBr水溶液に吸収される。凝縮液は水であり、冷媒中の塩濃度は蒸発器での冷媒蒸発量 (水蒸気量) と凝縮器からの戻り液量 (水量)の バランスにより決定される。 When an aqueous salt solution such as LiBr-water used in a conventional low-temperature absorption refrigerator is used as the mixed refrigerant, as shown in FIG. 1A, only the water component in the refrigerant is evaporated and absorbed in the evaporator. Absorbed into the aqueous LiBr solution. The condensate is water, and the salt concentration in the refrigerant is determined by the balance between the amount of refrigerant evaporation (amount of water vapor) in the evaporator and the amount of liquid returned from the condenser (amount of water).
 そのためリアルタイムでの溶液循環液量のモニターと制御が必要不可欠となる。蒸発器での水の蒸発量に対し凝縮器から戻る水の量が多い場合、混合冷媒中の塩濃度が減少するため混合冷媒の凝固点は上昇し凍結の恐れが生じる。逆に水の蒸発量に対し凝縮器から戻る水の液量が少ない場合、混合冷媒中の塩濃度が増大するため冷媒の凝固点は降下するが、この傾向が進みすぎると塩の溶解度以上の濃度になり混合冷媒の結晶化の恐れが生じる。 Therefore, it is essential to monitor and control the solution circulation volume in real time. When the amount of water returning from the condenser is large relative to the amount of evaporation of water in the evaporator, the concentration of salt in the mixed refrigerant decreases, and the freezing point of the mixed refrigerant rises, which may cause freezing. Conversely, when the amount of water returning from the condenser is small relative to the amount of evaporation of water, the concentration of salt in the mixed refrigerant increases and the freezing point of the refrigerant drops, but if this tendency progresses too much, the concentration above the salt solubility As a result, the mixed refrigerant may be crystallized.
 しかしながら、図1(b)に示すように、冷媒にアルコールと水を混合させたアルコール水溶液のように、両者とも蒸発する性質のものを冷媒に使用することにより、塩を使用した場合に懸念される冷凍機運転中の冷媒濃度変動のリスクを回避することができる。表1に候補となるアルコールの物性の一覧を示す。 However, as shown in FIG. 1 (b), there is a concern in the case of using a salt by using, as the refrigerant, one having the property of evaporating both, such as an alcohol aqueous solution in which alcohol and water are mixed in the refrigerant. It is possible to avoid the risk of refrigerant concentration fluctuation during operation of the refrigerator. Table 1 shows a list of physical properties of alcohol as a candidate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 炭素数が3以下のアルコールでは水と全溶解する。また、低級アルコールの凝固点は、-100℃程度以下であり、水と混合させ水溶液とした場合でも凝固点が0℃以下になると期待できる。また、低級アルコールはメタノール以外は安全性も高い。しかし、使用するアルコールの蒸気圧が水の蒸気圧より高く沸点が水の沸点より低い場合、蒸気側ではアルコールの濃度が高くなる。逆にアルコールの蒸気圧が水の蒸気圧より低く沸点が水の沸点より高い場合は、蒸気側でアルコールの濃度が低くなる。このことから、水とのバランスを常に一定に保ち混合冷媒とその蒸気のアルコール濃度を安定化させるためには、水と該当するアルコールの蒸気圧が近いことが必要となる。 If the alcohol has 3 or less carbon atoms, it completely dissolves in water. Further, the solidification point of the lower alcohol is about -100 ° C. or less, and even when it is mixed with water to form an aqueous solution, it can be expected that the solidification point will be 0 ° C. or less. In addition, lower alcohols are also highly safe except methanol. However, if the vapor pressure of the alcohol used is higher than the vapor pressure of water and the boiling point is lower than the boiling point of water, the concentration of alcohol will increase on the vapor side. Conversely, if the vapor pressure of alcohol is lower than the vapor pressure of water and the boiling point is higher than the boiling point of water, the concentration of alcohol will be lower on the vapor side. From this, in order to keep the balance with water constant at all times and to stabilize the alcohol concentration of the mixed refrigerant and its vapor, it is necessary that the vapor pressures of water and the corresponding alcohol be close.
 また、アルコールの濃度バランスが崩れた場合でも、全濃度域で水に溶解すれば、溶液分離等の問題は回避される。その点から1-プロパノールが最も冷媒として適しているといえる。2-プロパノールは蒸気圧が水の蒸気圧と若干異なるが(図3)、全濃度域で水と溶解することから混合冷媒として使用できる。従って、主成分はこれらの理由により1-プロパノールまたは2-プロパノールが良いが、それぞれ単体で使用するばかりでなくプロパノール以外のアルコールを、例えば炭素数が2以下のエタノール、メタノールや逆に炭素数が4以上のブタノール、ハキサノール、オクタノール等のアルコールを混合させても良い。もちろん、それらの異性体も同様に添加しても良い。ただし、それらの濃度は主成分であるプロパノールの濃度より低いことが必要である。 In addition, even when the concentration balance of alcohol is broken, if it is dissolved in water in the entire concentration range, problems such as solution separation can be avoided. From this point, it can be said that 1-propanol is most suitable as the refrigerant. Although 2-propanol has a vapor pressure slightly different from that of water (FIG. 3), it can be used as a mixed refrigerant because it dissolves with water in the entire concentration range. Therefore, the main component is preferably 1-propanol or 2-propanol for these reasons, but not only single-use but also alcohols other than propanol, such as ethanol having 2 or less carbon atoms, methanol, and vice versa Four or more alcohols such as butanol, haxanol and octanol may be mixed. Of course, those isomers may be added as well. However, their concentration needs to be lower than the concentration of propanol which is the main component.
 しかし、プロパノール-水混合冷媒系においては、上記のように、気相部において腐食性が著しく増加する。当該増加を抑制するために、従来の腐食抑制剤が、プロパノール-水混合冷媒に対しても同様の効果を示すかどうかは不明である。 However, in the propanol-water mixed refrigerant system, as described above, the corrosiveness is significantly increased in the gas phase. It is unclear whether the conventional corrosion inhibitors show the same effect on propanol-water mixed refrigerant in order to suppress the increase.
 なお、従来、冷却水中で使用されている腐食抑制剤は、その機構に基づいて大きく分けて、以下のような種類に分類される。 In addition, the corrosion inhibitor conventionally used in cooling water is roughly divided based on the mechanism, and is classified into the following types.
  (1)吸着型インヒビタでは化学吸着:
  [M]+RX:→[M]:XR
  (2)酸化型インヒビタでは水酸化物沈殿の生成:
  Mn++n:OH→[Mn+(:OH)n]
  (3)沈殿型インヒビタでは錯体沈殿の生成:
  Mn++nRX:→[Mn+(:XR)n]
  ここで、[M]やMn+はルイス酸であり、RX:、:OH、RX:などはルイス塩基である。
(1) Chemical adsorption in adsorption inhibitors:
[M] + RX: → [M]: XR
(2) Formation of hydroxide precipitate in oxidized inhibitors:
M n + + n: OH - → [M n + (: OH -) n]
(3) Formation of complex precipitates in precipitation inhibitors:
M n + + nRX -: → [M n + (: XR -) n]
Here, a [M] and M n + is a Lewis acid, RX:,: OH -, RX -: such is the Lewis base.
 そこで、鋭意研究を進めた結果、プロパノール-水混合冷媒系においては、SS400等の鉄系の材料の腐食を抑制する物質として、アルカリ金属塩(水酸化アルカリ金属)、アルカリ土類金属塩(水酸化アルカリ土類金属)、または酸素酸塩を添加することにより、十分な腐食抑制効果を示すことができ、プロパノール-水混合冷媒を使用して氷点下冷熱を発生させる吸収式冷凍機を構成することが可能となる。水酸化アルカリ金属または水酸化アルカリ土類金属と、酸素酸塩とを併用しても効果はある。 Therefore, as a result of intensive research, in the propanol-water mixed refrigerant system, alkali metal salts (alkali metal hydroxides), alkaline earth metal salts (water, etc.) are used as substances that inhibit the corrosion of iron-based materials such as SS400. By forming an absorption refrigerator which can exhibit a sufficient corrosion inhibiting effect by adding an alkaline earth metal oxide or an oxy acid salt and which generates a subfreezing heat using a propanol-water mixed refrigerant Is possible. It is also effective to use an alkali metal hydroxide or an alkaline earth metal hydroxide in combination with an oxy acid salt.
 アルカリ金属塩の一例であるアルカリ金属の水酸化物としては、LiOH、NaOH、KOH、RbOH、およびCsOHのいずれでも腐食抑制効果を示す。そのうちLiOH、NaOH、KOHが溶解性や腐食抑制効果の観点から好ましい。特に吸収液として、LiBrを使用することから、同じアルカリ金属であるLiの水酸化物を使用することが特に好ましい。アルカリ金属の水酸化物の濃度は、0.1M添加されていれば防食効果が得られるが、それよりも薄い0.02Mでも十分な腐食抑制効果が得られる。0.1M以上添加しても効果は得られるが、高価となる。また、0.005M以下になるとアルカリ金属の水酸化物腐食抑制作用が小さくなるとともに、消耗することにより腐食抑制作用がなくなる恐れが生じる。これらのことから最適濃度範囲は、0.02~0.15Mである。 As a hydroxide of an alkali metal which is an example of an alkali metal salt, any of LiOH, NaOH, KOH, RbOH and CsOH exhibits a corrosion inhibitory effect. Among them, LiOH, NaOH and KOH are preferable from the viewpoint of solubility and corrosion inhibition effect. In particular, since LiBr is used as the absorbing solution, it is particularly preferable to use a hydroxide of Li which is the same alkali metal. A 0.1 M addition of an alkali metal hydroxide provides the anticorrosion effect, but a 0.02 M thinner than that can provide a sufficient corrosion inhibition effect. Even if 0.1 M or more is added, the effect is obtained but it becomes expensive. Further, when it is 0.005 M or less, the action of suppressing the hydroxide corrosion of the alkali metal becomes small, and there is a possibility that the action of suppressing the corrosion may be lost due to exhaustion. From these, the optimum concentration range is 0.02 to 0.15 M.
 また、アルカリ土類金属塩の一例であるアルカリ金属土類金属の水酸化物としては、Be(OH)、Mg(OH)、Ca(OH)、Sr(OH)、およびBa(OH)があり、いずれも腐食抑制効果を示す。そのうちCa(OH)が溶解性や腐食抑制効果の観点から好ましい。アルカリ土類金属の水酸化物は、0.1Mの濃度で添加されていれば防食効果が得られるが、それよりも薄い0.02Mでも十分な腐食抑制効果が得られる。0.1M以上添加しても効果は得られるが、高価となる。また0.005M以下になると、アルカリ土類金属の水酸化物の腐食抑制作用が小さくなるとともに、消耗することにより腐食抑制作用がなくなる恐れが生じる。これらのことから最適濃度範囲は、0.02~0.15Mである。Ca(OH)は溶解度が低いため(25℃で約0.02M)、飽和溶液を用いてもよい。 Further, hydroxides of alkali metal earth metals which are an example of the alkali earth metal salts include Be (OH) 2 , Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , and Ba (OH) There is OH) 2 and both show corrosion inhibitory effect. Among them, Ca (OH) 2 is preferable from the viewpoint of solubility and corrosion inhibitory effect. Alkaline earth metal hydroxides, when added at a concentration of 0.1 M, provide anticorrosion effects, but even thinner than 0.02 M can provide sufficient corrosion control effects. Even if 0.1 M or more is added, the effect is obtained but it becomes expensive. In addition, when it is 0.005 M or less, the corrosion inhibiting action of the hydroxide of the alkaline earth metal becomes small, and there is a possibility that the corrosion inhibiting action may be lost due to exhaustion. From these, the optimum concentration range is 0.02 to 0.15 M. Saturated solutions may be used because Ca (OH) 2 has low solubility (approximately 0.02 M at 25 ° C.).
 酸素酸塩としては、モリブデン酸塩、タングステン酸塩、バナジン酸塩、ケイ酸塩、リン酸塩、ポリリン酸塩、ホスホン酸塩、次亜塩素酸塩、亜塩素酸塩、過塩素酸塩、スルホン酸塩等がある。具体的には、モリブデン酸リチウム、モリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、バナジン酸アンモニウム、オルトバナジン酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、ホスホン酸ナトリウム、リン酸二水素ナトリウム、リン酸二水素アンモニウム、ピロリン酸水素ナトリウム、メタリン酸ナトリウム、ポリリン酸ナトリウム、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、過塩素酸ナトリウム等があるが、上記の酸素酸塩であれば特に限定はなく腐食抑制作用を示す。 As an oxy acid salt, molybdate, tungstate, vanadate, silicate, phosphate, polyphosphate, phosphonate, hypochlorite, chlorite, perchlorate, There are sulfonates and the like. Specifically, lithium molybdate, sodium molybdate, ammonium molybdate, sodium tungstate, ammonium vanadate, sodium orthovanadate, sodium silicate, sodium metasilicate, sodium phosphonate, sodium dihydrogen phosphate, phosphoric acid Ammonium dihydrogen, sodium hydrogen pyrophosphate, sodium metaphosphate, sodium polyphosphate, sodium hypochlorite, sodium chlorite, sodium perchlorate, etc., but if it is the above-mentioned oxy acid salt, there is no particular limitation and corrosion It exhibits a suppressive action.
 酸素酸塩は、0.01Mの濃度で添加されていれば防食効果が得られる。それよりも薄い0.002Mでも十分な腐食抑制効果が得られるが、腐食抑制作用は濃度の低下とともに小さくなる。また0.002M以下になると腐食抑制作用が小さくなるとともに、消耗することにより腐食抑制作用がなくなる恐れが生じる。これらのことから最適濃度範囲は、0.002~0.01Mである。これらのアルカリ金属の水酸化物や酸素酸塩を添加することにより腐食を抑制することができるが、それ以外の効用として添加により凝固点が低下するということが挙げられる。これらの物質の濃度の増加とともに凝固点は低下する。 The oxyacid salt can provide anticorrosion when it is added at a concentration of 0.01M. Even at a smaller thickness of 0.002 M, a sufficient corrosion inhibiting effect can be obtained, but the corrosion inhibiting effect decreases with the decrease in concentration. In addition, when it is 0.002 M or less, the corrosion inhibiting action is reduced, and there is a possibility that the corrosion inhibiting action may be lost due to exhaustion. From these facts, the optimum concentration range is 0.002 to 0.01M. Although the corrosion can be suppressed by adding these alkali metal hydroxides and oxalates, the other effect is that the freezing point is lowered by the addition. The freezing point decreases with increasing concentration of these substances.
 吸収式冷凍機においては伝熱管に銅(銅合金)が一般的に使用される。そのため銅を防食することを考慮して銅の腐食抑制剤を上記腐食抑制剤とともに添加しても良い。銅の溶解抑制剤は、銅と不溶性化合物を形成する化合物と界面活性剤からなる。銅と不溶性の錯体を形成する化合物として、ベンゾトリアゾールで代表されるトリアゾール、トリアゾール誘導体、キナルジン酸塩、オキシンなどの複素環を有する化合物のほかベンゾインオキシム、アントラニル酸、サリチルアルドキシム、ニトロソナフトール、クペロン、ハロ酢酸、およびシステインなどがあげられる。これらの含有量は0.005~0.2Mが好ましく、特に0.02~0.1M程度が最も好ましい。 Copper (copper alloy) is generally used for heat transfer tubes in absorption type refrigerators. Therefore, a copper corrosion inhibitor may be added together with the above-mentioned corrosion inhibitor in consideration of corrosion prevention of copper. The dissolution inhibitor for copper consists of a compound that forms an insoluble compound with copper and a surfactant. Examples of compounds which form insoluble complexes with copper include triazoles such as benzotriazole, triazol derivatives, quinaldinates, compounds having a heterocyclic ring such as oxine, benzoin oxime, anthranilic acid, salicylaldoxime, nitrosonaphthol, cuperone , Haloacetic acid, and cysteine. The content of these is preferably 0.005 to 0.2 M, and most preferably 0.02 to 0.1 M or so.
 次に、吸収式冷凍機10の構成について説明する Next, the configuration of the absorption refrigerator 10 will be described.
 図2は、吸収式冷凍機10のサイクル系統図を示している。 FIG. 2 shows a cycle diagram of the absorption refrigerator 10. As shown in FIG.
 吸収式冷凍機10は、蒸発器1、吸収器2、高温再生器3、低温再生器4、凝縮器5、熱交換器6、およびドレインクーラ7から構成されている。このうち、蒸発器1、吸収器2および凝縮器5内は、数mmHg程度の真空に保たれている。 The absorption refrigerator 10 includes an evaporator 1, an absorber 2, a high temperature regenerator 3, a low temperature regenerator 4, a condenser 5, a heat exchanger 6, and a drain cooler 7. Among them, the inside of the evaporator 1, the absorber 2 and the condenser 5 is maintained at a vacuum of about several mmHg.
 蒸発器1内の冷媒には水-1-プロパノールの混合冷媒(以下、単に「混合冷媒」ともいう。)が使用されており、水のモル分率は封入時で0.85である。この冷媒には、水-1-プロパノールの混合冷媒の高い腐食性を緩和するために、腐食抑制剤として0.3%LiOHが添加されている。吸収器2の吸収液としては、水蒸気圧が極めて小さい濃厚LiBr溶液を使用している。なお、高温再生器3及び低温再生器4は、合わせて「再生器」とも呼ぶ。 A mixed refrigerant of water-1-propanol (hereinafter, also simply referred to as "mixed refrigerant") is used as a refrigerant in the evaporator 1, and the molar fraction of water is 0.85 at the time of sealing. To this refrigerant, 0.3% LiOH is added as a corrosion inhibitor in order to alleviate the high corrosiveness of the water-1-propanol mixed refrigerant. As the absorption liquid of the absorber 2, a concentrated LiBr solution having a very small water vapor pressure is used. The high temperature regenerator 3 and the low temperature regenerator 4 are also collectively referred to as a "regenerator".
  蒸発器1の下部には、蒸発器1の底部に滞留する混合冷媒を蒸発器1の上部から散布するためのポンプ8が設置されている。また、吸収器2の下部には、吸収器2の底部に滞留する吸収液を吸収器2の上部から散布するためのポンプ9が設置されている。 At a lower part of the evaporator 1, a pump 8 for dispersing the mixed refrigerant staying at the bottom of the evaporator 1 from the upper part of the evaporator 1 is installed. In addition, a pump 9 for dispersing the absorbent remaining in the bottom of the absorber 2 from the top of the absorber 2 is installed at the lower part of the absorber 2.
  低温媒体の供給時には、蒸発器1の上部より凝縮器5で生成した水-1-プロパノール混合冷媒および蒸発器1内の底部に滞留する水-1-プロパノール混合冷媒を散布し、蒸発器1内に設置した冷却配管の外面で混合冷媒を真空蒸発させる。その気化熱により冷却配管内の冷媒を冷却し-10℃の低温媒体を得る。 At the time of supply of the low temperature medium, the water 1-propanol mixed refrigerant generated in the condenser 5 from the top of the evaporator 1 and the water 1-propanol mixed refrigerant staying at the bottom in the evaporator 1 are dispersed to The mixed refrigerant is vacuum evaporated on the outer surface of the cooling pipe installed in The refrigerant in the cooling pipe is cooled by the heat of vaporization to obtain a low temperature medium of -10.degree.
  しかし、真空蒸発を継続すると発生する混合冷媒蒸気により真空度が低下し冷却効率が低下する。そこで、真空蒸発を効率良く継続させるために、蒸発器1で発生する混合冷媒蒸気を取り除き、真空を維持する必要が生じる。このために、蒸発器1で発生した混合冷媒蒸気は、吸収器2で濃厚LiBr溶液に吸収させている。混合冷媒蒸気の吸収により希釈された吸収液(希溶液)は、熱交換器6で加熱された後に高温再生器3および低温再生器4に送られる。 However, when the vacuum evaporation is continued, the degree of vacuum is lowered by the mixed refrigerant vapor generated and the cooling efficiency is lowered. Therefore, in order to continue vacuum evaporation efficiently, it is necessary to remove the mixed refrigerant vapor generated in the evaporator 1 and maintain a vacuum. For this reason, the mixed refrigerant vapor generated in the evaporator 1 is absorbed by the absorber 2 in the concentrated LiBr solution. The absorbent (diluted solution) diluted by the absorption of the mixed refrigerant vapor is heated by the heat exchanger 6 and then sent to the high temperature regenerator 3 and the low temperature regenerator 4.
  高温再生器3においては、吸収液が外部から熱源として供給される蒸気等により加熱濃縮される。これにより生成した混合冷媒蒸気は、低温再生器4を加熱することにより凝縮して混合冷媒になり、凝縮器5内で散布される。なお、高温再生器3を通過した熱源の蒸気等は、凝縮水となり、ドレインクーラ7にて希溶液の加熱に利用され更に冷却され、ドレインとして排出される。 In the high temperature regenerator 3, the absorbing liquid is heated and concentrated by steam or the like supplied from the outside as a heat source. The mixed refrigerant vapor generated thereby is condensed by heating the low temperature regenerator 4 to become a mixed refrigerant, and is dispersed in the condenser 5. The steam or the like of the heat source which has passed through the high temperature regenerator 3 becomes condensed water, is used for heating the dilute solution by the drain cooler 7, is further cooled, and is discharged as a drain.
  低温再生器4において吸収液の加熱により生成した混合冷媒蒸気は、凝縮器5内で冷却水により凝縮した後、蒸発器1に送られる。温められた冷却水は、クーリングタワー等で大気中への放熱により冷却される。 The mixed refrigerant vapor generated by heating the absorbing liquid in the low temperature regenerator 4 is condensed by cooling water in the condenser 5 and then sent to the evaporator 1. The warmed cooling water is cooled by heat radiation to the atmosphere by a cooling tower or the like.
 各有機溶剤の蒸気圧と温度との関係は、数式(1)のアントワン式と呼ばれる実験式により良好に近似されることが知られている。数式(1)において、A、B、Cは、物質により定まるアントワン定数、Tは絶対温度、pは飽和蒸気圧[Pa]を示す。
 (数1)
  logp=A-(B/(T+C)) ・・・(1)
表2に使用した各有機溶剤のアントワン定数を示す(例えば、丸善「化学工学便覧」化学工学会編 改訂6版(1999)参照)。
Figure JPOXMLDOC01-appb-T000002
It is known that the relationship between the vapor pressure of each organic solvent and the temperature can be well approximated by an empirical equation called Antoine equation of equation (1). In Formula (1), A, B, and C indicate ant-one constants determined by the substance, T indicates an absolute temperature, and p indicates a saturation vapor pressure [Pa].
(1)
logp = A- (B / (T + C)) (1)
The Antoine constant of each organic solvent used in Table 2 is shown (see, for example, Maruzen "Chemical Engineering Handbook" edited by the Chemical Engineering Society, Rev. 6 edition (1999)).
Figure JPOXMLDOC01-appb-T000002
 図3は、計算した種々の有機溶剤における飽和蒸気圧の温度依存性を示すグラフである。吸収冷凍機の動作温度域で水とほぼ同じ蒸気圧特性を示すのは、1-プロパノールと2-ブタノールである。しかし、実際の冷媒はアルコール単体ではなく水溶液であるため、図3の結果は冷媒としての有機溶剤選定の参考にはなるが、アルコール水溶液としての蒸気圧は、各々の水溶液濃度において実際に計測する必要がある。 FIG. 3 is a graph showing the calculated temperature dependence of saturated vapor pressure in various organic solvents. 1-Propanol and 2-Butanol exhibit similar vapor pressure characteristics to water in the operating temperature range of the absorption refrigerator. However, since the actual refrigerant is not an alcohol alone but an aqueous solution, the results in FIG. 3 can be used as reference for selecting an organic solvent as a refrigerant, but the vapor pressure as an alcohol aqueous solution is actually measured at each aqueous solution concentration There is a need.
 図4は、1-プロパノール水溶液(水モル分率:X)と水の蒸気圧の温度依存性を示すグラフである。水モル分率Xは、水のモル濃度をX1、1-プロパノールのモル濃度をX2とした場合、X1/(X1+X2)で表わした値である。1-プロパノール水溶液(水モル分率:X)と水の蒸気圧が近いので、混合冷媒のアルコール濃度の安定性という観点から、1-プロパノール水溶液が冷媒としての特性に優れていることが理解できる。 FIG. 4 is a graph showing the temperature dependence of the vapor pressure of 1-propanol aqueous solution (water molar fraction: X) and water. The water molar fraction X is a value represented by X1 / (X1 + X2), where X1 is the molar concentration of water and X2 is the molar concentration of 1-propanol. Since the vapor pressures of 1-propanol aqueous solution (water molar fraction: X) and water are close to each other, it can be understood that 1-propanol aqueous solution has excellent characteristics as a refrigerant from the viewpoint of stability of alcohol concentration of mixed refrigerant .
 表3に、図2に示した吸収冷凍機10に封入した混合冷媒中のアルコールの初期および1000h運転後(サイクル)における濃度および種類を変化させた場合の凝縮器5中のアルコール濃度を示している。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the alcohol concentration in the condenser 5 when the concentration and type of the alcohol in the mixed refrigerant sealed in the absorption refrigerator 10 shown in FIG. 2 after initial and after 1000 hours of operation (cycle) are changed There is.
Figure JPOXMLDOC01-appb-T000003
 メタノール水溶液またはエタノール水溶液を混合冷媒として使用した場合、図3に示したようにそれらの物質の蒸気圧が水より高いために、蒸発器1、高温再生器3および低温再生器4においてはアルコール成分が主体に蒸発する。また高温再生器3および低温再生器4でアルコール成分が主体的に蒸発することから、凝縮器5での凝縮液のアルコール濃度は高くなる。そのためサイクルを組んだ場合、蒸発器1での蒸発量と凝縮器5での凝縮液量のバランスが崩れると、液量のバランスだけではなく系全体のアルコール濃度バランスが崩れ、冷凍機10としてのサイクル運転が継続できなくなる。 When methanol aqueous solution or ethanol aqueous solution is used as a mixed refrigerant, the vapor pressure of those substances is higher than that of water as shown in FIG. 3, and therefore the alcohol component in evaporator 1, high temperature regenerator 3 and low temperature regenerator 4 Is mainly evaporated. Further, since the alcohol component is mainly evaporated in the high temperature regenerator 3 and the low temperature regenerator 4, the alcohol concentration of the condensate in the condenser 5 becomes high. Therefore, when the cycle is assembled, if the balance of the evaporation amount in the evaporator 1 and the condensation amount in the condenser 5 is broken, not only the balance of the liquid amount but also the alcohol concentration balance of the whole system is broken. Cycle operation can not be continued.
 これに対し、1-プロパノールや2-ブタノールは、表1や図3に示すように沸点および蒸気圧が水と近いために、1000h運転後においてもアルコールの濃度バランスが封入初期の状態とほとんど同じである。仮に液量のバランスが崩れても、アルコールの濃度バランスは維持される。このような場合、安定した運転が可能となる。 On the other hand, 1-propanol and 2-butanol, as shown in Table 1 and Fig. 3, have a boiling point and vapor pressure close to that of water, so the alcohol concentration balance is almost the same as in the initial state of encapsulation even after 1000 hours of operation It is. Even if the balance of the liquid volume is broken, the alcohol concentration balance is maintained. In such a case, stable operation is possible.
 図5は、1-プロパノール、2-プロパノール、1-ブタノール、および2-ブタノールの凝固点の濃度依存性を示すグラフである。1-ブタノールおよび2-ブタノールは、それらの濃度上昇とともに若干凝固点が低下するが水モル分率0.9以下になると低下しなくなる。これはブタノールが水に溶解しなくなるためであり、目的の-5℃以下の温度を得ることは困難である。これに対し、1-プロパノールおよび2-プロパノールを使用した場合、濃度上昇とともに凝固点は低下する。プロパノールは水と全溶解する。目標の-5℃を達成させるためには、いずれにおいても濃度を水モル分率で0.95以下にすることで達成することができる。これにより、氷点以下の作動冷媒を提供することができる。水と全溶解するために、仮にアルコールの濃度バランスが崩れても溶液分離等の問題は回避される。 FIG. 5 is a graph showing concentration dependence of freezing points of 1-propanol, 2-propanol, 1-butanol and 2-butanol. 1-Butanol and 2-butanol slightly lower their freezing point as their concentration increases, but they do not decrease when the water mole fraction is 0.9 or less. This is because butanol does not dissolve in water, and it is difficult to obtain the target temperature of -5 ° C or less. In contrast, when 1-propanol and 2-propanol are used, the freezing point decreases with increasing concentration. Propanol dissolves completely with water. In order to achieve the target of -5.degree. C., it can be achieved by setting the concentration to 0.95 or less in water mole fraction. Thereby, the working refrigerant below freezing point can be provided. In order to completely dissolve it with water, problems such as solution separation can be avoided even if the concentration balance of alcohol is broken.
 図6は、1-プロパノール水溶液に、腐食抑制剤として各濃度のLiOHを添加した場合の凝固点のLiOH濃度依存性を示すグラフである。LiOHを添加することで、凝固点が低下し、その度合いはLiOH濃度の増加とともに大きくなる。たとえば-15℃の低温を得たい場合は、LiOHを添加しない場合はプロパノール濃度を水モル分率で0.6以下の高濃度にしないといけない。一方、LiOHを0.7wt%添加するとプロパノール濃度は水モル分率で0.85程度でよく、低濃度の1-プロパノールで目的の温度を達成ですることができる。 FIG. 6 is a graph showing the LiOH concentration dependency of the freezing point when LiOH of each concentration is added as a corrosion inhibitor to a 1-propanol aqueous solution. The addition of LiOH lowers the freezing point, and the degree increases with the increase of LiOH concentration. For example, when it is desired to obtain a low temperature of -15.degree. C., the propanol concentration must be a water molar fraction as high as 0.6 or less without adding LiOH. On the other hand, when 0.7 wt% of LiOH is added, the propanol concentration may be about 0.85 in water mole fraction, and the target temperature can be achieved with low concentration of 1-propanol.
 図7は、1-プロパノール水溶液に腐食抑制剤として各濃度のLiMoOを添加した場合の凝固点のLiMoO濃度依存性を示すグラフである。LiMoOを添加することで、凝固点が低下し、その度合いはLiMoO濃度の増加とともに大きくなる。しかし、その程度はLiOHほどではなく、また0.3wt%くらいで頭打ちとなり、それ以上の添加ではあまり凝固点は下がらない。 FIG. 7 is a graph showing the Li 2 MoO 4 concentration dependency of the freezing point when Li 2 MoO 4 of each concentration is added as a corrosion inhibitor to 1-propanol aqueous solution. The addition of Li 2 MoO 4 lowers the freezing point, and the degree increases with the increase of the Li 2 MoO 4 concentration. However, the degree is not as low as that of LiOH, and it is overshot at about 0.3 wt%, and the freezing point is not lowered by more than that.
 本発明の効果を確認するために、種々のアルカリを混合冷媒に添加した溶液中に構造材であるSS400の腐食試験を実施し、腐食により発生するガス量を測定した。腐食のアノード反応は、下記反応式(1)に示す鉄の溶解反応である。それと対になるカソード反応は、脱気条件下であるため、下記反応式(2)で示す水素ガス発生反応である。このように、発生する水素ガス量は腐食量と比例関係にあることから、水素ガス発生量から腐食の大小を判定することができる。
  Fe→Fe2++2e ・・・(1)
  2H+2e→H  ・・・(2)
In order to confirm the effect of the present invention, a corrosion test of the structural member SS400 was carried out in a solution in which various alkalis were added to the mixed refrigerant, and the amount of gas generated by the corrosion was measured. The anodic reaction of corrosion is a dissolution reaction of iron shown in the following reaction formula (1). The cathode reaction paired with that is a hydrogen gas generation reaction shown by the following reaction formula (2) because it is under degassing conditions. As described above, since the amount of generated hydrogen gas is in proportion to the amount of corrosion, the magnitude of the corrosion can be determined from the amount of generated hydrogen gas.
Fe → Fe 2+ + 2e - ··· (1)
2H + + 2e - → H 2 ··· (2)
 腐食試験およびガス発生量測定は、以下のように実施した。腐食試験には、パイレックス(登録商標)ガラス製の封管(ガラスアンプル)を用いた。試験片(長さ10×幅4×厚さ0.5mm、SS400)と試験液である混合冷媒20mlを入れた底付きガラス管を真空ポンプに接続し298Kで2mmHgの減圧下で管に超音波振動を与えながら15min脱気後、管の口を封入し封管を作製した。この封管を90℃に保持した恒温槽中に500h保持した。 The corrosion test and the measurement of the gas generation amount were performed as follows. For the corrosion test, a sealed tube (glass ampoule) made of Pyrex (registered trademark) glass was used. Connect a bottomed glass tube containing a test piece (length 10 x width 4 x thickness 0.5 mm, SS400) and 20 ml of mixed refrigerant as a test solution to a vacuum pump and apply ultrasonic waves to the tube under a reduced pressure of 2 mmHg at 298 K After degassing for 15 minutes while applying vibration, the mouth of the tube was sealed to produce a sealed tube. The sealed tube was held in a thermostat kept at 90 ° C. for 500 hours.
 腐食試験後、ガラスアンプルを水銀マノメータに接続したガラスアンプル粉砕容器に入れ、粉砕容器内を2mmHg以下に減圧した。ガラスアンプルを粉砕した後、水銀マオメータの値の変化分からガス発生量を求めた。試験片としては、以下で述べる実施例は全てSS400を用いた。なお、本明細書においては、炭素鋼の代表例としてSS400を用いたが、吸収式冷凍機の構造材として用いる鋼材は、これに限定されるものではなく、他の炭素鋼や各種低合金鋼やスレンレス鋼等も使用できる。また、混合冷媒として水-1-プロパノ-ルを使用した。なお、混合冷媒として水-2-プロパノ-ルを使用した場合も、下記の試験結果とほぼ同様に腐食を抑制することができる。また、アルカリ金属塩およびアルカリ土類金属塩の一例として、アルカリ金属およびアルカリ土類金属の水酸化物を用いたが、他のアルカリ金属塩およびアルカリ土類金属塩を用いても、同様に腐食を抑制することができる。 After the corrosion test, the glass ampoule was placed in a glass ampoule grinding container connected to a mercury manometer, and the pressure in the grinding container was reduced to 2 mmHg or less. After crushing the glass ampoule, the amount of gas generation was determined from the change of the value of the mercury maometer. As a test piece, all the examples described below used SS400. In this specification, SS400 is used as a representative example of carbon steel, but the steel used as a structural material of the absorption refrigerator is not limited to this, and other carbon steels and various low alloy steels Also, stainless steel etc. can be used. In addition, water-1-propanol was used as a mixed refrigerant. Even when water 2-propanol is used as the mixed refrigerant, the corrosion can be suppressed substantially in the same manner as the test results described below. Also, although hydroxides of alkali metals and alkaline earth metals are used as an example of alkali metal salts and alkaline earth metal salts, the same corrosion is possible even if other alkali metal salts and alkaline earth metal salts are used. Can be suppressed.
 表4は、種々のアルカリを添加した混合冷媒中での腐食試験で発生したガス(水素)量を示している。ここで、混合冷媒における水のモル分率は0.85である。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added. Here, the molar fraction of water in the mixed refrigerant is 0.85.
Figure JPOXMLDOC01-appb-T000004
 本表から、次のことがわかる。 The following can be understood from this table.
 比較例1は、腐食抑制剤を添加していない混合冷媒中で腐食試験により発生したガス量を検討した結果である。ガス発生量は、150ml/dmである。 Comparative Example 1 is the result of examining the amount of gas generated by the corrosion test in the mixed refrigerant to which the corrosion inhibitor is not added. The amount of gas generation is 150 ml / dm 2 .
 実施例1に示すように、腐食抑制剤として0.3wt%のLiOHを添加した場合のガス発生量は、0.48ml/dmであり、比較例1と比較してガス発生量は約1/300に低減しており、腐食が著しく抑制されている。図6に示したように、腐食抑制剤を添加することにより凝固点を3℃低下させることができる。 As shown in Example 1, the amount of gas generation when 0.3 wt% of LiOH is added as a corrosion inhibitor is 0.48 ml / dm 2 , and the amount of gas generation is about 1 as compared with Comparative Example 1. It is reduced to / 300, and the corrosion is significantly suppressed. As shown in FIG. 6, the freezing point can be lowered by 3 ° C. by adding a corrosion inhibitor.
 実施例2は、LiOH濃度を0.048wt%に低減した場合を示している。濃度を低減させてもガス発生量は0.25ml/dmであり、濃度を低減させても腐食量は低いまま維持できている。 Example 2 shows the case where the LiOH concentration is reduced to 0.048 wt%. Even if the concentration is reduced, the gas generation amount is 0.25 ml / dm 2 , and even if the concentration is reduced, the corrosion amount can be maintained at a low level.
 実施例3および4は、カチオンの種類をLiからCaおよびNaに変えた場合を示している。カチオンの種類を変えても、ガス発生量は0.29および0.157ml/dmであり、濃度を低減させても腐食量は低いまま維持できている。カチオンを変えても、図6と同様に腐食抑制剤の添加により凝固点は低下する。比較例2および3は、NHを混合冷媒に添加した場合を示している。濃度は1.0Mおよび0.1Mとした。いずれの場合もガス発生量は、120ml/dmおよび110ml/dmであり、比較例1に示した無添加の場合と同じレベルであることから、腐食は抑制されていない。これらの溶液のpHは11程度であり、実施例1~4の場合と同程度である。このことからアルカリであるから腐食が抑制されているというわけではないと考えられる。比較例4は、NaCOを添加した場合である。pHは、実施例1~4の場合と同程度であるが(pH11.5)、ガス発生量は、90ml/dmでありNHの場合と同様に腐食は抑制されていない。 Examples 3 and 4 show the case where the type of cation is changed from Li to Ca and Na. Even if the type of cation is changed, the amount of gas generation is 0.29 and 0.157 ml / dm 2 , and even if the concentration is reduced, the amount of corrosion can be kept low. Even if the cation is changed, the freezing point is lowered by the addition of the corrosion inhibitor as in FIG. Comparative Examples 2 and 3 show the case where NH 3 is added to the mixed refrigerant. The concentrations were 1.0 M and 0.1 M. In all cases, the amount of gas generation is 120 ml / dm 2 and 110 ml / dm 2 , and the level is the same as in the case of no addition shown in Comparative Example 1, so that corrosion is not suppressed. The pH of these solutions is about 11, which is the same as in the case of Examples 1-4. It is thought that corrosion is not suppressed from this because it is alkali. Comparative Example 4 is the case where Na 2 CO 3 was added. The pH is the same as in Examples 1 to 4 (pH 11.5), but the gas generation amount is 90 ml / dm 2 and the corrosion is not suppressed as in the case of NH 3 .
 表5は、種々のアルカリを添加した混合冷媒中での腐食試験で発生したガス(水素)量を示している。ここで、混合冷媒における水のモル分率は0.95である。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added. Here, the molar fraction of water in the mixed refrigerant is 0.95.
Figure JPOXMLDOC01-appb-T000005
 本表から、次のことがわかる。 The following can be understood from this table.
 比較例5は、腐食抑制剤を添加していない混合冷媒中で腐食試験により発生したガス量を検討した結果である。ガス発生量は、90ml/dmである。 The comparative example 5 is the result of having examined the gas quantity generate | occur | produced by the corrosion test in the mixed refrigerant which has not added the corrosion inhibitor. The amount of gas generation is 90 ml / dm 2 .
 実施例5および6は、腐食抑制剤としてLiOHを添加した場合である。表4に示す水モル分率が0.85の場合と同様に、アルカリ金属の水酸化物を添加することにより、ガス発生量が極端に低下し腐食が抑制されている。 Examples 5 and 6 are cases where LiOH was added as a corrosion inhibitor. As in the case where the water mole fraction shown in Table 4 is 0.85, by adding the hydroxide of an alkali metal, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例7は、腐食抑制剤としてCa(OH)を添加した場合である。表4に示す水モル分率が0.85の場合と同様に、ガス発生量が極端に低下し腐食が抑制されている。 Example 7 is the case where Ca (OH) 2 is added as a corrosion inhibitor. As in the case where the water mole fraction shown in Table 4 is 0.85, the amount of gas generation is extremely reduced and corrosion is suppressed.
 実施例8は、腐食抑制剤としてNaOHを添加した場合である。表4に示す水モル分率が0.85の場合と同様に、ガス発生量が極端に低下し腐食が抑制されている。 Example 8 is the case where NaOH is added as a corrosion inhibitor. As in the case where the water mole fraction shown in Table 4 is 0.85, the amount of gas generation is extremely reduced and corrosion is suppressed.
 一方で、同程度のアルカリでも比較例6および7に示すNH、比較例8に示すNaCOを使用した場合は、水モル分率が0.85の場合と同様に腐食抑制作用を示さない。 On the other hand, when using NH 3 shown in Comparative Examples 6 and 7 and Na 2 CO 3 shown in Comparative Example 8 even with the same degree of alkali, the corrosion inhibiting action is carried out as in the case of the water mole fraction of 0.85. Not shown.
 このことから、アルカリであるから腐食が抑制されているというわけではないと考えられる。 From this, it is considered that corrosion is not suppressed because it is alkali.
 表6は、種々のアルカリを添加した混合冷媒中での腐食試験で発生したガス(水素)量を示している。ここで、混合冷媒における水のモル分率は0.85である。なお、本表には、比較例1も併記している。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows the amount of gas (hydrogen) generated in the corrosion test in the mixed refrigerant to which various alkalis are added. Here, the molar fraction of water in the mixed refrigerant is 0.85. Note that Comparative Example 1 is also shown in the table.
Figure JPOXMLDOC01-appb-T000006
 本表から、次のことがわかる。 The following can be understood from this table.
 実施例9は、腐食抑制剤としてLiMoOを添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 9 is the case where Li 2 MoO 4 is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例10は、腐食抑制剤としてオルトバナジン酸ナトリウム(NaVO)を添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 10 is the case where sodium orthovanadate (Na 3 VO 4 ) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例11は、腐食抑制剤としてメタケイ酸ナトリウム(NaSiO)を添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 11 is the case where sodium metasilicate (Na 2 SiO 3 ) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例12は、腐食抑制剤としてホスホン酸ナトリウム(HNa23P(亜リン酸水素二ナトリウム))を添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 12 is the case where sodium phosphonate (HNa 2 O 3 P (disodium hydrogen phosphite)) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例13は、腐食抑制剤としてベンゼンスルホン酸ナトリウム(CNaOS)を添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 13 is the case where sodium benzenesulfonate (C 6 H 5 NaO 3 S) is added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例14は、腐食抑制剤として過塩素酸ナトリウム(NaClO)を添加した場合である。比較例1に示す。腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 14 is the case where sodium perchlorate (NaClO 4 ) is added as a corrosion inhibitor. It shows in Comparative Example 1. Compared with the case where the corrosion inhibitor is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例9~14の腐食抑制剤は、本明細書においては「酸素酸塩」と総称する。これらの実施例に示すように、種々の低濃度の酸素酸塩を添加した場合、pHがほとんど変化しなくとも、アルカリを添加した場合と同様に、著しい腐食抑制作用を示す。 The corrosion inhibitors of Examples 9-14 are collectively referred to herein as "oxygen acid salts." As shown in these examples, the addition of various low concentrations of oxyacid salts shows a remarkable corrosion inhibiting action as in the case of adding an alkali, even if the pH hardly changes.
 表7は、一般の冷却水で使用されている種々の吸着型の腐食抑制剤を水-1-プロパノール混合冷媒に添加して試験液とし、腐食試験で発生したガス(水素)量を示している。混合冷媒における水のモル分率は0.85である。試験温度は90℃である。なお、本表には、比較例1も併記している。 Table 7 shows the amount of gas (hydrogen) generated in the corrosion test by adding various adsorption type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant as a test solution. There is. The mole fraction of water in the mixed refrigerant is 0.85. The test temperature is 90 ° C. Note that Comparative Example 1 is also shown in the table.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本表から、次のことがわかる。 The following can be understood from this table.
 比較例9は、冷却水中での腐食抑制剤として使用されているヘキサメチレンテトラミンを添加した場合である。冷却水中において腐食抑制作用を示すヘキサメチレンテトラミンを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 9 is the case where hexamethylenetetramine used as a corrosion inhibitor in cooling water is added. Even when hexamethylenetetramine, which has a corrosion inhibiting effect in cooling water, is added, it does not exhibit a corrosion inhibiting effect in a water-1-propanol mixed refrigerant.
 比較例10は、冷却水中での腐食抑制剤として使用されているチオ尿素を添加した場合である。冷却水中において腐食抑制作用を示すチオ尿素を添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 10 is the case where thiourea used as a corrosion inhibitor in cooling water is added. Even if thiourea having a corrosion inhibiting effect is added to the cooling water, it does not exhibit the corrosion inhibiting effect in the water-1-propanol mixed refrigerant.
 比較例11は、冷却水中での腐食抑制剤として使用されているソルビタンモノオレートした場合である。冷却水中において腐食抑制作用を示すソルビタンモノオレートを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 11 is the case of sorbitan monooleate used as a corrosion inhibitor in cooling water. Even if sorbitan monooleate, which has a corrosion inhibiting effect in cooling water, is added, it does not exhibit a corrosion inhibiting effect in a water-1-propanol mixed refrigerant.
 比較例12は、冷却水中での腐食抑制剤として使用されているアミノトリメチレンホスホン酸を添加した場合である。冷却水中において腐食抑制作用を示すアミノトリメチレンホスホン酸を添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 12 is the case where aminotrimethylene phosphonic acid used as a corrosion inhibitor in cooling water is added. Even when aminotrimethylene phosphonic acid having a corrosion inhibiting action is added in cooling water, it does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
 表8は、一般の冷却水で使用されている種々の酸化型の腐食抑制剤を水-1-プロパノール混合冷媒に添加して試験液とし、腐食試験で発生したガス(水素)量を示している。混合冷媒における水のモル分率は0.85とした。試験温度は90℃である。 Table 8 shows the amount of gas (hydrogen) generated in the corrosion test by adding various oxidation type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant to make a test solution. There is. The molar fraction of water in the mixed refrigerant was 0.85. The test temperature is 90 ° C.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本表から、次のことがわかる。 The following can be understood from this table.
 比較例13は、酸化剤である過酸化水素を添加した場合である。過酸化水素を添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 13 is the case where hydrogen peroxide, which is an oxidizing agent, is added. Even if hydrogen peroxide is added, it does not show a corrosion inhibitory effect in the water-1-propanol mixed refrigerant.
 比較例14は、硝酸イオン(硝酸カリウム)を添加した場合である。冷却水中での腐食抑制剤として使用されている硝酸イオンを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 The comparative example 14 is a case where nitrate ion (potassium nitrate) is added. The addition of nitrate ion, which is used as a corrosion inhibitor in cooling water, does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
 比較例15は、亜硝酸イオン(亜硝酸ナトリウム)を添加した場合である。冷却水中での腐食抑制剤として使用されている硝酸イオンを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 15 is the case where nitrite ion (sodium nitrite) is added. The addition of nitrate ion, which is used as a corrosion inhibitor in cooling water, does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
 比較例16は、硝酸イオン(硝酸セリウムアンモニウム)を添加した場合である。冷却水中での腐食抑制剤として使用されている硝酸イオンを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 16 is the case where nitrate ion (cerium ammonium nitrate) is added. The addition of nitrate ion, which is used as a corrosion inhibitor in cooling water, does not exhibit a corrosion inhibiting action in a water-1-propanol mixed refrigerant.
 表9は、一般の冷却水で使用されている種々の沈殿型の腐食抑制剤を水-1-プロパノール混合冷媒に添加して試験液とし、腐食試験で発生したガス(水素)量を示している。混合冷媒における水のモル分率は0.85とした。試験温度は90℃である。なお、本表にも、比較例1も併記している。 Table 9 shows the amount of gas (hydrogen) generated in the corrosion test by adding various precipitation-type corrosion inhibitors used in general cooling water to a water-1-propanol mixed refrigerant as a test solution. There is. The molar fraction of water in the mixed refrigerant was 0.85. The test temperature is 90 ° C. Note that Comparative Example 1 is also described in this table.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本表から、次のことがわかる。 The following can be understood from this table.
 比較例17は、硝酸セリウムを添加した場合である。冷却水中に硝酸セリウムを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 17 is the case where cerium nitrate is added. Even if cerium nitrate is added to the cooling water, it does not show a corrosion suppressing action in the water-1-propanol mixed refrigerant.
 比較例18は、8-キノリノールを添加した場合である。冷却水中に8-キノリノールを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 18 is the case where 8-quinolinol is added. Even if 8-quinolinol is added to cooling water, it does not exhibit corrosion inhibition in a water-1-propanol mixed refrigerant.
 比較例19は、オクチルプロピオン酸ナトリウムを添加した場合である。冷却水中にオクチルプロピオン酸ナトリウムを添加しても、水-1-プロパノール混合冷媒中においては腐食抑制作用を示さない。 Comparative Example 19 is the case where sodium octyl propionate was added. Even if sodium octyl propionate is added to cooling water, it does not exhibit corrosion inhibition in a water-1-propanol mixed refrigerant.
 表10は、酸素酸塩およびアルカリ金属の水酸化物を添加した水-1-プロパノール混合冷媒中に浸漬したSS400の腐食により発生したガス(水素)量を示している。なお、本表にも、比較例1も併記している。 Table 10 shows the amount of gas (hydrogen) generated by the corrosion of SS400 immersed in a water-1-propanol mixed refrigerant to which an oxyacid salt and an alkali metal hydroxide are added. Note that Comparative Example 1 is also described in this table.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本表から、次のことがわかる。 The following can be understood from this table.
 実施例15は、腐食抑制剤として水酸化リチウムおよびモリブデン酸リチウムを添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 15 is the case where lithium hydroxide and lithium molybdate were added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例16は、腐食抑制剤として水酸化リチウムおよびベンゼンスルホン酸ナトリウムを添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 16 is the case where lithium hydroxide and sodium benzenesulfonate were added as a corrosion inhibitor. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例17は、腐食抑制剤として水酸化カルシウムおよびオルトバナジン酸ナトリウムを添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 17 is the case where calcium hydroxide and sodium orthovanadate are added as corrosion inhibitors. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 実施例18は、腐食抑制剤として水酸化ナトリウムおよびホスホン酸ナトリウムを添加した場合である。比較例1に示す腐食抑制剤が含まれていない場合と比較して、ガス発生量は極端に低下し腐食が抑制されている。 Example 18 is the case where sodium hydroxide and sodium phosphonate are added as corrosion inhibitors. Compared with the case where the corrosion inhibitor shown in Comparative Example 1 is not contained, the gas generation amount is extremely reduced and the corrosion is suppressed.
 図8は、LiOHを添加した水-1-プロパノール混合冷媒中での腐食試験で発生したガス量のLiOH濃度依存性を示すグラムである。試験片としては、SS400を用いている。 FIG. 8 is a gram showing the LiOH concentration dependency of the amount of gas generated in the corrosion test in a water-1-propanol mixed refrigerant added with LiOH. As a test piece, SS400 is used.
 図8に示すように、LiOHを0.005M添加するとガス発生量は約1/80程度に急激に低下することから、少なくとも0.005M添加すれば、腐食は十分抑制できることが分かる。LiOHを0.02Mまで添加するとガス発生量は添加量とともに低下するが、0.02M以上ではガス発生量の低下の度合いは小さくなる。 As shown in FIG. 8, when 0.005 M of LiOH is added, the amount of gas generation decreases sharply to about 1/80, so it can be seen that the corrosion can be sufficiently suppressed by adding at least 0.005 M. When LiOH is added to 0.02 M, the gas generation amount decreases with the addition amount, but if 0.02 M or more, the degree of reduction of the gas generation amount decreases.
 図9は、LiMoOを添加した水-1-プロパノール混合冷媒中での腐食試験で発生したガス量のLiMoO濃度依存性を示すグラフである。試験片としては、SS400を用いている。 Figure 9 is a graph showing the Li 2 MoO 4 concentration dependence of the generated gas amount of the corrosion test in water-1-propanol mixed refrigerant with the addition of Li 2 MoO 4. As a test piece, SS400 is used.
 図9に示すように、添加するLiMoOの濃度の増加とともに、ガス発生量は対数で直線的に低下する。0.002M添加するとガス発生量は、添加しない倍と比較して約1/10まで低下し、腐食を十分抑制できることが分かる。 As shown in FIG. 9, as the concentration of Li 2 MoO 4 to be added increases, the gas generation amount decreases linearly in logarithm. It can be seen that when 0.002 M is added, the amount of gas generation decreases to about 1/10 as compared with the case where it is not added and corrosion can be sufficiently suppressed.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 The present invention is not limited to the embodiments described above. Those skilled in the art can make various additions and modifications within the scope of the present invention.
1:蒸発器、2:吸収器、3:高温再生器、4:低温再生器、5:凝縮器、6:熱交換器、7:ドレインクーラ、8、9:ポンプ、10:吸収式冷凍機 1: Evaporator, 2: Absorber, 3: High temperature regenerator, 4: Low temperature regenerator, 5: Condenser, 6: Heat exchanger, 7: Drain cooler, 8, 9: Pump, 10: Absorption refrigerator

Claims (11)

  1.  冷媒としてのプロパノール水溶液と、腐食抑制剤と、を含むことを特徴とする吸収式冷凍機用作動媒体。 A working medium for an absorption refrigerator, comprising a propanol aqueous solution as a refrigerant and a corrosion inhibitor.
  2.  前記腐食抑制剤は、添加することにより凝固点降下を示すことを特徴とする請求項1に記載の吸収式冷凍機用作動媒体。 The working fluid for an absorption refrigerator according to claim 1, wherein the corrosion inhibitor exhibits freezing point depression by addition.
  3.  前記腐食抑制剤は、アルカリ金属塩、アルカリ土類金属塩、および、酸素酸塩、のいずれか一つ以上を含む、請求項1または請求項2に記載の吸収式冷凍機用作動媒体。  The working medium for an absorption refrigerator according to claim 1 or 2, wherein the corrosion inhibitor contains any one or more of an alkali metal salt, an alkaline earth metal salt, and an oxyacid salt.
  4.  前記アルカリ金属塩は、アルカリ金属の水酸化物であり、前記アルカリ土類金属塩は、アルカリ土類金属の水酸化物であることを特徴とする請求項3に記載の吸収式冷凍機用作動媒体。 The operation according to claim 3, wherein the alkali metal salt is a hydroxide of an alkali metal, and the alkaline earth metal salt is a hydroxide of an alkaline earth metal. Medium.
  5.  前記酸素酸塩は、モリブデン酸塩、タングステン酸塩、バナジン酸塩、ケイ酸塩、リン酸塩、ポリリン酸塩、ホスホン酸塩、次亜塩素酸塩、亜塩素酸塩、過塩素酸塩、スルホン酸塩であることを特徴とする請求項3または請求項4に記載の吸収式冷凍機用作動媒体。 The oxyacid salts include molybdate, tungstate, vanadate, silicate, phosphate, polyphosphate, phosphonate, hypochlorite, chlorite, perchlorate, It is a sulfonate, The working medium for absorption-type refrigerators of Claim 3 or 4 characterized by the above-mentioned.
  6.  前記プロパノール水溶液は、1-プロパノールまたは2-プロパノールからなるアルコール水溶液であることを特徴とする請求項1から請求項5のいずれか一項に記載の吸収式冷凍機用作動媒体。 The said propanol aqueous solution is an alcohol aqueous solution which consists of 1-propanol or 2-propanol, The working medium for absorption-type refrigerators as described in any one of the Claims 1-5 characterized by the above-mentioned.
  7.  前記腐食抑制剤を含む前記プロパノール水溶液は、プロパノール以外のアルコールを含有することを特徴とする請求項1から請求項6のいずれか一項に記載の吸収式冷凍機用作動媒体。 The working medium for an absorption refrigerator according to any one of claims 1 to 6, wherein the propanol aqueous solution containing the corrosion inhibitor contains an alcohol other than propanol.
  8.  前記プロパノール以外のアルコールは、ブタノールであることを特徴とする請求項7に記載の吸収式冷凍機用作動媒体。 The working fluid for an absorption refrigerator according to claim 7, wherein the alcohol other than propanol is butanol.
  9.  前記プロパノール水溶液において、プロパノール以外のアルコールの濃度が、プロパノールの濃度より低いことを特徴とする請求項7または請求項8に記載の吸収式冷凍機用作動媒体。 The working fluid for an absorption refrigerator according to claim 7 or 8, wherein in the aqueous propanol solution, the concentration of alcohol other than propanol is lower than the concentration of propanol.
  10.  前記腐食抑制剤を含む前記プロパノール水溶液は、凝固点が-5℃以下であることを特徴とする請求項1から請求項9のいずれか一項に記載の吸収式冷凍機用作動媒体。 The working fluid for an absorption refrigerator according to any one of claims 1 to 9, wherein the propanol aqueous solution containing the corrosion inhibitor has a freezing point of -5 ° C or less.
  11.  蒸発器と、吸収器と、再生器と、凝縮器と、を備え、
      請求項1から請求項10のいずれか一項に記載の吸収式冷凍機用作動媒体を前記蒸発器及び前記凝縮器を循環する作動媒体として用いることを特徴とする吸収式冷凍機。
     
    Equipped with an evaporator, an absorber, a regenerator, and a condenser,
    The absorption refrigerator characterized by using the working medium for absorption-type refrigerators as described in any one of Claims 1-10 as a working medium which circulates the said evaporator and the said condenser.
PCT/JP2018/021412 2017-09-04 2018-06-04 Working medium for absorption refrigerator and absorption refrigerator using same WO2019044094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017169293A JP7201161B2 (en) 2017-09-04 2017-09-04 Working medium for absorption chiller and absorption chiller using the same
JP2017-169293 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019044094A1 true WO2019044094A1 (en) 2019-03-07

Family

ID=65526355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021412 WO2019044094A1 (en) 2017-09-04 2018-06-04 Working medium for absorption refrigerator and absorption refrigerator using same

Country Status (2)

Country Link
JP (1) JP7201161B2 (en)
WO (1) WO2019044094A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767763A (en) * 1980-10-16 1982-04-24 Toray Industries Recovery of thermal energy
JP2512095B2 (en) * 1988-08-12 1996-07-03 株式会社日立製作所 Cold heat generation method
JP2011196580A (en) * 2010-03-17 2011-10-06 Tokyo Metropolitan Univ Absorbing liquid for absorption refrigeration machine
JP2013525727A (en) * 2010-04-20 2013-06-20 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent comprising a lithium salt and an organic salt having the same anion
JP2013185815A (en) * 2012-03-08 2013-09-19 Evonik Industries Ag Operation method of absorption heat pump
JP2016056306A (en) * 2014-09-11 2016-04-21 株式会社日立製作所 Absorption type refrigerator working medium and absorption type refrigerator using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546447B (en) 2012-07-17 2018-04-06 腾讯科技(深圳)有限公司 Information displaying method and system, client, server

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767763A (en) * 1980-10-16 1982-04-24 Toray Industries Recovery of thermal energy
JP2512095B2 (en) * 1988-08-12 1996-07-03 株式会社日立製作所 Cold heat generation method
JP2011196580A (en) * 2010-03-17 2011-10-06 Tokyo Metropolitan Univ Absorbing liquid for absorption refrigeration machine
JP2013525727A (en) * 2010-04-20 2013-06-20 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent comprising a lithium salt and an organic salt having the same anion
JP2013185815A (en) * 2012-03-08 2013-09-19 Evonik Industries Ag Operation method of absorption heat pump
JP2016056306A (en) * 2014-09-11 2016-04-21 株式会社日立製作所 Absorption type refrigerator working medium and absorption type refrigerator using the same

Also Published As

Publication number Publication date
JP7201161B2 (en) 2023-01-10
JP2019045079A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
KR101936455B1 (en) Working medium for absorption refrigerator and absorption refrigerator using the same
US4311024A (en) Hermetically circulating, absorption type refrigerator
US4912934A (en) Hermetically closed circulation type, vapor absorption refrigerator
JP2769657B2 (en) Heat exchange device and its corrosion prevention method
US5653117A (en) Absorption refrigeration compositions containing thiocyanate, and absorption refrigeration apparatus
US6177025B1 (en) Absorption heat pumps having improved efficiency using a crystallization-inhibiting additive
JPH0335384B2 (en)
US4470272A (en) Hermetically circulating, absorption type refrigerator
JP7201161B2 (en) Working medium for absorption chiller and absorption chiller using the same
KR100881898B1 (en) Method for retarding corrosion of metals in lithium halide solutions
US5811026A (en) Corrosion inhibitor for aqueous ammonia absorption system
JP2008267667A (en) Absorbent for absorption chiller/heater and absorption chiller/heater
US5783104A (en) Absorption refrigeration compositions having germanium based compounds
US6083416A (en) Corrosion inhibiting processes for refrigeration systems
US6033595A (en) Corrosion inhibiting solutions and processes for refrigeration systems comprising halides of a Group Va metallic element
JPH11142012A (en) Absorption refrigerating machine and absorbing liquid therefor
JPH07239159A (en) Absorption refrigerating machine and absorption liquid for it
US5725793A (en) Agents for absorption machines
JPH0762578B2 (en) Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator
JPH02169967A (en) Absorption system refrigerating machine and liquid absorbent
JPS6334386B2 (en)
JPH1068558A (en) Refrigerant composition for absorption type refrigerator
JPS6226357B2 (en)
JP2000314572A (en) Absorbing solution for absorption refrigerator and absorption refrigerator
JPH03174487A (en) Absorbent liquid for absorption refrigerating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852515

Country of ref document: EP

Kind code of ref document: A1