JPS6334386B2 - - Google Patents

Info

Publication number
JPS6334386B2
JPS6334386B2 JP54159149A JP15914979A JPS6334386B2 JP S6334386 B2 JPS6334386 B2 JP S6334386B2 JP 54159149 A JP54159149 A JP 54159149A JP 15914979 A JP15914979 A JP 15914979A JP S6334386 B2 JPS6334386 B2 JP S6334386B2
Authority
JP
Japan
Prior art keywords
absorption liquid
corrosion
closed circulation
refrigerator
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54159149A
Other languages
Japanese (ja)
Other versions
JPS5682364A (en
Inventor
Masahiko Ito
Heihachiro Midorikawa
Akira Minato
Michihiko Aizawa
Yoshio Umetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15914979A priority Critical patent/JPS5682364A/en
Publication of JPS5682364A publication Critical patent/JPS5682364A/en
Publication of JPS6334386B2 publication Critical patent/JPS6334386B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は臭化リチウム水溶液とし、その濃縮、
冷媒希釈および熱交換の繰返しによつて冷却を行
なう密閉循環型吸収式冷凍機に関する。 密閉循環型吸収式冷凍機は冷媒に水を、また吸
収液として臭化リチウムの濃厚水溶液を用いてい
る。第1図にその原理系統図を示すように、この
冷凍機は再生器1、凝縮器2、蒸発器3、吸収器
4およびこれらの間に吸収液6,6a,6bおよ
び冷媒7を循環させるポンプ類8と、熱交換器5
から構成され、各部分は各々次のように作動す
る。 (A) 蒸発器3 蒸発器3の蒸発器管束の管内には冷水12が
通じており、管外には冷媒7が散布され、その
蒸発の潜熱によつて冷水から熱を奪う。 (B) 吸収器4 臭化リチウム水溶液は同じ温度の水よりも蒸
気圧が著しく低く、かなり低い温度において発
生する水蒸気を吸収できる。吸収器4では蒸発
器3で蒸発した冷媒は吸収器の管束の外面に散
布された臭化リチウム水溶液(吸収液)6に吸
収され、この時発生する吸収熱は管内を通る冷
却水13により冷却される。 (C) 再生器1a,1b 吸収器4で冷媒を吸収した希溶液6bは濃度
が低下し、吸収力が弱くなる。そこで溶液循環
ポンプ8により、一部は高温再生器1aに送ら
れ、高温蒸気11等によつて加熱され、冷媒蒸
気10が蒸発分離し、溶液は濃縮され濃溶液6
aは吸収液4にもどる。さらに吸収器4から出
た希溶液6bの一部は溶液循環ポンプ8により
低温再生器16に送られ、高温再生器1aで発
生した冷媒蒸気10により加熱濃縮され、濃溶
液6aは吸収器4にもどる。 (D) 凝縮器2 再生器1で分離された冷媒蒸気10は凝縮器
2で管内を流れる冷却水9によつて冷却され、
凝縮液化し、蒸発器3にもどる。 (E) 熱交換器5 吸収器4から再生器1に向う低温の希薄溶液
6bを再生器1から吸収器4に向う高温の濃溶
液6によつて予熱し、再生器加熱量を減少させ
る。 (F) ポンプ8 ポンプ8に濃溶液6a、希薄溶液6bおよび
冷媒7を循環させる。 吸収器4、再生器1およびポンプ8が圧縮式冷
凍機の圧縮機と同じ機能をする。吸収液6,6a
および6bは、冷凍機運転中に熱交換器5を介し
て再生器1と吸収器4の間を循環する。吸収液の
濃度が高いほど、一般に冷凍効率も高まる故、吸
収液を濃縮するために、再生器1はより高温に保
持する必要がある。 一方、臭化リチウム水溶液が高温、高濃度であ
るほど、その冷凍機構成材料である鋼や銅に対す
る腐食性は増大する。従つて、吸収液には腐食防
止のためのインヒビタの添加が不可欠である。 ところで、これまで実用されているインヒビタ
としてはその殆んどがクロム酸塩であり、一部モ
リブデン酸塩などの使用例もあるが、低温におけ
る溶解性が乏しいため、極く一部に限られてい
る。上記インヒビタはいずれも酸化剤であり、鉄
表面に緻密な保護膜を形成することによつて腐食
を抑制する型であつた。しかし、数種類に及ぶ冷
凍機構成材料の全てについて、完全な防食をする
ことは困難であつた。すなわち、前記のようなイ
ンヒビタは、銅系材料には防食効果を示さないば
かりでなく、かえつて腐食を促進することさえあ
つた。さらに、その際溶出した銅イオンが鉄の表
面に析出し、両金属の電位差により鉄が腐食され
易くなるという欠点もあつた。 また、銅系材料に防食効果を示す有機系インヒ
ビタは、冷凍運転中に160℃以上に達する高温に
ある再生器などにおいて、安定性に問題を生ずる
うえに、腐食の最も激しい該再生器の鉄系材料に
対しては防食効果が乏しいという欠点があつた。 本発明の目的は臭化リチウム水溶液に対する耐
食性のすぐれた密閉循環型吸収式冷凍機を提供す
ることにある。 また他の目的は耐食性にすぐれ、かつ冷却効率
の高い密閉循環型吸収式冷凍機を提供することに
ある。 本発明の密閉循環型吸収式冷凍機は、再生器、
凝縮器、蒸発器、吸収器および熱交換器を順次結
合して構成されたクローズド循環系内に封入され
た臭化リチウム水溶液からなる吸収液を濃縮、冷
媒希釈および熱交換の繰返しによつて寒冷を得る
密閉循環型吸収式冷凍機(以下、単に冷凍機と略
称する。)において、前記吸収液がインヒビター
として実質的に機能するのに十分な量の下記(a)お
よび(b)の化合物、 (a) ほう酸塩、 (b) ベンゾトリアゾールおよびトリルトリアゾー
ルから選ばれるトリアゾール化合物、 を含むことを特徴とする。 本発明において、インヒビター中のB4O7 -2
オンは鉄または鉄合金からなる部材に対し、その
表面酸化し、主としてFe3O4からなる緻密な不働
態皮膜を形成するとともに、さらに該皮膜の表面
にFe−C6H4N3Hコンプレツクスからなる難溶性
の皮膜を形成し、腐食抑制効果を付与するものと
推測される。一方、銅または銅合金からなる部材
に対しては、インヒビタ中のトリアゾール化合物
が作用し、下式 (RはHorCH3である。) で示される難溶性の皮膜を形成し、腐食抑制効果
を付与するものと考えられる。 本発明は、一重効用密閉循環型吸収式冷凍機に
対しても有効であるが、とりわけ2重効用密閉循
環型吸収式冷凍機が有効である。これは前記イン
ヒビタがモリブデン酸塩インヒビタ等に比較し溶
解性にすぐれているため、吸収液が低温状態にな
つても折出、沈殿する必配がないためである。 本発明において使用されるインヒビタとしての
ほう酸塩(a)はナトリウム、リチウム、カリウムな
どのアルカリ金属のほう酸塩であり、それらのな
かで、四ほう酸二ナトリウムは特に好ましい。 また、本発明においては、前記ほう酸塩ととも
に、冷凍運転中に吸収液が遭遇する高温において
も安定であり、長期にわたり十分な防食効果を示
すインヒビタとして、ベンゾトリアゾール
(C6H4N3H)およびトリアゾール
(CH3C6H3N3H)のうちの少くとも1種のトリア
ゾール化合物(b)を組合せたことが特徴である。 前記のほう酸塩とトリアゾール化合物の吸収液
中における量即ち、濃度は、鉄系および銅系材料
に対する腐食をバランス良く防止するに十分な濃
度とする。ほう酸塩は、実用的には0.1〜1.0重量
%の範囲である。ホウ酸塩は溶液中で解離し、ホ
ウ酸イオンが生成する。ホウ酸イオンは金属イオ
ンやその水酸化物等を難溶性の沈澱物をつくると
考えられる。特に、鉄の腐食生成物(この場合は
水酸化鉄)と反応しやすく、極めて難溶性の化合
物を形成すると思われる。 LiBrを含む吸収液中において、腐食によにり
溶出した鉄イオンが水酸化鉄等の腐食性成物とな
り、上記ホウ酸イオンと反応して、鉄表面上に沈
澱物皮膜を形成し、腐食抑制作用を示す。この皮
膜は比較的厚いにもかかわらず、欠陥が多いため
腐食抑制効果が十分でない。 一方、ベンゾトリアゾール(BAT)等のトリ
アゾール化合物は溶存酸素を除いた液中では、鉄
から溶出すFe2+と反応して、Fe()−BTAの高
分子状の難溶性の緻密な皮膜を生成して腐食を抑
制する効果を有する。しかし、Fe()−BTA皮
膜は非常に薄く、これだけでは、やはり腐食抑制
効果が十分ではない。 そこで、ホウ酸塩とBTAの複合化を考え、こ
れにより鉄表面上に、Fe()−BTAとホウ酸塩
による沈着皮膜の複合皮膜とし、その相乗効果に
より腐食抑制効果を格段に高めることを見出し
た。 これにおいて、BTAは鉄から溶出するFe2+
の反応が早く、一方、ホウ酸塩は一担鉄の腐食生
成物が生成し、これと反応した後に沈着皮膜を形
成するために、BTAより反応が若干遅い。した
がつて、混合インヒビタとした場合、鉄表面に
は、Fe()−BTAの緻密な皮膜が形成され、そ
の上に鉄の腐食生成物とホウ酸塩の沈着皮膜及び
両者の混合物からなる皮膜が形成され、高い腐食
抑制効果が得られると考えられる。他方、トリア
ゾール化合物は、ベンゾトリアゾール、トリルト
リアゾールの水に対する溶解度が小さく、特に、
それらの濃厚臭化リチウム水溶液に対する溶解度
は非常に小さく、臭化リチウム55%水溶液に対す
る溶解度(室温)は約0.13〜0.15%であり、従つ
て、該トリアゾール化合物をこれ以上の濃度にす
ると、周囲の温度条件によつては冷凍機停止時に
析出し、その堆積のためノズル詰りなどの障害を
生じる場合がある。したがつて、実用的には
0.001〜0.12重量%、好ましくは0.005〜0.1重量%
の範囲が効果的である。 本発明において、吸収液には、吸収器の熱効率
を高めるために、オクチルアルコールのような界
面活性物質を5〜50ml/加えることができ、そ
れによつて本発明のインヒビタが抽出されること
はない。 本発明の冷凍機において、銅あるいは銅合金等
銅系材料で構成された前記循環構成要素は、特
に、吸収液と接触する面に発生し、付着している
銅酸化物の一部ないし全部を、吸収液を封入する
前に除去したものであるのが好ましい。このよう
に、銅酸化物を除去した構成要素を用いた場合は
冷凍機の冷却効果を向上させることが可能であ
る。本発明者らの研究によれば、前記複合インヒ
ビタ中のトリアゾール化合物(b)が吸収液中の銅イ
オンと反応して−C6H4N3Cu−等の化合物をつく
り一部沈殿物が生成し、配管類に付着しているこ
とを確認した。従つて、本発明者らか、この付着
物を除去することによつて、冷却効率をさらに向
上できるであろうとのもとに、種々研究を行つた
結果、前述の本発明を見出すことに成功した。 本発明において、銅酸化物を除去するにあつて
は、冷凍機を組立てる前に行つてもよいし、組立
後吸収液封入前に、酸洗いなどによつて行つても
よい。銅酸化物の除去方法それ自体は既に公知の
方法を採用することができる。例えば上述の酸洗
いの他に、その塩類例えば硝酸ナトリウム、硫酸
ナトリウム等)の水溶液を用いる方法、サンドプ
ラストなどの機械的方法あるいは還元法などによ
つて行うことができる。実用上、最も簡便な方法
は酸またはその塩類例えば硝酸ナトリウムの水溶
液を用いる方法(以下、単に酸洗い法を略記す
る。)である。ここで、酸としては、例えば塩酸、
硝酸、臭化水素酸、硫酸、りん酸などの無機酸、
くえん酸などの有機酸など、また、その塩類とし
ては例えば臭化リチウム、塩化ナトリウム、硝酸
リチウム、硫酸ナトリウム、りん酸ナトリウムな
どが代表的なものとして挙げられる。要するに、
銅酸化物を反応してこれを溶解する作用を有する
公知の酸ならびにその塩類を用いることができ
る。銅系材料表面の銅酸化物の溶解除去ならびに
鉄系材料への影響などを考慮すると、硝酸および
臭化リチウムが最も好ましい。酸の濃度は高濃度
になると腐食作用が激しくなるので実用的には、
0.5〜1.0%の範囲が適当である。塩水溶液を用い
る場合は高濃度程好ましい。一般には20%以上が
適当である。また、酸洗いの温度は高いほど洗浄
時間は短くて済むが、腐食作用が激しくなるので
実用的には常温〜80℃程度が望ましく、循環時間
は10分間以上であれば十分目的は達せられる。一
般には10〜30分程度が好ましい。酸洗終了後は直
ちに十分に水洗するのが望ましい。 本発明において、冷凍機の組立後に酸洗いを行
う場合は循環系内に酸を循環させ、酸洗いは水と
置換して十分水洗し、洗浄水が中性付近になつた
ら水を排出すればよい。この場合、酸または塩溶
液中にインヒビタとしての前記トリアゾール化合
物を添加しておいてもよく、これにより、銅酸化
物の除去と同時に防食皮膜を形成でき、極めて好
都合である。 銅酸化物は実質的に全部除去するのが最も望ま
しいが、そうでない場合でも、少なくとも残存銅
酸化物が前記トリアゾール化合物と反応して生成
する沈殿物が吸収液噴出ノズル(第1図中14)
を実質的に閉塞しない程度に除去する必要があ
る。その量は冷凍機の構造やノズルの大きさなど
によつて異なるものである。 本発明は、ガス、灯油などの燃焼ガスあるいは
蒸気などその熱源の種類によつて冷凍機の構成材
料が若干異なるが、本発明はそれら全ての機種に
その効率を示し、なかでも銅系材料の使用比率が
高い冷凍機に対して、その効果は顕著である。し
かも、本発明の吸収液は、クロム酸塩などを用い
た吸収液と比較して、公害上の心配もない。 次に実施例を記して具体的に説明する。 実施例 1〜10 四ほう酸二ナトリウムとベンゾトリアゾールを
所定量溶解した水溶液に臭化リチウムを62重量%
および水酸化リチウムを0.2重量%添加して吸収
液を調製した。 この吸収液を用い、炭素鋼(SS−41)、無酸素
鋼(OFCuT)および7:3キユプロニツケル
(CNTF−3)について、真空中160℃、200時間
腐食試験を行つた。そのときの腐食量を表に示
す。ここで使用した冷凍機は第1図に示す蒸気焚
二重効用密閉循環型吸収式冷凍機である。また、
表には比較のため、無添加、四ほう酸二ナトリウ
ム、ベンゾトリアゾールを単独添加、従来用いら
れている無機インヒビタを含む吸収液による試験
結果を併記する。 従来例では、鋭く深い孔食が発生して、腐食量
がばらつくので、試片10個の平均値を採用した。
一方、実施例では、試片は試験後均一な薄い黄黒
色の皮膜で覆われていた。いずれの単独添加のも
のは無添加のものよりいずれも腐食性が少ない
が、十分な効果は見られない。 表から明らかなように、実施例における腐食量
は無機インヒビタのみを用いた従来例に比して、
大幅に軽減されている。特に、銅系統材料の腐食
防止における効果が顕著である。鉄系材料に対す
る効果も明らかで、機器構造を考慮すれば、両材
料に対する防食効果はバランスしているといえ
る。特に、鉄系材料に対し、ほう酸塩は0.1〜0.8
%及びトリアゾール化合物は0.06%以上で防食効
果が高いことが明らかである。
The present invention is a lithium bromide aqueous solution, its concentration,
This invention relates to a closed circulation absorption refrigerator that performs cooling through repeated refrigerant dilution and heat exchange. Closed circulation absorption refrigerators use water as the refrigerant and a concentrated aqueous solution of lithium bromide as the absorption liquid. As shown in the principle diagram in Fig. 1, this refrigerator has a regenerator 1, a condenser 2, an evaporator 3, an absorber 4, and circulates absorption liquid 6, 6a, 6b and refrigerant 7 between them. Pumps 8 and heat exchanger 5
Each part operates as follows. (A) Evaporator 3 Cold water 12 flows through the tubes of the evaporator tube bundle of the evaporator 3, and refrigerant 7 is spread outside the tubes, and the latent heat of evaporation removes heat from the cold water. (B) Absorber 4 Lithium bromide aqueous solution has significantly lower vapor pressure than water at the same temperature, and can absorb water vapor generated at considerably lower temperatures. In the absorber 4, the refrigerant evaporated in the evaporator 3 is absorbed by a lithium bromide aqueous solution (absorbing liquid) 6 sprinkled on the outer surface of the tube bundle of the absorber, and the absorbed heat generated at this time is cooled by cooling water 13 passing through the tubes. be done. (C) Regenerators 1a, 1b The concentration of the dilute solution 6b that has absorbed the refrigerant in the absorber 4 decreases, and its absorption capacity becomes weaker. Then, a part of the solution is sent to the high-temperature regenerator 1a by the solution circulation pump 8, heated by the high-temperature steam 11, etc., the refrigerant vapor 10 is evaporated and separated, and the solution is concentrated.
a returns to the absorption liquid 4. Furthermore, a part of the dilute solution 6b discharged from the absorber 4 is sent to the low temperature regenerator 16 by the solution circulation pump 8, where it is heated and concentrated by the refrigerant vapor 10 generated in the high temperature regenerator 1a, and the concentrated solution 6a is sent to the absorber 4. Return. (D) Condenser 2 The refrigerant vapor 10 separated in the regenerator 1 is cooled by the cooling water 9 flowing through the pipes in the condenser 2.
It is condensed and liquefied and returned to the evaporator 3. (E) Heat exchanger 5 The low-temperature dilute solution 6b flowing from the absorber 4 to the regenerator 1 is preheated by the high-temperature concentrated solution 6 flowing from the regenerator 1 to the absorber 4, thereby reducing the regenerator heating amount. (F) Pump 8 The pump 8 circulates the concentrated solution 6a, dilute solution 6b, and refrigerant 7. The absorber 4, the regenerator 1 and the pump 8 have the same function as the compressor of a compression refrigerator. Absorption liquid 6, 6a
and 6b circulate between the regenerator 1 and the absorber 4 via the heat exchanger 5 during refrigerator operation. Generally, the higher the concentration of the absorption liquid, the higher the refrigeration efficiency, so the regenerator 1 needs to be maintained at a higher temperature in order to concentrate the absorption liquid. On the other hand, the higher the temperature and concentration of the lithium bromide aqueous solution, the more corrosive it becomes to steel and copper, which are the constituent materials of the refrigerator. Therefore, it is essential to add an inhibitor to the absorption liquid to prevent corrosion. By the way, most of the inhibitors that have been put into practical use so far are chromate salts, and some molybdate salts have also been used, but they are limited to only a few because of their poor solubility at low temperatures. ing. All of the above inhibitors were oxidizing agents, and were of the type that suppressed corrosion by forming a dense protective film on the iron surface. However, it has been difficult to provide complete corrosion protection for all of the several types of refrigerator constituent materials. That is, the above-mentioned inhibitors not only have no anticorrosive effect on copper-based materials, but also sometimes even promote corrosion. Another drawback was that the copper ions eluted at that time precipitated on the surface of the iron, making the iron more susceptible to corrosion due to the potential difference between the two metals. In addition, organic inhibitors that have a corrosion-preventing effect on copper-based materials not only cause stability problems in regenerators that are exposed to high temperatures of 160°C or higher during refrigeration operation, but also cause problems with the corrosion of the most severely corroded iron in the regenerator. The drawback was that it had a poor anticorrosive effect on other types of materials. An object of the present invention is to provide a closed circulation type absorption refrigerator which has excellent corrosion resistance against a lithium bromide aqueous solution. Another object of the present invention is to provide a closed circulation absorption refrigerator which has excellent corrosion resistance and high cooling efficiency. The closed circulation absorption refrigerator of the present invention includes a regenerator,
An absorption liquid consisting of an aqueous lithium bromide solution sealed in a closed circulation system consisting of a condenser, evaporator, absorber, and heat exchanger is condensed, refrigerant diluted, and heat exchanged repeatedly. In a closed circulation absorption refrigerator (hereinafter simply referred to as a refrigerator) for obtaining (a) a borate; (b) a triazole compound selected from benzotriazole and tolyltriazole; In the present invention, B 4 O 7 -2 ions in the inhibitor oxidize the surface of a member made of iron or an iron alloy, forming a dense passive film mainly composed of Fe 3 O 4 , and further oxidizing the film. It is presumed that a hardly soluble film consisting of a Fe-C 6 H 4 N 3 H complex is formed on the surface of the steel, imparting a corrosion inhibiting effect. On the other hand, for members made of copper or copper alloys, the triazole compound in the inhibitor acts, and the following formula (R is HorCH 3. ) It is thought that it forms a hardly soluble film shown in the following formula and imparts a corrosion inhibiting effect. Although the present invention is effective for single-effect closed circulation absorption refrigerators, it is particularly effective for double-effect closed circulation absorption refrigerators. This is because the inhibitor has superior solubility compared to molybdate inhibitors and the like, so there is no need for it to precipitate or precipitate even when the absorbing liquid is at a low temperature. The borates (a) as inhibitors used in the present invention are borates of alkali metals such as sodium, lithium, potassium, etc., among which disodium tetraborate is particularly preferred. In the present invention, in addition to the borate, benzotriazole (C 6 H 4 N 3 H) is used as an inhibitor that is stable even at high temperatures encountered by the absorption liquid during refrigeration operation and exhibits a sufficient anticorrosion effect over a long period of time. and triazole (CH 3 C 6 H 3 N 3 H). The amount, that is, the concentration, of the borate and triazole compound in the absorption liquid is a concentration sufficient to prevent corrosion of iron-based and copper-based materials in a well-balanced manner. Borate is practically in the range of 0.1-1.0% by weight. The borate dissociates in solution, producing borate ions. It is thought that borate ions form precipitates that are poorly soluble in metal ions and their hydroxides. In particular, it appears to react easily with corrosion products of iron (in this case iron hydroxide), forming extremely sparingly soluble compounds. In the absorption liquid containing LiBr, iron ions eluted by corrosion become corrosive products such as iron hydroxide, which react with the borate ions mentioned above to form a precipitate film on the iron surface, causing corrosion. Shows suppressive action. Although this film is relatively thick, it has many defects and therefore does not have a sufficient corrosion inhibiting effect. On the other hand, triazole compounds such as benzotriazole (BAT) react with Fe 2+ eluted from iron in a solution free of dissolved oxygen, forming a dense, poorly soluble polymeric film of Fe()-BTA. It has the effect of inhibiting corrosion. However, the Fe()-BTA film is very thin, and this alone does not have a sufficient corrosion inhibiting effect. Therefore, we considered combining borate and BTA, thereby creating a composite film of Fe()-BTA and borate deposited on the iron surface, and the synergistic effect of these deposits significantly increases the corrosion inhibiting effect. I found it. In this case, BTA reacts quickly with Fe 2+ eluted from iron, while borate produces a corrosion product of ferrous iron and forms a deposited film after reacting with this, so it reacts faster than BTA. The reaction is a little slow. Therefore, when used as a mixed inhibitor, a dense film of Fe()-BTA is formed on the iron surface, and on top of that a film consisting of a deposited film of iron corrosion products and borate, and a mixture of both. is formed, and it is thought that a high corrosion inhibition effect can be obtained. On the other hand, triazole compounds such as benzotriazole and tolyltriazole have low solubility in water, and in particular,
Their solubility in concentrated lithium bromide aqueous solution is very low, and the solubility in 55% lithium bromide aqueous solution (room temperature) is about 0.13-0.15%. Therefore, if the concentration of the triazole compound is higher than this, the surrounding Depending on the temperature conditions, it may precipitate when the refrigerator is stopped, and its accumulation may cause problems such as nozzle clogging. Therefore, in practical terms
0.001-0.12% by weight, preferably 0.005-0.1% by weight
range is effective. In the present invention, 5-50 ml/surfactant such as octyl alcohol can be added to the absorption liquid to increase the thermal efficiency of the absorber, so that the inhibitor of the present invention is not extracted. . In the refrigerator of the present invention, the circulation component made of a copper-based material such as copper or copper alloy removes some or all of the copper oxide generated and attached to the surface that comes into contact with the absorption liquid. , is preferably removed before enclosing the absorption liquid. In this way, when components from which copper oxide is removed are used, it is possible to improve the cooling effect of the refrigerator. According to the research conducted by the present inventors, the triazole compound (b) in the composite inhibitor reacts with copper ions in the absorption liquid to form compounds such as -C 6 H 4 N 3 Cu-, and some precipitates are formed. It was confirmed that it was generated and attached to piping. Therefore, the present inventors conducted various studies based on the idea that cooling efficiency could be further improved by removing this deposit, and as a result, succeeded in discovering the above-mentioned present invention. did. In the present invention, copper oxides may be removed before the refrigerator is assembled, or may be removed by pickling or the like after assembly and before filling the absorption liquid. As a method for removing copper oxide, a known method can be used. For example, in addition to the above-mentioned pickling, it can be carried out by a method using an aqueous solution of its salt (eg, sodium nitrate, sodium sulfate, etc.), a mechanical method such as sandplast, or a reduction method. Practically, the simplest method is a method using an aqueous solution of an acid or its salt, such as sodium nitrate (hereinafter simply referred to as pickling method). Here, as the acid, for example, hydrochloric acid,
Inorganic acids such as nitric acid, hydrobromic acid, sulfuric acid, phosphoric acid,
Typical examples include organic acids such as citric acid, and their salts, such as lithium bromide, sodium chloride, lithium nitrate, sodium sulfate, and sodium phosphate. in short,
Known acids and salts thereof that have the effect of reacting with and dissolving copper oxides can be used. Nitric acid and lithium bromide are most preferred in consideration of dissolving and removing copper oxides on the surface of copper-based materials and their effects on iron-based materials. The higher the acid concentration, the more corrosive it becomes, so for practical purposes,
A range of 0.5 to 1.0% is suitable. When using an aqueous salt solution, the higher the concentration, the more preferable it is. Generally, 20% or more is appropriate. Further, the higher the pickling temperature, the shorter the cleaning time, but since the corrosive action becomes more severe, it is practically preferable to use a temperature between room temperature and 80°C, and a circulation time of 10 minutes or more is sufficient to achieve the purpose. Generally, about 10 to 30 minutes is preferable. It is desirable to thoroughly wash with water immediately after pickling. In the present invention, when pickling is performed after assembling the refrigerator, the acid is circulated in the circulation system, the pickling is replaced with water, the water is thoroughly washed, and when the washing water becomes around neutrality, the water is drained. good. In this case, the above-mentioned triazole compound as an inhibitor may be added to the acid or salt solution, which is extremely convenient since it is possible to form an anti-corrosion film at the same time as removing the copper oxide. It is most desirable to remove substantially all of the copper oxide, but even if this is not the case, at least the residual copper oxide reacts with the triazole compound to form a precipitate that is removed from the absorption liquid jetting nozzle (14 in Figure 1).
It is necessary to remove it to the extent that it does not become substantially occluded. The amount varies depending on the structure of the refrigerator, the size of the nozzle, etc. Although the constituent materials of the refrigerator differ slightly depending on the type of heat source such as gas, combustion gas such as kerosene, or steam, the present invention shows its efficiency for all of these models, and in particular, the material of the refrigerator is shown to be effective for all of these models. The effect is remarkable for refrigerators that are used at a high rate. Furthermore, the absorbent liquid of the present invention is free from pollution concerns compared to absorbent liquids using chromate or the like. Next, examples will be described in detail. Examples 1 to 10 62% by weight of lithium bromide is added to an aqueous solution in which prescribed amounts of disodium tetraborate and benzotriazole are dissolved.
and 0.2% by weight of lithium hydroxide to prepare an absorption liquid. Using this absorption liquid, a corrosion test was conducted on carbon steel (SS-41), oxygen-free steel (OFCuT), and 7:3 Cypronickel (CNTF-3) at 160°C in vacuum for 200 hours. The amount of corrosion at that time is shown in the table. The refrigerator used here is a steam-fired dual-effect closed circulation type absorption refrigerator shown in FIG. Also,
For comparison, the table also shows the test results of absorption solutions without additives, with disodium tetraborate and benzotriazole added alone, and with absorption solutions containing conventionally used inorganic inhibitors. In the conventional example, sharp and deep pitting corrosion occurs and the amount of corrosion varies, so the average value of 10 specimens was used.
On the other hand, in the example, the specimen was covered with a uniform thin yellow-black film after the test. All of the additives added alone are less corrosive than those without additives, but no sufficient effect is observed. As is clear from the table, the amount of corrosion in the example was greater than that in the conventional example using only an inorganic inhibitor.
has been significantly reduced. In particular, the effect in preventing corrosion of copper-based materials is remarkable. The effect on iron-based materials is also clear, and if the structure of the equipment is taken into account, it can be said that the anti-corrosion effect on both materials is well balanced. In particular, for iron-based materials, borate is 0.1 to 0.8
% and triazole compounds have a high anticorrosive effect at 0.06% or more.

【表】 実施例 11 ベンゾトリアゾールをトリルトリアゾール0.07
重量%に変更した他は前記実施例1〜9と同様に
して吸収液を調製した。 上記吸収液について前記実施例1〜9と同じ条
件で腐食試験した結果、腐食量は炭素鋼35mg/d
m2、銅は17.0mg/dm2、キユプロニツケルは3.0
mg/dm2であつた。 実施例 12 臭化リチウム濃度62重量%、水酸化リチウム濃
度0.2重量%の水溶液に、n−オクチルアルコー
ル25ml/、四ほう酸二ナトリウム9.1g/
(濃度0.6重量%)、ベンゾトリアゾール960mg/
(濃度0.06重量%)を添加して、吸収液を調製し
た。この液10ml中に、炭素鋼および無酸素銅試片
(各々の表面積12cm2)を浸漬し、160℃に保持した
ときの四ほう酸二ナトリウムとベンゾトリアゾー
ルの消耗状況を測定した。結果は第2図の通りで
あつた。曲線Aで示すように、ベンゾトリアゾー
ルは、試験開始後に若干消耗されるが、全体的に
その消耗量は非常に僅かであり、またn−オクチ
ルアルコールによる抽出もほとんど認められてい
ない。一方曲線Bで示す如く、四ほう酸二ナトリ
ウムの消耗量も非常に少ない。これらのことか
ら、吸収液の安定性はすぐれていると認められ
る。実機においても、運転1年後のインヒビタ濃
度の変化は実質上認められなかつた。 実施例 13 銅部材を、予め3%HNO3にベンゾトリアゾー
ル0.05重量%を添加した酸洗液中に浸漬し、50℃
(液温)にて10分処理し、表面の酸化物を除去し
た。この銅部材を、62重量%の臭化リチウム、
0.2重量%の水酸化リチウム、0.3重量%の四ほう
酸二ナトリウムおよび0.05重量%のベンゾトリア
ゾールを含む吸収液に浸漬し、160℃にて400時間
のモデルの腐食試験を行なつた。この結果、腐食
量は1.8mg/dm2、腐食速度は0.0005mm/年であ
つた。また、酸洗時の液温を20〜80℃と種々変え
て試験したが、結果はほぼ同じであつた。 以上の実施例から明らかなように、本発明によ
れば、吸収液の汚れがないので、配管類への沈殿
物の付着あるいはスプレーノズルの閉塞等のトラ
ブルを防止でき、さらに銅あるいは銅合金の腐食
を大幅に軽減できる顕著な防食効果を示し、加え
て吸収液中の複合インヒビタの消耗を大幅に抑制
でき、安定した腐食抑制作用を維持できる等の優
れた効果が得られることが判る。 本発明の冷凍機は暖房装置としても使用可能で
ある。暖房装置として使用する場合は次のように
して運転される。即ち、暖房運転時は暖冷切替バ
ルブ14を開き、バルブ15を閉じ、さらに冷媒
切替バルブ16を開き、バルブ17を閉じる。暖
房装置で使用されるのは高温再生器と凝縮器であ
る。高温再生器1aで加熱され、発生した冷媒蒸
気10は暖冷切替バルブ15を通り、凝縮器2に
入り、冷却水9を加熱し、温水に変え、この温水
を暖房に使用する。凝縮器2で生成した冷媒は冷
媒切替バルブ17を通り高温再生器1aに戻り濃
吸収液を希釈し、再び加熱されて冷媒蒸気10を
発生する。
[Table] Example 11 Benzotriazole to tolyltriazole 0.07
Absorbent liquids were prepared in the same manner as in Examples 1 to 9 above, except that the weight % was changed. As a result of a corrosion test on the above absorption liquid under the same conditions as in Examples 1 to 9, the amount of corrosion was 35mg/d for carbon steel.
m 2 , copper is 17.0 mg/dm 2 , cypronic is 3.0
mg/ dm2 . Example 12 To an aqueous solution with a lithium bromide concentration of 62% by weight and a lithium hydroxide concentration of 0.2% by weight, 25 ml of n-octyl alcohol and 9.1 g of disodium tetraborate were added.
(concentration 0.6% by weight), benzotriazole 960mg/
(concentration: 0.06% by weight) to prepare an absorption liquid. Carbon steel and oxygen-free copper specimens (each with a surface area of 12 cm 2 ) were immersed in 10 ml of this solution, and the state of consumption of disodium tetraborate and benzotriazole was measured when the specimens were held at 160°C. The results were as shown in Figure 2. As shown by curve A, benzotriazole is slightly consumed after the start of the test, but the amount consumed is very small overall, and almost no extraction with n-octyl alcohol is observed. On the other hand, as shown by curve B, the amount of disodium tetraborate consumed is also very small. From these facts, it is recognized that the stability of the absorption liquid is excellent. In the actual machine, virtually no change in inhibitor concentration was observed after one year of operation. Example 13 A copper member was immersed in a pickling solution prepared by adding 0.05% by weight of benzotriazole to 3% HNO 3 in advance, and heated to 50°C.
(liquid temperature) for 10 minutes to remove surface oxides. This copper member was mixed with 62% by weight of lithium bromide,
Corrosion tests were conducted on the model for 400 hours at 160° C. by immersing it in an absorption solution containing 0.2% by weight lithium hydroxide, 0.3% by weight disodium tetraborate and 0.05% by weight benzotriazole. As a result, the amount of corrosion was 1.8 mg/dm 2 and the corrosion rate was 0.0005 mm/year. Further, tests were conducted by varying the liquid temperature during pickling from 20 to 80°C, but the results were almost the same. As is clear from the above examples, according to the present invention, since there is no contamination of the absorption liquid, troubles such as deposits adhering to piping or clogging of spray nozzles can be prevented. It can be seen that it exhibits a remarkable anticorrosive effect that can significantly reduce corrosion, and in addition, it can significantly suppress the consumption of the composite inhibitor in the absorption liquid and maintain a stable corrosion inhibiting effect. The refrigerator of the present invention can also be used as a heating device. When used as a heating device, it is operated as follows. That is, during heating operation, the warm/cool switching valve 14 is opened, the valve 15 is closed, the refrigerant switching valve 16 is further opened, and the valve 17 is closed. High temperature regenerators and condensers are used in heating systems. The refrigerant vapor 10 generated by heating in the high temperature regenerator 1a passes through the heating/cooling switching valve 15, enters the condenser 2, heats the cooling water 9, turns it into hot water, and uses this hot water for heating. The refrigerant generated in the condenser 2 passes through the refrigerant switching valve 17 and returns to the high temperature regenerator 1a to dilute the concentrated absorption liquid and is heated again to generate refrigerant vapor 10.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる密閉循環型吸
収式冷凍機の原理系統図、第2図は吸収液中のイ
ンヒビタ濃度の経時変化を示すグラフである。 1a……高温再生器、1b……低温再生器、2
……凝縮器、3……蒸発器、4……吸収器、5…
…熱交換器、6……吸収液、6a……濃吸収液、
6b……希釈吸収液、7……冷媒、8……ポン
プ、9……冷却水、10……水蒸気、11……ス
チーム、12……冷水、13……冷却水。
FIG. 1 is a diagram showing the principle of a closed circulation absorption refrigerator according to an embodiment of the present invention, and FIG. 2 is a graph showing changes over time in the inhibitor concentration in the absorption liquid. 1a...High temperature regenerator, 1b...Low temperature regenerator, 2
...Condenser, 3...Evaporator, 4...Absorber, 5...
...Heat exchanger, 6...Absorption liquid, 6a...Concentrated absorption liquid,
6b... Diluted absorption liquid, 7... Refrigerant, 8... Pump, 9... Cooling water, 10... Water vapor, 11... Steam, 12... Cold water, 13... Cooling water.

Claims (1)

【特許請求の範囲】 1 再生器、凝縮器、蒸発器、吸収器及び熱交換
器を順次結合して構成した密閉循環系内に封入さ
れた臭化リチウム水溶液からなる吸収液を濃縮、
冷媒希釈および熱交換の繰返しによつて寒冷を得
る密閉循環型吸収式冷凍機において、前記吸収液
はインヒビタとして実質的に機能するに十分な量
の下記(a)および(b)の化合物、 (a) ほう酸塩、 (b) ベンゾトリアゾールおよびトリトリアゾール
から選ばれるトリアゾール化合物、 を含むことを特徴とする密閉循環型吸収式冷凍
機。 2 再生器、凝縮器、蒸発器、吸収器及び熱交換
器を順次結合して構成した密閉循環系内に封入さ
れた臭化リチウム水溶液からなる吸収液を濃縮、
冷媒希釈および熱交換の繰返しによつて寒冷を得
る密閉循環型吸収式冷凍機において、前記吸収液
はインヒビタとして実質的に機能するに十分な量
の下記(a)〜(c)の化合物、 (a) ほう酸塩、 (b) ベンゾトリアゾールおよびトリトリアゾール
から選ばれるトリアゾール化合物、 (c) オクチルアルコール を含むことを特徴とする密閉循環型吸収式冷凍
機。
[Claims] 1. Concentrating an absorption liquid consisting of an aqueous lithium bromide solution sealed in a closed circulation system configured by sequentially combining a regenerator, a condenser, an evaporator, an absorber, and a heat exchanger,
In a closed circulation absorption refrigerator that obtains refrigeration by repeated refrigerant dilution and heat exchange, the absorption liquid contains a sufficient amount of the following compounds (a) and (b) to substantially function as an inhibitor, ( A closed circulation absorption refrigerator comprising: a) a borate, and (b) a triazole compound selected from benzotriazole and tritriazole. 2 Concentrate the absorption liquid consisting of an aqueous lithium bromide solution sealed in a closed circulation system configured by sequentially combining a regenerator, condenser, evaporator, absorber, and heat exchanger,
In a closed circulation absorption refrigerator that obtains refrigeration through repeated refrigerant dilution and heat exchange, the absorption liquid contains a sufficient amount of the following compounds (a) to (c) to substantially function as an inhibitor, ( A closed circulation absorption refrigerator comprising: a) a borate; (b) a triazole compound selected from benzotriazole and tritriazole; and (c) octyl alcohol.
JP15914979A 1979-12-10 1979-12-10 Sealing circulation type absorption system refrigerator Granted JPS5682364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15914979A JPS5682364A (en) 1979-12-10 1979-12-10 Sealing circulation type absorption system refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15914979A JPS5682364A (en) 1979-12-10 1979-12-10 Sealing circulation type absorption system refrigerator

Publications (2)

Publication Number Publication Date
JPS5682364A JPS5682364A (en) 1981-07-06
JPS6334386B2 true JPS6334386B2 (en) 1988-07-11

Family

ID=15687322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15914979A Granted JPS5682364A (en) 1979-12-10 1979-12-10 Sealing circulation type absorption system refrigerator

Country Status (1)

Country Link
JP (1) JPS5682364A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840468A (en) * 1981-09-04 1983-03-09 株式会社日立製作所 Absorption type refrigerator
JPS62155477A (en) * 1985-12-27 1987-07-10 株式会社荏原製作所 Lean solution for absorption refrigerator
US5547600A (en) * 1995-05-05 1996-08-20 Carrier Corporation Absorption refrigeration system working fluid with molybdate, borate, silicate inhibitor blend
US6784356B1 (en) * 1999-04-09 2004-08-31 Modine Manufacturing Company Phase change material with inhibitor and a method of making the same

Also Published As

Publication number Publication date
JPS5682364A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
US4311024A (en) Hermetically circulating, absorption type refrigerator
EP0611388B1 (en) Vapour absorbent compositions
JP3593268B2 (en) Absorption refrigerator and method for forming initial anticorrosion film
US4912934A (en) Hermetically closed circulation type, vapor absorption refrigerator
US3609086A (en) Arsenic trioxide corrosion inhibitor for absorption refrigeration system
US4470272A (en) Hermetically circulating, absorption type refrigerator
US3555841A (en) Arsenic trioxide corrosion inhibitor for absorption refrigeration system
JPS6334386B2 (en)
JPH0335384B2 (en)
JPH0762578B2 (en) Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator
US6267908B1 (en) Corrosion inhibiting solutions and processes for refrigeration systems comprising halides of a group va metallic element
CA2211948A1 (en) Corrosion inhibitor for aqueous ammonia absorption system
JPS6226357B2 (en)
JPH11142012A (en) Absorption refrigerating machine and absorbing liquid therefor
JPH07239159A (en) Absorption refrigerating machine and absorption liquid for it
JPS60232461A (en) Sealed circulation type absorption system refrigerator
JPS6029872B2 (en) absorption refrigerator
US6361710B1 (en) Absorbent refrigerant composition
JP7201161B2 (en) Working medium for absorption chiller and absorption chiller using the same
JPS6249544B2 (en)
JPH05203279A (en) Absorption solution and absorption type heat conversion device based on its application
JPH0660303B2 (en) Absorption liquid for absorption refrigerator
JP2756521B2 (en) Absorption liquid for absorption refrigerator
JPH02169967A (en) Absorption system refrigerating machine and liquid absorbent
JPH1144466A (en) Ammonia absorption type heat pump