WO2019044054A1 - 振動検知光ファイバセンサ及び振動検知方法 - Google Patents

振動検知光ファイバセンサ及び振動検知方法 Download PDF

Info

Publication number
WO2019044054A1
WO2019044054A1 PCT/JP2018/018834 JP2018018834W WO2019044054A1 WO 2019044054 A1 WO2019044054 A1 WO 2019044054A1 JP 2018018834 W JP2018018834 W JP 2018018834W WO 2019044054 A1 WO2019044054 A1 WO 2019044054A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
short pulse
optical fiber
polarization state
vibration
Prior art date
Application number
PCT/JP2018/018834
Other languages
English (en)
French (fr)
Inventor
祥宏 神田
Original Assignee
沖電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沖電気工業株式会社 filed Critical 沖電気工業株式会社
Publication of WO2019044054A1 publication Critical patent/WO2019044054A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the present invention relates to a vibration detecting optical fiber sensor and a vibration detecting method for observing a time variation of birefringence of an optical fiber, detecting a vibration applied from the outside to the optical fiber, and specifying a position of the vibration.
  • a sensor for detecting an intrusion act which is provided on a fence or the like on the periphery of a facility, plays an important role.
  • an intrusion detection sensor utilizing a low loss property of an optical fiber is used for an intrusion detection sensor at a distance such that the outer peripheral length exceeds 1 km.
  • the polarization state of the light wave output from the optical fiber changes with time.
  • the cause of this is the time change of the birefringence (retardation between the eigenaxis of birefringence and the orthogonal polarization axis generated by the birefringence) of the optical fiber due to the vibration, and as a result, the polarization state of the output lightwave (SOP: The time change of State of Polarization is observed.
  • vibration detection optical fiber sensors used as intrusion detection sensors. One is to reduce the number of missed and false positives of intrusion, and the other is to identify the location where the intrusion occurred.
  • POTDR polarization optical time domain reflectometry
  • the time change of the polarization state of the reflected light output from the optical fiber depends not only on the direction of the natural axis of the birefringence of the optical fiber that changes due to vibration, but also on the polarization state of the propagating light incident on the oscillation point Do.
  • the polarization state of the lightwave propagating in the optical fiber changes randomly due to the randomly distributed static birefringence. For this reason, the polarization state incident on the birefringence change point due to an intrusion action or the like is random.
  • the change in birefringence that occurs as a result of intrusion or the like also depends on the way of vibration of this optical fiber.
  • the sensitivity of the detection is only the polarization state of the light incident on the fiber It also depends on the polarization state of the reflected light reaching the polarizer.
  • This instability in sensitivity to vibration can not be avoided in principle, as long as light pulses in a single polarization state are used and a means for observing changes in the polarization state of reflected light by a polarizer is taken.
  • a vibration detection optical fiber using Differential Angular Velocity (DAV) which is obtained from the eigen value of the time change of birefringence using an optical pulse which is periodically switched alternately to orthogonal polarization state as probe light.
  • DAV Differential Angular Velocity
  • the intensity of reflected light is as small as about -30 dB with respect to incident light. For this reason, in the OTDR method, the signal-to-noise ratio is improved by inputting light pulses a plurality of times and averaging their reflected light.
  • Non-Patent Document 1 detection is performed by averaging for 5 seconds. This double time is required when applying the analysis method of birefringence time change eigenvalues to POTDR. For this reason, it takes a long time for an alert to be issued after an intrusion occurs.
  • the present invention has been made in view of the above problems.
  • An object of the present invention is to provide a vibration detection optical fiber sensor and a vibration detection method which eliminate sensitivity instability with observation time equal to that of the conventional POTDR.
  • a vibration detecting optical fiber sensor is configured to include a light source unit, an optical fiber, and a polarization state measuring unit.
  • the light source unit combines the first light short pulse and the second light short pulse whose wavelengths are slightly different from each other and whose polarization states are orthogonal to each other to generate probe light.
  • Probe light is input to the optical fiber.
  • the polarization state measuring unit extracts wavelength band components equal to the first light short pulse and the second light short pulse, which are extracted from the reflected light of the probe light reflected by the optical fiber, and measures the polarization states respectively The vibration is detected based on the time change of the polarization state.
  • a vibration detection method is configured to include the following steps.
  • a first light short pulse and a second light short pulse whose wavelengths are slightly different from each other and whose polarization states are orthogonal to each other are combined to generate probe light.
  • the probe light extracts the wavelength band component equal to each of the first light short pulse and the second light short pulse extracted from the reflected light reflected by the optical fiber, measures the polarization state, and Vibration is detected based on the time change of the state.
  • a vibration detecting optical fiber sensor and a vibration detecting method combine, as probe light, first short optical pulses and second short optical pulses whose wavelengths are slightly different from each other and whose polarization states are orthogonal to each other.
  • the DAV obtained from the eigen value of the time change of birefringence is used by using the probe light. For this reason, vibration detection independent of the polarization state of incident light is possible.
  • FIG. 1 It is a block diagram showing a schematic structure of a vibration detection optical fiber sensor. It is a figure which shows the concept of a reflected light when an optical short pulse in which wavelengths are different and whose polarization states are orthogonal to each other is incident on an optical fiber. It is a conceptual diagram for demonstrating the effect of embodiment of this invention, Comprising: The result when the analysis method of a nonpatent literature 3 is applied to POTDR is shown.
  • FIG. 1 is a block diagram showing a schematic configuration of a vibration detecting optical fiber sensor.
  • the vibration detection optical fiber sensor is configured to include a light source unit 10, an optical fiber 20, an optical circulator 40, and a polarization state measurement unit 30.
  • the light source unit 10 combines the first light short pulse and the second light short pulse whose wavelengths are slightly different from each other and whose polarization states are orthogonal to each other to generate probe light.
  • the light source unit 10 includes, for example, a first laser light source 112, a second laser light source 114, a first intensity switch 122, a second intensity switch 124, a function generator 130, a wavelength plate 140, and an optical coupler 150.
  • the first laser light source 112 and the second laser light source 114 generate first continuous light and second continuous light whose wavelengths are slightly different from each other. In order to suppress the influence of wavelength dependency in the optical fiber 20 or the like, it is desirable that the wavelength difference between the first continuous light and the second continuous light be as small as possible. Therefore, the near wavelength that can be separated by the polarization state measuring unit 30 is selected as the wavelength of the first continuous light and the second continuous light.
  • the wavelengths of the first continuous light and the second continuous light are communication wavelength bands in which the single mode optical fiber has a low loss wavelength band.
  • And can be set to 1550.0 nm and 1550.1 nm, respectively.
  • the first intensity switch 122 intensity-modulates the first continuous light according to the electrical signal generated by the function generator 130 to generate a first short optical pulse.
  • the second intensity switch 124 intensity-modulates the second continuous light in response to the electrical signal generated by the function generator 130 to generate a second short optical pulse. Similar to the first continuous light and the second continuous light, the first light short pulse and the second light short pulse also have slightly different wavelengths.
  • the first intensity switch 122 and the second intensity switch 124 can be configured using an AOM (Acoustic Optic Modulator) that utilizes an acousto-optic effect with excellent extinction characteristics.
  • AOM Acoustic Optic Modulator
  • the pulse width of the short optical pulse determines the spatial resolution
  • the repetition frequency determines the measuring distance.
  • the lightwave has a propagation delay of approximately 5 ns per meter along with the propagation in the optical fiber.
  • the reflected light takes a time from the input of the probe light to its reflection and the time from the reflection to the output of the reflected light, so that a delay of 10 ns occurs per round trip.
  • the width of the optical short pulse can be set to 200 ns and the repetition frequency can be set to 20 kHz.
  • the wave plate 140 provides rotation to the polarization state of the second light short pulse.
  • the amount of rotation may be such that the Stokes vectors representing the polarization states of two light short pulses different in wavelength are orthogonal to each other in Stokes space.
  • the Stokes vectors representing the polarization states of the optical short pulses output from the first intensity switch 122 and the second intensity switch 124 are both [1, 0, 0] T
  • a ⁇ / 2 plate is used as the wave plate 140.
  • the Stokes vector representing the polarization state of the second light short pulse output from the wave plate 140 can be converted to [0, 0, 1] T by using.
  • Optical short pulses output from the first intensity switch 122 and the wave plate 140 are multiplexed by the optical coupler 150.
  • the short optical pulse multiplexed by the optical coupler 150 is sent to the optical fiber 20 through the optical circulator 40 as probe light.
  • the optical fiber 20 is preferably a low polarization mode dispersion (PMD) fiber.
  • PMD polarization mode dispersion
  • As a low PMD fiber there is commercially available a single mode optical fiber having a PMD coefficient of about 0.01 ps / (km) 1/2 , in which the wavelength dependency of birefringence is suppressed.
  • the probe light sent to the optical fiber 20 propagates through the optical fiber 20, and a part of the probe light is reflected by the optical fiber 20 and sent to the polarization state measurement unit 30 as reflected light.
  • the polarization state measurement unit 30 includes a WDM filter 310, a first polarimeter 312, a second polarimeter 314, an analog-to-digital (A / D) converter 320, and a computing unit 330.
  • the reflected light sent to the polarization state measurement unit 30 is branched into two in the wavelength band of the first laser light source 112 and the wavelength band of the second laser light source 114 in the WDM filter 310.
  • One of the two branched light beams is sent to the first polarimeter 312 and the other is sent to the second polarimeter 314.
  • the wavelength band of the reflected light sent to the first polarimeter 312 is equal to the wavelength band of the first laser light source 112, and the wavelength band of the reflected light sent to the second polarimeter 314 is the wavelength band of the second laser light source 114. equal.
  • a wavelength coupler In place of the WDM filter 310, a wavelength coupler, a first wavelength filter, and a second wavelength filter may be used.
  • the wavelength coupler bifurcates the reflected light and sends one to the first polarimeter through the first wavelength filter and the other to the second polarimeter through the second wavelength filter.
  • the transmission band of the first wavelength filter may be set equal to the wavelength band of the first laser light source 112
  • the transmission band of the second wavelength filter may be set equal to the wavelength band of the second laser light source 114.
  • the first polarimeter 312 and the second polarimeter 314 obtain first and second Stokes parameters of the received reflected light.
  • the Stokes parameters of the reflected light are sent to the A / D converter 320.
  • the first polarimeter 312 and the second polarimeter 314 only have to be able to observe the time dependency of the Stokes parameters, and the measurement velocity band thereof is for the polarization dependency of the time dependency of the Stokes vector of the optical fiber 20. It suffices to satisfy the sampling theorem (sampling theorem).
  • the A / D converter 320 converts the Stokes parameters acquired as an analog signal into a digital signal.
  • the sampling frequency of the A / D converter 320 may be a frequency that satisfies the sampling theorem for the electric pulse generated by the function generator 130.
  • the sampling theorem is a theorem that quantitatively indicates at what interval sampling (sampling) should be performed when converting an analog signal to a digital signal.
  • the digital signal converted by the A / D converter 320 is sent to the computing unit 330.
  • the computing unit 330 calculates the DAV using the Stokes parameters converted to the digital signal. Arithmetic unit 330 detects the presence or absence of abnormal vibration using DAV calculated from the Stokes parameter of the transmitted light. Also, when an abnormal vibration is detected, the computing unit 330 specifies the position of the vibration using the DAV calculated from the Stokes parameter of the reflected light. As the computing unit 330, for example, a commercially available personal computer (PC) installed with software for calculating the DAV and specifying the position of the vibration can be used.
  • PC personal computer
  • s out (t) is a 3-by-1 Stokes vector representing the polarization state of the lightwave output from the optical fiber at time t with respect to an arbitrary lightwave input to the optical fiber.
  • t is the time defined at the output end of the optical fiber.
  • the angular velocity vector ⁇ b is an optical fiber specific characteristic that reflects the time change of birefringence, and a rotation around the direction of the angular velocity vector ⁇ b is made to the Stokes vector s out (t) within a minute time width dt It is a 3-by-1 real vector given.
  • the polarization state s out (t) of the light wave output from the optical fiber depends on the polarization state of the light wave input to the optical fiber.
  • the tip of the Stokes vector representing this polarization state can pass through any point on the Poincare sphere depending on the incident polarization state to the optical fiber.
  • the angular velocity vector ⁇ b indicates the time change of the intrinsic birefringence of the optical fiber and does not depend on the polarization state of the input light wave. That is, while the polarization state s out (t) of the light wave output from the optical fiber depends on the polarization state of the light wave input to the optical fiber, the angular velocity vector ⁇ b depends on the polarization state of the input light wave do not do. Therefore, if the angular velocity vector ⁇ b is measured, the time change of the inherent birefringence of the optical fiber, that is, the characteristics of the optical fiber regarding the vibration can be known without depending on the polarization state of the input light wave.
  • the length of the angular velocity vector ⁇ b is DAV which is the difference between the two eigenvalues of the time evolution operator defined by the time portion of the optical fiber Jones matrix.
  • the angular velocity vector ⁇ b is obtained by measuring a 3-by-3 rotation matrix R (t) representing the birefringence of the optical fiber.
  • R (t) representing the birefringence of the optical fiber.
  • the angular velocity vector ⁇ b is a vertical vector of 3 rows and 1 column, and is expressed by the following equation (8).
  • the angular velocity vector ⁇ b can be obtained from the above equation (6) and the above equation (7).
  • giving the magnitude of the angular velocity vector ⁇ b is the angular velocity (rad / of the circle drawn by the tip of the Stokes vector s out (t) of the output light wave on the Poincare sphere over time. matches with sec).
  • the light wave Since the position of the tip of the Stokes vector s out (t) of the light wave output is different depending on the polarization state of the light wave input to the optical fiber, the light wave also receives the radius of the circle drawn on the Poincare sphere of s out (t) Depends on the polarization state of However, the angular velocity of the circle drawn by the tip of s out (t) does not depend on the polarization state of the input light wave regardless of the radius of the circle. Thus, by measuring the angular velocity vector ⁇ b giving the eigenstate of birefringence provided in the optical fiber itself, the time change of the birefringence of the optical fiber can be quantified without depending on the polarization state of the input light wave. it can.
  • the measurement of the rotation matrix R (t) at time t when the light wave is output from the optical fiber can be obtained from the polarization states of the measured light waves for two polarization states orthogonal to each other.
  • the Stokes vectors t 1 , t 2 and t 3 are all standardized so that their absolute values become one.
  • the rotation matrix R (t) is expressed as the following equations (10) and (11) using the Stokes vectors t 1 , t 2 and t 3 (see, for example, Non-Patent Document 3).
  • the Stokes vector t 1 and t 3 is measured every time the returned reflected light, from the time and the propagation delay, the Stokes vector of the longitudinal direction of the reflected light of the fiber is obtained. If observing the time variation of the Stokes vector t 1 and t 3, the longitudinal direction of the time variation of R (t) for each position of the fiber is obtained. At each position, calculates the time variation of R (t), can be determined the time variation of the angular velocity vector omega b over time from the above equation (6) and (7). Further, if the angular velocity vector ⁇ b is obtained, DAV can be easily obtained as the length of the angular velocity vector ⁇ b .
  • FIG. 2 is a view showing the concept of reflected light when light short pulses having different wavelengths and whose polarization states are orthogonal to each other are incident on an optical fiber.
  • the measurement distance is 4.2 km, and vibration is applied at 3 km.
  • the upper part of FIG. 2 shows the Stokes parameters obtained by the first polarimeter, and the middle part of FIG. 2 shows the Stokes parameters obtained by the second polarimeter.
  • the lower part of FIG. 2 shows the above-mentioned DAV.
  • the lower part of FIG. 2 also shows the concept of a conventional POTDR for inputting an optical short pulse in a single polarization state.
  • FIG. 3 is a conceptual diagram for explaining the effect of the embodiment of the present invention, and shows the result when the analysis method described in Non-Patent Document 3 is applied to POTDR.
  • Non-Patent Document 3 uses the maximum without depending on the polarization state of probe light. It can capture changes in polarization state.
  • Non-Patent Document 3 In the method described in Non-Patent Document 3, two optical short pulses having different polarization states are required to determine one state, so optical short pulses in which the polarization states are switched alternately in time are used. ing. For this reason, twice the measurement time is required compared with nonpatent literature 1 or 2.
  • FIG. 3 shows the case where the averaging number is 8 (indicated by I in FIG. 3), 32 (indicated by II in FIG. 3), and 512 (indicated by III in FIG. 3). ing.
  • the reflected light with respect to the probe light in which optical short pulses having different wavelengths and whose polarization states are orthogonal to each other is multiplexed is observed. For this reason, reflected light with respect to different incident polarization states can be simultaneously observed without polarization switching. For this reason, in the embodiment of the present invention, it is possible to obtain the result of eliminating the polarization dependency of the incident light in the same measurement time (number of averaging times) as the conventional POTDR method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

従来のPOTDRと等しい観測時間で、感度の不安定性を排除する。光源部と、光ファイバと、偏光状態計測部とを備えて構成される。光源部は、互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波して、プローブ光を生成する。光ファイバにはプローブ光が入力される。偏光状態計測部は、プローブ光が光ファイバで反射された反射光から抽出された、第1光短パルス及び第2光短パルスのそれぞれと等しい波長帯成分を抽出して、それぞれ偏光状態を測定して、偏光状態の時間変化に基づいて、振動を検知する。

Description

振動検知光ファイバセンサ及び振動検知方法
 この発明は、光ファイバの複屈折の時間変動を観測して、この光ファイバに外部から加えられた振動を検知し、その振動位置を特定する振動検知光ファイバセンサ及び振動検知方法に関する。
 発電所や工場などの大型の施設にとって、人の不法な侵入行為を検知することは極めて重要である。このため、施設の外周のフェンス等に設けられる、侵入行為を検知するセンサは重要な役割を担っている。
 特に、外周の長さが1kmを超えるような距離の侵入検知センサには、光ファイバの低損失性を活用した侵入検知センサが利用されている。
 光ファイバに外部から振動が加えられると、光ファイバから出力される光波の偏光状態が時間変化する。この原因は、振動に伴う光ファイバの複屈折性(複屈折の固有軸と複屈折によって発生する直交偏光軸間の位相差)の時間変化であり、この結果として出力光波の偏光状態(SOP:State of Polarization)の時間変化が観測される。フェンス等に光ファイバを張り付け、この光ファイバにプローブ光を入力し、出力されるプローブ光の偏光状態の時間変化を観察することにより、我々はフェンス等の振動を検知できる。
 侵入検知センサとして用いられる振動検知光ファイバセンサで重要な機能は主に2つある。1つは、侵入行為の見逃しと誤検知を低減することであり、もう1つは、侵入行為が発生した位置を特定することである。
 振動検知光ファイバセンサとして、偏光時間領域反射率測定法(POTDR:Polarization Optical Time Domein Reflectometry)を利用したものがある(例えば、非特許文献1又は2参照)。これは、偏光状態を利用した時間領域反射率測定法(OTDR)である。
 光ファイバに光パルスを入力すると、光パルスの入力端に、光パルスの伝搬に要する時間遅延を伴った反射光が観測される。光ファイバに振動が加わると、光ファイバの複屈折性が変化する。反射光の偏光状態は、複屈折性に依存する。このため、偏光子を介して反射光の時間変化を観測することで、光パルスが光ファイバの振動の影響を受けた位置を特定できる。
 しかしながら、光ファイバから出力される反射光の偏光状態の時間変化は、振動によって変化する光ファイバの複屈折の固有軸の方向だけでなく、振動点へ入射される伝搬光の偏光状態にも依存する。一般に、光ファイバを伝搬する光波の偏光状態は、ランダムに分布した静的な複屈折性によってランダムに変化する。このため、侵入行為等による複屈折性の変化点に入射される偏光状態はランダムである。さらに、侵入行為等に伴い発生する複屈折性の変化も、この光ファイバの振動の加わり方に依存する。
 これらの依存性をもつ現象に対して、単一の偏光状態の光パルスを利用した方法では、出力される反射光の偏光状態の変化の様子が一意に定まらないので、検出感度が不安定である。
 さらに、検出される反射光の偏光状態の変化を、偏光子を介して検知する場合、偏光子は一定の偏光状態のみ透過する素子なので、検知の感度は、ファイバへの入射光の偏光状態のみならず、偏光子に到達した反射光の偏光状態にも依存する。
 この振動に対する感度の不安定性は、単一の偏光状態の光パルスを利用し、さらに偏光子によって反射光の偏光状態の変化を観測する手段を取る以上、原理的に避けられない。
 これに対し、プローブ光として、直交する偏光状態に、周期的に交互に切り換えられる光パルスを用いて、複屈折性の時間変化の固有値から求まるDifferential Angular Velocity(DAV)を利用する振動検知光ファイバセンサが提案されている(例えば、非特許文献3参照)。この振動検知光ファイバセンサを利用すると、入射光の偏光状態の依存性を排除して、かつ、常に最大の偏光状態の時間変化を解析的に得ることができる。
N. Linze, P. Megret, and M. Wuilpart, "Development of anIntrusion Sensor Based on a Polarization-OTDR System", IEEE Sensors Journal,Vol.12, No.10, October 2012, pp.3005-3009 Z. Zhang and X. Bao, "Distributed optical fiber vibrationsensor based on spectrum analysis of polarization-OTDR", Optics Express,Vol.16, No.14, pp.10240-10247 Y. Kanda and H. Murai, "Novel extraction method of the maximumvariation-rate of State-of-Polarization vector from time-varying birefringence,"OFC2016,W2A.21
 しかしながら、複屈折性の時間変化の固有値を利用する振動検知光ファイバセンサでは、2つの偏光状態がスイッチされる入射光を利用する。このため、単一の偏光状態を入射するセンサに対して、測定に要する時間が2倍必要である。
 一般に、OTDR法は、反射光の強度は、入射光に対して-30dB程度と小さい。このため、OTDR法においては、複数回光パルスを入射し、それらの反射光を平均することで、信号対雑音比を向上させている。
 例えば、非特許文献1に記載の方法においては、5秒間の平均によって検知を行っている。複屈折性の時間変化の固有値の解析法をPOTDRに適用した場合、この2倍の時間が必要である。このため、侵入行為が発生してから発報までに要する時間が長くなってしまう。
 この発明は、上述の問題点に鑑みてなされたものである。
 この発明の目的は、従来のPOTDRと等しい観測時間で、感度の不安定性を排除する、振動検知光ファイバセンサ及び振動検知方法を提供することにある。
 上述の目的を達成するため、この発明の実施形態に係る振動検知光ファイバセンサは、光源部と、光ファイバと、偏光状態計測部とを備えて構成される。
 光源部は、互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波して、プローブ光を生成する。光ファイバにはプローブ光が入力される。偏光状態計測部は、プローブ光が光ファイバで反射された反射光から抽出された、第1光短パルス及び第2光短パルスのそれぞれと等しい波長帯成分を抽出して、それぞれ偏光状態を測定して、偏光状態の時間変化に基づいて、振動を検知する。
 また、この発明の実施形態に係る振動検知方法は、以下の過程を備えて構成される。
 先ず、互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波して、プローブ光を生成する。次に、プローブ光が光ファイバで反射された反射光から抽出された第1光短パルス及び第2光短パルスのそれぞれと等しい波長帯成分を抽出して、それぞれ偏光状態を測定して、偏光状態の時間変化に基づいて、振動を検知する。
 この発明の実施形態に係る振動検知光ファイバセンサ及び振動検知方法は、プローブ光として、互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波したプローブ光を用いて、複屈折性の時間変化の固有値から求まるDAVを利用している。このため、入射光の偏光状態に依存しない振動検知が可能になる。
 また、プローブ光として、第1光短パルス及び第2光短パルスを多重したものを用いているので、従来のPOTDRに比べて観測時間が長くならない。
振動検知光ファイバセンサの概略的構成を示すブロック図である。 波長が異なり、偏光状態が互いに直交する光短パルスを光ファイバに入射したときの、反射光の概念を示す図である。 本発明の実施形態の効果を説明するための概念図であって、非特許文献3に記載の解析方法を、POTDRに適用した時の結果を示している。
 以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎず、また、単なる好適例に過ぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
 また、明細書における説明においてベクトル量を扱うが、ベクトル量を表す文字の上に付する右向き矢印は、混乱が生じない範囲で省略することがある。
 (振動検知光ファイバセンサ)
 図1を参照して、振動検知光ファイバセンサの実施形態について説明する。図1は、振動検知光ファイバセンサの概略的構成を示すブロック図である。この振動検知光ファイバセンサは、光源部10、光ファイバ20、光サーキュレータ40、及び、偏光状態計測部30を備えて構成される。
 光源部10は、互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波してプローブ光を生成する。光源部10は、例えば、第1レーザ光源112、第2レーザ光源114、第1強度スイッチ122、第2強度スイッチ124、関数発生器130、波長板140及び光カプラ150を備えて構成される。
 第1レーザ光源112及び第2レーザ光源114は、互いに波長が僅かに異なる第1連続光及び第2連続光を生成する。光ファイバ20等での波長依存性の影響を抑えるためには、第1連続光及び第2連続光の波長差は小さい方が望ましい。このため、第1連続光及び第2連続光の波長として、偏光状態計測部30で分離可能な近接波長が選択される。
 例えば、偏光状態計測部30で分離可能な波長の差が0.1nmの場合、第1連続光及び第2連続光の波長は、単一モード光ファイバが低損失の波長帯である通信波長帯において、それぞれ、1550.0nm及び1550.1nmに設定できる。
 第1強度スイッチ122は、関数発生器130で発生した電気信号に応じて、第1連続光を強度変調して、第1光短パルスを生成する。同様に、第2強度スイッチ124は、関数発生器130で発生した電気信号に応じて、第2連続光を強度変調して、第2光短パルスを生成する。第1連続光及び第2連続光と同様に、第1光短パルス及び第2光短パルスも互いに波長が僅かに異なる。
 第1強度スイッチ122及び第2強度スイッチ124は、消光特性に優れた音響光学効果を利用するAOM(Acoustic Optic Modulator)を用いて構成することができる。
 ここで、光短パルスのパルス幅は空間分解能を決定し、繰り返し周波数は測定距離を決定する。光波には、光ファイバでの伝搬に伴って、1mあたりおよそ5nsの伝搬遅延が発生する。反射光には、プローブ光が入力されてから反射するまでの時間と、反射してから反射光が出力されるまでの時間がかかるので、1mあたり往復で10nsの遅延が発生する。
 例えば、測定距離を5km、空間分解能を20mにする場合、光短パルスの幅は200ns、繰り返し周波数は20kHzと設定できる。
 波長板140は、第2光短パルスの偏光状態に回転を与える。回転の量は、波長が異なる2つの光短パルスの偏光状態を表すストークスベクトルが、ストークス空間内で互いに直交する偏光状態とすればよい。
 例えば、第1強度スイッチ122及び第2強度スイッチ124からそれぞれ出力される光短パルスの偏光状態を表すストークスベクトルがともに[1、0、0]の場合、波長板140として、λ/2板を利用することで、波長板140から出力される第2光短パルスの偏光状態を表すストークスベクトルを[0、0、1]に変換できる。
 従って、波長が僅かに異なり、偏光状態を表すストークスベクトルがストークス空間内で互いに直交する2つの光短パルスが得られる。
 第1強度スイッチ122と波長板140から出力された光短パルスは、光カプラ150によって多重される。
 光カプラ150で多重された光短パルスは、プローブ光として光サーキュレータ40を経て光ファイバ20に送られる。
 なお、光ファイバ20は、低偏波モード分散(PMD:Polarization Mode Dispersion)ファイバが望ましい。低PMDファイバとして、複屈折性の波長依存性を抑えた、PMD係数が0.01ps/(km)1/2程度の単一モード光ファイバが市販されている。
 光ファイバ20に送られたプローブ光は、光ファイバ20を伝播し、プローブ光の一部は、光ファイバ20で反射され、反射光として偏光状態計測部30に送られる。
 偏光状態計測部30は、WDMフィルタ310、第1偏光計312、第2偏光計314、アナログ-デジタル(A/D)変換器320及び演算器330を備えて構成される。
 偏光状態計測部30に送られた反射光は、WDMフィルタ310において、第1レーザ光源112の波長帯と、第2レーザ光源114の波長帯に2分岐される。2分岐された反射光は、一方が第1偏光計312に送られ、他方が第2偏光計314に送られる。第1偏光計312に送られる反射光の波長帯は、第1レーザ光源112の波長帯と等しく、第2偏光計314に送られる反射光の波長帯は、第2レーザ光源114の波長帯と等しい。
 なお、WDMフィルタ310に換えて、波長カプラ、第1波長フィルタ及び第2波長フィルタを用いてもよい。この場合、波長カプラは反射光を2分岐して、一方を第1波長フィルタを経て第1偏光計に送り、他方を第2波長フィルタを経て第2偏光計に送る。ここで、第1波長フィルタの透過帯域を、第1レーザ光源112の波長帯域と等しく、第2波長フィルタの透過帯域を、第2レーザ光源114の波長帯域と等しく設定すればよい。
 第1偏光計312及び第2偏光計314は、受け取った反射光の第1及び第2のストークスパラメータを取得する。反射光のストークスパラメータは、A/D変換器320に送られる。
 第1偏光計312及び第2偏光計314は、ストークスパラメータの時間依存性を観測できるものであればよく、その測定速度帯域は光ファイバ20のストークスベクトルの時間依存性の偏波変動速度に対してサンプリング定理(標本化定理)を満たしていればよい。
 A/D変換器320は、アナログ信号として取得されたストークスパラメータをデジタル信号に変換する。
 ここで、A/D変換器320の標本化周波数は、関数発生器130で発生する電気パルスに対して、標本化定理を満たす周波数であればよい。標本化定理とは、アナログ信号をデジタル信号へと変換する際に、どの程度の間隔で標本化(サンプリング)すればよいかを定量的に示す定理である。
 A/D変換器320で変換されたデジタル信号は、演算器330に送られる。
 演算器330は、デジタル信号に変換されたストークスパラメータを用いて、DAVを算出する。演算器330は、透過光のストークスパラメータから算出されたDAVを用いて、異常な振動の有無を検知する。また、異常な振動が検知された場合に、演算器330は、反射光のストークスパラメータから算出されたDAVを用いて、振動の位置を特定する。演算器330としては、例えば、DAVの算出及び振動の位置の特定を行うソフトウエアがインストールされた市販のパーソナルコンピュータ(PC)を利用できる。
 (DAVの算出方法)
 DAVの算出方法について説明する。
 光ファイバから出力される光波の偏光状態の時間発展は、以下の式(1)で与えられる(例えば、非特許文献3参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、sout(t)は、光ファイバへ入力される任意の光波に対して、時刻tにおいてこの光ファイバから出力される光波の偏光状態を表す3行1列のストークスベクトルである。ここで、tは光ファイバの出力端において定義される時刻である。
 角速度ベクトルωは、複屈折の時間変化を反映する光ファイバ固有の特性であり、微小な時間幅dt内でストークスベクトルsout(t)に、角速度ベクトルωの向きを中心とする回転を与える、3行1列の実ベクトルである。一方、光ファイバから出力される光波の偏光状態sout(t)は、光ファイバに入力される光波の偏光状態に依存する。この偏光状態を表すストークスベクトルの先端は、光ファイバへの入射偏光状態に依存してポアンカレ球面上のあらゆる点を通り得る。
 ここで、重要な点は、角速度ベクトルωは光ファイバの固有の複屈折の時間変化を示すものであり、入力される光波の偏光状態に依存しないことである。すなわち、光ファイバから出力される光波の偏光状態sout(t)は、光ファイバに入力される光波の偏光状態に依存するのに対し、角速度ベクトルωは入力される光波の偏光状態に依存しない。このため、角速度ベクトルωを測定すれば、入力される光波の偏光状態に依存せずに光ファイバの固有の複屈折の時間変化、すなわち、振動に関する光ファイバの特性が分かる。
 角速度ベクトルωの長さは、光ファイバのJones行列の時間部分により定義される時間発展演算子の2つの固有値の差であるDAVになる。
 角速度ベクトルωは、光ファイバの複屈折性を表す3行3列の回転行列R(t)を測定することによって求められる。ここでは、光ファイバへ入力される光波の偏光状態は変動しないとする。
 光ファイバへ入力される光波のストークスベクトルをsin(t)とすると、ストークスベクトルsin(t)及びsout(t)、並びに、回転行列R(t)の関係は、以下の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 上式(2)の1次の時間微分は、以下の式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 上式(2)及び(3)から、以下の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 ここで、†は随伴作用素を意味する。上式(4)を上式(3)の右辺に代入すると以下の式(5)が得られる。
Figure JPOXMLDOC01-appb-M000005
 上式(1)と上式(5)を比較すると、角速度ベクトル外積演算子表現「ω×」が以下の式(6)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 更に、角速度ベクトル外積演算子表現「ω×」を行列表現すると、以下の式(7)が得られる。
Figure JPOXMLDOC01-appb-M000007
 ここで、角速度ベクトルωは、3行1列の縦ベクトルであり、以下の式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 以上説明したように、回転行列R(t)の時間変化を測定すれば、上式(6)及び上式(7)から角速度ベクトルωが求められる。また、角速度ベクトルωの大きさを与える絶対値|ω|は、出力される光波のストークスベクトルsout(t)の先端が、時間の経過とともにポアンカレ球面上に描く円の角速度(rad/sec)と一致する。
 光ファイバへ入力される光波の偏光状態によって出力される光波のストークスベクトルsout(t)の先端の位置が異なるので、sout(t)のポアンカレ球面上で描く円の半径も入力される光波の偏光状態に依存する。しかしながら、sout(t)の先端が描く円の角速度は、円の半径によらず入力される光波の偏光状態に依存しない。このように、光ファイバそのものに備わった複屈折の固有状態を与える角速度ベクトルωを測定すれば、入力される光波の偏光状態に依存せずに、光ファイバの複屈折の時間変化を定量化できる。
 光ファイバから光波が出力される時刻tにおける回転行列R(t)の測定は互いに直交する2偏光状態に対して、それぞれ測定される光波の偏光状態から求めることができる。
 ここで、第1偏光計312で得られるストークスベクトルをt、第2偏光計314で得られるストークスベクトルをtとして、それぞれベクトル成分表記すると、以下の式(9)で表される。
Figure JPOXMLDOC01-appb-M000009
 なお、ストークスベクトルt、t及びtは、いずれもその絶対値が1になるように規格化されている。
 回転行列R(t)は、ストークスベクトルt、t及びtを用いて、以下の式(10)及び(11)と表される(例えば、非特許文献3参照)。
Figure JPOXMLDOC01-appb-M000010
 ここで、ストークスベクトルtは、以下の式(12)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 ストークスベクトルt及びtは、反射光が返ってくる時刻ごとに測定され、その時刻と伝搬遅延量から、ファイバの長手方向の反射光のストークスベクトルが得られる。ストークスベクトルt及びtの時間変化を観測すれば、ファイバの長手方向の各位置のR(t)の時間変化が得られる。各位置において、R(t)の時間変化を計算し、上式(6)及び(7)より時間経過に対する角速度ベクトルωの時間変化を求めることができる。また、角速度ベクトルωが求まれば、DAVは角速度ベクトルωの長さとして容易に求まる。
 (振動検知)
 図2は、波長が異なり、偏光状態が互いに直交する光短パルスを光ファイバに入射したときの、反射光の概念を示す図である。図2においては、測定距離を4.2kmとし、3km地点で振動を加えている。
 図2の上段は、第1偏光計で得られるストークスパラメータを示し、図2の中段は、第2偏光計で得られるストークスパラメータを示している。また、図2の下段は、上述したDAVを示している。参考のため、図2の下段には、単一偏光状態の光短パルスを入力する従来のPOTDRの概念も示している。
 POTDRでは、振動を加えた位置以降のストークスパラメータが変化する。しかし、図2の上段に示すように、偏光状態によっては、ストークスパラメータの変化が明確でない場合もある。
 また、図2の下段に示すように、従来のPOTDR(図2中、IIで示す。)では、結果が、プローブ光及び反射光の偏光状態に依存するため、振動に対して検知結果が小さい場合がある。これに対し、DAV(図2中、Iで示す。)を用いると、振動による変化をより確実に検知できる。
 図3を参照して、本発明の実施形態の効果を説明する。図3は、本発明の実施形態の効果を説明するための概念図であって、非特許文献3に記載の解析方法を、POTDRに適用した時の結果を示している。
 プローブ光や反射光の偏光状態に依存する、非特許文献1又は2に記載のPOTDRと異なり、非特許文献3に記載のDAVを用いると、プローブ光の偏光状態に依存せずに、最大の偏波状態の変化をとらえることができる。
 しかし、非特許文献3に記載の方法では、1つの状態を決定するために偏光状態が異なる2つの光短パルスが必要となるので、時間的に交互に偏光状態がスイッチする光短パルスを用いている。このため、非特許文献1又は2と比較して2倍の測定時間を要する。
 また、反射光は強度が弱いため、一般に、OTDRでは繰り返し測定した結果を平均化処理して、信号対雑音比を改善する。図3では、平均化回数が8回(図3中、Iで示す。)、32回(図3中、IIで示す。)、512回(図3中、IIIで示す。)の場合を示している。
 図2と同様に3kmの位置で振動を加えた場合、平均化回数が少なくなると、3km以前に大きな雑音が観測される。このように、平均化回数は、検知結果にとって重要である。
 本発明の実施形態では、波長が異なり、偏光状態が互いに直交する光短パルスが多重されたプローブ光に対する反射光を観測する。このため、異なる入射偏光状態に対する反射光を、偏波スイッチすることなく同時に観測できる。このため、本発明の実施形態においては、従来のPOTDR法と同じ測定時間(平均化回数)で、入射光の偏光依存性を排除した結果が得られる。
 光ファイバの1nm程度の近接した波長に対する、複屈折の依存性は、数10km程度の距離ではほとんど無視できる。
 このため、近接した波長空間を利用した同時測定が可能になる。
 10  光源部
 20  光ファイバ
 30  偏光状態計測部
 40  光サーキュレータ
 112  第1レーザ光源
 114  第2レーザ光源
 122  第1強度スイッチ
 124  第2強度スイッチ
 130  関数発生器
 140  波長板
 150  光カプラ
 310  WDMフィルタ
 312  第1偏光計
 314  第2偏光計
 320  A/D変換器
 330  演算器

Claims (7)

  1.  互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波して、プローブ光を生成する光源部と、
     前記プローブ光が入力される光ファイバと、
     前記プローブ光が前記光ファイバで反射された反射光から抽出された前記第1光短パルス及び前記第2光短パルスのそれぞれと等しい波長帯成分を抽出して、それぞれ偏光状態を測定して、前記偏光状態の時間変化に基づいて、振動を検知する偏光状態計測部と
    を備える振動検知光ファイバセンサ。
  2.  前記光ファイバが、低偏波モード分散ファイバである、請求項1に記載の振動検知光ファイバセンサ。
  3.  前記偏光状態計測部は、
     前記反射光から、前記第1光短パルス及び前記第2光短パルスのそれぞれと等しい波長帯成分を抽出するWDMフィルタと、
     前記WDMフィルタで抽出された、前記第1光短パルスと等しい波長帯成分の第1のストークスパラメータを測定する第1偏光計と、
     前記WDMフィルタで抽出された、前記第2光短パルスと等しい波長帯成分の第2のストークスパラメータを測定する第2偏光計と、
     前記第1のストークスパラメータ及び前記第2のストークスパラメータから算出される複屈折性の時間変化の固有値を利用して、振動の有無又は振動の位置を特定する演算器と
    を備える請求項1に記載の振動検知光ファイバセンサ。
  4.  前記光源部は、
     互いに波長が僅かに異なる連続光を生成する第1レーザ光源及び第2レーザ光源と、
     パルス状の電気信号を生成する関数発生器と、
     前記電気信号に応じて、第1レーザ光源及び第2レーザ光源で生成された連続光から、
    それぞれ光短パルスを生成する、第1強度スイッチ及び第2強度スイッチと、
     前記第2強度スイッチが生成した光短パルスの偏光状態を回転する波長板と、
     前記第1強度スイッチ及び前記波長板から出力された光短パルスを多重する光カプラと
    を備える請求項1に記載の振動検知光ファイバセンサ。
  5.  互いに波長が僅かに異なり、かつ、偏光状態が直交する第1光短パルス及び第2光短パルスを合波して、プローブ光を生成することと、
     前記プローブ光が光ファイバで反射された反射光から抽出された前記第1光短パルス及び前記第2光短パルスのそれぞれと等しい波長帯成分を抽出して、それぞれ偏光状態を測定して、前記偏光状態の時間変化に基づいて、振動を検知することと
    を備える振動検知方法。
  6.  前記振動を検知することは、
     前記反射光から、前記第1光短パルス及び前記第2光短パルスのそれぞれと等しい波長帯成分を抽出することと、
     抽出された、前記第1光短パルスと等しい波長帯成分の第1のストークスパラメータを測定することと、
     抽出された、前記第2光短パルスと等しい波長帯成分の第2のストークスパラメータを測定することと、
     前記第1のストークスパラメータ及び前記第2のストークスパラメータから算出される複屈折性の時間変化の固有値を利用して、振動の有無又は振動の位置を特定することと
    を備える請求項5に記載の振動検知方法。
  7.  前記プローブ光を生成することは、
     互いに波長が僅かに異なる第1連続光及び第2連続光を生成することと、
     パルス状の電気信号を生成することと、
     前記電気信号に応じて、第1連続光及び第2連続光から、それぞれ前記第1光短パルス及び前記第2光短パルスを生成することと、
     前記第2光短パルスの偏光状態を回転することと、
     前記第1光短パルス及び偏光状態が回転した前記第2光短パルスを多重して、前記プローブ光を得ることと
    を備える請求項5に記載の振動検知方法。
PCT/JP2018/018834 2017-08-29 2018-05-16 振動検知光ファイバセンサ及び振動検知方法 WO2019044054A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163920A JP2019039881A (ja) 2017-08-29 2017-08-29 振動検知光ファイバセンサ及び振動検知方法
JP2017-163920 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044054A1 true WO2019044054A1 (ja) 2019-03-07

Family

ID=65525768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018834 WO2019044054A1 (ja) 2017-08-29 2018-05-16 振動検知光ファイバセンサ及び振動検知方法

Country Status (2)

Country Link
JP (1) JP2019039881A (ja)
WO (1) WO2019044054A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022034748A1 (ja) * 2020-08-13 2022-02-17
CN114370926A (zh) * 2021-12-27 2022-04-19 华北电力大学 一种光纤分布式电力变压器振动传感系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230003583A1 (en) * 2019-12-17 2023-01-05 Sony Group Corporation Signal processing device, signal processing method, and program
KR102461021B1 (ko) * 2021-03-08 2022-11-01 한국원자력연구원 진동 측정 장치 및 이를 이용한 진동 측정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307896A (ja) * 1993-02-26 1994-11-04 Hitachi Cable Ltd 分布型導波路センサ
JP2003279404A (ja) * 2002-03-25 2003-10-02 Oki Electric Ind Co Ltd 干渉型光ファイバセンサ、信号処理装置及び信号処理方法
JP2007255966A (ja) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The 偏波変動による振動位置の検知装置
JP2009133760A (ja) * 2007-11-30 2009-06-18 Furukawa Electric Co Ltd:The 面状センサ
WO2017087792A1 (en) * 2015-11-20 2017-05-26 Sentek Instrument, Llc Method and apparatus for distributed sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307896A (ja) * 1993-02-26 1994-11-04 Hitachi Cable Ltd 分布型導波路センサ
JP2003279404A (ja) * 2002-03-25 2003-10-02 Oki Electric Ind Co Ltd 干渉型光ファイバセンサ、信号処理装置及び信号処理方法
JP2007255966A (ja) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The 偏波変動による振動位置の検知装置
JP2009133760A (ja) * 2007-11-30 2009-06-18 Furukawa Electric Co Ltd:The 面状センサ
WO2017087792A1 (en) * 2015-11-20 2017-05-26 Sentek Instrument, Llc Method and apparatus for distributed sensing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022034748A1 (ja) * 2020-08-13 2022-02-17
WO2022034748A1 (ja) * 2020-08-13 2022-02-17 日本電気株式会社 水中騒音監視装置、水中騒音監視方法及び記録媒体
JP7439935B2 (ja) 2020-08-13 2024-02-28 日本電気株式会社 水中騒音監視装置及び水中騒音処理方法
CN114370926A (zh) * 2021-12-27 2022-04-19 华北电力大学 一种光纤分布式电力变压器振动传感系统
CN114370926B (zh) * 2021-12-27 2023-08-22 华北电力大学 一种光纤分布式电力变压器振动传感系统

Also Published As

Publication number Publication date
JP2019039881A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
US10048115B2 (en) Optical sensor and method of use
EP2373956B1 (en) Distributed optical fibre sensor
WO2019044054A1 (ja) 振動検知光ファイバセンサ及び振動検知方法
US9599460B2 (en) Hybrid Raman and Brillouin scattering in few-mode fibers
US8909040B1 (en) Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectometry (OFDR) system
JP5242098B2 (ja) 光ファイバセンサ及び変動位置検出方法
AU4092100A (en) Intrinsic securing of fibre optic communication links
JP7435160B2 (ja) 光ファイバ振動検知装置及び振動検知方法
JP6866723B2 (ja) 振動検知光ファイバセンサ及び振動検知方法
US11467060B2 (en) Optical pulse reflectometer and optical pulse reflectometry
IL146075A (en) Intrinsic security of fiber optic communication links
JP2013047669A (ja) 光ファイバの解析装置および光ファイバの解析方法
JP7059689B2 (ja) 振動検知光ファイバセンサ及び振動検知方法
CA2790076A1 (en) Systems and methods for optically generated trigger multiplication
AU2015201357B2 (en) Optical sensor and method of use
Wu et al. High performance distributed acoustic sensor based on ultra-weak FBG array
Šlapák et al. Polarization changes as early warning system in optical fiber networks
JP2019174360A (ja) 光ファイバ歪測定装置及びその測定方法
KR102644918B1 (ko) 감도 향상형 광섬유 음향 분포센서
US9013694B2 (en) System and method for measuring a wavelength-resolved state of polarization of an optical signal
JP2024084469A (ja) 光ファイバセンサ及びブリルアン周波数シフト測定方法
Linze et al. Development of a polarimetric vibration sensor for quasi-distributed measurements
JP2009031313A (ja) 光ファイバ特性測定装置および光ファイバ特性測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851618

Country of ref document: EP

Kind code of ref document: A1