WO2019044002A1 - Portable device and remote keyless entry system - Google Patents

Portable device and remote keyless entry system Download PDF

Info

Publication number
WO2019044002A1
WO2019044002A1 PCT/JP2018/008602 JP2018008602W WO2019044002A1 WO 2019044002 A1 WO2019044002 A1 WO 2019044002A1 JP 2018008602 W JP2018008602 W JP 2018008602W WO 2019044002 A1 WO2019044002 A1 WO 2019044002A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
vehicle
portable device
determination
Prior art date
Application number
PCT/JP2018/008602
Other languages
French (fr)
Japanese (ja)
Inventor
宮澤 明
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019044002A1 publication Critical patent/WO2019044002A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor

Definitions

  • the present invention relates to a portable device and a remote keyless entry system.
  • RKE system remote keyless entry system
  • vehicle-mounted device periodically transmits a wireless signal
  • portable device of the user approaching the vehicle responds to the wireless signal to control the unlocking and locking of the vehicle.
  • relay attacks on vehicles equipped with the RKE system have become a problem.
  • the relay attack is to solve the vehicle even though the legitimate user is away from the vehicle by relaying the wireless signal from the on-board unit to the authorized user's portable device by using the relay device by the unauthorized person. It is a method of locking.
  • a method has been proposed in which it is determined whether a signal from a vehicle-mounted device is relayed based on the pattern of the signal including a signal having a predetermined pattern in a radio signal transmitted by the vehicle-mounted device. ing.
  • the present invention has been made in view of the above problems, and has an object to accurately detect a relay attack on a vehicle equipped with an RKE system.
  • a portable device is based on a receiver that receives an on-vehicle device signal including a determination signal having a constant signal level, and a waveform of a target portion of the determination signal having a constant signal level. And a control unit that determines whether the vehicle-mounted device signal is a normal signal, and a transmission unit that transmits a portable device signal according to the determination result of the vehicle-mounted device signal.
  • a relay attack on a vehicle equipped with the RKE system can be detected with high accuracy.
  • FIG. 2 is a diagram showing an example of a functional configuration of a portable device.
  • the flowchart which shows an example of the process which onboard equipment performs.
  • the flowchart which shows an example of the process which a portable device performs.
  • the RKE system 100 is a system for locking and unlocking a vehicle by a wireless signal.
  • FIG. 1 is a diagram showing an example of the RKE system 100. As shown in FIG.
  • the RKE system 100 of FIG. 1 includes a portable device 1 and an on-vehicle device 2.
  • the portable device 1 is a device carried by an authorized user of the RKE system 100 (such as a driver of a vehicle).
  • the portable device 1 of FIG. 1 includes a low frequency (LF) receiving unit 11, an ultra high frequency (UHF) transmitting unit 12, and a portable device control unit 13.
  • LF low frequency
  • UHF ultra high frequency
  • the LF receiving unit 11 receives the LF signal (vehicle-mounted device signal) from the vehicle-mounted device 2 by radio.
  • the frequency of the LF signal is, for example, 125 kHz, but is not limited thereto.
  • the LF receiver 11 includes an LF antenna and a receiver circuit.
  • the LF antenna is an antenna that receives an LF signal and outputs an electrical signal according to the LF signal.
  • the receiving circuit is a circuit for inputting data (signal level) corresponding to the electric signal output from the LF antenna to the portable device control unit 13, and includes a low noise amplifier, a filter, a mixer, and a demodulation circuit.
  • the receiving circuit may be an independent IC or may be incorporated in the portable device control unit 13.
  • the portable device 1 may include a receiving unit that receives a wireless signal other than the LF signal.
  • the UHF transmission unit 12 wirelessly transmits a UHF signal (portable device signal).
  • the frequency of the UHF signal is, for example, 315 MHz, but is not limited thereto.
  • the UHF transmission unit 12 includes a transmission circuit and a UHF antenna.
  • the transmission circuit is a circuit that performs predetermined signal processing on the UHF signal input from the portable device control unit 13, and includes a modulation circuit, a mixer, a filter, and a power amplifier.
  • the transmission circuit may be an independent IC or may be incorporated in the portable device control unit 13.
  • the UHF antenna is an antenna that wirelessly transmits the UHF signal that has been signal-processed by the transmission circuit.
  • the portable device 1 may include a transmission unit that transmits a wireless signal other than the UHF signal.
  • the portable device control unit 13 is a circuit that controls the entire portable device 1 and includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM).
  • the CPU controls each component of the portable device 1 by executing a program to realize the function of the portable device control unit 13.
  • the ROM stores programs executed by the CPU and various data.
  • the RAM provides the CPU with a work area.
  • the portable device control unit 13 is, for example, a microcomputer, but is not limited to this.
  • the portable device control unit 13 determines whether the LF signal is a normal LF signal (LF signal not subjected to relay attack) based on the waveform of the target portion of the determination signal Sd included in the LF signal.
  • the determination signal Sd and the determination method will be described later.
  • the configuration of the portable device 1 is not limited to the example shown in FIG.
  • the portable device 1 includes a battery for supplying power to the LF reception unit 11, the UHF transmission unit 12, and the portable device control unit 13, and an unlocking button and a locking button for the user to manually operate the unlocking and locking of the vehicle. May be provided.
  • the on-vehicle device 2 is a device that controls locking and unlocking of the vehicle according to the UHF signal from the portable device 1, and is mounted on the vehicle.
  • the on-vehicle device 2 is supplied with power from a battery mounted on the vehicle.
  • the vehicle-mounted device 2 of FIG. 1 includes a UHF receiver 21, an LF transmitter 22, and a vehicle-mounted device controller 23.
  • the UHF receiver 21 wirelessly receives the UHF signal (portable signal) from the portable device 1.
  • the frequency of the UHF signal is, for example, 315 MHz, but is not limited thereto.
  • the UHF receiving unit 21 includes a UHF antenna and a receiving circuit.
  • the UHF antenna is an antenna that receives a UHF signal and outputs an electrical signal according to the UHF signal.
  • the receiving circuit is a circuit for inputting data corresponding to the electric signal output from the UHF antenna to the on-vehicle controller 23.
  • the receiving circuit includes a low noise amplifier, a filter, a mixer, and a demodulation circuit.
  • the receiving circuit may be an independent IC or may be incorporated in the on-vehicle controller 23.
  • the onboard equipment 2 may be provided with the receiving part which receives radio signals other than a UHF signal.
  • the LF transmission unit 22 periodically transmits the LF signal (vehicle-mounted device signal) wirelessly.
  • the frequency of the LF signal is, for example, 125 kHz, but is not limited thereto.
  • the LF transmitter 22 includes a transmitter circuit and an LF antenna.
  • the transmission circuit is a circuit that performs predetermined signal processing on the LF signal input from the vehicle-mounted device control unit 23, and includes a modulation circuit, a mixer, a filter, and a power amplifier.
  • the transmitter circuit may be an independent IC or may be incorporated in the on-vehicle controller 23.
  • the LF antenna is an antenna that wirelessly transmits the LF signal subjected to signal processing by the transmission circuit.
  • the onboard equipment 2 may be provided with the transmission part which transmits radio signals other than LF signal.
  • the vehicle-mounted device control unit 23 is a circuit that controls the entire vehicle-mounted device 2 and includes a CPU, a ROM, and a RAM.
  • the CPU controls each configuration of the on-vehicle device 2 by executing a program to realize the function of the on-vehicle device control unit 23.
  • the ROM stores programs executed by the CPU and various data.
  • a vehicle ID is stored in the ROM.
  • the vehicle ID is vehicle-specific identification information registered in advance.
  • the RAM provides the CPU with a work area.
  • the vehicle-mounted device control unit 23 is, for example, a microcomputer such as an ECU (Electronic Control Unit), but is not limited thereto.
  • the vehicle-mounted device control unit 23 is connected to a vehicle-mounted network such as a controller area network (CAN), communicates with the door control unit 3 connected via the vehicle-mounted network, and controls locking and unlocking of the vehicle.
  • the door control unit 3 is a circuit that locks and unlocks the door of the vehicle.
  • the door control unit 3 is, for example, a microcomputer such as an ECU, but is not limited thereto.
  • FIG. 2 is a diagram showing an example of the LF signal transmitted by the LF transmitter 22.
  • the LF signal of FIG. 2 includes, in order from the top, a preamble signal Sp, a request signal Sr, and a determination signal Sd.
  • the determination signal Sd is a signal for determining whether the signal is a normal LF signal (LF signal not subjected to relay attack), and has a portion where the signal level is constant.
  • the LF signal includes a plurality of rectangular waves having different signal levels as the determination signal Sd, but the determination signal Sd is not limited to the example of FIG.
  • the LF signal may include one rectangular wave as the determination signal Sd, or may include a plurality of rectangular waves having the same signal level, or have a plurality of sections having different signal levels. Step waves may be included.
  • the signal level changes sharply.
  • the portable device 1 receives the LF signal, the waveform is distorted in the rising portion and the falling portion of the determination signal Sd output from the LF receiving unit 11.
  • the distortion of the waveform is unique to the LF antenna of the LF transmitter 22 that has transmitted the LF signal.
  • the LF signal transmitted by the on-vehicle device 2 is transmitted to the portable device 1 via the unauthorized person's repeater. Therefore, when the portable device 1 receives an incorrect LF signal (LF signal subjected to relay attack), the distortion of the waveform generated in the rising portion and the falling portion of the determination signal Sd output from the LF receiving unit 11 It is further distorted (smoothed) according to the Q value of the relay LF antenna.
  • the repeater since the LF antenna having a high Q value is used to extend the transmission distance of the LF signal, the waveform is likely to be distorted when the signal level (current of the LF antenna) changes sharply.
  • the way of distortion of the rising portion and falling portion of the determination signal Sd output from the LF receiving unit 11 is when the portable device 1 receives a correct LF signal and when the portable device 1 receives an incorrect LF signal And will be different.
  • FIG. 3 is a diagram showing a specific example of the LF signal output by the LF receiver 11.
  • the upper diagram of FIG. 3 is an LF signal when the portable device 1 receives a normal LF signal
  • the lower diagram of FIG. 3 is an LF signal when the portable device 1 receives an incorrect LF signal.
  • the rising and falling portions of the determination signal Sd output from the LF receiving unit 11 are The way of distortion is different. In the example of FIG. 3, particularly, the way of distortion of the rising portion (circled portion) of the determination signal Sd is largely different.
  • the received LF signal is a normal LF signal (the relay attack is not performed based on the distortion of the waveform of the determination signal Sd output by the LF receiving unit 11 as described above It is determined whether it is an LF signal).
  • FIG. 4 is a diagram showing an example of a functional configuration of the portable device 1.
  • the portable device 1 of FIG. 4 includes a sampling unit 131, a data storage unit 132, a normalization unit 133, a determination unit 134, a UHF signal generation unit 135, and a distance calculation unit 136.
  • the sampling unit 131, the normalization unit 133, the determination unit 134, the UHF signal generation unit 135, and the distance calculation unit 136 may be realized by the CPU of the portable device control unit 13 executing a program, or the portable device control It may be realized by a dedicated circuit (hardware) included in the unit 13. Further, the data storage unit 132 is realized by the ROM included in the portable device control unit 13.
  • the sampling unit 131 samples the signal level (RSSI: Received Signal Strength Indicator) of the target portion of the determination signal Sd included in the LF signal input from the LF reception unit 11 at a sampling interval shorter than the length of the target portion.
  • the target portion is a portion including at least one of the rising portion and the falling portion of the determination signal Sd, and a portion in which the signal level continuous to the portion is constant.
  • the target portion may be the entire determination signal Sd, may be a portion including only the rising portion of the determination signal Sd, or may be a portion including only the falling portion of the determination signal Sd.
  • measured levels a series of signal levels sampled by the sampling unit 131 will be referred to as measured levels.
  • FIG. 5 is a view showing an example of the actual measurement level sampled by the sampling unit 131. As shown in FIG. In the example of FIG. 5, ten measured levels are sampled (measured), and the target portion is a portion including the rising portion of the determination signal Sd. As can be seen from FIG. 5, the actual measurement level corresponds to the waveform of the target portion of the determination signal Sd.
  • the sampling interval and the number of sampling times of the sampling unit 131 can be set arbitrarily. Further, as in the example of FIG. 2, when the LF signal includes a plurality of determination signals Sd, the sampling unit 131 may sample any one of the determination signals Sd set in advance. Further, it is preferable that the determination signal Sd sampled by the sampling unit 131 be a determination signal Sd in which the distortion of the target portion is large. For example, in the example of FIG. 3, since the distortion of the rising portions of the second to fifth determination signals Sd is large, the sampling unit 131 is a target including any one rising portion of the second to fifth determination signals Sd. It is preferred to sample the part.
  • the data storage unit 132 stores the vehicle ID and the reference level.
  • the vehicle ID is vehicle-specific identification information registered in advance.
  • the reference level is a series of signal levels obtained by sampling the signal level of the target portion of the determination signal Sd at a predetermined sampling interval when the portable device 1 receives a normal LF signal.
  • the reference level is sampled in advance and stored in the data storage unit 132 in advance.
  • the sampling interval and the number of times of sampling measurement of the reference level are the same as the sampling interval and the number of times of sampling when the sampling unit 131 samples the actual measurement level.
  • the normalization unit 133 normalizes the actual measurement level. Specifically, the normalization unit 133 adjusts the actual measurement level so that the peak value of the actual measurement level matches the peak value of the reference level. This is because the absolute value of the actual measurement level changes depending on the distance from the vehicle-mounted device 2 when the portable device 1 receives the LF signal.
  • the determination unit 134 determines whether the received LF signal is a normal LF signal, that is, whether a relay attack has been performed, based on the normalized actual measurement level and the reference level.
  • the received LF signal is a normal LF signal
  • the normalized measured level and the reference level become close values.
  • the received LF signal is an incorrect LF signal
  • the normalized actual measurement level and the reference level are separated values. Therefore, when the difference between the normalized actual measurement level and the reference level is equal to or less than a preset threshold, the determination unit 134 determines that the received LF signal is a normal LF signal (relay attack is not performed).
  • the difference between the normalized actual measurement level and the reference level is, for example, a residual sum of squares, but is not limited thereto.
  • the UHF signal generation unit 135 generates a UHF signal according to the determination result of the LF signal by the determination unit 134.
  • the UHF signal generated by the UHF signal generation unit 135 is wirelessly transmitted by the UHF transmission unit 12.
  • the UHF signal generation unit 135 when it is determined that the received LF signal is an incorrect LF signal, the UHF signal generation unit 135 generates a no signal, and when it is determined that the received LF signal is a normal LF signal, the vehicle ID and the distance D Generate the indicated UHF signal.
  • the distance D is a distance between the portable device 1 and the on-vehicle device 2.
  • the UHF signal generator 135 when it is determined that the received LF signal is an incorrect LF signal, the UHF signal generator 135 generates a UHF signal including a vehicle ID and a signal indicating that a relay attack has been performed, and the normal LF If it is determined to be a signal, a vehicle ID, a distance D, and a UHF signal indicating that a relay attack has been performed may be generated.
  • the on-vehicle device 2 can grasp whether or not the relay attack has been performed.
  • the vehicle-mounted device 2 having grasped that the relay attack has been performed may notify the user or the management system of the vehicle to that effect.
  • the distance calculation unit 136 is configured to set between the portable unit 1 and the on-vehicle unit 2 (transmission source of the LF signal) based on the signal level (RSSI) of the determination signal Sd included in the LF signal input from the LF reception unit 11. Calculate the distance D.
  • RSSI signal level
  • the distance calculation unit 136 can calculate the distance D based on the average value of the actual measurement levels and the relationship between the average value of the actual measurement levels and the distance D. The relationship between the average value of the actual measurement levels and the distance D may be stored in the data storage unit 132 in advance. Note that the distance calculation unit 136 can also calculate the distance D based on the actual measurement level sampled by the sampling unit 131.
  • the portable device 1 transmits a vehicle ID and a UHF signal indicating that a relay attack has been performed when it is determined that a relay attack has been performed, and when it is determined that a relay attack has not been performed, a vehicle ID , Distance D, and a UHF signal indicating that no relay attack has been performed.
  • FIG. 6 is a flowchart showing an example of the process performed by the on-vehicle device 2.
  • the on-vehicle device 2 periodically executes the process of FIG.
  • the onboard device control unit 23 When the execution timing of the process of FIG. 6 arrives, the onboard device control unit 23 first generates an LF signal including the preamble signal Sp, the request signal Sr, and the determination signal Sd (step S101). The vehicle-mounted device control unit 23 inputs the generated LF signal to the LF transmission unit 22. When the LF transmission unit 22 receives an LF signal from the on-vehicle device control unit 23, the LF transmission unit 22 wirelessly transmits the LF signal (step S102).
  • the onboard unit control unit 23 waits for reception of the UHF signal for a predetermined period. If the UHF reception unit 21 can not receive the UHF signal during the predetermined period (NO in step S103), the on-vehicle device control unit 23 ends the process.
  • the case where the UHF signal can not be received corresponds to the case where the user (portable device 1) is not within the reach of the LF signal.
  • the vehicle-mounted device control unit 23 determines the vehicle ID included in the UHF signal and the vehicle ID stored in the ROM. , Are determined to match (step S104). If the vehicle IDs do not match (NO in step S104), the onboard device control unit 23 ends the process.
  • the on-vehicle device control unit 23 refers to the UHF signal to check whether a relay attack has been performed (step S105). If the UHF signal indicates that a relay attack has been performed (with a relay attack) (YES in step S105), the on-vehicle device control unit 23 ends the process.
  • step S105 when the UHF signal indicates that the relay attack is not performed (no relay attack) (NO in step S105), the on-vehicle device control unit 23 transmits an unlock signal to the door control unit 3; The door of the vehicle is unlocked (step S106).
  • the on-vehicle device 2 can control the locking and unlocking of the vehicle according to the response (UHF signal) from the portable device 1 to the LF signal.
  • FIG. 7 is a flowchart showing an example of processing executed by the portable device 1.
  • the portable device 1 executes the process of FIG. 7 when the LF reception unit 11 receives an LF signal.
  • the sampling unit 131 samples a target portion of the determination signal Sd included in the LF signal input from the LF reception unit 11, and measures the measured level. Is acquired (step S201). The sampling unit 131 passes the acquired actual measurement level to the normalization unit 133.
  • the normalization unit 133 When acquiring the actual measurement level, the normalization unit 133 reads the reference level from the data storage unit 132, and normalizes the actual measurement level based on the reference level (step S202). The normalization unit 133 passes the normalized actual measurement level to the determination unit 134.
  • the determination unit 134 determines whether the received LF signal is a normal LF signal. Specifically, the determination unit 134 reads the reference level and the threshold from the data storage unit 132, calculates the difference between the reference level and the normalized actual measurement level (step S203), and compares the difference with the threshold. (Step 204).
  • the determination unit 134 determines that the received LF signal is a normal LF signal, that is, no relay attack is performed (no relay attack) (step S205), to notify the UHF signal generation unit 135 and the distance calculation unit 136 to that effect.
  • the distance calculation unit 136 calculates the distance D between the portable device 1 and the on-vehicle device 2 based on the LF signal input from the LF reception unit 11. (Step S206). The distance calculation unit 136 passes the calculated distance D to the UHF signal generation unit 135. Note that step S206 may be performed in parallel with steps S201 to S205.
  • the UHF signal generation unit 135 is notified that a relay attack is not performed, and when the distance D is received, reads the vehicle ID from the data storage unit 132, and the vehicle ID, the distance D, and the relay attack are not performed. Is generated (step S207).
  • the UHF signal generation unit 135 inputs the generated UHF signal to the UHF transmission unit 12.
  • the UHF transmission unit 12 wirelessly transmits the UHF signal (step S208).
  • the determination unit 134 determines that the received LF signal is an incorrect LF signal, that is, determines that the relay attack has been performed (relay attack is present) (step S209), The UHF signal generation unit 135 is notified of that.
  • the UHF signal generation unit 135 When notified that the relay attack has been performed, the UHF signal generation unit 135 reads the vehicle ID from the data storage unit 132, and generates a UHF signal indicating that the vehicle ID and the relay attack have been performed (step S210). ). The UHF signal generation unit 135 inputs the generated UHF signal to the UHF transmission unit 12. Thereafter, the process proceeds to step S208.
  • the portable device 1 determines whether the received LF signal is a normal LF signal based on the waveform of the target portion of the determination signal Sd included in the LF signal, and the UHF signal according to the determination result You can send
  • the portable device 1 when the portable device 1 receives an LF signal, whether the received LF signal is a normal LF signal based on the waveform of the target portion of the determination signal Sd, that is, Determine if a relay attack has occurred.
  • the portable device 1 can detect the relay attack with high accuracy. As a result, it is possible to suppress the door of the vehicle equipped with the RKE system 100 from being unlocked illegally by the relay attack, and to improve the antitheft performance of the vehicle.
  • the portable device control unit 13 receives the signal based on the pattern of the determination signals Sd. It may be determined whether the LF signal is a normal LF signal. By using the method in combination, the portable device 1 can detect the relay attack more accurately.
  • the present invention is not limited to the configurations shown here, such as the configurations shown in the above-described embodiments, etc., in combination with other elements. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lock And Its Accessories (AREA)
  • Selective Calling Equipment (AREA)

Abstract

One embodiment of this portable device comprises: a receiver that receives an on-board device signal containing a determination signal having a portion with a constant signal level; a control unit that determines whether the on-board device signal is a legitimate signal on the basis of the waveform of a certain portion of the determination signal that has the portion with the constant signal level; and a transmitter that transmits a portable device signal that accords with the determination results for the on-board device signal.

Description

携帯機及びリモートキーレスエントリーシステムMobile device and remote keyless entry system
 本発明は、携帯機及びリモートキーレスエントリーシステムに関する。 The present invention relates to a portable device and a remote keyless entry system.
 従来、車両の解錠及び施錠を無線で制御するシステムとして、リモートキーレスエントリーシステム(以下「RKEシステム」という。)が利用されている。RKEシステムでは、車載器が定期的に無線信号を送信し、車両に接近したユーザの携帯機が当該無線信号に応答することにより、車両の解錠及び施錠が制御される。 Conventionally, a remote keyless entry system (hereinafter referred to as "RKE system") has been used as a system for wirelessly controlling unlocking and locking of a vehicle. In the RKE system, the vehicle-mounted device periodically transmits a wireless signal, and the portable device of the user approaching the vehicle responds to the wireless signal to control the unlocking and locking of the vehicle.
 近年、RKEシステムを搭載した車両に対するリレーアタックが問題となっている。リレーアタックは、不正者が中継器を利用して、車載器からの無線信号を正規のユーザの携帯機まで中継することにより、正規のユーザが車両から離れているにもかかわらず、車両を解錠させる方法である。このようなリレーアタックへの対策として、車載器が送信する無線信号に所定のパターンを有する信号を含め、当該信号のパターンに基づいて、車載器からの信号が中継されたか判定する方法が提案されている。 In recent years, relay attacks on vehicles equipped with the RKE system have become a problem. The relay attack is to solve the vehicle even though the legitimate user is away from the vehicle by relaying the wireless signal from the on-board unit to the authorized user's portable device by using the relay device by the unauthorized person. It is a method of locking. As a countermeasure against such relay attacks, a method has been proposed in which it is determined whether a signal from a vehicle-mounted device is relayed based on the pattern of the signal including a signal having a predetermined pattern in a radio signal transmitted by the vehicle-mounted device. ing.
国際公開第2016/031524International Publication No. 2016/031524
 しかしながら、上記従来の方法では、不正者により信号のパターンが模倣された場合、車載器からの信号が中継されたか判定できず、リレーアタックを防げなかった。 However, in the above-mentioned conventional method, when the fraudulent person imitates the pattern of the signal, it can not be judged whether the signal from the on-vehicle unit has been relayed, and the relay attack can not be prevented.
 本発明は、上記の課題に鑑みてなされたものであり、RKEシステムを搭載した車両に対するリレーアタックを精度よく検出することを目的とする。 The present invention has been made in view of the above problems, and has an object to accurately detect a relay attack on a vehicle equipped with an RKE system.
 一実施形態に係る携帯機は、信号レベルが一定の部分を有する判定信号を含む車載器信号を受信する受信部と、前記信号レベルが一定の部分を有する前記判定信号の対象部分の波形に基づいて、前記車載器信号が正規の信号であるか判定する制御部と、前記車載器信号の判定結果に応じた携帯機信号を送信する送信部と、を備える。 A portable device according to one embodiment is based on a receiver that receives an on-vehicle device signal including a determination signal having a constant signal level, and a waveform of a target portion of the determination signal having a constant signal level. And a control unit that determines whether the vehicle-mounted device signal is a normal signal, and a transmission unit that transmits a portable device signal according to the determination result of the vehicle-mounted device signal.
 本発明の各実施形態によれば、RKEシステムを搭載した車両に対するリレーアタックを精度よく検出することができる。 According to each embodiment of the present invention, a relay attack on a vehicle equipped with the RKE system can be detected with high accuracy.
RKEシステムのハードウェア構成の一例を示す図。The figure which shows an example of the hardware constitutions of RKE system. LF信号の一例を示す図。The figure which shows an example of LF signal. LF信号の具体例を示す図。The figure which shows the example of LF signal. 携帯機の機能構成の一例を示す図。FIG. 2 is a diagram showing an example of a functional configuration of a portable device. 実測レベルの一例を示す図。The figure which shows an example of a measurement level. 車載器が実行する処理の一例を示すフローチャート。The flowchart which shows an example of the process which onboard equipment performs. 携帯機が実行する処理の一例を示すフローチャート。The flowchart which shows an example of the process which a portable device performs.
 以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重畳した説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In addition, regarding the description of the specification and drawings according to each embodiment, the same reference numerals are given to components having substantially the same functional configuration, and the overlapping description will be omitted.
 一実施形態に係るRKEシステム100について、図1~図7を参照して説明する。本実施形態に係るRKEシステム100は、無線信号により車両を施錠及び解錠するためのシステムである。 An RKE system 100 according to one embodiment will be described with reference to FIGS. 1-7. The RKE system 100 according to the present embodiment is a system for locking and unlocking a vehicle by a wireless signal.
 まず、RKEシステム100のハードウェア構成について説明する。図1は、RKEシステム100の一例を示す図である。図1のRKEシステム100は、携帯機1と、車載器2と、を備える。 First, the hardware configuration of the RKE system 100 will be described. FIG. 1 is a diagram showing an example of the RKE system 100. As shown in FIG. The RKE system 100 of FIG. 1 includes a portable device 1 and an on-vehicle device 2.
 携帯機1は、RKEシステム100の正規のユーザ(車両のドライバなど)が携帯する装置である。図1の携帯機1は、LF(Low Frequency)受信部11と、UHF(Ultra High Frequency)送信部12と、携帯機制御部13と、を備える。 The portable device 1 is a device carried by an authorized user of the RKE system 100 (such as a driver of a vehicle). The portable device 1 of FIG. 1 includes a low frequency (LF) receiving unit 11, an ultra high frequency (UHF) transmitting unit 12, and a portable device control unit 13.
 LF受信部11は、車載器2からのLF信号(車載器信号)を無線で受信する。LF信号の周波数は、例えば、125kHzであるが、これに限られない。LF受信部11は、LFアンテナと、受信回路と、を含む。LFアンテナは、LF信号を受信し、当該LF信号に応じた電気信号を出力するアンテナである。受信回路は、LFアンテナが出力した電気信号に応じたデータ(信号レベル)を携帯機制御部13に入力する回路であり、ローノイズアンプ、フィルタ、ミキサ、及び復調回路を含む。受信回路は、独立したICであってもよいし、携帯機制御部13に組み込まれていてもよい。なお、携帯機1は、LF信号以外の無線信号を受信する受信部を備えてもよい。 The LF receiving unit 11 receives the LF signal (vehicle-mounted device signal) from the vehicle-mounted device 2 by radio. The frequency of the LF signal is, for example, 125 kHz, but is not limited thereto. The LF receiver 11 includes an LF antenna and a receiver circuit. The LF antenna is an antenna that receives an LF signal and outputs an electrical signal according to the LF signal. The receiving circuit is a circuit for inputting data (signal level) corresponding to the electric signal output from the LF antenna to the portable device control unit 13, and includes a low noise amplifier, a filter, a mixer, and a demodulation circuit. The receiving circuit may be an independent IC or may be incorporated in the portable device control unit 13. The portable device 1 may include a receiving unit that receives a wireless signal other than the LF signal.
 UHF送信部12は、UHF信号(携帯機信号)を無線で送信する。UHF信号の周波数は、例えば、315MHzであるが、これに限られない。UHF送信部12は、送信回路と、UHFアンテナと、を含む。送信回路は、携帯機制御部13から入力されたUHF信号に所定の信号処理を行う回路であり、変調回路、ミキサ、フィルタ、及びパワーアンプを含む。送信回路は、独立したICであってもよいし、携帯機制御部13に組み込まれていてもよい。UHFアンテナは、送信回路により信号処理されたUHF信号を無線で送信するアンテナである。なお、携帯機1は、UHF信号以外の無線信号を送信する送信部を備えてもよい。 The UHF transmission unit 12 wirelessly transmits a UHF signal (portable device signal). The frequency of the UHF signal is, for example, 315 MHz, but is not limited thereto. The UHF transmission unit 12 includes a transmission circuit and a UHF antenna. The transmission circuit is a circuit that performs predetermined signal processing on the UHF signal input from the portable device control unit 13, and includes a modulation circuit, a mixer, a filter, and a power amplifier. The transmission circuit may be an independent IC or may be incorporated in the portable device control unit 13. The UHF antenna is an antenna that wirelessly transmits the UHF signal that has been signal-processed by the transmission circuit. The portable device 1 may include a transmission unit that transmits a wireless signal other than the UHF signal.
 携帯機制御部13は、携帯機1の全体を制御する回路であり、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)を含む。CPUは、プログラムを実行することにより携帯機1の各構成を制御し、携帯機制御部13の機能を実現する。ROMは、CPUが実行するプログラムや各種のデータを記憶する。RAMは、CPUに作業領域を提供する。携帯機制御部13は、例えば、マイコンであるが、これに限られない。 The portable device control unit 13 is a circuit that controls the entire portable device 1 and includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). The CPU controls each component of the portable device 1 by executing a program to realize the function of the portable device control unit 13. The ROM stores programs executed by the CPU and various data. The RAM provides the CPU with a work area. The portable device control unit 13 is, for example, a microcomputer, but is not limited to this.
 また、携帯機制御部13は、LF信号に含まれる判定信号Sdの対象部分の波形に基づいて、LF信号が正規のLF信号(リレーアタックが行われていないLF信号)であるか判定する。判定信号Sd及び判定方法については後述する。 In addition, the portable device control unit 13 determines whether the LF signal is a normal LF signal (LF signal not subjected to relay attack) based on the waveform of the target portion of the determination signal Sd included in the LF signal. The determination signal Sd and the determination method will be described later.
 なお、携帯機1の構成は、図1の例に限られない。携帯機1は、LF受信部11、UHF送信部12、及び携帯機制御部13に電力を供給する電池や、ユーザが車両の解錠及び施錠を手動で操作するための解錠ボタン及び施錠ボタンを備えてもよい。 The configuration of the portable device 1 is not limited to the example shown in FIG. The portable device 1 includes a battery for supplying power to the LF reception unit 11, the UHF transmission unit 12, and the portable device control unit 13, and an unlocking button and a locking button for the user to manually operate the unlocking and locking of the vehicle. May be provided.
 車載器2は、携帯機1からのUHF信号に応じて車両の施錠及び解錠を制御する装置であり、車両に搭載される。車載器2は、車両に搭載されたバッテリから電力を供給される。図1の車載器2は、UHF受信部21と、LF送信部22と、車載器制御部23と、を備える。 The on-vehicle device 2 is a device that controls locking and unlocking of the vehicle according to the UHF signal from the portable device 1, and is mounted on the vehicle. The on-vehicle device 2 is supplied with power from a battery mounted on the vehicle. The vehicle-mounted device 2 of FIG. 1 includes a UHF receiver 21, an LF transmitter 22, and a vehicle-mounted device controller 23.
 UHF受信部21は、携帯機1からのUHF信号(携帯機信号)を無線で受信する。UHF信号の周波数は、例えば、315MHzであるが、これに限られない。UHF受信部21は、UHFアンテナと、受信回路と、を含む。UHFアンテナは、UHF信号を受信し、当該UHF信号に応じた電気信号を出力するアンテナである。受信回路は、UHFアンテナが出力した電気信号に応じたデータを車載器制御部23に入力する回路であり、ローノイズアンプ、フィルタ、ミキサ、及び復調回路を含む。受信回路は、独立したICであってもよいし、車載器制御部23に組み込まれていてもよい。なお、車載器2は、UHF信号以外の無線信号を受信する受信部を備えてもよい。 The UHF receiver 21 wirelessly receives the UHF signal (portable signal) from the portable device 1. The frequency of the UHF signal is, for example, 315 MHz, but is not limited thereto. The UHF receiving unit 21 includes a UHF antenna and a receiving circuit. The UHF antenna is an antenna that receives a UHF signal and outputs an electrical signal according to the UHF signal. The receiving circuit is a circuit for inputting data corresponding to the electric signal output from the UHF antenna to the on-vehicle controller 23. The receiving circuit includes a low noise amplifier, a filter, a mixer, and a demodulation circuit. The receiving circuit may be an independent IC or may be incorporated in the on-vehicle controller 23. In addition, the onboard equipment 2 may be provided with the receiving part which receives radio signals other than a UHF signal.
 LF送信部22は、LF信号(車載器信号)を定期的に無線で送信する。LF信号の周波数は、例えば、125kHzであるが、これに限られない。LF送信部22は、送信回路と、LFアンテナと、を含む。送信回路は、車載器制御部23から入力されたLF信号に所定の信号処理を行う回路であり、変調回路、ミキサ、フィルタ、及びパワーアンプを含む。送信回路は、独立したICであってもよいし、車載器制御部23に組み込まれていてもよい。LFアンテナは、送信回路により信号処理されたLF信号を無線で送信するアンテナである。なお、車載器2は、LF信号以外の無線信号を送信する送信部を備えてもよい。 The LF transmission unit 22 periodically transmits the LF signal (vehicle-mounted device signal) wirelessly. The frequency of the LF signal is, for example, 125 kHz, but is not limited thereto. The LF transmitter 22 includes a transmitter circuit and an LF antenna. The transmission circuit is a circuit that performs predetermined signal processing on the LF signal input from the vehicle-mounted device control unit 23, and includes a modulation circuit, a mixer, a filter, and a power amplifier. The transmitter circuit may be an independent IC or may be incorporated in the on-vehicle controller 23. The LF antenna is an antenna that wirelessly transmits the LF signal subjected to signal processing by the transmission circuit. In addition, the onboard equipment 2 may be provided with the transmission part which transmits radio signals other than LF signal.
 車載器制御部23は、車載器2の全体を制御する回路であり、CPU、ROM、及びRAMを含む。CPUは、プログラムを実行することにより車載器2の各構成を制御し、車載器制御部23の機能を実現する。ROMは、CPUが実行するプログラムや各種のデータを記憶する。ROMには、車両IDが記憶される。車両IDは、予め登録された車両固有の識別情報である。RAMは、CPUに作業領域を提供する。車載器制御部23は、例えば、ECU(Electronic Control Unit)などのマイコンであるが、これに限られない。 The vehicle-mounted device control unit 23 is a circuit that controls the entire vehicle-mounted device 2 and includes a CPU, a ROM, and a RAM. The CPU controls each configuration of the on-vehicle device 2 by executing a program to realize the function of the on-vehicle device control unit 23. The ROM stores programs executed by the CPU and various data. A vehicle ID is stored in the ROM. The vehicle ID is vehicle-specific identification information registered in advance. The RAM provides the CPU with a work area. The vehicle-mounted device control unit 23 is, for example, a microcomputer such as an ECU (Electronic Control Unit), but is not limited thereto.
 また、車載器制御部23は、CAN(Controller Area Network)などの車載ネットワークに接続され、車載ネットワークを介して接続されたドア制御部3と通信し、車両の施錠及び解錠を制御する。ドア制御部3は、車両のドアの施錠及び解錠する回路である。ドア制御部3は、例えば、ECUなどのマイコンであるが、これに限られない。 Further, the vehicle-mounted device control unit 23 is connected to a vehicle-mounted network such as a controller area network (CAN), communicates with the door control unit 3 connected via the vehicle-mounted network, and controls locking and unlocking of the vehicle. The door control unit 3 is a circuit that locks and unlocks the door of the vehicle. The door control unit 3 is, for example, a microcomputer such as an ECU, but is not limited thereto.
 ここで、リレーアタックについて説明する。図2は、LF送信部22が送信するLF信号の一例を示す図である。図2のLF信号は、先頭から順に、プリアンブル信号Spと、リクエスト信号Srと、判定信号Sdと、を含む。 Here, the relay attack will be described. FIG. 2 is a diagram showing an example of the LF signal transmitted by the LF transmitter 22. As shown in FIG. The LF signal of FIG. 2 includes, in order from the top, a preamble signal Sp, a request signal Sr, and a determination signal Sd.
 プリアンブル信号Spは、当該信号がLF信号であることを示す信号であり、所定のパターンを有する。リクエスト信号Srは、携帯機1に対して応答を要求する信号であり、車両IDなどのデータを含む。 The preamble signal Sp is a signal indicating that the signal is an LF signal, and has a predetermined pattern. The request signal Sr is a signal for requesting the portable device 1 to respond, and includes data such as a vehicle ID.
 判定信号Sdは、当該信号が正規のLF信号(リレーアタックが行われていないLF信号)であるか判定するための信号であり、信号レベルが一定の部分を有する。図2の例では、LF信号には、判定信号Sdとして、それぞれ信号レベルが異なる複数の矩形波が含まれるが、判定信号Sdは、図2の例に限られない。LF信号には、判定信号Sdとして、1つの矩形波が含まれてもよいし、それぞれ信号レベルが同一の複数の矩形波が含まれてもよいし、それぞれ信号レベルが異なる複数の区間を有する階段波が含まれてもよい。 The determination signal Sd is a signal for determining whether the signal is a normal LF signal (LF signal not subjected to relay attack), and has a portion where the signal level is constant. In the example of FIG. 2, the LF signal includes a plurality of rectangular waves having different signal levels as the determination signal Sd, but the determination signal Sd is not limited to the example of FIG. The LF signal may include one rectangular wave as the determination signal Sd, or may include a plurality of rectangular waves having the same signal level, or have a plurality of sections having different signal levels. Step waves may be included.
 図2からわかるように、判定信号Sdの、波形が垂直に立ち上がる立ち上がり部分及び波形が垂直に立ち下がる立下り部分では、信号レベルが急峻に変化する。このため、携帯機1がLF信号を受信すると、LF受信部11が出力する判定信号Sdの立ち上がり部分及び立下り部分で、波形が歪む。この波形の歪み方は、LF信号を送信したLF送信部22のLFアンテナに固有である。 As can be seen from FIG. 2, in the rising portion where the waveform of the determination signal Sd rises vertically and the falling portion where the waveform vertically falls, the signal level changes sharply. For this reason, when the portable device 1 receives the LF signal, the waveform is distorted in the rising portion and the falling portion of the determination signal Sd output from the LF receiving unit 11. The distortion of the waveform is unique to the LF antenna of the LF transmitter 22 that has transmitted the LF signal.
 これに対して、リレーアタックが行われた場合、車載器2が送信したLF信号は、不正者の中継器を介して携帯機1に送信される。このため、携帯機1が不正のLF信号(リレーアタックが行われたLF信号)を受信すると、LF受信部11が出力する判定信号Sdの立ち上がり部分及び立下り部分で生じた波形の歪みが、中継器のLFアンテナのQ値に応じてさらに歪む(鈍る)。特に、中継器では、LF信号の送信距離を延ばすために、Q値が高いLFアンテナが利用されることから、信号レベル(LFアンテナの電流)が急峻に変化する際に波形が歪みやすい。 On the other hand, when a relay attack is performed, the LF signal transmitted by the on-vehicle device 2 is transmitted to the portable device 1 via the unauthorized person's repeater. Therefore, when the portable device 1 receives an incorrect LF signal (LF signal subjected to relay attack), the distortion of the waveform generated in the rising portion and the falling portion of the determination signal Sd output from the LF receiving unit 11 It is further distorted (smoothed) according to the Q value of the relay LF antenna. In particular, in the repeater, since the LF antenna having a high Q value is used to extend the transmission distance of the LF signal, the waveform is likely to be distorted when the signal level (current of the LF antenna) changes sharply.
 すなわち、LF受信部11が出力する判定信号Sdの立ち上がり部分及び立下り部分の歪み方は、携帯機1が正規のLF信号を受信した場合と、携帯機1が不正のLF信号を受信した場合と、で異なったものとなる。 That is, the way of distortion of the rising portion and falling portion of the determination signal Sd output from the LF receiving unit 11 is when the portable device 1 receives a correct LF signal and when the portable device 1 receives an incorrect LF signal And will be different.
 図3は、LF受信部11が出力するLF信号の具体例を示す図である。図3の上図は、携帯機1が正規のLF信号を受信した場合のLF信号であり、図3の下図は、携帯機1が不正のLF信号を受信した場合のLF信号である。図3に示すように、携帯機1が正規のLF信号を受信した場合と、不正のLF信号を受信した場合とでは、LF受信部11が出力する判定信号Sdの立ち上がり部分及び立下り部分の歪み方が異なっている。図3の例では、特に、判定信号Sdの立ち上がり部分(丸で囲んだ部分)の歪み方が大きく異なる。 FIG. 3 is a diagram showing a specific example of the LF signal output by the LF receiver 11. As shown in FIG. The upper diagram of FIG. 3 is an LF signal when the portable device 1 receives a normal LF signal, and the lower diagram of FIG. 3 is an LF signal when the portable device 1 receives an incorrect LF signal. As shown in FIG. 3, when the portable device 1 receives a normal LF signal and when an incorrect LF signal is received, the rising and falling portions of the determination signal Sd output from the LF receiving unit 11 are The way of distortion is different. In the example of FIG. 3, particularly, the way of distortion of the rising portion (circled portion) of the determination signal Sd is largely different.
 本実施形態に係る携帯機1は、上記のような、LF受信部11が出力する判定信号Sdの波形の歪みに基づいて、受信したLF信号が正規のLF信号(リレーアタックが行われていないLF信号)であるか判定する。 In the portable device 1 according to the present embodiment, the received LF signal is a normal LF signal (the relay attack is not performed based on the distortion of the waveform of the determination signal Sd output by the LF receiving unit 11 as described above It is determined whether it is an LF signal).
 次に、携帯機1の機能構成について説明する。図4は、携帯機1の機能構成の一例を示す図である。図4の携帯機1は、サンプリング部131と、データ記憶部132と、正規化部133と、判定部134と、UHF信号生成部135と、距離算出部136と、を備える。 Next, the functional configuration of the portable device 1 will be described. FIG. 4 is a diagram showing an example of a functional configuration of the portable device 1. The portable device 1 of FIG. 4 includes a sampling unit 131, a data storage unit 132, a normalization unit 133, a determination unit 134, a UHF signal generation unit 135, and a distance calculation unit 136.
 サンプリング部131、正規化部133、判定部134、UHF信号生成部135、及び距離算出部136は、携帯機制御部13のCPUがプログラムを実行することにより実現されてもよいし、携帯機制御部13が備える専用の回路(ハードウェア)により実現されてもよい。また、データ記憶部132は、携帯機制御部13が備えるROMにより実現される。 The sampling unit 131, the normalization unit 133, the determination unit 134, the UHF signal generation unit 135, and the distance calculation unit 136 may be realized by the CPU of the portable device control unit 13 executing a program, or the portable device control It may be realized by a dedicated circuit (hardware) included in the unit 13. Further, the data storage unit 132 is realized by the ROM included in the portable device control unit 13.
 サンプリング部131は、LF受信部11から入力されたLF信号に含まれる判定信号Sdの対象部分の信号レベル(RSSI:Received Signal Strength Indicator)を、対象部分の長さより短いサンプリング間隔でサンプリングする。対象部分は、判定信号Sdの立ち上がり部分及び立下り部分の少なくとも一方と、当該部分に連続する信号レベルが一定の部分と、を含む部分である。対象部分は、判定信号Sdの全体であってもよいし、判定信号Sdの立ち上がり部分のみを含む部分であってもよいし、判定信号Sdの立下り部分のみを含む部分であってもよい。以下、サンプリング部131がサンプリングした一連の信号レベルを実測レベルと称する。 The sampling unit 131 samples the signal level (RSSI: Received Signal Strength Indicator) of the target portion of the determination signal Sd included in the LF signal input from the LF reception unit 11 at a sampling interval shorter than the length of the target portion. The target portion is a portion including at least one of the rising portion and the falling portion of the determination signal Sd, and a portion in which the signal level continuous to the portion is constant. The target portion may be the entire determination signal Sd, may be a portion including only the rising portion of the determination signal Sd, or may be a portion including only the falling portion of the determination signal Sd. Hereinafter, a series of signal levels sampled by the sampling unit 131 will be referred to as measured levels.
 図5は、サンプリング部131によりサンプリングされた実測レベルの一例を示す図である。図5の例では、10個の実測レベルがサンプリング(計測)されており、対象部分は判定信号Sdの立ち上がり部分を含む部分である。図5からわかるように、実測レベルは、判定信号Sdの対象部分の波形に相当する。 FIG. 5 is a view showing an example of the actual measurement level sampled by the sampling unit 131. As shown in FIG. In the example of FIG. 5, ten measured levels are sampled (measured), and the target portion is a portion including the rising portion of the determination signal Sd. As can be seen from FIG. 5, the actual measurement level corresponds to the waveform of the target portion of the determination signal Sd.
 なお、サンプリング部131のサンプリング間隔及びサンプリング回数は、任意に設定可能である。また、図2の例のように、LF信号に複数の判定信号Sdが含まれる場合、サンプリング部131は、予め設定されたいずれか1つの判定信号Sdをサンプリングすればよい。また、サンプリング部131がサンプリングする判定信号Sdは、対象部分の歪みが大きい判定信号Sdであるのが好ましい。例えば、図3の例では、2番目~5番目の判定信号Sdの立ち上がり部分の歪みが大きいため、サンプリング部131は、2番目~5番目の判定信号Sdのいずれか1つの立ち上がり部分を含む対象部分をサンプリングするのが好ましい。 The sampling interval and the number of sampling times of the sampling unit 131 can be set arbitrarily. Further, as in the example of FIG. 2, when the LF signal includes a plurality of determination signals Sd, the sampling unit 131 may sample any one of the determination signals Sd set in advance. Further, it is preferable that the determination signal Sd sampled by the sampling unit 131 be a determination signal Sd in which the distortion of the target portion is large. For example, in the example of FIG. 3, since the distortion of the rising portions of the second to fifth determination signals Sd is large, the sampling unit 131 is a target including any one rising portion of the second to fifth determination signals Sd. It is preferred to sample the part.
 データ記憶部132は、車両ID及び基準レベルを記憶する。車両IDは、予め登録された車両固有の識別情報である。基準レベルは、携帯機1が正規のLF信号を受信した場合における、判定信号Sdの対象部分の信号レベルを所定のサンプリング間隔でサンプリングした一連の信号レベルである。基準レベルは、予めサンプリングされ、データ記憶部132に予め保存される。なお、基準レベルをサンプリング計測する際のサンプリング間隔及びサンプリング回数は、サンプリング部131が実測レベルをサンプリングする際のサンプリング間隔及びサンプリング回数と同様である。 The data storage unit 132 stores the vehicle ID and the reference level. The vehicle ID is vehicle-specific identification information registered in advance. The reference level is a series of signal levels obtained by sampling the signal level of the target portion of the determination signal Sd at a predetermined sampling interval when the portable device 1 receives a normal LF signal. The reference level is sampled in advance and stored in the data storage unit 132 in advance. The sampling interval and the number of times of sampling measurement of the reference level are the same as the sampling interval and the number of times of sampling when the sampling unit 131 samples the actual measurement level.
 正規化部133は、実測レベルを正規化する。具体的には、正規化部133は、実測レベルのピーク値と、基準レベルのピーク値と、が一致するように、実測レベルを調整する。これは、携帯機1がLF信号を受信した際の車載器2からの距離により、実測レベルの絶対値は変化するためである。 The normalization unit 133 normalizes the actual measurement level. Specifically, the normalization unit 133 adjusts the actual measurement level so that the peak value of the actual measurement level matches the peak value of the reference level. This is because the absolute value of the actual measurement level changes depending on the distance from the vehicle-mounted device 2 when the portable device 1 receives the LF signal.
 判定部134は、正規化された実測レベルと、基準レベルと、に基づいて、受信したLF信号が正規のLF信号であるか、すなわち、リレーアタックが行われたか判定する。受信したLF信号が正規のLF信号である場合、正規化された実測レベルと、基準レベルと、は近い値となる。一方、受信したLF信号が不正のLF信号である場合、正規化された実測レベルと、基準レベルと、は離れた値となる。そこで、判定部134は、正規化された実測レベルと基準レベルとの差が予め設定された閾値以下である場合、受信したLF信号が正規のLF信号である(リレーアタックは行われていない)と判定し、閾値より大きい場合、受信したLF信号が不正のLF信号である(リレーアタックは行われた)と判定する。正規化された実測レベルと基準レベルとの差は、例えば、残差平方和であるが、これに限られない。 The determination unit 134 determines whether the received LF signal is a normal LF signal, that is, whether a relay attack has been performed, based on the normalized actual measurement level and the reference level. When the received LF signal is a normal LF signal, the normalized measured level and the reference level become close values. On the other hand, when the received LF signal is an incorrect LF signal, the normalized actual measurement level and the reference level are separated values. Therefore, when the difference between the normalized actual measurement level and the reference level is equal to or less than a preset threshold, the determination unit 134 determines that the received LF signal is a normal LF signal (relay attack is not performed). If it is determined that the received LF signal is larger than the threshold value, it is determined that the received LF signal is an incorrect LF signal (relay attack has been performed). The difference between the normalized actual measurement level and the reference level is, for example, a residual sum of squares, but is not limited thereto.
 UHF信号生成部135は、判定部134によるLF信号の判定結果に応じたUHF信号を生成する。UHF信号生成部135が生成したUHF信号は、UHF送信部12により無線で送信される。 The UHF signal generation unit 135 generates a UHF signal according to the determination result of the LF signal by the determination unit 134. The UHF signal generated by the UHF signal generation unit 135 is wirelessly transmitted by the UHF transmission unit 12.
 例えば、UHF信号生成部135は、受信したLF信号が不正のLF信号であると判定された場合、無信号を生成し、正規のLF信号であると判定された場合、車両ID及び距離Dを示すUHF信号を生成する。距離Dは、携帯機1と車載器2との間の距離である。このようにUHF信号を生成することにより、車載器2の仕様を変更することなく、本実施形態に係るRKEシステム100を、既存のRKEシステムに適用できる。 For example, when it is determined that the received LF signal is an incorrect LF signal, the UHF signal generation unit 135 generates a no signal, and when it is determined that the received LF signal is a normal LF signal, the vehicle ID and the distance D Generate the indicated UHF signal. The distance D is a distance between the portable device 1 and the on-vehicle device 2. By generating the UHF signal in this manner, the RKE system 100 according to the present embodiment can be applied to the existing RKE system without changing the specifications of the vehicle-mounted device 2.
 また、UHF信号生成部135は、受信したLF信号が不正のLF信号であると判定された場合、車両ID及びリレーアタックが行われたことを示す信号を含むUHF信号を生成し、正規のLF信号であると判定された場合、車両ID、距離D、及びリレーアタックが行われたことを示すUHF信号を生成してもよい。このようにUHF信号を生成することにより、車載器2は、リレーアタックが行われたか否かを把握することができる。リレーアタックが行われたことを把握した車載器2は、ユーザや車両の管理システムにその旨を通報してもよい。 In addition, when it is determined that the received LF signal is an incorrect LF signal, the UHF signal generator 135 generates a UHF signal including a vehicle ID and a signal indicating that a relay attack has been performed, and the normal LF If it is determined to be a signal, a vehicle ID, a distance D, and a UHF signal indicating that a relay attack has been performed may be generated. By generating the UHF signal in this manner, the on-vehicle device 2 can grasp whether or not the relay attack has been performed. The vehicle-mounted device 2 having grasped that the relay attack has been performed may notify the user or the management system of the vehicle to that effect.
 距離算出部136は、LF受信部11から入力されたLF信号に含まれる判定信号Sdの信号レベル(RSSI)に基づいて、携帯機1と車載器2(LF信号の送信元)との間の距離Dを算出する。距離Dの算出方法として、既存の任意の方法を利用できる。例えば、距離算出部136は、実測レベルの平均値と、実測レベルの平均値と距離Dとの関係と、に基づいて、距離Dを算出することができる。実測レベルの平均値と距離Dとの関係は、データ記憶部132に予め保存しておけばよい。なお、距離算出部136は、サンプリング部131がサンプリングした実測レベルに基づいて、距離Dを算出することも可能である。 The distance calculation unit 136 is configured to set between the portable unit 1 and the on-vehicle unit 2 (transmission source of the LF signal) based on the signal level (RSSI) of the determination signal Sd included in the LF signal input from the LF reception unit 11. Calculate the distance D. As a method of calculating the distance D, any existing method can be used. For example, the distance calculation unit 136 can calculate the distance D based on the average value of the actual measurement levels and the relationship between the average value of the actual measurement levels and the distance D. The relationship between the average value of the actual measurement levels and the distance D may be stored in the data storage unit 132 in advance. Note that the distance calculation unit 136 can also calculate the distance D based on the actual measurement level sampled by the sampling unit 131.
 次に、RKEシステム100が実行する処理について説明する。以下では、携帯機1は、リレーアタックが行われたと判定した場合、車両ID及びリレーアタックが行われたことを示すUHF信号を送信し、リレーアタックが行われていないと判定した場合、車両ID、距離D、及びリレーアタックが行われていないことを示すUHF信号を送信するものとする。 Next, processing executed by the RKE system 100 will be described. In the following, the portable device 1 transmits a vehicle ID and a UHF signal indicating that a relay attack has been performed when it is determined that a relay attack has been performed, and when it is determined that a relay attack has not been performed, a vehicle ID , Distance D, and a UHF signal indicating that no relay attack has been performed.
 図6は、車載器2が実行する処理の一例を示すフローチャートである。車載器2は、図6の処理を定期的に実行する。 FIG. 6 is a flowchart showing an example of the process performed by the on-vehicle device 2. The on-vehicle device 2 periodically executes the process of FIG.
 図6の処理の実行タイミングが到来すると、まず、車載器制御部23は、プリアンブル信号Sp、リクエスト信号Sr、及び判定信号Sdを含むLF信号を生成する(ステップS101)。車載器制御部23は、生成したLF信号をLF送信部22に入力する。LF送信部22は、車載器制御部23からLF信号を入力されると、当該LF信号を無線で送信する(ステップS102)。 When the execution timing of the process of FIG. 6 arrives, the onboard device control unit 23 first generates an LF signal including the preamble signal Sp, the request signal Sr, and the determination signal Sd (step S101). The vehicle-mounted device control unit 23 inputs the generated LF signal to the LF transmission unit 22. When the LF transmission unit 22 receives an LF signal from the on-vehicle device control unit 23, the LF transmission unit 22 wirelessly transmits the LF signal (step S102).
 その後、車載器制御部23は、所定期間の間、UHF信号の受信を待機する。所定期間の間にUHF受信部21がUHF信号を受信できなかった場合(ステップS103のNO)、車載器制御部23は、処理を終了する。UHF信号を受信できない場合とは、ユーザ(携帯機1)がLF信号の届く範囲にいない場合に相当する。 Thereafter, the onboard unit control unit 23 waits for reception of the UHF signal for a predetermined period. If the UHF reception unit 21 can not receive the UHF signal during the predetermined period (NO in step S103), the on-vehicle device control unit 23 ends the process. The case where the UHF signal can not be received corresponds to the case where the user (portable device 1) is not within the reach of the LF signal.
 一方、車載器制御部23は、所定期間の間にUHF受信部21がUHF信号を受信した場合(ステップS103のYES)、当該UHF信号に含まれる車両IDと、ROMに記憶された車両IDと、が一致するか判定する(ステップS104)。車両IDが一致しない場合(ステップS104のNO)、車載器制御部23は、処理を終了する。 On the other hand, when the UHF receiving unit 21 receives the UHF signal during the predetermined period (YES in step S103), the vehicle-mounted device control unit 23 determines the vehicle ID included in the UHF signal and the vehicle ID stored in the ROM. , Are determined to match (step S104). If the vehicle IDs do not match (NO in step S104), the onboard device control unit 23 ends the process.
 一方、車載器制御部23は、車両IDが一致した場合(ステップS104のYES)、UHF信号を参照して、リレーアタックが行われたか確認する(ステップS105)。UHF信号が、リレーアタックが行われたこと(リレーアタックあり)を示している場合(ステップS105のYES)、車載器制御部23は、処理を終了する。 On the other hand, when the vehicle ID matches (YES in step S104), the on-vehicle device control unit 23 refers to the UHF signal to check whether a relay attack has been performed (step S105). If the UHF signal indicates that a relay attack has been performed (with a relay attack) (YES in step S105), the on-vehicle device control unit 23 ends the process.
 一方、UHF信号が、リレーアタックが行われていないこと(リレーアタックなし)を示している場合(ステップS105のNO)、車載器制御部23は、ドア制御部3に解錠信号を送信し、車両のドアを解錠する(ステップS106)。 On the other hand, when the UHF signal indicates that the relay attack is not performed (no relay attack) (NO in step S105), the on-vehicle device control unit 23 transmits an unlock signal to the door control unit 3; The door of the vehicle is unlocked (step S106).
 以上の処理により、車載器2は、LF信号に対する携帯機1からの応答(UHF信号)に応じて、車両の施錠及び解錠を制御できる。 By the above process, the on-vehicle device 2 can control the locking and unlocking of the vehicle according to the response (UHF signal) from the portable device 1 to the LF signal.
 図7は、携帯機1が実行する処理の一例を示すフローチャートである。携帯機1は、LF受信部11がLF信号を受信すると、図7の処理を実行する。 FIG. 7 is a flowchart showing an example of processing executed by the portable device 1. The portable device 1 executes the process of FIG. 7 when the LF reception unit 11 receives an LF signal.
 LF受信部11がLF信号を受信し、携帯機制御部13に入力すると、サンプリング部131は、LF受信部11から入力されたLF信号に含まれる判定信号Sdの対象部分をサンプリングし、実測レベルを取得する(ステップS201)。サンプリング部131は、取得した実測レベルを正規化部133に渡す。 When the LF reception unit 11 receives an LF signal and inputs it to the portable device control unit 13, the sampling unit 131 samples a target portion of the determination signal Sd included in the LF signal input from the LF reception unit 11, and measures the measured level. Is acquired (step S201). The sampling unit 131 passes the acquired actual measurement level to the normalization unit 133.
 正規化部133は、実測レベルを取得すると、データ記憶部132から基準レベルを読み出し、基準レベルに基づいて、実測レベルを正規化する(ステップS202)。正規化部133は、正規化した実測レベルを判定部134に渡す。 When acquiring the actual measurement level, the normalization unit 133 reads the reference level from the data storage unit 132, and normalizes the actual measurement level based on the reference level (step S202). The normalization unit 133 passes the normalized actual measurement level to the determination unit 134.
 判定部134は、正規化された実測レベルを受け取ると、受信したLF信号が正規のLF信号であるか判定する。具体的には、判定部134は、データ記憶部132から基準レベル及び閾値を読み出し、基準レベルと正規化された実測レベルとの差を算出し(ステップS203)、当該差と閾値とを比較する(ステップ204)。 When receiving the normalized actual measurement level, the determination unit 134 determines whether the received LF signal is a normal LF signal. Specifically, the determination unit 134 reads the reference level and the threshold from the data storage unit 132, calculates the difference between the reference level and the normalized actual measurement level (step S203), and compares the difference with the threshold. (Step 204).
 判定部134は、差が閾値以下である場合(ステップS204のYES)、受信したLF信号は正規のLF信号である、すなわち、リレーアタックは行われていない(リレーアタックなし)と判定し(ステップS205)、その旨をUHF信号生成部135及び距離算出部136に通知する。 When the difference is equal to or less than the threshold (YES in step S204), the determination unit 134 determines that the received LF signal is a normal LF signal, that is, no relay attack is performed (no relay attack) (step S205), to notify the UHF signal generation unit 135 and the distance calculation unit 136 to that effect.
 距離算出部136は、リレーアタックが行われていないことを通知されると、LF受信部11から入力されたLF信号に基づいて、携帯機1と車載器2との間の距離Dを算出する(ステップS206)。距離算出部136は、算出した距離DをUHF信号生成部135に渡す。なお、ステップS206は、ステップS201~S205と並行して実行されてもよい。 When notified that the relay attack is not performed, the distance calculation unit 136 calculates the distance D between the portable device 1 and the on-vehicle device 2 based on the LF signal input from the LF reception unit 11. (Step S206). The distance calculation unit 136 passes the calculated distance D to the UHF signal generation unit 135. Note that step S206 may be performed in parallel with steps S201 to S205.
 UHF信号生成部135は、リレーアタックが行われていないことを通知され、距離Dを受け取ると、データ記憶部132から車両IDを読み出し、車両ID、距離D、及びリレーアタックが行われていないことを示すUHF信号を生成する(ステップS207)。UHF信号生成部135は、生成したUHF信号をUHF送信部12に入力する。 The UHF signal generation unit 135 is notified that a relay attack is not performed, and when the distance D is received, reads the vehicle ID from the data storage unit 132, and the vehicle ID, the distance D, and the relay attack are not performed. Is generated (step S207). The UHF signal generation unit 135 inputs the generated UHF signal to the UHF transmission unit 12.
 UHF送信部12は、UHF信号を入力されると、当該UHF信号を無線で送信する(ステップS208)。 When the UHF signal is input, the UHF transmission unit 12 wirelessly transmits the UHF signal (step S208).
 一方、判定部134は、差が閾値より大きい場合(ステップS204のNO)、受信したLF信号は不正のLF信号である、すなわち、リレーアタックが行われた(リレーアタックあり)と判定し(ステップS209)、その旨をUHF信号生成部135に通知する。 On the other hand, when the difference is larger than the threshold (NO in step S204), the determination unit 134 determines that the received LF signal is an incorrect LF signal, that is, determines that the relay attack has been performed (relay attack is present) (step S209), The UHF signal generation unit 135 is notified of that.
 UHF信号生成部135は、リレーアタックが行われたことを通知されると、データ記憶部132から車両IDを読み出し、車両ID及びリレーアタックが行われたことを示すUHF信号を生成する(ステップS210)。UHF信号生成部135は、生成したUHF信号をUHF送信部12に入力する。その後、処理はステップS208に進む。 When notified that the relay attack has been performed, the UHF signal generation unit 135 reads the vehicle ID from the data storage unit 132, and generates a UHF signal indicating that the vehicle ID and the relay attack have been performed (step S210). ). The UHF signal generation unit 135 inputs the generated UHF signal to the UHF transmission unit 12. Thereafter, the process proceeds to step S208.
 以上の処理により、携帯機1は、LF信号に含まれる判定信号Sdの対象部分の波形に基づいて、受信したLF信号が正規のLF信号であるか判定し、当該判定結果に応じたUHF信号を送信できる。 By the above processing, the portable device 1 determines whether the received LF signal is a normal LF signal based on the waveform of the target portion of the determination signal Sd included in the LF signal, and the UHF signal according to the determination result You can send
 以上説明した通り、本実施形態によれば、携帯機1は、LF信号を受信すると、判定信号Sdの対象部分の波形に基づいて、受信したLF信号が正規のLF信号であるか、すなわち、リレーアタックが行われたか判定する。リレーアタックが行われた場合、中継器のLFアンテナのQ値に応じて判定信号Sdの対象部分の波形が必然的に歪むため、携帯機1は、精度よくリレーアタックを検出できる。結果として、RKEシステム100を搭載した車両のドアが、リレーアタックにより不正に解錠されることを抑制し、車両の防盗性を高めることができる。 As described above, according to the present embodiment, when the portable device 1 receives an LF signal, whether the received LF signal is a normal LF signal based on the waveform of the target portion of the determination signal Sd, that is, Determine if a relay attack has occurred. When a relay attack is performed, since the waveform of the target portion of the determination signal Sd is inevitably distorted according to the Q value of the LF antenna of the repeater, the portable device 1 can detect the relay attack with high accuracy. As a result, it is possible to suppress the door of the vehicle equipped with the RKE system 100 from being unlocked illegally by the relay attack, and to improve the antitheft performance of the vehicle.
 なお、本実施形態において、図2の例のように、LF信号に信号レベルが異なる複数の判定信号Sdが含まれる場合、携帯機制御部13は、判定信号Sdのパターンに基づいて、受信したLF信号が正規のLF信号であるか判定してもよい。当該方法を併用することにより、携帯機1は、より精度よくリレーアタックを検出することができる。 In the present embodiment, as in the example of FIG. 2, when the LF signal includes a plurality of determination signals Sd having different signal levels, the portable device control unit 13 receives the signal based on the pattern of the determination signals Sd. It may be determined whether the LF signal is a normal LF signal. By using the method in combination, the portable device 1 can detect the relay attack more accurately.
 また、上記実施形態に挙げた構成等に、その他の要素との組み合わせなど、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更可能であり、その応用形態に応じて適切に定めることができる。 In addition, the present invention is not limited to the configurations shown here, such as the configurations shown in the above-described embodiments, etc., in combination with other elements. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.
 また、本国際出願は、2017年8月30日に出願した日本国特許出願第2017-166055号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 In addition, this international application claims priority based on Japanese Patent Application No. 2017-166055 filed on Aug. 30, 2017, and the entire content of the application is incorporated into this international application.
1:携帯機
2:車載器
3:ドア制御部
11:LF受信部
12:UHF送信部
13:携帯機制御部
21:UHF受信部
22:LF送信部
23:車載器制御部
131:サンプリング部
132:データ記憶部
133:正規化部
134:判定部
135:UHF信号生成部
136:距離算出部
1: portable device 2: vehicle-mounted device 3: door control unit 11: LF reception unit 12: UHF transmission unit 13: portable device control unit 21: UHF reception unit 22: LF transmission unit 23: on-vehicle device control unit 131: sampling unit 132 : Data storage unit 133: Normalization unit 134: Determination unit 135: UHF signal generation unit 136: Distance calculation unit

Claims (7)

  1.  信号レベルが一定の部分を有する判定信号を含む車載器信号を受信する受信部と、
     前記信号レベルが一定の部分を有する前記判定信号の対象部分の波形に基づいて、前記車載器信号が正規の信号であるか判定する制御部と、
     前記車載器信号の判定結果に応じた携帯機信号を送信する送信部と、
    を備える携帯機。
    A receiving unit that receives an on-vehicle device signal including a determination signal having a portion having a constant signal level;
    A control unit that determines whether the vehicle-mounted device signal is a normal signal based on a waveform of a target portion of the determination signal having a portion where the signal level is constant;
    A transmitter configured to transmit a portable device signal according to the determination result of the vehicle-mounted device signal;
    A portable device equipped with
  2.  前記制御部は、
     受信した前記判定信号の前記対象部分の前記信号レベルをサンプリングするサンプリング部と、
     サンプリングされた前記判定信号の前記対象部分の前記信号レベルを正規化する正規化部と、
     正規化された前記判定信号の前記対象部分の前記信号レベルと、基準レベルと、に基づいて、前記車載器信号が正規の信号であるか判定する判定部と、
    を備える請求項1に記載の携帯機。
    The control unit
    A sampling unit that samples the signal level of the target portion of the received determination signal;
    A normalization unit that normalizes the signal level of the target portion of the sampled determination signal;
    A determination unit that determines whether the vehicle-mounted device signal is a normal signal based on the signal level of the target portion of the determination signal that has been normalized and a reference level;
    The portable device according to claim 1, comprising:
  3.  前記判定部は、正規化された前記判定信号の前記対象部分の前記信号レベルと、前記基準レベルと、の差が閾値以下である場合、前記車載器信号は正規の信号であると判定する
    請求項2に記載の携帯機。
    When the difference between the signal level of the target portion of the normalized determination signal and the reference level is equal to or less than a threshold, the determination unit determines that the vehicle-mounted device signal is a normal signal. The portable device according to Item 2.
  4.  前記判定信号の前記対象部分は、垂直に立ち上がる波形及び垂直に立ち下がる波形の少なくとも一方と、当該波形に連続する前記信号レベルが一定の部分と、を含む
    請求項1から請求項3までのいずれか1項に記載の携帯機。
    The target portion of the determination signal according to any one of claims 1 to 3, which includes at least one of a waveform rising vertically and a waveform falling vertically, and a portion in which the signal level continuing to the waveform is constant. The portable device described in Item 1.
  5.  前記判定信号は、矩形波又は階段波である
    請求項1から請求項4までのいずれか1項に記載の携帯機。
    The portable device according to any one of claims 1 to 4, wherein the determination signal is a rectangular wave or a step wave.
  6.  前記制御部は、前記判定信号に基づいて、前記車載器信号の送信元からの距離を算出する距離算出部を更に備える
    請求項1から請求項5までのいずれか1項に記載の携帯機。
    The portable device according to any one of claims 1 to 5, wherein the control unit further comprises a distance calculation unit that calculates a distance from the transmission source of the vehicle-mounted device signal based on the determination signal.
  7.  請求項1から請求項6までのいずれか1項に記載の携帯機と、
     前記車載器信号を送信し、前記携帯機信号を受信する車載器と、
    を含むリモートキーレスエントリーシステム。
    A portable device according to any one of claims 1 to 6.
    An on-board unit that transmits the on-board unit signal and receives the portable unit signal;
    Including remote keyless entry system.
PCT/JP2018/008602 2017-08-30 2018-03-06 Portable device and remote keyless entry system WO2019044002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166055A JP2020204149A (en) 2017-08-30 2017-08-30 Portable device and remote keyless entry system
JP2017-166055 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044002A1 true WO2019044002A1 (en) 2019-03-07

Family

ID=65525346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008602 WO2019044002A1 (en) 2017-08-30 2018-03-06 Portable device and remote keyless entry system

Country Status (2)

Country Link
JP (1) JP2020204149A (en)
WO (1) WO2019044002A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210050444A (en) * 2019-10-28 2021-05-07 고려대학교 산학협력단 Smartkey, control method thereof and detection model generation apparatus for detecting relay attack based on lf fingerprinting
US11423720B2 (en) 2019-10-28 2022-08-23 Korea University Research And Business Foundation Smartkey, control method thereof and detection model generation apparatus for detecting relay attack based on LF fingerprinting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185186A (en) * 2009-02-10 2010-08-26 Alps Electric Co Ltd Keyless entry system
JP2017101496A (en) * 2015-12-03 2017-06-08 株式会社デンソー Vehicle electronic key system and portable apparatus
JP2017201106A (en) * 2016-05-06 2017-11-09 株式会社デンソー Electronic key system for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185186A (en) * 2009-02-10 2010-08-26 Alps Electric Co Ltd Keyless entry system
JP2017101496A (en) * 2015-12-03 2017-06-08 株式会社デンソー Vehicle electronic key system and portable apparatus
JP2017201106A (en) * 2016-05-06 2017-11-09 株式会社デンソー Electronic key system for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210050444A (en) * 2019-10-28 2021-05-07 고려대학교 산학협력단 Smartkey, control method thereof and detection model generation apparatus for detecting relay attack based on lf fingerprinting
KR102426793B1 (en) * 2019-10-28 2022-07-29 고려대학교 산학협력단 Smartkey, control method thereof and detection model generation apparatus for detecting relay attack based on lf fingerprinting
US11423720B2 (en) 2019-10-28 2022-08-23 Korea University Research And Business Foundation Smartkey, control method thereof and detection model generation apparatus for detecting relay attack based on LF fingerprinting

Also Published As

Publication number Publication date
JP2020204149A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US10293786B1 (en) Method and system for secure access to a vehicle
US9963109B2 (en) Vehicle control system to prevent relay attack
KR100693971B1 (en) Radio communication system and radio communication apparatus
JP6880229B2 (en) Remote keyless entry system
KR101345913B1 (en) Apparatus for locating a vehicle electronic key
US9761075B2 (en) Smart key system
US9725072B2 (en) Vehicle control system
JP5615326B2 (en) Position determination system for portable device, position determination method for portable device, position determination device for portable device
JP6561762B2 (en) Vehicle communication system and in-vehicle device
WO2015107609A1 (en) Control system
JP6428655B2 (en) Electronic key system, in-vehicle device, and electronic key
CN110199327B (en) Method for securing access
JP2011223499A (en) Radio communication system
CN103608221A (en) Method and device for programming a plurality of keys to an authorisation device of a vehicle
WO2019044002A1 (en) Portable device and remote keyless entry system
KR102339873B1 (en) Detection of the presence of a human hand on an openable panel of a vehicle
JP2019070258A (en) Verification system for vehicle and electronic key system for vehicle
JP6278410B2 (en) In-vehicle device control system, in-vehicle control device, portable device
WO2016063717A1 (en) Keyless entry device
JPWO2018186075A1 (en) On-board unit, portable unit, and keyless entry system
JP2019157426A (en) Door lock control system and door lock device
JP6658563B2 (en) Communications system
JP2019007241A (en) Portable device, on-vehicle apparatus, and remote keyless entry system
KR101962914B1 (en) Method And Apparatus for Opening Vehicle Door Lock by using Smart-Key
JP2020117945A (en) On-vehicle device and key-less entry system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP