WO2016063717A1 - Keyless entry device - Google Patents

Keyless entry device Download PDF

Info

Publication number
WO2016063717A1
WO2016063717A1 PCT/JP2015/078286 JP2015078286W WO2016063717A1 WO 2016063717 A1 WO2016063717 A1 WO 2016063717A1 JP 2015078286 W JP2015078286 W JP 2015078286W WO 2016063717 A1 WO2016063717 A1 WO 2016063717A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
portable device
resonance circuit
signal
request signal
Prior art date
Application number
PCT/JP2015/078286
Other languages
French (fr)
Japanese (ja)
Inventor
宮澤 明
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2016063717A1 publication Critical patent/WO2016063717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication

Definitions

  • the present invention relates to a keyless entry device that locks or unlocks a vehicle door by performing wireless communication between a vehicle-side device and a portable device, and more particularly, a keyless entry device that can prevent a relay attack with a simple configuration. About.
  • door locks are provided on the doors of automobiles to prevent them from being stolen when the automobile is not in use, or from being damaged by internal devices.
  • the door lock is locked or unlocked by inserting a key for starting the engine into a key hole provided in the door.
  • the key is inserted into the key hole.
  • a request signal is transmitted from the vehicle-side device, and then an answer signal is transmitted from the portable device to the vehicle-side device, so that the door lock is unlocked / locked.
  • a keyless entry device is used.
  • a so-called passive keyless entry device that automatically unlocks and locks the door lock by touching the vehicle with the hand while holding the portable device without operating the switch of the portable device. Is used.
  • the operation of the passive keyless entry device includes an activation signal transmitted from the vehicle-side device when a person holding a portable device already registered in the vehicle-side device mounted on the vehicle is approaching the vehicle. After receiving the request signal which is a low frequency signal (LF), the portable device responds and transmits an answer signal which is a high frequency signal (RF) including a command signal. And if a vehicle side apparatus receives the answer signal, it will control the to-be-controlled device according to the command signal contained in an answer signal. The control is, for example, unlocking the door of the automobile or starting the engine of the automobile, so that the driver can drive the automobile.
  • LF low frequency signal
  • RF high frequency signal
  • an LF signal (several hundred KHz) with a narrow communication range is transmitted from the vehicle, while an RF signal (several hundred MHz) with a wide communication range is transmitted from the portable device. Is done.
  • the LF signal reaches only within a range of several meters from the vehicle, while the RF signal reaches a range of tens to hundreds of meters from the portable device.
  • a relay attack using a repeater may be performed that exploits the mechanism.
  • the relay attack prepares two unauthorized repeaters, and one repeater is arranged in the vicinity of the vehicle and receives a request signal from the vehicle. Based on this request signal, a false request signal is transmitted from the other repeater placed at an isolated position among the two repeaters, and an answer signal is transmitted to the vehicle from the portable device that has received the request signal. The vehicle receives this and the vehicle door is unlocked where the vehicle owner does not intend.
  • the transmission / reception frequency between the in-vehicle wireless device 902 and the wireless key 903 is notified by both messages, and dynamically changed and transmitted.
  • the in-vehicle wireless device 902 compares the RSSI value in each transmission / reception frequency signal with the threshold value, and if the RSSI value of the message in all transmission / reception frequency signals exceeds the threshold value, the relay amplifier 905 disguises the RSSI value. If the user 904 enters the vehicle vicinity area 907, the vehicle 901 is prepared for boarding, such as unlocking the door of the vehicle 901.
  • transmission / reception is performed while dynamically changing the frequency used for communication for each communication from among a plurality of frequencies by notifying the frequency to be changed by a message between the wireless key and the wireless device of the vehicle. Do. Therefore, in order to perform relay attack, the telegram is temporarily decoded at the time of relay amplification, the contents are analyzed and the changed frequency is grasped, and the frequency band in which the relay amplifier can be amplified is switched according to the changed frequency.
  • a configuration or a configuration capable of relaying and amplifying the entire frequency band that can be transmitted and received by the wireless key or the wireless device of the vehicle is required.
  • the wireless key system 900 described in Patent Document 1 before the transmission / reception between the in-vehicle wireless device 902 and the wireless key 903 for distance measurement is performed, notification that the transmission / reception frequency is changed is notified. is required. As a result, the wireless key system 900 has a problem that the communication time becomes long and the communication speed becomes slow.
  • the present invention has been made in view of such a technical background, and an object of the present invention is to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
  • a keyless entry device of the present invention includes a vehicle-side device that transmits a request signal, and a portable device that transmits an answer signal corresponding to the request signal when the request signal is received.
  • the vehicle-side device includes a first resonance circuit, a vehicle-side transmission unit that transmits the request signal via the first resonance circuit, and a vehicle-side reception that receives the answer signal.
  • a vehicle-side control unit that performs a predetermined in-vehicle control, and a vehicle-side oscillation circuit that generates a carrier signal for the request signal, and the portable device includes a second resonance circuit, and A portable device-side receiver that receives the request signal via a second resonance circuit; a portable device-side transmitter that transmits the answer signal; and the answer signal And the vehicle-side oscillation circuit can change the carrier frequency of the carrier signal, and the request signal includes a plurality of frames having different carrier frequencies.
  • the portable device side control unit measures the reception strength for each of the plurality of frames, causes the portable device side transmission unit to transmit the answer signal including information based on the measured reception strength, and performs the vehicle side control.
  • the unit has a feature of determining whether to perform predetermined control on the vehicle based on the answer signal.
  • the keyless entry device configured as described above includes a plurality of frames having different carrier frequencies in the request signal, it transmits or receives a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit. As a result, the transmission / reception strength decreases due to the carrier frequency being out of the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. In addition, since it is not necessary to notify the portable device of changes in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
  • the first resonance circuit and / or the second resonance circuit have a resonance frequency equal to any one of the different carrier frequencies.
  • the keyless entry device thus configured has the same resonance frequency of the first resonance circuit and / or the second resonance circuit as one of the different carrier frequencies, and this frequency is used as a reference so that other different carrier waves can be used.
  • the reference level can be set in a region where the reception intensity is high, so that it is possible to detect fraud even if the signal is far away.
  • the plurality of frames include a distance measurement frame and an illegal relay determination frame having different carrier frequencies, and the illegal relay determination frame of the distance measurement frame has a transmission strength with respect to the transmission strength of the distance measurement frame.
  • the keyless entry device configured in this way only needs to obtain the ratio of the reception strength in the fraud relay determination frame to the distance measurement frame in the request signal, it is possible to determine whether the fraud is simple or not. Obviously, the keyless entry device configured in this way only needs to obtain the ratio of the reception strength in the fraud relay determination frame to the distance measurement frame in the request signal, it is possible to determine whether the fraud is simple or not. Obviously, the keyless entry device configured in this way only needs to obtain the ratio of the reception strength in the fraud relay determination frame to the distance measurement frame in the request signal, it is possible to determine whether the fraud is simple or not. Become.
  • the first resonance circuit and the second resonance circuit can each change a resonance frequency, and at least one of the vehicle-side transmission unit and the portable device-side reception unit is The resonance frequency is changed according to the carrier frequency.
  • the vehicle-side transmitter and the portable device-side receiver since at least one of the vehicle-side transmitter and the portable device-side receiver has a resonance frequency that matches the reference carrier frequency, other different carrier frequencies The difference in the received intensity with the signal can be compared in a region where the received intensity is higher. For this reason, it is possible to detect fraud with a higher probability even for signals that are far away. Moreover, since the SN ratio of the transmission signal from the vehicle side transmission unit or the reception signal of the portable device side reception unit is also increased, the determination accuracy is increased.
  • the keyless entry device of the present invention includes a plurality of frames having different carrier frequencies in the request signal, a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit is transmitted or received.
  • the transmission / reception strength decreases due to the carrier frequency deviating from the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed.
  • the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
  • FIG. 1 is a diagram showing a schematic configuration of the keyless entry device 100, and is a plan view when a vehicle user 55 having the vehicle-side device 10 and the portable device 20 are viewed from above.
  • the vehicle-side device 10 is mounted on a vehicle 50, and includes a vehicle-side device body 10a, a vehicle-side transmission antenna element 19a, and a vehicle-side reception antenna element 12a.
  • the vehicle-side transmitting antenna element 19a is composed of one antenna element arranged at a predetermined position in the vehicle 50, and one vehicle-side receiving antenna element 12a is in the vicinity of the vehicle-side device body 10a. Is arranged. However, the arrangement of the vehicle-side transmitting antenna element 19a and the vehicle-side receiving antenna element 12a mentioned here is an example, and other arrangements may be used.
  • At least one vehicle-side transmitting antenna element 19a is provided, and a plurality of vehicle-side transmitting antenna elements 19a may be provided.
  • the vehicle-side transmitting antenna element 19a and the vehicle-side receiving antenna element 12a described above are connected to the vehicle-side device body 10a through wiring not shown.
  • the portable device 20 is carried by the vehicle user 55 and is operated by the built-in battery 28.
  • the portable device 20 receives a request signal from the vehicle-side device 10 mounted on the vehicle 50, it transmits an answer signal corresponding to the request signal and wirelessly communicates with the vehicle-side device 10. It has a function to perform communication.
  • the portable device 20 is normally in a standby state so that the request signal can be received.
  • the keyless entry device 100 has a function of performing wireless communication between the vehicle-side device 10 and the portable device 20 by the vehicle user 55 operating the request switch of the portable device 20, and unlocking / locking the door lock. Have. In addition, authentication using data such as an ID code is performed by automatically touching the vehicle while holding the portable device without operating the switch of the portable device, and the door lock is automatically released. It also has a so-called passive function for locking and locking. This passive function transmits a distance measurement signal from the vehicle side device 10 together with an ID code, calculates a distance based on the reception strength of the distance measurement signal in the portable device 20, and places the distance information on the answer signal to the vehicle. It may be configured to send back to the side device 10 and lock and unlock the vehicle depending on whether or not the distance is within a predetermined distance range.
  • FIG. 2 is a block diagram showing a main configuration of each of the vehicle-side device 10 and the portable device 20 used in the keyless entry device 100.
  • the vehicle-side device 10 is composed of the vehicle-side transmitting antenna element 19a, the vehicle-side receiving antenna element 12a, and the vehicle-side device body 10a.
  • the vehicle-side device body 10a includes a vehicle-side transmission unit 11 (LF-TX), a vehicle-side reception unit 12 (RF-RX), a vehicle-side control unit 15 (CPU), and a vehicle-side oscillation circuit 16 (LF-OSC). ), A vehicle-side storage unit 17 (MEM), and a drive signal transmission unit 18 (DS-TX).
  • the vehicle side control unit 15 is located in the center and controls each unit connected to the vehicle side control unit 15.
  • the 1st resonance circuit 13 is provided in the inside of the vehicle side transmission part 11, and the 1st resonance circuit 13 is connected to the vehicle side transmission antenna element 19a.
  • the first resonance circuit 13 is integrated with the vehicle-side transmission antenna element 19a to form the vehicle-side transmission antenna 19, and forms a predetermined antenna impedance.
  • the configuration of the first resonance circuit 13 will be described later.
  • the vehicle-side receiving unit 12 has an input end connected to the vehicle-side receiving antenna element 12 a and an output end connected to the vehicle-side control unit 15.
  • the vehicle-side oscillation circuit 16 generates a request signal carrier wave signal LF, and an output terminal for outputting the carrier wave signal LF is connected to the vehicle-side controller 15.
  • the vehicle-side storage unit 17 stores a first ID assigned to the vehicle-side device 10 and a second ID assigned to the portable device 20 used together with the vehicle-side device 10. The end is connected to the vehicle-side control unit 15.
  • the drive signal transmission unit 18 has an input end connected to the vehicle-side control unit 15.
  • the carrier wave signal LF output from the vehicle-side oscillation circuit 16 is supplied to the vehicle-side control unit 15.
  • the vehicle-side control unit 15 reads the first ID from the vehicle-side storage unit 17, adds necessary information including the read first ID to the carrier signal LF, A request signal is formed according to the format. The request signal format will be described later.
  • the request signal is supplied to the vehicle-side transmission unit 11 under the control of the vehicle-side control unit 15.
  • the supplied request signal is amplified to a signal level suitable for transmission, and the amplified request signal is supplied to the first resonance circuit 13.
  • the request signal is wirelessly transmitted from the vehicle-side transmission antenna element 19a.
  • the vehicle-side receiving unit 12 receives an answer signal including the second ID and command signal of the portable device 20 wirelessly transmitted from the portable device 20 via the vehicle-side receiving antenna element 12a, and receives the received answer signal. Is amplified to a predetermined signal level by an amplifier circuit (not shown), and the amplified answer signal is supplied to the vehicle-side control unit 15.
  • the vehicle-side control unit 15 authenticates the second ID included in the answer signal using the second ID read from the vehicle-side storage unit 17, and when the authentication is established, the command included in the answer signal
  • a drive signal is formed from the signal, and this drive signal is supplied to the drive signal transmitter 18.
  • the drive signal transmission unit 18 drives the motor (not shown) that locks and unlocks the corresponding door lock or a controlled mechanism (not shown) such as an engine start circuit. A signal is transmitted and the controlled mechanism is controlled according to the drive signal.
  • an LF or VLF carrier signal is used as the request signal
  • an RF (several hundred MHz) carrier signal is used as the answer signal.
  • the communication distance of the request signal that is, the detection area of the request signal is about 1 to 2 m from the vehicle-side transmission antenna element 19a
  • the communication distance of the answer signal that is, the detection area of the answer signal is the portable-device-side transmission antenna element. It is about 5 to 10 m from 21a.
  • the portable device 20 includes a portable device-side transmitter 21 (RF-TX) including a portable device-side transmitting antenna element 21a and a portable device-side receiving device including a portable device-side receiving antenna element 29a.
  • Unit 22 (LF-RX), portable device side control unit 25 (CPU), portable device side oscillation circuit 26 (RF-OSC), portable device side storage unit 27 (MEM), and battery 28 for power supply ( BAT).
  • the portable device side control unit 25 is located in the center and controls each unit connected to the portable device side control unit 25.
  • the portable device side transmission unit 21 has an input terminal connected to the portable device side control unit 25 and an output terminal connected to the portable device side transmission antenna element 21a.
  • the portable device side receiving unit 22 has an input end connected to the portable device side receiving antenna element 29 a and an output end connected to the portable device side control unit 25.
  • the output terminal of the portable device side oscillation circuit 26 is connected to the portable device side control unit 25.
  • the portable device storage unit 27 has an input / output terminal connected to the portable device control unit 25.
  • the battery 28 is connected to each part in the portable device 20 described above, and supplies power to the portable device-side transmitter 21, the portable device-side receiver 22, the portable device-side controller 25, and the like.
  • the portable device side oscillation circuit 26 oscillates a high frequency signal, and the oscillated high frequency signal is supplied to the portable device side control unit 25.
  • the portable device-side control unit 25 uses the high-frequency signal as a carrier wave and adds a necessary information signal such as a second ID or a command signal by applying modulation to form an answer signal.
  • This answer signal is supplied to the portable device-side transmitter 21.
  • the portable device-side storage unit 27 stores a first ID assigned to the vehicle-side device 10, a second ID assigned to the own portable device 20, and various command signals. Under the control of the machine control unit 25, the first ID or the second ID and various command signals are appropriately read out.
  • the portable device-side transmission unit 21 When the portable device-side transmission unit 21 is supplied with a high-frequency signal, ie, an answer signal, including the second ID or command signal from the portable device-side control unit 25, the answer signal is amplified to a signal level suitable for wireless transmission. Then, the amplified answer signal is wirelessly transmitted via the portable device-side transmitting antenna element 21a.
  • a high-frequency signal ie, an answer signal, including the second ID or command signal from the portable device-side control unit 25
  • the answer signal is amplified to a signal level suitable for wireless transmission. Then, the amplified answer signal is wirelessly transmitted via the portable device-side transmitting antenna element 21a.
  • the second resonance circuit 23 is provided inside the portable device side receiving unit 22, and the portable device side reception antenna element 29 a is connected to the second resonance circuit 23.
  • the second resonance circuit 23 is integrated with the portable device-side receiving antenna element 29a to form the portable device-side receiving antenna 29, and forms a predetermined antenna impedance.
  • the configuration of the second resonance circuit 23 will be described later.
  • the portable device side receiving unit 22 receives the request signal including the first ID wirelessly transmitted from the vehicle side device 10 via the portable device side reception antenna element 29a and the second resonance circuit 23, and receives the received request.
  • the signal is supplied to the portable device side control unit 25.
  • FIG. 3 is a block diagram when a relay attack is performed.
  • the relay attack prepares two unauthorized repeaters, a first repeater 60 and a second repeater 70, and the first repeater 60 is arranged in the vicinity of the vehicle 50, A request signal from the vehicle 50 is received. Based on this request signal, the second repeater 70 arranged at the isolated position transmits a false request signal, and the portable device 20 that has received the request transmits an answer signal to the vehicle, and the vehicle 50 receives it. Thus, the vehicle door is unlocked where the vehicle user 55 does not intend.
  • the relay attack in the communication between the original vehicle-side device 10 and the portable device 20, communication via the first repeater 60 and the second repeater 70 is added. .
  • the present invention uses the fact that the reception strength in the portable device 20 is reduced by adding the number of communications in such a relay attack and switching the carrier frequency of the request signal to determine whether or not a relay attack has been performed. Judgment.
  • FIG. 4 is a diagram showing the configuration of the LF transmission format of the request signal.
  • 4A shows the configuration of the conventional LF transmission format of the request signal
  • FIGS. 4B and 4C show the configuration of the LF transmission format of the request signal of the present invention.
  • FIG. 5A is a circuit diagram showing the first resonance circuit 13
  • FIG. 5B is a circuit diagram showing the second resonance circuit 23.
  • FIG. 6A is a graph showing the transmission antenna impedance of the vehicle-side transmission unit 11
  • FIG. 6B is a graph showing the reception antenna impedance of the portable device-side reception unit 22.
  • FIG. 7 is a graph showing reception strength or transmission strength. Of these, FIG. 7A shows a portable device in which the carrier frequency is switched when relay attack is not performed (normal time).
  • FIG. 20 is a graph showing a reception intensity (B2) at 20; Also, FIG. 7B shows the reception strength (in the first repeater 60 and the portable device 20 shown in FIG. 3 when the carrier wave frequency is switched when the relay attack is performed (in the case of fraud) ( D2, B2), and the transmission intensity E2 in the 2nd repeater 70 are graphs. In FIG. 7, signal attenuation due to distance is omitted for easy understanding.
  • the LF transmission format of the conventional request signal includes information including the first ID assigned to the vehicle-side device 10 and the second ID assigned to the portable device 20 described above.
  • the frame includes a frame and a distance measuring frame for measuring the distance between the vehicle-side device 10 and the portable device 20.
  • the carrier frequency of the information frame and the distance measurement frame is the same carrier frequency f1.
  • the portable device side control unit 25 measures the reception strength of the distance measurement frame, creates an answer signal based on the measured reception strength, and causes the portable device side transmission unit 21 to transmit the created answer signal.
  • the vehicle-side control unit 15 that has received the answer signal can measure the distance between the vehicle 50 and the portable device 20 shown in FIG. 1 based on the reception strength of the distance measurement frame in the portable device 20.
  • an illegal relay determination frame is added after the distance measurement frame of the LF transmission format of the conventional request signal. It has a configuration.
  • the carrier frequency of the fraud determination frame is a carrier frequency f2 different from the carrier frequency f1 of the distance measurement frame.
  • the portable device control unit 25 measures the reception strength for each of a plurality of frames, that is, the reception strength of the distance measurement frame and the reception strength of the fraud relay determination frame. Then, an answer signal is created based on the two measured received intensities, and the created answer signal is transmitted to the portable device-side transmitter 21. And the vehicle side control part 15 which received the answer signal determines whether predetermined
  • f2 is set to be lower than f1 (f1> f2), but the reception strength is measured at a frequency higher than f1 when the portable device 20 makes an unauthorized relay determination (f1 ⁇ f1).
  • f2) may be set as follows.
  • the LF transmission format of the request signal of the present invention may have a configuration in which a plurality of unauthorized relay determination frames are added instead of one as shown in FIG.
  • f1> f2> fN is set. Note that when the reception strength at the time of the unauthorized relay determination of the portable device 20 is performed at a frequency higher than f1, f1 ⁇ f2 ⁇ fN may be set.
  • the first resonance circuit 13 is configured by a series connection circuit in which one end of a capacitor C11 and one end of an inductor L11 included in the vehicle-side transmitting antenna element 19a are connected.
  • An antenna 19 including the first resonance circuit 13 is configured. Further, the other end of the capacitor C11 and the other end of the inductor L11 are connected to other portions of the vehicle-side transmission unit 11.
  • the first resonance circuit 13 has a resonance frequency equal to one of the different carrier frequencies of the carrier frequency f1 and the carrier frequency f2 of the distance measurement frame described above.
  • the resonance frequency of the first resonance circuit 13 is set to the carrier frequency f1 of the distance measurement frame, which is the same as the information frame.
  • the carrier frequency f1 is determined by the capacitance of the capacitor C11 and the inductance of the inductor L11.
  • the transmission antenna impedance of the first resonance circuit 13 between the other end of the capacitor C11 and the other end of the inductor L11, that is, the input end of the first resonance circuit 13, is a carrier frequency as shown in FIG. z1 at f1 and z12 at the carrier frequency f2.
  • the transmission antenna impedance z11 at the carrier frequency f1 is set to a predetermined impedance value, and is an optimum value in the frequency range before and after the carrier frequency f1. Therefore, the request signal can be transmitted most efficiently at the carrier frequency f1. Accordingly, the transmission intensity of the vehicle-side transmission unit 11 is maximum (A1) at the carrier frequency f1, as shown in FIG. As described above, the attenuation due to the distance is omitted in FIG.
  • the second resonance circuit 23 is configured by a circuit in which a capacitor C21 and an inductor L21 included in the portable device-side receiving antenna element 29a are connected in parallel. Further, both ends of each of the capacitor C21 and the inductor L21 are connected to other parts of the portable device side receiving unit 22.
  • An antenna 29 including the second resonance circuit 23 is configured. Similar to the first resonance circuit 13, the resonance frequency of the second resonance circuit 23 is set to the carrier frequency f 1 of the distance measurement frame of the request signal transmitted from the vehicle-side transmission unit 11. f1 is determined by the capacitance of the capacitor C21 and the inductance of the inductor L21.
  • the reception antenna impedance of the second resonance circuit 23 to which the portable device-side reception antenna element 29a is connected is shown in FIG.
  • the carrier frequency f1 is z21
  • the carrier frequency f2 is z22.
  • the receiving antenna impedance z21 at the carrier frequency f1 is set to a predetermined impedance value, and is an optimal value in the frequency range before and after the carrier frequency f1. Therefore, the request signal can be received most efficiently at the carrier frequency f1. Therefore, as shown in FIG. 7A, the reception intensity of the portable device side receiving unit 22 is maximum (B1) at the carrier frequency f1.
  • the LF transmission format of the request signal of the present invention has a configuration in which an illegal relay determination frame is added after the distance measurement frame shown in FIG.
  • the carrier frequency of the distance measurement frame is f1
  • the carrier frequency of the unauthorized relay determination frame is f2 different from f1 (f1> f2).
  • the transmission antenna impedance z12 of the vehicle-side transmission unit 11 is as shown in FIG. , Becomes larger than the transmission antenna impedance z11 when the carrier frequency is f1 (z12> z11).
  • the reception antenna impedance z22 of the portable device-side receiver 22 is smaller than the transmission antenna impedance z21 when the carrier frequency is f1, as shown in FIG. 6B. (Z22 ⁇ z21)
  • the transmission intensity of the vehicle side transmission unit 11 is transmitted as shown in FIG. 7 (a). It decreases from A1 to A2 as the antenna impedance changes.
  • the reception intensity B1 at f1 of the portable device side receiving unit 22 becomes the maximum value when the resonance frequency of the second resonance circuit 23 is set to f1.
  • the reception antenna impedance of the mobile device side receiving unit 22 is received by the mobile device side receiving unit 22 when the frequency becomes f2, that is, when z21 changes to z22 as shown in FIG.
  • the intensity decreases at a rate of z22 / z21 as the receiving antenna impedance changes.
  • the first repeater 60 and the second repeater are provided between the vehicle-side device 10 and the portable device 20. 70 will enter.
  • the transmission / reception strength drop caused by the change in the transmission antenna impedance and the change in the reception antenna impedance occurs twice more than in the normal case where no relay attack is performed.
  • the transmission intensity A2 of the vehicle-side transmission unit 11 at the carrier frequency f2 of the vehicle-side device 10 decreases to the reception intensity D2 at the time of reception by the first repeater 60, It decreases to the reception strength E2 at the time of transmission of the second repeater 70, and decreases to the reception strength B2 at the time of reception of the portable device side receiving unit 22.
  • the reception intensity B2 in the portable device-side receiving unit 22 decreases more than usual.
  • the transmission format of the request signal is such that one unauthorized relay determination frame is added after the distance measurement frame of the carrier frequency f1.
  • a plurality of fraudulent relay determination frames may be added after the distance measurement frame of the carrier frequency f1.
  • the keyless entry device 100 since the keyless entry device 100 according to the first embodiment of the present invention includes a plurality of frames having different carrier frequencies in the request signal, it differs from the resonance frequency of the first resonance circuit 13 or the second resonance circuit 23. A signal having a carrier frequency is transmitted or received, and the transmission / reception strength is reduced due to the carrier frequency being out of the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. Further, since it is not necessary to notify the portable device 20 of the change in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide the keyless entry device 100 that has an excellent communication speed and can prevent a relay attack with a simple configuration.
  • the reception intensity with signals of other different carrier frequencies can be compared in a region where the reception intensity is high, so that it is possible to detect fraud even with signals that are far apart.
  • the operation of the keyless entry device 200 according to the second embodiment of the present invention will be described with reference to FIGS.
  • the difference between the keyless entry device 100 and the keyless entry device 200 is that the resonance frequency of each of the first resonance circuit 13 and the second resonance circuit 23 of the keyless entry device 100 is fixed, whereas the keyless entry device 200.
  • the only difference is that the resonance frequency of each of the first resonance circuit 14 and the second resonance circuit 24 is variable. Therefore, all other configurations are the same. Therefore, description of items other than those related to the first resonance circuit 14 and the second resonance circuit 24 is omitted.
  • FIG. 8A is a circuit diagram of the first resonance circuit 14 whose resonance frequency can be varied
  • FIG. 8B is a circuit diagram of the second resonance circuit 24 whose resonance frequency can be varied
  • FIG. 9A is a graph showing the transmission antenna impedance of the vehicle-side transmission unit 11 when the resonance frequency is changed
  • FIG. 9B is a graph of the portable device-side reception unit 22 when the resonance frequency is changed. It is a graph which shows a receiving antenna impedance.
  • FIG. 10 is a graph showing the reception intensity when only the resonance frequency of the second resonance circuit 24 is changed, for example.
  • FIG. 10A shows the case where the relay attack is not performed (normal time). ) Is a graph showing the reception intensity B2 in the portable device 20 when the carrier frequency is switched.
  • FIG. 10A shows the case where the relay attack is not performed (normal time).
  • 10B shows the reception strength (D2, B2) at the first repeater 60 and the portable device 20 when the carrier frequency is switched when a relay attack is performed (when illegal), 4 is a graph showing transmission intensity E2 in the second repeater 70.
  • signal attenuation due to distance is omitted for easy understanding.
  • the first resonance circuit 14 with variable resonance frequency shown in FIG. 8A has a capacitor C12 and a switch SW11 between both ends of the capacitor C11 with respect to the configuration of the first resonance circuit 13 shown in FIG. And the other configuration is the same as that of the first resonance circuit 13.
  • An antenna 19 including the first resonance circuit 14 is configured.
  • the resonance frequency when the switch SW11 is turned off is the same frequency as the carrier frequency of the request signal distance measurement frame f1, and the resonance frequency when the switch SW11 is turned on is f1.
  • the frequency is set to be the same frequency as f2, which is a lower carrier frequency of the fraud relay determination frame.
  • f2 is determined by the total capacitance of the capacitor C11 and the capacitor C12 and the inductance of the inductor L11.
  • the second resonance circuit 24 with variable resonance frequency shown in FIG. 8B has a capacitor C22 and a switch SW21 between both ends of the capacitor C21 with respect to the configuration of the second resonance circuit 23 shown in FIG.
  • the other configuration is the same as that of the second resonance circuit 23.
  • An antenna 29 including the second resonance circuit 23 is configured.
  • the resonance frequency when the switch SW21 is turned off becomes the same frequency as the carrier frequency of the request signal distance measurement frame f1, and the resonance frequency when the switch SW21 is turned on is f1.
  • the frequency is set to be the same frequency as f2, which is a lower carrier frequency of the fraud relay determination frame.
  • f2 is determined by the total capacitance of the capacitor C21 and the capacitor C22 and the inductance of the inductor L21.
  • the first resonance circuit 14 and the second resonance circuit 24 can change the resonance frequency, respectively, and at least one of the vehicle-side transmission unit 11 and the portable device-side reception unit 22 matches the carrier frequency.
  • the resonance frequency is changed. That is, when the carrier frequency is f1, the switches SW11 and SW21 are turned off so that the resonance frequencies of the first resonance circuit 14 and the second resonance circuit 24 are f1.
  • the switch SW11 or the switch SW21 is set to be turned on.
  • the resonance frequency of the first resonance circuit 14 can be simultaneously switched from f1 to f2.
  • the transmission antenna impedance changes from z11 to z12 as shown in FIG. 9A, but the resonance frequency of the first resonance circuit 14 is f2, z12 has the same predetermined impedance value as z11. Therefore, even if the resonance frequency of the first resonance circuit 14 is switched from f1 to f2, it is an optimum value in the frequency range around the carrier frequency f2. Therefore, the request signal can be transmitted most efficiently even at the carrier frequency f2.
  • the resonance frequency of the second resonance circuit 24 can be switched from f1 to f2 at the same time when the distance measurement frame is changed to the unauthorized relay determination frame. .
  • the reception antenna impedance is switched from the resonance frequency of the second resonance circuit 24 to f2.
  • the reception antenna impedance changes from z21 to z22 as shown in FIG. 9B, but since the resonance frequency of the second resonance circuit 24 is f2, z22 is the same impedance value as z21. become. Therefore, even if the resonance frequency of the second resonance circuit 24 is switched from f1 to f2, it is an optimum value in the frequency range before and after the carrier wave frequency f2. Therefore, the request signal can be received most efficiently even at the carrier frequency f2.
  • the resonance frequency of the first resonance circuit 14 of the vehicle-side transmitter 11 is set.
  • the resonance frequency of the second resonance circuit 24 of the portable device-side receiver 22 is changed from f1 to f2 while keeping f1.
  • the timing for switching the resonance frequency of the second resonance circuit 24 is determined in advance.
  • the resonance frequency of the second resonance circuit 24 of the portable device-side receiver 22 is switched to f2, as shown in FIG. 9B. Therefore, the reception antenna impedance z22 at this time is the same as z21 and remains a predetermined characteristic impedance. Therefore, the mobile device side receiving unit 22 can receive without reducing the reception intensity.
  • the first repeater 60 and the second repeater 70 are inserted between the vehicle-side device 10 and the portable device 20. As described above, a decrease in reception strength by the portable device side receiving unit 22 does not occur, but a decrease in transmission / reception strength by the first repeater 60 and the second repeater 70 occurs.
  • a relay attack is performed. If the antenna impedance of the resonance circuit in each of the first repeater 60 and the second repeater 70 is the same as that of the keyless entry device 100, the antenna impedance in which the resonance frequency of each resonance circuit is not changed.
  • the reception strength B2 at the mobile device side receiving unit 22 is smaller than the transmission strength E2 at the second repeater 70.
  • the transmission format of the request signal is one illegal relay determination frame as shown in FIG. 4B.
  • a plurality of frames may be used.
  • a plurality of connection circuits may be provided, and each switch may be switched in accordance with switching of the resonance frequency.
  • At least one of the vehicle-side transmitter 11 and the portable device-side receiver 22 has a resonance frequency that matches the reference carrier frequency.
  • a difference in reception intensity with signals of different carrier frequencies can be determined in a region where the reception intensity is high. For this reason, it is possible to detect fraud with a higher probability even for signals that are far away.
  • the SN ratio of the transmission signal from the vehicle-side transmission unit 11 or the reception signal of the portable device-side reception unit 22 is also increased, the determination accuracy is increased.
  • both the resonance frequencies of the second resonance circuit 24 of the portable device side receiving unit 22 and the first resonance circuit 14 of the vehicle side transmission unit 11 are changed, the effect is further increased.
  • the keyless entry device of the present invention since the keyless entry device of the present invention includes a plurality of frames having different carrier frequencies in the request signal, it transmits a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit, or As a result of reception, the transmission / reception strength decreases due to the carrier frequency deviating from the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. In addition, since it is not necessary to notify the portable device of changes in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
  • the present invention is not limited to the description of the above embodiment, and can be implemented with appropriate modifications in a mode in which the effect is exhibited.
  • Vehicle side apparatus 10 a Vehicle side apparatus main body 11 Vehicle side transmission part 12 Vehicle side receiving part 12a Vehicle side receiving antenna element 13 1st resonance circuit 14 1st resonance circuit 15 Vehicle side control part 16 Vehicle side oscillation circuit 17 Vehicle side memory

Abstract

[Problem] To provide a keyless entry device that has excellent communication speed and that can prevent a relay attack with a simple configuration. [Solution] A vehicle-side device 10 has a vehicle-side transmitter 11 that transmits a request signal, a vehicle-side receiver 12 that receives an answer signal, a vehicle-side control unit 15, and a vehicle-side electronic oscillator 16. A mobile unit 20 has a mobile unit-side receiver 22 that receives the request signal, a mobile unit-side transmitter that transmits the answer signal, and a mobile unit-side control unit 25. The vehicle-side electronic oscillator 16 can vary the carrier frequency of a carrier signal, and the request signal contains a plurality of frames each having a different carrier frequency. The mobile unit-side control unit 15 measures the reception strength of each frame and causes the mobile unit-side transmitter 21 to transmit the answer signal containing information based on the measured reception strength. The vehicle-side control unit 25 determines whether to perform the prescribed control with respect to the vehicle on the basis of the answer signal.

Description

キーレスエントリー装置Keyless entry device
 本発明は、車両側装置と携帯機との間の無線通信を行なうことで車両のドアを施錠又は解錠するキーレスエントリー装置に関し、特に簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置に関する。 The present invention relates to a keyless entry device that locks or unlocks a vehicle door by performing wireless communication between a vehicle-side device and a portable device, and more particularly, a keyless entry device that can prevent a relay attack with a simple configuration. About.
 自動車等の移動車両においては、自動車の不使用時に当該自動車が盗難にあったり、当該自動車内に侵入されて内部の装置が破損されたりすることを防止するために自動車のドアにドアロックを設けている。従来、当該ドアロックの施錠あるいは解錠は、エンジン始動のためのキーをドアに設けられたキー孔に挿入することによって行われていたが、利便性の面から、キーをキー孔に挿入することなく、ユーザが携帯機のリクエストスイッチを操作すると車両側装置からリクエスト信号が送信され、その後、携帯機から車両側装置へアンサー信号が送信されることによってドアロックの解錠・施錠を行ういわゆるキーレスエントリー装置が用いられている。更に近年では、携帯機のスイッチを操作しなくても携帯機を所持した状態で手による車両への接触等を行うことによって、自動的にドアロックの解錠・施錠を行ういわゆるパッシブキーレスエントリー装置が用いられている。 In moving vehicles such as automobiles, door locks are provided on the doors of automobiles to prevent them from being stolen when the automobile is not in use, or from being damaged by internal devices. ing. Conventionally, the door lock is locked or unlocked by inserting a key for starting the engine into a key hole provided in the door. However, from the viewpoint of convenience, the key is inserted into the key hole. If the user operates the request switch of the portable device, a request signal is transmitted from the vehicle-side device, and then an answer signal is transmitted from the portable device to the vehicle-side device, so that the door lock is unlocked / locked. A keyless entry device is used. Furthermore, in recent years, a so-called passive keyless entry device that automatically unlocks and locks the door lock by touching the vehicle with the hand while holding the portable device without operating the switch of the portable device. Is used.
 パッシブキーレスエントリー装置の動作としては、当該自動車に搭載された車両側装置に既登録されている携帯機を携帯保持した者が当該自動車に近接し、車両側装置から送信されている起動信号を含んだ低周波信号(LF)であるリクエスト信号を受信した後、携帯機が応答して指令信号を含んだ高周波信号(RF)であるアンサー信号を送信する。そして、車両側装置がそのアンサー信号を受信すると、アンサー信号に含まれる指令信号に従った被制御機器の制御を行う。その制御は、例えば、当該自動車のドアのロックを解除したり、当該自動車のエンジンを起動したりするもので、それにより運転者が当該自動車を運転することができるようになる。 The operation of the passive keyless entry device includes an activation signal transmitted from the vehicle-side device when a person holding a portable device already registered in the vehicle-side device mounted on the vehicle is approaching the vehicle. After receiving the request signal which is a low frequency signal (LF), the portable device responds and transmits an answer signal which is a high frequency signal (RF) including a command signal. And if a vehicle side apparatus receives the answer signal, it will control the to-be-controlled device according to the command signal contained in an answer signal. The control is, for example, unlocking the door of the automobile or starting the engine of the automobile, so that the driver can drive the automobile.
 パッシブキーレスエントリー装置における無線通信は、上述したように、車両から通信範囲の狭いLF信号(数百KHz)が送信され、一方で携帯機からは通信範囲の広いRF信号(数百MHz)が送信される。LF信号は車両から数mの範囲にのみ信号が到達し、一方でRF信号は携帯機から数十~数百mの範囲に到達する。 As described above, in the wireless communication in the passive keyless entry device, an LF signal (several hundred KHz) with a narrow communication range is transmitted from the vehicle, while an RF signal (several hundred MHz) with a wide communication range is transmitted from the portable device. Is done. The LF signal reaches only within a range of several meters from the vehicle, while the RF signal reaches a range of tens to hundreds of meters from the portable device.
 パッシブキーレスエントリー装置においては、その仕組みを悪用した、中継器を用いたリレーアタックが行われることが懸念される。リレーアタックは、2台の不正な中継器を用意し、一方の中継器は車両の近傍に配置されて、車両からのリクエスト信号を受信する。このリクエスト信号を基に、2台の中継機の内、隔離した位置に配置させた他方の中継器より偽のリクエスト信号を送信させ、それを受信した携帯機からアンサー信号を車両に送信させ、それを車両が受信して車両所持者の意図しないところで車両のドアが解錠されるというものである。 In passive keyless entry devices, there is concern that a relay attack using a repeater may be performed that exploits the mechanism. The relay attack prepares two unauthorized repeaters, and one repeater is arranged in the vicinity of the vehicle and receives a request signal from the vehicle. Based on this request signal, a false request signal is transmitted from the other repeater placed at an isolated position among the two repeaters, and an answer signal is transmitted to the vehicle from the portable device that has received the request signal. The vehicle receives this and the vehicle door is unlocked where the vehicle owner does not intend.
 このようなリレーアタックを検知して防止するため、各種の手法が考えられている。リレーアタックに対応したパッシブキーレスエントリー装置としては、例えば特許文献1に挙げる無線キーシステム900がある。無線キーシステム900の構成を図11に示す。 In order to detect and prevent such relay attacks, various methods have been considered. As a passive keyless entry device corresponding to the relay attack, for example, there is a wireless key system 900 described in Patent Document 1. The configuration of the wireless key system 900 is shown in FIG.
 無線キーシステム900では、車載無線機902と無線キー903との間の送受信周波数を、両者の電文により通知して動的に変更して送信する。車載無線機902は、各送受信周波数の信号におけるRSSI値と閾値とを比較して、全ての送受信周波数の信号における電文のRSSI値が閾値を越えている場合に、中継増幅器905によるRSSI値の偽装が無いと判定して、ユーザ904が車両近傍エリア907内に入ったとして、車両901のドアを開錠するなど車両901の乗車準備を行う。 In the wireless key system 900, the transmission / reception frequency between the in-vehicle wireless device 902 and the wireless key 903 is notified by both messages, and dynamically changed and transmitted. The in-vehicle wireless device 902 compares the RSSI value in each transmission / reception frequency signal with the threshold value, and if the RSSI value of the message in all transmission / reception frequency signals exceeds the threshold value, the relay amplifier 905 disguises the RSSI value. If the user 904 enters the vehicle vicinity area 907, the vehicle 901 is prepared for boarding, such as unlocking the door of the vehicle 901.
 無線キーシステム900においては、無線キーと車両の無線装置間で電文により変更する周波数を通知し合うことにより、複数の周波数の中から通信に用いる周波数を通信毎に動的に変更しながら送受信を行う。従って、リレーアタックを行うには、中継増幅の際に電文を一旦デコードして内容を解析して変更後の周波数を把握し、変更後の周波数に合わせて中継増幅器の増幅可能な周波数帯域を切り替える構成か、若しくは、無線キーや車両の無線装置が送受信し得る周波数帯域の全域を同時に中継増幅できる構成が必要となる。 In the wireless key system 900, transmission / reception is performed while dynamically changing the frequency used for communication for each communication from among a plurality of frequencies by notifying the frequency to be changed by a message between the wireless key and the wireless device of the vehicle. Do. Therefore, in order to perform relay attack, the telegram is temporarily decoded at the time of relay amplification, the contents are analyzed and the changed frequency is grasped, and the frequency band in which the relay amplifier can be amplified is switched according to the changed frequency. A configuration or a configuration capable of relaying and amplifying the entire frequency band that can be transmitted and received by the wireless key or the wireless device of the vehicle is required.
 従って、リレーアタックを行うための構成が非常に複雑となり、リレーアタックを行ないにくくすることが可能となる。 Therefore, the configuration for performing the relay attack becomes very complicated, and it becomes difficult to perform the relay attack.
特開2008-240315号公報JP 2008-240315 A
 しかしながら、特許文献1に記載された無線キーシステム900では、距離測定のための車載無線機902と無線キー903との間の送受信を実施する前に、送受信周波数が変更されることを通知することが必要である。その結果、無線キーシステム900においては、通信時間が長くなり、通信速度が遅くなってしまうという問題があった。 However, in the wireless key system 900 described in Patent Document 1, before the transmission / reception between the in-vehicle wireless device 902 and the wireless key 903 for distance measurement is performed, notification that the transmission / reception frequency is changed is notified. is required. As a result, the wireless key system 900 has a problem that the communication time becomes long and the communication speed becomes slow.
 本発明は、このような技術的背景に鑑みてなされたもので、その目的は、通信速度に優れ、簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置を提供することにある。 The present invention has been made in view of such a technical background, and an object of the present invention is to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
 この課題を解決するために、本発明のキーレスエントリー装置は、リクエスト信号を送信する車両側装置と、前記リクエスト信号を受信すると前記リクエスト信号に対応したアンサー信号を送信する携帯機と、を備えたキーレスエントリー装置であって、前記車両側装置は、第1共振回路を有すると共に、前記第1共振回路を介して前記リクエスト信号を送信する車両側送信部と、前記アンサー信号を受信する車両側受信部と、所定の車両内制御を行う車両側制御部と、前記リクエスト信号用の搬送波信号を生成する車両側発振回路と、を有し、前記携帯機は、第2共振回路を有すると共に、前記第2共振回路を介して前記リクエスト信号を受信する携帯機側受信部と、前記アンサー信号を送信する携帯機側送信部と、前記アンサー信号の送信を制御する携帯機側制御部と、を有し、前記車両側発振回路が前記搬送波信号の搬送波周波数を可変可能であると共に、前記リクエスト信号が、前記搬送波周波数のそれぞれ異なる複数のフレームを含み、前記携帯機側制御部は、前記複数のフレーム毎の受信強度を測定し、測定した前記受信強度に基づいた情報を含む前記アンサー信号を前記携帯機側送信部に送信させ、前記車両側制御部は前記アンサー信号に基づいて車両に対する所定の制御を行うか否かを判定する、という特徴を有する。 In order to solve this problem, a keyless entry device of the present invention includes a vehicle-side device that transmits a request signal, and a portable device that transmits an answer signal corresponding to the request signal when the request signal is received. A keyless entry device, wherein the vehicle-side device includes a first resonance circuit, a vehicle-side transmission unit that transmits the request signal via the first resonance circuit, and a vehicle-side reception that receives the answer signal. A vehicle-side control unit that performs a predetermined in-vehicle control, and a vehicle-side oscillation circuit that generates a carrier signal for the request signal, and the portable device includes a second resonance circuit, and A portable device-side receiver that receives the request signal via a second resonance circuit; a portable device-side transmitter that transmits the answer signal; and the answer signal And the vehicle-side oscillation circuit can change the carrier frequency of the carrier signal, and the request signal includes a plurality of frames having different carrier frequencies. The portable device side control unit measures the reception strength for each of the plurality of frames, causes the portable device side transmission unit to transmit the answer signal including information based on the measured reception strength, and performs the vehicle side control. The unit has a feature of determining whether to perform predetermined control on the vehicle based on the answer signal.
 このように構成されたキーレスエントリー装置は、リクエスト信号に搬送波周波数の異なる複数のフレームを含むため、第1共振回路又は第2共振回路の共振周波数とは異なる搬送波周波数の信号を送信又は受信することになり、搬送波周波数が共振周波数から外れていることによって送受信強度が低下する。そのため、リレーアタックによって送受信が繰り返されることで、それぞれのフレーム間の受信強度の差がより大きく現れる。その結果、リレーアタックを行なおうとしていることを容易に判定できる。また、事前に搬送波周波数の変更を携帯機へ通知する必要がないため、通信時間を短縮することができる。そのため、通信速度に優れ、簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置を提供することができる。 Since the keyless entry device configured as described above includes a plurality of frames having different carrier frequencies in the request signal, it transmits or receives a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit. As a result, the transmission / reception strength decreases due to the carrier frequency being out of the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. In addition, since it is not necessary to notify the portable device of changes in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
 また、上記の構成において、前記第1共振回路及び又は前記第2共振回路は、異なる前記搬送波周波数の内のいずれかに等しい共振周波数を有している、という特徴を有する。 In the above configuration, the first resonance circuit and / or the second resonance circuit have a resonance frequency equal to any one of the different carrier frequencies.
 このように構成されたキーレスエントリー装置は、第1共振回路及び又は第2共振回路の共振周波数を、異なる搬送波周波数の内の1つと同一とし、この周波数を基準とすることによって、他の異なる搬送波周波数の信号との受信強度の差を比較する時、基準レベルを受信強度の高い領域に設定できるので、距離が離れている信号であっても、不正を検出することが可能となる。 The keyless entry device thus configured has the same resonance frequency of the first resonance circuit and / or the second resonance circuit as one of the different carrier frequencies, and this frequency is used as a reference so that other different carrier waves can be used. When comparing the difference in reception intensity with a frequency signal, the reference level can be set in a region where the reception intensity is high, so that it is possible to detect fraud even if the signal is far away.
 また、上記の構成において、前記複数のフレームは、前記搬送波周波数のそれぞれ異なる距離測定用フレームと不正中継判定用フレームとからなり、前記距離測定用フレームの送信強度に対する前記不正中継判定用フレームの前記受信強度の比率が、所定の閾値より小さい場合に不正と判定し、車両に対する所定の制御を行わないことを判断する、という特徴を有する。 Further, in the above configuration, the plurality of frames include a distance measurement frame and an illegal relay determination frame having different carrier frequencies, and the illegal relay determination frame of the distance measurement frame has a transmission strength with respect to the transmission strength of the distance measurement frame. When the ratio of the reception intensity is smaller than a predetermined threshold value, it is determined that the ratio is incorrect and it is determined that predetermined control for the vehicle is not performed.
 このように構成されたキーレスエントリー装置は、リクエスト信号内の距離測定用フレームに対する不正中継判定用フレームにおける受信強度の比率を求めるだけで良いので、簡単な演算で不正か否かの判定が可能となる。 Since the keyless entry device configured in this way only needs to obtain the ratio of the reception strength in the fraud relay determination frame to the distance measurement frame in the request signal, it is possible to determine whether the fraud is simple or not. Become.
 また、上記の構成において、前記第1共振回路及び又は前記第2共振回路は、それぞれ共振周波数を可変可能であり、前記車両側送信部及び前記携帯機側受信部の少なくともいずれか一方は、前記搬送波周波数に合わせて前記共振周波数が変更される、という特徴を有する。 In the above configuration, the first resonance circuit and the second resonance circuit can each change a resonance frequency, and at least one of the vehicle-side transmission unit and the portable device-side reception unit is The resonance frequency is changed according to the carrier frequency.
 このように構成されたキーレスエントリー装置は、車両側送信部及び携帯機側受信部の少なくともいずれか一方が、基準とする搬送波周波数に合わせた共振周波数を有しているため、他の異なる搬送波周波数の信号との受信強度の差を、受信強度のより高い領域で比較できる。そのため、距離が離れている信号であっても、不正を検出することが、より高い確率で可能となる。また、車両側送信部からの送信信号、又は携帯機側受信部の受信信号のSN比も上がるために判定精度が上がる。 In the keyless entry device configured as described above, since at least one of the vehicle-side transmitter and the portable device-side receiver has a resonance frequency that matches the reference carrier frequency, other different carrier frequencies The difference in the received intensity with the signal can be compared in a region where the received intensity is higher. For this reason, it is possible to detect fraud with a higher probability even for signals that are far away. Moreover, since the SN ratio of the transmission signal from the vehicle side transmission unit or the reception signal of the portable device side reception unit is also increased, the determination accuracy is increased.
 本発明のキーレスエントリー装置は、リクエスト信号に搬送波周波数の異なる複数のフレームを含むため、第1共振回路又は第2共振回路の共振周波数とは異なる搬送波周波数の信号を送信又は受信することになり、搬送波周波数が共振周波数から外れていることによって送受信強度が低下する。そのため、リレーアタックによって送受信が繰り返されることで、それぞれのフレーム間の受信強度の差がより大きく現れる。その結果、リレーアタックを行なおうとしていることを容易に判定できる。また、事前に搬送波周波数の変更を携帯機へ通知する必要がないため、通信時間を短縮することができる。そのため、通信速度に優れ、簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置を提供することができる。 Since the keyless entry device of the present invention includes a plurality of frames having different carrier frequencies in the request signal, a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit is transmitted or received. The transmission / reception strength decreases due to the carrier frequency deviating from the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. In addition, since it is not necessary to notify the portable device of changes in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
キーレスエントリー装置の概略構成を示す平面図である。It is a top view which shows schematic structure of a keyless entry apparatus. 車両側装置と携帯機それぞれの各要部の構成を示すブロック図である。It is a block diagram which shows the structure of each principal part of a vehicle side apparatus and a portable device. リレーアタックが行なわれた場合のブロック図である。It is a block diagram when a relay attack is performed. リクエスト信号のLF送信フォーマットの構成を示す図である。It is a figure which shows the structure of LF transmission format of a request signal. 第1共振回路及び第2共振回路の回路図である。It is a circuit diagram of the 1st resonance circuit and the 2nd resonance circuit. 送信及び受信の各アンテナインピーダンスを示すグラフである。It is a graph which shows each antenna impedance of transmission and reception. 送信強度及び受信強度の変化を示すグラフである。It is a graph which shows the change of transmission intensity and reception intensity. 共振周波数を変更可能な第1共振回路及び第2共振回路の回路図である。It is a circuit diagram of the 1st resonance circuit and the 2nd resonance circuit which can change a resonance frequency. 送信及び受信の各アンテナインピーダンスを示すグラフである。It is a graph which shows each antenna impedance of transmission and reception. 送信強度及び受信強度の変化を示すグラフである。It is a graph which shows the change of transmission intensity and reception intensity. 従来例に係る無線キーシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the wireless key system which concerns on a prior art example.
 [第1実施形態]
 以下、本発明の第1実施形態について、図面を参照しながら説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 まず、キーレスエントリー装置100の概略構成について、図1を用いて説明する。また、車両側装置10と携帯機20それぞれの各要部の構成、及びその働きについて、図2を用いて説明する。 First, a schematic configuration of the keyless entry device 100 will be described with reference to FIG. Moreover, the structure of each principal part of the vehicle side apparatus 10 and the portable device 20 and its function are demonstrated using FIG.
 図1は、キーレスエントリー装置100の概略的な構成を示す図であり、車両側装置10を備えた車両50及び携帯機20を所持した車両ユーザ55を上方から見た時の平面図である。 FIG. 1 is a diagram showing a schematic configuration of the keyless entry device 100, and is a plan view when a vehicle user 55 having the vehicle-side device 10 and the portable device 20 are viewed from above.
 車両側装置10は、車両50に搭載され、車両側装置本体10aと車両側送信アンテナ素子19aと車両側受信アンテナ素子12aとで構成されている。キーレスエントリー装置100では、車両側送信アンテナ素子19aが車両50内の所定の位置に配置された1本のアンテナ素子で構成され、1本の車両側受信アンテナ素子12aが車両側装置本体10aの近辺に配置されている。但し、ここで挙げた車両側送信アンテナ素子19a及び車両側受信アンテナ素子12aの配置は一例であり、その他の配置であってもよい。 また、車両側送信アンテナ素子19aは少なくとも1本あれば良く、複数本あっても良い。上述した車両側送信アンテナ素子19aや車両側受信アンテナ素子12aは、図示しない配線を通じて車両側装置本体10aに接続されている。 The vehicle-side device 10 is mounted on a vehicle 50, and includes a vehicle-side device body 10a, a vehicle-side transmission antenna element 19a, and a vehicle-side reception antenna element 12a. In the keyless entry device 100, the vehicle-side transmitting antenna element 19a is composed of one antenna element arranged at a predetermined position in the vehicle 50, and one vehicle-side receiving antenna element 12a is in the vicinity of the vehicle-side device body 10a. Is arranged. However, the arrangement of the vehicle-side transmitting antenna element 19a and the vehicle-side receiving antenna element 12a mentioned here is an example, and other arrangements may be used. In addition, it is sufficient that at least one vehicle-side transmitting antenna element 19a is provided, and a plurality of vehicle-side transmitting antenna elements 19a may be provided. The vehicle-side transmitting antenna element 19a and the vehicle-side receiving antenna element 12a described above are connected to the vehicle-side device body 10a through wiring not shown.
 携帯機20は、車両ユーザ55により所持されると共に内蔵された電池28によって動作する。キーレスエントリー装置100では、携帯機20が、車両50に搭載された車両側装置10からのリクエスト信号を受信した後に該リクエスト信号に対応したアンサー信号を送信して車両側装置10との間で無線通信を行う機能を有している。携帯機20側では、通常該リクエスト信号を受信できるように待ち受け状態とされている。 The portable device 20 is carried by the vehicle user 55 and is operated by the built-in battery 28. In the keyless entry device 100, after the portable device 20 receives a request signal from the vehicle-side device 10 mounted on the vehicle 50, it transmits an answer signal corresponding to the request signal and wirelessly communicates with the vehicle-side device 10. It has a function to perform communication. The portable device 20 is normally in a standby state so that the request signal can be received.
 キーレスエントリー装置100は、車両ユーザ55が携帯機20のリクエストスイッチを操作することによって、車両側装置10と携帯機20との間で無線通信を行ない、ドアロックの解錠・施錠を行う機能を有している。また、携帯機のスイッチを操作しなくても携帯機を所持した状態で手による車両への接触等を行うことによって、IDコード等のデータを用いた認証を行ない、自動的にドアロックの解錠・施錠を行ういわゆるパッシブ機能も有している。このパッシブ機能は、車両側装置10からIDコードと共に距離測定用信号を送信して、その距離測定用信号の携帯機20における受信強度によって距離を算出し、その距離情報をアンサー信号に載せて車両側装置10へ送り返し、その距離が所定の距離の範囲であるか否かにより車両の施錠、解錠するように構成されていても良い。 The keyless entry device 100 has a function of performing wireless communication between the vehicle-side device 10 and the portable device 20 by the vehicle user 55 operating the request switch of the portable device 20, and unlocking / locking the door lock. Have. In addition, authentication using data such as an ID code is performed by automatically touching the vehicle while holding the portable device without operating the switch of the portable device, and the door lock is automatically released. It also has a so-called passive function for locking and locking. This passive function transmits a distance measurement signal from the vehicle side device 10 together with an ID code, calculates a distance based on the reception strength of the distance measurement signal in the portable device 20, and places the distance information on the answer signal to the vehicle. It may be configured to send back to the side device 10 and lock and unlock the vehicle depending on whether or not the distance is within a predetermined distance range.
 図2は、キーレスエントリー装置100に用いられる車両側装置10及び携帯機20それぞれの要部構成を示すブロック図である。 FIG. 2 is a block diagram showing a main configuration of each of the vehicle-side device 10 and the portable device 20 used in the keyless entry device 100.
 図2に示すように、前述した車両側送信アンテナ素子19aと車両側受信アンテナ素子12aと車両側装置本体10aとで、車両側装置10が構成される。車両側装置本体10aは、車両側送信部11(LF-TX)と、車両側受信部12(RF-RX)と、車両側制御部15(CPU)と、車両側発振回路16(LF-OSC)と、車両側記憶部17(MEM)と、駆動信号送信部18(DS-TX)とから構成されている。車両側装置本体10aの中で、車両側制御部15がその中央に位置し、車両側制御部15に接続される各部を制御している。 As shown in FIG. 2, the vehicle-side device 10 is composed of the vehicle-side transmitting antenna element 19a, the vehicle-side receiving antenna element 12a, and the vehicle-side device body 10a. The vehicle-side device body 10a includes a vehicle-side transmission unit 11 (LF-TX), a vehicle-side reception unit 12 (RF-RX), a vehicle-side control unit 15 (CPU), and a vehicle-side oscillation circuit 16 (LF-OSC). ), A vehicle-side storage unit 17 (MEM), and a drive signal transmission unit 18 (DS-TX). In the vehicle side apparatus main body 10 a, the vehicle side control unit 15 is located in the center and controls each unit connected to the vehicle side control unit 15.
 車両側送信部11の内部には、第1共振回路13が設けられていて、第1共振回路13は車両側送信アンテナ素子19aに接続されている。第1共振回路13は、車両側送信アンテナ素子19aと一体となって車両側送信アンテナ19を構成していると共に、所定のアンテナインピーダンスを形成している。尚、第1共振回路13の構成については後に説明を行う。車両側受信部12は、入力端が車両側受信アンテナ素子12aに接続され、出力端が車両側制御部15に接続されている。車両側発振回路16はリクエスト信号用の搬送波信号LFを生成させるものであり、この搬送波信号LFを出力する出力端が車両側制御部15に接続されている。車両側記憶部17は、車両側装置10に割り当てられた第1のIDと、この車両側装置10とともに使用される携帯機20に割り当てられた第2のIDとを格納していて、入出力端が車両側制御部15に接続されている。また、駆動信号送信部18は、入力端が車両側制御部15に接続されている。 The 1st resonance circuit 13 is provided in the inside of the vehicle side transmission part 11, and the 1st resonance circuit 13 is connected to the vehicle side transmission antenna element 19a. The first resonance circuit 13 is integrated with the vehicle-side transmission antenna element 19a to form the vehicle-side transmission antenna 19, and forms a predetermined antenna impedance. The configuration of the first resonance circuit 13 will be described later. The vehicle-side receiving unit 12 has an input end connected to the vehicle-side receiving antenna element 12 a and an output end connected to the vehicle-side control unit 15. The vehicle-side oscillation circuit 16 generates a request signal carrier wave signal LF, and an output terminal for outputting the carrier wave signal LF is connected to the vehicle-side controller 15. The vehicle-side storage unit 17 stores a first ID assigned to the vehicle-side device 10 and a second ID assigned to the portable device 20 used together with the vehicle-side device 10. The end is connected to the vehicle-side control unit 15. In addition, the drive signal transmission unit 18 has an input end connected to the vehicle-side control unit 15.
 車両側発振回路16から出力された搬送波信号LFは、車両側制御部15に供給される。車両側制御部15は、搬送波信号LFが供給された時、車両側記憶部17から第1のIDを読み出し、読み出した第1のIDを含む必要な情報を搬送波信号LFに付加し、所定のフォーマットに従ってリクエスト信号を形成する。尚、リクエスト信号のフォーマットについては後に説明を行う。次に、リクエスト信号の送信タイミングが設定されると、車両側制御部15の制御により、このリクエスト信号が車両側送信部11に供給される。車両側送信部11内では、供給されたリクエスト信号を送信に適した信号レベルまで増幅し、増幅されたリクエスト信号を第1共振回路13に供給する。そして、リクエスト信号は車両側送信アンテナ素子19aから無線送信される。 The carrier wave signal LF output from the vehicle-side oscillation circuit 16 is supplied to the vehicle-side control unit 15. When the carrier signal LF is supplied, the vehicle-side control unit 15 reads the first ID from the vehicle-side storage unit 17, adds necessary information including the read first ID to the carrier signal LF, A request signal is formed according to the format. The request signal format will be described later. Next, when the transmission timing of the request signal is set, the request signal is supplied to the vehicle-side transmission unit 11 under the control of the vehicle-side control unit 15. In the vehicle-side transmitter 11, the supplied request signal is amplified to a signal level suitable for transmission, and the amplified request signal is supplied to the first resonance circuit 13. The request signal is wirelessly transmitted from the vehicle-side transmission antenna element 19a.
 車両側受信部12は、携帯機20から無線送信された当該携帯機20の第2のIDや指令信号を含んだアンサー信号を、車両側受信アンテナ素子12aを介して受信し、受信したアンサー信号を増幅回路(図示せず)で所定信号レベルに増幅し、増幅したアンサー信号を車両側制御部15に供給する。車両側制御部15は、アンサー信号に含まれた第2のIDを、車両側記憶部17から読み出した第2のIDを用いて認証し、その認証が成立すると、アンサー信号に含まれた指令信号から駆動信号を形成し、この駆動信号を駆動信号送信部18に供給する。駆動信号送信部18は、駆動信号が供給されると、対応するドアロックの施錠及び解錠を行うモータ(図示せず)、あるいはエンジン始動回路等の被制御機構(図示せず)にその駆動信号を伝送し、その被制御機構を駆動信号に従って制御する。 The vehicle-side receiving unit 12 receives an answer signal including the second ID and command signal of the portable device 20 wirelessly transmitted from the portable device 20 via the vehicle-side receiving antenna element 12a, and receives the received answer signal. Is amplified to a predetermined signal level by an amplifier circuit (not shown), and the amplified answer signal is supplied to the vehicle-side control unit 15. The vehicle-side control unit 15 authenticates the second ID included in the answer signal using the second ID read from the vehicle-side storage unit 17, and when the authentication is established, the command included in the answer signal A drive signal is formed from the signal, and this drive signal is supplied to the drive signal transmitter 18. When the drive signal is supplied, the drive signal transmission unit 18 drives the motor (not shown) that locks and unlocks the corresponding door lock or a controlled mechanism (not shown) such as an engine start circuit. A signal is transmitted and the controlled mechanism is controlled according to the drive signal.
 尚、上述したリクエスト信号としては、例えばLF又はVLFの搬送波信号が使用され、アンサー信号としては、例えばRF(数百MHz)の搬送波信号が使用される。また、リクエスト信号の通信距離、即ちリクエスト信号の検出領域は、車両側送信アンテナ素子19aから1~2m程度であり、アンサー信号の通信距離、即ちアンサー信号の検出領域は、携帯機側送信アンテナ素子21aから5~10m程度である。 For example, an LF or VLF carrier signal is used as the request signal, and an RF (several hundred MHz) carrier signal is used as the answer signal. Further, the communication distance of the request signal, that is, the detection area of the request signal is about 1 to 2 m from the vehicle-side transmission antenna element 19a, and the communication distance of the answer signal, that is, the detection area of the answer signal is the portable-device-side transmission antenna element. It is about 5 to 10 m from 21a.
 一方、携帯機20には、図2に示すように、携帯機側送信アンテナ素子21aを含む携帯機側送信部21(RF-TX)と、携帯機側受信アンテナ素子29aを含む携帯機側受信部22(LF-RX)と、携帯機側制御部25(CPU)と、携帯機側発振回路26(RF-OSC)と、携帯機側記憶部27(MEM)と、電源用の電池28(BAT)とが備えられている。携帯機20の中では、携帯機側制御部25がその中央に位置し、携帯機側制御部25に接続された各部を制御している。 On the other hand, as shown in FIG. 2, the portable device 20 includes a portable device-side transmitter 21 (RF-TX) including a portable device-side transmitting antenna element 21a and a portable device-side receiving device including a portable device-side receiving antenna element 29a. Unit 22 (LF-RX), portable device side control unit 25 (CPU), portable device side oscillation circuit 26 (RF-OSC), portable device side storage unit 27 (MEM), and battery 28 for power supply ( BAT). In the portable device 20, the portable device side control unit 25 is located in the center and controls each unit connected to the portable device side control unit 25.
 携帯機側送信部21は、入力端が携帯機側制御部25に接続され、出力端が携帯機側送信アンテナ素子21aに接続されている。携帯機側受信部22は、入力端が携帯機側受信アンテナ素子29aに接続され、出力端が携帯機側制御部25に接続されている。携帯機側発振回路26は、出力端が携帯機側制御部25に接続されている。携帯機側記憶部27は、入出力端が携帯機側制御部25に接続されている。電池28は上述した携帯機20内の各部に接続されており、携帯機側送信部21、携帯機側受信部22、携帯機側制御部25等に電力を供給している。 The portable device side transmission unit 21 has an input terminal connected to the portable device side control unit 25 and an output terminal connected to the portable device side transmission antenna element 21a. The portable device side receiving unit 22 has an input end connected to the portable device side receiving antenna element 29 a and an output end connected to the portable device side control unit 25. The output terminal of the portable device side oscillation circuit 26 is connected to the portable device side control unit 25. The portable device storage unit 27 has an input / output terminal connected to the portable device control unit 25. The battery 28 is connected to each part in the portable device 20 described above, and supplies power to the portable device-side transmitter 21, the portable device-side receiver 22, the portable device-side controller 25, and the like.
 携帯機側発振回路26は、高周波信号を発振するもので、発振した高周波信号が携帯機側制御部25に供給される。この時、携帯機側制御部25は、この高周波信号を搬送波とし、第2のIDや指令信号等の必要な情報信号を、変調をかけることによって付加してアンサー信号を形成する。このアンサー信号は、携帯機側送信部21に供給される。携帯機側記憶部27には、車両側装置10に割り当てられた第1のIDや自己の携帯機20に割り当てられた第2のID、それに各種の指令信号が記憶されているもので、携帯機側制御部25の制御により、第1のID又は第2のIDや各種の指令信号が適宜読み出される。 The portable device side oscillation circuit 26 oscillates a high frequency signal, and the oscillated high frequency signal is supplied to the portable device side control unit 25. At this time, the portable device-side control unit 25 uses the high-frequency signal as a carrier wave and adds a necessary information signal such as a second ID or a command signal by applying modulation to form an answer signal. This answer signal is supplied to the portable device-side transmitter 21. The portable device-side storage unit 27 stores a first ID assigned to the vehicle-side device 10, a second ID assigned to the own portable device 20, and various command signals. Under the control of the machine control unit 25, the first ID or the second ID and various command signals are appropriately read out.
 携帯機側送信部21は、携帯機側制御部25から第2のIDや指令信号を含んだ高周波信号即ちアンサー信号が供給されると、そのアンサー信号を無線送信に適した信号レベルまで増幅し、増幅したアンサー信号を、携帯機側送信アンテナ素子21aを介して無線送信する。 When the portable device-side transmission unit 21 is supplied with a high-frequency signal, ie, an answer signal, including the second ID or command signal from the portable device-side control unit 25, the answer signal is amplified to a signal level suitable for wireless transmission. Then, the amplified answer signal is wirelessly transmitted via the portable device-side transmitting antenna element 21a.
 携帯機側受信部22の内部には、第2共振回路23が設けられていて、第2共振回路23には携帯機側受信アンテナ素子29aが接続されている。第2共振回路23は、携帯機側受信アンテナ素子29aと一体となって携帯機側受信アンテナ29を構成していると共に、所定のアンテナインピーダンスを形成している。尚、第2共振回路23の構成については後に説明を行う。携帯機側受信部22は、車両側装置10から無線送信された第1のIDを含んだリクエスト信号を、携帯機側受信アンテナ素子29a及び第2共振回路23を介して受信し、受信したリクエスト信号を携帯機側制御部25に供給する。 The second resonance circuit 23 is provided inside the portable device side receiving unit 22, and the portable device side reception antenna element 29 a is connected to the second resonance circuit 23. The second resonance circuit 23 is integrated with the portable device-side receiving antenna element 29a to form the portable device-side receiving antenna 29, and forms a predetermined antenna impedance. The configuration of the second resonance circuit 23 will be described later. The portable device side receiving unit 22 receives the request signal including the first ID wirelessly transmitted from the vehicle side device 10 via the portable device side reception antenna element 29a and the second resonance circuit 23, and receives the received request. The signal is supplied to the portable device side control unit 25.
 次に、パッシブキーレスエントリー装置の仕組みを悪用したリレーアタックが行なわれた場合の例について、図3を用いて説明する。図3は、リレーアタックが行なわれた場合のブロック図である。 Next, an example of a relay attack that exploits the mechanism of the passive keyless entry device will be described with reference to FIG. FIG. 3 is a block diagram when a relay attack is performed.
 リレーアタックは、図3に示すように、第1中継器60と第2中継器70との2台の不正な中継器を用意し、第1中継器60は車両50の近傍に配置されて、車両50からのリクエスト信号を受信する。このリクエスト信号を基に、隔離した位置に配置させた第2中継器70より偽のリクエスト信号を送信させ、それを受信した携帯機20からアンサー信号を車両に送信させ、それを車両50が受信して車両ユーザ55の意図しないところで車両のドアが解錠されるというものである。 As shown in FIG. 3, the relay attack prepares two unauthorized repeaters, a first repeater 60 and a second repeater 70, and the first repeater 60 is arranged in the vicinity of the vehicle 50, A request signal from the vehicle 50 is received. Based on this request signal, the second repeater 70 arranged at the isolated position transmits a false request signal, and the portable device 20 that has received the request transmits an answer signal to the vehicle, and the vehicle 50 receives it. Thus, the vehicle door is unlocked where the vehicle user 55 does not intend.
 このように、リレーアタックにおいては、本来の車両側装置10と携帯機20との間の通信において、第1中継器60及び第2中継器70を介した通信が余計に追加されることになる。本発明は、このようなリレーアタックにおける通信回数の追加と、リクエスト信号の搬送波周波数を切り替えること、とによって携帯機20における受信強度が低下することを利用して、リレーアタックが行なわれたかどうかを判定するものである。 As described above, in the relay attack, in the communication between the original vehicle-side device 10 and the portable device 20, communication via the first repeater 60 and the second repeater 70 is added. . The present invention uses the fact that the reception strength in the portable device 20 is reduced by adding the number of communications in such a relay attack and switching the carrier frequency of the request signal to determine whether or not a relay attack has been performed. Judgment.
 次に、車両側装置10から送信されるリクエスト信号の送信フォーマットの構成、及び搬送波周波数が切り替えられた場合の携帯機20における受信強度の変化について図4乃至図7を用いて説明する。 Next, the configuration of the transmission format of the request signal transmitted from the vehicle-side device 10 and the change in the reception intensity in the portable device 20 when the carrier frequency is switched will be described with reference to FIGS.
 図4は、リクエスト信号のLF送信フォーマットの構成を示す図である。この内、図4(a)は従来のリクエスト信号のLF送信フォーマットの構成であり、図4(b)及び図4(c)は本発明のリクエスト信号のLF送信フォーマットの構成である。図5(a)は、第1共振回路13を示す回路図であり、図5(b)は、第2共振回路23を示す回路図である。図6(a)は、車両側送信部11の送信アンテナインピーダンスを示すグラフであり、図6(b)は、携帯機側受信部22の受信アンテナインピーダンスを示すグラフである。また、図7は、受信強度又は送信強度を示すグラフであり、この内、図7(a)は、リレーアタックが行なわれない場合(通常時)で、搬送波周波数を切り変えた場合の携帯機20における受信強度(B2)を示すグラフである。また、図7(b)は、リレーアタックが行なわれた場合(不正時)で、搬送波周波数を切り変えた場合の図3で示した第1中継器60、及び携帯機20それぞれにおける受信強度(D2、B2)、及び第2中継器70における送信強度E2を示すグラフである。尚、図7では、説明をわかりやすくするために、距離による信号の減衰を省いている。 FIG. 4 is a diagram showing the configuration of the LF transmission format of the request signal. 4A shows the configuration of the conventional LF transmission format of the request signal, and FIGS. 4B and 4C show the configuration of the LF transmission format of the request signal of the present invention. FIG. 5A is a circuit diagram showing the first resonance circuit 13, and FIG. 5B is a circuit diagram showing the second resonance circuit 23. FIG. 6A is a graph showing the transmission antenna impedance of the vehicle-side transmission unit 11, and FIG. 6B is a graph showing the reception antenna impedance of the portable device-side reception unit 22. FIG. 7 is a graph showing reception strength or transmission strength. Of these, FIG. 7A shows a portable device in which the carrier frequency is switched when relay attack is not performed (normal time). 20 is a graph showing a reception intensity (B2) at 20; Also, FIG. 7B shows the reception strength (in the first repeater 60 and the portable device 20 shown in FIG. 3 when the carrier wave frequency is switched when the relay attack is performed (in the case of fraud) ( D2, B2), and the transmission intensity E2 in the 2nd repeater 70 are graphs. In FIG. 7, signal attenuation due to distance is omitted for easy understanding.
 図4(a)に示すように、従来のリクエスト信号のLF送信フォーマットは、前述した車両側装置10に割り当てられた第1のID及び携帯機20に割り当てられた第2のID等を含む情報フレームと、車両側装置10と携帯機20との間の距離を測定するための距離測定用フレームとを有して構成されている。情報フレーム及び距離測定用フレームの搬送波周波数は、共に同一の搬送波周波数f1である。携帯機側制御部25は、距離測定用フレームの受信強度を測定し、測定した受信強度に基づいてアンサー信号を作成し、作成されたアンサー信号を携帯機側送信部21に送信させる。そして、アンサー信号を受信した車両側制御部15は、距離測定用フレームの携帯機20における受信強度によって、図1に示した車両50と携帯機20との間の距離を測定することができる。 As shown in FIG. 4A, the LF transmission format of the conventional request signal includes information including the first ID assigned to the vehicle-side device 10 and the second ID assigned to the portable device 20 described above. The frame includes a frame and a distance measuring frame for measuring the distance between the vehicle-side device 10 and the portable device 20. The carrier frequency of the information frame and the distance measurement frame is the same carrier frequency f1. The portable device side control unit 25 measures the reception strength of the distance measurement frame, creates an answer signal based on the measured reception strength, and causes the portable device side transmission unit 21 to transmit the created answer signal. The vehicle-side control unit 15 that has received the answer signal can measure the distance between the vehicle 50 and the portable device 20 shown in FIG. 1 based on the reception strength of the distance measurement frame in the portable device 20.
 本発明のリクエスト信号のLF送信フォーマットは、図4(b)及び図4(c)に示すように、従来のリクエスト信号のLF送信フォーマットの距離測定用フレームの後に不正中継判定用フレームを追加した構成となっている。 In the LF transmission format of the request signal of the present invention, as shown in FIGS. 4B and 4C, an illegal relay determination frame is added after the distance measurement frame of the LF transmission format of the conventional request signal. It has a configuration.
 図4(b)に示すように、不正中継判定用フレームの搬送波周波数は、距離測定用フレームの搬送波周波数f1とは異なる搬送波周波数f2である。携帯機側制御部25は、複数のフレーム毎の受信強度、即ち距離測定用フレームの受信強度と不正中継判定用フレームの受信強度とを測定する。そして、この2つの測定した受信強度に基づいてアンサー信号を作成し、作成されたアンサー信号を携帯機側送信部21に送信させる。そして、アンサー信号を受信した車両側制御部15はアンサー信号に基づいて車両50に対する所定の制御を行うか否かを判定する。尚、この判定の方法の詳細については後述する。 As shown in FIG. 4B, the carrier frequency of the fraud determination frame is a carrier frequency f2 different from the carrier frequency f1 of the distance measurement frame. The portable device control unit 25 measures the reception strength for each of a plurality of frames, that is, the reception strength of the distance measurement frame and the reception strength of the fraud relay determination frame. Then, an answer signal is created based on the two measured received intensities, and the created answer signal is transmitted to the portable device-side transmitter 21. And the vehicle side control part 15 which received the answer signal determines whether predetermined | prescribed control with respect to the vehicle 50 is performed based on an answer signal. Details of this determination method will be described later.
 本発明の第1実施形態においては、f2をf1より低く設定(f1>f2)しているが、携帯機20の不正中継判定時における受信強度の測定をf1より上側の周波数で行う(f1<f2)ように設定しても良い。 In the first embodiment of the present invention, f2 is set to be lower than f1 (f1> f2), but the reception strength is measured at a frequency higher than f1 when the portable device 20 makes an unauthorized relay determination (f1 <f1). f2) may be set as follows.
 本発明のリクエスト信号のLF送信フォーマットは、図4(c)に示すように、不正中継判定用フレームを1個でなく複数個追加した構成としても良い。この場合、f1>f2>fNと設定する。尚、携帯機20の不正中継判定時における受信強度をf1より上側の周波数で行う場合は、f1<f2<fNと設定しても良い。 The LF transmission format of the request signal of the present invention may have a configuration in which a plurality of unauthorized relay determination frames are added instead of one as shown in FIG. In this case, f1> f2> fN is set. Note that when the reception strength at the time of the unauthorized relay determination of the portable device 20 is performed at a frequency higher than f1, f1 <f2 <fN may be set.
 次に、車両側送信部11内の第1共振回路13の回路構成、携帯機側受信部22内の第2共振回路23の回路構成、車両側送信部11のアンテナ送信インピーダンス、及び携帯機側受信部22のアンテナ受信インピーダンスについて説明する。 Next, the circuit configuration of the first resonance circuit 13 in the vehicle-side transmission unit 11, the circuit configuration of the second resonance circuit 23 in the portable device-side reception unit 22, the antenna transmission impedance of the vehicle-side transmission unit 11, and the portable device side The antenna reception impedance of the receiving unit 22 will be described.
 図5(a)に示すように、第1共振回路13は、キャパシタC11の一端と車両側送信アンテナ素子19aが有するインダクタL11の一端とが接続された直列接続回路で構成されている。尚、第1共振回路13を含めて、アンテナ19が構成される。また、キャパシタC11の他端とインダクタL11の他端とは、車両側送信部11のその他の部分に接続されている。 As shown in FIG. 5A, the first resonance circuit 13 is configured by a series connection circuit in which one end of a capacitor C11 and one end of an inductor L11 included in the vehicle-side transmitting antenna element 19a are connected. An antenna 19 including the first resonance circuit 13 is configured. Further, the other end of the capacitor C11 and the other end of the inductor L11 are connected to other portions of the vehicle-side transmission unit 11.
 第1共振回路13は、前述した距離測定用フレームの搬送波周波数f1及び搬送波周波数f2の、異なる搬送波周波数の内のいずれかに等しい共振周波数を有している。尚、キーレスエントリー装置100においては、第1共振回路13の共振周波数を、情報フレームと同一の、距離測定用フレームの搬送波周波数f1に設定している。搬送波周波数f1は、キャパシタC11のキャパシタンスとインダクタL11のインダクタンスとによって決定される。 The first resonance circuit 13 has a resonance frequency equal to one of the different carrier frequencies of the carrier frequency f1 and the carrier frequency f2 of the distance measurement frame described above. In the keyless entry device 100, the resonance frequency of the first resonance circuit 13 is set to the carrier frequency f1 of the distance measurement frame, which is the same as the information frame. The carrier frequency f1 is determined by the capacitance of the capacitor C11 and the inductance of the inductor L11.
 第1共振回路13の、キャパシタC11の他端とインダクタL11の他端との間、即ち第1共振回路13の入力端から見た送信アンテナインピーダンスは、図6(a)のように、搬送波周波数f1でz11であり、搬送波周波数f2でz12となる。搬送波周波数f1における送信アンテナインピーダンスz11は、所定のインピーダンス値に設定されており、搬送波周波数f1の前後の周波数域において最適な値となっている。そのため、搬送波周波数f1においてリクエスト信号を最も効率良く送信することができる。従って、車両側送信部11の送信強度は、図7(a)に示すように、搬送波周波数f1において最大(A1)となる。尚、前述したように、図7では距離による減衰を省略している。 The transmission antenna impedance of the first resonance circuit 13 between the other end of the capacitor C11 and the other end of the inductor L11, that is, the input end of the first resonance circuit 13, is a carrier frequency as shown in FIG. z1 at f1 and z12 at the carrier frequency f2. The transmission antenna impedance z11 at the carrier frequency f1 is set to a predetermined impedance value, and is an optimum value in the frequency range before and after the carrier frequency f1. Therefore, the request signal can be transmitted most efficiently at the carrier frequency f1. Accordingly, the transmission intensity of the vehicle-side transmission unit 11 is maximum (A1) at the carrier frequency f1, as shown in FIG. As described above, the attenuation due to the distance is omitted in FIG.
 図5(b)に示すように、第2共振回路23は、キャパシタC21と携帯機側受信アンテナ素子29aが有するインダクタL21とが並列接続された回路で構成されている。また、キャパシタC21とインダクタL21それぞれの両端は、携帯機側受信部22のその他の部分に接続されている。尚、第2共振回路23を含めて、アンテナ29が構成される。第2共振回路23の共振周波数は、第1共振回路13と同様に、車両側送信部11から送信されたリクエスト信号の距離測定用フレームの搬送波周波数f1に設定されている。f1は、キャパシタC21のキャパシタンスとインダクタL21のインダクタンスとによって決定する。 As shown in FIG. 5B, the second resonance circuit 23 is configured by a circuit in which a capacitor C21 and an inductor L21 included in the portable device-side receiving antenna element 29a are connected in parallel. Further, both ends of each of the capacitor C21 and the inductor L21 are connected to other parts of the portable device side receiving unit 22. An antenna 29 including the second resonance circuit 23 is configured. Similar to the first resonance circuit 13, the resonance frequency of the second resonance circuit 23 is set to the carrier frequency f 1 of the distance measurement frame of the request signal transmitted from the vehicle-side transmission unit 11. f1 is determined by the capacitance of the capacitor C21 and the inductance of the inductor L21.
 携帯機側受信アンテナ素子29aが接続された第2共振回路23の、キャパシタC21及びインダクタL21の両端間、即ち第2共振回路23の出力端から見た受信アンテナインピーダンスは、図6(b)のように、搬送波周波数f1でz21であり、搬送波周波数f2でz22となる。搬送波周波数f1における受信アンテナインピーダンスz21は、所定のインピーダンス値に設定されており、搬送波周波数f1の前後の周波数域において最適な値となっている。そのため、搬送波周波数f1においてリクエスト信号を最も効率良く受信することができる。従って、携帯機側受信部22の受信強度は、図7(a)に示すように、搬送波周波数f1において最大(B1)となる。 The reception antenna impedance of the second resonance circuit 23 to which the portable device-side reception antenna element 29a is connected, as viewed from both ends of the capacitor C21 and the inductor L21, that is, from the output end of the second resonance circuit 23, is shown in FIG. Thus, the carrier frequency f1 is z21, and the carrier frequency f2 is z22. The receiving antenna impedance z21 at the carrier frequency f1 is set to a predetermined impedance value, and is an optimal value in the frequency range before and after the carrier frequency f1. Therefore, the request signal can be received most efficiently at the carrier frequency f1. Therefore, as shown in FIG. 7A, the reception intensity of the portable device side receiving unit 22 is maximum (B1) at the carrier frequency f1.
 ところで、本発明のリクエスト信号のLF送信フォーマットは、前述したように、図4(b)に示した、距離測定用フレームの後に不正中継判定用フレームを追加した構成となっている。そして、距離測定用フレームの搬送波周波数はf1であるが、不正中継判定用フレームの搬送波周波数は、f1とは異なるf2としている(f1>f2)。 By the way, as described above, the LF transmission format of the request signal of the present invention has a configuration in which an illegal relay determination frame is added after the distance measurement frame shown in FIG. The carrier frequency of the distance measurement frame is f1, but the carrier frequency of the unauthorized relay determination frame is f2 different from f1 (f1> f2).
 LF送信フォーマットにおいて距離測定用フレームから不正中継判定用フレームになった時、即ち搬送波周波数がf2となった場合、車両側送信部11の送信アンテナインピーダンスz12は、図6(a)に示すように、搬送波周波数がf1の時の送信アンテナインピーダンスz11より大きくなる(z12>z11)。キーレスエントリー装置100では、例えば、z12は、z12=1.3*z11となる。また、搬送波周波数がf2となった場合、携帯機側受信部22の受信アンテナインピーダンスz22は、図6(b)に示すように、搬送波周波数がf1の時の送信アンテナインピーダンスz21より小さくなる。(z22<z21)例えば、z22は、z22=0.8*z21となる。 In the LF transmission format, when the distance measurement frame is changed to the fraudulent relay determination frame, that is, when the carrier frequency is f2, the transmission antenna impedance z12 of the vehicle-side transmission unit 11 is as shown in FIG. , Becomes larger than the transmission antenna impedance z11 when the carrier frequency is f1 (z12> z11). In the keyless entry device 100, for example, z12 becomes z12 = 1.3 * z11. Further, when the carrier frequency is f2, the reception antenna impedance z22 of the portable device-side receiver 22 is smaller than the transmission antenna impedance z21 when the carrier frequency is f1, as shown in FIG. 6B. (Z22 <z21) For example, z22 becomes z22 = 0.8 * z21.
 車両側送信部11の送信アンテナインピーダンスが、図6(a)に示すように、z11からz12になった場合、車両側送信部11の送信強度は、図7(a)に示すように、送信アンテナインピーダンスの変化に従って、A1からA2に低下する。この時のA2は、A2=A1*(z11/z12)で表せる。従って、例えばz12=1.3*z11の時、A2は、A2=A1/1.3となる。 When the transmission antenna impedance of the vehicle side transmission unit 11 is changed from z11 to z12 as shown in FIG. 6 (a), the transmission intensity of the vehicle side transmission unit 11 is transmitted as shown in FIG. 7 (a). It decreases from A1 to A2 as the antenna impedance changes. A2 at this time can be expressed by A2 = A1 * (z11 / z12). Therefore, for example, when z12 = 1.3 * z11, A2 is A2 = A1 / 1.3.
 また、携帯機側受信部22のf1における受信強度B1は、第2共振回路23の共振周波数がf1に設定されていることによって最大値となる。一方、携帯機側受信部22の受信アンテナインピーダンスは、周波数がf2となった時、即ち、図6(b)に示すように、z21からz22になった場合、携帯機側受信部22の受信強度は受信アンテナインピーダンスの変化に従って、z22/z21の割合で低下する。 Further, the reception intensity B1 at f1 of the portable device side receiving unit 22 becomes the maximum value when the resonance frequency of the second resonance circuit 23 is set to f1. On the other hand, the reception antenna impedance of the mobile device side receiving unit 22 is received by the mobile device side receiving unit 22 when the frequency becomes f2, that is, when z21 changes to z22 as shown in FIG. The intensity decreases at a rate of z22 / z21 as the receiving antenna impedance changes.
 従って、例えばz22=0.8*z21の時、車両側送信部11から送信されたリクエスト信号を携帯機側受信部22で受信した場合、図7(a)に示す受信強度B2は、B2=0.8*A2=(0.8/1.3)*A1=0.615*A1となることが分かる。 Therefore, for example, when z22 = 0.8 * z21, when the request signal transmitted from the vehicle-side transmitting unit 11 is received by the portable device-side receiving unit 22, the reception intensity B2 shown in FIG. It can be seen that 0.8 * A2 = (0.8 / 1.3) * A1 = 0.615 * A1.
 一方、図3に示すような車両側装置10と携帯機20との間でリレーアタックが行なわれたとしたら、車両側装置10と携帯機20との間に第1中継器60及び第2中継器70が入ることになる。その場合、送信アンテナインピーダンスの変化及び受信アンテナインピーダンスの変化に伴って発生する送受信強度の低下は、リレーアタックが行なわれない通常の場合に比べて2回多く発生することになる。その結果、図7(b)に示すように、車両側装置10の搬送波周波数f2での車両側送信部11の送信強度A2は、第1中継器60の受信時において受信強度D2まで低下し、第2中継器70の送信時において受信強度E2まで低下し、携帯機側受信部22の受信時において受信強度B2まで低下する。 On the other hand, if a relay attack is performed between the vehicle-side device 10 and the portable device 20 as shown in FIG. 3, the first repeater 60 and the second repeater are provided between the vehicle-side device 10 and the portable device 20. 70 will enter. In this case, the transmission / reception strength drop caused by the change in the transmission antenna impedance and the change in the reception antenna impedance occurs twice more than in the normal case where no relay attack is performed. As a result, as shown in FIG. 7 (b), the transmission intensity A2 of the vehicle-side transmission unit 11 at the carrier frequency f2 of the vehicle-side device 10 decreases to the reception intensity D2 at the time of reception by the first repeater 60, It decreases to the reception strength E2 at the time of transmission of the second repeater 70, and decreases to the reception strength B2 at the time of reception of the portable device side receiving unit 22.
 従って、この場合の携帯機側受信部22における受信強度B2は、リレーアタックが行なわれなかった場合のB2=0.615*A1に対して、B2<0.615*A1となる。即ち、車両側装置10と携帯機20との間でリレーアタックが行なわれた場合、携帯機側受信部22における受信強度B2は、通常時よりその低下がより大きくなる。もしも、第1中継器60及び第2中継器70それぞれにおける共振回路のアンテナインピーダンスが、キーレスエントリー装置100の共振回路のアンテナインピーダンスと同一であったとしたら、例えば、第1中継器60での受信強度D2は、D2=0.8*A2=0.8*(1/1.3)*A1=0.615*A1となる。また、第2中継器70での送信強度E2は、E2=(1/1.3)*D2=(0.615/1.3)*A1となり、携帯機側受信部22での受信強度B2は、B2=0.8*E2=0.615*0.615*A1=0.378*A1となり、明らかにB2<0.615*A1となることが分かる。 Therefore, in this case, the reception intensity B2 at the portable device side receiving unit 22 is B2 <0.615 * A1 with respect to B2 = 0.615 * A1 when the relay attack is not performed. In other words, when a relay attack is performed between the vehicle-side device 10 and the portable device 20, the reception intensity B2 in the portable device-side receiving unit 22 decreases more than usual. If the antenna impedance of the resonance circuit in each of the first repeater 60 and the second repeater 70 is the same as the antenna impedance of the resonance circuit of the keyless entry device 100, for example, the reception intensity at the first repeater 60 D2 is D2 = 0.8 * A2 = 0.8 * (1 / 1.3) * A1 = 0.615 * A1. Also, the transmission intensity E2 at the second repeater 70 is E2 = (1 / 1.3) * D2 = (0.615 / 1.3) * A1, and the reception intensity B2 at the portable device side receiving unit 22 Is B2 = 0.8 * E2 = 0.615 * 0.615 * A1 = 0.378 * A1, and it is clear that B2 <0.615 * A1.
 上記のように、搬送波周波数f1での車両側送信部11の送信強度A1に対する携帯機側受信部22における搬送波周波数f2での受信強度B2の比率が、所定の閾値より小さい場合に不正が行われたと判定する。即ち、距離測定用フレームの送信強度に対する不正中継判定用フレームの受信強度の比率が、所定の閾値より小さい場合に不正と判定し、車両50に対する所定の制御を行わないことを判断する。上記所定の閾値は、例えば、(0.8/1.3)=0.615とすることができるが、20%の余裕を持たせるため、閾値を0.615*0.8=0.492とすることが望ましい。 As described above, fraud is performed when the ratio of the reception strength B2 at the carrier frequency f2 in the portable device side receiver 22 to the transmission strength A1 of the vehicle side transmitter 11 at the carrier frequency f1 is smaller than a predetermined threshold. It is determined that That is, when the ratio of the reception strength of the unauthorized relay determination frame to the transmission strength of the distance measurement frame is smaller than a predetermined threshold value, it is determined to be unauthorized and it is determined that the predetermined control for the vehicle 50 is not performed. The predetermined threshold can be, for example, (0.8 / 1.3) = 0.615, but the threshold is set to 0.615 * 0.8 = 0.492 in order to have a 20% margin. Is desirable.
 尚、これまでの説明では、図4(b)に示したように、リクエスト信号の送信フォーマットとして、搬送波周波数f1の距離測定用フレームに後に不正中継判定用フレームを1つ追加する形態としたが、図4(c)に示したように、搬送波周波数f1の距離測定用フレームの後に、不正中継判定用フレームを複数追加する形態としても良い。不正中継判定用フレームを複数追加することにより、リレーアタックが行なわれたことを、より正確に判定することができる。特に、不正中継判定用フレームを4つ追加する、即ち、距離測定用フレームと合わせて5つのフレームによって判定することが望ましい。 In the description so far, as shown in FIG. 4B, the transmission format of the request signal is such that one unauthorized relay determination frame is added after the distance measurement frame of the carrier frequency f1. As shown in FIG. 4 (c), a plurality of fraudulent relay determination frames may be added after the distance measurement frame of the carrier frequency f1. By adding a plurality of fraud relay determination frames, it is possible to more accurately determine that the relay attack has been performed. In particular, it is desirable to add four fraudulent relay determination frames, that is, to perform determination based on five frames together with the distance measurement frame.
 このように、本発明の第1実施例であるキーレスエントリー装置100は、リクエスト信号に搬送波周波数の異なる複数のフレームを含むため、第1共振回路13又は第2共振回路23の共振周波数とは異なる搬送波周波数の信号を送信又は受信することになり、搬送波周波数が共振周波数から外れていることによって送受信強度が低下する。そのため、リレーアタックによって送受信が繰り返されることで、それぞれのフレーム間の受信強度の差がより大きく現れる。その結果、リレーアタックを行なおうとしていることを容易に判定できる。また、事前に搬送波周波数の変更を携帯機20へ通知する必要がないため、通信時間を短縮することができる。そのため、通信速度に優れ、簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置100を提供することができる。 As described above, since the keyless entry device 100 according to the first embodiment of the present invention includes a plurality of frames having different carrier frequencies in the request signal, it differs from the resonance frequency of the first resonance circuit 13 or the second resonance circuit 23. A signal having a carrier frequency is transmitted or received, and the transmission / reception strength is reduced due to the carrier frequency being out of the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. Further, since it is not necessary to notify the portable device 20 of the change in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide the keyless entry device 100 that has an excellent communication speed and can prevent a relay attack with a simple configuration.
 また、異なる搬送波周波数の内の1つを第1共振回路13及び又は第2共振回路23の共振周波数と同一とし、この周波数を基準とすることによって、他の異なる搬送波周波数の信号との受信強度の差を、受信強度の高い領域で比較できるので、距離が離れている信号であっても、不正を検出することが可能となる。 Further, by making one of the different carrier frequencies the same as the resonance frequency of the first resonance circuit 13 and / or the second resonance circuit 23, and using this frequency as a reference, the reception intensity with signals of other different carrier frequencies Can be compared in a region where the reception intensity is high, so that it is possible to detect fraud even with signals that are far apart.
 また、リクエスト信号内の距離測定用フレームにおける受信強度に対する不正中継判定用フレームにおける受信強度の比率を求めるだけで良いので、簡単な演算で不正か否かの判定が可能となる。 Further, since it is only necessary to obtain the ratio of the reception strength in the illegal relay determination frame to the reception strength in the distance measurement frame in the request signal, it is possible to determine whether or not it is illegal by simple calculation.
 [第2実施形態]
 次に、本発明の第2実施形態によるキーレスエントリー装置200の動作について図8乃至図10を用いて説明する。尚、キーレスエントリー装置100とキーレスエントリー装置200との相違点は、キーレスエントリー装置100の第1共振回路13及び第2共振回路23それぞれの共振周波数が固定であることに対して、キーレスエントリー装置200の第1共振回路14及び第2共振回路24それぞれの共振周波数が可変可能であるように構成されていることだけである。従って、その他の構成は全て同一である。そのため、第1共振回路14及び第2共振回路24に関係する項目以外については、説明を省略する。
[Second Embodiment]
Next, the operation of the keyless entry device 200 according to the second embodiment of the present invention will be described with reference to FIGS. The difference between the keyless entry device 100 and the keyless entry device 200 is that the resonance frequency of each of the first resonance circuit 13 and the second resonance circuit 23 of the keyless entry device 100 is fixed, whereas the keyless entry device 200. The only difference is that the resonance frequency of each of the first resonance circuit 14 and the second resonance circuit 24 is variable. Therefore, all other configurations are the same. Therefore, description of items other than those related to the first resonance circuit 14 and the second resonance circuit 24 is omitted.
 図8(a)は、共振周波数が可変可能な第1共振回路14の回路図であり、図8(b)は、共振周波数が可変可能な第2共振回路24の回路図である。図9(a)は、共振周波数を変更した場合の車両側送信部11の送信アンテナインピーダンスを示すグラフであり、図9(b)は、共振周波数を変更した場合の携帯機側受信部22の受信アンテナインピーダンスを示すグラフである。また、図10は、例えば、第2共振回路24の共振周波数だけを変更した場合の受信強度を示すグラフであり、この内、図10(a)は、リレーアタックが行なわれない場合(通常時)で、搬送波周波数を切り変えた場合の携帯機20における受信強度B2を示すグラフである。また、図10(b)は、リレーアタックが行なわれた場合(不正時)で、搬送波周波数を切り変えた場合の、第1中継器60、及び携帯機20における受信強度(D2,B2)、及び第2中継器70における送信強度E2を示すグラフである。尚、図10では、説明をわかりやすくするために、距離による信号の減衰を省いている。 FIG. 8A is a circuit diagram of the first resonance circuit 14 whose resonance frequency can be varied, and FIG. 8B is a circuit diagram of the second resonance circuit 24 whose resonance frequency can be varied. FIG. 9A is a graph showing the transmission antenna impedance of the vehicle-side transmission unit 11 when the resonance frequency is changed, and FIG. 9B is a graph of the portable device-side reception unit 22 when the resonance frequency is changed. It is a graph which shows a receiving antenna impedance. FIG. 10 is a graph showing the reception intensity when only the resonance frequency of the second resonance circuit 24 is changed, for example. FIG. 10A shows the case where the relay attack is not performed (normal time). ) Is a graph showing the reception intensity B2 in the portable device 20 when the carrier frequency is switched. FIG. 10B shows the reception strength (D2, B2) at the first repeater 60 and the portable device 20 when the carrier frequency is switched when a relay attack is performed (when illegal), 4 is a graph showing transmission intensity E2 in the second repeater 70. In FIG. 10, signal attenuation due to distance is omitted for easy understanding.
 図8(a)に示す共振周波数が可変可能な第1共振回路14は、図5(a)に示した第1共振回路13の構成に対してキャパシタC11の両端間に、キャパシタC12とスイッチSW11との直列接続回路を接続したものであり、その他の構成は第1共振回路13と同一である。尚、第1共振回路14を含めて、アンテナ19が構成される。 The first resonance circuit 14 with variable resonance frequency shown in FIG. 8A has a capacitor C12 and a switch SW11 between both ends of the capacitor C11 with respect to the configuration of the first resonance circuit 13 shown in FIG. And the other configuration is the same as that of the first resonance circuit 13. An antenna 19 including the first resonance circuit 14 is configured.
 第1共振回路14では、スイッチSW11をオフとした時の共振周波数が、リクエスト信号の距離測定用フレームの搬送波周波数であるf1と同一の周波数となり、スイッチSW11をオンとした時の共振周波数がf1より周波数の低い、不正中継判定用フレームの搬送波周波数であるf2と同一の周波数になるように設定されている。f2は、キャパシタC11とキャパシタC12との和のキャパシタンスとインダクタL11のインダクタンスとによって決定される。 In the first resonance circuit 14, the resonance frequency when the switch SW11 is turned off is the same frequency as the carrier frequency of the request signal distance measurement frame f1, and the resonance frequency when the switch SW11 is turned on is f1. The frequency is set to be the same frequency as f2, which is a lower carrier frequency of the fraud relay determination frame. f2 is determined by the total capacitance of the capacitor C11 and the capacitor C12 and the inductance of the inductor L11.
 図8(b)に示す共振周波数が可変可能な第2共振回路24は、図5(b)に示した第2共振回路23の構成に対してキャパシタC21の両端間に、キャパシタC22とスイッチSW21との直列接続回路を接続したものであり、その他の構成は第2共振回路23と同一である。尚、第2共振回路23を含めて、アンテナ29が構成される。 The second resonance circuit 24 with variable resonance frequency shown in FIG. 8B has a capacitor C22 and a switch SW21 between both ends of the capacitor C21 with respect to the configuration of the second resonance circuit 23 shown in FIG. The other configuration is the same as that of the second resonance circuit 23. An antenna 29 including the second resonance circuit 23 is configured.
 第2共振回路24では、スイッチSW21をオフとした時の共振周波数が、リクエスト信号の距離測定用フレームの搬送波周波数であるf1と同一の周波数となり、スイッチSW21をオンとした時の共振周波数がf1より周波数の低い、不正中継判定用フレームの搬送波周波数であるf2と同一の周波数になるように設定されている。f2は、キャパシタC21とキャパシタC22との和のキャパシタンスとインダクタL21のインダクタンスとによって決定される。 In the second resonance circuit 24, the resonance frequency when the switch SW21 is turned off becomes the same frequency as the carrier frequency of the request signal distance measurement frame f1, and the resonance frequency when the switch SW21 is turned on is f1. The frequency is set to be the same frequency as f2, which is a lower carrier frequency of the fraud relay determination frame. f2 is determined by the total capacitance of the capacitor C21 and the capacitor C22 and the inductance of the inductor L21.
 キーレスエントリー装置200では、第1共振回路14及び第2共振回路24がそれぞれ共振周波数を可変可能であり、車両側送信部11及び携帯機側受信部22の少なくともいずれか一方は、搬送波周波数に合わせて共振周波数が変更される。即ち、搬送波周波数がf1の時には、第1共振回路14及び第2共振回路24の共振周波数がf1になるよう、スイッチSW11及びスイッチSW21がオフとする。それに対して、搬送波周波数がf2となった時には、第1共振回路14又は第2共振回路24の共振周波数をf2とするため、スイッチSW11又はスイッチSW21をオンに切り替えるように設定されている。 In the keyless entry device 200, the first resonance circuit 14 and the second resonance circuit 24 can change the resonance frequency, respectively, and at least one of the vehicle-side transmission unit 11 and the portable device-side reception unit 22 matches the carrier frequency. The resonance frequency is changed. That is, when the carrier frequency is f1, the switches SW11 and SW21 are turned off so that the resonance frequencies of the first resonance circuit 14 and the second resonance circuit 24 are f1. On the other hand, when the carrier frequency becomes f2, in order to set the resonance frequency of the first resonance circuit 14 or the second resonance circuit 24 to f2, the switch SW11 or the switch SW21 is set to be turned on.
 従って、図4(b)に示したリクエスト信号の送信フォーマットで、距離測定用フレームから不正中継判定用フレームになった時、同時に第1共振回路14の共振周波数がf1からf2に切り替え可能である。共振周波数がf1からf2に切り替えられた時、送信アンテナインピーダンスは、図9(a)に示すように、z11からz12になるが、第1共振回路14の共振周波数がf2となっているため、z12はz11と同一の所定のインピーダンス値になる。従って、第1共振回路14の共振周波数がf1からf2に切り替えられても、搬送波周波数f2の前後の周波数域において最適な値となっている。そのため、搬送波周波数f2においても、リクエスト信号を最も効率良く送信することができる。 Therefore, when the request signal transmission format shown in FIG. 4B is changed from the distance measurement frame to the unauthorized relay determination frame, the resonance frequency of the first resonance circuit 14 can be simultaneously switched from f1 to f2. . When the resonance frequency is switched from f1 to f2, the transmission antenna impedance changes from z11 to z12 as shown in FIG. 9A, but the resonance frequency of the first resonance circuit 14 is f2, z12 has the same predetermined impedance value as z11. Therefore, even if the resonance frequency of the first resonance circuit 14 is switched from f1 to f2, it is an optimum value in the frequency range around the carrier frequency f2. Therefore, the request signal can be transmitted most efficiently even at the carrier frequency f2.
 また、図4(b)に示したリクエスト信号の送信フォーマットで、距離測定用フレームから不正中継判定用フレームになった時、同時に第2共振回路24の共振周波数もf1からf2に切り替え可能である。共振周波数がf1からf2に切り替えられた時、受信アンテナインピーダンスは、第2共振回路24の共振周波数がf1からf2に切り替えられる。その時、受信アンテナインピーダンスは、図9(b)に示すように、z21からz22になるが、第2共振回路24の共振周波数がf2となっているため、z22はz21と同一の所定のインピーダンス値になる。従って、第2共振回路24の共振周波数がf1からf2に切り替えられても、搬送波周波数f2の前後の周波数域において最適な値となっている。従って、搬送波周波数f2においても、リクエスト信号を最も効率良く受信することができる。 Further, in the transmission format of the request signal shown in FIG. 4B, the resonance frequency of the second resonance circuit 24 can be switched from f1 to f2 at the same time when the distance measurement frame is changed to the unauthorized relay determination frame. . When the resonance frequency is switched from f1 to f2, the reception antenna impedance is switched from the resonance frequency of the second resonance circuit 24 to f2. At that time, the reception antenna impedance changes from z21 to z22 as shown in FIG. 9B, but since the resonance frequency of the second resonance circuit 24 is f2, z22 is the same impedance value as z21. become. Therefore, even if the resonance frequency of the second resonance circuit 24 is switched from f1 to f2, it is an optimum value in the frequency range before and after the carrier wave frequency f2. Therefore, the request signal can be received most efficiently even at the carrier frequency f2.
 次に、距離測定用フレームから不正中継判定用フレームになった時、即ちリクエスト信号の搬送波周波数がf1からf2になった時、例えば、車両側送信部11の第1共振回路14の共振周波数をf1のままとし、携帯機側受信部22の第2共振回路24の共振周波数をf1からf2に変更する。尚、第2共振回路24の共振周波数の切り替えのタイミングは、予め定められている。 Next, when the frame for distance measurement is changed to the frame for unauthorized relay determination, that is, when the carrier frequency of the request signal is changed from f1 to f2, for example, the resonance frequency of the first resonance circuit 14 of the vehicle-side transmitter 11 is set. The resonance frequency of the second resonance circuit 24 of the portable device-side receiver 22 is changed from f1 to f2 while keeping f1. The timing for switching the resonance frequency of the second resonance circuit 24 is determined in advance.
 リクエスト信号の搬送波周波数がf1からf2になった時の場合の携帯機側受信部22における受信強度B2について説明する。第1共振回路14の共振周波数をf1のままとしているため、リクエスト信号の搬送波周波数がf1の時と搬送波周波数がf2の時の車両側送信部11の送信アンテナインピーダンスは、図6(a)で示したようにz11からz12(z12>z11)になる。従って、図10(a)に示すように、車両側送信部11の送信強度は、搬送波周波数f1において最大(A1)であり、搬送波周波数f2において送信強度が低下してA2となる。前述したように、例えばz12=1.3*z11である時、A2=A1/1.3となる。 A description will be given of the reception intensity B2 in the portable device-side receiver 22 when the carrier frequency of the request signal is changed from f1 to f2. Since the resonance frequency of the first resonance circuit 14 remains f1, the transmission antenna impedance of the vehicle-side transmission unit 11 when the carrier frequency of the request signal is f1 and when the carrier frequency is f2 is as shown in FIG. As shown, z11 becomes z12 (z12> z11). Therefore, as shown in FIG. 10A, the transmission intensity of the vehicle-side transmission unit 11 is the maximum (A1) at the carrier frequency f1, and the transmission intensity is reduced to A2 at the carrier frequency f2. As described above, for example, when z12 = 1.3 * z11, A2 = A1 / 1.3.
 また、リクエスト信号の搬送波周波数がf1から搬送波周波数がf2に切り替えられた時、図9(b)に示すように、携帯機側受信部22の第2共振回路24の共振周波数は、f2に切り替えられているため、この時の受信アンテナインピーダンスz22は、z21と同一であり、所定の特性インピーダンスのままなっている。そのため、携帯機側受信部22においては受信強度を低下させずに受信することができる。その結果、図10(a)に示すように、携帯機側受信部22における受信感度B2は、B2=A2となる。即ち、搬送波周波数がf1からf2に切り替わった時、携帯機側受信部22の受信強度B2は低下せず、B2=A2=A1/1.3となる。尚、前述したように、図10では距離による減衰を省略している。 When the carrier frequency of the request signal is switched from f1 to f2, the resonance frequency of the second resonance circuit 24 of the portable device-side receiver 22 is switched to f2, as shown in FIG. 9B. Therefore, the reception antenna impedance z22 at this time is the same as z21 and remains a predetermined characteristic impedance. Therefore, the mobile device side receiving unit 22 can receive without reducing the reception intensity. As a result, as shown in FIG. 10A, the reception sensitivity B2 in the portable device side reception unit 22 is B2 = A2. That is, when the carrier frequency is switched from f1 to f2, the reception intensity B2 of the portable device-side receiver 22 does not decrease, and B2 = A2 = A1 / 1.3. As described above, the attenuation due to the distance is omitted in FIG.
 一方、図3に示すようなリレーアタックが行なわれたとしたら、車両側装置10と携帯機20との間に第1中継器60及び第2中継器70が入ることになる。前述したように、携帯機側受信部22による受信強度の低下は発生しないが、第1中継器60及び第2中継器70による送受信強度の低下が発生することになる。 On the other hand, if the relay attack as shown in FIG. 3 is performed, the first repeater 60 and the second repeater 70 are inserted between the vehicle-side device 10 and the portable device 20. As described above, a decrease in reception strength by the portable device side receiving unit 22 does not occur, but a decrease in transmission / reception strength by the first repeater 60 and the second repeater 70 occurs.
 前述したように、リレーアタックが行なわれなかった場合には、B2=A2=(1/1.3)*A1となる。それに対し、リレーアタックが行なわれ、もしも、第1中継器60及び第2中継器70それぞれにおける共振回路のアンテナインピーダンスが、キーレスエントリー装置100と同一の、各共振回路の共振周波数が変更されないアンテナインピーダンスであったとしたら、例えば、第1中継器60での受信強度D2は、D2=0.8*A2=0.8*(1/3)*A1=0.615*A1となる。また、第2中継器70での送信強度E2は、E2=(1/1.3)*D2=(0.615/1.3)*A1=0.473*A1となる。しかし、携帯機側受信部22においては受信強度を低下させずに受信することができるため、携帯機側受信部22での受信強度B2は、第2中継器70での送信強度E2に対して低下しないで、例えば、B2=E2=(0.615/1.3)*A1=0.473*A1となる。従って、明らかにB2<(1/1.3)*A1となり、キーレスエントリー装置200の各共振回路の共振周波数を変更しない場合に比較して、受信強度の差を、受信強度のより高い領域で判定することができる。 As described above, when the relay attack is not performed, B2 = A2 = (1 / 1.3) * A1. On the other hand, a relay attack is performed. If the antenna impedance of the resonance circuit in each of the first repeater 60 and the second repeater 70 is the same as that of the keyless entry device 100, the antenna impedance in which the resonance frequency of each resonance circuit is not changed. For example, the reception intensity D2 at the first repeater 60 is D2 = 0.8 * A2 = 0.8 * (1/3) * A1 = 0.615 * A1. Further, the transmission intensity E2 at the second repeater 70 is E2 = (1 / 1.3) * D2 = (0.615 / 1.3) * A1 = 0.473 * A1. However, since the mobile device side receiving unit 22 can receive without reducing the reception strength, the reception strength B2 at the mobile device side receiving unit 22 is smaller than the transmission strength E2 at the second repeater 70. For example, B2 = E2 = (0.615 / 1.3) * A1 = 0.473 * A1 without decreasing. Therefore, clearly B2 <(1 / 1.3) * A1, and compared with the case where the resonance frequency of each resonance circuit of the keyless entry device 200 is not changed, the difference in reception intensity is in a region where the reception intensity is higher. Can be determined.
 上記のように、車両側送信部11の送信強度A1に対する携帯機側受信部22における搬送波周波数f2での受信強度B2の比率が、所定の閾値より小さい場合に不正が行われたと判定し、車両50に対する所定の制御を行わないことを判断する。上記所定の閾値は、例えば、(1/1.3)とすることができるが、20%の余裕を持たせるため、閾値を0.8*(1/1.3)=0.615とすることが望ましい。 As described above, when the ratio of the reception intensity B2 at the carrier frequency f2 in the portable device-side receiver 22 to the transmission intensity A1 of the vehicle-side transmitter 11 is smaller than a predetermined threshold, it is determined that fraud has been performed, and the vehicle It is determined that the predetermined control for 50 is not performed. The predetermined threshold can be set to (1 / 1.3), for example, but the threshold is set to 0.8 * (1 / 1.3) = 0.615 in order to provide a 20% margin. It is desirable.
 以上の説明では、携帯機側受信部22の第2共振回路24の共振周波数だけを変更した場合について説明したが、車両側送信部11の第1共振回路14の共振周波数だけを変更しても同様である。また、携帯機側受信部22の第2共振回路24、及び車両側送信部11の第1共振回路14それぞれの共振周波数を共に変更するようにしても良い。2つの共振周波数を共に変更するようにすれば、受信強度の差を受信強度のより高い領域で判定できるという効果がより大きくなる。 In the above description, the case where only the resonance frequency of the second resonance circuit 24 of the portable device-side receiver 22 is changed has been described, but even if only the resonance frequency of the first resonance circuit 14 of the vehicle-side transmitter 11 is changed. It is the same. Moreover, you may make it change both the resonant frequency of the 2nd resonance circuit 24 of the portable device side receiving part 22 and the 1st resonance circuit 14 of the vehicle side transmission part 11 together. If the two resonance frequencies are changed together, the effect that the difference in the received intensity can be determined in a region where the received intensity is higher becomes greater.
 また、上記の説明では、リクエスト信号の送信フォーマットは、図4(b)に示したように、不正中継判定用フレームを1つとしているが、図4(c)に示すように、不正中継判定用フレームを複数としても良い。その場合、図8(a)及び図8(b)で示した第1共振回路14及び第2共振回路24における、キャパシタC12とスイッチSW11との直列接続回路、及びキャパシタC22とスイッチSW21との直列接続回路を、それぞれ複数設け、共振周波数の切り替えに合わせて各スイッチを切り替えるようにすれば良い。 In the above description, the transmission format of the request signal is one illegal relay determination frame as shown in FIG. 4B. However, as shown in FIG. A plurality of frames may be used. In that case, the series connection circuit of the capacitor C12 and the switch SW11 and the series connection of the capacitor C22 and the switch SW21 in the first resonance circuit 14 and the second resonance circuit 24 shown in FIGS. 8A and 8B. A plurality of connection circuits may be provided, and each switch may be switched in accordance with switching of the resonance frequency.
 このように構成されたキーレスエントリー装置100は、車両側送信部11及び携帯機側受信部22の少なくともいずれか一方が、基準とする搬送波周波数に合わせた共振周波数を有しているため、他の異なる搬送波周波数の信号との受信強度の差を、受信強度の高い領域で判定できる。そのため、距離が離れている信号であっても、不正を検出することが、より高い確率で可能となる。また、車両側送信部11からの送信信号、又は携帯機側受信部22の受信信号のSN比も上がるために判定精度が上がる。更に、携帯機側受信部22の第2共振回路24、及び車両側送信部11の第1共振回路14の共振周波数を共に変更するようにすれば、よりその効果が大きくなる。 In the keyless entry device 100 configured as described above, at least one of the vehicle-side transmitter 11 and the portable device-side receiver 22 has a resonance frequency that matches the reference carrier frequency. A difference in reception intensity with signals of different carrier frequencies can be determined in a region where the reception intensity is high. For this reason, it is possible to detect fraud with a higher probability even for signals that are far away. Moreover, since the SN ratio of the transmission signal from the vehicle-side transmission unit 11 or the reception signal of the portable device-side reception unit 22 is also increased, the determination accuracy is increased. Furthermore, if both the resonance frequencies of the second resonance circuit 24 of the portable device side receiving unit 22 and the first resonance circuit 14 of the vehicle side transmission unit 11 are changed, the effect is further increased.
 以上説明したように、本発明のキーレスエントリー装置は、リクエスト信号に搬送波周波数の異なる複数のフレームを含むため、第1共振回路又は第2共振回路の共振周波数とは異なる搬送波周波数の信号を送信又は受信することになり、搬送波周波数が共振周波数から外れていることによって送受信強度が低下する。そのため、リレーアタックによって送受信が繰り返されることで、それぞれのフレーム間の受信強度の差がより大きく現れる。その結果、リレーアタックを行なおうとしていることを容易に判定できる。また、事前に搬送波周波数の変更を携帯機へ通知する必要がないため、通信時間を短縮することができる。そのため、通信速度に優れ、簡易な構成でリレーアタックを防止することのできるキーレスエントリー装置を提供することができる。 As described above, since the keyless entry device of the present invention includes a plurality of frames having different carrier frequencies in the request signal, it transmits a signal having a carrier frequency different from the resonance frequency of the first resonance circuit or the second resonance circuit, or As a result of reception, the transmission / reception strength decreases due to the carrier frequency deviating from the resonance frequency. Therefore, when transmission / reception is repeated by the relay attack, a difference in reception intensity between the frames appears more greatly. As a result, it can be easily determined that the relay attack is going to be performed. In addition, since it is not necessary to notify the portable device of changes in the carrier frequency in advance, the communication time can be shortened. Therefore, it is possible to provide a keyless entry device that is excellent in communication speed and can prevent a relay attack with a simple configuration.
 本発明は上記の実施形態の記載に限定されず、その効果が発揮される態様で適宜変更して実施することができる。 The present invention is not limited to the description of the above embodiment, and can be implemented with appropriate modifications in a mode in which the effect is exhibited.
 10   車両側装置
 10a  車両側装置本体
 11   車両側送信部
 12   車両側受信部
 12a  車両側受信アンテナ素子
 13   第1共振回路
 14   第1共振回路
 15   車両側制御部
 16   車両側発振回路
 17   車両側記憶部
 18   駆動信号送信部
 19   車両側送信アンテナ
 19a  車両側送信アンテナ素子
 20   携帯機
 21   携帯機側送信部
 21a  携帯機側送信アンテナ素子
 22   携帯機側受信部
 23   第2共振回路
 24   第2共振回路
 25   携帯機側制御部
 26   携帯機側発振回路
 27   携帯機側記憶部
 28   電池
 29   携帯機側受信アンテナ
 29a  携帯機側受信アンテナ素子
 100  キーレスエントリー装置
 200  キーレスエントリー装置
 
DESCRIPTION OF SYMBOLS 10 Vehicle side apparatus 10a Vehicle side apparatus main body 11 Vehicle side transmission part 12 Vehicle side receiving part 12a Vehicle side receiving antenna element 13 1st resonance circuit 14 1st resonance circuit 15 Vehicle side control part 16 Vehicle side oscillation circuit 17 Vehicle side memory | storage part DESCRIPTION OF SYMBOLS 18 Drive signal transmission part 19 Vehicle side transmission antenna 19a Vehicle side transmission antenna element 20 Portable machine 21 Portable machine side transmission part 21a Portable machine side transmission antenna element 22 Portable machine side reception part 23 2nd resonance circuit 24 2nd resonance circuit 25 Carrying Machine side control unit 26 Portable machine side oscillation circuit 27 Portable machine side storage unit 28 Battery 29 Portable machine side receiving antenna 29a Portable machine side receiving antenna element 100 Keyless entry device 200 Keyless entry device

Claims (4)

  1.  リクエスト信号を送信する車両側装置と、前記リクエスト信号を受信すると前記リクエスト信号に対応したアンサー信号を送信する携帯機と、を備えたキーレスエントリー装置であって、
     前記車両側装置は、第1共振回路を有すると共に、前記第1共振回路を介して前記リクエスト信号を送信する車両側送信部と、前記アンサー信号を受信する車両側受信部と、所定の車両内制御を行う車両側制御部と、前記リクエスト信号用の搬送波信号を生成する車両側発振回路と、を有し、
     前記携帯機は、第2共振回路を有すると共に、前記第2共振回路を介して前記リクエスト信号を受信する携帯機側受信部と、前記アンサー信号を送信する携帯機側送信部と、前記アンサー信号の送信を制御する携帯機側制御部と、を有し、
     前記車両側発振回路が前記搬送波信号の搬送波周波数を可変可能であると共に、前記リクエスト信号が、前記搬送波周波数のそれぞれ異なる複数のフレームを含み、
     前記携帯機側制御部は、前記複数のフレーム毎の受信強度を測定し、測定した前記受信強度に基づいた情報を含む前記アンサー信号を前記携帯機側送信部に送信させ、前記車両側制御部は前記アンサー信号に基づいて車両に対する所定の制御を行うか否かを判定する、ことを特徴とするキーレスエントリー装置。
    A keyless entry device comprising: a vehicle side device that transmits a request signal; and a portable device that transmits an answer signal corresponding to the request signal when the request signal is received,
    The vehicle-side device includes a first resonance circuit, a vehicle-side transmission unit that transmits the request signal via the first resonance circuit, a vehicle-side reception unit that receives the answer signal, and a predetermined vehicle interior A vehicle-side control unit that performs control, and a vehicle-side oscillation circuit that generates a carrier signal for the request signal,
    The portable device has a second resonance circuit, and receives the request signal via the second resonance circuit, a portable device side transmission unit that transmits the answer signal, and the answer signal. A portable device side control unit that controls transmission of
    The vehicle-side oscillation circuit can change a carrier frequency of the carrier signal, and the request signal includes a plurality of frames having different carrier frequencies,
    The portable device side control unit measures reception strength for each of the plurality of frames, causes the portable device side transmission unit to transmit the answer signal including information based on the measured reception strength, and the vehicle side control unit Determines whether or not to perform predetermined control on the vehicle based on the answer signal.
  2.  前記第1共振回路及び又は前記第2共振回路は、異なる前記搬送波周波数の内のいずれかに等しい共振周波数を有している、ことを特徴とする請求項1に記載のキーレスエントリー装置。 2. The keyless entry device according to claim 1, wherein the first resonance circuit and the second resonance circuit have a resonance frequency equal to one of the different carrier frequencies.
  3.  前記複数のフレームは、前記搬送波周波数のそれぞれ異なる距離測定用フレームと不正中継判定用フレームとからなり、
     前記距離測定用フレームの送信強度に対する前記不正中継判定用フレームの前記受信強度の比率が、所定の閾値より小さい場合に不正と判定し、車両に対する所定の制御を行わないことを判断する、ことを特徴とする、請求項1又は請求項2に記載のキーレスエントリー装置。
    The plurality of frames are composed of a distance measurement frame and an illegal relay determination frame each having a different carrier frequency,
    Determining that the ratio of the reception strength of the unauthorized relay determination frame to the transmission strength of the distance measurement frame is smaller than a predetermined threshold value, and determining that the vehicle is not subjected to predetermined control. The keyless entry device according to claim 1 or 2, wherein the keyless entry device is characterized.
  4.  前記第1共振回路及び又は前記第2共振回路は、それぞれ共振周波数を可変可能であり、
     前記車両側送信部及び前記携帯機側受信部の少なくともいずれか一方は、前記搬送波周波数に合わせて前記共振周波数が変更される、ことを特徴とする請求項1乃至請求項3のいずれかに記載のキーレスエントリー装置。
     
    The first resonance circuit and / or the second resonance circuit can each vary a resonance frequency,
    4. The resonance frequency of at least one of the vehicle-side transmitter and the portable device-side receiver is changed according to the carrier frequency. 5. Keyless entry device.
PCT/JP2015/078286 2014-10-22 2015-10-06 Keyless entry device WO2016063717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215710 2014-10-22
JP2014-215710 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063717A1 true WO2016063717A1 (en) 2016-04-28

Family

ID=55760761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078286 WO2016063717A1 (en) 2014-10-22 2015-10-06 Keyless entry device

Country Status (1)

Country Link
WO (1) WO2016063717A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218723A (en) * 2016-06-02 2017-12-14 株式会社東海理化電機製作所 Communication fraud enactment prevention system
CN111246423A (en) * 2020-01-09 2020-06-05 联合汽车电子有限公司 Method for preventing broadcast relay attack in keyless entry and start system
JP2020120301A (en) * 2019-01-25 2020-08-06 三菱電機株式会社 Radio communication system and radio communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240315A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Radio key system, its controlling method, and program therefor
JP2010011393A (en) * 2008-06-30 2010-01-14 Toyota Boshoku Corp In-vehicle wireless system
JP2012123527A (en) * 2010-12-07 2012-06-28 Tokai Rika Co Ltd Communication fraudulent establishment prevention system
JP5218916B2 (en) * 2009-03-16 2013-06-26 トヨタ自動車株式会社 Communications system
JP2014180900A (en) * 2013-03-18 2014-09-29 Nippon Soken Inc Vehicle system, on-vehicle apparatus and portable machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240315A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Radio key system, its controlling method, and program therefor
JP2010011393A (en) * 2008-06-30 2010-01-14 Toyota Boshoku Corp In-vehicle wireless system
JP5218916B2 (en) * 2009-03-16 2013-06-26 トヨタ自動車株式会社 Communications system
JP2012123527A (en) * 2010-12-07 2012-06-28 Tokai Rika Co Ltd Communication fraudulent establishment prevention system
JP2014180900A (en) * 2013-03-18 2014-09-29 Nippon Soken Inc Vehicle system, on-vehicle apparatus and portable machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218723A (en) * 2016-06-02 2017-12-14 株式会社東海理化電機製作所 Communication fraud enactment prevention system
JP2020120301A (en) * 2019-01-25 2020-08-06 三菱電機株式会社 Radio communication system and radio communication method
CN111246423A (en) * 2020-01-09 2020-06-05 联合汽车电子有限公司 Method for preventing broadcast relay attack in keyless entry and start system

Similar Documents

Publication Publication Date Title
JP6137687B2 (en) Keyless entry system
JP5400407B2 (en) Keyless entry device
US9600947B2 (en) Lock system, in particular for a motor vehicle
US9126564B2 (en) Communication apparatus for vehicle
JP5341814B2 (en) Wireless communication pass / fail judgment system
WO2017122493A1 (en) Electronic key system, on-board device, and electronic key
US20140327517A1 (en) Remote control system, and method for automatically locking and/or unlocking at least one movable panel of a motor vehicle and/or for starting a motor vehicle engine using a remote control system
CN111315948B (en) Remote keyless entry system
JP6308936B2 (en) Keyless entry device
JP5343552B2 (en) Keyless entry system
JP2000185627A (en) User discrimination device for car
WO2018127353A1 (en) Vehicle keyless entry systems
JP2018107653A (en) Authentication system for vehicle
WO2016063717A1 (en) Keyless entry device
JP6234474B2 (en) Keyless entry system
JP2021135220A (en) Distance measuring device
KR20190121337A (en) Detection of presence of person hand to openable panel of car
JP6597538B2 (en) Vehicle portable device
JP6278410B2 (en) In-vehicle device control system, in-vehicle control device, portable device
JP2016056667A (en) Electronic key system
JP6641508B1 (en) Wireless communication system and wireless communication method
JP2018040133A (en) Authentication system and mobile unit
JP2004040803A (en) Method for controlling access to prescribed space via personal hand baggage, and hand baggage for carrying out the same method
US20230286465A1 (en) Methods for using a surface acoustic wave resonator for automobile security
WO2018047748A1 (en) Vehicle-mounted communication system, vehicle-mounted device and portable apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15851737

Country of ref document: EP

Kind code of ref document: A1