WO2019043280A1 - Procedimiento y equipo y para la obtención/ recuperación de nitrogeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales. - Google Patents

Procedimiento y equipo y para la obtención/ recuperación de nitrogeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales. Download PDF

Info

Publication number
WO2019043280A1
WO2019043280A1 PCT/ES2018/070579 ES2018070579W WO2019043280A1 WO 2019043280 A1 WO2019043280 A1 WO 2019043280A1 ES 2018070579 W ES2018070579 W ES 2018070579W WO 2019043280 A1 WO2019043280 A1 WO 2019043280A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
reactor
liquid phase
equipment
water
Prior art date
Application number
PCT/ES2018/070579
Other languages
English (en)
French (fr)
Inventor
Roberto ESTEFANO LAGARRIGUE
Original Assignee
Estefano Lagarrigue Roberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Estefano Lagarrigue Roberto filed Critical Estefano Lagarrigue Roberto
Publication of WO2019043280A1 publication Critical patent/WO2019043280A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Definitions

  • the invention refers to a process for obtaining, recovery of N2 nitrogen in the form of ammonia (NH3) or Bio ammonia (due to its raw material) as well as compost and H2O obtained from biomasses of vegetable and / or animal origin (Raw Materials), through the equipment of the invention.
  • NH3 ammonia
  • Bio ammonia due to its raw material
  • compost and H2O obtained from biomasses of vegetable and / or animal origin (Raw Materials), through the equipment of the invention.
  • biomasses of animal and / or vegetable origin for example: slurry of pigs, cattle, birds, organic material (waste) and human waste.
  • the object of the present invention focuses, in particular, on a process for obtaining / recovering nitrogen N2 in the form of NH3 organic ammonia (Bio ammonia) which, in an innovative way, is obtained from biomass as a raw material of vegetable origin and animal, in a process of evaporation of the liquid phase in the equipment that is also part of this patent, to obtain on the one hand (NH3) gaseous and / or liquid form, on the other hand H2O for fertigation, and compost as solid phase .
  • Bio ammonia NH3 organic ammonia
  • the field of application of the present invention is part of the livestock sector (intensive livestock breeding) and the industry dedicated to the manufacture of chemical products, fertilizers and domestic and industrial effluent treatment plants, focusing particularly on the production of ammonia (NH3), compost, water for irrigation with ammonia levels appropriate to the regulations, avoiding the contamination of all the water basin by lixiviation of the NO3 ion and reduction of ammonia effluents.
  • NH3 ammonia
  • compost water for irrigation with ammonia levels appropriate to the regulations
  • Ammonia, ammonia, azano, spirit of Hartshorn or ammonium gas is a chemical compound of nitrogen with the chemical formula Nhb. It is a colorless gas with a characteristic repulsive odor. It is found abundantly in urine and fecal matter. It is the main terminal product of protein metabolism in man and in other mammals. Human urine contains about 20g per liter. Approximately 83% of the ammonia is used as fertilizers or salts, solutions or anhydrides. When applied to soil, it helps to increase the yield of crops such as corn and wheat. 30% of the agricultural nitrogen used is in the form of anhydride.
  • Ammonia currently serves as a raw material for the formation of agricultural fertilizers, moisturizers and polymers.
  • ammonia and phosphate fertilizers allows the plantations to become stronger and can cope, with the help of the necessary agrochemicals, different types of insects, bacteria and viruses that can affect them during the period of maturation. its fruits
  • Nhb is obtained by the method called Haber-Bosch procedure.
  • the procedure consists in the direct reaction between nitrogen and hydrogen gas.
  • ammonia at the industrial level (based on hydrocarbons) that is made from cracking to obtain liquid ammonia (NH3) and carbon dioxide (CO2) gas
  • the Haber-Bosch method uses two raw materials: hydrogen and nitrogen.
  • the necessary hydrogen is produced from the reformation of natural gas, LPG or naphtha with water vapor, with natural gas being the most usual feed.
  • the circulating gas is composed of air, methane and water vapor, which react with iron catalyst to form ammonia in gaseous state according to: 7 CH 4 + 1 0 H2O + 8 N2 + 2 O2 - »16 NH 3 + 7 CO2
  • the gaseous ammonia is condensed by cooling and separated from the gas to store it.
  • the remaining gaseous ammonia is recirculated to the synthesis loop.
  • the raw material used comes from “biornasas” (animal / vegetable) for example: puns.
  • animal origin such as the excrement (purines) of pigs, poultry, cattle, sheep, the blood of these animals, the coats or organic components thereof such as viscera.
  • plant origin such as Mediterranean pinnace, leaves of trees and shrubs, vegetables, fruits, or other components derived from forests such as barks or pine nuts.
  • the water obtained from the process of the invention conforms to the regulations for fertigation of the EU in relation to nitrate levels and avoids eutrophication by nitrates of the aquifer basin of vulnerable zones.
  • the final compost has a very low ammoniacal content for its use as active compost, not harmful to the environment.
  • the procedure supposes a great advantage in terms of the contribution of indirect positive impacts to the natural environment that come from the adequate use of vegetable and animal biomasses; in addition, the manufacture of fertilizers on an organic basis that allow to intensify agriculture in existing lands, reducing the need to expand it to other lands that may have different natural or social uses.
  • the invention is presented as a new and innovative reactor and industrial model that has the potential to transform intensive livestock farming into a bio-refinery that uses slurry as a raw material. This new technology allows to treat both digested and fresh purines, in situ and at a reasonable cost, in farms as well as 1,000 average heads. Both the market value of the nitrogen fertilizers obtained (NhU + OH), and its reduced environmental impact would change the assessment of this cattle dejection.
  • the process of recovering / obtaining nitrogen in the form of ammonia, from waste organic material with liquid phase comprises:
  • the solid phase is derived from the separator (and from any other hypothetical similar stage) to a composting station.
  • the purification of the liquid phase after the evaporation of the ammonia in the The reactor is preferably carried out consecutively by:
  • a physical filter (continuous flow rotary centrifuge, for example) preferably of variable mesh, where the separated solid fraction is composed.
  • An activated carbon filter and zeolite An activated carbon filter and zeolite.
  • a UV filter (Ultraviolet).
  • a reverse osmosis device where the cake that is removed from the membrane is also taken to the composting station.
  • the invention also relates to the equipment for recovering / obtaining nitrogen in the form of ammonia (Bio Ammonia) comprising all these apparatuses.
  • the procedure of Figure 1 is a batch process that begins with a reservoir (1) of slurry, generally a settling / separating basin. If it comes from another type of deposit it may be necessary to decant (2), in a decanter, to eliminate part of the solids.
  • the preferred separator (3) is a continuous-flow, variable-mesh screw centrifuge, such as a scraper or screw rotary with variable pitch meshes (preferably 50, 100, 200, 300 and 500 microns). According to the original decantation, this solid phase (4) can be reduced to 10% of the slurry introduced.
  • a quantity of liquid phase (6) is introduced, allowing an upper clearance (71) to favor evaporation.
  • a preferred proportion leaves 25% of the volume of the reactor (7) as free space (71).
  • a heating up to about 45-55 ° C (depending on the pH of the slurry, to optimize the water-ammonia ratio in the gas phase) by means of a heater (72), such as a water coil hot and a pressure drop inside the reactor (7) is also carried out. In both cases to continue favoring evaporation.
  • a forced circulation is produced by means of a stirrer (73) (impulsion propeller for example at 150 r.p.m.) which preferably carries the slurry to a turbulent regime, increasing the evaporation surface of the slurry.
  • This turbulent regime helps the evaporation facilitating the rupture of the hydrogen bridge between the ammonia molecules present in the slurry.
  • the pH can be modified by adding a base, such as soda caustic
  • a base such as soda caustic
  • the amount will depend on the starting pH (characterization of the slurry) and the desired pH, which will preferably be 1 1.
  • NHs gas and water vapor are removed by a vacuum pump and taken to a water trap (8) to separate the water vapor. If desired, it can be assisted with an atmospheric air inlet, which helps drag the gases. For example, as micro-bubbles (diameter less than one millimeter) of air inside the reactor causing diffuse aeration in vacuum.
  • This water trap (8) allows us to visualize if we are adequately evaporating the Nhb. When the water trap (8) accumulates water in its interior, it indicates that we are deviating from the water-ammonia evaporation curve and lose thermal efficiency (we are overheating the liquid phase (6)). In addition, the water trap (8) allows not to drag impurities that entails the water vapor of slurry
  • the dehumidified NH3 gas is introduced into a gas bubbler (9) also with a liquid in the lower part (distilled and demineralized water initially) and upper empty space.
  • the bubbles produce a large contact surface between the cooled water and the ammonia, increasing the dissolution and accelerating the reaction to make ammonium hydroxide.
  • the gas bubbler (9) be cooled, for example at 4 ° C, to obtain a cooled unsaturated solution.
  • the slurry remaining in the reactor (7) after evaporation of the ammonia must be treated, so that it first passes through a physical filter (10) and an ozonator (11).
  • the ozonator (11) injects that O3 gas through a venturi into the slurry flow to be treated, and a remanence occurs in a tank to allow time for its action.
  • ES ozone produces an important oxidation and disinfectant of the liquid phase (6) of the slurry and oxidizable contaminants and microorganisms.
  • the liquid phase is transferred to electrocoagulation equipment (12), also preferably with recirculation.
  • This electrocoagulation equipment (12) comprises an anode and a sacrificial cathode, for example of copper and silver alloys, to ionize the liquid phase (6) and finish the disinfection.
  • a sacrificial cathode for example of copper and silver alloys.
  • the use of silver / copper ionizers allows controlling the microbiological scope and prolonging the duration of the liquid phase (6) of the slurry in confined spaces.
  • the necessary voltage is reduced (less than 12 V) and the electrodes can be placed on each side of the slurry flow.
  • the liquid phase (6) is introduced into an activated carbon filter (13) and zeolite of variable granulometry.
  • the slurry is forced to recirculate by e! activated carbon filter (13) and zeolite which, due to its absorption properties, retains the odor, color and ammonia residues of the Pur ⁇ n.
  • the activated carbon filter (13) and zeolite provides the porosity and specific surface combined to achieve a natural cation exchange also performing an important filtration, eliminating contaminating particles up to 10 pm and absorbing the cations in solution such as Fe, Mn, Cu, Zn , and heavy metals such as Pb and As.
  • the liquid phase (6) remaining from the slurry passes through a UV filter (14) disinfectant.
  • the liquid phase (6) is treated in a reverse osmosis device (15).
  • a reverse osmosis device Preferably with some other physical filter, optional, previous.
  • the reverse osmosis device (15) also removes any remaining caustic soda. If preferred, it can be previously neutralized by adding some type of acid to form salts.
  • the material removed from the liquid phase (6) in the physical filter (10) the reverse osmosis devices (15), ozonator (1), electrocoagulation equipment, activated carbon filter (13) and any purge valve refers to the composting station (5).
  • the procedure allows the "selective evaporation" of the NH3 and the water vapor produced in the closed reactor (5) due to the variation in the evaporation surface - the plates - (figure 2b), the temperature, the pH, the circulation of the slurry, the vacuum and the diffusion by dragging atmospheric air.
  • the "selective evaporation” is based on the equilibrium dissociation NH3 / NH4 + and the corresponding pH and temperature. By having a pH of about 1 1 in the slurry, the equilibrium shifts to Nhb. This characteristic allows the selection of the evaporated with adjustable concentration of (OH-Nb + ) and water, varying the time and other parameters during the process. As slurry is a solution with components of different volatility, when some of them evaporate, their composition and saturation temperature change.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

Equipo y procedimiento para obtención/ recuperación de nitrógeno en forma de amoniaco (bio amoniaco) a partir de biomasas animales y vegetales con fase líquida, que comprende: una separación de fases en una separadora (3), opcíonalmente con una decantadora (2) previa; la derivación de la fase líquida (6) a un reactor (7) de evaporación, con un espacio libre (71) donde se crea una baja presión, y un agitador (73) que genera un régimen turbulento; la derivación del amoniaco y del agua evaporados en el reactor (7) del espacio libre (71) a una trampa de agua (8) de captura de la humedad; la introducción del amoniaco deshumedecido en un borboíeador (9) con agua destilada a baja temperatura para la producción de hidróxido de amonio.

Description

MEMORIA DESCRIPTIVA
PROCEDIMIENTO Y EQUIPO Y PARA LA OBTENCIÓN/ RECUPERACIÓN DE NITROGENO EN FORMA DE AMONIACO (BIO AMONÍACO) A PARTIR DE BIOMASAS ANIMALES Y VEGETALES
OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un procedimiento para la obtención, recuperación de N2 nitrógeno en forma de amoníaco (NH3) o Bio amoníaco (debido a su materia prima) así como compost y H2O obtenidos a partir de biomasas de origen vegetal y/o animal (Materias Primas), a través del equipo de la invención.
Entendemos como biomasas de origen animal y/o vegetal, por ejemplo: purines de cerdos, vacunos, aves, material orgánico (residuos) y deyecciones humanas.
El objeto de la presente invención se centra, concretamente, en un procedimiento para la obtención/ recuperación del N2 nitrógeno en forma de amoníaco orgánico NH3 (Bio amoníaco) que, de manera innovadora se obtiene a partir de biomasa como materia prima de origen vegetal y animal, en un procedimiento de evaporación de la fase líquida en el equipo que también es parte de esta patente, para obtener por un lado (NH3) de forma gaseosa y/o líquida, por otro lado H2O para fertirriego, y compost como fase sólida.
CAMPO DE APLICACIÓN DE LA INVENCIÓN
El campo de aplicación de la presente invención se enmarca dentro del sector ganadero (cría de ganado intensivo) y de la industria dedicada a la fabricación de productos químicos, fertilizantes y las plantas de tratamientos de efluentes domésticos e industriales, centrándose particularmente en el ámbito de la producción de amoníaco (NH3), compost, agua para riego con niveles de amoníaco adecuados a la normativa, evitando la contaminación de toda la cuenca hídrica por lixiviación del ion NO3 y reducción de efluentes amoniacales.
ANTECEDENTES DE LA INVENCIÓN
El amoníaco, amoniaco, azano, espíritu de Hartshorn o gas de amonio es un compuesto químico de nitrógeno con la fórmula química Nhb. Es un gas incoloro con un característico olor repulsivo. Se encuentra abundantemente en la orina y en la materia fecal. Es el principal producto terminal del metabolismo de proteínas en el hombre y en los demás mamíferos. La orina humana contiene unos 20g por litro. Aproximadamente el 83% del amoníaco se utiliza como fertilizantes o sales, soluciones o anhídridos. Cuando se aplica en suelo, ayuda a incrementar el rendimiento de los cultivos como el maíz y el trigo. El 30 % del nitrógeno agricultural usado es en forma de anhídrido.
El amoníaco sirve, actualmente, como materia prima para la formación de, fertilizantes agropecuarios, cremas humectantes y polímeros.
La utilización de fertilizantes de amoníaco y fosfatos permite que las plantaciones se vuelvan más fuertes y pueden sobrellevar, con la ayuda de los productos agroquímicos necesarios, distintos tipos de insectos, bacterias y virus que pueden llegar a afectarlas durante el tiempo que dure la maduración de sus frutos.
Tradicionalmente el Nhb se obtiene por el método denominado procedimiento Haber-Bosch. El procedimiento consiste en la reacción directa entre el nitrógeno y el hidrógeno gaseosos. Por otra parte, es conocida la síntesis de amoníaco a nivel industrial (a base de hidrocarburos) que se realiza a partir del cracking para obtener amoníaco (NH3) líquido y anhídrido carbónico (CO2) gaseoso
Figure imgf000005_0001
Estos valores se obtienen por medio de la ecuación de Van't Hoff. Es una reacción muy lenta, puesto que tiene una elevada energía de activación, consecuencia de la estabilidad del N2.
El método de Haber-Bosch utiliza dos materias primas: hidrógeno y nitrógeno. El hidrógeno necesario es producido a partir de la reformación de gas natural, de GLP o de nafta con vapor de agua, siendo el gas natural la alimentación más usual.
Luego de la metanación, el gas circulante se compone de aire, metano y vapor de agua, los cuales reaccionan con catalizador de hierro para formar amoníaco en estado gaseoso según: 7 CH4 + 1 0 H2O + 8 N2 + 2 O2 -» 16 NH3 + 7 CO2
El amoníaco gaseoso se condensa por enfriamiento y se separa del gas para almacenarlo. El amoníaco gaseoso remanente es recirculado al loop de síntesis.
EXPLICACIÓN DE LA INVENCIÓN
El procedimiento para la obtención/ recuperación de nitrógeno N2 en forma de amoníaco orgánico NH3 (Bio amoníaco) que la presente invención propone se configura, en cambio, como una destacable novedad dentro de su campo de aplicación, aportando ventajas y características que lo distinguen y mejoran respecto del procedimiento conocido antes descrito, las cuales se hallan convenientemente recogidas en las reivindicaciones finales que acompañan a la presente memoria descriptiva.
Conviene mencionar, en primer lugar, que "la materia prima utilizada" por esta invención proviene de "biornasas" (animales/ vegetales) por ejemplo: punnes.
Las diferencias más importantes a tener en cuenta sobre otras materias primas, producios obtenidos y efluentes son: Las materias primas involucradas en la obtención/ recuperación del Nitrógeno 2 en forma de amoníaco orgánico (NH3) Bio amoníaco:
De origen animal, tal como los excrementos (purines) de porcinos, aviar, vacunos, lanares, la sangre de estos animales citados, los pelajes o los componentes orgánicos de los mismos tal como las visceras. De origen vegetal tal corno la pinaza mediterránea, las hojas de árboles y arbustos, las verduras, las frutas, u otros componentes derivados de los bosques tal como las cortezas o los piñones.
De excreciones humanas y otros residuos orgánicos de plantas de tratamiento de aguas urbanas. Una de las ventajas derivadas del procedimiento es, pues, la optimización de las ganaderías de cría intensiva que utilizarán los purines como materia prima para este fertilizante bio y además sus efluentes podrán utilizarse como fertirriego ya que tendrán los niveles amoniacales adecuados a la normativa de la UE. Con el sistema de la invención se ha conseguido una recuperación del 95,2% de N-NH4OH a partir de purines de cerdo, con unas pérdidas del 4,8% respecto a la entrada.
El agua que se obtiene del procedimiento de la invención se ajusta a la normativa para fertirriego de la UE en lo referente a los niveles de nitratos y evita la eutrofización por nitratos de la cuenca acuífera de las zonas vulnerables.
El compost final posee un bajísimo contenido amoniacal para su utilización como compost activo, no dañino para el medio ambiente. En definitiva, el procedimiento supone una gran ventaja en cuanto a la aportación de impactos positivos indirectos para el medio ambiente natural que provienen dei uso adecuado de las biomasas vegetales y animales; además la fabricación de fertilizantes en base orgánica que permiten intensificar la agricultura en los terrenos existentes, reduciendo la necesidad de expandirla hacia otras tierras que puedan tener usos naturales o sociales distintos.
Además, se reducen sustantivamente los impactos ambientales negativos que de la producción de fertilizantes con base de hidrocarburos suelen ser severos. Las aguas residuales no constituyen un problema. Al haber sido tratadas como parte del procedimiento son levemente acidas (dependiendo del tipo de planta), y su contenido de sustancias tóxicas son mínimos (concentraciones de: amoniaco o los compuestos de amonio, urea, cadmio, arsénico, fluoruros y fosfato). La invención se presenta como un nuevo e innovador reactor y modelo industrial que tiene el potencial de transformar la ganadería intensiva en una bio-refinería que utiliza los purines como materia prima. Esta nueva tecnología permite tratar tanto los purines digeridos como los frescos, in situ y a un coste razonable, en ganaderías como de 1.000 cabezas promedio. Tanto el valor de mercado de los bio fertilizantes nitrogenados obtenidos (NhU+OH), como su reducido impacto ambiental permitiría cambiar la valoración que se tiene de esta deyección ganadera.
Las novedades del equipo son las siguientes:
1 ) La obtención y análisis de la evaporación selectiva del ciclo amoníaco- agua contendido en los purines de cerdo como materia prima, en un reactor al vacío, a temperatura constante en un proceso por lotes o en continuo.
2) La difusión y concentración del NH3 (gas) obtenido en borboteadores con solución acuosa sin adición de químicos para obtener (OH-NH4+) hidróxido de amonio, para su uso posterior como biofertilizante. El equipo realiza en su última etapa un tratamiento de la fracción líquida de los purines como agente activo en la obtención de nitrógeno en forma de amoniaco orgánico (Bio amoníaco). Este tratamiento es la causa de que sus efluentes, sólidos totales suspendidos, nitrato y nitrógeno orgánico, fósforo, potasio, y (como resultado), estén dentro de los parámetros normales para fertirriego en DBO (demanda biológica de oxígeno) y DQO (demanda química de oxígeno), conductividad eléctrica, pH, etc.
El procedimiento de recuperación/ obtención de nitrógeno en forma de amoniaco, a partir de material orgánico de desecho con fase líquida, comprende:
Una separación de fases en una separadora, con decantación previa si se considera necesario. Puede ser una centrifugadora de flujo continuo.
La derivación de la fase líquida a un reactor de evaporación, con un espacio libre superior donde se crea una baja presión, y un agitador que genera un régimen turbulento.
La derivación del amoniaco evaporado del espacio libre, que es obligado a pasar por una trampa de agua para capturar los vapores de agua que se pueden liberar de la fracción húmeda de los purines.
La introducción del amoniaco deshumidificado en un borboteador de gas que contiene agua destilada desmineralizada a baja temperatura (por ejemplo, a 4aC) para la producción de hidróxido de amonio disuelto.
Preferiblemente, la fase sólida se deriva de la separadora (y de cualquier otra hipotética etapa similar) a una estación de compostaje.
Es posible realizar la adición de una base en el reactor, o modificar su temperatura para que sea de entre 45 y 55 °C. Por su parte, se recomienda que el borboteador de gas esté refrigerado para mejorar la solubilidad del amoníaco en el agua.
La depuración de la fase líquida tras la evaporación del amoniaco en el reactor se realiza preferentemente, de forma consecutiva, mediante:
Un filtro físico (centrifuga rotativa de flujo continuo, por ejemplo) preferiblemente de malla variable, donde la fracción sólida separada se composía.
Un ozonificador.
Un equipo de electrocoagulación con electrodos de aleación de plata y cobre.
Un filtro de carbón activado y zeolita. Un filtro UV (Ultravioleta).
Toda la torta que se retira durante los procesos de filtrado y recirculación se llevan a la estación de compostaje.
Un dispositivo de osmosis inversa, donde la torta que se retira de la membrana también se lleva a la estación de compostaje.
La invención también se refiere al equipo de recuperación/ obtención de nitrógeno en forma de amoniaco (Bio Amoníaco) que comprende todos estos aparatos.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, de una hoja de planos en la que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1 y única.- Muestra una vista esquemática del equipo de recuperación/ obtención de nitrógenos en forma de amoníaco en un primer ejemplo de realización del objeto de la invención, apreciándose las partes y elementos que comprende y su disposición. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
El procedimiento de la figura 1 es un procedimiento por lotes que comienza con un depósito (1) de purines, generalmente una balsa de decantación/ separación. Si proviene de otro tipo de depósito puede ser necesario una decantación (2), en una decantadora, para eliminar parte de los sólidos.
A continuación, se introduce en una separadora (3) de fases, para derivar la fase sólida (4) a una estación de compostaje (5), y la fase líquida (6) al reactor (7) cilindrico. La separadora (3) preferida es una centrifuga de tornillo de flujo continuo y malla variable, como puede ser una rotativa de rascador o tornillo con mallas de paso variable (preferiblemente 50, 100, 200, 300 y 500 mieras). Según la decantación original, se puede reducir esta fase sólida (4) al 10% de los purines introducidos.
En el reactor (7) se introduce una cantidad de fase liquida (6), permitiendo un espacio libre (71 ) superior para favorecer la evaporación. Una proporción preferida deja un 25% del volumen del reactor (7) como espacio libre (71 ). En el reactor (7) se produce un calentamiento hasta unos 45-55 °C (dependiendo del pH del purín, para optimizar la relación agua-amoniaco en la fase gaseosa) mediante un calefactor (72), como pueden ser un serpentín de agua caliente y también se realiza una bajada de la presión en el interior del reactor (7). En ambos casos para seguir favoreciendo la evaporación.
En el reactor (7) se produce una circulación forzada por medio de un agitador (73) (hélice de impulsión por ejemplo a 150 r.p.m.) que preferiblemente lleva el purín a un régimen turbulento, aumentando la superficie de evaporación del purín. Este régimen turbulento ayuda a la evaporación facilitando la ruptura del puente de hidrógeno entre las moléculas del amoníaco presentes en el purín.
Si se desea, se puede modificar el pH añadiendo una base, como sosa cáustica. La cantidad dependerá del pH de partida (caracterización del purín) y del pH deseado, que preferiblemente será de 1 1.
Todos los factores descritos provocan que en el interior del de la invención el gas NHs se evapore de la fase líquida de! purín situándose en el espacio libre (71 ) debido a su diferencia de densidad con el resto del purín líquido y con el resto de los gases evaporados.
El gas NHs y el vapor de agua se retiran mediante una bomba de vacío y son llevados a una trampa de agua (8) para separar el vapor de agua. Si se desea, se puede asistir con una entrada de aire atmosférico, que ayuda a arrastrar los gases. Por ejemplo, como micro-burbujas (diámetro inferior a un milímetro) de aire en el interior del reactor provocando una aireación difusa en vacío.
Esta trampa de agua (8) nos permite visualizar si estamos evaporando adecuadamente el Nhb. Cuando la trampa de agua (8) acumula agua en su interior, indica que nos estamos desviando de la curva de evaporación agua-amoníaco y perdemos eficiencia térmica (estamos sobrecalentando la fase líquida (6)). Además, la trampa de agua (8) permite no arrastrar impurezas que conlleva el vapor de agua de los purines
El gas NH3 deshumidificado se introduce en un borboteador de gas (9) igualmente con un líquido en la parte inferior (agua destilada y desmineralizada inicialmente) y espacio vacío superior. Las burbujas producen una gran superficie de contacto entre el agua refrigerada y el amoniaco, aumentando la disolución y acelerando la reacción para hacer hidróxido de amonio. NHs + H20 <-> NH4 + + OH"→ NH4OH
En este caso, se prefiere que el borboteador de gas (9) esté refrigerado, por ejemplo a 4 °C obteniéndose una solución no saturada enfriada. De esta forma se puede trabajar con el amoniaco en condiciones de seguridad. El purín que permanece en el reactor (7) tras la evaporación del amoniaco se debe tratar, para ¡o que pasa primero por un filtro físico (10) y por un ozonificador (1 1 ). El ozonificador (1 1 ) inyecta ese gas O3 por medio de un Venturi hacia el flujo de purín a tratar, y se produce una remanencia en un depósito para dar tiempo a su actuación. ES ozono produce una importante oxidación y desinfectante de la fase líquida (6) del purín y de los contaminantes oxidables y microorganismos. La capacidad del ozono para producir "bromo libre" por la oxidación del ion bromuro es una ventaja del ozono en tratamiento de los purines. Con este tratamiento de ozono, se tiene la capacidad de convertir materiales orgánicos refractarios en materiales biodegradables.
Tras el ozonificador (1 1), preferiblemente con recirculación la fase líquida se traslada a un equipo de electrocoagulación (12), también preferiblemente con recirculación. Este equipo de electrocoagulación (12) comprende un ánodo y un cátodo de sacrificio, por ejemplo de aleaciones de cobre y plata, para ionizar la fase líquida (6) y terminar la desinfección. La utilización de los ionizadores de plata/cobre permite controlar el ámbito microbiológico y prolongar la duración de la fase líquida (6) del purín en espacios confinados. El voltaje necesario es reducido (inferior a 12 V) y los electrodos se pueden situar a cada lado del flujo del purín.
Al efecto desinfectante de la electrocoagulación se suma la presencia de iones de cobre en el flujo, que también tienen efecto desinfectante. La utilización de la ionización cobre- plata en la invención logra una desinfección orgánica y mata la bacteria legionela (por ejemplo). Esta etapa de filtrado- desinfección no elimina materia orgánica como restos de tejido, pelos, etc. de la fase líquida (6) del purín. Esta fase líquida (6) puede tener un pH básico, si se usó sosa cáustica en el reactor (7), pero en todo caso es recomendable que así sea. 9
11
Tras el equipo de electrocoagulación (12) se introduce la fase líquida (6) en un filtro de carbón activado (13) y zeolita de granulometría variable. El purín es obligado a recircular por e! filtro de carbón activado (13) y zeolita que, debido a sus propiedades de absorción, retiene el olor, el color y los restos de amoníaco del Purín. El filtro de carbón activado (13) y zeolita proporciona la porosidad y superficie especifica combinada para lograr un intercambio catiónico natural realizando además una importante filtración, eliminando las partículas contaminantes hasta 10 pm y absorbiendo los cationes en solución como Fe, Mn, Cu, Zn, y metales pesados como Pb y As.
Como penúltimo paso, la fase líquida (6) remanente del purín atraviesa un filtro UV (14) desinfectante.
Finalmente, y para lograr un agua resultante con calidad suficiente según la normativa, la fase líquida (6) se trata en un dispositivo de osmosis inversa (15). Preferiblemente con algún otro filtro físico, opcional, previo. El dispositivo de osmosis inversa (15) elimina también cualquier resto de sosa cáustica. Si se prefiere, se puede neutralizar previamente añadiendo algún tipo de ácido para formar sales.
El material retirado de la fase líquida (6) en el filtro físico (10) los dispositivos de osmosis inversa (15), ozonificador (1 ), equipo de electrocoagulación, filtro de carbón activado (13) y cualquier válvula de purga se remite a la estación de compostaje (5).
El procedimiento permite la "evaporación selectiva" del NH3 y del vapor de agua producidos en el reactor (5) cerrado debido a la variación en la superficie de evaporación- los platos - (figura 2 b), la temperatura, el pH, la circulación del purín, el vacío y la difusión por arrastre de aire atmosférico. La "evaporación selectiva" se basa en el equilibrio de disociación NH3 / NH4 + y el correspondiente valor de pH y temperatura. AI tener un pH de alrededor de 1 1 en los purines, el equilibrio se desplaza hacia Nhb. Esta característica permite la selección del evaporado con concentración ajustable de (OH-Nb +) y agua, variando el tiempo y otros parámetros durante el proceso. Como el purín es una solución con componentes de diferente volatilidad, cuando parte de ellos se evaporan, su composición y su temperatura de saturación cambian.
Para optimizar la evaporación del (NH3) realizamos vacío, disminuimos la presión parcial. La evaporación selectiva del purín evapora un porcentaje elevado de los componentes más volátiles: Nhb, SV, vapor de agua, CO2 y CH4. Por lo tanto, conforme continúa evaporando la solución, el líquido remanente tiene menor concentración de estos componentes y mayor concentración de los menos volátiles. El cambio de composición del purín durante el proceso incrementa su viscosidad, lo que a su vez dificulta la evaporación del Nhb. La invención busca mantener el punto de burbuja del Nhb en la solución (el purín); para ello incrementa la superficie de evaporación mediante un agitador (73) de platos paralelos contra-rotatorios, entre los cuales discurre el purín con un flujo turbulento. Además, permite el ingreso de micro burbujas de aire en el interior del reactor provocando una aireación difusa en vacío, y permitiendo que las mismas arrastren hacia la interface líquido- gas el nitrógeno amoniacal (Nhb), el vapor de agua, los compuestos orgánicos volátiles (COV), los trihalometanos, (THM), los sulfuras de hidrógeno (H2S) y el dióxido de carbono (CO2).

Claims

E I V I N D I C A C I O N E S
1. - Procedimiento para obtención/recuperación de nitrógeno en forma de amoniaco a partir de biomasas animales y vegetales con fase líquida, que comprende:
una separación de fases en una separadora (3);
la derivación de la fase líquida (6) a un reactor (7) de evaporación, con un espacio libre (71) donde se crea una baja presión, y un agitador (73) que genera un régimen turbulento produciendo la evaporación del amoniaco y agua;
la derivación del amoniaco y del agua evaporados en e! reactor (7) del espacio libre (71) a una trampa de agua (8) de captura de la humedad;
la introducción del amoniaco deshumedecido en un borboteador de gas (9) refrigerado con agua destilada y desmineralizada a baja temperatura para la producción de hidróxido de amonio.
2. - Procedimiento, según la reivindicación 1 , cuya fase sólida (4) se deriva de la separadora (3) a una estación de compostaje (5).
3. - Procedimiento, según la reivindicación 1 , que comprende una decantación (2) previa.
4. - Procedimiento, según la reivindicación 1 , que comprende la adición de una base en el reactor (7) si el pH es inferior a 7.
5. - Procedimiento, según la reivindicación 1 , donde la temperatura en el reactor (7) es de entre 45 y 55 °C.
6.- Procedimiento, según la reivindicación 1 , cuya fase liquida (6) que se retira del reactor (7) tras la evaporación del amoniaco es tratada consecutivamente en:
un filtro físico (10);
un ozonificador (1 1 );
un equipo de electrocoagulación (12) con electrodos de aleación de plata y cobre;
un filtro de carbón activado (13) y zeolita;
un filtro UV (14)
y un dispositivo de osmosis inversa (15);
retirándose cualquier material a la estación de compostaje.
7. - Procedimiento, según la reivindicación 1 , donde se introduce aire atmosférico en el reactor (7) para arrastre de los gases evaporados, preferiblemente como micro-burbujas.
8. - Equipo para la obtención/recuperación de nitrógeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales con fase líquida, que comprende:
una separadora (3) de fases; cuya derivación de la fase líquida (6) está comunicada con
un reactor (7) de evaporación, con baja presión y un agitador (73) para generar un régimen turbulento; y que posee a derivación del amoniaco húmedo evaporado a
una trampa de agua (8) de captura de la humedad; conectado a un borboteador de gas (9) refrigerado para la producción de hidróxido de amonio.
9. - Equipo, según la reivindicación 8, que comprende una decantadora previa.
10.- Equipo, según la reivindicación 8, cuyo reactor (7) posee una salida de (a fase liquida (6) conectada consecutivamente a:
un fiitro físico (10);
un ozonificador (1 1 );
un equipo de electrocoaguÍación (12) con electrodos de aleación de plata y cobre;
un filtro de carbón activado (13) y zeolita;
un filtro UV (14);
y un dispositivo de osmosis inversa (15).
retirándose cualquier material a la estación de compostaje
1 1 .- Equipo, según la reivindicación 8, cuyo agitador (73) es de platos paralelos contra-rotatorios.
PCT/ES2018/070579 2017-08-29 2018-08-29 Procedimiento y equipo y para la obtención/ recuperación de nitrogeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales. WO2019043280A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201731051 2017-08-29
ES201731051A ES2676622A1 (es) 2017-08-29 2017-08-29 Procedimiento y equipo y para la obtención/recuperación de nitrógeno en forma de amoniaco (bio amoniaco) a partir de biomasas animales y vegetales

Publications (1)

Publication Number Publication Date
WO2019043280A1 true WO2019043280A1 (es) 2019-03-07

Family

ID=62875383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070579 WO2019043280A1 (es) 2017-08-29 2018-08-29 Procedimiento y equipo y para la obtención/ recuperación de nitrogeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales.

Country Status (2)

Country Link
ES (1) ES2676622A1 (es)
WO (1) WO2019043280A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259116A1 (en) * 2021-06-07 2022-12-15 United Arab Emirates University A method for ammonia recovery from contaminated water including solvay effluent and aqueous solutions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964840B (zh) * 2019-04-02 2021-04-13 青岛农业大学 一种宠物犬用饮水的循环控制方法以及饮水器
CN115259502A (zh) * 2022-08-26 2022-11-01 江苏连昌环保设备有限公司 粪水处理系统及其处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2194583A1 (es) * 2001-05-22 2003-11-16 Ros Roca Sa Procedimiento para el tratamiento del efluente procedente del tratamiento biologico de un residuo liquido.
ES2199092A1 (es) * 2003-09-24 2004-02-01 Sener Grupo De Ingenieria Sa Procedimiento para reducir la carga contaminante de los purines.
ES2223295A1 (es) * 2003-08-08 2005-02-16 Servicios De Gestion Tecnologica, S.A. Procedimiento para la depuracion de purines.
WO2010136046A1 (en) * 2009-05-28 2010-12-02 N.E.S. Aps Method and system for separation of animal slurry
US20170073261A1 (en) * 2011-12-21 2017-03-16 Anaergia Inc. Organics and Nutrient Recovery from Anaerobic Digester Residues

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2194583A1 (es) * 2001-05-22 2003-11-16 Ros Roca Sa Procedimiento para el tratamiento del efluente procedente del tratamiento biologico de un residuo liquido.
ES2223295A1 (es) * 2003-08-08 2005-02-16 Servicios De Gestion Tecnologica, S.A. Procedimiento para la depuracion de purines.
ES2199092A1 (es) * 2003-09-24 2004-02-01 Sener Grupo De Ingenieria Sa Procedimiento para reducir la carga contaminante de los purines.
WO2010136046A1 (en) * 2009-05-28 2010-12-02 N.E.S. Aps Method and system for separation of animal slurry
US20170073261A1 (en) * 2011-12-21 2017-03-16 Anaergia Inc. Organics and Nutrient Recovery from Anaerobic Digester Residues

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Buenas practicas ganaderas para reducir la carga de patogenos en purines", GOBIERNO REGIONAL DE LOS LAGOS, pages 32 - 38, Retrieved from the Internet <URL:http://www2.inia.cl/medios/bibtioteca/boletines/NR40316.pdf> [retrieved on 20180220] *
"Evaluation de tecnicas de Gestion de deyecciones en ganaderia. Ministerio de agricultura y Medio ambiente", GOBIERNO DE ESPAÑA, 2015, pages 72,73, Retrieved from the Internet <URL:http s://www.map a.gob.es/gl/ganaderia /temaq ganaderia-y-medio ambiente/evaluaciondetecnicasdegestiondedeveccionesganaderas _tem37- 108245.pdf> [retrieved on 20190121] *
CAMPOS, E. ET AL.: "Guía de los tratamientos de las deyecciones ganaderas", GENERALITAT DE CATALUNYA, 31 December 2004 (2004-12-31), pages 20 - 29, 50-55, Retrieved from the Internet <URL:http://www20.gencat.cat/docs/arc/Home/Ambics%20dactuacio/Ouin%20residu /Excedents%20de%20dejeccions%20ramaderes/Guia%20de%20tractament.s% 20de% 203es% 2 Qdeieccions%20ramaderes/ g uia _dejeccions_ es.pdf> [retrieved on 20190121] *
LIAO P H ET AL.: "Removal of nitrogen from swine manure wastewaters by ammonia stripping", BIORESOURCE TECHNOLOGY 1995, vol. 54, no. 1, 30 November 1994 (1994-11-30), pages 17 - 20, XP055580929 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259116A1 (en) * 2021-06-07 2022-12-15 United Arab Emirates University A method for ammonia recovery from contaminated water including solvay effluent and aqueous solutions

Also Published As

Publication number Publication date
ES2676622A1 (es) 2018-07-23

Similar Documents

Publication Publication Date Title
JP5295485B2 (ja) 液中プラズマ型被処理液浄化方法及び液中プラズマ型被処理液浄化装置
DK2640668T3 (en) A physico-chemical method for removing nitrogen species from a recirculated aquaculture system
WO2019043280A1 (es) Procedimiento y equipo y para la obtención/ recuperación de nitrogeno en forma de amoniaco (bio amoníaco) a partir de biomasas animales y vegetales.
WO2016115255A1 (en) Process to recover ammonium bicarbonate from wastewater
KR101355178B1 (ko) 음폐수 처리용 및 녹적조 및/또는 악취 제거용 수처리제
DE102014207842B3 (de) Kombinierte Rückgewinnung von Phosphor, Kalium und Stickstoff aus wässrigen Reststoffen
WO2010072851A1 (es) Procedimiento de tratamiento y depuración integral de efluentes que contienen materia orgánica y/o inorgánica
WO2011026910A1 (de) Kontinuierliche reinigung von mit wassertieren und/oder wasserpflanzen besetztem hälterungswasser
CN107683261A (zh) 液体处理系统和方法
ES2951693T3 (es) Instalación de producción multitrófica desacoplada con unidad de biorreactor
JP2005518933A (ja) オゾンを用いた付着藻類ろ過用前処理兼後処理システム及び方法
ES2473440B9 (es) Procedimiento de tratamiento de purines.
ES2643188T3 (es) Método para el tratamiento y/o pretratamiento de estiércol líquido o rechazo de plantas de biogás para la eliminación de sustancias nocivas, en particular nitrógeno, fósforo y moléculas odoríferas
KR101938121B1 (ko) 차아염소산 나트륨을 이용한 돈사 내,외부 및 주변 악취 제거겸 살균소독 시스템
Van Os Comparison of some chemical and non-chemical treatments to disinfect a recirculating nutrient solution
BRPI0704292B1 (pt) sistema natural de tratamento de efluentes
Gorre et al. Removal of ammoniacal nitrogen by using albite, activated carbon and resin
KR101355177B1 (ko) 녹·적조 및/또는 악취 제거용 수처리제
ES2651910T3 (es) Procedimiento de recuperación y de reciclaje de amoniaco
RU2500624C2 (ru) Способ обезвреживания морской балластной воды
WO2019071279A1 (en) SYSTEM AND METHOD FOR TREATING WATER
US20120260707A1 (en) Using Nitrogen Containing Fertilizers Recovered from Contaminated Water for Feeding Plants and Algae
CN101481192A (zh) 一种微污染水源水的净化工艺及设备
Thakare et al. Purification of Water by using Cow Dung Ash
CN202400924U (zh) 一种饮用水自制机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850385

Country of ref document: EP

Kind code of ref document: A1