WO2019042280A1 - 续流管的控制方法、装置及开关电源装置 - Google Patents

续流管的控制方法、装置及开关电源装置 Download PDF

Info

Publication number
WO2019042280A1
WO2019042280A1 PCT/CN2018/102736 CN2018102736W WO2019042280A1 WO 2019042280 A1 WO2019042280 A1 WO 2019042280A1 CN 2018102736 W CN2018102736 W CN 2018102736W WO 2019042280 A1 WO2019042280 A1 WO 2019042280A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse width
width value
power supply
switching power
tube
Prior art date
Application number
PCT/CN2018/102736
Other languages
English (en)
French (fr)
Inventor
姜乘风
梁宏风
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18849797.8A priority Critical patent/EP3667881B1/en
Publication of WO2019042280A1 publication Critical patent/WO2019042280A1/zh
Priority to US16/805,092 priority patent/US10917014B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Definitions

  • the present application relates to the field of power supply technologies, and in particular, to a method, a device, and a switching power supply device for controlling a freewheeling tube.
  • the energy in the switching power supply device needs to be transmitted from the input terminal to the output terminal. If the energy in the switching power supply device is transmitted from the output terminal to the input terminal, this will bring certain risks to the circuit system including the switching power supply device. . Therefore, how to control the energy in the switching power supply device to be unidirectionally transmitted from the input terminal to the output terminal is an urgent problem to be solved.
  • the switching power supply device includes: a control device and a power device; wherein the power device includes an inductor, a main control tube and a corresponding freewheeling tube; and the control device is configured to control the conduction of the main control tube in the power device And the continuity of the freewheeling tube.
  • the control device is based on the principle that the pulse width of the main control tube and the pulse width of the freewheeling tube are complementary (ie, the sum of the pulse width value of the main control tube and the pulse width value of the freewheeling tube is equal to The switching period of the switching power supply unit) controls the conduction of the freewheeling tube.
  • DCM Discontinuous Current Mode
  • the control device still controls the conduction of the freewheeling tube according to the principle that the pulse width of the main control tube and the pulse width of the freewheeling tube are complementary, the inductor current in the switching power supply device may be negative, that is, in the switching power supply device. Energy flows from the output to the input, which affects the reliability of the circuitry.
  • the embodiment of the present invention provides a method, a device, and a switching power supply device for controlling a freewheeling tube.
  • the switching of the freewheeling tube can be flexibly controlled by using different pulse width values according to different operating scenarios of the switching power supply device to implement the switch.
  • the energy in the power supply unit is always transmitted unidirectionally from the input to the output, thus ensuring the reliability of the circuit system.
  • an embodiment of the present application provides a method for controlling a freewheeling tube, including:
  • the first pulse width value of the freewheeling tube in the switching power supply device obtained by the inductor current law and the third pulse width of the main control tube in the switching power supply device are determined by the control method of the freewheeling tube provided by the first aspect Whether the sum of the values satisfies the first preset condition, and the judgment result is obtained; further, determining, according to the determination result, the freewheeling tube according to the first pulse width value or the second pulse width value of the freewheeling tube acquired according to the volt-second balance law Conduction of the switching power supply device to control the conduction of the freewheeling tube according to the first pulse width value in the CCM operation scenario and/or the switching power supply device controls the freewheeling tube according to the second pulse width value in the DCM operation scenario through.
  • the determining, according to the determining result, that the conduction of the freewheeling tube is controlled according to the first pulse width value or the second pulse width value comprises:
  • the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition, determining that the sum of the second pulse width value and the third pulse width value does not satisfy Whether the number of times of the second preset condition is less than a preset threshold; if the number of times the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition is less than the preset threshold, And controlling conduction of the freewheeling tube according to the second pulse width value.
  • the method further includes:
  • the determining, according to the determining result, that the conduction of the freewheeling tube is controlled according to the first pulse width value or the second pulse width value further includes:
  • the conducting of the freewheeling tube is controlled according to the first pulse width value, including:
  • the pulse width modulation PWM generating device in the switching power supply device to generate a first PWM wave according to the first pulse width value; wherein The first PWM wave is used to control the freewheeling tube.
  • the method further includes:
  • controlling the PWM generating device to generate a second PWM wave according to the preset pulse width value; wherein the second PWM wave is used to control the Describe the free flow tube.
  • the conducting of the freewheeling tube is controlled according to the second pulse width value, including:
  • the obtaining, according to an inductor current law, a first pulse width value of a freewheeling tube in a switching power supply device includes:
  • the first pulse width value is determined according to the inductor current law according to an inductance value of an inductance in the switching power supply device, a current of the inductor, and an output voltage of the switching power supply device.
  • the acquiring a second pulse width value of the freewheeling tube according to a volt-second balance law includes:
  • the method for controlling the freewheeling tube determines whether the sum of the first pulse width value of the freewheeling tube and the third pulse width value of the main control tube satisfies the first preset condition and determines the second pulse width value. Whether the sum of the third pulse width value satisfies the second preset condition, and/or the manner of determining whether the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition is less than a preset threshold value, Determining the operation scenario of the switching power supply device, and then flexibly adopting different pulse width values to control the conduction of the freewheeling tube according to different operating scenarios of the switching power supply device (for example, the switching power supply device is in accordance with the first pulse in the CCM operating scenario)
  • the wide value controls the conduction of the freewheeling tube and/or the switching power supply device controls the conduction of the freewheeling tube according to the second pulse width value in the DCM operation scenario, so that the energy in the switching power supply device is always transmitted unidirectionally
  • control device for a freewheeling tube including:
  • Obtaining a module configured to obtain a first pulse width value of the freewheeling tube in the switching power supply device according to an inductor current law, and obtain a second pulse width value of the freewheeling tube according to a volt-second balance law;
  • a determining module configured to determine whether a sum of the first pulse width value and a third pulse width value of the main control tube in the switching power supply device meets a first preset condition, and obtain a determination result
  • a control module configured to determine, according to the determination result, that the conduction of the freewheeling tube is controlled according to the first pulse width value or the second pulse width value.
  • control module is specifically configured to:
  • control module is further configured to:
  • control module is further configured to:
  • control module is specifically configured to:
  • the pulse width modulation PWM generating device in the switching power supply device to generate a first PWM wave according to the first pulse width value; wherein The first PWM wave is used to control the freewheeling tube.
  • control module is further configured to:
  • controlling the PWM generating device to generate a second PWM wave according to the preset pulse width value; wherein the second PWM wave is used to control the Describe the free flow tube.
  • control module is specifically configured to:
  • the acquiring module includes:
  • the first determining unit is configured to determine the first pulse width value according to the inductor current law according to an inductance value of an inductance in the switching power supply device, a current of the inductor, and an output voltage of the switching power supply device.
  • the acquiring module includes:
  • a second determining unit configured to determine the second pulse width value according to the volt-second balance law according to an input voltage of the switching power supply device, an output voltage, and a third pulse width value of the main control tube.
  • the embodiment of the present application provides a switching power supply device, including:
  • a control device for a freewheeling tube as described in any of the possible implementations of the second aspect above.
  • an embodiment of the present application provides a switching power supply device, including: a memory and a processor;
  • the memory is used to store program instructions; the processor is configured to invoke program instructions in the memory to perform the method described in any of the possible implementations of the first aspect.
  • a fifth aspect of the present application provides a switching power supply device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • a sixth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a seventh aspect of the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • FIG. 1A is a schematic diagram 1 of a circuit structure of a power device in a switching power supply device according to an embodiment of the present application;
  • FIG. 1B is a schematic diagram of a circuit structure of a power device in a switching power supply device according to an embodiment of the present application.
  • FIG. 1C is a third schematic structural diagram of a circuit of a power device in a switching power supply device according to an embodiment of the present disclosure
  • 1D is a fourth schematic structural diagram of a circuit of a power device in a switching power supply device according to an embodiment of the present disclosure
  • 1E is a schematic diagram of waveforms of inductor currents in different operating modes according to an embodiment of the present application
  • FIG. 1F is a schematic diagram of a series connection scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for controlling a freewheeling tube according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for controlling a freewheeling tube according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a control device for a freewheeling tube according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a switching power supply device according to another embodiment of the present application.
  • FIG. 1A is a schematic diagram of a circuit structure of a power device in a switching power supply device according to an embodiment of the present disclosure.
  • FIG. 1B is a schematic diagram of a circuit structure of a power device in a switching power supply device according to an embodiment of the present disclosure
  • FIG. 1D is a schematic diagram showing a circuit structure of a power device in a switching power supply device according to an embodiment of the present disclosure.
  • the power device includes: a buck-boost circuit as an example; of course, the power device may further include other types of circuits, which are used in the embodiment of the present application. There are no restrictions. As shown in FIG.
  • the power device includes: an input capacitor C1, a main control tube Q1, a freewheeling tube Q2, an inductor L, a main control tube Q3, a freewheeling tube Q4, and an output capacitor C2; alternatively, the inductor L can be a single Inductance, or the coupled inductance of multiple inductors.
  • the main control tube Q1, the freewheeling tube Q2, the main control tube Q3 and/or the freewheeling tube Q4 are controllable tubes, for example: metal oxide-semiconductor field effect transistor (MOS) or insulation. Insulated Gate Bipolar Transistor (IGBT), etc.
  • the main control tube Q1, the freewheeling tube Q2, the main control tube Q3, and the control pole of the freewheeling tube Q4 (for example, if a MOS tube is used, the control electrode refers to the gate; if the IGBT is used, the control electrode is The gates are respectively connected to corresponding Pulse Width Modulation (PWM) generating devices.
  • PWM Pulse Width Modulation
  • the circuit structure shown in FIG. 1A can adopt the circuit structure shown in FIG. 1D. Of course, it can also be implemented by using other existing or future circuit structures, which is not limited in the embodiment of the present application.
  • FIG. 1A or FIG. 1D only shows a simplified design with the power device including a buck-boost circuit as an example.
  • the power device may include other circuit components, which is not limited in the embodiment of the present application.
  • the power device will be in a buck mode or a boost mode at a certain time.
  • the control device of the switching power supply device is used to control the conduction or disconnection of the main control tube Q1 and the freewheeling tube Q2.
  • the control device ie, the control device of the main control tube
  • controls the PWM generation device corresponding to the main control tube Q1 ie, the PWM generation device connected to the control electrode of the main control tube Q1 to generate a corresponding PWM wave.
  • the main control tube Q1 is turned on or off; optionally, the control device (ie, the control device corresponding to the freewheel tube according to the present application) controls the PWM generating device corresponding to the freewheeling tube Q2 (ie, with the freewheeling tube Q2)
  • the PWM connection device of the gate connection generates a corresponding PWM wave to control the on or off of the freewheeling tube Q2.
  • the control device of the switching power supply device is used to control the conduction or disconnection of the main control tube Q3 and the freewheeling tube Q4.
  • the control device ie, the control device of the main control tube
  • controls the PWM generating device corresponding to the main control tube Q3 ie, the PWM generating device connected to the control electrode of the main control tube Q3 to generate a corresponding PWM wave.
  • the main control tube Q3 is turned on or off; optionally, the control device (ie, the control device corresponding to the freewheel tube according to the present application) controls the PWM generating device corresponding to the freewheeling tube Q4 (ie, with the freewheeling tube Q4)
  • the PWM connection device of the gate connection generates a corresponding PWM wave to control the on or off of the freewheeling tube Q4.
  • control device generates a corresponding PWM wave by controlling a PWM generating device corresponding to the main control tube (ie, a PWM generating device connected to the control electrode of the main control tube) to control the specific state of the main control tube being turned on or off.
  • a PWM generating device corresponding to the main control tube ie, a PWM generating device connected to the control electrode of the main control tube
  • the buck-boost circuit can also be implemented by a morphing circuit or other circuit as shown in FIG. 1A, which is not limited in the embodiment of the present application.
  • the PWM generating device involved in the present application may be integrated in the corresponding control device or independent of the corresponding control device (optionally, the control device includes: a control device of the main control tube or a control device of the freewheeling tube), which is implemented by the present application. This example does not limit this.
  • the switching power supply device related to the present application can be widely applied to industrial automation control, military equipment, scientific research equipment, light emitting diode (LED) lighting, industrial control equipment, communication equipment, electric equipment, instrumentation, medical equipment, semiconductor refrigeration system. Heat, air purifiers, electronic refrigerators, liquid crystal displays, LED lamps, communication equipment, audio-visual products, security monitoring, LED light bags, computer cases, digital products and instruments (ie are widely used in almost all electronic devices).
  • LED light emitting diode
  • the continuous current mode (CCM) involved in the embodiment of the present application means that the inductor current never goes to 0 in one switching cycle of the switching power supply device, as shown in FIG. 1E (FIG. 1E is implemented in the present application).
  • Example shows the waveform of the inductor current in different operating modes).
  • the switching period T of the switching power supply device is the pulse width value Ton of the main control tube in the switching power supply device and the pulse width value Toff of the freewheeling tube.
  • the Boundary Current Mode (BCM) involved in the embodiment of the present application means that the inductor current is monitored by the control device (ie, the control device of the main control tube), and once the inductor current is equal to 0, the master control is immediately controlled.
  • the tube is turned on as shown in Figure 1E.
  • the switching period T of the switching power supply device is the pulse width value Ton of the main control tube in the switching power supply device and the pulse width value Toff of the freewheeling tube.
  • the Discontinuous Current Mode (DCM) involved in the embodiment of the present application means that the inductor current always reaches 0 during the switching period of the switching power supply device (as shown in FIG. 1E, there is a DCM dead time Td). ).
  • the switching period T of the switching power supply device is the pulse width value Ton of the main control tube in the switching power supply device and the pulse width value Toff + DCM dead time Td of the freewheeling tube.
  • the ordinate in Figure 1E is the inductor current in amps; the abscissa is the time in seconds.
  • the deadband time of the falling edge of the main control tube and the dead time of the rising edge of the main control tube are not shown in FIG. 1E in the embodiment of the present application (normally, the dead time and main control of the falling edge of the main control tube)
  • the dead time of the rising edge of the tube is a small preset value, which is almost negligible.
  • the control device of the freewheeling tube can obtain the switching period T of the switching power supply device, the pulse width value Ton of the main control tube in the switching power supply device, the inductance value of the inductor, the inductor current, and the input of the switching power supply device.
  • the parameters such as the voltage and the output voltage, and the manner in which the parameters are obtained may be used in the existing or future acquisition manners.
  • the pulse width of the freewheeling tube refers to a pulse width corresponding to a PWM wave generated by a pulse width modulation (PWM) generating device in the switching power supply device for controlling the freewheeling tube.
  • PWM pulse width modulation
  • the pulse width of the main control tube involved in the embodiment of the present application refers to a pulse width corresponding to a PWM wave generated by the PWM generating device in the switching power supply device for controlling the main control tube.
  • FIG. 1F is a schematic diagram of a series connection scenario provided by an embodiment of the present application
  • the power supply device may be a photovoltaic component, and of course, other types of power supply devices, which are not limited in this embodiment.
  • the output voltage of the switching power supply device is quickly transferred to the output of other switching power supply devices, which may cause the output voltage of other switching power supply devices to rise rapidly to an uncontrollable state. If the energy in the other switching power supply device is output from the output terminal at this time Passing to the input will inevitably damage the other switching power supply unit. Therefore, how to control the energy in the switching power supply device to be unidirectionally transmitted from the input terminal to the output terminal is an urgent problem to be solved.
  • the control device ie, the control device of the freewheeling tube
  • the control device of the freewheeling tube is based on the principle that the pulse width of the main control tube and the pulse width of the freewheeling tube are complementary (ie, the pulse width value of the main control tube and the continuation)
  • the sum of the pulse width values of the flow tubes is equal to the switching period of the switching power supply unit) to control the conduction of the freewheeling tubes.
  • DCM the sum of the pulse width value of the main control tube (such as Ton in FIG. 1E) and the pulse width value of the freewheel tube (such as Toff in FIG. 1E). It is smaller than the switching period of the switching power supply device (T in Figure 1E).
  • the inductor current in the switching power supply device may be negative, that is, in the switching power supply device. Energy flows from the output to the input, which affects the reliability of the circuitry.
  • the control method and device for the freewheeling tube and the switching power supply device can flexibly control the conduction of the freewheeling tube by using different pulse width values according to different operating scenarios of the switching power supply device (for example, a switching power supply)
  • the device controls the conduction of the freewheeling tube according to the first pulse width value and/or the switching power supply device controls the conduction of the freewheeling tube according to the second pulse width value in the DCM operation scenario in the CCM operation scenario to implement the switching power supply device.
  • the energy in the medium is always transmitted from the input terminal to the output terminal (ie, the inductor current in the switching power supply device does not appear negative), thus ensuring the reliability of the circuit system.
  • FIG. 2 is a schematic flow chart of a method for controlling a freewheeling tube according to an embodiment of the present application.
  • the execution body of this embodiment may be a control device of a freewheeling tube disposed in the switching power supply device, and the device may be implemented by software and/or hardware.
  • the method in this embodiment of the present application may include:
  • Step S201 Obtain a first pulse width value of the freewheeling tube in the switching power supply device according to the law of the inductor current, and obtain a second pulse width value of the freewheeling tube according to the volt-second balance law.
  • the control device of the freewheeling tube acquires the freewheeling tube in the switching power supply device according to the law of the inductor current (for example, when the buck-boost circuit is in the buck mode, as shown in FIG. 1A and/or FIG. 1B)
  • the freewheeling tube Q2 is shown, or the first pulse width value of the freewheeling tube Q4) as shown in FIG. 1A and/or FIG. 1C when the buck-boost circuit is in the boost mode and according to the volt-second equilibrium law Obtain the second pulse width value of the freewheel.
  • the control device of the freewheeling tube acquires the first pulse width value of the freewheeling tube in the corresponding power device according to the law of the inductor current and the second method of obtaining the freewheeling tube according to the law of volt-second balance
  • the value of the pulse width (for the sake of understanding, the power device shown in FIG. 1A is taken as an example in the embodiment), which is not limited in the embodiment of the present application.
  • the control device of the freewheeling tube determines the first pulse width according to the inductance current law according to the inductance value of the inductance in the switching power supply device, the current of the inductor (referred to as the inductor current in the following part), and the output voltage of the switching power supply device.
  • the control device of the freewheeling tube can also be determined according to the inductance current law according to the inductance value of the inductance in the switching power supply device, the current of the inductor, and other equivalent parameters of the parameters in the output voltage of the switching power supply device or other parameters.
  • the first pulse width value is not limited in the embodiment of the present application.
  • control device of the freewheeling tube can determine the first pulse width value according to the inductance current law according to the inductance value of the inductance in the switching power supply device, the current of the inductor, and the output voltage of the switching power supply device.
  • the first achievable manner when the buck-boost circuit is in the buck mode (for example, as shown in FIG. 1B), the control device of the freewheeling tube is based on the inductance Lv of the inductance L in the switching power supply device, The current IL of the inductor and the output voltage Vo of the switching power supply device are determined by the formula The first pulse width value Toff1 is determined; wherein the output voltage Vo of the switching power supply device represents the voltage across the output capacitor C2.
  • control device of the freewheeling tube can also determine the first pulse by the deformation formula of the above formula 1 or other formulas according to the inductance value Lv of the inductance L in the switching power supply device, the current IL of the inductance, and the output voltage Vo of the switching power supply device.
  • the value of the width Toff1 is not limited in the embodiment of the present application.
  • control device of the freewheeling tube can also be deformed according to the above formula 2 according to the inductance value Lv of the inductance L in the switching power supply device, the current IL of the inductor, the output voltage Vo of the switching power supply device, and the input voltage Vin of the switching power supply device.
  • the formula or other formula determines the first pulse width value Toff1, which is not limited in the embodiment of the present application.
  • control device of the freewheeling tube can determine the first pulse width value by other achievable methods according to the inductance current law according to the inductance value of the inductance in the switching power supply device, the current of the inductor, and the output voltage of the switching power supply device. This is not limited in the examples.
  • the current IL of the inductor is usually the average value of the inductor current Idc, due to the average value of the inductor current Idc Generally, it is not equal to the AC component Iac of the inductor current (Idc>Iac in the CCM scenario in Figure 1E, and Idc ⁇ Iac in the DCM scenario). Therefore, it is obtained by the inductor current law according to the inductor current average value Idc in the CCM scenario.
  • the first pulse width value of the freewheeling tube is larger than the actual pulse width value of the freewheeling tube; in the DCM scenario, the first pulse width value of the freewheeling tube obtained by the inductor current law according to the inductor current average value Idc is smaller than the freewheeling tube
  • the actual pulse width value of the demand so that the first pulse width value of the freewheeling tube obtained according to the law of the inductor current can ensure that the inductor current in the switching power supply device does not have a negative direction.
  • the second pulse width value of the freewheeling tube obtained by the control device of the freewheeling tube according to the volt-second balance law is closer to the actual pulse width value of the freewheeling tube, and the two can be considered equal.
  • control device of the freewheeling tube determines the second pulse width value according to the volt-second balance law according to the input voltage of the switching power supply device, the output voltage, and the third pulse width value of the main control tube; of course, the control of the freewheeling tube The device determines the second pulse width value according to the volt-second balance law according to the input voltage of the switching power supply device, the output voltage, and other equivalent parameters of the parameters of the third pulse width value of the main control tube or other parameters, in the embodiment of the present application There is no limit to this.
  • the achievable manner of determining the second pulse width value according to the volt-second balance law can be implemented by at least the following methods:
  • the first achievable mode when the buck-boost circuit is in the buck mode (for example, as shown in FIG. 1B), the control device of the freewheeling tube is based on the input voltage Vin of the switching power supply device, the output voltage Vo, and The third pulse width value Ton of the main control tube, through the formula The second pulse width value Toff2 is determined; wherein the output voltage Vo of the switching power supply device represents the voltage across the output capacitor C2, and the input voltage Vin of the switching power supply device represents the voltage across the input capacitor C1.
  • control device of the freewheeling tube can also determine the second pulse width value by using the deformation formula of the above formula 3 or other formulas according to the input voltage Vin of the switching power supply device, the output voltage Vo, and the third pulse width value Ton of the main control tube. Toff2, which is not limited in this embodiment of the present application.
  • the second achievable mode is: when the buck-boost circuit is in the boost mode (for example, as shown in FIG. 1C), the control device of the freewheeling tube is based on the input voltage Vin of the switching power supply device, the output voltage Vo, and The third pulse width value Ton of the main control tube, through the formula The second pulse width value Toff2 is determined; wherein the output voltage Vo of the switching power supply device represents the voltage across the output capacitor C2, and the input voltage Vin of the switching power supply device represents the voltage across the input capacitor C1.
  • control device of the freewheeling tube can also determine the second pulse width value by using the deformation formula of the above formula 4 or other formulas according to the input voltage Vin of the switching power supply device, the output voltage Vo, and the third pulse width value Ton of the main control tube. Toff2, which is not limited in this embodiment of the present application.
  • control device of the freewheeling tube can determine the second pulse width value by other achievable methods according to the input voltage of the switching power supply device, the output voltage, and the third pulse width value of the main control tube, according to the volt-second balance law. This is not limited in the examples.
  • Step S202 Determine whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device satisfies the first preset condition, and obtain a determination result.
  • the control device of the freewheeling tube determines the first pulse width value (ie, the pulse width value of the freewheel tube obtained according to the law of the inductor current) and the third pulse width value of the main control tube in the switching power supply device. Whether the sum meets the first preset condition to determine an operating scenario of the switching power supply device, for example, a DCM scenario or a non-DCM scenario (ie, a CCM scenario or a BCM scenario).
  • a DCM scenario or a non-DCM scenario ie, a CCM scenario or a BCM scenario.
  • control device of the freewheeling tube can directly determine whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device is less than or equal to the first preset pulse width value, wherein
  • the preset condition includes: less than or equal to the first preset pulse width value; optionally, the first preset pulse width value may be: a switching period of the switching power supply device multiplied by a first preset coefficient (eg, 0.8), of course
  • the first preset coefficient may also be other values, which is not limited in the embodiment of the present application.
  • the determination result includes: the first pulse width value and the switching power supply device The sum of the third pulse width values of the main control tubes in the first predetermined condition is satisfied, and it is determined that the switching power supply device is in the DCM operation scenario.
  • the determination result includes: the first pulse width value and the switching power supply device If the sum of the third pulse width values of the main control tube does not satisfy the first preset condition), it is determined that the switching power supply device is in a non-DCM operation scenario.
  • control device of the freewheeling tube can also pass other equivalent deformations of “determining whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device meets the first preset condition” The way to determine the operating scenario of the switching power supply unit.
  • the operating condition of the power supply device optionally, the third preset condition may include: greater than or equal to the first preset dead time, optionally, the first preset dead time may be: a switching period multiplication of the switching power supply device Taking a second preset coefficient (optionally, the sum of the first preset coefficient and the second preset coefficient is 1, for example, the second preset coefficient may be 0.2), of course, if the first preset coefficient is other values Correspondingly, the second preset coefficient may also be other values, which is not limited in the embodiment of
  • the judgment result includes: the first pulse width The value and the third pulse width value of the main control tube in the switching power supply device satisfy the first preset condition), and then the switching power supply device is determined to be in the DCM operation scenario.
  • the equivalent judgment result includes: the first pulse width value If the sum of the third pulse width values of the main control tube in the switching power supply device does not satisfy the first preset condition, it is determined that the switching power supply device is in a non-DCM operation scenario.
  • control device of the freewheeling tube can further determine whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device meets the first preset condition by using another implementable manner. This is not limited in the application examples.
  • Step S203 determining, according to the determination result, controlling conduction of the freewheel according to the first pulse width value or the second pulse width value.
  • the control device of the freewheeling tube satisfies the determination result (including: the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device satisfies the first preset condition, or the first pulse
  • the sum of the width value and the third pulse width value of the main control tube in the switching power supply device does not satisfy the first preset condition) is determined according to the first pulse width value (ie, the freewheeling tube obtained according to the inductor current law in the above step S202)
  • the pulse width value controls the conduction of the freewheeling tube, or controls the conduction of the freewheeling tube according to the second pulse width value (ie, the pulse width value of the freewheeling tube obtained according to the volt-second balance law in the above step S202),
  • the switching power supply device controls the conduction of the freewheeling tube according to the first pulse width value in the CCM operation scenario and/or the switching power supply device controls the conduction of the freewheeling tube according to the second pulse width value in the DCM operation
  • the power device in the switching power supply device includes a circuit structure as shown in FIG. 1A.
  • the first pulse width value may be according to formula 1 in step S202.
  • the determined pulse width value may also be a pulse width value determined according to the deformation formula of the formula 1 or other formulas, which is not limited in the embodiment of the present application; the second pulse width value may be according to the above steps.
  • the pulse width value determined by the formula 3 in S202 may also be a pulse width value determined according to the deformation formula of the formula 3 or other formulas, which is not limited in the embodiment of the present application.
  • the first pulse width value may be a pulse width value determined according to formula 2 in step S202 above. Of course, it may also be determined according to a deformation formula of formula 2 or other formulas.
  • the pulse width value is not limited in the embodiment of the present application; the second pulse width value may be a pulse width value determined according to the formula 4 in the above step S202, and may of course be a deformation formula according to the formula 4.
  • the value of the pulse width determined by other formulas is not limited in the embodiment of the present application.
  • the control device of the freewheeling tube determines that the switching power supply device is in the DCM operation scenario (considering that the first pulse width value of the freewheeling tube obtained according to the inductor current law can ensure that the inductor current in the switching power supply device does not appear negative, That is, to ensure that the inductor current has exited the negative direction), it is determined whether the sum of the second pulse width value (ie, the pulse width value of the freewheel tube obtained according to the volt-second balance law) and the third pulse width value satisfy the second preset condition .
  • the conduction of the freewheeling tube is controlled according to the first pulse width value if the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device does not satisfy the first preset condition.
  • control device of the freewheeling tube can directly determine whether the sum of the second pulse width value and the third pulse width value is less than or equal to a second preset pulse width value, wherein the second preset condition includes: less than or equal to
  • the second preset pulse width value may be: the second preset pulse width value may be: a switching period of the switching power supply device multiplied by a third preset coefficient (for example, 0.9), of course, the third preset coefficient may also be Other values (the third preset coefficient is greater than the first preset coefficient) are not limited in the embodiment of the present application.
  • the control device of the freewheeling tube can also be judged by other equivalent deformation manners of “determining whether the sum of the second pulse width value and the third pulse width value meets the second preset condition”.
  • the fourth preset condition may include: greater than or equal to the second preset dead time, optionally, the second preset dead time may be: a switching period of the switching power supply device multiplied by a fourth preset coefficient (optional) The sum of the third preset coefficient and the fourth preset coefficient is 1, for example, the fourth preset coefficient may be 0.1).
  • the corresponding fourth preset coefficient Other values are not limited in this embodiment of the present application. I) if the second dead time of the switching power supply device is greater than or equal to the second preset dead time, that is, the second dead time of the switching power supply device satisfies the fourth preset condition, which is equivalent to the second pulse width value and the third The sum of the pulse width values satisfies the second preset condition. II) if the second dead time of the switching power supply device is less than the second preset dead time, that is, the second dead time of the switching power supply device does not satisfy the fourth preset condition, which is equivalent to the second pulse width value and the third pulse The sum of the wide values does not satisfy the second preset condition.
  • control device of the freewheeling tube can determine whether the sum of the second pulse width value and the third pulse width value meets the second preset condition by using another achievable manner, which is not limited in the embodiment of the present application. .
  • the conduction of the freewheeling tube is controlled according to the second pulse width value.
  • a preset threshold for example, 10
  • control device of the freewheeling tube records the second pulse width value and the third pulse width value each time it is determined that the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition The sum does not satisfy the second preset condition for the subsequent judgment.
  • the first pulse width value of the freewheeling tube obtained according to the inductor current law is greater than the actual pulse width value of the freewheeling tube, so that the freewheeling tube obtained according to the inductor current law
  • the sum of the first pulse width value and the third pulse width value may be greater than the switching period of the switching power supply device. Therefore, the first pulse width value of the freewheeling tube obtained according to the inductor current law needs to be clamped at the upper limit.
  • the controlling the conduction of the freewheel according to the first pulse width value includes:
  • the pulse width modulation PWM generating device in the switching power supply device If the first pulse width value is less than or equal to the preset pulse width value, controlling the pulse width modulation PWM generating device in the switching power supply device according to the first pulse width value to generate the first PWM wave; wherein the first PWM wave is used to control the continuous Flow tube.
  • the PWM generating device If the first pulse width value is greater than the preset pulse width value, the PWM generating device generates a second PWM wave according to the preset pulse width value; wherein the second PWM wave is used to control the freewheel.
  • the freewheeling tube The control device generates a first PWM wave according to the PWM generating device in the switching power supply device according to the first pulse width value; wherein the pulse width value of the first PWM wave is equal to the first pulse width value, and the first PWM wave is used to control the freewheeling tube.
  • the control PWM generating device generates a second PWM wave; wherein the pulse width value of the second PWM wave is equal to a preset pulse width value, and the second PWM wave is used to control the freewheeling tube.
  • the PWM generating device outputs the generated PWM wave to the freewheeling tube to control the conduction or disconnection of the freewheeling tube.
  • control device of the freewheeling tube can control the conduction of the freewheeling tube according to the first pulse width value, which is not limited in the embodiment of the present application.
  • controlling the conduction of the freewheel according to the second pulse width value includes:
  • control device of the freewheeling tube controls the PWM generating module in the switching power supply device to generate a third PWM wave according to the second pulse width value; wherein the pulse width value of the third PWM wave is equal to the second pulse width value, Three PWM waves are used to control the freewheel.
  • the PWM generating device outputs the generated third PWM wave to the freewheeling tube to control the conduction or disconnection of the freewheeling tube.
  • control device of the freewheeling tube can also control the conduction of the freewheeling tube according to the second pulse width value, which is not limited in the embodiment of the present application.
  • determining whether the sum of the first pulse width value of the freewheeling tube in the switching power supply device and the third pulse width value of the main control tube in the switching power supply device is satisfied by determining the first according to the law of the inductor current Predetermining the condition, obtaining a judgment result; further, determining, according to the determination result, controlling the conduction of the freewheeling tube according to the first pulse width value or the second pulse width value of the freewheeling tube obtained according to the volt-second balance law to implement the switch
  • the power supply device controls the conduction of the freewheeling tube according to the first pulse width value in the CCM operation scenario and/or the switching power supply device controls the conduction of the freewheeling tube according to the second pulse width value in the DCM operation scenario.
  • the pulse width value of the freewheeling tube obtained by the principle that the pulse width is complementary to the pulse width of the freewheeling tube, the second pulse width value of the freewheeling tube obtained according to the volt-second balance law in this embodiment is closer to the freewheeling tube
  • the actual pulse width value further improves the control accuracy of the switching power supply device in the DCM operation scenario.
  • FIG. 3 is a schematic flow chart of a method for controlling a freewheeling tube according to another embodiment of the present application.
  • the method in this embodiment of the present application may include:
  • Step S301 Acquire a first pulse width value of the freewheeling tube in the switching power supply device according to the inductor current law and obtain a second pulse width value of the freewheeling tube according to the volt-second balance law.
  • the first pulse width value of the freewheeling tube can be obtained by other equivalent deformation processes or other processes of the above process according to the law of the inductor current, which is not limited in the embodiment of the present application.
  • the pulse width value of the control tube, ⁇ Td represents the sum of the dead time of the falling edge of the main control tube in the switching power supply device and the dead time of the rising edge of the main control tube.
  • the second pulse width value of the freewheeling tube can be obtained by other equivalent deformation processes or other processes of the above process according to the volt-second balance law, which is not limited in the embodiment of the present application.
  • Step S302 Determine whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device satisfies the first preset condition.
  • step S303 if the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device meets the first preset condition, that is, the switching power supply device is determined to be in the DCM operation scenario, step S303 is performed; If the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device does not satisfy the first preset condition, that is, the switching power supply device is determined to be in the non-DCM operation scenario, step S304 is performed.
  • Step S303 determining whether the sum of the second pulse width value and the third pulse width value satisfies the second preset condition.
  • step S305 if the sum of the second pulse width value and the third pulse width value satisfies the second preset condition, step S305 is performed; if the sum of the second pulse width value and the third pulse width value does not satisfy the second pre- If the condition is set, step S306 is performed.
  • Step S304 controlling conduction of the freewheeling tube according to the first pulse width value.
  • Step S305 controlling conduction of the freewheeling tube according to the second pulse width value.
  • Step S306 Determine whether the number of times that the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition is less than a preset threshold.
  • step S305 if the number of times that the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition is less than the preset threshold, step S305 is performed; if the second pulse width value and the third pulse width value are If the number of times that the sum does not satisfy the second preset condition is greater than or equal to the preset threshold, that is, determining that the switching power supply device is in the non-DCM operation scenario, step S304 is performed.
  • control device of the freewheeling tube determines whether the sum of the first pulse width value of the freewheeling tube and the third pulse width value of the main control tube satisfies the first preset condition, and determines the second pulse width value.
  • the operation scenario of the switching power supply device can further flexibly control the conduction of the freewheeling tube by using different pulse width values according to different operating scenarios of the switching power supply device (for example, the switching power supply device is in accordance with the first pulse width in the CCM operating scenario)
  • the value controls the conduction of the freewheeling tube and/or the switching power supply device controls the conduction of the freewheeling tube according to the second pulse width value in the DCM operation scenario, so that the energy in the switching power supply device is always transmitted from the input terminal to the unidirectional direction.
  • the output ie, the inductor current in the switching power supply unit does not appear negative), thus ensuring the reliability of the circuit system.
  • control device of the freewheeling tube performs the above steps S301 to S306 once every preset time.
  • control device of the freewheeling tube can perform the above steps S301 to S306 in other manners, which is not limited in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a control device for a freewheeling tube according to an embodiment of the present application.
  • the control device 40 for the freewheeling tube provided in this embodiment may include: an obtaining module 401, a determining module 402, and a control module 403.
  • the obtaining module 401 is configured to obtain a first pulse width value of the freewheeling tube in the switching power supply device according to the inductor current law, and obtain a second pulse width value of the freewheeling tube according to the volt-second balance law;
  • the determining module 402 is configured to determine whether the sum of the first pulse width value and the third pulse width value of the main control tube in the switching power supply device meets the first preset condition, and obtain a determination result;
  • the control module 403 is configured to determine, according to the determination result, that the conduction of the freewheeling tube is controlled according to the first pulse width value or the second pulse width value.
  • control module 403 is specifically configured to:
  • control module 403 is further configured to:
  • control module 403 is further configured to:
  • control module 403 is specifically configured to:
  • the pulse width modulation PWM generating device in the switching power supply device to generate a first PWM wave according to the first pulse width value; wherein The first PWM wave is used to control the freewheeling tube.
  • control module 403 is further configured to:
  • controlling the PWM generating device to generate a second PWM wave according to the preset pulse width value; wherein the second PWM wave is used to control the Describe the free flow tube.
  • control module 403 is specifically configured to:
  • the obtaining module 401 includes:
  • the first determining unit is configured to determine the first pulse width value according to the inductor current law according to an inductance value of an inductance in the switching power supply device, a current of the inductor, and an output voltage of the switching power supply device.
  • the obtaining module 401 includes:
  • a second determining unit configured to determine the second pulse width value according to the volt-second balance law according to an input voltage of the switching power supply device, an output voltage, and a third pulse width value of the main control tube.
  • control device of the freewheeling tube of the present embodiment can be used to perform the technical solution provided by the embodiment of the method for controlling the above-mentioned corresponding freewheeling tube of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • An embodiment of the present application provides a switching power supply device, wherein the switching power supply device includes: a control device for a freewheeling tube provided by the control device embodiment of the above-mentioned freewheeling tube; correspondingly, the switching power supply device can perform the above
  • the switching power supply device includes: a control device for a freewheeling tube provided by the control device embodiment of the above-mentioned freewheeling tube; correspondingly, the switching power supply device can perform the above
  • the technical solution provided by the embodiment of the control method of the freewheeling tube is similar in its implementation principle and technical effects, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a switching power supply device according to another embodiment of the present application.
  • the switching power supply device 50 provided in this embodiment may include: a memory 501 and a processor 502.
  • the memory 501 is configured to store program instructions.
  • the processor 502 is configured to invoke program instructions in the memory 501 to perform the following operations:
  • the processor 502 is specifically configured to:
  • the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition, determining that the sum of the second pulse width value and the third pulse width value does not satisfy Whether the number of times of the second preset condition is less than a preset threshold; if the number of times the sum of the second pulse width value and the third pulse width value does not satisfy the second preset condition is less than the preset threshold, And controlling conduction of the freewheeling tube according to the second pulse width value.
  • processor 502 is further configured to:
  • processor 502 is further configured to:
  • the processor 502 is specifically configured to:
  • the pulse width modulation PWM generating device in the switching power supply device to generate a first PWM wave according to the first pulse width value; wherein The first PWM wave is used to control the freewheeling tube.
  • processor 502 is further configured to:
  • controlling the PWM generating device to generate a second PWM wave according to the preset pulse width value; wherein the second PWM wave is used to control the Describe the free flow tube.
  • the processor 502 is specifically configured to:
  • the processor 502 is specifically configured to:
  • the processor 502 is specifically configured to:
  • the switching power supply device may further include: a power device and/or a detecting device (for detecting an inductor current, an input voltage and an output voltage of the switching power supply device, etc.), etc.; and all the switching power supply devices capable of implementing the present application All are within the scope of this application.
  • the switching power supply device of the present embodiment can be used to implement the technical solution provided by the embodiment of the control method for the above-mentioned corresponding freewheeling tube of the present application.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • this may be accomplished in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本申请实施例提供一种续流管的控制方法、装置及开关电源装置。该方法包括:通过判断根据电感电流定律所获取的续流管的第一脉宽值与主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;进一步地,根据判断结果确定根据第一脉宽值或者根据伏秒平衡定律所获取的续流管的第二脉宽值控制续流管的导通。本申请实施例提供的续流管的控制方法、装置及开关电源装置中,可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通,以实现开关电源装置中的能量一直由输入端单向传递至输出端,从而保证了电路系统的可靠性。

Description

续流管的控制方法、装置及开关电源装置
本申请要求于2017年09月01日提交中国专利局、申请号为201710777928.4、申请名称为《续流管的控制方法、装置及开关电源装置》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其涉及一种续流管的控制方法、装置及开关电源装置。
背景技术
通常情况下,开关电源装置中的能量需要由输入端传递至输出端,如果开关电源装置中的能量由输出端传递至输入端,这样会对包含该开关电源装置的电路系统带来一定的风险。因此,如何控制开关电源装置中的能量一直由输入端单向传递至输出端是亟待解决且很棘手的问题。
现有技术中,开关电源装置包括:控制装置以及功率装置;其中,功率装置中包含有电感、主控管以及对应的续流管;控制装置用于控制功率装置中的主控管的导通,以及续流管的导通。通常情况下,在定频控制系统中,控制装置根据主控管的脉宽与续流管的脉宽互补的原则(即主控管的脉宽值与续流管的脉宽值之和等于开关电源装置的开关周期),来控制续流管的导通。
但是在实际应用过程中,在部分场景下,例如电流断续模式(Discontinuous Current Mode,DCM),即主控管的脉宽值与续流管的脉宽值之和小于开关电源装置的开关周期。若控制装置仍然根据主控管的脉宽与续流管的脉宽互补的原则来控制该续流管的导通,则开关电源装置中的电感电流会出现负向,即开关电源装置中的能量会由输出端流至输入端,从而影响电路系统的可靠性。
发明内容
本申请实施例提供一种续流管的控制方法、装置及开关电源装置,可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通,以实现开关电源装置中的能量一直由输入端单向传递至输出端,从而保证了电路系统的可靠性。
第一方面,本申请实施例提供一种续流管的控制方法,包括:
根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
通过第一方面提供的续流管的控制方法,通过判断根据电感电流定律所获取的开关电源装置中的续流管的第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;进一步地,根据判断结果确定根据第一脉宽值或者根据伏秒平衡定律所获取的续流管的第二脉宽值控制续流管的导通,以实现开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通。可见,本申请实施例提供的续流管的控制方法中,可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通,以实现开关电源装置中的能量一直由输入端单向传递至输出端(即开关电源装置中的电感电流不会出现负向),从而保证了电路系统的可靠性。
在一种可能的实现方式中,所述根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通,包括:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述方法还包括:
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通,还包括:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
在一种可能的实现方式中,根据所述第一脉宽值控制所述续流管的导通,包括:
若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波用于控制所述续流管。
在一种可能的实现方式中,所述方法还包括:
若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
在一种可能的实现方式中,根据所述第二脉宽值控制所述续流管的导通,包括:
根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
在一种可能的实现方式中,所述根据电感电流定律获取开关电源装置中的续流管的第一脉宽值,包括:
根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装 置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
在一种可能的实现方式中,所述根据伏秒平衡定律获取所述续流管的第二脉宽值,包括:
根据所述开关电源装置的输入电压、输出电压以及所述主控管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
通过第一方面提供的续流管的控制方法,通过判断续流管的第一脉宽值与主控管的第三脉宽值之和是否满足第一预设条件、判断第二脉宽值与第三脉宽值之和是否满足第二预设条件,和/或判断第二脉宽值与第三脉宽值之和不满足第二预设条件的次数是否小于预设阈值的方式,确定开关电源装置的运行场景,进而可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通(例如,开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通),以实现开关电源装置中的能量一直由输入端单向传递至输出端(即开关电源装置中的电感电流不会出现负向),从而保证了电路系统的可靠性。
第二方面,本申请实施例提供一种续流管的控制装置,包括:
获取模块,用于根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
判断模块,用于判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
控制模块,用于根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述控制模块具体用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述控制模块还用于:
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述控制模块还用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
在一种可能的实现方式中,所述控制模块具体用于:
若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波 用于控制所述续流管。
在一种可能的实现方式中,所述控制模块还用于:
若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
在一种可能的实现方式中,所述控制模块具体用于:
根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
在一种可能的实现方式中,所述获取模块,包括:
第一确定单元,用于根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
在一种可能的实现方式中,所述获取模块,包括:
第二确定单元,用于根据所述开关电源装置的输入电压、输出电压以及所述主控管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
上述第二方面中的各实现方式,其有益效果可以参见上述第一方面中对应的实现方式所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种开关电源装置,包括:
如上述第二方面中任一种可能的实现方式所述的续流管的控制装置。
上述第三方面中的实现方式,其有益效果可以参见上述第一方面中对应的实现方式所带来的有益效果,在此不再赘述。
第四方面,本申请实施例提供一种开关电源装置,包括:存储器以及处理器;
其中,所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令,以执行上述第一方面中任一种可能的实现方式所述的方法。
上述第四方面中的实现方式,其有益效果可以参见上述第一方面中对应的实现方式所带来的有益效果,在此不再赘述。
本申请第五方面提供一种开关电源装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请第六方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本申请第七方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
附图说明
图1A为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图一;
图1B为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图二
图1C为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图三;
图1D为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图四;
图1E为本申请实施例提供的不同运行模式下电感电流的波形示意图;
图1F为本申请实施例提供的串联场景示意图;
图2为本申请一实施例提供的续流管的控制方法的流程示意图;
图3为本申请另一实施例提供的续流管的控制方法的流程示意图;
图4为本申请一实施例提供的续流管的控制装置的结构示意图;
图5为本申请另一实施例提供的开关电源装置的结构示意图。
具体实施方式
首先,对本申请实施例的开关电源装置和部分词汇进行解释说明。
图1A为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图一,图1B为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图二,以及图1C为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图三,图1D为本申请实施例提供的开关电源装置中的功率装置的电路结构示意图四。可选地,本申请实施例中以功率装置包括:降压(buck)-升压(boost)电路为例进行说明;当然,功率装置还可以包括其它类型的电路,本申请实施例中对此并不作限制。如图1A所示,功率装置包括:输入电容C1、主控管Q1、续流管Q2、电感L、主控管Q3、续流管Q4以及输出电容C2;可选地,电感L可以为单个电感,或者多个电感的耦合电感。可选地,主控管Q1、续流管Q2、主控管Q3和/或续流管Q4为可控管,例如:金属-氧化物-半导体场效应晶体管(Metal Oxide Semiconductor,MOS)或者绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等。可选地,主控管Q1、续流管Q2、主控管Q3以及续流管Q4的控制极(例如,若采用MOS管,则控制极是指栅极;若采用IGBT,则控制极是指门极)分别连接至对应的脉冲宽度调制(Pulse Width Modulation,PWM)生成装置。可选地,图1A所示的电路结构可以采用图1D所示的电路结构,当然,还可以采用现有的或未来的其它电路结构实现,本申请实施例中对此并不作限制。
可以理解的是,图1A或图1D仅仅示出了以功率装置包括降压-升压电路为例的简化设计。可选地,在其它的实施方式中,功率装置可以包含其它的电路组件,本申请实施例中对此并不作限制。
可选地,功率装置在某一个时刻下会处于降压模式或者升压模式。(1)在降压模式下(主控管Q3一直处于断开状态且续流管Q4一直处于导通状态,相当于降压-升压电路切换为降压电路,如图1B所示),开关电源装置的控制装置用于控制主控管Q1和续流管Q2的导通或者断开。可选地,控制装置(即主控管的控制装置)通过控制主控管Q1对应的PWM生成装置(即与主控管Q1的控制极连接的PWM生成装置)生成对应的PWM波,来控制主控管Q1的导通或断开;可选地,控制装置(即对应本申请涉及的续流管的控制装置)通过控制续流管Q2对应的PWM生成装置(即与续流管Q2的控制极连接的PWM生成装置)生成对应的PWM波,来控制续流管Q2的导通或断开。
(2)在升压模式下(主控管Q1一直处于导通状态且续流管Q2一直处于断开状态,相当于降压-升压电路切换为升压电路,如图1C所示),开关电源装置的控制装置用于控制主控管Q3和续流管Q4的导通或者断开。可选地,控制装置(即主控管的控制装置)通过控制主控管Q3对应的PWM生成装置(即与主控管Q3的控制极连接的PWM生成装置)生成对应的PWM波,来控制主控管Q3的导通或断开;可选地,控制装置(即对应本申请涉及的续流管的控制装置)通过控制续流管Q4对应的PWM生成装置(即与续流管Q4的控制极连接的PWM生成装置)生成对应的PWM波,来控制续流管Q4的导通或 断开。
可选地,控制装置通过控制主控管对应的PWM生成装置(即与主控管的控制极连接的PWM生成装置)生成对应的PWM波,来控制主控管的导通或断开的具体实现方式,可以参见现有技术中控制主控管的实现方式,本申请实施例中对此并不作限制。
当然,降压-升压电路还可以通过如1A所示的变形电路或者其它电路形式实现,本申请实施例中对此并不作限制。
本申请涉及的PWM生成装置可以集成于对应的控制装置中,或者独立于对应的控制装置(可选地,控制装置包括:主控管的控制装置或者续流管的控制装置),本申请实施例中对此并不作限制。
本申请涉及的开关电源装置可以广泛应用于工业自动化控制、军工设备、科研设备、发光二极管(Light Emitting Diode,LED)照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器、电子冰箱、液晶显示器、LED灯具、通讯设备、视听产品、安防监控、LED灯袋、电脑机箱、数码产品和仪器类等(即被广泛应用于几乎所有的电子设备)。
本申请实施例中涉及的电流连续模式(Continuous Current Mode,CCM)是指:在开关电源装置的一个开关周期内,电感电流从不会到0,如图1E所示(图1E为本申请实施例提供的不同运行模式下电感电流的波形示意图)。其中,在CCM运行模式下,开关电源装置的开关周期T=开关电源装置中主控管的脉宽值Ton+续流管的脉宽值Toff。
本申请实施例中涉及的临界导通模式(Boundary Current Mode,BCM)是指:通过控制装置(即主控管的控制装置)监控电感电流,一旦检测到电感电流等于0,则立即控制主控管导通,如图1E所示。其中,在BCM运行模式下,开关电源装置的开关周期T=开关电源装置中主控管的脉宽值Ton+续流管的脉宽值Toff。
本申请实施例中涉及的电流断续模式(Discontinuous Current Mode,DCM)是指:在开关电源装置的开关周期内,电感电流总会到0(如图1E所示,存在一段DCM死区时间Td)。其中,在DCM运行模式下,开关电源装置的开关周期T=开关电源装置中主控管的脉宽值Ton+续流管的脉宽值Toff+DCM死区时间Td。
可选地,图1E中的纵坐标为电感电流,单位为安培;横坐标为时间,单位为秒。
可选地,本申请实施例中的图1E中并未示出主控管下降沿死区时间和主控管上升沿死区时间(通常情况下,主控管下降沿死区时间和主控管上升沿死区时间为很小的预设数值,几乎可以忽略不计)。
本申请实施例中,续流管的控制装置可以预先获取到开关电源装置的开关周期T、开关电源装置中主控管的脉宽值Ton、电感的电感值、电感电流、开关电源装置的输入电压以及输出电压等参数,具体地获取这些参数的方式可以采用现有的或者未来的获取方式,本申请实施例中对获取方式并不作限制。
本申请实施例中涉及的续流管的脉宽是指:开关电源装置中的脉冲宽度调制(Pulse Width Modulation,PWM)生成装置所生成的用于控制续流管的PWM波对应的脉宽。
本申请实施例中涉及的主控管的脉宽是指:开关电源装置中的PWM生成装置所生成的用于控制主控管的PWM波对应的脉宽。
本申请实施例中的编号“第一”、“第二”以及“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,不应对本申请实施例构成任何限定。
通常情况下,开关电源装置中的能量需要由输入端传递至输出端,如果开关电源装置中的能量由输出端传递至输入端,这样会对包含该开关电源装置的电路系统带来一定的风险。尤其是在部分要求较高的场景中(例如开关电源装置串联场景),如图1F所示(图1F为本申请实施例提供的串联场景示意图),当某个开关电源装置的输入变为0时(即该开关电源装置对应的供电装置的输出变为0,可选地,供电装置可以为光伏组件,当然还可以为其它类型的供电装置,本实施例中对此并不作限制),该开关电源装置的输出电压便迅速转移到其它开关电源装置的输出端,可能会造成其它开关电源装置的输出端电压快速上升至不可控状态,如果此时该其它开关电源装置中的能量由输出端传递至输入端,则势必会损坏该其它开关电源装置。因此,如何控制开关电源装置中的能量一直由输入端单向传递至输出端是亟待解决且很棘手的问题。
通常情况下,在定频控制系统中,控制装置(即续流管的控制装置)根据主控管的脉宽与续流管的脉宽互补的原则(即主控管的脉宽值与续流管的脉宽值之和等于开关电源装置的开关周期),来控制续流管的导通。但是在实际应用过程中,在部分场景下(例如DCM),即主控管的脉宽值(如图1E中的Ton)与续流管的脉宽值(如图1E中的Toff)之和小于开关电源装置的开关周期(如图1E中的T)。若控制装置仍然根据主控管的脉宽与续流管的脉宽互补的原则来控制该续流管的导通,则开关电源装置中的电感电流会出现负向,即开关电源装置中的能量会由输出端流至输入端,从而影响电路系统的可靠性。
本申请实施例提供的续流管的控制方法、装置及开关电源装置,可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通(例如,开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通),以实现开关电源装置中的能量一直由输入端单向传递至输出端(即开关电源装置中的电感电流不会出现负向),从而保证了电路系统的可靠性。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图2为本申请一实施例提供的续流管的控制方法的流程示意图。本实施例的执行主体可以为配置在开关电源装置中的续流管的控制装置,该装置可以通过软件和/或硬件实现。如图2所示,本申请实施例的方法可以包括:
步骤S201、根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取续流管的第二脉宽值。
本实施例中,续流管的控制装置根据电感电流定律获取开关电源装置中的续流管(例如,当降压-升压电路处于降压模式时,如图1A和/或图1B中所示的续流管Q2,或者当降压-升压电路处于升压模式时,如图1A和/或图1C中所示的续流管Q4)的第一脉宽值以及根据伏秒平衡定律获取续流管的第二脉宽值。当然,若功率装置包括其它类型的电路,则续流管的控制装置根据电感电流定律获取对应功率装置中的续流管的第 一脉宽值以及根据伏秒平衡定律获取续流管的第二脉宽值(为了便于理解,本实施例中以图1A所示的功率装置为例进行说明),本申请实施例中对此并不作限制。
可选地,续流管的控制装置根据开关电源装置中的电感的电感值、电感的电流(以下部分内容中简称电感电流)以及开关电源装置的输出电压,按照电感电流定律确定第一脉宽值;当然,续流管的控制装置还可以根据开关电源装置中的电感的电感值、电感的电流以及开关电源装置的输出电压中各参数的其它等效参数或者其它参数,按照电感电流定律确定第一脉宽值,本申请实施例中对此并不作限制。
可选地,续流管的控制装置根据开关电源装置中的电感的电感值、电感的电流以及开关电源装置的输出电压,按照电感电流定律确定第一脉宽值的可实现方式至少可以通过如下几种可实现方式:
第一种可实现方式:当降压-升压电路处于降压模式时(例如等效为如图1B所示),续流管的控制装置根据开关电源装置中的电感L的电感值Lv、电感的电流IL以及开关电源装置的输出电压Vo,通过公式
Figure PCTCN2018102736-appb-000001
确定第一脉宽值Toff1;其中,开关电源装置的输出电压Vo代表输出电容C2两端的电压。当然,续流管的控制装置根据开关电源装置中的电感L的电感值Lv、电感的电流IL以及开关电源装置的输出电压Vo,还可以通过上述公式一的变形公式或者其它公式确定第一脉宽值Toff1,本申请实施例中对此并不作限制。
第二种可实现方式:当降压-升压电路处于升压模式时(例如等效为如图1C所示),续流管的控制装置根据开关电源装置中的电感L的电感值Lv、电感的电流IL、开关电源装置的输出电压Vo以及开关电源装置的输入电压Vin,通过公式Toff1=
Figure PCTCN2018102736-appb-000002
确定第一脉宽值Toff1;其中,开关电源装置的输出电压Vo代表输出电容C2两端的电压,开关电源装置的输入电压Vin代表输入电容C1两端的电压。当然,续流管的控制装置根据开关电源装置中的电感L的电感值Lv、电感的电流IL、开关电源装置的输出电压Vo以及开关电源装置的输入电压Vin,还可以通过上述公式二的变形公式或者其它公式确定第一脉宽值Toff1,本申请实施例中对此并不作限制。
当然,续流管的控制装置根据开关电源装置中的电感的电感值、电感的电流以及开关电源装置的输出电压,按照电感电流定律还可以通过其它可实现方式确定第一脉宽值,本申请实施例中对此并不作限制。
综上,续流管的控制装置根据电感电流定律获取开关电源装置中的续流管的第一脉宽值时,通常采用的电感的电流IL为电感电流平均值Idc,由于电感电流平均值Idc一般不等于电感电流的交流分量Iac(如图1E中的CCM场景下Idc>Iac,以及DCM场景下Idc<Iac),因此,在CCM场景下根据电感电流平均值Idc通过电感电流定律所获取的 续流管的第一脉宽值大于续流管需求的实际脉宽值;在DCM场景下根据电感电流平均值Idc通过电感电流定律所获取的续流管的第一脉宽值小于续流管需求的实际脉宽值,从而根据电感电流定律所获取的续流管的第一脉宽值可以保证开关电源装置中的电感电流不会出现负向。相比之下,续流管的控制装置根据伏秒平衡定律所获取的续流管的第二脉宽值更接近续流管的实际脉宽值,二者可以认为是相等的。
可选地,续流管的控制装置根据开关电源装置的输入电压、输出电压以及主控管的第三脉宽值,按照伏秒平衡定律确定第二脉宽值;当然,续流管的控制装置根据开关电源装置的输入电压、输出电压以及主控管的第三脉宽值中各参数的其它等效参数或者其它参数,按照伏秒平衡定律确定第二脉宽值,本申请实施例中对此并不作限制。
可选地,根据开关电源电路的输入电压、输出电压以及主控管的第三脉宽值,按照伏秒平衡定律确定第二脉宽值的可实现方式至少可以通过如下几种可实现方式:
第一种可实现方式:当降压-升压电路处于降压模式时(例如等效为如图1B所示),续流管的控制装置根据开关电源装置的输入电压Vin、输出电压Vo以及主控管的第三脉宽值Ton,通过公式
Figure PCTCN2018102736-appb-000003
确定第二脉宽值Toff2;其中,开关电源装置的输出电压Vo代表输出电容C2两端的电压,开关电源装置的输入电压Vin代表输入电容C1两端的电压。当然,续流管的控制装置根据开关电源装置的输入电压Vin、输出电压Vo以及主控管的第三脉宽值Ton,还可以通过上述公式三的变形公式或者其它公式确定第二脉宽值Toff2,本申请实施例中对此并不作限制。
第二种可实现方式:当降压-升压电路处于升压模式时(例如等效为如图1C所示),续流管的控制装置根据开关电源装置的输入电压Vin、输出电压Vo以及主控管的第三脉宽值Ton,通过公式
Figure PCTCN2018102736-appb-000004
确定第二脉宽值Toff2;其中,开关电源装置的输出电压Vo代表输出电容C2两端的电压,开关电源装置的输入电压Vin代表输入电容C1两端的电压。当然,续流管的控制装置根据开关电源装置的输入电压Vin、输出电压Vo以及主控管的第三脉宽值Ton,还可以通过上述公式四的变形公式或者其它公式确定第二脉宽值Toff2,本申请实施例中对此并不作限制。
当然,续流管的控制装置根据开关电源装置的输入电压、输出电压以及主控管的第三脉宽值,按照伏秒平衡定律还可以通过其它可实现方式确定第二脉宽值,本申请实施例中对此并不作限制。
步骤S202、判断第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果。
本实施例中,续流管的控制装置通过判断第一脉宽值(即根据电感电流定律所获取的续流管的脉宽值)与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,来确定开关电源装置的运行场景,例如,DCM场景或者非DCM场景(即CCM 场景或者BCM场景)。
可选地,续流管的控制装置可以直接判断第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否小于或等于第一预设脉宽值,其中,第一预设条件包括:小于或等于第一预设脉宽值;可选地,第一预设脉宽值可以为:开关电源装置的开关周期乘以第一预设系数(例如0.8),当然,第一预设系数还可以为其它数值,本申请实施例中对此并不作限制。I)若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和小于或等于第一预设脉宽值(即判断结果包括:第一脉宽值与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件),则确定开关电源装置处于DCM运行场景。II)若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和大于第一预设脉宽值(即判断结果包括:第一脉宽值与开关电源装置中的主控管的第三脉宽值之和不满足第一预设条件),则确定开关电源装置处于非DCM运行场景。
可选地,续流管的控制装置还可以通过“判断第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件”的其它等效变形方式,来确定开关电源装置的运行场景。例如,续流管的控制装置还可以根据第一脉宽值与第三脉宽值之和得到开关电源装置的第一死区时间(其中,开关电源装置的第一死区时间=开关电源装置的开关周期-第一脉宽值与第三脉宽值之和);进一步地,续流管的控制装置通过判断开关电源装置的第一死区时间是否满足第三预设条件,来确定开关电源装置的运行场景,可选地,第三预设条件可以包括:大于或等于第一预设死区时间,可选地,第一预设死区时间可以为:开关电源装置的开关周期乘以第二预设系数(可选地,第一预设系数与第二预设系数之和为1,例如第二预设系数可以为0.2),当然,若第一预设系数为其它数值时,对应的,第二预设系数也可以为其它数值,本申请实施例中对此并不作限制。I)若开关电源装置的第一死区时间大于或等于第一预设死区时间(即开关电源装置的第一死区时间满足第三预设条件,相当于判断结果包括:第一脉宽值与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件),则确定开关电源装置处于DCM运行场景。II)若开关电源装置的第一死区时间小于第一预设死区时间(即开关电源装置的第一死区时间不满足第三预设条件,相当于判断结果包括:第一脉宽值与开关电源装置中的主控管的第三脉宽值之和不满足第一预设条件),则确定开关电源装置处于非DCM运行场景。
可选地,续流管的控制装置还可以通过其它可实现方式,判断第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,本申请实施例中对此并不作限制。
步骤S203、根据判断结果确定根据第一脉宽值或者第二脉宽值控制续流管的导通。
本实施例中,续流管的控制装置根据判断结果(包括:第一脉宽值与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件,或者第一脉宽值与开关电源装置中的主控管的第三脉宽值之和不满足第一预设条件)确定根据第一脉宽值(即上述步骤S202中根据电感电流定律所获取的续流管的脉宽值)控制续流管的导通,还是根据第二脉宽值(即上述步骤S202中根据伏秒平衡定律所获取的续流管的脉宽值)控制续流管的导通,以实现开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通。
可选地,以开关电源装置中的功率装置包括如图1A所示电路结构为例,若功率装置处于降压模式时,所述第一脉宽值可以为根据上述步骤S202中的公式一所确定的脉宽值,当然,也可以为根据公式一的变形公式或者其它公式所确定的脉宽值,本申请实施例中对此并不作限制;所述第二脉宽值可以为根据上述步骤S202中的公式三所确定的脉宽值,当然,也可以为根据公式三的变形公式或者其它公式所确定的脉宽值,本申请实施例中对此并不作限制。若功率装置处于升压模式时,所述第一脉宽值可以为根据上述步骤S202中的公式二所确定的脉宽值,当然,也可以为根据公式二的变形公式或者其它公式所确定的脉宽值,本申请实施例中对此并不作限制;所述第二脉宽值可以为根据上述步骤S202中的公式四所确定的脉宽值,当然,也可以为根据公式四的变形公式或者其它公式所确定的脉宽值,本申请实施例中对此并不作限制。
可选地,若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件,则判断第二脉宽值与第三脉宽值之和是否满足第二预设条件;
若第二脉宽值与第三脉宽值之和满足第二预设条件,则根据第二脉宽值控制续流管的导通;
若第二脉宽值与第三脉宽值之和不满足第二预设条件,则判断第二脉宽值与第三脉宽值之和不满足第二预设条件的次数是否小于预设阈值;若第二脉宽值与第三脉宽值之和不满足第二预设条件的次数小于预设阈值,则根据第二脉宽值控制续流管的导通。
本实施例中,若第一脉宽值(即根据电感电流定律所获取的续流管的脉宽值)与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件,续流管的控制装置确定开关电源装置处于DCM运行场景(考虑到根据电感电流定律所获取的续流管的第一脉宽值可以保证开关电源装置中的电感电流不会出现负向,即确保电感电流已经退出负向),则判断第二脉宽值(即根据伏秒平衡定律所获取的续流管的脉宽值)与第三脉宽值之和是否满足第二预设条件。可选地,若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和不满足第一预设条件,则根据第一脉宽值控制续流管的导通。
可选地,续流管的控制装置可以直接判断第二脉宽值与第三脉宽值之和是否小于或等于第二预设脉宽值,其中,第二预设条件包括:小于或等于第二预设脉宽值;可选地,第二预设脉宽值可以为:开关电源装置的开关周期乘以第三预设系数(例如0.9),当然,第三预设系数还可以为其它数值(第三预设系数大于第一预设系数),本申请实施例中对此并不作限制。
可选地,续流管的控制装置还可以通过“判断第二脉宽值与第三脉宽值之和是否满足第二预设条件”的其它等效变形方式进行判断。例如,续流管的控制装置还可以根据第二脉宽值与第三脉宽值之和得到开关电源装置的第二死区时间(其中,开关电源装置的第二死区时间=开关电源装置的开关周期-第二脉宽值与第三脉宽值之和);进一步地,续流管的控制装置通过判断开关电源装置的第二死区时间是否满足第四预设条件,可选地,第四预设条件可以包括:大于或等于第二预设死区时间,可选地,第二预设死区时间可以为:开关电源装置的开关周期乘以第四预设系数(可选地,第三预设系数与第四预设系数之和为1,例如第四预设系数可以为0.1),当然,若第三预设系数为其它数值时,对应的,第四预设系数也可以为其它数值,本申请实施例中 对此并不作限制。I)若开关电源装置的第二死区时间大于或等于第二预设死区时间,即开关电源装置的第二死区时间满足第四预设条件,相当于第二脉宽值与第三脉宽值之和满足第二预设条件。II)若开关电源装置的第二死区时间小于第二预设死区时间,即开关电源装置的第二死区时间不满足第四预设条件,相当于第二脉宽值与第三脉宽值之和不满足第二预设条件。
可选地,续流管的控制装置还可以通过其它可实现方式,判断第二脉宽值与第三脉宽值之和是否满足第二预设条件,本申请实施例中对此并不作限制。
进一步地,I)若第二脉宽值与第三脉宽值之和满足第二预设条件,则根据第二脉宽值控制续流管的导通。II)若第二脉宽值与第三脉宽值之和不满足第二预设条件,则判断第二脉宽值与第三脉宽值之和不满足第二预设条件的次数是否小于预设阈值(例如,10);IIa)若第二脉宽值与第三脉宽值之和不满足第二预设条件的次数小于预设阈值,则根据第二脉宽值控制续流管的导通;IIb)若第二脉宽值与第三脉宽值之和不满足第二预设条件的次数大于或等于预设阈值,则根据第一脉宽值控制续流管的导通。可选地,续流管的控制装置在每次确定出第二脉宽值与第三脉宽值之和不满足第二预设条件时,则记录第二脉宽值与第三脉宽值之和不满足第二预设条件的次数,以便于后续判断。
考虑到开关电源装置处于CCM运行场景下,根据电感电流定律所获取的续流管的第一脉宽值会大于续流管的实际脉宽值,从而根据电感电流定律所获取的续流管的第一脉宽值与第三脉宽值之和可能会大于开关电源装置的开关周期,因此,需要对根据电感电流定律所获取的续流管的第一脉宽值做上限钳位。可选地,上述根据第一脉宽值控制续流管的导通,包括:
若第一脉宽值小于或等于预设脉宽值,则根据第一脉宽值控制开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,第一PWM波用于控制续流管。
若第一脉宽值大于预设脉宽值,则根据预设脉宽值控制PWM生成装置生成第二PWM波;其中,第二PWM波用于控制续流管。
本实施例中,若第一脉宽值小于或等于预设脉宽值(可选地,预设脉宽值=开关电源装置的开关周期与第三脉宽值之差),则续流管的控制装置根据第一脉宽值控制开关电源装置中的PWM生成装置生成第一PWM波;其中,第一PWM波的脉宽值等于第一脉宽值,第一PWM波用于控制续流管。
可选地,若第一脉宽值大于预设脉宽值(可选地,预设脉宽值=开关电源装置的开关周期与第三脉宽值之差),则根据预设脉宽值控制PWM生成装置生成第二PWM波;其中,第二PWM波的脉宽值等于预设脉宽值,第二PWM波用于控制续流管。
可选地,PWM生成装置将生成的上述PWM波输出至续流管,以便于控制续流管的导通或断开。
当然,续流管的控制装置根据第一脉宽值,还可以通过其它可实现方式控制续流管的导通,本申请实施例中对此并不作限制。
可选地,上述根据第二脉宽值控制续流管的导通,包括:
根据第二脉宽值控制开关电源装置中的PWM生成模块生成第三PWM波;其中,第三PWM波用于控制续流管。
本实施例中,续流管的控制装置根据第二脉宽值控制开关电源装置中的PWM生成模块生成第三PWM波;其中,第三PWM波的脉宽值等于第二脉宽值,第三PWM波用于控制续流管。可选地,PWM生成装置将生成的第三PWM波输出至续流管,以便于控制续流管的导通或断开。
当然,续流管的控制装置根据第二脉宽值,还可以通过其它可实现方式控制续流管的导通,本申请实施例中对此并不作限制。
本申请实施例中,通过判断根据电感电流定律所获取的开关电源装置中的续流管的第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;进一步地,根据判断结果确定根据第一脉宽值或者根据伏秒平衡定律所获取的续流管的第二脉宽值控制续流管的导通,以实现开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通。可见,本申请实施例提供的续流管的控制方法中,可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通,以实现开关电源装置中的能量一直由输入端单向传递至输出端(即开关电源装置中的电感电流不会出现负向),从而保证了电路系统的可靠性。另外,开关电源装置在DCM运行场景下根据续流管的第二脉宽值(由伏秒平衡定律所获取的)控制续流管的导通,相比与现有技术中根据主控管的脉宽与续流管的脉宽互补的原则所获取的续流管的脉宽值,本实施例中根据伏秒平衡定律所获取的续流管的第二脉宽值更接近续流管的实际脉宽值,从而进一步地提高了开关电源装置在DCM运行场景下的控制精度。
图3为本申请另一实施例提供的续流管的控制方法的流程示意图。在上述实施例的基础上,如图3所示,本申请实施例的方法可以包括:
步骤S301、根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取续流管的第二脉宽值。
本实施例中,结合上述实施例对根据电感电流定律获取续流管的第一脉宽值的过程进行说明,可选地,具体过程如下所述:
步骤A1、判断是否处于降压模式;若处于降压模式,则执行步骤B1:Den=1/Von,Ton=开关电源装置处于降压模式下的主控管的第三脉宽值;若处于升压模式,则执行步骤C1:Den=1/max(0.1V,Vo-Vin),Ton=开关电源装置处于升压模式下的主控管的第三脉宽值,其中,max()代表最大值函数。在执行完步骤B1或步骤C1之后,进一步地,执行步骤D1:Temp=2*IL*Lv*Den,Toff1=limit(Temp,0,T-Ton-ΔTd),其中,limit()代表钳位函数(若Temp大于T-Ton-Td,则输出T-Ton-Td;若Temp小于0,则输出0),T代表开关电源装置的开关周期,ΔTd代表开关电源装置中的主控管下降沿死区时间与主控管上升沿死区时间之和。当然,根据电感电流定律还可通过上述过程的其它等效变形过程或者其它过程,获取续流管的第一脉宽值,本申请实施例中对此并不作限制。
本实施例中,结合上述实施例对根据伏秒平衡定律获取续流管的第二脉宽值的过程进行说明,可选地,具体过程如下所述:
步骤A2、判断是否处于降压模式;若处于降压模式,则执行步骤B2:Temp=Temp-1, 其中,Temp=Vin*Den,Den=1/Von;在执行完步骤B2后进一步执行步骤D2。若处于升压模式,则执行步骤C2:Temp=Vin*Den,其中,Den=1/max(0.1V,Vo-Vin);在执行完步骤C2后进一步执行步骤D2。步骤D2:Toff2=Temp*Ton,Toff2=limit(Temp,0,T-Ton-ΔTd),其中,limit()代表钳位函数,T代表开关电源装置的开关周期,Ton代表开关电源装置中主控管的脉宽值,ΔTd代表开关电源装置中的主控管下降沿死区时间与主控管上升沿死区时间之和。当然,根据伏秒平衡定律还可通过上述过程的其它等效变形过程或者其它过程,获取续流管的第二脉宽值,本申请实施例中对此并不作限制。
步骤S302、判断第一脉宽值与开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件。
本实施例中,若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和满足第一预设条件,即确定开关电源装置处于DCM运行场景,则执行步骤S303;若第一脉宽值与开关电源装置中的主控管的第三脉宽值之和不满足第一预设条件,即确定开关电源装置处于非DCM运行场景,则执行步骤S304。
步骤S303、判断第二脉宽值与第三脉宽值之和是否满足第二预设条件。
本实施例中,若第二脉宽值与第三脉宽值之和满足第二预设条件,则执行步骤S305;若第二脉宽值与第三脉宽值之和不满足第二预设条件,则执行步骤S306。
步骤S304、根据第一脉宽值控制续流管的导通。
步骤S305、根据第二脉宽值控制续流管的导通。
步骤S306、判断第二脉宽值与第三脉宽值之和不满足第二预设条件的次数是否小于预设阈值。
本实施例中,若第二脉宽值与第三脉宽值之和不满足第二预设条件的次数小于预设阈值,则执行步骤S305;若第二脉宽值与第三脉宽值之和不满足第二预设条件的次数大于或等于预设阈值,即确定开关电源装置处于非DCM运行场景,则执行步骤S304。
本实施例中,上述各步骤的可实现方式可参见本申请上述实施例中的相关记载,此处不再赘述。
本申请实施例中,续流管的控制装置通过判断续流管的第一脉宽值与主控管的第三脉宽值之和是否满足第一预设条件、判断第二脉宽值与第三脉宽值之和是否满足第二预设条件,和/或判断第二脉宽值与第三脉宽值之和不满足第二预设条件的次数是否小于预设阈值的方式,确定开关电源装置的运行场景,进而可以根据开关电源装置的运行场景的不同,灵活地采用不同的脉宽值控制续流管的导通(例如,开关电源装置在CCM运行场景下根据第一脉宽值控制续流管的导通和/或开关电源装置在DCM运行场景下根据第二脉宽值控制续流管的导通),以实现开关电源装置中的能量一直由输入端单向传递至输出端(即开关电源装置中的电感电流不会出现负向),从而保证了电路系统的可靠性。
可选地,本申请实施例中,续流管的控制装置每隔预设时间会执行一次上述步骤S301-步骤S306。当然,续流管的控制装置还可按照其它方式,执行上述步骤S301-步骤S306,本申请实施例中对此并不作限制。
图4为本申请一实施例提供的续流管的控制装置的结构示意图。如图4所示,本实施例提供的续流管的控制装置40,可以包括:获取模块401、判断模块402以及控制模块403。
其中,获取模块401,用于根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
判断模块402,用于判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
控制模块403,用于根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
可选地,所述控制模块403具体用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
可选地,所述控制模块403还用于:
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
可选地,所述控制模块403还用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
可选地,所述控制模块403具体用于:
若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波用于控制所述续流管。
可选地,所述控制模块403还用于:
若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
可选地,所述控制模块403具体用于:
根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
可选地,所述获取模块401,包括:
第一确定单元,用于根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
可选地,所述获取模块401,包括:
第二确定单元,用于根据所述开关电源装置的输入电压、输出电压以及所述主控 管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
本实施例的续流管的控制装置,可以用于执行本申请上述对应的续流管的控制方法实施例所提供的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请一实施例提供一种开关电源装置,其中,所述开关电源装置包括:如上述续流管的控制装置实施例所提供的续流管的控制装置;对应地,开关电源装置可以执行上述续流管的控制方法实施例所提供的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本申请另一实施例提供的开关电源装置的结构示意图。如图5所示,本实施例提供的开关电源装置50,可以包括:存储器501和处理器502。
其中,所述存储器501用于存储程序指令。所述处理器502用于调用所述存储器501中的程序指令,以执行如下操作:
根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
可选地,所述处理器502具体用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
可选地,所述处理器502还用于:
若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
可选地,所述处理器502还用于:
若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
可选地,所述处理器502具体用于:
若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波用于控制所述续流管。
可选地,所述处理器502还用于:
若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
可选地,所述处理器502具体用于:
根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
可选地,所述处理器502具体用于:
根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
可选地,所述处理器502具体用于:
根据所述开关电源装置的输入电压、输出电压以及所述主控管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
可以理解的是,图5仅仅示出了开关电源装置的简化设计。可选地,开关电源装置还可以包含:功率装置和/或检测装置(用于检测电感电流、所述开关电源装置的输入电压和输出电压等参数)等;所有可以实现本申请的开关电源装置都在本申请的保护范围之内。
本实施例的开关电源装置,可以用于执行本申请上述对应的续流管的控制方法实施例所提供的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述各实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来 实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (20)

  1. 一种续流管的控制方法,其特征在于,包括:
    根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
    判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
    根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通,包括:
    若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
    若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
    若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通,还包括:
    若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,根据所述第一脉宽值控制所述续流管的导通,包括:
    若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波用于控制所述续流管。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
  7. 根据权利要求1-4中任一项所述的方法,其特征在于,根据所述第二脉宽值控制所述续流管的导通,包括:
    根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述根据电感电流定律 获取开关电源装置中的续流管的第一脉宽值,包括:
    根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述根据伏秒平衡定律获取所述续流管的第二脉宽值,包括:
    根据所述开关电源装置的输入电压、输出电压以及所述主控管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
  10. 一种续流管的控制装置,其特征在于,包括:
    获取模块,用于根据电感电流定律获取开关电源装置中的续流管的第一脉宽值以及根据伏秒平衡定律获取所述续流管的第二脉宽值;
    判断模块,用于判断所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和是否满足第一预设条件,得到判断结果;
    控制模块,用于根据所述判断结果确定根据所述第一脉宽值或者所述第二脉宽值控制所述续流管的导通。
  11. 根据权利要求10所述的装置,其特征在于,所述控制模块具体用于:
    若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和满足所述第一预设条件,则判断所述第二脉宽值与所述第三脉宽值之和是否满足第二预设条件;
    若所述第二脉宽值与所述第三脉宽值之和满足所述第二预设条件,则根据所述第二脉宽值控制所述续流管的导通;
    若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件,则判断所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数是否小于预设阈值;
    若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数小于所述预设阈值,则根据所述第二脉宽值控制所述续流管的导通。
  12. 根据权利要求11所述的装置,其特征在于,所述控制模块还用于:
    若所述第二脉宽值与所述第三脉宽值之和不满足所述第二预设条件的次数大于或等于所述预设阈值,则根据所述第一脉宽值控制所述续流管的导通。
  13. 根据权利要求10-12中任一项所述的装置,其特征在于,所述控制模块还用于:
    若所述第一脉宽值与所述开关电源装置中的主控管的第三脉宽值之和不满足所述第一预设条件,则根据所述第一脉宽值控制所述续流管的导通。
  14. 根据权利要求10-13中任一项所述的装置,其特征在于,所述控制模块具体用于:
    若所述第一脉宽值小于或等于预设脉宽值,则根据所述第一脉宽值控制所述开关电源装置中的脉冲宽度调制PWM生成装置生成第一PWM波;其中,所述第一PWM波用于控制所述续流管。
  15. 根据权利要求14所述的装置,其特征在于,所述控制模块还用于:
    若所述第一脉宽值大于所述预设脉宽值,则根据所述预设脉宽值控制所述PWM生成装置生成第二PWM波;其中,所述第二PWM波用于控制所述续流管。
  16. 根据权利要求10-13中任一项所述的装置,其特征在于,所述控制模块具体用于:
    根据所述第二脉宽值控制所述开关电源装置中的PWM生成模块生成第三PWM波;其中,所述第三PWM波用于控制所述续流管。
  17. 根据权利要求10-16中任一项所述的装置,其特征在于,所述获取模块,包括:
    第一确定单元,用于根据所述开关电源装置中的电感的电感值、所述电感的电流以及所述开关电源装置的输出电压,按照所述电感电流定律确定所述第一脉宽值。
  18. 根据权利要求10-17中任一项所述的装置,其特征在于,所述获取模块,包括:
    第二确定单元,用于根据所述开关电源装置的输入电压、输出电压以及所述主控管的第三脉宽值,按照所述伏秒平衡定律确定所述第二脉宽值。
  19. 一种开关电源装置,其特征在于,包括:
    如权利要求10-18中任一项所述的续流管的控制装置。
  20. 一种开关电源装置,其特征在于,包括:存储器以及处理器;
    其中,所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令,以执行如权利要求1-9中任一项所述的方法。
PCT/CN2018/102736 2017-09-01 2018-08-28 续流管的控制方法、装置及开关电源装置 WO2019042280A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18849797.8A EP3667881B1 (en) 2017-09-01 2018-08-28 Method and device for controlling a transistor acting as flyback diode and power supply switching device
US16/805,092 US10917014B2 (en) 2017-09-01 2020-02-28 Free-wheeling diode control method and apparatus and power switching apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710777928.4 2017-09-01
CN201710777928.4A CN107482885B (zh) 2017-09-01 2017-09-01 续流管的控制方法、装置及开关电源装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/805,092 Continuation US10917014B2 (en) 2017-09-01 2020-02-28 Free-wheeling diode control method and apparatus and power switching apparatus

Publications (1)

Publication Number Publication Date
WO2019042280A1 true WO2019042280A1 (zh) 2019-03-07

Family

ID=60603321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102736 WO2019042280A1 (zh) 2017-09-01 2018-08-28 续流管的控制方法、装置及开关电源装置

Country Status (4)

Country Link
US (1) US10917014B2 (zh)
EP (1) EP3667881B1 (zh)
CN (1) CN107482885B (zh)
WO (1) WO2019042280A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482885B (zh) * 2017-09-01 2019-12-06 华为数字技术(苏州)有限公司 续流管的控制方法、装置及开关电源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189601A (en) * 1991-11-18 1993-02-23 Eni Div. Of Astec America, Inc. Half bridge converter with current mode controller
CN102624211A (zh) * 2012-04-16 2012-08-01 北京新雷能科技股份有限公司 直流-直流变换器的预偏置开机电路及控制方法
CN103066825A (zh) * 2011-12-21 2013-04-24 华为技术有限公司 一种电源关机方法及电源
CN103166442A (zh) * 2013-03-27 2013-06-19 华为技术有限公司 防止降压buck电路电流反向的装置、变换器及电源
CN107482885A (zh) * 2017-09-01 2017-12-15 华为数字技术(苏州)有限公司 续流管的控制方法、装置及开关电源装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977492B2 (en) * 2002-07-10 2005-12-20 Marvell World Trade Ltd. Output regulator
US7088081B2 (en) * 2004-06-28 2006-08-08 International Rectifier Corporation High frequency partial boost power factor correction control circuit and method
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US7986135B2 (en) * 2008-05-13 2011-07-26 L&L Engineering, Llc Method and systems for conduction mode control
EP2642650A1 (en) * 2012-03-19 2013-09-25 Zentrum Mikroelektronik Dresden AG Power converter with average current limiting
CN103199700B (zh) * 2013-03-22 2015-08-12 成都芯源系统有限公司 升降压变换器及其控制器和控制方法
US9431896B2 (en) 2013-12-19 2016-08-30 Texas Instruments Incorporated Apparatus and method for zero voltage switching in bridgeless totem pole power factor correction converter
US9608520B2 (en) * 2014-05-30 2017-03-28 Skyworks Solutions, Inc. Mode control device, voltage converter, and control method used in the voltage converter
CN105356739B (zh) * 2014-08-21 2018-06-26 维谛技术有限公司 一种图腾无桥pfc电路的控制方法、装置和整流电路
EP3322077A1 (en) * 2016-11-15 2018-05-16 Nxp B.V. Dc-dc converter controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189601A (en) * 1991-11-18 1993-02-23 Eni Div. Of Astec America, Inc. Half bridge converter with current mode controller
CN103066825A (zh) * 2011-12-21 2013-04-24 华为技术有限公司 一种电源关机方法及电源
CN102624211A (zh) * 2012-04-16 2012-08-01 北京新雷能科技股份有限公司 直流-直流变换器的预偏置开机电路及控制方法
CN103166442A (zh) * 2013-03-27 2013-06-19 华为技术有限公司 防止降压buck电路电流反向的装置、变换器及电源
CN107482885A (zh) * 2017-09-01 2017-12-15 华为数字技术(苏州)有限公司 续流管的控制方法、装置及开关电源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667881A4

Also Published As

Publication number Publication date
US20200204077A1 (en) 2020-06-25
EP3667881A4 (en) 2020-08-19
CN107482885A (zh) 2017-12-15
EP3667881A1 (en) 2020-06-17
EP3667881B1 (en) 2023-04-05
CN107482885B (zh) 2019-12-06
US10917014B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2020082940A1 (zh) 一种飞跨电容的充电方法及装置
WO2013117091A1 (zh) 无桥功率因数校正电路及其控制方法
WO2018036315A1 (zh) 谐振变换器及电流处理方法
CN106877672A (zh) 谐振变换器及其方法
CN103597721B (zh) 非绝缘降压开关稳压器及其控制电路、电子设备、ac适配器
WO2016004700A1 (zh) 交错式功率因数校正器
KR101910303B1 (ko) 충전 회로와 모바일 단말기
CN114301297A (zh) 一种功率变换器、增大逆向增益范围的方法、装置、介质
WO2019042280A1 (zh) 续流管的控制方法、装置及开关电源装置
CN108123598A (zh) 双向dc/dc变换器、双向电压变换方法、装置及系统
Ye et al. Inductive decoupling‐based multi‐channel LED driver without electrolytic capacitors
Ismail‎ et al. Step‐up/step‐down DC‐DC converter with near zero input/output current ripples
CN1684352A (zh) 电源转换器的控制器及其控制方法
WO2016082418A1 (zh) 一种功率因数控制方法及装置
CN114123801B (zh) 基于llc电路的升压电路的控制方法和控制装置
US20150222179A1 (en) Electric power device and method for providing electric power in electric power device
WO2017186030A1 (zh) 一种三相电路装置及其实现整流的方法、计算机存储介质
CN207835866U (zh) 恒流开关电源控制电路、芯片及led驱动电路
JP2022509095A (ja) 光電変換器ストリング、制御方法、及びシステム
WO2023070584A1 (zh) 一种功率变换器、电源适配器、电子设备和功率变换方法
CN113224931B (zh) 一种整流器的控制方法、装置、设备和存储介质
CN117134605B (zh) 供电电路、供电控制方法和供电装置
US20240195323A1 (en) Micro inverter and modulation method thereof
CN212875435U (zh) 充电电路及其集成电路
CN111342441B (zh) 一种dc/dc变换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849797

Country of ref document: EP

Effective date: 20200312