WO2019042055A1 - 太阳能电池及其切割方法和设备 - Google Patents

太阳能电池及其切割方法和设备 Download PDF

Info

Publication number
WO2019042055A1
WO2019042055A1 PCT/CN2018/097287 CN2018097287W WO2019042055A1 WO 2019042055 A1 WO2019042055 A1 WO 2019042055A1 CN 2018097287 W CN2018097287 W CN 2018097287W WO 2019042055 A1 WO2019042055 A1 WO 2019042055A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cutting
solar cell
corners
cut
Prior art date
Application number
PCT/CN2018/097287
Other languages
English (en)
French (fr)
Inventor
汝小宁
曲铭浩
龙巍
蒋奇拯
舒毅
陈凡
Original Assignee
米亚索乐装备集成(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索乐装备集成(福建)有限公司 filed Critical 米亚索乐装备集成(福建)有限公司
Priority to KR1020187030674A priority Critical patent/KR20190032271A/ko
Priority to US16/097,232 priority patent/US20190131484A1/en
Priority to JP2018550399A priority patent/JP2019531591A/ja
Publication of WO2019042055A1 publication Critical patent/WO2019042055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/463Mechanical treatment, e.g. grinding, ultrasonic treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of solar cell technologies, and in particular, to a solar cell and a cutting method and device thereof.
  • high-efficiency thin film batteries such as copper indium gallium selenide and gallium arsenide are regarded as the second generation solar cells capable of replacing crystalline silicon batteries, and have high photoelectric conversion efficiency and good stability. Strong anti-radiation ability.
  • Thin-film solar cells based on flexible substrates such as stainless steel are light in weight, windable, flexible in deployment, and high in mass-to-power. Therefore, they have broad market application prospects and are increasingly favored by people.
  • a large-size battery needs to be cut to a specific size, and a plurality of monolithic battery integrated packages are formed to form a final desired product type.
  • the purpose of the present application is to provide a solar cell and a cutting method and apparatus thereof to solve the above problems in the prior art, so as to avoid the occurrence of a single-chip battery that damages the battery insulation layer or the waterproof layer due to the occurrence of corners, resulting in the interior of the battery or The problem of short circuit between batteries.
  • the present application provides a method for cutting a solar cell, comprising the following steps:
  • the transition laminated battery is cut into a single piece of battery, and the corners of the single piece of the battery are cut into rounded corners.
  • the method for cutting a solar cell as described above, wherein, preferably, cutting the continuous thin film solar cell on the substrate into a predetermined size intermediate transition battery specifically comprises:
  • the large battery is cut into intermediate transition batteries of a predetermined size.
  • the method for cutting a solar cell as described above, wherein, preferably, cutting the corners of the single-cell battery into rounded corners specifically includes:
  • the corners of the single-cell battery are cut into rounded corners by a circular cutter.
  • the cutting method of the solar cell as described above, wherein, preferably, cutting the corners of the single-cell battery with a circular cutter comprises:
  • the cutting method of the solar cell as described above, wherein, preferably, cutting the corners of the single-cell battery with a circular cutter comprises:
  • controlling the movement of the circular arc cutter in a direction perpendicular to the single-chip battery transmission comprises:
  • the circular cutter is controlled to move in a set step size.
  • the cutting position of the circular cutter is adjusted along the diagonal movement of the edge to be cut on the single-chip battery to control the size of the rounded corner formed after cutting the corner.
  • the circular arc cutter is composed of a curved blade and a rectangular blade, or the circular arc cutter is integrally formed by a curved blade and a rectangular blade.
  • the radius of the rounded corner formed on the single-chip battery is ⁇ /96 to ⁇ /2.
  • the single-cell battery has a length ranging from 300 to 320 mm, and the single-cell battery has a width ranging from 40 to 45 mm, and the intermediate transition battery
  • the length range is from 1500 to 1600 mm, and the intermediate transition battery has a width ranging from 40 to 45 mm.
  • the method for cutting a solar cell as described above wherein, after cutting the transition laminated battery into a single-piece battery, and cutting the corners of the single-chip battery into rounded corners, the method further comprises:
  • the molding quality of the single-cell battery was measured and binned.
  • the method for cutting a solar cell as described above, wherein, preferably, cutting the transition laminated battery into a single-cell battery comprises:
  • the transition laminated battery is cut into a single piece of battery by the cooperation of a rectangular blade and a curved blade.
  • the present application further provides a solar cell comprising at least one rounded corner obtained by cutting according to the cutting method described in any one of the preceding claims.
  • the radius of the round corner of the solar cell ranges from ⁇ /96 to ⁇ /2.
  • the present application further provides an arc cutter for cutting a solar cell, the cutter comprising a curved blade and a rectangular blade; the cutter being composed of the curved blade and the rectangular blade, or
  • the circular arc cutter is integrally formed by a curved blade and a rectangular blade.
  • the curved blade includes at least a first curved blade and a second curved blade
  • the first curved blade and the second curved blade are disposed along an edge of the battery to be cut; or the first curved blade and the second curved blade are disposed along a diagonal of the battery to be cut.
  • the circular cutter for cutting a solar cell as described above wherein it is preferable that the first curved blade and/or the second curved blade have a curvature value of ⁇ /2.
  • the cutting method of the solar cell provided by the present application cuts the corners of the single-chip battery into rounded corners by means of circular cutting by means of a circular cutter, thereby avoiding the formation of a corner in the prior art due to the cornering of the corners. This causes damage to the insulation of the adjacent monolithic battery or damage to the self-waterproof layer, which in turn causes a problem of internal or external short circuit of the battery.
  • FIG. 1 is a view showing a state in which a corner is generated on a single-chip battery in the prior art
  • FIG. 2 is a flow chart of a method for cutting a solar cell according to an embodiment of the present application
  • FIG. 3 is a flow chart of another method for cutting a solar cell according to an embodiment of the present application.
  • Figure 4 is a schematic view of the corners on the single-chip battery after cutting
  • FIG. 5 is a schematic diagram of a circular arc cutter used in a cutting method of a solar cell according to an embodiment of the present application.
  • the battery in the process of preparing and integrating the small-sized single-chip battery 1, the battery is inevitably caused to bend by the influence of transmission, cutting, transportation, and external force collected by the robot, when multiple orders are
  • the corner 2 of the former single-chip battery 1 is easily pierced by the insulating layer and directly electrically connected to the stainless steel of the latter single-cell battery 1, resulting in a short circuit of the thin film solar cell module.
  • Even the corner 2 of the single-chip battery 1 pierces the backing material to conduct electricity with the aluminum layer of the waterproof layer, resulting in the occurrence of an internal short circuit such as an internal short circuit of the thin film solar cell module, which seriously affects the quality of the component preparation.
  • the embodiment of the present application provides another method for cutting a solar cell, which includes the following steps:
  • the continuous thin film solar cell on the substrate is cut into an intermediate transition battery of a preset size, wherein the intermediate transition battery may have a length range of 1500-1600 mm and a width range of 40-45 mm; in this embodiment Preferably, the intermediate transition cell has a length value of 1588 mm and a width value of 43.75 mm.
  • the size of the "continuous thin film solar cell on the substrate” is not specifically limited in this embodiment, and the number of times of cutting from “continuous thin film solar cell on the substrate" to "intermediate transition battery” is not specified. limited;
  • the transition laminated battery is cut into a single piece of battery, and the corners of the single piece of the battery are cut into rounded corners.
  • the embodiment of the present application provides another method for cutting a solar cell, which includes the following steps:
  • the continuous thin film solar cell on the substrate is cut into a large-sized battery of a preset size, wherein the predetermined size may be determined according to actual production requirements.
  • the length of the large battery is 1588 mm.
  • its width value is 1000mm.
  • the large-sized battery is cut into an intermediate transition battery of a preset size, wherein the intermediate transition battery may have a length range of 1500-1600 mm and a width range of 40-45 mm; in this embodiment, preferably, The intermediate transition battery has a length of 1588 mm and a width of 43.75 mm.
  • the intermediate transition battery is laminated with the encapsulating material and the metal wire to form a transition laminated battery.
  • the transition laminated battery is cut into a single-piece battery 1, and the corners of the single-piece battery 1 are cut by a circular arc cutter. Since the cutter for cutting the corners of the single-piece battery 1 has a circular arc shape, the corners of the single-piece battery 1 are made. After the cutting, the rounded corners 11 are formed, see FIG. 4, thereby avoiding the damage of the insulating layer of the adjacent single-cell battery 1 or the damage of the self-waterproof layer caused by the corners being formed by the corners in the prior art. This in turn causes problems with internal or external short circuits in the battery.
  • the single-cell battery 1 may have a length range of 300-320 mm and a width range of 40-45 mm. In this embodiment, it is preferable that the single-chip battery has a length value of 310 mm and a width value of 43.75. Mm.
  • the continuous thin film solar cell on the substrate is first cut into a large-sized battery of a preset size; then the large-sized battery is cut into an intermediate transition battery of a preset size, and The intermediate transition cell is laminated with the encapsulating material and the metal wire to form a transition laminated battery; the transition laminated battery is then cut into a single cell. That is, in the present embodiment, the relationship between the surface area of the "bulk battery", the "intermediate transition battery” and the "monolithic battery” obtained by cutting is: “large battery” > "intermediate transition battery” > "single battery”.
  • cutting the transition laminated battery into the single-chip battery 1 may specifically: cutting the transition laminated battery into a single-piece battery 1 by the cooperation of the rectangular blade 20 and the circular cutter, thereby improving the pair Cutting efficiency of the transition laminated battery. Further, by the cooperation of the rectangular blade and the curved blade, the rectangular blade cuts the transition laminated battery into the single-piece battery 1, and the curved blade completes cutting an edge of the cut single-chip battery, and obtains A single-piece battery with a rounded corner improves the cutting efficiency of the transition laminate battery.
  • cutting the corners of the single-chip battery 1 by using a circular cutter specifically includes:
  • the “cutting depth” in the “cutting depth on the single-chip battery 1” mentioned in the present application can be interpreted as: the geometric shape defining the corner of the single-chip battery to be cut is common to both sides and the two sides.
  • the term “end depth” refers to the extent to which the cutting position of the circular cutter is away from the common end point. If the cutting position of the arc cutter is larger than the common end point, the “cutting depth” is large, and the curvature of the rounded corner obtained after cutting is large; if the cutting position of the circular cutter reaches the common end point When the distance is small, the "cutting depth” is small, and the curvature of the rounded corner obtained after cutting is small.
  • An edge on the set side of the single cell 1 is cut.
  • the turntable that controls the monolithic battery 1 is rotated by 90°.
  • the arc cutter cuts an edge of the single-chip battery 1, it will return to the initial position, and after the rotary table of the single-cell battery 1 is rotated by 90°, the circular cutter is applied to the single-chip battery 1. The other corner is cut. When the two corners of the single-cell battery 1 are cut off, the circular cutter returns to the initial position again, and the arc cutter is driven when the next single-cell battery 1 is driven to the cutting position.
  • the edge of the next single-cell battery 1 is cut again, whereby the cutting of the two corners of a single-cell battery 1 is achieved by the reciprocating motion of the circular cutter, and at the same time, the continuous reciprocating of the circular cutter
  • the movement realizes continuous cutting of a plurality of single-chip batteries 1 and corners, thereby effectively improving cutting efficiency.
  • the arc cutting knife can be automatically cut by the pneumatic control unit.
  • the cutting can be performed by a manual method, which is not limited in this embodiment.
  • the position of the battery cutting device is fixed, but the cutting of the corners of the single battery is realized by the cooperative movement of the turntable and the conveying mechanism, and in another embodiment, the single battery
  • the conveying mechanism moves to the cutting position
  • the circular cutter moves downward to cut an edge on the set side of the single-chip battery.
  • the circular cutter returns to the initial position.
  • the battery cutting device is translated along the set edge to another angular position on the set side, and the arc cutter is rotated by 90°, so that the circular arc of the circular cutter protrudes away from the single battery. And driving the circular cutter to move downward to cut another corner.
  • the single-chip battery conveys the cutting area while conveying the next single-chip battery to be cut to the cutting area, thereby achieving continuous cutting of the single-chip battery.
  • the circular cutter moves perpendicularly to the driving direction of the single-cell battery 1
  • the circular cutter can be controlled to move in the set step size, thereby ensuring the uniformity of the cutting size of the single-cell battery 1 and preventing the cutting depth from being too large. Or too small, at the same time, it is also possible to make the transmission between the adjacent two single-cell batteries 1 have a certain time interval, which is convenient for controlling the circular cutter in the continuous cutting state.
  • the number of the arc-shaped blades of the circular cutter in the present application may be one, or may be composed of two or four blades.
  • the circular cutter includes two arc-shaped blades, that is, the curved blade includes a first curved blade and a second curved blade, the first curved blade and the second curved blade are along the edge of the battery to be cut The first curved blade and the second curved blade are disposed along a diagonal of the battery to be cut.
  • the distance between the two curved blades can be set according to the size (length or width) of the single-chip battery to be cut, and at the same time, the cutting of the two corners of the single-chip battery to be cut is completed; when the circular cutter is included
  • the distance between the four curved blades can be set according to the size (length and width) of the single-chip battery to be cut, and at the same time, the cutting of the four corners of the single-chip battery to be cut is completed.
  • the cutting efficiency is further improved.
  • the uniformity of the curvature of the four rounded corners obtained after cutting is further improved, and the yield of the battery is improved.
  • the circular arc cutter may be an integral sheet cutter having an arc shape at one end, or a combination of an arcuate arc blade 30 and a rectangular blade 20, and in this embodiment,
  • the arc blade 30 and the rectangular blade 20 are combined to be mounted on the battery cutting device.
  • the rectangular blade 20 can be used separately after being disassembled.
  • the circular cutter in the present application may be composed of one curved blade and one rectangular blade; the circular cutter may also be composed of two curved blades and one rectangular blade, and at this time, the rectangular blade It is disposed between two curved blades; the circular cutter can also be composed of 4 curved blades and 2 rectangular blades. At this time, the rectangular blade is disposed between the two curved blades, and the two rectangular blades are opposite Settings. In this way, the cutting of the four corners can be completed at the same time, the uniformity of the curvature of the four rounded corners after cutting is improved, and the rectangular blade can further adjust the size of the single-chip battery, and improve the single-cell battery in the batch product. The consistency of size further improves the yield of the battery.
  • the method further includes:
  • the control of the fillet 11 arc formed after cutting is achieved at a depth perpendicular to the cutting direction of the monolithic battery 1.
  • the arc blade 30 may have a radians value of ⁇ /2, and the radius 11 has a maximum radians value of no more than ⁇ /2.
  • the single-chip battery 1 since the single-chip battery 1 has a certain flexibility, if the arc-cutting cutter is too small in contact with the angular direction of the single-piece battery 1 perpendicular to the cutting direction, during the cutting process, The single-chip battery 1 is easily separated from the cutting edge by its own deformation, resulting in uneven cutting, which causes quality problems of the single-chip battery 1. Therefore, in the actual cutting process, it is necessary to ensure that the cutting blade has a certain perpendicular to the cutting direction.
  • the cutting depth is further set to the minimum radians of the rounded corners 11.
  • the minimum radians of the rounded corners 11 are ⁇ /96, so that the radians of the rounded corners 11 can be set to ⁇ according to actual needs. Between /96 ⁇ /2.
  • the method further includes:
  • the molding quality of the single-sheet battery 1 is detected and subjected to binning collection to find out the appearance or performance problems of the cut single-chip battery 1, and to separate or correct the management in time.
  • the cutting method of the solar cell cuts the corners of the single-chip battery into rounded corners by adopting a circular cutting knife for reciprocating cutting, thereby avoiding the formation of the corners at the corners in the prior art.
  • the angle of the corner causes damage to the insulating layer of the adjacent monolithic battery or damage of the self-waterproof layer, thereby causing a problem of internal or external short circuit of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供了一种太阳能电池及其切割方法和设备,其中,太阳能电池的切割方法包括将衬底上连续的薄膜太阳能电池切割成预设尺寸的大片电池;将大片电池裁切成预设尺寸的中间过渡电池;将中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池;将过渡层压电池裁切成单片电池,并利用圆弧切刀切割单片电池的棱角。本申请提供的太阳能电池的切割方法,通过采用圆弧切刀进行往复切割的方式,将单片电池的棱角切割成圆角,从而避免了在现有技术中,由于棱角处翘起形成弯角,而造成相邻单片电池绝缘层的损伤或自身防水层的损伤,进而导致电池内部或外部短路的问题。

Description

太阳能电池及其切割方法和设备
本申请基于申请号为201710765841.5、申请日为2017年8月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及太阳能电池技术领域,尤其涉及一种太阳能电池及其切割方法和设备。
背景技术
目前,市场上规模化生产的薄膜电池中,铜铟镓硒、砷化镓等高效薄膜电池被视为是能够取代晶硅电池的第二代太阳能电池,具有光电转换效率高、稳定性好、抗辐射能力强等优点。基于不锈钢等柔性衬底的薄膜太阳电池质量轻、可卷绕、展开方式灵活、质量比功率高,因此具有广阔的市场应用前景,越来越受到人们的青睐。
针对卷绕式大尺寸的薄膜太阳能电池产品,为满足输出产品的电学使用需求,需要对大尺寸电池进行特定尺寸裁切,通过多个单片电池集成封装形成最终所需产品类型。
申请内容
本申请的目的是提供一种太阳能电池及其切割方法和设备,以解决上述现有技术中的问题,以避免发生单片电池因产生弯角而损伤电池绝缘层或防水层,导致电池内部或电池间短路的问题。
本申请提供了一种太阳能电池的切割方法,其中,包括如下步骤:
将衬底上连续的薄膜太阳能电池切割成预设尺寸的中间过渡电池;
将所述中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池;
将所述过渡层压电池裁切成单片电池,切割所述单片电池的棱角成为圆角。
如上所述的太阳能电池的切割方法,其中,优选的是,将衬底上连续的薄膜太阳能电池切割成预设尺寸的中间过渡电池具体包括:
将衬底上连续的薄膜太阳能电池切割成预设尺寸的大片电池;
将所述大片电池裁切成预设尺寸的中间过渡电池。
如上所述的太阳能电池的切割方法,其中,优选的是,切割所述单片电池的棱角成为圆角具体包括:
利用圆弧切刀切割所述单片电池的棱角成为圆角。
如上所述的太阳能电池的切割方法,其中,优选的是,利用圆弧切刀切割所述单片电池的棱角具体包括:
将所述圆弧切刀安装到电池切割设备上;
控制所述圆弧切刀沿垂直于所述单片电池传动方向移动;
切割所述单片电池上的设定边上的一棱角;
控制盛放所述单片电池的转台旋转90°;
切割所述设定边上的另一棱角。
如上所述的太阳能电池的切割方法,其中,优选的是,利用圆弧切刀切割所述单片电池的棱角具体包括:
将所述圆弧切刀安装到电池切割设备上;
控制所述圆弧切刀沿垂直于所述单片电池传动方向移动;
同时切割所述单片电池上的两个或四个棱角。
如上所述的太阳能电池的切割方法,其中,优选的是,控制所述圆弧切刀沿垂直于所述单片电池传动方向移动具体包括:
控制所述圆弧切刀以设定的步长移动。
如上所述的太阳能电池的切割方法,其中,优选的是,将所述圆弧切刀安装到电池切割设备上之后还包括:
沿所述单片电池上待切割棱角所在的对角线移动调节所述圆弧切刀的切 割位置,以控制切割棱角后所形成的圆角的大小。
如上所述的太阳能电池的切割方法,其中,优选的是,所述圆弧切刀由弧形刀片和矩形刀片组合而成,或者所述圆弧切刀由弧形刀片和矩形刀片一体成型。
如上所述的太阳能电池的切割方法,其中,优选的是,所述弧形刀片的弧度值为π/2。
如上所述的太阳能电池的切割方法,其中,优选的是,所述单片电池上切割后形成的圆角的弧度范围值为π/96~π/2。
如上所述的太阳能电池的切割方法,其中,优选的是,所述单片电池的长度范围值为300-320mm,所述单片电池的宽度范围值为40-45mm,所述中间过渡电池的长度范围值为1500-1600mm,所述中间过渡电池的宽度范围值为40-45mm。
如上所述的太阳能电池的切割方法,其中,优选的是,在将所述过渡层压电池裁切成单片电池,切割所述单片电池的棱角成为圆角之后还包括:
检测所述单片电池的成型质量,并进行分档收集。
如上所述的太阳能电池的切割方法,其中,优选的是,将所述过渡层压电池裁切成单片电池具体包括:
通过矩形刀片和弧形刀片的配合将所述过渡层压电池裁切成单片电池。
本申请进一步提供了一种太阳能电池,所述太阳能电池包括至少一个圆角,所述圆角由前述中任一项所述的切割方法切割得到。
如上所述的太阳能电池,其中,优选的是,所述太阳能电池的圆角的弧度范围值为π/96~π/2。
本申请进一步提供了一种用于切割太阳能电池的圆弧切刀,所述切刀包括弧形刀片和矩形刀片;所述切刀由所述弧形刀片和所述矩形刀片组合而成,或者所述圆弧切刀由弧形刀片和矩形刀片一体成型。
如上所述的用于切割太阳能电池的圆弧切刀,其中,优选的是,所述弧形刀片至少包括第一弧形刀片和第二弧形刀片,
所述第一弧形刀片与第二弧形刀片沿待切割电池的边缘设置;或者,所述第一弧形刀片与第二弧形刀片沿待切割电池的对角线设置。
如上所述的用于切割太阳能电池的圆弧切刀,其中,优选的是,所述第 一弧形刀片和/或第二弧形刀片的弧度值为π/2。
本申请提供的太阳能电池的切割方法,通过采用圆弧切刀进行往复切割的方式,将单片电池的棱角切割成圆角,从而避免了在现有技术中,由于棱角处翘起形成弯角,而造成相邻单片电池绝缘层的损伤或自身防水层的损伤,进而导致电池内部或外部短路的问题。
附图说明
下面结合附图对本申请的具体实施方式作进一步详细的说明。
图1为现有技术中单片电池上产生弯角的状态图;
图2为本申请实施例提供的太阳能电池的切割方法的流程图;
图3为本申请实施例提供的另一太阳能电池的切割方法的流程图;
图4为单片电池上的棱角在切割后的示意图;
图5为本申请实施例提供的太阳能电池的切割方法中使用的圆弧切刀的示意图。
附图标记说明:
1-单片电池    2-弯角
11-圆角       20-矩形刀片    30-弧形刀片
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
如图1所示,小尺寸单片电池1在被制备以及集成形成产品的过程中,由于传动、切割、运输及机械手收集外力等影响导致电池不可避免的产生弯角2现象,当多个单片电池1串联排布时,前一个单片电池1的弯角2容易刺穿绝缘层直接与后一个单片电池1的不锈钢导通,导致薄膜太阳能电池组件出现短路现象。甚至单片电池1的弯角2刺穿背板材料从而与防水层铝层导通,导致薄膜太阳能电池组件出现内部短路等其他潜在的导致组件封装短 路的风险,严重影响了组件制备的质量。
如图2所示,本申请实施例提供了另一种太阳能电池的切割方法,其包括如下步骤:
将衬底上连续的薄膜太阳能电池切割成预设尺寸的中间过渡电池,其中,该中间过渡电池的长度范围值可以为1500-1600mm,其宽度范围值可以为40-45mm;在本实施例中,优选的是,中间过渡电池的长度值为1588mm,其宽度值为43.75mm。需要说明的是,本实施例对“衬底上连续的薄膜太阳能电池”的大小不作具体限定,同时,对从“衬底上连续的薄膜太阳能电池”到“中间过渡电池”的切割次数不作具体限定;
将所述中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池;
将所述过渡层压电池裁切成单片电池,切割所述单片电池的棱角成为圆角。
如图3所示,本申请实施例提供了另一种太阳能电池的切割方法,其包括如下步骤:
将衬底上连续的薄膜太阳能电池切割成预设尺寸的大片电池,其中,该预设的尺寸可以根据实际生产要求而定,在本实施例中,优选的是,大片电池的长度值为1588mm,其宽度值为1000mm。
将大片电池裁切成预设尺寸的中间过渡电池,其中,该中间过渡电池的长度范围值可以为1500-1600mm,其宽度范围值可以为40-45mm;在本实施例中,优选的是,中间过渡电池的长度值为1588mm,其宽度值为43.75mm。
将中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池。
将过渡层压电池裁切成单片电池1,并利用圆弧切刀切割单片电池1的棱角,由于切割单片电池1的棱角的切刀为圆弧形,使单片电池1的棱角处在切割后形成圆角11,参见图4,从而避免了在现有技术中,由于棱角处翘起形成弯角,而造成相邻单片电池1绝缘层的损伤或自身防水层的损伤,进而导致电池内部或外部短路的问题。
其中,单片电池1的长度范围值可以为300-320mm,其宽度范围值可以为40-45mm,在本实施例中,优选的是,单片电池的长度值为310mm,其宽度值为43.75mm。
本申请实施例提供的一种太阳能电池的切割方法中,先将衬底上连续的薄膜太阳能电池切割成预设尺寸的大片电池;然后将大片电池裁切成预设尺寸的中间过渡电池,将中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池;再将过渡层压电池裁切成单片电池。即,本实施例中,切割得到的“大片电池”、“中间过渡电池”和“单片电池”的表面积的大小关系为:“大片电池”>“中间过渡电池”>“单片电池”。
需要说明的是,将过渡层压电池裁切成单片电池1具体可以为:通过矩形刀片20和圆弧切刀的配合将过渡层压电池裁切成单片电池1,由此可以提高对过渡层压电池的裁切效率。进一步的,可通过矩形刀片和弧形刀片的配合,矩形刀片将过渡层压电池裁切成单片电池1的同时,弧形刀片完成了对切割得到的单片电池的一个棱角的切割,得到具有一个圆角的单片电池,提高了对过渡层压电池的裁切效率。
进一步地,利用圆弧切刀切割单片电池1的棱角具体包括:
将圆弧切刀安装到电池切割设备上。
控制圆弧切刀沿垂直于单片电池1传动方向移动,其中,在切割前,且在垂直于切割方向上,需要调节圆弧切刀在单片电池1上的切割深度,以控制切割后的圆角11弧度的大小,以实现圆角11既不会划伤电池,又可以使切割掉的材料尽可能少,减少材料的浪费。
需要说明的是,本申请前述的“单片电池1上的切割深度”中的“切割深度”可以解释为:定义待切割的单片电池的棱角的几何形状由两条边和该两边的共同端点构成,此处的“切割深度”是指圆弧切刀的切割位置远离该共同端点的程度。如果圆弧切刀的切割位置到该共同端点的距离较大,则“切割深度”较大,切割后得到的圆角的弧度也就大;如果圆弧切刀的切割位置到该共同端点的距离较小,则“切割深度”较小,切割后得到的圆角的弧度也就小。
切割单片电池1上的设定边上的一棱角。
控制盛放单片电池1的转台旋转90°。
切割设定边上的另一棱角。
具体而言,当圆弧切刀切割一单片电池1的一棱角后会回程至初始位置,待盛放单片电池1的转台旋转90°后,圆弧切刀对该单片电池1上的另一棱 角进行切割,当该单片电池1上的两个棱角均切除后,圆弧切刀再次回程至初始位置,待下一个单片电池1传动到切割位置处时,圆弧切刀再次对该下一个单片电池1的棱角进行切割,由此通过圆弧切刀的往复运动实现了对一个单片电池1上的两个棱角的切割,同时,通过圆弧切刀的持续往复运动,实现了多个单片电池1棱角的连续切割,从而有效提高了切割效率。其中,该圆弧切刀可以通过气动控制单元实现自动切割,当然,在单片电池1数量较少的情况下,也可以通过手动的方式进行切割,对此本实施例不作限定。
需要说明的是,在上述切割工作过程中,电池切割设备的位置固定不动,而是通过转台和传送机构的配合运动实现单片电池棱角的切割,而在又一实施例中,单片电池随传送机构运动至切割位置处时,圆弧切刀向下运动,以对单片电池上设定边上的一棱角进行切割,待切割完成后,圆弧切刀回程至初始位置,此时电池切割设备沿该设定边平移到该设定边上的另一棱角位置处,同时将圆弧切刀旋转90°,使圆弧切刀的圆弧面向背离单片电池的方向凸出,并驱动圆弧切刀向下运动,以对另一棱角进行切割,待切割完成后,圆弧切刀回程,同时电池切割设备沿该设定边反向平移至初始位置,传送机构将切割后的单片电池输送出切割区域,同时将下一待切割单片电池输送至切割区域,从而实现了对单片电池的连续切割。
在圆弧切刀沿垂直于单片电池1传动方向移动时,可以控制圆弧切刀以设定的步长移动,从而可以保证对单片电池1切割尺寸的一致性,防止切割深度过大或过小,同时也可以使在相邻两个单片电池1间的传送具有一定的时间间隔,便于对圆弧切刀在连续切割状态下的控制。
进一步的,本申请中圆弧切刀的弧形刀片的个数可以是1个,也可以由2个或4个刀片构成。当圆弧切刀中包含2个弧形刀片时,即弧形刀片包括第一弧形刀片和第二弧形刀片,所述第一弧形刀片与第二弧形刀片沿待切割电池的边缘设置,或者,所述第一弧形刀片与第二弧形刀片沿待切割电池的对角线设置。可根据待切割单片电池的大小(长度或宽度)设置这2个弧形刀片之间的距离,则,同时完成了对待切割单片电池的两个棱角的切割;当圆弧切刀中包含4个弧形刀片时,可根据待切割单片电池的大小(长度和宽度)设置这4个弧形刀片之间的距离,则,同时完成了对待切割单片电池的四个棱角的切割,进一步提高了切割效率,同时,由于多个弧形刀片的相对 位置固定,进一步提高了切割后得到的四个圆角的弧度的一致性,提高电池的成品率。
其中,如图5所示,圆弧切刀可以是一端为圆弧状的整体片状切刀,或者是圆弧状的弧形刀片30和矩形刀片20的组合,而在本实施例中,为了增加圆弧切刀的使用功能,采用弧形刀片30和矩形刀片20组合的方式安装到电池切割设备上,当需要使用矩形刀片20时,可以将其拆卸后独立使用。
进一步的,本申请中的圆弧切刀可以由1个弧形刀片和1个矩形刀片构成;圆弧切刀也可以由2个弧形刀片和1个矩形刀片构成,此时,该矩形刀片设置在两个弧形刀片之间;圆弧切刀也可以由4个弧形刀片和2个矩形刀片构成,此时,矩形刀片设置在两个弧形刀片之间,且两个矩形刀片相对设置。这样,可同时完成对四个棱角的切割,提高了切割后得到的四个圆角的弧度的一致性,且,矩形刀片可进一步调整单片电池的大小,提高了批次产品中单片电池大小的一致性,进一步提高了电池的成品率。
进一步地,将所述圆弧切刀安装到电池切割设备上之后还包括:
沿所述单片电池上待切割棱角所在的对角线移动调节所述圆弧切刀的切割位置,以控制切割棱角后所形成的圆角的大小,由此可以通过改变弧形刀片30相对于单片电池1在垂直于切割方向上的深度,来实现对切割后形成的圆角11弧度的控制。
具体地,弧形刀片30的弧度值可以为π/2,且该圆角11的最大弧度值不超过π/2。
需要说明的是,如图4所示,由于单片电池1具有一定的柔性,若圆弧切刀在垂直于切割方向上与单片电池1的棱角接触深度过小,则在切割过程中,单片电池1易因自身的变形而脱离切刀刃口,导致切料不齐,造成单片电池1的质量问题,故在实际切割过程中,需要保证切刀在垂直于切割方向上具有一定的切割深度,进而设定了圆角11的最小弧度值,在本实施例中,圆角11的最小弧度值为π/96,由此圆角11的弧度值可以根据实际需要设定在为π/96~π/2之间。
进一步地,在将过渡层压电池裁切成单片电池1,并利用圆弧切刀切割单片电池1的棱角之后可以还包括:
检测单片电池1的成型质量,并进行分档收集,以发现切割后的单片电 池1存在的外观或性能上的问题,并及时分离或修正管理。
本申请实施例提供的太阳能电池的切割方法,通过采用圆弧切刀进行往复切割的方式,将单片电池的棱角切割成圆角,从而避免了在现有技术中,由于棱角处翘起形成弯角,而造成相邻单片电池绝缘层的损伤或自身防水层的损伤,进而导致电池内部或外部短路的问题。
以上依据图式所示的实施例详细说明了本申请的构造、特征及作用效果,以上所述仅为本申请的较佳实施例,但本申请不以图面所示限定实施范围,凡是依照本申请的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本申请的保护范围内。

Claims (16)

  1. 一种太阳能电池的切割方法,其特征在于,包括如下步骤:
    将衬底上连续的薄膜太阳能电池切割成预设尺寸的中间过渡电池;
    将所述中间过渡电池与封装材料及金属线材集成层压,以形成过渡层压电池;
    将所述过渡层压电池裁切成单片电池,切割所述单片电池的棱角成为圆角。
  2. 根据权利要求1所述的太阳能电池的切割方法,其特征在于,将衬底上连续的薄膜太阳能电池切割成预设尺寸的中间过渡电池具体包括:
    将衬底上连续的薄膜太阳能电池切割成预设尺寸的大片电池;
    将所述大片电池裁切成预设尺寸的中间过渡电池。
  3. 根据权利要求1所述的太阳能电池的切割方法,其特征在于,切割所述单片电池的棱角成为圆角具体包括:
    利用圆弧切刀切割所述单片电池的棱角成为圆角。
  4. 根据权利要求3所述的太阳能电池的切割方法,其特征在于,利用圆弧切刀切割所述单片电池的棱角具体包括:
    将所述圆弧切刀安装到电池切割设备上;
    控制所述圆弧切刀沿垂直于所述单片电池传动方向移动;
    切割所述单片电池上的设定边上的一棱角;
    控制盛放所述单片电池的转台旋转90°;
    切割所述设定边上的另一棱角。
  5. 根据权利要求3所述的太阳能电池的切割方法,其特征在于,利用圆弧切刀切割所述单片电池的棱角具体包括:
    将所述圆弧切刀安装到电池切割设备上;
    控制所述圆弧切刀沿垂直于所述单片电池传动方向移动;
    同时切割所述单片电池上的两个或四个棱角。
  6. 根据权利要求4所述的太阳能电池的切割方法,其特征在于,控制所述圆弧切刀沿垂直于所述单片电池传动方向移动具体包括:
    控制所述圆弧切刀以设定的步长移动。
  7. 根据权利要求5所述的太阳能电池的切割方法,其特征在于,将所述圆弧切刀安装到电池切割设备上之后还包括:
    沿所述单片电池上待切割棱角所在的对角线移动调节所述圆弧切刀的切割位置,以控制切割棱角后所形成的圆角的大小。
  8. 根据权利要求3-7任一项所述的太阳能电池的切割方法,其特征在于,所述圆弧切刀由弧形刀片和矩形刀片组合而成,或者所述圆弧切刀由弧形刀片和矩形刀片一体成型。
  9. 根据权利要求1所述的太阳能电池的切割方法,其特征在于,所述单片电池的长度范围值为300-320mm,所述单片电池的宽度范围值为40-45mm,所述中间过渡电池的长度范围值为1500-1600mm,所述中间过渡电池的宽度范围值为40-45mm。
  10. 根据权利要求1所述的太阳能电池的切割方法,其特征在于,在将所述过渡层压电池裁切成单片电池,切割所述单片电池的棱角成为圆角之后还包括:
    检测所述单片电池的成型质量,并进行分档收集。
  11. 根据权利要求1所述的太阳能电池的切割方法,其特征在于,将所述过渡层压电池裁切成单片电池具体包括:
    通过矩形刀片和弧形刀片的配合将所述过渡层压电池裁切成单片电池。
  12. 一种太阳能电池,其特征在于:
    所述太阳能电池包括至少一个圆角,所述圆角由权利要求1-11中任一项所述的切割方法切割得到。
  13. 根据权利要求12所述的太阳能电池,其特征在于:
    所述太阳能电池的圆角的弧度范围值为π/96~π/2。
  14. 一种用于切割太阳能电池的圆弧切刀,其特征在于:
    所述圆弧切刀包括弧形刀片和矩形刀片;
    所述圆弧切刀由所述弧形刀片和所述矩形刀片组合而成,或者所述圆弧切刀由弧形刀片和矩形刀片一体成型。
  15. 根据权利要求14所述的用于切割太阳能电池的圆弧切刀,其特征在于:所述弧形刀片至少包括第一弧形刀片和第二弧形刀片,
    所述第一弧形刀片与第二弧形刀片沿待切割电池的边缘设置;或者,所 述第一弧形刀片与第二弧形刀片沿待切割电池的对角线设置。
  16. 根据权利要求15所述的一种用于切割太阳能电池的圆弧切刀,其特征在于:
    所述第一弧形刀片和/或第二弧形刀片的弧度值为π/2。
PCT/CN2018/097287 2017-08-30 2018-07-26 太阳能电池及其切割方法和设备 WO2019042055A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187030674A KR20190032271A (ko) 2017-08-30 2018-07-26 태양에너지전지 및 그 절단방법과 설비
US16/097,232 US20190131484A1 (en) 2017-08-30 2018-07-26 Solar Cell and Cutting Method and Device thereof
JP2018550399A JP2019531591A (ja) 2017-08-30 2018-07-26 太陽電池、その切断方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710765841.5 2017-08-30
CN201710765841.5A CN107527807B (zh) 2017-08-30 2017-08-30 太阳能电池的切割方法

Publications (1)

Publication Number Publication Date
WO2019042055A1 true WO2019042055A1 (zh) 2019-03-07

Family

ID=60682967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097287 WO2019042055A1 (zh) 2017-08-30 2018-07-26 太阳能电池及其切割方法和设备

Country Status (5)

Country Link
US (1) US20190131484A1 (zh)
JP (1) JP2019531591A (zh)
KR (1) KR20190032271A (zh)
CN (1) CN107527807B (zh)
WO (1) WO2019042055A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527807B (zh) * 2017-08-30 2021-02-05 领凡新能源科技(北京)有限公司 太阳能电池的切割方法
CN108527522A (zh) * 2018-06-08 2018-09-14 米亚索乐装备集成(福建)有限公司 一种切割装置
CN111063754A (zh) * 2018-10-16 2020-04-24 北京汉能光伏投资有限公司 制作非标准电池组件的方法
CN110335922A (zh) * 2019-06-20 2019-10-15 成都珠峰永明科技有限公司 太阳能半片电池的切割方法
CN110137313A (zh) * 2019-06-25 2019-08-16 无锡先导智能装备股份有限公司 掰片系统及掰片方法
CN115070828A (zh) * 2022-05-11 2022-09-20 宣城开盛新能源科技有限公司 一种柔性cigs电池芯片切割装置及切割方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202247006U (zh) * 2011-09-06 2012-05-30 太仓协鑫光伏科技有限公司 太阳能级单晶硅片
CN103000711A (zh) * 2011-09-17 2013-03-27 赵钧永 改进的晶体硅片、电池片及太阳能发电装置
CN203651143U (zh) * 2013-12-24 2014-06-18 浙江晶尚新能源科技有限公司 一种太阳能组件用修边刀
CN106252446A (zh) * 2016-09-30 2016-12-21 晶澳(扬州)太阳能科技有限公司 一种低能耗太阳能电池组件
CN107527807A (zh) * 2017-08-30 2017-12-29 米亚索乐装备集成(福建)有限公司 太阳能电池的切割方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103078A (ja) * 1997-09-25 1999-04-13 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法及び製造装置並びに太陽電池モジュール
CN1805188A (zh) * 2005-01-14 2006-07-19 比亚迪股份有限公司 一种锂离子电池的极片及含有该极片的锂离子电池
DE102008020458B4 (de) * 2008-04-23 2011-06-22 Sunnyside upP GmbH, 51069 Verfahren und Vorrichtung zum Herstellen eines Solarzellenstrings
CN201336332Y (zh) * 2008-12-05 2009-10-28 深圳市倍特力电池有限公司 一种镍电池正极片以及使用该正极片的电池
CN201985201U (zh) * 2011-01-19 2011-09-21 哈尔滨光宇电源股份有限公司 一种安全性高的锂离子动力电池极片
CN103050578B (zh) * 2013-01-04 2015-09-16 普尼太阳能(杭州)有限公司 一种柔性薄膜太阳能电池的切割设备及切割方法
CN205646005U (zh) * 2016-02-01 2016-10-12 东莞新能源科技有限公司 一种软包装锂离子电池
CN106169517A (zh) * 2016-07-20 2016-11-30 中节能太阳能科技(镇江)有限公司 一种光伏组件及其制备工艺
CN106784105A (zh) * 2017-02-13 2017-05-31 晶澳(扬州)太阳能科技有限公司 一种高抗机械载荷太阳能电池组件及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202247006U (zh) * 2011-09-06 2012-05-30 太仓协鑫光伏科技有限公司 太阳能级单晶硅片
CN103000711A (zh) * 2011-09-17 2013-03-27 赵钧永 改进的晶体硅片、电池片及太阳能发电装置
CN203651143U (zh) * 2013-12-24 2014-06-18 浙江晶尚新能源科技有限公司 一种太阳能组件用修边刀
CN106252446A (zh) * 2016-09-30 2016-12-21 晶澳(扬州)太阳能科技有限公司 一种低能耗太阳能电池组件
CN107527807A (zh) * 2017-08-30 2017-12-29 米亚索乐装备集成(福建)有限公司 太阳能电池的切割方法

Also Published As

Publication number Publication date
CN107527807A (zh) 2017-12-29
CN107527807B (zh) 2021-02-05
JP2019531591A (ja) 2019-10-31
US20190131484A1 (en) 2019-05-02
KR20190032271A (ko) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2019042055A1 (zh) 太阳能电池及其切割方法和设备
CN113382835B (zh) 单晶硅片的制备方法和应用
WO2018018908A1 (zh) 一种太阳能电池片及组件及其制备工艺
CN203006596U (zh) 切割模组与裁切设备
CN102738291B (zh) 一种硅基异质结双面太阳能电池及其制备方法
JP2017130664A (ja) 太陽電池
US20130340826A1 (en) Flexible solar cell assembly and use of the same
TWI727728B (zh) 薄膜光伏電池串聯結構及薄膜光伏電池串聯的製備工藝
JP5755372B2 (ja) 光発電装置
CN105789678A (zh) 电芯卷绕叠片机用上片装置
CN110335922A (zh) 太阳能半片电池的切割方法
CN114639749A (zh) 一种光伏组件及其封装方法
JP2011222920A (ja) 帯状太陽電池素子、太陽電池モジュール及び太陽電池モジュールの製造方法
CN103426973A (zh) 隔离衬底层两面薄膜的方法及异质结太阳能电池制备工艺
TW201342635A (zh) Cigs系化合物太陽電池
CN102694079B (zh) 薄膜光伏电池生产用自动贴胶带和贴纵向汇流条装置
CN103178148A (zh) 一种薄膜/异质结叠层太阳电池及其制造方法
JP2011166075A (ja) 太陽電池モジュールの製造方法、太陽電池モジュールの製造装置及びロール状太陽電池モジュール
CN204243065U (zh) 光伏组件
JP2011077128A (ja) 光電変換装置
TWI517416B (zh) 異質接面太陽能電池及其製造方法
CN104465803A (zh) 一种背发射极异质结太阳电池及制备方法
CN219564389U (zh) 一种复合板材及其应用的光伏组件
CN212096511U (zh) 一种缠绕膜加工用边角料清理装置
CN204834657U (zh) 一种制备太阳能电池的挂具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187030674

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850090

Country of ref document: EP

Kind code of ref document: A1