WO2019039921A1 - 비정질 합금을 이용한 압력센서 - Google Patents

비정질 합금을 이용한 압력센서 Download PDF

Info

Publication number
WO2019039921A1
WO2019039921A1 PCT/KR2018/009839 KR2018009839W WO2019039921A1 WO 2019039921 A1 WO2019039921 A1 WO 2019039921A1 KR 2018009839 W KR2018009839 W KR 2018009839W WO 2019039921 A1 WO2019039921 A1 WO 2019039921A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
pressure
substrate
pressure sensor
amorphous alloy
Prior art date
Application number
PCT/KR2018/009839
Other languages
English (en)
French (fr)
Inventor
박원욱
이제원
손근용
문지성
김태훈
박성준
김진아
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Publication of WO2019039921A1 publication Critical patent/WO2019039921A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image

Definitions

  • the present invention relates to a pressure sensor using an amorphous alloy.
  • amorphous alloys are solid phase materials with a structure similar to a liquid phase in which atoms are irregularly arranged and thus have no crystal structure.
  • Amorphous alloys have an excellent anisotropy in crystallography, excellent mechanical strength, uniform structure and composition, and excellent corrosion resistance.
  • Pressure sensors are used to measure a wide range of pressures, from low to high pressures, such as automotive engine hydraulic and general industry pressure measurements, especially those requiring high precision.
  • a device including a strain gauge which is a type of pressure sensor
  • the strain gauge is deformed together as the substrate, which is a support of the strain gauge, is deformed.
  • a change in length occurs, which is changed to an electrical signal as the resistance value changes, thereby operating by the Wheatstone bridge principle.
  • stainless steel, aluminum, and Constantan are mainly used as the substrate of the pressure sensor.
  • these materials have a small elastic strain of about 0.2%, there is a problem that it is impossible to perform a wide range of measurement at the time of measurement.
  • the plastic deformation proceeds, which makes it difficult to measure the very small size because the accuracy and sensitivity of the sensor are deteriorated.
  • Patent Document No. 10-2001-0105084 was published on November 28, 2001.
  • An object of the present invention is to provide a pressure sensor having a large critical strain, thereby providing a pressure sensor having a wide measurement range.
  • the present invention also aims to provide a pressure sensor having excellent durability and corrosion resistance.
  • a pressure sensor includes a substrate at least a portion of which is made of an amorphous metal; An elastic film disposed on the substrate; And a pressure detecting thin film disposed on the elastic film and at least a part of which is made of an amorphous metal, wherein a critical strain of the substrate and the elastic film is not less than a critical strain of the pressure detecting thin film.
  • the pressure detecting thin film may include at least one of Cu, Co, Zr, Ni and Fe.
  • the strain at which the elastic deformation changes to plastic deformation may be 1.5 to 2.5%.
  • the pressure detecting thin film may include 20 to 70 at% of Zr, remaining Cu and other unavoidable impurities with respect to the entire pressure detecting thin film, and the thickness of the pressure detecting thin film may be 5 ⁇ or less.
  • the pressure detecting thin film may include 5 to 20 at% of Si, 5 to 20 at% of B, residual Co, and other unavoidable impurities with respect to the entire pressure detecting thin film.
  • At least any one of Cr, Fe and Ni may be included in an amount of 5 at% or less, and the thickness of the pressure detecting thin film may be 10 to 20 ⁇ .
  • the substrate may be either a bending type or a shear type.
  • the pressure-sensitive thin film and the substrate may be manufactured by any one of a rapid solidification method and a sputtering deposition method.
  • the pressure sensor according to the embodiment of the present invention is excellent in elastic strain, durability and corrosion resistance, and can measure a wide range of pressure with excellent precision.
  • FIG. 1 shows a pressure sensor comprising a substrate, an elastic membrane, and a pressure-sensitive thin film.
  • reference numerals are as follows.
  • 100 pressure sensor
  • 110 pressure detecting thin film
  • 120 elastic film
  • 130 substrate
  • FIG. 2 is an X-ray diffraction pattern of a thin film showing the amorphous structure of a Cu-Zr alloy produced by a sputtering deposition method according to Example 1 of the present invention.
  • FIG. 2 is an X-ray diffraction pattern of a thin film showing the amorphous structure of a Cu-Zr alloy produced by a sputtering deposition method according to Example 1 of the present invention.
  • Fig. 3 is an X-ray diffraction pattern of a thin film showing a crystalline structure of a Cu-Zr alloy produced by a sputtering deposition method according to Comparative Example 1 of the present invention.
  • Example 4 is a scanning electron microscope (EDS) analysis image of a CU-Zr thin film produced by a sputtering deposition method according to Example 1 of the present invention.
  • EDS scanning electron microscope
  • FIG. 5 is a photograph of a pressure-sensitive thin film formed by photolithography on an amorphous alloy thin film produced by a sputtering deposition method.
  • FIG. 6 is a photograph of a pressure-sensitive thin film formed by a laser processing method on an amorphous alloy thin film produced by a sputtering deposition method.
  • Fig. 7 shows a stress-strain diagram of the pressure sensor specimen as a result of the tensile test.
  • FIG. 1 shows a pressure sensor comprising a substrate, an elastic membrane, and a pressure-sensitive thin film.
  • a pressure sensor includes a substrate, at least a part of which is made of an amorphous metal; An elastic film disposed on the substrate; And a pressure detecting thin film disposed on the elastic film and at least a part of which is made of an amorphous metal, wherein a critical strain of the substrate and the elastic film is not less than a critical strain of the pressure detecting thin film.
  • the pressure sensor may be used for a measurement requiring a wide range of pressures, especially a pressure ranging from a low pressure to a high pressure, such as a hydraulic pressure of an automobile engine and a pressure measurement of a general industry.
  • the substrate may be an amorphous thin film or plate made by a rapid cooling method. Thick amorphous thin ribbons or plates may be produced by centrifugal casting.
  • thick amorphous thin ribbons or plates can be manufactured by vacuum centrifugal casting.
  • a Cu can is charged into a mold made of an upper mold and a lower mold, the mold is heated at 170 ° C to 230 ° C in a vacuum atmosphere, the mold is rotated at a predetermined rpm so that centrifugal force of 70G to 100G is applied
  • the molten material is injected into the injection space at the center of the mold, and the molten metal supplied to the injection space by the centrifugal force is injected into the Cu can which is charged into the mold, and the rod is centrifugally cast in the Cu can. And the rod can be taken out.
  • the amorphous alloy included in the substrate it may be preferable to use any one or more materials selected from among Fe, Ni, Cu, Zr, Al and Mg.
  • the substrate may be one of a direct stress type, a bending type, and a shear type.
  • Fig. 7 shows a stress-strain diagram as a result of tensile test of the pressure sensor.
  • the strain from the stress-strain diagram of FIG. 7 to the yield strain is a stress . ≪ / RTI >
  • the yield strain can mean the strain of the material at the yield point, when the stress is gradually increased on the material, and reaches the yield point.
  • the yield point may refer to the strain at the time when the material under stress does not maintain the elastic deformation and plastic deformation starts at the stress-strain diagram of the stress-strain diagram.
  • the elastic deformation refers to a deformation in which a material is deformed when stress is applied to the material, but deformation of the material is removed when the stress is removed to return to the original material state.
  • the plastic deformation means a deformation that causes deformation of the material when stress is applied to the material and deformation of the material can not be removed even when the stress is removed so that it can not return to the original material state.
  • the elastic membrane disposed on the substrate may be made of a polymer material having thermal stability based on an aromatic main chain.
  • the elastic membrane may be a polyimide having excellent mechanical strength, chemical resistance, weather resistance, heat resistance based on the chemical stability of the imide ring, as well as excellent electrical characteristics such as insulation property and low dielectric constant .
  • the arrangement of the pressure sensing thin film and the substrate on the polyimide can be carried out using a CN (Cyanoacrylate adhesive) bond having an elastic limit of 2% or more.
  • the pressure detecting thin film made of at least a part of the amorphous metal may be made of a pressure resistance effect in which the resistance value of the metal or semiconductor resistor is changed when the resistor is deformed.
  • the pressure-sensitive thin film and the substrate may be manufactured by any one of a rapid solidification method and a sputtering deposition method.
  • the sputtering deposition method is a method of vacuum deposition, which is a method of generating a plasma in a vacuum state, accelerating ionized gas such as argon, and colliding with a target to eject a target atom and forming a film on a substrate in the vicinity thereof.
  • the sputtering apparatus can increase the sputter efficiency by guiding the movement of electrons around the target and extending the travel path by forming a magnetic field perpendicular to the electric field by attaching a magnet to the back surface of the anode target.
  • an amorphous alloy can be produced by quenching the molten metal at a rate of 1 million degrees Celsius or more per second in the course of making an alloy.
  • the rapid solidification method may be a gas atomization method, a water atomization method, a centrifugal atomization method, and a melt spinning method.
  • rapid solidification means using high cooling rate or large subcooling to obtain fast growth rate of solid and liquid interface.
  • the solute trapping can occur when the solute atoms enter the solids of the same composition when they reach the solids and liquid interfaces, because they do not have the time to rearrange the atoms so that the potentials are the same.
  • solids at the solid and liquid interface may not be capable of releasing solutes, so that the composition of solids and liquids may be the same.
  • the pressure detecting thin film may be made of at least one of Cu, Co, Zr, Ni and Fe as a base.
  • the pressure sensing thin film may be made of any one material selected from the group consisting of Zr, Co, and Cu.
  • the pressure detecting thin film may include 20 to 70 at% of Zr, the residual Cu and other unavoidable impurities with respect to the entire pressure detecting thin film, and the thickness of the detecting thin film may be 5 ⁇ or less.
  • the pressure detecting thin film may contain 5 to 20 at% of Si, 5 to 20 at% of B, residual Co, and other unavoidable impurities with respect to the entire pressure detecting thin film.
  • At least one of Cr, Fe and Ni may be contained in an amount of 5 at% or less with respect to the entire detection thin film, and the thickness of the pressure detection thin film may be 10 to 20 ⁇ .
  • the pressure detecting thin film may contain 5 to 20 at% of Si, 5 to 20 at% of Si, remaining Co, and other unavoidable impurities with respect to the entire pressure detecting thin film.
  • At least one of Cr, Fe and Ni may be contained in an amount of 5 at% or less with respect to the entire detection thin film, and the thickness of the pressure detection thin film may be 10 to 20 ⁇ .
  • the critical strain of the substrate and the elastic film may be equal to or greater than the critical strain of the pressure detecting thin film.
  • the critical strain may be 1.5 to 2.5%.
  • Example 1 Manufacture of a pressure sensor including a Cu-Zr amorphous alloy pressure detecting thin film
  • a substrate on which a polyimide was adhered using a CN (cyanoacrylate adhesive) bond was prepared in advance.
  • a polyimide-coated substrate was placed on the anode in the chamber.
  • a circular copper target (pure copper target) having a diameter of 4 inches and a circular zirconium target having a diameter of 4 inches were installed on the cathode in the chamber.
  • a permanent magnet was provided under the negative electrode target. After setting the inside of the chamber to a high vacuum state, argon gas was injected into the chamber. Then, a high voltage was applied to the inside of the chamber to generate a plasma.
  • a pressure sensor including a Cu-Zr amorphous alloy pressure sensing thin film was fabricated by depositing copper and zirconium on a polyimide-mounted substrate by applying an output of 0.17 kW to a copper target and 0.70 kW to a zirconium target.
  • Fig. 2 is an X-ray diffraction pattern of a thin film showing an amorphous structure of a Cu-Zr alloy produced by a sputtering deposition method according to Example 1.
  • the microstructure of the pressure-sensitive thin film according to Example 1 was observed with a scanning electron microscope (SEM).
  • FIG. 4 is a graph showing the relationship between CU-Zr produced by the sputtering deposition method according to Example 1
  • Table 1 shows CU-Zr prepared by the sputtering deposition method according to Example 1
  • Comparative Example 1 Manufacture of pressure sensor including Cu-Zr-based crystalline alloy pressure detecting thin film
  • a substrate on which a polyimide was adhered using a CN (cyanoacrylate adhesive) bond was prepared in advance.
  • a polyimide-coated substrate was placed on the anode in the chamber.
  • a circular copper target (pure copper target) having a diameter of 4 inches and a circular zirconium target having a diameter of 4 inches were installed on the cathode in the chamber.
  • a permanent magnet was provided under the negative electrode target. After setting the inside of the chamber to a high vacuum state, argon gas was injected into the chamber. Then, a high voltage was applied to the inside of the chamber to generate a plasma.
  • a pressure sensor including a Cu-Zr-based crystalline alloy pressure sensing thin film was fabricated by applying 0.15 kW of power to a copper target and 0.70 kW of power to a zirconium target by depositing copper and zirconium on a polyimide-adhered substrate.
  • Example 2 Co-Si-B type amorphous alloy pressure sensor
  • the array pattern engraved in the photomask was transferred onto the PR (Photoresist) film by the above exposure process. Thereafter, the array pattern was developed on the wafer using a developing solution in which distilled water and sodium carbonate were mixed at a weight ratio of 100: 1.
  • the pressure sensor manufactured in Example 2 has a marginal elastic strain of 2.0% or more and can be excellent in corrosion resistance.
  • Example 2 Usable temperature -20 ° C to 80 ° C -20 ° C to 70 ° C Pressure sensing thin film width 5 mm 4 mm Pressure detection thin film length 10 mm 12 mm Pressure Sensing Thin Film Thickness 0.003 mm 0.005 mm Weighing range Less than 500 kg Less than 500 kg Accuracy of input sensor Less than 0.001 kg Less than 0.001 kg

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

본 발명은 비정질 합금을 이용한 압력센서에 관한 것으로, 본 발명의 실시 예를 따르는 비정질 합금을 이용한 압력센서는, 적어도 일부가 비정질 금속으로 이루어진 기판; 상기 기판 상에 배치된 탄성막; 및 상기 탄성막 상에 배치되고, 적어도 일부가 비정질 금속으로 이루어진 압력 검출 박막;을 포함하고, 상기 기판 및 상기 탄성막의 한계변형률이 상기 압력 검출 박막의 한계변형률 이상인 비정질 합금을 이용한 압력 센서이다.

Description

비정질 합금을 이용한 압력센서
본 발명은 비정질 합금을 이용한 압력센서에 관한 것이다.
비정질 합금은 결정질 합금과는 달리 원자들이 불규칙하게 배열함으로써 결정구조가 없는 액상과 유사한 구조를 가진 고체상의 물질이다. 비정질 합금은 결정학적으로 이방성이 없어서 기계적 강도가 우수하고, 구조와 조성이 균일하여 내식성이 우수한 특성이 있다.
압력센서는 자동차 엔진의 유압 및 일반 산업용 압력계측 등 저압에서 고압에 이르기까지 넓은 영역의 압력, 특히 고정밀도를 요하는 측정을 하는데 사용된다. 압력센서의 일종인 스트레인 게이지를 포함하는 장치에 압력을 가하게 되면 스트레인 게이지의 지지대인 기판이 변형을 일으키게 되면서 스트레인 게이지가 함께 변형하게 된다. 이 스트레인 게이지가 변형될 때 길이 변화가 발생하는데, 이 때 저항 값이 변화하게 되면서 전기적 신호로 바꿔지는 것으로써, 휘트스톤 브릿지(Wheatstone bridge) 원리에 의해 작동하게 된다.
일반적으로 압력센서의 구성 재료 가운데 기판은 주로 스테인리스 강과 알루미늄, 컨스탄탄(Constantan)이 주로 쓰인다. 하지만 이들 재료는 탄성변형률이 0.2% 정도로 작기 때문에 측정 시에 넓은 범위의 측정이 불가능한 문제점이 있다. 또한, 측정 가능한 범위를 넘어서게 되는 경우에는 소성 변형이 진행되어가며, 이는 곧 센서의 정확도와 민감도를 떨어뜨려 매우 작은 크기의 무게를 측정하기도 어렵다.
선행기술로는 특허문헌 제10-2001-0105084호가 2001.11.28 일 공개된 바 있다.
본 발명의 목적은 한계변형률이 큰 압력센서를 제공하여 측정 범위가 넓은 압력센서를 제공하는 것을 목적으로 한다.
본 발명은 또한 내구성 및 내식성이 우수한 압력센서를 제공하는 것을 목적으로 한다.
본 발명의 실시 예를 따르는 압력센서는 적어도 일부가 비정질 금속으로 이루어진 기판; 상기 기판 상에 배치된 탄성막; 및 상기 탄성막 상에 배치되고, 적어도 일부가 비정질 금속으로 이루어진 압력 검출 박막;을 포함하고, 상기 기판 및 상기 탄성막의 한계변형률이 상기 압력 검출 박막의 한계변형률 이상인 것이다.
상기 압력 검출 박막은 Cu, Co, Zr, Ni 및 Fe 중에서 적어도 어느 하나를 포함할 수 있다.
상기 기판, 상기 탄성막, 상기 압력 검출 박막은, 응력-변형률의 선도(Stress-Strain diagram)에서, 탄성변형이 소성변형으로 변하는 변형률이 1.5 내지 2.5% 일 수 있다.
상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Zr 20~70 at%, 잔부 Cu 및 기타 불가피한 불순물을 포함할 수 있고, 상기 압력 검출 박막의 두께가 5μm 이하 일 수 있다.
상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Si 5~20 at%, B 5~20 at%, 잔부 Co 및 기타 불가피한 불순물을 포함할 수 있고, 내식성과 비정질형성능을 향상시키기 위해 상기 압력 검출 박막 전체에 대하여 Cr, Fe 및 Ni 중 적어도 어느 하나를 5 at% 이하로 포함할 수 있고, 상기 압력 검출 박막의 두께가 10~20 μm 일 수 있다.
상기 기판은 굽힘형(Bending Type) 및 전단형(Shear Type) 중 어느 하나 일 수 있다.
상기 압력 검출 박막 및 기판은 급속응고법과 스퍼터링(sputtering) 증착법 중에서 어느 하나의 방법으로 제조 될 수 있다.
본 발명의 실시 예를 따르는 압력센서는 탄성변형률, 내구성, 내식성이 뛰어나고, 넓은 영역의 압력을 우수한 정밀도로 측정 가능할 수 있다.
도1은 기판, 탄성막, 및 압력 검출 박막을 포함하는 압력센서에 관한 것이다. 도1에서 부호는 다음과 같다.
100 : 압력센서, 110 : 압력 검출 박막, 120 : 탄성막, 130 : 기판
도2는 본 발명의 실시예1에 의한, 스퍼터링 증착법으로 제조된 Cu-Zr계 합금이 비정질 구조임을 보여주는 박막의 X-선 회절시험결이다.
도3은 본 발명의 비교예1에 의한, 스퍼터링 증착법으로 제조된 Cu-Zr계 합금이 결정질 구조임을 보여주는 박막의 X-선 회절시험결이다.
도4는 본 발명의 실시예1에 의한, 스퍼터링 증착법으로 제조된 CU-Zr 박막의 주사전자현미경 EDS분석 사진이다.
도5는 스퍼터링 증착법으로 제조된 비정질 합금 박막을 포토리소그래피(Photolithography) 방법으로 가공한 압력 검출 박막의 사진이다.
도6은 스퍼터링 증착법으로 제조된 비정질 합금 박막을 레이저 가공 방법으로 가공한 압력 검출 박막의 사진이다.
도 7은 압력센서 시편을 인장 시험한 결과로서 응력-변형률의 선도(Stress-Strain diagram)를 나타낸다.
도 1은 기판, 탄성막, 및 압력 검출 박막을 포함하는 압력센서에 관한 것이다.
도 1을 참조하면, 본 발명의 실시 예를 따르는 압력센서는 적어도 일부가 비정질 금속으로 이루어진 기판; 상기 기판 상에 배치된 탄성막; 및 상기 탄성막 상에 배치되고, 적어도 일부가 비정질 금속으로 이루어진 압력 검출 박막;을 포함하고, 상기 기판 및 상기 탄성막의 한계변형률이 상기 압력 검출 박막의 한계변형률 이상인 것이다.
상기 압력센서는 자동차 엔진의 유압 및 일반 산업용 압력계측 등 저압에서 고압에 이르기까지 넓은 영역의 압력 특히 고정밀도를 요하는 측정에 사용되는 것일 수 있다.
상기 기판은 급속냉각법으로 제조된 비정질 박대 또는 판재일 수 있다. 두꺼운 비정질 박대 또는 판재는 원심주조법으로 제조할 수도 있다.
상기 원심주조법은 용융금속을 주입 및 응고 시킬 때 주형을 고속으로 회전하여 그 원심력을 이용하는 것으로, 용융금속에 높은 압력 이 걸리게 되므로 주물의 조직이 치밀하고 기공이 없다.
상기 원심주조법 중에서도 진공 원심주조법으로 두꺼운 비정질 박대 또는 판재를 제조 할 수 있다. 상기 진공 원심주조법은 상부 금형과 하부 금형으로 이루어진 몰드 내에 Cu 캔을 장입하고, 진공 분위기 하에서 몰드를 170℃ 내지 230℃로 가열하고, 70G 내지 100G의 원심력이 가해지도록 몰드를 소정의 rpm으로 회전시키면서 몰드 중심의 주입 공간으로 용해된 재료를 주입하여, 원심력에 의해 주입공간으로 공급되는 용탕이 몰드 내에 장입된 Cu캔 내로 주입시켜 Cu캔 내에서 로드를 원심 주조하고, 냉각이 완료된 다음 Cu 캔을 산으로 녹이고 로드를 취출하는 것 일 수 있다.
상기 기판에 포함된 비정질 합금으로는 Fe, Ni, Cu, Zr, Al, Mg 중에서 선택되는 어느 하나 이상의 물질을 베이스로 하는 것이 바람직 할 수 있다.
상기 기판은 인장형(Direct Stress Type), 굽힘형(Bending Type) 및 전단형(Shear Type) 중 어느 하나일 수도 있다.
도 7은 압력센서를 인장 시험한 결과로서 응력-변형률의 선도(Stress-Strain diagram)를 나타낸 것이다.
상기 기판을 인장형(Direct Stress Type)이 아닌, 굽힘형(Bending Type)이나 전단형(Shear Type)으로 하면, 도 7의 응력-변형률의 선도(Stress-Strain diagram)에서 항복변형률까지는 변형률이 응력에 비례 할 수 있다.
상기 응력-변형률의 선도(Stress-Strain diagram)에서 항복변형률이란, 재료에 응력을 점차 증가 시키면 항복점에 도달하고, 상기 항복점에서 재료의 변형률을 의미 할 수 있다. 상기 항복점이란 상기 응력-변형률의 선도(Stress-Strain diagram)에서 응력을 받는 재료가 탄성변형 유지하지 못하고 소성변형이 시작될 때의 변형률을 의미할 수 있다. 상기 탄성변형이란 재료에 응력을 가하면 재료에 변형이 일어나지만, 상기 응력을 제거하면 상기 재료의 변형도 제거되어 원래의 재료 상태로 돌아갈 수 있는 변형을 의미할 수 있다. 상기 소성변형이란 재료에 응력을 가하면 재료에 변형이 일어나고, 상기 응력이 제거되어도, 재료의 변형이 제거되지 않아 원래의 재료 상태로 돌아갈 수 없는 변형을 의미할 수 있다.
상기 기판 상에 배치된 탄성막은, 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로 이루어진 것일 수 있다. 일 예에서 상기 탄성막은 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 갖을 뿐 아니라 절연특성, 낮은 유전율과 같은 뛰어난 전기적 특성을 갖는 폴리이미드(polyimide)일 수 있다.
상기 폴리이미드(polyimide)상에 압력 검출 박막과 기판의 배치는 탄성한계가 2% 이상인 CN(Cyanoacrylate adhesive) 본드를 이용하여 부착 할 수 있다.
상기 적어도 일부가 비정질 금속으로 이루어진 압력 검출 박막은 금속 또는 반도체의 저항체에 변형이 가해지면 그 저항값이 변화하는 압력 저항 효과를 이용한 것으로 할 수 있다.
상기 압력 검출 박막 및 기판은 급속응고법과 스퍼터링(sputtering) 증착법 중에서 어느 하나의 방법으로 제조될 수 있다.
상기 스퍼터링 증착법은 진공증착법의 일종으로 진공상태에서 플라스마를 발생시켜 이온화한 아르곤 등의 가스를 가속하여 타깃에 충돌시켜 목적의 원자를 분출하고, 그 근방에 있는 기판상에 막을 만드는 방법일 수 있다. 스퍼터링 장치는 음극 타겟 배면에 자석을 부착하여 전기장에 수직한 자기장을 형성함으로써 전자들의 움직임을 타켓 주위로 유도하고 이동 경로를 길게 연장시켜 스퍼터 효율을 높일 수 있다.
상기 급속응고법은 합금을 만드는 과정에서 용해한 금속을 1초당 100만℃ 이상의 속도로 급랭하면 비정질합금을 제조할 수 있다. 상기 급속응고법에는 기체분사법(atomization), 수분사법(water atomization), 원심분무법(centrifugal atomization)과 멜트 스피닝(melt spinning)법 일 수 있다. 즉, 급속응고란 말은 고체와 액체 계면의 빠른 성장 속도를 얻기 위하여 높은 냉각 속도나 커다란 과냉을 이용한다는 것으로, 고체와 액체 계면의 성장속도가 빠른 경우에는 원자들이 고체와 액체가 모두 화학 포텐셜(potential)이 같아지도록 원자를 재배열 시킬 만한 시간적 여유를 갖지 못하므로 용질 원자가 고체와 액체 계면에 도달할 때 같은 조성의 고체 속으로 들어가게 되는 용질 포획이 일어날 수 있다. 따라서 고체와 액체 계면에서의 고체는 용질을 방출할 수 없게 되어 고체와 액체의 조성이 같게 되는 것 일 수 있다.
상기 압력 검출 박막은, Cu, Co, Zr, Ni 및 Fe 중에서 적어도 어느 하나의 물질을 기재(base)로 할 수 있다. 바람직하게는 상기 압력 검출 박막은 Zr, Co, Cu 중에서 선택되는 어느 하나의 물질을 기재로 할 수 있다.
일 예에서, 상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Zr 20~70 at%, 잔부 Cu 및 기타 불가피한 불순물을 포함할 수 있고, 검출 박막의 두께는 5μm 이하 일 수 있다.
또한, 상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Si 5~20 at%, B 5~20 at%, 잔부 Co 및 기타 불가피한 불순물을 포함할 수 있고, 내식성과 비정질형성능을 향상시키기 위해 상기 압력 검출 박막 전체에 대하여 Cr, Fe 및 Ni 중 적어도 어느 하나를 5 at% 이하로 포함할 수 있고, 상기 압력 검출 박막의 두께가 10~20 μm 일 수 있다.
또한, 상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Si 5~20 at%, C 5~20 at%, 잔부 Co 및 기타 불가피한 불순물을 포함할 수 있고, 내식성과 비정질형성능을 향상시키기 위해 상기 압력 검출 박막 전체에 대하여 Cr, Fe 및 Ni 중 적어도 어느 하나를 5 at% 이하로 포함할 수 있고, 상기 압력 검출 박막의 두께가 10~20 μm 일 수 있다.
상기 기판 및 탄성막의 한계변형률이 상기 압력 검출 박막의 한계변형률 이상일 수 있다.
상기 기판, 상기 탄성막, 상기 압력 검출 박막은, 응력-변형률의 선도(Stress-Strain diagram)에서, 한계변형률이 1.5 내지 2.5% 일 수 있다.
실시예 1: Cu-Zr계 비정질합금 압력 검출 박막 포함한 압력센서 제조
CN(Cyanoacrylate adhesive) 본드를 이용하여 폴리이미드(polyimide)를 부착시킨 기판을 미리 준비하였다. 챔버 내부의 양극에는 상기 폴리이미드가 부착된 기판을 설치하였고, 상기 챔버 내부의 음극에는 직경 4 inch의 원형 구리(pure copper)타겟과 직경 4 inch의 원형 지르코늄(pure zirconium) 타겟을 설치한 후, 상기 음극타겟 아래에 영구자석을 설치하였다. 이후, 상기 챔버 내부를 고진공 상태로 설정한 후, 챔버 내부에 아르곤 가스를 주입하였다. 이후, 챔버 내부에 고전압을 가하여 플라즈마를 발생시켰다.
구리 타겟에 0.17 kW, 지르코늄 타겟에 0.70 kW의 출력을 인가하여 폴리이미드가 부착된 기판에 구리와 지르코늄을 증착시켜, Cu-Zr계 비정질합금 압력 검출 박막 포함한 압력센서를 제조하였다.
도2는 실시예 1에 따른, 스퍼터링 증착법으로 제조된 Cu-Zr계 합금이 비정질 구조임을 보여주는 박막의 X-선 회절시험결이다.
상기 실시예 1에 따른 압력 검출 박막의 결정구조를 분석하기 위하여 X-선 회절시험을 한 결과, 도2와 같이 전형적인 비정질 합금이 지니는 패턴의 모습인 바, 폴리이미드 위에 증착된 박막의 구조가 비정질구조임이 증명되었다.
상기 실시예 1에 따른압력 검출 박막을 주사전자현미경(SEM)으로 미세조직을 관찰하였다.
도4는 상기 실시예 1에 따른 스퍼터링 증착법으로 제조된 CU-Zr
압력검출 박막의 주사전자현미경 EDS분석한 사진이다.
표1은 상기 실시예 1에 따른 스퍼터링 증착법으로 제조된 CU-Zr
압력검출 박막의 주사전자현미경 EDS분석한 화학조성결과이다.
표 1에 따라, Cu 약 63.99at%, Zr 약 36.01at%으로 나타남에 따라 제조된 압력 검출 박막이 비정질박막으로 제조된 것을 확인하였다.
성분 Line 유형 Apparent 농도 k 비율 Wt% Wt% Sigma 원자 % Standard Label Factory Standard
Cu L series 8.78 0.08780 55.31 0.39 63.99 Pure Element Yes
Zr L series 7.54 0.07542 44.69 0.39 36.01 Pure Element Yes
Total: 100.00 100.00
비교예 1: Cu-Zr계 결정질 합금 압력 검출 박막 포함한 압력센서 제조
CN(Cyanoacrylate adhesive) 본드를 이용하여 폴리이미드(polyimide)를 부착시킨 기판을 미리 준비하였다. 챔버 내부의 양극에는 상기 폴리이미드가 부착된 기판을 설치하였고, 상기 챔버 내부의 음극에는 직경 4 inch의 원형 구리(pure copper)타겟과 직경 4 inch의 원형 지르코늄(pure zirconium) 타겟을 설치한 후, 상기 음극타겟 아래에 영구자석을 설치하였다. 이후, 상기 챔버 내부를 고진공 상태로 설정한 후, 챔버 내부에 아르곤 가스를 주입하였다. 이후, 챔버 내부에 고전압을 가하여 플라즈마를 발생시켰다.
구리 타겟에 0.15 kW, 지르코늄 타겟에 0.70 kW의 출력을 인가하여 폴리이미드가 부착된 기판에 구리와 지르코늄을 증착시켜서, Cu-Zr계 결정질 합금 압력 검출 박막 포함한 압력센서를 제조하였다.
도3은 상기 비교예 1에 따른, 스퍼터링 증착법으로 제조된 Cu-Zr계 합금이 결정질 구조임을 보여주는 박막의 X-선 회절시험결이다
상기 비교예 1에 따른 압력 검출 박막의 결정구조를 분석하기 위하여 X-선 회절시험을 한 결과, 도3에서 나타난 바와 같이 전형적인 결정질 합금이 지니는 패턴의 모습이다. 따라서 폴리이미드위에 증착된 박막의 구조가 결정질구조임이 증명되었다.
실시예 2: Co-Si-B계 비정질 합금 압력 검출 박막 포함한 압렵센서 제조
CN(Cyanoacrylate adhesive) 본드를 이용하여 폴리이미드(polyimide) 필름을 부착시킨 기판에, CN(Cyanoacrylate adhesive) 본드를 이용하여 두께10μm 의 비정질 합금(EDS 분석: Co의 68 at%, Si은 13 at%, Cr을 4at%, Fe를 4at%, B 11at%)을 상기 폴리이미드(polyimide) 필름에 부착 하여 스트레인게이지용 박판을 제조하였다. 이후, 박판을 회전을 시키면서, 액체 포토레지스트(Photoresist)를 균일하게 퍼지도록 도포하였다(Spin Coating). 이후 70℃로 20분 가열하여 용매를 제거하여 PR(Photoresist)필름을 형성하였다. 어레이 패턴을 새긴 투명 필름인 포토마스크를 제조한 후, 상기 포토마스크를 상기 PR필름 상에 고정 하였다. 이후, 상기 포토마스크 위로 UV를 가하는 노광 처리를 하였다. 상기 노광 처리로 인해 포토마스크에 새겨진 어레이 패턴이 PR(Photoresist)필름 위에 전사되었다. 그후, 증류수와 탄산나트륨을 100:1 의 중량비로 혼합한 현상 용액을 사용하여 상기 웨이퍼에서 어레이 패턴을 현상 시켰다. 염산:과산화수소 = 1 : 1 중량비의 식각용액을 만든 후, 상기 Co계 리본을 2분 동안 침지시켜 상기 PR(Photoresist)필름을 제거하여, Co-Si-B계 비정질 합금 압력 검출 박막 포함한 압렵센서 제조를 제조하였다.
상기 실시예 2에서 제조된 압력센서는 한계 탄성변형률은 2.0% 이상이며, 내식성이 우수할 수 있다.
상기 실시예 1 및 2에서 제조된 비정질 합금을 이용하여 제조된 기판 및 스트레인 게이지를 포함하여 최종적으로 제조된 압력센서의 물성을 평가하고, 그 결과를 하기 표 2 에 나타내었다.
구분 실시예1 실시예2
사용가능온도 -20 ℃ ~ 80 ℃ -20 ℃ ~ 70 ℃
압력 검출 박막 가로 길이 5 mm 4 mm
압력 검출 박막 세로 길이 10 mm 12 mm
압력 검출 박막 두께 0.003 mm 0.005 mm
무게 측정 범위 500 kg 이하 500 kg 이하
입력센서의 정확도 0.001 kg 이하 0.001 kg 이하

Claims (7)

  1. 적어도 일부가 비정질 금속으로 이루어진 기판;
    상기 기판 상에 배치된 탄성막; 및
    상기 탄성막 상에 배치되고, 적어도 일부가 비정질 금속으로 이루어진 압력 검출 박막;을 포함하고,
    상기 기판 및 상기 탄성막의 한계변형률이 상기 압력 검출 박막의 한계변형률 이상일 수 있다.
    비정질 합금을 이용한 압력 센서.
  2. 제1항에 있어서,
    상기 기판, 상기 탄성막, 상기 압력 검출 박막은,
    응력-변형률의 선도(Stress-Strain diagram)에서, 탄성변형이 소성변형으로 변하는 변형률이 1.5 내지 2.5%인,
    비정질 합금을 이용한 압력 센서.
  3. 제1항에 있어서,
    상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Zr 20~70 at%, 잔부 Cu 및 기타 불가피한 불순물을 포함하고,
    상기 압력 검출 박막의 두께가 5μm 이하 인,
    비정질 합금을 이용한 압력 센서.
  4. 제1항에 있어서,
    상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Si 5~20 at%, B 5~20 at%, 잔부 Co 및 기타 불가피한 불순물을 포함하고,
    상기 압력 검출 박막의 두께가 10~20 μm인,
    비정질 합금을 이용한 압력 센서.
  5. 제4항에 있어서,
    상기 압력 검출 박막은 상기 압력 검출 박막 전체에 대하여 Cr, Fe 및 Ni 중 적어도 어느 하나를 5 at% 이하로 포함하는,
    비정질 합금을 이용한 압력 센서.
  6. 제1항에 있어서,
    상기 기판은 굽힘형(Bending Type) 및 전단형(Shear Type) 중 어느 하나인,
    비정질 합금을 이용한 압력 센서.
  7. 제1항에 있어서,
    상기 압력 검출 박막 및 기판은 급속응고법과 스퍼터링(sputtering) 증착법 중에서 어느 하나의 방법으로 제조된,
    비정질 합금을 이용한 압력 센서.
PCT/KR2018/009839 2017-08-24 2018-08-24 비정질 합금을 이용한 압력센서 WO2019039921A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0107220 2017-08-24
KR20170107220 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039921A1 true WO2019039921A1 (ko) 2019-02-28

Family

ID=65439137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009839 WO2019039921A1 (ko) 2017-08-24 2018-08-24 비정질 합금을 이용한 압력센서

Country Status (2)

Country Link
KR (1) KR102256830B1 (ko)
WO (1) WO2019039921A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102331191B1 (ko) * 2020-06-08 2021-11-25 인제대학교 산학협력단 비정질 합금을 이용한 탄성 변형 부재 및 이를 이용한 압력 센서
KR102398725B1 (ko) * 2020-08-04 2022-05-17 주식회사 멤스팩 반도체형 풀 브리지 스트레인 게이지 모듈 및 이를 적용한 로드셀
KR200495431Y1 (ko) * 2020-10-27 2022-05-23 인제대학교 산학협력단 비정질 금속층을 포함하는 유연성 필름을 이용한 정밀 저울

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132327A (ja) * 1983-01-18 1984-07-30 Aisin Seiki Co Ltd 圧力センサ
JPH06200357A (ja) * 1991-12-18 1994-07-19 Hitachi Metals Ltd 非晶質合金
JPH06248399A (ja) * 1993-02-23 1994-09-06 Kyowa Electron Instr Co Ltd ひずみゲージ用アモルファス合金およびひずみゲージ
KR20010105084A (ko) * 2000-05-19 2001-11-28 김정희 압력변환기를 위한 고온용 금속 박막 스트레인 게이지의제조방법
KR20160140431A (ko) * 2015-05-29 2016-12-07 고려대학교 산학협력단 비정질 금속을 이용한 유연한 압력 센서와, 압력 및 온도를 동시에 감지하는 유연한 이중모드 센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132327A (ja) * 1983-01-18 1984-07-30 Aisin Seiki Co Ltd 圧力センサ
JPH06200357A (ja) * 1991-12-18 1994-07-19 Hitachi Metals Ltd 非晶質合金
JPH06248399A (ja) * 1993-02-23 1994-09-06 Kyowa Electron Instr Co Ltd ひずみゲージ用アモルファス合金およびひずみゲージ
KR20010105084A (ko) * 2000-05-19 2001-11-28 김정희 압력변환기를 위한 고온용 금속 박막 스트레인 게이지의제조방법
KR20160140431A (ko) * 2015-05-29 2016-12-07 고려대학교 산학협력단 비정질 금속을 이용한 유연한 압력 센서와, 압력 및 온도를 동시에 감지하는 유연한 이중모드 센서

Also Published As

Publication number Publication date
KR102256830B1 (ko) 2021-05-28
KR20190022415A (ko) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2019039921A1 (ko) 비정질 합금을 이용한 압력센서
US5413360A (en) Electrostatic chuck
Asher et al. Some observations on the compatibility ofstructural materials with molten lead
Ogawa et al. Measurements of mechanical properties of microfabricated thin films
WO2010140792A9 (en) Method for manufacturing 3-dimensional structures using thin film with columnar nano pores and manufacture thereof
WO2020116990A1 (ko) 전자 현미경 관찰용 그래핀 복합체 및 시료 기판의 제조방법
Rajanna et al. Strain sensitivity and temperature behavior of invar alloy films
WO2018199680A1 (ko) Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
Zhao et al. Fabrication and microstructure evolution of Al2O3/ZrBN-SiCN/Al2O3 high-temperature oxidation-resistant composite coating
WO2011068263A1 (ko) 원통형 스퍼터링 캐소드
WO2018117632A1 (ko) 내식성이 우수한 마그네슘 합금 및 그 제조방법
WO2013062221A1 (ko) 타이타늄-니켈 합금박막 및 다중 스퍼터링법을 이용한 타이타늄-니켈 합금박막의 제조 방법
Sakurai et al. Combinatorial search for Ni–Nb–Ti thin film amorphous alloys with high corrosion resistances
EP0372092A1 (en) Stress conversion device and its production method
WO2018117762A1 (ko) 내식성이 우수한 마그네슘 합금 판재 및 그 제조방법
Van Audenhove et al. Deposition by electron bombardment and weighing under vacuum of thin high purity boron layers
WO2024117584A1 (ko) 증착원 시스템, 이를 이용한 증착율 제어 방법 및 이를 포함한 박막 증착 장비
KR102331191B1 (ko) 비정질 합금을 이용한 탄성 변형 부재 및 이를 이용한 압력 센서
WO2022071629A1 (ko) 이온 측정 센서용 기준전극 및 이의 제조방법
WO2018117655A1 (ko) 압력센서 및 그 제조방법
Nayak et al. Diaphragm-type sputtered platinum thin film strain gauge pressure transducer
CN217845428U (zh) 一种橡塑模具用测温薄膜传感器
Terai et al. Fabrication and properties of ceramic coatings for CTR liquid blanket by sputtering method
WO2024106734A1 (ko) 자성체의 큐리 온도를 측정하기 위한 장치 및 방법
WO2023219357A1 (ko) 액체금속 입자를 포함하는 연신성 이방 전도성 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848652

Country of ref document: EP

Kind code of ref document: A1