WO2019039856A1 - Method for producing porous silicon-carbon complex, secondary battery negative electrode comprising porous silicon-carbon complex produced by production method, and secondary battery comprising secondary battery negative electrode - Google Patents

Method for producing porous silicon-carbon complex, secondary battery negative electrode comprising porous silicon-carbon complex produced by production method, and secondary battery comprising secondary battery negative electrode Download PDF

Info

Publication number
WO2019039856A1
WO2019039856A1 PCT/KR2018/009648 KR2018009648W WO2019039856A1 WO 2019039856 A1 WO2019039856 A1 WO 2019039856A1 KR 2018009648 W KR2018009648 W KR 2018009648W WO 2019039856 A1 WO2019039856 A1 WO 2019039856A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous silicon
silicon
carbon composite
producing
carbon
Prior art date
Application number
PCT/KR2018/009648
Other languages
French (fr)
Korean (ko)
Inventor
이정규
김나현
박혜정
윤나은
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2019039856A1 publication Critical patent/WO2019039856A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a porous silicon-carbon composite material, a secondary battery anode material produced by the manufacturing method, and a secondary battery including the secondary battery anode material.
  • lithium-based secondary batteries are becoming increasingly important as power sources for large-capacity energy storage devices such as electric vehicles and smart grids in the future, as well as power sources for small-sized devices. Accordingly, it is required to develop an electrode material having increased energy density, output density and stability compared to existing products.
  • the performance improvement of lithium-based secondary batteries is based on four core materials such as anode and cathode materials, separator, and electrolyte.
  • graphite As an anode material for lithium secondary batteries currently used, graphite is advantageous in that it has a low operating voltage and excellent lifetime stability. However, graphite has a low theoretical capacity of about 372 mAh / g, Charging rate) is slow and the characteristics are poor, so there is a limit to the application to a negative electrode material of a high performance secondary battery. Therefore, much research has been conducted on the metal materials of Groups IV and V such as Si, Sn, Ge, Pb, As and Bi which are electrochemically alloyed with lithium as an anode material that can replace graphite.
  • silicon is a very abundant resource on the earth, and it is one of the materials that is currently being studied because it has a relatively low operating voltage ( ⁇ 0.4 V vs. Li / Li + ) and a high theoretical capacity ( ⁇ 3579 mAh / g) .
  • silicon not only has low electrical conductivity, but also reacts with up to about four lithium ions per particle during repeated charge and discharge, resulting in large volume expansion and cracking of particles, which is close to 280%.
  • the reaction between the newly generated silicon surface and the electrolyte continuously generates a new solid electrolyte interface (SEI), resulting in high initial irreversible capacity as well as high resistance and rapid capacity reduction, There is a short problem.
  • SEI solid electrolyte interface
  • the secondary battery according to the embodiment of the present invention has excellent charging and discharging characteristics, and can absorb the volume change due to charging and discharging.
  • porous silicon-carbon composites according to the embodiment of the present invention are manufactured by the above-described manufacturing method.
  • the secondary battery anode according to an embodiment of the present invention includes the above-described porous silicon-carbon composite.
  • the secondary battery according to the embodiment of the present invention includes the above-described secondary battery anode.
  • An electronic device includes the above-described secondary battery as a power supply source.
  • the process for producing a porous silicon-carbon composite according to an embodiment of the present invention can be mass-produced at a high yield and at a high purity.
  • porous silicon-carbon composite material produced by the above-described method as a negative electrode material for a secondary battery, it is possible to provide a secondary battery negative electrode and a secondary battery including the negative electrode material.
  • the secondary battery according to the embodiment of the present invention has excellent charging and discharging characteristics, and can absorb the volume change due to charging and discharging.
  • FIG. 1 illustrates a method of making a porous silicon-carbon composite according to an embodiment of the present invention.
  • FIG. 2 illustrates changes in silicon primary particles during charging and discharging in a secondary battery comprising a porous silicon-carbon composite fabricated according to an embodiment of the present invention.
  • FIG. 3 is an SEM photograph of the zeolite Y. Fig.
  • FIG. 4 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Example 2.
  • FIG. 6 is a mapping photograph of Si elements in the rectangular region of FIG. 5.
  • FIG. 7 is a mapping photograph of a C element in the rectangular area of FIG.
  • FIG. 10 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Comparative Example 1. Fig.
  • FIG. 11 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with aqueous hydrochloric acid (HCl) solution in Examples 1, 7 and 8.
  • XRD X-ray diffraction
  • FIG. 12 shows the results of X-ray diffraction (XRD) analysis of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and washing with hydrofluoric acid (HF) in Examples 1, 7 and 8.
  • XRD X-ray diffraction
  • FIG. 13 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the manufacturing method of Comparative Example 1.
  • XRD X-ray diffraction
  • FIG. 14 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and cleaning with hydrofluoric acid (HF) in the production method of Comparative Example 1.
  • XRD X-ray diffraction
  • Figure 15 shows the nitrogen adsorption / desorption isotherm curves of the porous composites prepared in Examples 1, 7, 8 and Comparative Example 1.
  • FIG. 16 shows pore size distributions of the porous composites prepared in Examples 1, 7 and 8 and Comparative Example 1.
  • FIG. 17 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 1 to 4 as a negative electrode material ≪ / RTI >
  • FIG. 18 is a graph showing the relationship between the charging / discharging cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Examples 5 and 6 as a negative electrode material ≪ / RTI >
  • FIG. 19 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Examples 7 and 8 as a negative electrode material ≪ / RTI >
  • FIG. 20 is a graph showing the relationship between the charging / discharging cycle (voltage) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Comparative Examples 1 to 4 as a negative electrode material ≪ / RTI >
  • FIG. 21 is a graph showing the charge / discharge rate (%) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 5 and 6 as a negative electrode material Fig.
  • FIG. 22 is a graph showing the results of measurement of a lithium secondary battery including a negative electrode using the porous silicon-carbon composite material prepared in Example 3 as a negative electrode material and a positive electrode using NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) cell in the charge / discharge cycle.
  • FIG. 23 is a graph showing the results of a comparison between a lithium secondary battery including a negative electrode using a porous silicon-carbon composite material according to an embodiment of the present invention as a negative electrode material and a positive electrode using NCM622 as a positive electrode material, a negative electrode using graphite as a negative electrode material, And the volume energy density of a lithium secondary battery (full cell) including a positive electrode using NCM622 as a cathode material.
  • FIG. 1 illustrates a method of making a porous silicon-carbon composite according to an embodiment of the present invention.
  • a method of manufacturing a porous silicon-carbon composite according to an embodiment of the present invention includes:
  • M may be any one of Na, Li, K, Ca and Mg.
  • x represents the molar ratio of SiO 2 / Al 2 O 3 of the porous silicon precursor, for example zeolite, and x may have a value of theoretically 2 to infinity (when the Al content is 0), but x is 5 or more desirable.
  • y represents the number of moles of water contained in the porous silicon precursor, for example, zeolite, and is not particularly limited because water changes reversibly depending on the humidity during storage and so on.
  • the silicon precursor represented by Formula 1 may be at least one of zeolite X, Y, A, Beta, ZSM-5, and crystalline aluminosilicate having a mordenite structure.
  • the silicon precursor represented by Formula 1 may be at least one selected from the group consisting of alkali metals (alkali metals include Na, Li, K, Ca, and Mg), NH 4 series, and H series.
  • alkali metals include Na, Li, K, Ca, and Mg
  • NH 4 series include H series.
  • the average particle diameter of the zeolite particles may be 20 nm to 10 mu m.
  • the heat dispersing agent is an example of the zeolite and the metal reducing agent, and can perform a function of eliminating a large exothermic reaction during the process of reacting the magnesium powder.
  • the heat dispersing agent may be at least one of sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl 2 ) and magnesium chloride (MgCl 2 ).
  • the heat dispersing agent may be added in an amount of 100 to 1200 parts by weight, preferably 1000 parts by weight, based on 100 parts by weight of the silicon precursor.
  • the method of mixing the silicon precursor with the heat dispersing agent may be performed by a dry mixing method or a wet mixing method.
  • the first heat treatment step may be performed to remove moisture and hydroxyl groups (-OH) in the pores of the silicon precursor. Specifically, the first heat treatment step may be performed at a temperature in the range of 550 to 800 ° C, 700 < 0 > C for 4 hours to 7 hours, preferably 5 hours.
  • the metal reducing agent may be an alkali metal or an alkaline earth metal, and may be a mixture thereof.
  • the metal reducing agent may be at least one of sodium (Na), magnesium (Mg), calcium (Ca), and aluminum (Al).
  • the metal reducing agent may be mixed in an amount of 50 to 200 parts by weight, preferably 80 parts by weight, based on 100 parts by weight of the silicon precursor.
  • the second heat treatment step may be performed at a temperature of 300 to 1000 ⁇ ⁇ in a reducing atmosphere, Temperature range, preferably from 650 to 750 ° C, and from 1 hour to 24 hours, preferably 5 hours.
  • the heat treatment atmosphere may be an oxygen-free atmosphere such as an argon gas or an inert gas containing an argon / hydrogen mixed gas.
  • the second heat treatment temperature may be set to 300 to 1000 ° C, preferably 650 to 750 ° C, in consideration of the melting temperature of the metal reducing agent.
  • the second heat treatment temperature is less than 300 ° C, the reduction ratio of the silicon precursor and the yield of the final porous silicon may be low. If the second heat treatment temperature is 1000 ° C or higher, sintering of the particles occurs, There is a problem that it is not formed.
  • the second heat treatment may be performed in a pressure range of 10 -3 bar to 5 bar pressure inside the reaction chamber.
  • the conducting cone precursor such as zeolite can be reduced by being mixed with a metal reducing agent such as magnesium and being melted and being melted by a metal liquid such as magnesium or vapor.
  • the reduction reaction of the mixture using the metal reducing agent may be a reaction carried out under an alumina crucible and an inert gas flow but more preferably in an oxygen-free closed reactor.
  • the silicon precursor may be partially or wholly reduced to porous silicon, and some or all of the metal reductant (e.g., magnesium) powder is oxidized to a metal oxide (e.g., magnesium oxide (MgO)) . ≪ / RTI >
  • the metal reductant e.g., magnesium
  • MgO magnesium oxide
  • the method may further include a step of vacuum-drying the second mixture by mixing the first mixture and the metal reducing agent prior to the step of reducing the silicon precursor by the second heat treatment to produce a reactant.
  • a step of vacuum-drying the second mixture by mixing the first mixture and the metal reducing agent prior to the step of reducing the silicon precursor by the second heat treatment to produce a reactant.
  • moisture of the second mixture can be removed.
  • the present vacuum drying step can be carried out by heating the second mixture at 80 ° C to 200 ° C, preferably at 150 ° C for 1 to 5 hours, preferably for 2 hours.
  • the step of washing the reactants to recover the porous silicon particles can be performed by washing the reactants with distilled water and a dilute acid solution.
  • the reaction product obtained in the second heat treatment may include by-products such as porous silicon, and the magnesium oxide addition failed to reduce the residual magnesium and silica powder, or magnesium silicide (Mg 2 Si). These by-products can be removed by going through this step.
  • the acid solution may include hydrochloric acid (HCl), acetic acid (CH 3 COOH), hydrofluoric acid (HF), or a mixture thereof.
  • the acid treatment time is preferably about 5 hours, .
  • the step of washing the reactants to recover the porous silicon particles comprises: (iv-1) washing with distilled water to remove the heat dispersing agent; (iv-2) washing with an aqueous solution of hydrochloric acid (HCl) to remove by-products other than silicon; And (iv-3) etching and removing the silica residue with an aqueous solution of hydrofluoric acid (HF).
  • the porous silicon particles recovered through washing in the step of recovering the porous silicon particles have a specific surface area of not less than 30 m 2 / g and not more than 500 m 2 / g according to the BET measurement method, and a total pore volume of 0.2 and cm 3 / g to 1.0 cm 3 / g, the average particle size of individual primary particles constituting the silicon-porous silicon particles may be from 5 to 50 nm.
  • a pitch eg, sucrose, glucose, resorcinol-formaldehyde, phenol-formaldehyde, phenolic resin, polydopamine, graphite, carbon black, carbon Nanotube, and graphene.
  • the step of coating the porous silicon particles with carbon may be performed by heat treatment at 600 ° C to 1000 ° C, preferably 800 ° C in an inert gas atmosphere or an inert gas and hydrogen mixed gas atmosphere.
  • the content of the porous silicon particles contained in the porous silicon-carbon composite produced through this step may be 20 to 80 wt% with respect to the total weight of the porous silicon-carbon composite.
  • FIG. 2 illustrates the variation of the silicon primary particles 110 during charging and discharging in a secondary battery comprising a porous silicon-carbon composite fabricated according to an embodiment of the present invention.
  • the porous silicon-carbon composite particles 140 according to the present invention can absorb a large volume change accompanied by repeated pores and electrochemical charging and discharging by lithium due to many pores in the porous silicon particles 120,
  • the carbon coating layer 130 enhances the conductivity and enables reversible charging and discharging, thereby exhibiting excellent characteristics as an electrode material. Referring to FIG. 2, it can be seen that even when the volume of the silicon primary particles 110 is changed by charging and discharging (see 210), the influence on the volume of the entire porous silicon-carbon composite particles 140 can be minimized have.
  • the porous silicon-carbon composites according to the embodiment of the present invention are manufactured by the above-described manufacturing method.
  • the porous silicon-carbon composites may be used as a secondary battery anode material.
  • the secondary battery anode according to an embodiment of the present invention may include a current collector and a porous silicon-carbon composite disposed on the current collector.
  • the secondary battery according to the embodiment of the present invention includes the above-described secondary battery anode.
  • the secondary battery comprises a negative electrode comprising a silicon-carbon composite produced by an embodiment of the present invention, an anode, and an electrolyte providing a path for movement of ions between the cathode and the anode, and an electrolyte disposed within the electrolyte, Ions to selectively permeate the ion-exchange membrane.
  • An electronic device according to an embodiment of the present invention includes the above-described secondary battery as a power supply source.
  • the electronic device is not particularly limited as long as it can include the secondary battery as a power supply source.
  • the electronic device may be a mobile device such as an electric vehicle, a smart phone, or a watch.
  • the electronic device may include an electronic device such as a microprocessor, and may be powered by the secondary battery to drive the electronic device.
  • Step (1-1) Post-moisture removal of zeolite and sodium chloride mixed zeolite as a silicon precursor
  • the mixture was filled in a closed swarovsche tube in an argon atmosphere glove box and the zeolite was reduced by heat treatment at 750 ° C for 5 hours in a heating furnace under an argon atmosphere of 1 bar.
  • the product of the brown powder obtained through the heat treatment was firstly washed with distilled water to remove sodium chloride and further washed in 1 M hydrochloric acid (HCl) solution for 5 hours to remove magnesium oxide (MgO) or magnesium silicide (Mg 2 Si) were removed. Residual silica which was not completely reduced was etched using hydrofluoric acid to obtain porous silicon.
  • HCl hydrochloric acid
  • the porous silicon obtained above was placed in tetrahydrofuran (THF) and completely dispersed by ultrasonic vibration.
  • THF tetrahydrofuran
  • a THF solution in which the porous silicon was dispersed was added to a mixed solution in which pitch carbon was completely dissolved in THF by ultrasonic vibration and stirring.
  • the mixture was stirred at room temperature for 3 hours and then stirred until the solvent evaporated in the temperature range of 70 to 80 ° C.
  • the porous silicon-carbon precursor mixture obtained by this reaction was dried overnight at 80 ° C in a drier, and the dried powder was placed in a crucible and placed in a tube furnace. The mixture was heat-treated at 800 ° C for 4 hours under an argon gas flow and then naturally cooled. At this time, the content of silicon in the porous silicon-carbon composites was 70 wt%.
  • porous silicon-carbon composites were prepared in the same manner as in Example 1, except that the silicon content in the porous silicon-carbon composites was changed to 60 wt% in step (1-3).
  • porous silicon-carbon composites were prepared in the same manner as in Example 1, except that the silicon content in the porous silicon-carbon composites was 50 wt% in step (1-3).
  • the porous silicon obtained through steps (1-1) and (1-2) of Example 1 was put into a small amount of distilled water and dispersed by ultrasonic vibration.
  • Sucrose as a carbon precursor was added to distilled water in which the porous silicon particles were dispersed, and the mixture was stirred at room temperature for 30 minutes, then sulfuric acid (98 wt%) was added, and further stirred for 30 minutes. Thereafter, the temperature was raised to 100 to 110 ° C. until the solvent evaporated, and then the mixture was further reacted in a drier at 160 ° C. for 6 hours to prepare a porous silicon-carbon precursor mixture.
  • the resulting porous silicon-carbon precursor mixture was placed in an alumina crucible, placed in a tube furnace, and heat-treated at 800 ° C for 4 hours in an argon gas flow, followed by natural cooling.
  • the silicon content in the final porous silicon-carbon composite material was 76 wt%.
  • the graphite was added to the porous silicon-carbon composite obtained in the step (1-3) of Example 1 so that the weight ratio of the porous silicon-carbon composite obtained in the above step (1-3) and graphite was 60:40 wt% .
  • Graphite was added to the porous silicon-carbon composite material obtained in Example 2 to prepare a porous silicon-carbon composite material having a weight ratio of graphite to graphite of 60:40 wt%.
  • the procedure of Example 1 was repeated except that the content of silicon was 59 wt%.
  • zeolite Y 1 g was physically mixed with 0.8 g of magnesium powder as a mineral additive and heat treated at 700 ° C. for 16 hours in an open tube furnace with argon gas (300 cc / min) flow in an alumina crucible without using sodium chloride as a heat dispersant ,
  • a porous silicon-carbon composite was prepared using pitch carbon as in the step (1-3) of Example 1 above.
  • the content of silicon in the porous silicon-carbon composites was 67 wt%.
  • Pitch carbon was completely dissolved in THF by ultrasonic vibration and stirring, and THF solution in which the silicon nanoparticles were dispersed was added. The mixture was stirred at room temperature for 3 hours and then stirred until the solvent evaporated in the temperature range of 70 to 80 ° C.
  • the silicon-carbon composites obtained by this reaction were dried overnight at 80 ° C in a drier, and the dried powder was placed in a crucible and placed in a tube furnace. The tube was heat-treated at 800 ° C for 4 hours under an argon gas flow and then cooled naturally.
  • the content of silicon in the silicon-carbon composites was 56 wt%.
  • a silicon-carbon composite was prepared in the same manner as in Example 4 except that commercially available silicon nanoparticles having a particle size of 70 to 100 nm were used.
  • the silicon content in the silicon-carbon composite was 52 wt%.
  • Resorcinol and formaldehyde were added to distilled water containing silicon particles and dissolved at room temperature.
  • a small amount of aqueous ammonium hydroxide solution (0.5 wt% NH4OH) was added.
  • the mixture was placed in a fully closed reactor and stirred until a gel was formed at a temperature range of 70-90 < 0 > C.
  • the carbon gel containing the obtained silicon nanoparticles was maintained at 90 DEG C for an additional 16 hours. Thereafter, the resulting composite gel was dried overnight in a dryer at 80 DEG C, and the resulting gel was placed in a crucible and placed in a tube heating furnace. The tube was heat-treated at 800 DEG C for 4 hours under an argon gas flow and then naturally cooled. Silicon-carbon composites were prepared. At this time, the content of silicon in the silicon-carbon composite was adjusted to 44 wt%.
  • compositions of raw materials and the reaction conditions used in the production of Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Tables 1 and 2 below.
  • FE-SEM Field Emission Scanning Electron Microscopy
  • JEOL JSM-35CF JEOL JEM-2010, 200.0 kV
  • BET specific surface area meter BET specific surface area meter
  • XRD X-ray diffraction
  • Fig. 3 is a SEM photograph of the zeolite Y
  • Fig. 4 is a TEM photograph of the silicon particles contained in the porous silicon-carbon composite of Example 2.
  • the zeolite Y used as a raw material has a size of 500 nm to 1 ⁇ m and has a smooth surface.
  • FIG. 4 it can be seen that the porous silicon particles obtained in Example 2 were considerably rougher than the surface of the whole particles before reduction.
  • FIGS. 5 to 7 TEM photographs and element mapping results of the porous silicon-carbon composites prepared in Example 2 are shown in FIGS. 5 to 7.
  • FIG. 5 is a TEM photograph of the porous silicon-carbon composite of Example 2
  • FIG. 6 is a mapping image of Si elements in the rectangular region of FIG. 5
  • FIG. 7 is a mapping of C elements of the rectangular region of FIG. ) It is a photograph.
  • TEM photographs of the porous silicon prepared in Examples 7 and 8 are shown in Figs. 8 and 9, respectively.
  • the porous silicon samples (Examples 8 and 9) obtained in Examples 7 and 8 have a particle size of about 500 nm to 1 ⁇ m similar to the porous silicon prepared in Example 1, and many pores are distributed in the particles .
  • FIG. 1 A TEM photograph of the porous silicon particles prepared in Comparative Example 1 is shown in Fig. In comparison with FIGS. 4, 8 and 9, in Comparative Example 1, the sintering of the silicon particles occurred due to the high heat generation during the reduction reaction, and the silicon primary particle size was significantly increased to about 47 nm.
  • FIGS. 11 and 12 show X-ray diffraction (XRD) analysis results of the pickling step in the manufacturing process of the porous silicon prepared in Examples 1, 7 and 8 are shown in FIGS. 11 and 12.
  • FIG. 11 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the production methods of Examples 1, 7 and 8, Ray diffraction (XRD) analysis of the porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and washing with hydrofluoric acid (HF) in the production method.
  • XRD X-ray diffraction
  • the porous silicon particles prepared in Example 1 are composed of silicon primary particles having a size of about 28 nm and have pores developed therein.
  • the porous silicon particles prepared in Examples 7 and 8 are composed of silicon primary particles of about 32 and 35 nm in size.
  • XRD analysis results of the porous silicon produced in Comparative Example 1 are shown in Figs. 13 and 14.
  • Fig. 13 is a graph showing the results of X-ray diffraction (XRD) analysis of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the manufacturing method of Comparative Example 1.
  • XRD X-ray diffraction
  • Mg 2 SiO 4 was formed by reacting reactant SiO 2 with product MgO, and reacted with HF during the etching of residual silica with HF, resulting in a new product, MgF 2 , as a byproduct, resulting in lower purity of silicon 14).
  • the size of the primary particles of the porous silicon produced in Comparative Example 1 was as large as 47 nm.
  • FIG. 15 shows the nitrogen adsorption / desorption isotherm curves of the porous composites prepared in Examples 1, 7 and 8 and Comparative Example 1
  • the BET surface area, pore volume, and average pore size are shown in Table 3 below.
  • the porous silicon according to Examples 1, 7, and 8 has a higher nitrogen adsorption amount than that of Comparative Example 1, and the pores are developed inside the particles.
  • the porous silicon produced in Examples 1, 7, and 8 had a much larger BET surface area, pore volume, and size than the porous silicon produced in Comparative Example 1.
  • the silicon-carbon composites prepared in Examples 1 to 4, Examples 5 to 8 and Comparative Examples 1 to 4 were used as the electrode active material, and carbon black as a conductive material and PVA (poly vinyl acetate, DMSO sulfoxide) was used.
  • the silicon-carbon composite, the conductive material and the polymer binder were mixed at a weight ratio of 80:10:10 to obtain a slurry-like mixture.
  • the slurry was applied to a copper plate current collector having a thickness of 10 mu m as 50 mu m, dried at 80 DEG C for 2 hours, put into a compressor, and compressed to 30 mu m. Thereafter, it was vacuum-dried at 80 DEG C for 2 hours and cut into 1.54 cm < 2 > to prepare an electrode.
  • the composite working electrode and the lithium metal reference electrode were laminated in a 2032 coin cell in a glove box in an argon atmosphere and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
  • PP polypropylene
  • Carbon black as a conductive material and 5 wt% solution of PVA (polyvinyl acetate, DMSO (dimethyl sulfoxide)) as a polymer binder were used as the anode active material, the silicon-carbon composite material prepared in Example 3, and the conductive material.
  • the slurry was coated on a copper plate current collector having a thickness of 10 ⁇ and dried at 80 ⁇ for 2 hours and then compressed. Thereafter, it was vacuum-dried at 80 DEG C for 2 hours and cut into 1.54 cm < 2 > to prepare an electrode.
  • the composite working electrode and the lithium metal reference electrode were laminated in a Swarovsk cell in a glove box in an argon atmosphere and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
  • PP polypropylene
  • Ethylene carbonate and ethylmethyl carbonate in which 10 vol% of fluoroethylene carbonate was added to an organic solvent containing 1.2 M LiPF 6 lithium salt as an electrolyte were mixed at a volume ratio of 30:70
  • a half cell was prepared using the mixed solution, and a pretreatment for reducing irreversible energy of the negative electrode active material was performed by charging / discharging the battery for one cycle.
  • NCM 622 as a cathode active material, carbon black as a conductive material, and a 5 wt% solution in PVdF (N-methyl-2-pyrrolidone) were used as a binder) in a ratio of 85: : 7.5 weight ratio to obtain a slurry-like mixture.
  • PVdF N-methyl-2-pyrrolidone
  • the slurry was coated on an aluminum plate current collector having a thickness of 20 ⁇ , dried at 80 ⁇ for 2 hours and compressed. Thereafter, it was vacuum-dried at 120 DEG C for 12 hours, and cut to 1.13 cm < 2 > to prepare an electrode.
  • the pre-treated composite anode and NCM active material anode were laminated on a 2032 coin cell, and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
  • PP polypropylene
  • Ethylene carbonate and ethylmethyl carbonate in which 10 vol% of fluoroethylene carbonate was added to an organic solvent containing 1.2 M LiPF 6 lithium salt as an electrolyte were mixed at a volume ratio of 30:70
  • a lithium secondary battery (full cell) was prepared using the mixed solution.
  • FIGS. 17 to 21 show results of analysis of charging and discharging cycle characteristics of the composite prepared in Examples 1 to 4, Examples 5 to 8 and Comparative Examples 1 to 4 as the electrode active material.
  • the charging and discharging cycle characteristic analysis was performed at a current density of 50 mA / g in a voltage range of 0.01 to 1.5 V for 5 cycles at a current density of 100 mA / g after one cycle test, At 500 mA / g, or 5 cycles at a current density of 100 mA / g and 500 mA / g from a subsequent cycle.
  • FIG. 21 shows the results of testing the rate characteristics of the electrode made of the electrode active material according to Examples 5 and 6.
  • Example 17 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 1 to 4 as a negative electrode material ≪ / RTI > Referring to FIG. 17, Example 1 was prepared so that the silicon content of the porous silicon-carbon composites was 70 wt%, and the initial coulombic efficiency was as high as 81.3%. At a current density of 100 mA / g, the charge capacity was found to be 1700 to 1760 mAh / g. After the rapid decrease of charge capacity to 1150 mAh / g until 6 cycles at a current density of 500 mA / , And showed a high capacity of about 1000 mAh / g.
  • the porous silicon-carbon composites according to Example 2 had a silicon content of 60 wt%, and the initial coulombic efficiency was 75.3%.
  • the charge capacity was 1360 to 1390 mAh / g.
  • the charge capacity was reduced to 930 mAh / g until 7 cycles at a current density of 500 mA / / g. < / RTI >
  • the porous silicon-carbon composites according to Example 3 had a silicon content of 50 wt%, indicating an initial coulombic efficiency of 77.6%.
  • the charging capacity was 1050 to 1065 mAh / g.
  • the charging capacity was reduced to 687 mAh / g until 9 cycles at a current density of 500 mA / / g. < / RTI >
  • the porous silicon-carbon composites according to Example 4 had a silicon content of 76 wt%, which was lower than that of carbon coating with a pitch of 70% at an initial coulombic efficiency.
  • the charge capacity was 1005 to 1020 mAh / g, and then at a current density of 500 mA / g, the charge capacity rapidly decreased to 648 mAh / g until 11 cycles. Capacity and retention rate.
  • FIG. 18 shows the charge / discharge cycle characteristics of the porous silicon-carbon composites prepared in Examples 5 and 6.
  • FIG. The electrode active material according to Example 5 is obtained by mixing the porous silicon-carbon composite material prepared in Example 1 with graphite in a ratio of 60:40 wt%, and the silicon content in the electrode active material is 42 wt%.
  • the initial coulombic efficiency was as high as 85% and the reversible capacity was 1018 mAh / g.
  • the charge capacity was above 1050 mAh / g, and then at 150 mA / g current density, the capacity was higher than 660 mAh / g after 150 cycles.
  • the electrode active material according to Example 6 is obtained by mixing the porous silicon-carbon composites prepared in Example 2 with graphite in a ratio of 60:40 wt%, and the silicon content in the electrode active material is 36 wt%.
  • the initial coulombic efficiency was 79.5% and the reversible capacity was 959 mAh / g.
  • the charge capacity was more than 911 mAh / g, and then at 500 mA / g current density, it showed an excellent capacity of more than 620 mAh / g after 150 cycles.
  • FIG. 19 shows charge / discharge cycle characteristics of the porous silicon-carbon composites prepared in Examples 7 and 8.
  • the porous silicon-carbon composite according to Example 7 had a silicon content of 59 wt%.
  • the initial coulombic efficiency was as high as 83.9% and the reversible capacity was 1040 mAh / g.
  • the charging capacity was 1015 to 1030 mAh / g.
  • the charging capacity was reduced to 580 mAh / g until 10 cycles at a current density of 500 mA / / g or more.
  • the porous silicon-carbon composites according to Example 8 had a silicon content of 62 wt%.
  • the initial coulombic efficiency was as high as 80.7% and the reversible capacity was 1171 mAh / g.
  • the charging capacity was about 1160 mAh / g.
  • the charging capacity was reduced from 720 mAh / g to 8 cycles at a current density of 500 mA / g. < / RTI >
  • Comparative Example 1 was prepared to have a silicon content of 67 wt% in the porous silicon-carbon composite material, and the initial coulombic efficiency was as high as 87.4%.
  • the charge capacity was more than 1100 mAh / g.
  • the charge capacity rapidly decreased from 550 mAh / g to 11 cycles, g or more.
  • the initial cool dragon efficiency and cycle stability are comparatively good, but the cycle capacity is low at 500 mA / g because the sintering of the particles causes insufficient void space in the silicon particles due to sintering of the particles.
  • the commercial silicon nanoparticle-carbon composite according to Comparative Example 2 of FIG. 20 had an initial coulombic efficiency of 87.4%.
  • the charge capacity was about 2100 mAh / g.
  • the cycle capacity rapidly decreased and decreased to 860 mAh / g at 54 cycles.
  • the commercial Silicon nanoparticle-carbon composite according to Comparative Example 3 of FIG. 20 showed an initial coulombic efficiency as low as 72.8%.
  • the charge capacity was more than 1140 mAh / g.
  • the cycle capacity decreased drastically under the current density of 500 mA / g and decreased to 120 mAh / g at 70 cycles.
  • the commercial Silicon nanoparticle-carbon composite according to Comparative Example 4 of FIG. 20 had a relatively high initial coulombic efficiency of 81.8%.
  • the charge capacity was as high as 1504 mAh / g.
  • the charge capacity was reduced to 1092 mAh / g until 6 cycles at a current density of 500 mA / g. And then the capacity rapidly decreased to 575 mAh / g in 70 cycles.
  • FIG. 21 is a graph showing the charge / discharge rate (%) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 5 and 6 as a negative electrode material Fig.
  • the current density during charging was fixed at 100 mA / g and the discharge current density was varied at 100, 500, 1,000, 2,000, 5,000 and 10,000 mA / g.
  • the porous silicon-carbon composites according to Example 5 exhibited high capacities of 1,010, 1,000, 975, 943 and 882 mAh / g at current densities of 100, 500, 1,000, 2,000 and 5,000 mA /
  • the capacity was greatly decreased at 10,000 mA / g, but the capacity was in the range of 440-550 mAh / g, which exceeded the theoretical capacity of commercial graphite (372 mAh / g).
  • rapid capacity recovery showed excellent electrochemical reversibility.
  • the porous silicon-carbon composite according to Example 6 exhibited a high capacity of more than 920 mAh / g even when the current density increased from 100 mA / g to 5,000 mA / g, and reached about 750 mAh / g even at a current density of 10,000 mA / Respectively. Then, when the current density was gradually decreased from 10,000 mA / g to 100 mA / g, fast capacity recovery was achieved, indicating excellent electrochemical reversibility.
  • Table 4 shows the capacity retention ratios of the composite prepared in Examples 1 to 3 and 5 to 8 with respect to the characteristics of the charge / discharge cycle as the electrode active material, Shows the capacity retention rate according to the characteristics analysis of the charge / discharge cycle of the composite prepared in Comparative Examples 1 to 4.
  • Example 5 and 6 prepared by mixing the porous silicon-carbon composite with graphite, the capacity retention ratio at 18 to 150 cycles was 100%, which shows very stable cycle characteristics.
  • the retention ratios of 18 to 150 cycles were relatively high as 94.3 and 73.7%, respectively, while the retention ratios of 18 to 70 cycles of Comparative Example 1 were somewhat low as 76% (Table 5).
  • Comparative Example 2 made of commercially available silicon nanoparticles having a diameter of about 50 nm, the capacity retention ratio of 18 to 54 cycles was 80%. However, Comparative Example 2 made of commercially available silicon nanoparticles having a diameter of 70 to 100 nm 3 and Comparative Example 4, the capacity retention ratios of 18 to 70 cycles were remarkably lowered to 20% and 51%, respectively (Table 5).
  • FIG. 22 is a graph showing the results of the evaluation of the properties of the porous silicon-carbon composites (Example 3) prepared in Example 3 using a negative electrode and negative electrode using NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 )
  • FIG. 5 is a graph showing charge / discharge cycle performance of a lithium secondary battery.
  • the complete lithium rechargeable battery prepared using graphite as the negative electrode active material was used as a control, and the capacity was expressed based on the weight of the cathode material.
  • charge / discharge cycle characteristics analysis is performed at a voltage range of 2.0 to 4.2 V, at 5 cycles at a C-rate of 0.1 C, and at a C-rate of 0.5 C from a subsequent cycle.
  • the complete pore of the porous silicon-carbon composite according to Example 3 as the negative electrode active material exhibited a capacity equal to or higher than that of the control pore under the initial 0.1C condition. Then, It is confirmed that the cycle stability is equal to or higher than that of the comparative example.
  • FIG. 23 is a graph showing a relationship between a lithium secondary battery including a negative electrode using a porous silicon-carbon composite material according to an embodiment of the present invention as a negative electrode material and a positive electrode using NCM 622 as a positive electrode material, a negative electrode using graphite as a negative electrode material, The weight and the volume energy density of a lithium secondary battery including a positive electrode used as a material. At this time, only the total weight and the total volume of the anode and the anode active material were considered in calculating the weight and the volume energy density, respectively.
  • a lithium secondary battery using a high-capacity porous silicon-carbon composite as a negative electrode active material exhibits an energy density of about 1.3 times higher and a density of energy per volume of about 1.7 times higher than that of a lithium secondary battery using a commercial graphite as an anode active material can confirm. Therefore, the lithium secondary battery using the high-capacity porous silicon-carbon composite as the negative electrode active material has a cycle stability equal to or higher than that of the lithium secondary battery using the commercial graphite as the negative electrode active material, and it is confirmed that the energy density of the lithium secondary battery can be greatly improved .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for producing a porous silicon-carbon complex, a secondary battery negative electrode material produced by the production method, and a secondary battery comprising the secondary battery negative electrode material. The method for producing a porous silicon-carbon complex according to an embodiment of the present invention comprises: a step of mixing a silicon precursor with a heat dispersant and subjecting the mixture to first heat treatment, thereby producing a first mixture; a step of mixing the first mixture with a metal reducing agent, thereby producing a second mixture; a step of putting the second mixture into a reaction chamber and subjecting same to second heat treatment, thereby reducing the silicon precursor and producing a reaction product; a step of washing the reaction product and collecting porous silicon particles; a step of mixing the porous silicon particles with a carbon precursor, thereby producing a third mixture; and a step of subjecting the third mixture to third heat treatment, thereby coating the porous silicon particles with carbon.

Description

다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지 A method for producing a porous silicon-carbon composite material, a secondary battery anode including the porous silicon-carbon composite material produced by the above manufacturing method, and a secondary battery including the secondary battery anode
본 발명은 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 이차전지 음극 재료 및 상기 이차전지 음극 재료를 포함하는 이차전지에 관한 것이다. The present invention relates to a method for producing a porous silicon-carbon composite material, a secondary battery anode material produced by the manufacturing method, and a secondary battery including the secondary battery anode material.
다양한 리튬기반 이차전지는 소형기기의 전력원뿐 아니라 미래의 전기자동차, 스마트그리드 등 대용량 에너지 저장장치의 전력원으로서 그 중요성이 커지고 있다. 이에 따라 기존 제품보다 에너지 밀도와 출력밀도 및 안정성이 증가된 전극소재의 개발이 요구되고 있다. Various lithium-based secondary batteries are becoming increasingly important as power sources for large-capacity energy storage devices such as electric vehicles and smart grids in the future, as well as power sources for small-sized devices. Accordingly, it is required to develop an electrode material having increased energy density, output density and stability compared to existing products.
리튬기반 이차전지의 성능 향상은 양극 및 음극 소재, 분리막, 전해질 등의 크게 4가지 핵심소재에 기반하여 이루어지고 있다. 이에 현재 사용되고 있는 리튬 이차전지의 음극재로서 흑연(graphite)은 값이 싸고, 낮은 작동 전압 및 우수한 수명 안정성을 가지는 장점이 있지만, 약 372 mAh/g 정도의 낮은 이론용량을 가지며 리튬이온의 저장 (충전) 속도가 느려 율특성이 저조하여 고성능 이차전지의 음극재로의 응용에 한계가 있다. 이에, 흑연을 대체할 수 있는 음극재로서 리튬과 전기화학적으로 합금을 형성하는 Si, Sn, Ge, Pb, As 및 Bi 등의 Ⅳ, Ⅴ족의 금속 군에 대해 많은 연구가 진행되고 있다. 그 중에서도 실리콘은 지구상에서 매우 풍부한 자원으로, 비교적 낮은 작동 전압 (~0.4 V vs Li/Li +) 및 높은 이론 용량 (~3579 mAh/g)을 지니고 있기 때문에 현재 많은 연구가 진행되고 있는 소재 중 하나이다. 그러나 실리콘은 낮은 전기전도성을 가질 뿐만 아니라 반복되는 충·방전동안 입자 하나당 최대 약 4개의 리튬이온과 반응하게 되면서 약 280% 에 가까운 큰 부피팽창 및 입자의 균열을 일으킨다. 이 과정에서 새롭게 생성된 실리콘 표면과 전해액과의 반응은 새로운 고체-전해질-경계층(solid electrolyte interface, SEI)을 지속적으로 생성시켜 높은 초기 비가역 용량뿐만 아니라 높은 저항 및 급격한 용량 감소까지 초래하게 되어 수명이 짧은 문제가 있다.The performance improvement of lithium-based secondary batteries is based on four core materials such as anode and cathode materials, separator, and electrolyte. As an anode material for lithium secondary batteries currently used, graphite is advantageous in that it has a low operating voltage and excellent lifetime stability. However, graphite has a low theoretical capacity of about 372 mAh / g, Charging rate) is slow and the characteristics are poor, so there is a limit to the application to a negative electrode material of a high performance secondary battery. Therefore, much research has been conducted on the metal materials of Groups IV and V such as Si, Sn, Ge, Pb, As and Bi which are electrochemically alloyed with lithium as an anode material that can replace graphite. Among them, silicon is a very abundant resource on the earth, and it is one of the materials that is currently being studied because it has a relatively low operating voltage (~ 0.4 V vs. Li / Li + ) and a high theoretical capacity (~ 3579 mAh / g) . However, silicon not only has low electrical conductivity, but also reacts with up to about four lithium ions per particle during repeated charge and discharge, resulting in large volume expansion and cracking of particles, which is close to 280%. In this process, the reaction between the newly generated silicon surface and the electrolyte continuously generates a new solid electrolyte interface (SEI), resulting in high initial irreversible capacity as well as high resistance and rapid capacity reduction, There is a short problem.
본 발명은 고수율 및 고순도로 대량 제조가 가능한 다공성 실리콘-탄소 복합체의 제조방법을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a process for producing a porous silicon-carbon composite which can be mass-produced at high yield and high purity.
또한, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 이차전지용 음극 재료로 사용함으로써, 상기 음극재료를 포함하는 이차전지 음극 및 이차전지를 제공함을 목적으로 한다. It is another object of the present invention to provide a secondary battery anode and a secondary battery including the anode material by using the porous silicon-carbon composite material produced by the above-described method as a cathode material for a secondary battery.
또한, 본 발명의 실시 예를 따르는 이차전지는 충전 및 방전 특성이 우수하고, 충전 및 방전에 따른 부피변화를 흡수할 수 있다. Further, the secondary battery according to the embodiment of the present invention has excellent charging and discharging characteristics, and can absorb the volume change due to charging and discharging.
본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체의 제조방법은, A method for producing a porous silicon-carbon composite according to an embodiment of the present invention includes:
(i) 하기 화학식 1로 표시되는 실리콘 전구체를 열분산제와 혼합하고 제1열처리하여 제1혼합물을 제조하는 단계;(i) mixing a silicon precursor represented by the following formula (1) with a heat dispersing agent and subjecting the mixture to a first heat treatment to prepare a first mixture;
[화학식1] [Chemical Formula 1]
M 2/nO·Al 2O 3·xSiO 2·yH 2OM 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O
(ii) 상기 제1혼합물과 금속 환원제를 혼합하여 제2혼합물을 제조하는 단계; (iii) 상기 제2혼합물을 반응 챔버에 수용하고 제2열처리하여 실리콘 전구체를 환원 반응하여 반응물을 제조하는 단계; (iv) 상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계; (v) 상기 다공성 실리콘 입자에 탄소 전구체를 혼합하여 제3혼합물을 제조하는 단계; 및 (vi) 상기 제3혼합물을 제3열처리하여 다공성 실리콘 입자에 탄소를 코팅하는 단계;를 포함한다. (ii) mixing the first mixture with a metal reducing agent to prepare a second mixture; (iii) receiving the second mixture in a reaction chamber and performing a second heat treatment to reduce the silicon precursor to produce a reactant; (iv) washing the reactants to recover porous silicon particles; (v) mixing the porous silicon particles with a carbon precursor to produce a third mixture; And (vi) subjecting the third mixture to a third heat treatment to coat the porous silicon particles with carbon.
본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체는 앞서 설명한 제조방법에 의해 제조된 것이다. The porous silicon-carbon composites according to the embodiment of the present invention are manufactured by the above-described manufacturing method.
본 발명의 실시 예를 따르는 이차전지 음극은 앞서 설명한 다공성 실리콘-탄소 복합체를 포함한다. The secondary battery anode according to an embodiment of the present invention includes the above-described porous silicon-carbon composite.
본 발명의 실시 예를 따르는 이차전지는 앞서 설명한 이차전지 음극을 포함한다.The secondary battery according to the embodiment of the present invention includes the above-described secondary battery anode.
본 발명의 실시 예를 따르는 전자기기는 앞서 설명한 이차전지를 전력공급원으로 포함한다. An electronic device according to an embodiment of the present invention includes the above-described secondary battery as a power supply source.
본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체의 제조방법은 고수율 및 고순도로 대량 제조가 가능하다. The process for producing a porous silicon-carbon composite according to an embodiment of the present invention can be mass-produced at a high yield and at a high purity.
또한, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 이차전지용 음극 재료로 사용함으로써, 상기 음극재료를 포함하는 이차전지 음극 및 이차전지를 제공할 수 있다.Also, by using the porous silicon-carbon composite material produced by the above-described method as a negative electrode material for a secondary battery, it is possible to provide a secondary battery negative electrode and a secondary battery including the negative electrode material.
또한, 본 발명의 실시 예를 따르는 이차전지는 충전 및 방전 특성이 우수하고, 충전 및 방전에 따른 부피변화를 흡수할 수 있다.Further, the secondary battery according to the embodiment of the present invention has excellent charging and discharging characteristics, and can absorb the volume change due to charging and discharging.
도 1은 본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체의 제조 방법을 도시한 것이다. 1 illustrates a method of making a porous silicon-carbon composite according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따라 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지에서, 충전 및 방전 시 실리콘 일차입자의 변화를 도시한 것이다. FIG. 2 illustrates changes in silicon primary particles during charging and discharging in a secondary battery comprising a porous silicon-carbon composite fabricated according to an embodiment of the present invention.
도 3은 제올라이트 Y의 SEM 사진이다. 3 is an SEM photograph of the zeolite Y. Fig.
도 4는 실시 예2의 다공성 실리콘-탄소 복합체에 포함된 실리콘 입자의 TEM 사진이다. 4 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Example 2. Fig.
도 5는 실시 예2의 다공성 실리콘-탄소 복합체의 TEM 사진이다. 5 is a TEM photograph of the porous silicon-carbon composite of Example 2. Fig.
도 6은 도 5의 사각형 영역의 Si 원소의 매핑(mapping) 사진이다. FIG. 6 is a mapping photograph of Si elements in the rectangular region of FIG. 5. FIG.
도 7은 도 5의 사각형 영역의 C 원소의 매핑(mapping) 사진이다.7 is a mapping photograph of a C element in the rectangular area of FIG.
도 8은 실시 예7의 다공성 실리콘-탄소 복합체에 포함된 실리콘 입자의 TEM 사진이다.8 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Example 7. Fig.
도 9는 실시 예8의 다공성 실리콘-탄소 복합체에 포함된 실리콘 입자의 TEM 사진이다.9 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Example 8. Fig.
도 10은 비교 예1의 다공성 실리콘-탄소 복합체에 포함된 실리콘 입자의 TEM 사진이다.10 is a TEM photograph of silicon particles contained in the porous silicon-carbon composite of Comparative Example 1. Fig.
도 11은 실시 예1, 7 및 8의 제조 방법 중 염산(HCl) 수용액으로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다. FIG. 11 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with aqueous hydrochloric acid (HCl) solution in Examples 1, 7 and 8.
도 12는 실시 예1, 7 및 8의 제조 방법 중 염산(HCl) 수용액으로 세척 후 불산(HF)로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다.FIG. 12 shows the results of X-ray diffraction (XRD) analysis of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and washing with hydrofluoric acid (HF) in Examples 1, 7 and 8.
도 13은 비교 예1의 제조 방법 중 염산(HCl) 수용액으로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다. FIG. 13 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the manufacturing method of Comparative Example 1. FIG.
도 14는 비교 예1의 제조 방법 중 염산(HCl) 수용액으로 세척 후 불산(HF)로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다.FIG. 14 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and cleaning with hydrofluoric acid (HF) in the production method of Comparative Example 1. FIG.
도 15는 실시 예1, 7, 8 및 비교 예1에 의하여 제조된 다공성 복합체의 질소 흡/탈착 등온곡선을 도시한 것이다.Figure 15 shows the nitrogen adsorption / desorption isotherm curves of the porous composites prepared in Examples 1, 7, 8 and Comparative Example 1.
도 16은 실시 예1, 7, 8 및 비교 예1에 의하여 제조된 다공성 복합체의 기공크기 분포도를 도시한 것이다.FIG. 16 shows pore size distributions of the porous composites prepared in Examples 1, 7 and 8 and Comparative Example 1. FIG.
도 17은 실시 예1 내지 4에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 사이클 성능을 나타내는 그래프이다.17 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 1 to 4 as a negative electrode material ≪ / RTI >
도 18은 실시 예5 및 6에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 사이클 성능을 나타내는 그래프이다.18 is a graph showing the relationship between the charging / discharging cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Examples 5 and 6 as a negative electrode material ≪ / RTI >
도 19는 실시 예7 및 8에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 사이클 성능을 나타내는 그래프이다.19 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Examples 7 and 8 as a negative electrode material ≪ / RTI >
도 20은 비교 예1 내지 4에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 사이클 성능을 나타내는 그래프이다.20 is a graph showing the relationship between the charging / discharging cycle (voltage) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composite material prepared in Comparative Examples 1 to 4 as a negative electrode material ≪ / RTI >
도 21은 실시 예5 및 6에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 율 특성을 나타내는 그래프이다.FIG. 21 is a graph showing the charge / discharge rate (%) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 5 and 6 as a negative electrode material Fig.
도 22는 실시 예3에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극 및 NCM622(LiNi 0.6Co 0.2Mn 0.2O 2)을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지(완전지, full cell)의 충/방전 사이클 성능을 나타내는 그래프이다.22 is a graph showing the results of measurement of a lithium secondary battery including a negative electrode using the porous silicon-carbon composite material prepared in Example 3 as a negative electrode material and a positive electrode using NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) cell in the charge / discharge cycle.
도 23은 본 발명의 실시 예에 따라 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극 및 NCM622을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지와, 흑연(graphite)을 음극 재료로 사용한 음극 및 NCM622을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지(완전지, full cell)의 중량 및 부피 에너지 밀도를 도시한 것이다. FIG. 23 is a graph showing the results of a comparison between a lithium secondary battery including a negative electrode using a porous silicon-carbon composite material according to an embodiment of the present invention as a negative electrode material and a positive electrode using NCM622 as a positive electrode material, a negative electrode using graphite as a negative electrode material, And the volume energy density of a lithium secondary battery (full cell) including a positive electrode using NCM622 as a cathode material.
도 1은 본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체의 제조 방법을 도시한 것이다. 1 illustrates a method of making a porous silicon-carbon composite according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체의 제조방법은, Referring to FIG. 1, a method of manufacturing a porous silicon-carbon composite according to an embodiment of the present invention includes:
(i) 하기 화학식 1로 표시되는 실리콘 전구체를 열분산제와 혼합하고 제1열처리하여 제1혼합물을 제조하는 단계;(i) mixing a silicon precursor represented by the following formula (1) with a heat dispersing agent and subjecting the mixture to a first heat treatment to prepare a first mixture;
[화학식1] [Chemical Formula 1]
M 2/nO·Al 2O 3·xSiO 2·yH 2OM 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O
(ii) 상기 제1혼합물과 금속 환원제를 혼합하여 제2혼합물을 제조하는 단계; (iii) 상기 제2혼합물을 반응 챔버에 수용하고 제2열처리하여 실리콘 전구체를 환원 반응하여 반응물을 제조하는 단계; (iv) 상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계; (v) 상기 다공성 실리콘 입자에 탄소 전구체를 혼합하여 제3혼합물을 제조하는 단계; 및 (vi) 상기 제3혼합물을 제3열처리하여 다공성 실리콘 입자에 탄소를 코팅하는 단계;를 포함한다. (ii) mixing the first mixture with a metal reducing agent to prepare a second mixture; (iii) receiving the second mixture in a reaction chamber and performing a second heat treatment to reduce the silicon precursor to produce a reactant; (iv) washing the reactants to recover porous silicon particles; (v) mixing the porous silicon particles with a carbon precursor to produce a third mixture; And (vi) subjecting the third mixture to a third heat treatment to coat the porous silicon particles with carbon.
상기 실리콘 전구체를 열분산제와 혼합하고 제1열처리하여 제1혼합물을 제조하는 단계에서, 화학식1에서 M은 다공성 실리콘 전구체인 제올라이트에 포함된 산화수 n = 1 또는 2인 양이온을 나타내며, M이 NH4Cl 수용액으로 이온교환되면 NH 4-type으로, 그리고 NH 4-type이 공기중에서 소성을 거치면 H-type 제올라이트로 변형될 수 있다. 구체적으로, M은 Na, Li, K, Ca 및 Mg 중 어느 하나일 수 있다. x는 다공성 실리콘 전구체, 예를 들면 제올라이트의 SiO 2/Al 2O 3 몰비를 나타내며, x는 이론적으로 2 내지 무한대(Al 함량이 0인 경우)의 값을 가질 수 있으나, x는 5 이상인 것이 보다 바람직하다. y는 다공성 실리콘 전구체, 예를 들면 제올라이트에 포함된 물의 몰수를 나타내는 것으로, 제올라이트에 물이 가역적으로 흡/탈착하므로 보관시의 습도 등에 따라 변하므로 특별히 제한되지 않는다.In the step of preparing the first mixture by mixing the silicon precursor with a heat dispersing agent and performing a first heat treatment, M in the formula (1) represents a cation having an oxidation number of n = 1 or 2 contained in the zeolite which is a porous silicon precursor, After the ion exchange with NH 4 -type, and the NH 4 -type geochimyeon the fired in the air can be transformed into H-type zeolite. Specifically, M may be any one of Na, Li, K, Ca and Mg. x represents the molar ratio of SiO 2 / Al 2 O 3 of the porous silicon precursor, for example zeolite, and x may have a value of theoretically 2 to infinity (when the Al content is 0), but x is 5 or more desirable. y represents the number of moles of water contained in the porous silicon precursor, for example, zeolite, and is not particularly limited because water changes reversibly depending on the humidity during storage and so on.
상기 화학식 1로 표시되는 실리콘 전구체는, 제올라이트 X, Y, A, Beta, ZSM-5 및 Mordenite 구조의 결정형 알루미노실리케이트 중 적어도 어느 하나일 수 있다. 또한, 상기 화학식 1로 표시되는 실리콘 전구체는, 알칼리금속계열 (알칼리금속은 Na, Li, K, Ca 및 Mg 중 어느 하나), NH 4 계열 및 H 계열 중 적어도 어느 하나일 수 있다. 상기 제올라이트 입자의 평균 입경은 20 nm 내지 10 μm일 수 있다.The silicon precursor represented by Formula 1 may be at least one of zeolite X, Y, A, Beta, ZSM-5, and crystalline aluminosilicate having a mordenite structure. The silicon precursor represented by Formula 1 may be at least one selected from the group consisting of alkali metals (alkali metals include Na, Li, K, Ca, and Mg), NH 4 series, and H series. The average particle diameter of the zeolite particles may be 20 nm to 10 mu m.
상기 열분산제는 상기 제올라이트와 금속 환원제의 한 예로써 마그네슘 분말을 반응시키는 과정 중 수반되는 큰 발열반응을 제거해주는 기능을 수행할 수 있다. 이와 같이 열분산제를 사용함으로써 열처리시 실리콘 1차 입자의 응집을 막을 수 있다. 상기 열분산제는 염화나트륨(NaCl), 염화칼륨(KCl), 염화칼슘(CaCl 2) 및 염화마그네슘(MgCl 2) 중 적어도 어느 하나일 수 있다. 이 때, 상기 열분산제는 상기 실리콘 전구체 100 중량부에 대하여 100 내지 1200 중량부, 바람직하게는 1000 중량부의 비율로 첨가될 수 있다.The heat dispersing agent is an example of the zeolite and the metal reducing agent, and can perform a function of eliminating a large exothermic reaction during the process of reacting the magnesium powder. By using the heat dispersing agent as described above, agglomeration of the primary silicon particles can be prevented during the heat treatment. The heat dispersing agent may be at least one of sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl 2 ) and magnesium chloride (MgCl 2 ). At this time, the heat dispersing agent may be added in an amount of 100 to 1200 parts by weight, preferably 1000 parts by weight, based on 100 parts by weight of the silicon precursor.
상기 실리콘 전구체를 열분산제와 혼합하는 방법은 건식 혼합 방식 또는 습식 혼합 방식으로 수행될 수 있다.The method of mixing the silicon precursor with the heat dispersing agent may be performed by a dry mixing method or a wet mixing method.
상기 제1열처리 단계는 실리콘 전구체 기공 내부의 수분 및 히드록실기(-OH)를 제거해주는 것을 목적으로 할 수 있으며, 구체적으로 수분이 없는 가스 분위기의 550 ℃ 내지 800 ℃ 범위의 온도, 바람직하게는 700 ℃에서 4시간 내지 7 시간, 바람직하게는 5 시간 동안 수행될 수 있다. The first heat treatment step may be performed to remove moisture and hydroxyl groups (-OH) in the pores of the silicon precursor. Specifically, the first heat treatment step may be performed at a temperature in the range of 550 to 800 ° C, 700 < 0 > C for 4 hours to 7 hours, preferably 5 hours.
상기 제1혼합물과 금속 환원제를 혼합하여 제2혼합물을 제조하는 단계에서, 상기 금속 환원제는 알칼리 금속 또는 알칼리 토금속일 수 있으며, 그 혼합물일 수 있다. 바람직하게 상기 금속 환원제는 나트륨(Na), 마그네슘(Mg), 칼슘(Ca) 및 알루미늄(Al) 중 적어도 어느 하나일 수 있다. In the step of preparing the second mixture by mixing the first mixture and the metal reducing agent, the metal reducing agent may be an alkali metal or an alkaline earth metal, and may be a mixture thereof. Preferably, the metal reducing agent may be at least one of sodium (Na), magnesium (Mg), calcium (Ca), and aluminum (Al).
이 때, 상기 금속 환원제는 실리콘 전구체 100 중량부에 대하여 50 내지 200 중량부, 바람직하게는 80 중량부의 비율로 혼합될 수 있다.At this time, the metal reducing agent may be mixed in an amount of 50 to 200 parts by weight, preferably 80 parts by weight, based on 100 parts by weight of the silicon precursor.
상기 제2혼합물을 반응 챔버에 수용하고 제2열처리하여 실리콘 전구체를 환원 반응하여 반응물을 제조하는 단계에서, 상기 제2열처리 단계는 환원성 분위기, 일 예로 산소가 없는 반응 챔버에서 300 ℃ 내지 1000 ℃의 온도범위, 바람직하게는 650 내지 750 ℃ 및 1시간 내지 24 시간 범위, 바람직하게는 5 시간 동안 수행될 수 있다. 상기 열처리 분위기는 아르곤 기체 또는 아르곤/수소 혼합 기체를 포함한 불활성 가스 등 산소가 없는 분위기일 수 있다. 상기 제2열처리 온도는 금속 환원제의 용융 온도를 고려하여 300 ℃ 내지 1000 ℃, 바람직하게는 650 내지 750 ℃로 설정할 수 있다. 상기 제2열처리 온도가 300 ℃ 미만이면 실리콘 전구체의 환원율 및 최종 다공성 실리콘의 수율이 낮을 수 있으며, 제2열처리 온도가 1000 ℃ 이상이면 입자들의 소결 현상이 일어나 실리콘 일차 입자의 크기가 커지고 기공이 충분히 형성되지 않는 문제점이 있다.In the step of receiving the second mixture in a reaction chamber and performing a second heat treatment to reduce a silicon precursor to produce a reactant, the second heat treatment step may be performed at a temperature of 300 to 1000 占 폚 in a reducing atmosphere, Temperature range, preferably from 650 to 750 ° C, and from 1 hour to 24 hours, preferably 5 hours. The heat treatment atmosphere may be an oxygen-free atmosphere such as an argon gas or an inert gas containing an argon / hydrogen mixed gas. The second heat treatment temperature may be set to 300 to 1000 ° C, preferably 650 to 750 ° C, in consideration of the melting temperature of the metal reducing agent. If the second heat treatment temperature is less than 300 ° C, the reduction ratio of the silicon precursor and the yield of the final porous silicon may be low. If the second heat treatment temperature is 1000 ° C or higher, sintering of the particles occurs, There is a problem that it is not formed.
상기 제2열처리는 반응 챔버 내부의 압력이 10 -3 bar 내지 5 bar 압력범위에서 수행될 수 있다. 이를 통해 상기 제올라이트 등의 실시콘 전구체는 마그네슘 등의 금속 환원제와 혼합된 상태로 용융되면서 용융 상태의 마그네슘 등의 금속 액체 또는 증기에 의해 환원될 수 있다.The second heat treatment may be performed in a pressure range of 10 -3 bar to 5 bar pressure inside the reaction chamber. Thus, the conducting cone precursor such as zeolite can be reduced by being mixed with a metal reducing agent such as magnesium and being melted and being melted by a metal liquid such as magnesium or vapor.
상기 금속 환원제를 사용하는 상기 혼합물의 환원반응은 알루미나 도가니 및 불활성 기체 흐름 하에서 수행되는 반응일 수도 있으나, 보다 바람직하게는 산소가 없는 분위기의 밀폐된 반응기내에서 수행되는 것일 수 있다. The reduction reaction of the mixture using the metal reducing agent may be a reaction carried out under an alumina crucible and an inert gas flow but more preferably in an oxygen-free closed reactor.
본 단계는, 상기 실리콘 전구체는 그의 일부 또는 전부가 다공성 실리콘으로 환원될 수 있으며, 상기 금속 환원제(예: 마그네슘) 분말의 일부 또는 전부가 금속 산화물(예: 산화마그네슘(MgO))로 산화되는 단계를 포함할 수 있다. In this step, the silicon precursor may be partially or wholly reduced to porous silicon, and some or all of the metal reductant (e.g., magnesium) powder is oxidized to a metal oxide (e.g., magnesium oxide (MgO)) . ≪ / RTI >
상기 제2열처리하여 실리콘 전구체를 환원 반응하여 반응물을 제조하는 단계에 앞서, 상기 제1혼합물과 금속 환원제를 혼합하여 제2혼합물을 진공 건조하는 단계를 더 포함할 수 있다. 본 진공 건조하는 단계를 포함함으로써 제2혼합물의 수분을 제거할 수 있다. 본 진공 건조단계는 제2혼합물을 80 ℃ 내지 200 ℃, 바람직하게는 150 ℃에서 1 내지 5 시간, 바람직하게는 2 시간 동안 가열하여 수행할 수 있다. The method may further include a step of vacuum-drying the second mixture by mixing the first mixture and the metal reducing agent prior to the step of reducing the silicon precursor by the second heat treatment to produce a reactant. By including the present vacuum drying step, moisture of the second mixture can be removed. The present vacuum drying step can be carried out by heating the second mixture at 80 ° C to 200 ° C, preferably at 150 ° C for 1 to 5 hours, preferably for 2 hours.
상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계는, 상기 반응물을 증류수 및 묽은 산 용액으로 세척함으로써 수행될 수 있다. 상기 제2열처리로 수득 된 반응물은 다공성 실리콘 및 산화 마그네슘 외에도 환원되지 못한 잔존 실리카 및 마그네슘 분말, 또는 마그네슘 실리사이드(Mg 2Si)와 같은 부산물을 포함할 수 있다. 본 단계를 거침으로써 이러한 부산물을 제거할 수 있다. 상기 산 용액은 염산 (HCl), 아세트산 (CH 3COOH), 불산 (HF) 또는 이들의 혼합물을 포함할 수 있으며, 산 처리 시간은 5시간 정도가 바람직하나 경우에 따라서 1시간 내지 10시간 범위일 수 있다.The step of washing the reactants to recover the porous silicon particles can be performed by washing the reactants with distilled water and a dilute acid solution. The reaction product obtained in the second heat treatment may include by-products such as porous silicon, and the magnesium oxide addition failed to reduce the residual magnesium and silica powder, or magnesium silicide (Mg 2 Si). These by-products can be removed by going through this step. The acid solution may include hydrochloric acid (HCl), acetic acid (CH 3 COOH), hydrofluoric acid (HF), or a mixture thereof. The acid treatment time is preferably about 5 hours, .
일 실시 예에서, 상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계는, (iv-1) 증류수로 세척하여 열분산제를 제거하는 단계; (iv-2) 염산(HCl) 수용액으로 세척하여 실리콘 이외의 부산물을 제거하는 단계; 및 (iv-3) 불산(HF) 수용액으로 실리카 잔유물을 식각하여 제거하는 단계;를 포함할 수 있다. In one embodiment, the step of washing the reactants to recover the porous silicon particles comprises: (iv-1) washing with distilled water to remove the heat dispersing agent; (iv-2) washing with an aqueous solution of hydrochloric acid (HCl) to remove by-products other than silicon; And (iv-3) etching and removing the silica residue with an aqueous solution of hydrofluoric acid (HF).
상기 다공성 실리콘 입자를 회수하는 단계에서 세척을 통해 회수된 다공성 실리콘 입자는, BET 측정법에 따른 비표면적이 30 m 2/g 이상 내지 500 m 2/g 이하이고, BET 측정에 따른 총 기공부피가 0.2 cm 3/g 내지 1.0 cm 3/g 이고, 상기 다공성 실리콘 입자를 구성하는 개별 실리콘 일차 입자의 평균 입경이 5 내지 50 nm 일 수 있다. The porous silicon particles recovered through washing in the step of recovering the porous silicon particles have a specific surface area of not less than 30 m 2 / g and not more than 500 m 2 / g according to the BET measurement method, and a total pore volume of 0.2 and cm 3 / g to 1.0 cm 3 / g, the average particle size of individual primary particles constituting the silicon-porous silicon particles may be from 5 to 50 nm.
상기 다공성 실리콘 입자에 탄소 전구체를 혼합하여 제3혼합물을 제조하는 단계 및 상기 제3혼합물을 제3열처리하여 다공성 실리콘 입자에 탄소를 코팅하는 단계에서, 상기 탄소 전구체는 피치(pitch), 수크로오즈(sucrose), 글루코스(glucose), 레조시놀-포름알데히드(resorcinol-formaldehyde), 페놀-포름알데히드(phenol-formaldehyde), 페놀 수지(phenolic resin), 폴리 도파민(polydopamine), 흑연, 카본블랙, 탄소나노튜브, 및 그래핀 중 적어도 어느 하나일 수 있다. The step of mixing the carbon precursor with the porous silicon particles to produce a third mixture, and the third mixture to a third heat treatment to coat the carbon on the porous silicon particles, wherein the carbon precursor has a pitch, (eg, sucrose, glucose, resorcinol-formaldehyde, phenol-formaldehyde, phenolic resin, polydopamine, graphite, carbon black, carbon Nanotube, and graphene.
상기 다공성 실리콘 입자에 탄소를 코팅하는 단계는, 불활성 가스 분위기 또는 불활성 가스 및 수소 혼합가스 분위기에서 600 ℃ 내지 1000 ℃, 바람직하게는 800 ℃에서 열처리하여 수행될 수 있다. The step of coating the porous silicon particles with carbon may be performed by heat treatment at 600 ° C to 1000 ° C, preferably 800 ° C in an inert gas atmosphere or an inert gas and hydrogen mixed gas atmosphere.
본 단계를 거쳐 제조된 다공성 실리콘-탄소 복합체에 포함된 다공성 실리콘 입자의 함량은 다공성 실리콘-탄소 복합체 전체 중량에 대하여 20 내지 80 wt%일 수 있다. The content of the porous silicon particles contained in the porous silicon-carbon composite produced through this step may be 20 to 80 wt% with respect to the total weight of the porous silicon-carbon composite.
도 2는 본 발명의 실시 예에 따라 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지에서, 충전 및 방전 시 실리콘 일차입자(110)의 변화를 도시한 것이다. 본 발명에 의한 다공성 실리콘-탄소 복합체 입자(140)는 다공성 실리콘 입자(120) 내부의 많은 기공에 의해 리튬과 전기화학적 충전 및 방전 반복 시 동반되는 큰 부피변화를 자체적으로 흡수 가능하며, 입자 외부의 탄소 코팅층(130)을 통해 전도성을 높이며 가역적인 충전 및 방전이 가능하도록 하여 전극소재로서 우수한 특성을 나타낼 수 있게 된다. 도 2를 참조하면, 실리콘 일차 입자(110)가 충전 및 방전에 의해 부피 변화가 발생한 경우에도(210 참조) 다공성 실리콘-탄소 복합체 입자(140) 전체의 부피에 영향을 최소화할 수 있음을 알 수 있다. FIG. 2 illustrates the variation of the silicon primary particles 110 during charging and discharging in a secondary battery comprising a porous silicon-carbon composite fabricated according to an embodiment of the present invention. The porous silicon-carbon composite particles 140 according to the present invention can absorb a large volume change accompanied by repeated pores and electrochemical charging and discharging by lithium due to many pores in the porous silicon particles 120, The carbon coating layer 130 enhances the conductivity and enables reversible charging and discharging, thereby exhibiting excellent characteristics as an electrode material. Referring to FIG. 2, it can be seen that even when the volume of the silicon primary particles 110 is changed by charging and discharging (see 210), the influence on the volume of the entire porous silicon-carbon composite particles 140 can be minimized have.
본 발명의 실시 예를 따르는 다공성 실리콘-탄소 복합체는 앞서 설명한 제조방법에 의해 제조된 것이다. 상기 다공성 실리콘-탄소 복합체는 이차전지 음극 재료로 사용될 수 있다. 본 발명의 실시 예를 따르는 이차전지 음극은 집전체 및 상기 집전체 상에 배치된 다공성 실리콘-탄소 복합체를 포함할 수 있다. 본 발명의 실시 예를 따르는 이차전지는 앞서 설명한 이차전지 음극을 포함한다. 일 예에서 상기 이차전지는 본 발명의 실시 예에 의해 제조된 실리콘-탄소 복합체를 포함하는 음극, 양극 및 상기 음극 및 양극 사이에서 이온의 이동 통로를 제공하는 전해질 및 상기 전해질 내에 배치되고 상기 전해질 내의 이온에 대하여 선택적 투과를 하도록 하는 분리막을 포함할 수 있다. 본 발명의 실시 예를 따르는 전자기기는 앞서 설명한 이차전지를 전력공급원으로 포함한다. 상기 전자기기는 이차전지를 전력공급원으로 포함할 수 있는 것이면 특별히 제한되지 않는다. 구체적으로, 상기 전자기기는 전기자동차, 스마트폰, 시계 등의 모바일기기일 수 있다. 상기 전자기기는 마이크로 프로세서 등의 전자부품을 포함할 수 있으며, 이차전지로부터 전원을 공급받아 상기 전자부품을 구동하도록 할 수 있다. The porous silicon-carbon composites according to the embodiment of the present invention are manufactured by the above-described manufacturing method. The porous silicon-carbon composites may be used as a secondary battery anode material. The secondary battery anode according to an embodiment of the present invention may include a current collector and a porous silicon-carbon composite disposed on the current collector. The secondary battery according to the embodiment of the present invention includes the above-described secondary battery anode. In one example, the secondary battery comprises a negative electrode comprising a silicon-carbon composite produced by an embodiment of the present invention, an anode, and an electrolyte providing a path for movement of ions between the cathode and the anode, and an electrolyte disposed within the electrolyte, Ions to selectively permeate the ion-exchange membrane. An electronic device according to an embodiment of the present invention includes the above-described secondary battery as a power supply source. The electronic device is not particularly limited as long as it can include the secondary battery as a power supply source. Specifically, the electronic device may be a mobile device such as an electric vehicle, a smart phone, or a watch. The electronic device may include an electronic device such as a microprocessor, and may be powered by the secondary battery to drive the electronic device.
이하에서는 본 발명을 실시 예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시 예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.
<실시 예1> 다공성 실리콘-탄소 복합체 제조Example 1 Preparation of Porous Silicon-Carbon Composite
단계 (1-1): 실리콘 전구체로서의 제올라이트 및 염화나트륨 혼합 제올라이트의 후 수분 제거 단계Step (1-1): Post-moisture removal of zeolite and sodium chloride mixed zeolite as a silicon precursor
염화나트륨 분말 100 중량부당 제올라이트 Y (x=SiO 2/Al 2O 3=80) 10 중량부의 비율로 수용액 상태에서 균일하게 혼합한 후, 용매를 증발시켰다. Sodium chloride powder per 100 parts by weight of zeolite Y (x = SiO 2 / Al 2 O 3 = 80) were uniformly mixed in an aqueous solution at a ratio 10 parts by weight, the solvent was evaporated.
제올라이트 기공 내부의 수분 및 히드록실기(-OH)를 제거하기 위해 700 ℃에서 추가로 5시간 열처리 하여 제올라이트와 염화나트륨의 균일한 혼합물을 얻었다.Treated at 700 ° C for an additional 5 hours to remove moisture and hydroxyl groups (-OH) inside the zeolite pores to obtain a homogeneous mixture of zeolite and sodium chloride.
단계 (1-2): 제올라이트의 열 환원 단계Step (1-2): thermal reduction step of zeolite
단계 (1-1)에서 얻어진 제올라이트 Y와 염화나트륨의 혼합물 11 g (제올라이트 : 염화나트륨 중량 비 = 1 : 10 wt%)을 마그네슘 분말 0.8g과 물리적으로 혼합하여 150 ℃ 에서 2시간 동안 진공 건조를 진행하였다. 11 g (zeolite: sodium chloride weight ratio = 1: 10 wt%) of the mixture of zeolite Y and sodium chloride obtained in the step (1-1) was physically mixed with 0.8 g of magnesium powder and vacuum drying was carried out at 150 ° C for 2 hours .
상기 혼합물은 아르곤 분위기의 글러브 박스 안에서 밀폐형 스와즐락 튜브 내에 채워지며, 아르곤 분위기 1 bar 조건의 가열로에서 750 ℃에서 5시간 열처리를 통하여 제올라이트를 환원시켰다. The mixture was filled in a closed swarovsche tube in an argon atmosphere glove box and the zeolite was reduced by heat treatment at 750 ° C for 5 hours in a heating furnace under an argon atmosphere of 1 bar.
열처리를 통해 얻어진 갈색 분말의 생성물을 증류수에서 일차적으로 세척하여 염화나트륨을 제거하였으며, 1 M의 염산(HCl)용액에서 5시간 추가 세척하여 산화마그네슘(magnesium oxide, MgO)이나 마그네슘 실리사이드(magnesium silicide, Mg 2Si) 등의 부산물을 제거하였다. 완전히 환원되지 못한 잔존 실리카는 불산을 이용하여 식각하여 다공성 실리콘을 얻었다.The product of the brown powder obtained through the heat treatment was firstly washed with distilled water to remove sodium chloride and further washed in 1 M hydrochloric acid (HCl) solution for 5 hours to remove magnesium oxide (MgO) or magnesium silicide (Mg 2 Si) were removed. Residual silica which was not completely reduced was etched using hydrofluoric acid to obtain porous silicon.
단계 (1-3): 다공성 실리콘-탄소 복합체 제조 단계Step (1-3): Preparation of Porous Silicon-Carbon Composite Step
상기에서 얻어진 다공성 실리콘을 테트라하이드로퓨란(Tetrahydrofuran, THF)에 넣고, 초음파 진동에 의해 완전히 분산시켰다. 피치 카본(pitch carbon)을 초음파 진동 및 교반으로 THF에 완전히 용해시킨 혼합용액에 상기 다공성 실리콘이 분산된 THF 용액을 첨가하였다. The porous silicon obtained above was placed in tetrahydrofuran (THF) and completely dispersed by ultrasonic vibration. A THF solution in which the porous silicon was dispersed was added to a mixed solution in which pitch carbon was completely dissolved in THF by ultrasonic vibration and stirring.
상기 혼합물을 상온에서 3시간 교반한 후 70 내지 80 ℃의 온도범위에서 용매가 증발할 때까지 교반하였다. The mixture was stirred at room temperature for 3 hours and then stirred until the solvent evaporated in the temperature range of 70 to 80 ° C.
이 반응으로 얻어진 다공성 실리콘-탄소 전구체 혼합물을 80 ℃ 건조기에서 밤새 건조하고, 건조된 분말을 도가니에 담아 튜브가열로에서 넣고, 아르곤 가스 흐름하의 800 ℃에서 4시간동안 열처리한 후 자연 냉각하였다. 이 때 다공성 실리콘-탄소 복합체 중 실리콘의 함량은 70 wt% 가 되도록 하였다. The porous silicon-carbon precursor mixture obtained by this reaction was dried overnight at 80 ° C in a drier, and the dried powder was placed in a crucible and placed in a tube furnace. The mixture was heat-treated at 800 ° C for 4 hours under an argon gas flow and then naturally cooled. At this time, the content of silicon in the porous silicon-carbon composites was 70 wt%.
<실시 예2> 다공성 실리콘-탄소 복합체 제조Example 2 Preparation of Porous Silicon-Carbon Composite
단계 (1-3)에서 다공성 실리콘-탄소 복합체 중의 실리콘 함량을 60 wt%가 되도록 한 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 다공성 실리콘-탄소 복합체를 제조하였다.The porous silicon-carbon composites were prepared in the same manner as in Example 1, except that the silicon content in the porous silicon-carbon composites was changed to 60 wt% in step (1-3).
<실시 예3> 다공성 실리콘-탄소 복합체 제조Example 3 Preparation of Porous Silicon-Carbon Composite
단계 (1-3)에서 다공성 실리콘-탄소 복합체 중의 실리콘 함량을 50 wt%가 되도록 한 것을 제외하고는 상기 실시 예 1과 동일한 방법으로 다공성 실리콘-탄소 복합체를 제조하였다.The porous silicon-carbon composites were prepared in the same manner as in Example 1, except that the silicon content in the porous silicon-carbon composites was 50 wt% in step (1-3).
<실시 예4> 다공성 실리콘-탄소 복합체 제조Example 4 Preparation of Porous Silicon-Carbon Composite
상기 실시 예 1의 단계 (1-1) 및 단계 (1-2)를 거쳐 얻은 다공성 실리콘을 소량의 증류수에 넣고, 초음파 진동에 의해 분산시켰다. The porous silicon obtained through steps (1-1) and (1-2) of Example 1 was put into a small amount of distilled water and dispersed by ultrasonic vibration.
상기 다공성 실리콘 입자가 분산된 증류수에 탄소 전구체로서 수크로오즈(sucrose)를 넣고 상온에서 30분 교반한 후 황산(98 wt%)을 첨가하여 30분 추가로 교반하였다. 이 후 온도를 높여 100 내지 110℃ 온도 범위에서 용매가 증발할 때까지 교반하였으며, 이 후 160℃의 건조기에서 6시간동안 추가 반응시켜 다공성 실리콘-탄소 전구체 혼합물을 제조하였다. Sucrose as a carbon precursor was added to distilled water in which the porous silicon particles were dispersed, and the mixture was stirred at room temperature for 30 minutes, then sulfuric acid (98 wt%) was added, and further stirred for 30 minutes. Thereafter, the temperature was raised to 100 to 110 ° C. until the solvent evaporated, and then the mixture was further reacted in a drier at 160 ° C. for 6 hours to prepare a porous silicon-carbon precursor mixture.
얻어진 다공성 실리콘-탄소 전구체 혼합물을 알루미나 도가니에 담아 튜브가열로에 넣고 아르곤 가스 흐름하의 800 ℃에서 4시간동안 열처리한 후 자연 냉각하였다. 최종 얻어진 다공성 실리콘-탄소 복합체 중 실리콘의 함량은 76 wt% 가 되도록 하였다.The resulting porous silicon-carbon precursor mixture was placed in an alumina crucible, placed in a tube furnace, and heat-treated at 800 ° C for 4 hours in an argon gas flow, followed by natural cooling. The silicon content in the final porous silicon-carbon composite material was 76 wt%.
<실시 예5> 다공성 실리콘-탄소 복합체 제조Example 5 Preparation of Porous Silicon-Carbon Composite
상기 실시 예 1의 단계 (1-3)에서 얻어진 다공성 실리콘-탄소 복합체에 흑연을 첨가하여, 상기 단계 (1-3)에서 얻어진 다공성 실리콘-탄소 복합체와 흑연의 중량비를 60 : 40 wt%가 되도록 제조하였다.The graphite was added to the porous silicon-carbon composite obtained in the step (1-3) of Example 1 so that the weight ratio of the porous silicon-carbon composite obtained in the above step (1-3) and graphite was 60:40 wt% .
<실시 예6> 다공성 실리콘-탄소 복합체 제조Example 6 Production of Porous Silicon-Carbon Composite
상기 실시 예2에서 얻어진 다공성 실리콘-탄소 복합체에 흑연을 첨가하여 상기 실시 예2에서 얻어진 다공성 실리콘-탄소 복합체와 흑연의 중량비를 60 : 40 wt%가 되도록 제조하였다.Graphite was added to the porous silicon-carbon composite material obtained in Example 2 to prepare a porous silicon-carbon composite material having a weight ratio of graphite to graphite of 60:40 wt%.
<실시 예7> 다공성 실리콘-탄소 복합체 제조Example 7 Production of Porous Silicon-Carbon Composite
상기 실시 예1의 단계 (1-1)에서 실리콘 전구체로 제올라이트 베타(Zeolite β, x=SiO 2/Al 2O 3=300)를 사용하였으며, 단계 (1-3)에서 다공성 실리콘-탄소 복합체 중 실리콘의 함량이 59 wt% 가 되도록 한 것을 제외하고는, 실시 예1과 동일하게 제조하였다. Was used for Example 1 Step (1-1), zeolite beta (Zeolite β, x = SiO 2 / Al 2 O 3 = 300) as the silicon precursor in the porous silicon at step (1-3) of the carbon composite material The procedure of Example 1 was repeated except that the content of silicon was 59 wt%.
<실시예 8> 다공성 실리카-탄소 복합체 제조 8Example 8 Preparation of Porous Silica-Carbon Composite 8
상기 실시 예1의 단계 (1-1)에서 실리콘 전구체로 제올라이트 ZSM-5(x=SiO 2/Al 2O 3=150)를 사용하였으며, 단계 (1-3)에서 다공성 실리콘-탄소 복합체 중 실리콘의 함량이 62 wt% 가 되도록 한 것을 제외하고는, 실시 예1과 동일하게 제조하였다. Example 1 was used in the step (1-1), zeolite ZSM-5 (x = SiO 2 / Al 2 O 3 = 150) as the silicon precursor in the porous silicon at step (1-3) of the silicon carbon composite Was made to be 62 wt% in the same manner as in Example 1.
<비교 예1> 다공성 실리콘-탄소 복합체 제조Comparative Example 1 Production of Porous Silicon-Carbon Composite
제올라이트 Y 1g을 광물첨가제로서 마그네슘 분말 0.8g과 물리적으로 혼합하고 열 분산제인 염화나트륨을 사용하지 않고, 알루미나 도가니에 담아 아르곤 가스(300 cc/min) 흐름의 개방형 튜브가열로에서 700 ℃, 16시간 열처리를 통하여 환원한 것을 제외하고는, 상기 실시 예1의 단계 (1-3)과 같이 피치 카본을 이용하여 다공성 실리콘-탄소 복합체를 제조하였다. 1 g of zeolite Y was physically mixed with 0.8 g of magnesium powder as a mineral additive and heat treated at 700 ° C. for 16 hours in an open tube furnace with argon gas (300 cc / min) flow in an alumina crucible without using sodium chloride as a heat dispersant , A porous silicon-carbon composite was prepared using pitch carbon as in the step (1-3) of Example 1 above.
이 때 다공성 실리콘-탄소 복합체 중 실리콘의 함량은 67 wt% 가 되도록 하였다.At this time, the content of silicon in the porous silicon-carbon composites was 67 wt%.
<비교 예2> 실리콘-탄소 복합체 제조&Lt; Comparative Example 2 > Production of silicon-carbon composite
상용 실리콘 나노입자 (입자 크기 50 nm)를 테트라하이드로퓨란(Tetrahydrofuran, THF)에 넣고, 초음파 진동에 의해 완전히 분산시켰다. Commercial silicon nanoparticles (particle size 50 nm) were placed in tetrahydrofuran (THF) and completely dispersed by ultrasonic vibration.
피치 카본(pitch carbon)을 초음파 진동 및 교반으로 THF에 완전히 용해시킨 후, 상기 실리콘 나노입자가 분산된 THF 용액을 첨가하였다. 혼합물을 상온에서 3시간 교반한 후 70 내지 80 ℃의 온도범위에서 용매가 증발할 때까지 교반하였다. Pitch carbon was completely dissolved in THF by ultrasonic vibration and stirring, and THF solution in which the silicon nanoparticles were dispersed was added. The mixture was stirred at room temperature for 3 hours and then stirred until the solvent evaporated in the temperature range of 70 to 80 ° C.
이 반응으로 얻어진 실리콘-탄소 복합체를 80 ℃ 건조기에서 밤새 건조하고, 건조된 분말을 도가니에 담아 튜브가열로에 넣고 아르곤 가스 흐름하의 800 ℃에서 4시간 동안 열처리한 후 자연 냉각하였다. The silicon-carbon composites obtained by this reaction were dried overnight at 80 ° C in a drier, and the dried powder was placed in a crucible and placed in a tube furnace. The tube was heat-treated at 800 ° C for 4 hours under an argon gas flow and then cooled naturally.
이 때 실리콘-탄소 복합체 중 실리콘의 함량은 56 wt% 가 되도록 하였다.At this time, the content of silicon in the silicon-carbon composites was 56 wt%.
<비교 예3> 실리콘-탄소 복합체 제조&Lt; Comparative Example 3 > Production of silicon-carbon composite
입자 크기 70~100 nm 의 상용 실리콘 나노입자를 사용한 것을 제외하고는 상기 실시 예4와 동일한 방법으로 실리콘-탄소 복합체를 제조하였다. 이 때 실리콘-탄소 복합체 중 실리콘의 함량은 52 wt% 가 되도록 하였다.A silicon-carbon composite was prepared in the same manner as in Example 4 except that commercially available silicon nanoparticles having a particle size of 70 to 100 nm were used. The silicon content in the silicon-carbon composite was 52 wt%.
<비교 예4> 실리콘-탄소 복합체 제조Comparative Example 4 Production of Silicon-Carbon Composite
입자 크기 70~100 nm 의 상용 실리콘 나노입자를 소량의 증류수에 넣고, 초음파 진동에 의해 분산시켰다. Commercial silicon nanoparticles having a particle size of 70 to 100 nm were put into a small amount of distilled water and dispersed by ultrasonic vibration.
실리콘 입자가 분산된 증류수에 레조시놀(resorcinol)과 포름알데히드(formaldehyde)를 넣고 상온에서 녹인 후, 수산화암모늄 수용액(0.5 wt% NH4OH)을 소량 첨가하였다. 이 혼합물을 완전히 밀폐된 반응기에 넣고, 70~90℃의 온도범위에서 겔이 생성될 때까지 교반하였다. Resorcinol and formaldehyde were added to distilled water containing silicon particles and dissolved at room temperature. A small amount of aqueous ammonium hydroxide solution (0.5 wt% NH4OH) was added. The mixture was placed in a fully closed reactor and stirred until a gel was formed at a temperature range of 70-90 &lt; 0 &gt; C.
얻어진 실리콘 나노입자가 포함된 탄소 겔을 90℃에서 추가로 16시간 동안 유지시켰다. 이 후, 얻어진 복합 겔은 80℃의 건조기에서 밤새 건조하고, 얻어진 겔을 도가니에 담아 튜브가열로에 넣고, 아르곤 가스 흐름하의 800 ℃에서 4시간동안 열처리 한 후 자연 냉각하였다. 실리콘-탄소 복합체를 제조하였다. 이 때 실리콘-탄소 복합체 중 실리콘의 함량은 44 wt% 가 되도록 하였다.The carbon gel containing the obtained silicon nanoparticles was maintained at 90 DEG C for an additional 16 hours. Thereafter, the resulting composite gel was dried overnight in a dryer at 80 DEG C, and the resulting gel was placed in a crucible and placed in a tube heating furnace. The tube was heat-treated at 800 DEG C for 4 hours under an argon gas flow and then naturally cooled. Silicon-carbon composites were prepared. At this time, the content of silicon in the silicon-carbon composite was adjusted to 44 wt%.
상기 실시 예1 내지 8 및 비교 예1 내지 4의 제조에서 사용한 원료의 조성 및 반응 조건은 하기 표 1 및 표 2에 나타내었다.The compositions of raw materials and the reaction conditions used in the production of Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Tables 1 and 2 below.
[표 1] [Table 1]
Figure PCTKR2018009648-appb-img-000001
Figure PCTKR2018009648-appb-img-000001
[표 2][Table 2]
Figure PCTKR2018009648-appb-img-000002
Figure PCTKR2018009648-appb-img-000002
 
<실험 예1> 다공성 실리콘의 입자 크기 및 구조 분석<Experimental Example 1> Particle size and structure analysis of porous silicon
상기 실시 예1 내지 8 및 비교 예1 내지 4에서 제조한 다공성 실리콘-탄소 복합체의 다공성 실리콘의 입자 크기 및 구조는 전계방사형 주사 전자현미경(Field emission scanning electron microscopy, FE-SEM)(JEOL JSM-35CF operated at 10 kV), 투과형 전자현미경 (Transmission Electron Microscope, TEM)(JEOL JEM-2010, 200.0kV), BET 비표면적 측정기, X-선 회절 (X-ray Diffraction, XRD)(Rigaku model D/MAX-50kV, Cu-K α radiation, λ=1.5418Å)기기로 분석하였다. The particle size and structure of the porous silicon of the porous silicon-carbon composites prepared in Examples 1 to 8 and Comparative Examples 1 to 4 were measured by Field Emission Scanning Electron Microscopy (FE-SEM) (JEOL JSM-35CF (JEOL JEM-2010, 200.0 kV), BET specific surface area meter, X-ray diffraction (XRD) (Rigaku model D / MAX- 50 kV, Cu-K ? Radiation,? = 1.5418?).
<실험 예2> 다공성 실리콘의 TEM 사진 분석<Experimental Example 2> TEM photograph analysis of porous silicon
도 3은 제올라이트 Y의 SEM 사진이고, 도 4는 실시 예2의 다공성 실리콘-탄소 복합체에 포함된 실리콘 입자의 TEM 사진이다. 3 is a SEM photograph of the zeolite Y, and Fig. 4 is a TEM photograph of the silicon particles contained in the porous silicon-carbon composite of Example 2. Fig.
도 3에서 보는 바와 같이 원료로 사용된 제올라이트 Y는 500 nm 내지 1 μm의 크기를 가지며, 매끈한 표면을 지니고 있다. 도 4에서 보는 바와 같이 실시 예2에서 얻어진 다공성 실리콘 입자는 전체적인 입자 표면은 환원 전에 비해 상당히 거칠어진 것을 확인할 수 있다. As shown in FIG. 3, the zeolite Y used as a raw material has a size of 500 nm to 1 μm and has a smooth surface. As shown in FIG. 4, it can be seen that the porous silicon particles obtained in Example 2 were considerably rougher than the surface of the whole particles before reduction.
<실험 예3> 다공성 실리콘 복합체의 SEM 사진 및 TEM 사진 분석&Lt; Experimental Example 3 > SEM photograph and TEM photograph of porous silicon composite
상기 실시 예 2에서 제조된 다공성 실리콘-탄소 복합체의 TEM 사진 및 원소 Mapping 결과를 도 5 내지 7에서 나타내었다. 도 5는 실시 예2의 다공성 실리콘-탄소 복합체의 TEM 사진, 도 6은 도 5의 사각형 영역의 Si 원소의 매핑(mapping) 사진이고, 도 7은 도 5의 사각형 영역의 C 원소의 매핑(mapping) 사진이다.TEM photographs and element mapping results of the porous silicon-carbon composites prepared in Example 2 are shown in FIGS. 5 to 7. FIG. 5 is a TEM photograph of the porous silicon-carbon composite of Example 2, FIG. 6 is a mapping image of Si elements in the rectangular region of FIG. 5, FIG. 7 is a mapping of C elements of the rectangular region of FIG. ) It is a photograph.
도 5 내지 도 7을 통해 환원 전후의 전체적인 입자 구조가 파쇄되지 않고 유지되며, 탄소가 다공성 실리콘 입자 주변으로 고르게 코팅 된 것을 확인할 수 있다. 5 to 7, it is confirmed that the entire particle structure before and after the reduction is maintained without fracturing, and carbon is evenly coated around the porous silicon particles.
실시 예7 및 8에서 제조된 다공성 실리콘의 TEM 사진을 각각 도 8 및 도 9에 나타내었다. 실시 예7 및 8에서 얻어진 다공성 실리콘 시료(도 8 및 도 9)는 실시 예1에서 제조된 다공성 실리콘과 비슷하게, 약 500 nm 내지 1 μm의 입자크기를 가지며, 입자 내부에 많은 기공이 분포되어 있다. TEM photographs of the porous silicon prepared in Examples 7 and 8 are shown in Figs. 8 and 9, respectively. The porous silicon samples (Examples 8 and 9) obtained in Examples 7 and 8 have a particle size of about 500 nm to 1 μm similar to the porous silicon prepared in Example 1, and many pores are distributed in the particles .
비교 예1에서 제조된 다공성 실리콘 입자의 TEM 사진을 도 10에 나타내었다. 도 4, 도 8 및 도 9와 비교하여 살펴보면, 비교 예1의 경우 환원반응 과정 중 높은 발열로 인하여 실리콘 입자의 소결 현상이 일어나 실리콘 일차 입자 크기가 약 47 nm 로 상당히 커진 것을 확인할 수 있다. A TEM photograph of the porous silicon particles prepared in Comparative Example 1 is shown in Fig. In comparison with FIGS. 4, 8 and 9, in Comparative Example 1, the sintering of the silicon particles occurred due to the high heat generation during the reduction reaction, and the silicon primary particle size was significantly increased to about 47 nm.
<실험 예4> 다공성 실리콘의 XRD 분석 결과 <Experimental Example 4> XRD analysis results of porous silicon
실시 예1, 7 및 8에서 제조된 다공성 실리콘의 제조 공정에서 산세척 단계별 X-선 회절(XRD) 분석 결과를 도 11 및 도 12에 나타내었다. 도 11은 실시 예1, 7 및 8의 제조 방법 중 염산(HCl) 수용액으로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이고, 도 12는 실시 예1, 7 및 8의 제조 방법 중 염산(HCl) 수용액으로 세척 후 불산(HF)로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다.X-ray diffraction (XRD) analysis results of the pickling step in the manufacturing process of the porous silicon prepared in Examples 1, 7 and 8 are shown in FIGS. 11 and 12. FIG. 11 shows X-ray diffraction (XRD) analysis results of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the production methods of Examples 1, 7 and 8, Ray diffraction (XRD) analysis of the porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) and washing with hydrofluoric acid (HF) in the production method.
실시 예1에서 제조된 다공성 실리콘 입자는 약 28 nm 크기의 실리콘 일차 입자로 구성되어 있으며, 그 내부에 기공이 발달된 구조를 이루고 있다. 실시 예7 및 8에서 제조된 다공성 실리콘 입자는 크기가 약 32 및 35 nm인 실리콘 일차 입자로 구성되어 있다. The porous silicon particles prepared in Example 1 are composed of silicon primary particles having a size of about 28 nm and have pores developed therein. The porous silicon particles prepared in Examples 7 and 8 are composed of silicon primary particles of about 32 and 35 nm in size.
마그네슘 환원 후 제올라이트가 실리콘으로 환원되어 실리콘 결정의 회절 피크 (2θ = 28.5°, 47.4°, 56.2°, 69.2°, 76.6°)로 나타나는 것을 확인할 수 있었다. 도 12에서 2θ = 15~25° 에서 완전히 환원되지 못한 일부 무정형의 잔존 실리카는 HF 식각 후 완전히 제거된 것을 확인 할 수 있다. After magnesium reduction, it was confirmed that the zeolite was reduced to silicon and appeared as diffraction peaks (2? = 28.5 °, 47.4 °, 56.2 °, 69.2 °, and 76.6 °) of the silicon crystal. It can be seen in FIG. 12 that some amorphous residual silica which was not completely reduced at 2? = 15 to 25 ° was completely removed after HF etching.
비교 예1에서 제조된 다공성 실리콘의 XRD 분석 결과를 도 13 및 도 14에 나타내었다. 도 13은 비교 예1의 제조 방법 중 염산(HCl) 수용액으로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이고, 도 14는 비교 예1의 제조 방법 중 염산(HCl) 수용액으로 세척 후 불산(HF)로 세척 후 다공성 실리콘의 X-선 회절(XRD) 분석 결과를 도시한 것이다.XRD analysis results of the porous silicon produced in Comparative Example 1 are shown in Figs. 13 and 14. Fig. 13 is a graph showing the results of X-ray diffraction (XRD) analysis of porous silicon after washing with an aqueous solution of hydrochloric acid (HCl) in the manufacturing method of Comparative Example 1. Fig. And X-ray diffraction (XRD) analysis of porous silicon after washing with hydrofluoric acid (HF).
환원 후 소량의 Mg 2SiO 4 와 같은 마그네슘 부산물의 피크를 제외하고는 제올라이트 Y가 실리콘으로 환원되어 실리콘 결정의 회절 피크 (2θ = 28.4°, 47.3°, 56.1°, 69.2°, 76.5°)로 나타나는 것(도 13)을 확인할 수 있다. Mg 2SiO 4 은 반응물 SiO 2와 생성물 MgO가 반응하여 생성된 것으로, 잔존 실리카를 HF로 식각하는 과정 중 HF와 반응을 하여 새로운 생성물인 MgF 2가 부산물로 생성되어 실리콘의 순도가 낮게 나타났다(도 14). XRD 분석 결과에 따르면 비교 예1에서 제조된 다공성 실리콘의 일차 입자의 크기가 47 nm로 크게 나타났다. After reduction, the zeolite Y is reduced to silicon, except for the peak of magnesium by-products such as a small amount of Mg 2 SiO 4 , which is represented by the diffraction peak of the silicon crystal (2θ = 28.4 °, 47.3 °, 56.1 °, 69.2 °, 76.5 °) (Fig. 13) can be confirmed. Mg 2 SiO 4 was formed by reacting reactant SiO 2 with product MgO, and reacted with HF during the etching of residual silica with HF, resulting in a new product, MgF 2 , as a byproduct, resulting in lower purity of silicon 14). According to the XRD analysis, the size of the primary particles of the porous silicon produced in Comparative Example 1 was as large as 47 nm.
<실험 예5> 다공성 실리콘의 BET 분석 결과 <Experimental Example 5> BET analysis results of porous silicon
실시 예1, 7, 8 및 비교 예1에서 제조된 다공성 실리콘의 BET 분석 결과를 도 15 및 도 16에 나타내었다. 도 15는 실시 예1, 7, 8 및 비교 예1에 의하여 제조된 다공성 복합체의 질소 흡/탈착 등온곡선을 도시한 것이고, 도 16은 실시 예1, 7, 8 및 비교 예1에 의하여 제조된 다공성 복합체의 기공크기 분포도를 도시한 것이다. 또한, 이에 따른 BET 표면적, 기공 부피 및 평균 기공크기를 하기 표 3에서 나타내었다.BET analysis results of the porous silicon produced in Examples 1, 7 and 8 and Comparative Example 1 are shown in Figs. 15 and 16. Fig. Fig. 15 shows the nitrogen adsorption / desorption isotherm curves of the porous composites prepared in Examples 1, 7 and 8 and Comparative Example 1, and Fig. 16 shows the isothermal absorption curves of the porous composite prepared in Examples 1, 7 and 8 and Comparative Example 1 Lt; RTI ID = 0.0 &gt; pore &lt; / RTI &gt; size distribution of the porous composite. The BET surface area, pore volume, and average pore size are shown in Table 3 below.
[표 3][Table 3]
Figure PCTKR2018009648-appb-img-000003
Figure PCTKR2018009648-appb-img-000003
도 15 및 도 16을 참조하면, 비교 예1에 비하여 실시 예1, 7, 8에 따른 다공성 실리콘의 질소 흡착량이 높고 입자 내부에 기공이 발달된 것을 알 수 있다. Referring to FIGS. 15 and 16, it can be seen that the porous silicon according to Examples 1, 7, and 8 has a higher nitrogen adsorption amount than that of Comparative Example 1, and the pores are developed inside the particles.
도 15, 도 16 및 표 3에서 실시 예1, 7 및 8에서 제조된 다공성 실리콘은 비교 예1에서 제조된 다공성 실리콘에 비해 훨씬 큰 BET 표면적, 기공부피 및 크기를 가지는 것으로 나타났다. 즉, 비교 예1에서는 열 분산제인 염화나트륨을 사용하지 않아 반응과정 동안 발생되는 높은 반응열에 의해 실리콘 입자들의 소결 현상이 일어났음을 알 수 있다. 15, 16, and Table 3, the porous silicon produced in Examples 1, 7, and 8 had a much larger BET surface area, pore volume, and size than the porous silicon produced in Comparative Example 1. [ That is, in Comparative Example 1, since sodium chloride, which is a heat dispersing agent, is not used, it can be seen that sintering of silicon particles occurs due to a high reaction heat generated during the reaction.
<제조 예1> 리튬 이차전지(half cell)의 제조PREPARATION EXAMPLE 1 Preparation of Lithium Secondary Cell (half cell)
전극 활물질 소재로 실시 예1 내지 4, 실시 예5 내지 8 및 비교 예1 내지 4에서 제조된 실리콘-탄소 복합체를 사용하였고, 도전재로 카본블랙, 고분자 바인더로 PVA(Poly vinyl acetate, DMSO(Dimethyl sulfoxide)에 용해된 5 wt%용액)를 사용하였다. 상기 실리콘-탄소 복합체, 도전재 및 고분자 바인더를 80:10:10 무게비로 혼합하여 슬러리 상태의 혼합물을 얻었다. The silicon-carbon composites prepared in Examples 1 to 4, Examples 5 to 8 and Comparative Examples 1 to 4 were used as the electrode active material, and carbon black as a conductive material and PVA (poly vinyl acetate, DMSO sulfoxide) was used. The silicon-carbon composite, the conductive material and the polymer binder were mixed at a weight ratio of 80:10:10 to obtain a slurry-like mixture.
두께가 10㎛인 구리판 집전체 위에 상기 슬러리를 50㎛로 도포하고 80℃에서 2시간 건조 후 압축기에 넣어 30㎛로 압축하였다. 그 후, 80℃에서 2시간동안 진공건조 한 뒤, 1.54 cm 2로 잘라 전극을 제조하였다. The slurry was applied to a copper plate current collector having a thickness of 10 mu m as 50 mu m, dried at 80 DEG C for 2 hours, put into a compressor, and compressed to 30 mu m. Thereafter, it was vacuum-dried at 80 DEG C for 2 hours and cut into 1.54 cm &lt; 2 &gt; to prepare an electrode.
아르곤 분위기의 글러브 박스 안에서 상기 복합체 작업 전극과 리튬금속 기준전극을 2032 코인셀에 적층하고, 그 사이에 2.54cm 2의 폴리프로필렌(PP) 분리막을 넣었다. The composite working electrode and the lithium metal reference electrode were laminated in a 2032 coin cell in a glove box in an argon atmosphere and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
전해액으로 1.0M LiPF 6 리튬염을 포함하는 유기용매로 10 vol% 의 플로오로에틸렌 카보네이트 (fluoroethylene carbonate)가 첨가된 에틸렌 카보네이트(ethylene carbonate), 에틸 메틸 카보네이트 (ethylmethyl carbonate), 디에틸 카보네이트(diethyl carbonate)가 30:40:30의 부피비로 혼합된 용액을 사용하여 리튬 이차전지(half cell)를 제조하였다. Ethylene carbonate, ethylmethyl carbonate, and diethyl carbonate, to which 10 vol% of fluoroethylene carbonate was added, were mixed with an organic solvent containing 1.0 M LiPF 6 lithium salt as an electrolyte solution. ) Was mixed in a volume ratio of 30:40:30 to prepare a lithium secondary cell (half cell).
<제조예 2> 리튬 이차전지(full cell)의 제조&Lt; Preparation Example 2 > Preparation of lithium secondary battery (full cell)
음극 활물질로 실시 예3에서 제조된 실리콘-탄소 복합체, 도전재로 카본블랙, 고분자 바인더로 PVA(Poly vinyl acetate, DMSO(Dimethyl sulfoxide)에 용해된 5 wt%용액)를 사용하였다. 상기 실리콘-탄소 복합체, 도전재 및 고분자 바인더를 80:10:10 무게비로 혼합하여 슬러리 상태의 혼합물을 얻었다. Carbon black as a conductive material, and 5 wt% solution of PVA (polyvinyl acetate, DMSO (dimethyl sulfoxide)) as a polymer binder were used as the anode active material, the silicon-carbon composite material prepared in Example 3, and the conductive material. The silicon-carbon composite, the conductive material and the polymer binder were mixed at a weight ratio of 80:10:10 to obtain a slurry-like mixture.
두께가 10㎛인 구리판 집전체 위에 상기 슬러리를 도포하고 80℃에서 2시간 건조 후 압축하였다. 그 후, 80℃에서 2시간동안 진공건조 한 뒤, 1.54 cm 2로 잘라 전극을 제조하였다. The slurry was coated on a copper plate current collector having a thickness of 10 탆 and dried at 80 캜 for 2 hours and then compressed. Thereafter, it was vacuum-dried at 80 DEG C for 2 hours and cut into 1.54 cm &lt; 2 &gt; to prepare an electrode.
아르곤 분위기의 글러브 박스 안에서 상기 복합체 작업 전극과 리튬금속 기준전극을 스와즐락 셀에 적층하고, 그 사이에 2.54cm 2의 폴리프로필렌(PP) 분리막을 넣었다.The composite working electrode and the lithium metal reference electrode were laminated in a Swarovsk cell in a glove box in an argon atmosphere and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
전해액으로 1.2M LiPF 6 리튬염을 포함하는 유기용매로 10 vol% 의 플로오로에틸렌 카보네이트 (fluoroethylene carbonate)가 첨가된 에틸렌 카보네이트(ethylene carbonate), 에틸 메틸 카보네이트 (ethylmethyl carbonate)가 30:70의 부피비로 혼합된 용액을 사용하여 리튬 이차전지(half cell)를 제조하여 1 사이클 충/방전 시키는 방법으로 음극 활물질의 비가역을 줄이는 전처리를 하였다.Ethylene carbonate and ethylmethyl carbonate in which 10 vol% of fluoroethylene carbonate was added to an organic solvent containing 1.2 M LiPF 6 lithium salt as an electrolyte were mixed at a volume ratio of 30:70 A half cell was prepared using the mixed solution, and a pretreatment for reducing irreversible energy of the negative electrode active material was performed by charging / discharging the battery for one cycle.
양극 활물질 소재로 상용 NCM622, 도전재로 카본블랙, 바인더로 플루오르화 폴리비닐리덴 (PVdF, NMP(N-Methyl-2-pyrrolidone)에 용해된 5 wt% 용액)을 사용하였다.)을 85:7.5:7.5 무게비로 혼합하여 슬러리 상태의 혼합물을 얻었다.Commercial NCM 622 as a cathode active material, carbon black as a conductive material, and a 5 wt% solution in PVdF (N-methyl-2-pyrrolidone) were used as a binder) in a ratio of 85: : 7.5 weight ratio to obtain a slurry-like mixture.
두께가 20㎛인 알루미늄판 집전체 위에 상기 슬러리를 도포하고 80℃에서 2시간 건조 후 압축하였다. 그 후, 120℃에서 12시간동안 진공건조 한 뒤, 1.13 cm 2로 잘라 전극을 제조하였다.The slurry was coated on an aluminum plate current collector having a thickness of 20 탆, dried at 80 캜 for 2 hours and compressed. Thereafter, it was vacuum-dried at 120 DEG C for 12 hours, and cut to 1.13 cm &lt; 2 &gt; to prepare an electrode.
아르곤 분위기의 글러브 박스 안에서 상기 전처리 된 복합체 음극과 NCM을 활물질로 한 양극을 2032 코인 셀에 적층하고, 그 사이에 2.54cm 2의 폴리프로필렌(PP) 분리막을 넣었다.In the glove box of argon atmosphere, the pre-treated composite anode and NCM active material anode were laminated on a 2032 coin cell, and a 2.54 cm 2 polypropylene (PP) separator was placed therebetween.
전해액으로 1.2M LiPF 6 리튬염을 포함하는 유기용매로 10 vol% 의 플로오로에틸렌 카보네이트 (fluoroethylene carbonate)가 첨가된 에틸렌 카보네이트(ethylene carbonate), 에틸 메틸 카보네이트 (ethylmethyl carbonate)가 30:70의 부피비로 혼합된 용액을 사용하여 리튬 이차전지(full cell)를 제조하였다.Ethylene carbonate and ethylmethyl carbonate in which 10 vol% of fluoroethylene carbonate was added to an organic solvent containing 1.2 M LiPF 6 lithium salt as an electrolyte were mixed at a volume ratio of 30:70 A lithium secondary battery (full cell) was prepared using the mixed solution.
<실험 예6> 리튬 이차전지(half cell)의 전기화학적 특성 분석Experimental Example 6 Electrochemical Characterization of Lithium Secondary Cell (half cell)
상기 제조된 리튬 이차전지의 전기화학적 특성분석을 위하여 일정 전류법으로 충전 및 방전 사이클 특성을 분석하였다. In order to analyze the electrochemical characteristics of the lithium secondary battery, charging and discharging cycle characteristics were analyzed by a constant current method.
도 17 내지 도 21은 전극 활물질 소재로 실시 예1 내지 4, 실시 예5 내지 8 및 비교 예1 내지 4에서 제조된 복합체의 충전 및 방전 사이클 특성을 분석한 결과를 나타낸 것이다. 도 17 내지 도 21에서, 충전 및 방전 사이클 특성 분석은 0.01~1.5 V 사이의 전압 범위에서, 전류밀도 50 mA/g에서 1사이클 시험 후 전류밀도 100 mA/g에서 5사이클, 이후 사이클부터는 전류밀도가 500 mA/g에서 수행하였거나, 혹은 전류밀도 100 mA/g에서 5사이클, 이후 사이클부터는 500 mA/g에서 수행한 결과이다. 도 21은 실시 예5 및 6에 따른 전극활물질로 제조된 전극의 율특성을 시험한 결과이다. 이 때, 충전 전류밀도는 100 mA/g으로 일정하게 하고 방전 전류밀도를 100, 500, 1,000, 2,000, 5,000 및 10,000 mA/g로 변화시켜 시험하였다.FIGS. 17 to 21 show results of analysis of charging and discharging cycle characteristics of the composite prepared in Examples 1 to 4, Examples 5 to 8 and Comparative Examples 1 to 4 as the electrode active material. 17 to 21, the charging and discharging cycle characteristic analysis was performed at a current density of 50 mA / g in a voltage range of 0.01 to 1.5 V for 5 cycles at a current density of 100 mA / g after one cycle test, At 500 mA / g, or 5 cycles at a current density of 100 mA / g and 500 mA / g from a subsequent cycle. FIG. 21 shows the results of testing the rate characteristics of the electrode made of the electrode active material according to Examples 5 and 6. FIG. At this time, the charge current density was kept constant at 100 mA / g and the discharge current density was varied at 100, 500, 1,000, 2,000, 5,000 and 10,000 mA / g.
도 17은 실시 예1 내지 4에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 사이클 성능을 나타내는 그래프이다. 도 17을 참조하면, 실시 예1은 다공성 실리콘-탄소 복합체 중 실리콘 함량이 70 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 81.3%로 비교적 높게 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1700~1760 mAh/g으로 나타났으며, 이후 가혹조건인 전류밀도 500 mA/g 조건에서는 6사이클까지 충전용량이 1150 mAh/g으로 급격히 감소한 이후부터는 70사이클까지 1000 mAh/g 정도의 높은 용량을 나타내었다. 17 is a graph showing the relationship between the charge / discharge cycle (charge / discharge cycle) of a lithium secondary battery (a half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 1 to 4 as a negative electrode material &Lt; / RTI &gt; Referring to FIG. 17, Example 1 was prepared so that the silicon content of the porous silicon-carbon composites was 70 wt%, and the initial coulombic efficiency was as high as 81.3%. At a current density of 100 mA / g, the charge capacity was found to be 1700 to 1760 mAh / g. After the rapid decrease of charge capacity to 1150 mAh / g until 6 cycles at a current density of 500 mA / , And showed a high capacity of about 1000 mAh / g.
또한, 실시 예2에 따른 다공성 실리콘-탄소 복합체 중 실리콘 함량이 60 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 75.3 %로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1360~1390 mAh/g으로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 7사이클까지 충전용량이 930 mAh/g으로 급격히 감소한 이후부터는 70사이클까지 988 mAh/g 정도의 높은 용량을 나타내었다. Also, the porous silicon-carbon composites according to Example 2 had a silicon content of 60 wt%, and the initial coulombic efficiency was 75.3%. At a current density of 100 mA / g, the charge capacity was 1360 to 1390 mAh / g. After that, the charge capacity was reduced to 930 mAh / g until 7 cycles at a current density of 500 mA / / g. &lt; / RTI &gt;
또한, 실시 예3에 따른 다공성 실리콘-탄소 복합체 중 실리콘 함량이 50 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 77.6 %로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1050~1065 mAh/g으로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 9사이클까지 충전용량이 687 mAh/g으로 급격히 감소한 이후부터는 70사이클까지 823 mAh/g 정도의 높은 용량을 나타내었다. In addition, the porous silicon-carbon composites according to Example 3 had a silicon content of 50 wt%, indicating an initial coulombic efficiency of 77.6%. At a current density of 100 mA / g, the charging capacity was 1050 to 1065 mAh / g. After that, the charging capacity was reduced to 687 mAh / g until 9 cycles at a current density of 500 mA / / g. &lt; / RTI &gt;
또한, 실시 예4에 따른 다공성 실리콘-탄소 복합체 중 실리콘 함량이 76 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 70 % 로 피치(pitch)로 탄소 코팅을 하였을 때보다 낮게 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1005~1020 mAh/g, 이후 전류밀도 500 mA/g 조건에서는 11사이클까지 충전용량이 648 mAh/g으로 급격히 감소한 이후 70사이클까지 736 mAh/g 정도의 우수한 용량 및 유지율을 보인다.In addition, the porous silicon-carbon composites according to Example 4 had a silicon content of 76 wt%, which was lower than that of carbon coating with a pitch of 70% at an initial coulombic efficiency. At a current density of 100 mA / g, the charge capacity was 1005 to 1020 mAh / g, and then at a current density of 500 mA / g, the charge capacity rapidly decreased to 648 mAh / g until 11 cycles. Capacity and retention rate.
도 18은 실시 예5 및 6에서 제조된 다공성 실리콘-탄소 복합체의 충/방전 사이클 특성을 나타낸 것이다. 실시 예5에 따른 전극 활물질은 실시 예1에서 제조된 다공성 실리콘-탄소 복합체를 흑연(graphite)과 60:40 wt%로 혼합한 것으로, 전극 활물질 중 실리콘 함량이 42 wt%이다. 이를 참고하였을 때, 초기 쿨롱 효율이 85 %로 매우 높았으며, 가역 용량이 1018 mAh/g으로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1050 mAh/g 이상이며, 이후 전류밀도 500 mA/g 조건에서는 150사이클 후 660 mAh/g 이상의 높은 용량을 나타내었다. 18 shows the charge / discharge cycle characteristics of the porous silicon-carbon composites prepared in Examples 5 and 6. FIG. The electrode active material according to Example 5 is obtained by mixing the porous silicon-carbon composite material prepared in Example 1 with graphite in a ratio of 60:40 wt%, and the silicon content in the electrode active material is 42 wt%. As a result, the initial coulombic efficiency was as high as 85% and the reversible capacity was 1018 mAh / g. At a current density of 100 mA / g, the charge capacity was above 1050 mAh / g, and then at 150 mA / g current density, the capacity was higher than 660 mAh / g after 150 cycles.
실시 예6에 따른 전극활물질은 실시 예2에서 제조된 다공성 실리콘-탄소 복합체를 흑연(graphite)과 60:40 wt%로 혼합한 것으로, 전극 활물질 중 실리콘 함량이 36 wt%이다. 이를 참고하였을 때, 초기 쿨롱 효율이 79.5 %로 비교적 높게 나타났으며, 가역 용량이 959 mAh/g으로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 911 mAh/g 이상이며, 이후 전류밀도 500 mA/g 조건에서는 150사이클 후 620 mAh/g 이상의 우수한 용량을 나타내었다. The electrode active material according to Example 6 is obtained by mixing the porous silicon-carbon composites prepared in Example 2 with graphite in a ratio of 60:40 wt%, and the silicon content in the electrode active material is 36 wt%. As a result, the initial coulombic efficiency was 79.5% and the reversible capacity was 959 mAh / g. At a current density of 100 mA / g, the charge capacity was more than 911 mAh / g, and then at 500 mA / g current density, it showed an excellent capacity of more than 620 mAh / g after 150 cycles.
도 19는 실시 예7 및 8에서 제조된 다공성 실리콘-탄소 복합체의 충/방전 사이클 특성을 나타낸 것이다. 이를 참고하면, 실시 예7에 따른 다공성 실리콘-탄소 복합체 중 실리콘 함량이 59 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 83.9% 로 매우 높게 나타났으며, 가역 용량이 1040 mAh/g으로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1015~1030 mAh/g으로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 10사이클까지 충전용량이 580 mAh/g으로 급격히 감소한 이후부터는 150사이클까지 580 mAh/g 이상의 용량을 나타내었다. FIG. 19 shows charge / discharge cycle characteristics of the porous silicon-carbon composites prepared in Examples 7 and 8. FIG. As a result, the porous silicon-carbon composite according to Example 7 had a silicon content of 59 wt%. The initial coulombic efficiency was as high as 83.9% and the reversible capacity was 1040 mAh / g. At a current density of 100 mA / g, the charging capacity was 1015 to 1030 mAh / g. After that, the charging capacity was reduced to 580 mAh / g until 10 cycles at a current density of 500 mA / / g or more.
또한, 실시 예8에 따른 다공성 실리콘-탄소 복합체 중 실리콘 함량이 62 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 80.7 % 로 높게 나타났으며, 가역 용량이 1171 mAh/g으로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1160 mAh/g 정도로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 8사이클까지 충전용량이 720 mAh/g으로 급격히 감소한 이후부터는 150사이클까지 약 580 mAh/g 정도의 용량을 나타내었다.In addition, the porous silicon-carbon composites according to Example 8 had a silicon content of 62 wt%. The initial coulombic efficiency was as high as 80.7% and the reversible capacity was 1171 mAh / g. At a current density of 100 mA / g, the charging capacity was about 1160 mAh / g. After that, the charging capacity was reduced from 720 mAh / g to 8 cycles at a current density of 500 mA / g. &lt; / RTI &gt;
도 20은 비교 예1에서 제조된 다공성 실리콘-탄소 복합체 및 비교 예2 내지 4에서 제조된 상용 실리콘-탄소 복합체의 충/방전 사이클 특성을 나타낸 것이다. 이를 참고하면, 비교 예1은 다공성 실리콘-탄소 복합체 중 실리콘 함량이 67 wt%가 되도록 제조한 것으로, 초기 쿨롱 효율이 87.4% 로 매우 높게 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1100 mAh/g 이상으로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 11사이클까지 충전용량이 550 mAh/g으로 급격히 감소한 이후부터는 70사이클까지 570 mAh/g 이상의 용량을 나타내었다. 즉, 초기 쿨룡 효율 및 사이클 안정성은 비교적 좋으나, 입자의 소결 현상으로 실리콘 입자 내부의 빈 공간이 부족하여 율특성이 좋지 않아 500 mA/g에서 사이클 용량이 낮게 나타난 것으로 보인다.20 shows charge / discharge cycle characteristics of the porous silicon-carbon composites prepared in Comparative Example 1 and the commercial silicon-carbon composites prepared in Comparative Examples 2 to 4. FIG. Referring to this, Comparative Example 1 was prepared to have a silicon content of 67 wt% in the porous silicon-carbon composite material, and the initial coulombic efficiency was as high as 87.4%. At a current density of 100 mA / g, the charge capacity was more than 1100 mAh / g. Then, at a current density of 500 mA / g, the charge capacity rapidly decreased from 550 mAh / g to 11 cycles, g or more. In other words, the initial cool dragon efficiency and cycle stability are comparatively good, but the cycle capacity is low at 500 mA / g because the sintering of the particles causes insufficient void space in the silicon particles due to sintering of the particles.
또한, 도 20의 비교 예2에 따른 상용 실리콘 나노입자-탄소 복합체는 초기 쿨롱 효율이 87.4% 로 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 약 2100 mAh/g 정도로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 사이클 용량이 급격히 감소하여 54 사이클에서는 860 mAh/g으로 감소하였다.In addition, the commercial silicon nanoparticle-carbon composite according to Comparative Example 2 of FIG. 20 had an initial coulombic efficiency of 87.4%. At a current density of 100 mA / g, the charge capacity was about 2100 mAh / g. At a current density of 500 mA / g, the cycle capacity rapidly decreased and decreased to 860 mAh / g at 54 cycles.
또한, 도 20의 비교 예3에 따른 상용 실리콘 나노입자-탄소 복합체는 초기 쿨롱 효율이 72.8% 로 낮게 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1140 mAh/g 이상으로 나타났으며, 이후 전류밀도 500 mA/g 조건에서는 사이클 용량이 급격히 감소하여 70 사이클에서는 120 mAh/g으로 낮게 나타났다. In addition, the commercial Silicon nanoparticle-carbon composite according to Comparative Example 3 of FIG. 20 showed an initial coulombic efficiency as low as 72.8%. At a current density of 100 mA / g, the charge capacity was more than 1140 mAh / g. After that, the cycle capacity decreased drastically under the current density of 500 mA / g and decreased to 120 mAh / g at 70 cycles.
또한, 도 20의 비교 예4에 따른 상용 실리콘 나노입자-탄소 복합체는 초기 쿨롱 효율이 81.8 %로 비교적 높게 나타났다. 전류 밀도 100 mA/g 에서는 충전용량은 1504 mAh/g로 높게 나타났으며, 이후 전류밀도 500 mA/g 조건에서 6사이클까지 충전용량이 1092 mAh/g으로 급격히 감소한 이후부터는 30사이클까지 용량을 유지하다가 이후부터는 용량이 급격히 감소하여 70 사이클에서는 575 mAh/g으로 나타났다. In addition, the commercial Silicon nanoparticle-carbon composite according to Comparative Example 4 of FIG. 20 had a relatively high initial coulombic efficiency of 81.8%. At a current density of 100 mA / g, the charge capacity was as high as 1504 mAh / g. After that, the charge capacity was reduced to 1092 mAh / g until 6 cycles at a current density of 500 mA / g. And then the capacity rapidly decreased to 575 mAh / g in 70 cycles.
즉, 비교 예3 내지 4에 따른 상용 실리콘 나노입자-탄소 복합체의 사이클 특성이, 다공성 실리콘-탄소 복합체와 비교하여 실리콘의 부피팽창을 내부적으로 효과적으로 흡수하지 못하는 부작용으로 사이클 안정성이 상당히 낮은 것을 확인할 수 있다.That is, the cyclic characteristics of the commercial silicon nano-particle-carbon composites according to Comparative Examples 3 to 4 were significantly lower than those of the porous silicon-carbon composites due to the side effect of not effectively absorbing the volume expansion of silicon internally have.
도 21은 실시 예5 및 6에 의해 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극을 포함하는 리튬 이차전지(리튬 금속을 표준 전극으로 제작한 반쪽전지(half cell))의 충/방전 율 특성을 나타내는 그래프이다. 충전시 전류밀도를 100 mA/g으로 고정하고, 방전 전류 밀도를 100, 500, 1,000, 2,000, 5,000 및 10,000 mA/g으로 변화시켰다. 이를 참고하면, 실시 예5에 따른 다공성 실리콘-탄소 복합체는 전류밀도 100, 500, 1,000, 2,000 및 5,000 mA/g에서 각각 1,010, 1,000, 975, 943, 882 mAh/g 의 높은 용량을 보여 우수한 율특성을 보였으며, 전류밀도 10,000 mA/g에서 용량이 크게 감소하였으나, 440-550 mAh/g 범위의 용량을 보여 상용 흑연의 이론용량(372 mAh/g)을 상회하였다. 그러나 이후 전류밀도를 단계적으로 100 mA/g까지 감소시켰을 때, 빠른 용량 회복을 보여 우수한 전기화학적 가역성을 나타내었다.FIG. 21 is a graph showing the charge / discharge rate (%) of a lithium secondary battery (half cell made of a lithium metal as a standard electrode) including a negative electrode using the porous silicon-carbon composites prepared in Examples 5 and 6 as a negative electrode material Fig. The current density during charging was fixed at 100 mA / g and the discharge current density was varied at 100, 500, 1,000, 2,000, 5,000 and 10,000 mA / g. As a result, the porous silicon-carbon composites according to Example 5 exhibited high capacities of 1,010, 1,000, 975, 943 and 882 mAh / g at current densities of 100, 500, 1,000, 2,000 and 5,000 mA / The capacity was greatly decreased at 10,000 mA / g, but the capacity was in the range of 440-550 mAh / g, which exceeded the theoretical capacity of commercial graphite (372 mAh / g). However, when the current density was gradually decreased to 100 mA / g, rapid capacity recovery showed excellent electrochemical reversibility.
또한, 실시 예6에 따른 다공성 실리콘-탄소 복합체는 전류밀도 100 mA/g에서 5,000 mA/g까지 높아져도 920 mAh/g 이상의 높은 용량을 보였으며, 전류밀도 10,000 mA/g에서도 약 750 mAh/g의 높은 용량을 나타내었다. 이후 전류밀도를 10,000 mA/g에서 100 mA/g으로 단계적으로 감소시켰을 때, 빠른 용량 회복을 보여 우수한 전기화학적 가역성을 나타내었다.The porous silicon-carbon composite according to Example 6 exhibited a high capacity of more than 920 mAh / g even when the current density increased from 100 mA / g to 5,000 mA / g, and reached about 750 mAh / g even at a current density of 10,000 mA / Respectively. Then, when the current density was gradually decreased from 10,000 mA / g to 100 mA / g, fast capacity recovery was achieved, indicating excellent electrochemical reversibility.
하기 표 4는, 상기 전극 활물질 소재로 상기 실시 예1 내지 실시 예3, 실시 예5 내지 실시 예8에서 제조된 복합체의 상기 충/방전 사이클의 특성 분석에 따른 용량 유지율을 나타낸 것이고, 하기 표 5는 비교 예1 내지 4에서 제조된 복합체의 상기 충/방전 사이클의 특성 분석에 따른 용량 유지율을 나타낸 것이다. Table 4 below shows the capacity retention ratios of the composite prepared in Examples 1 to 3 and 5 to 8 with respect to the characteristics of the charge / discharge cycle as the electrode active material, Shows the capacity retention rate according to the characteristics analysis of the charge / discharge cycle of the composite prepared in Comparative Examples 1 to 4.
[표 4][Table 4]
Figure PCTKR2018009648-appb-img-000004
Figure PCTKR2018009648-appb-img-000004
[표 5][Table 5]
Figure PCTKR2018009648-appb-img-000005
Figure PCTKR2018009648-appb-img-000005
상기 표 4에 나타난 바와 같이, 실시 예1 내지 실시 예3 및 실시 예5 내지 실시 예8의 경우 전류밀도 500 mA/g의 조건에서 18~70 사이클 용량 유지율이 88 % 이상으로 나타났으며, 특히 실시 예1 및 실시 예8을 제외하면 대부분 용량감소가 나타나지 않았다. As shown in Table 4, in the case of Examples 1 to 3 and Examples 5 to 8, the capacity retention ratio of 18 to 70 cycles was 88% or more at a current density of 500 mA / g, Except for Example 1 and Example 8, most of the capacity was not reduced.
또한, 다공성 실리콘-탄소 복합체를 흑연(graphite)와 혼합하여 제조한 실시 예5 및 6의 경우 18~150 사이클의 용량 유지율이 100%로 나타나 매우 안정적인 사이클 특성을 확인 할 수 있다. 또한 실시 예7 및 8의 경우 18~150 사이클 용량 유지율이 각각 94.3 및 73.7%로 비교적 높게 나타난 반면, 비교 예1의 18~70 사이클 용량 유지율은 76%로 다소 낮게 나타났다 (표 5). Also, in Examples 5 and 6 prepared by mixing the porous silicon-carbon composite with graphite, the capacity retention ratio at 18 to 150 cycles was 100%, which shows very stable cycle characteristics. In the case of Examples 7 and 8, the retention ratios of 18 to 150 cycles were relatively high as 94.3 and 73.7%, respectively, while the retention ratios of 18 to 70 cycles of Comparative Example 1 were somewhat low as 76% (Table 5).
또한, 직경이 약 50 nm인 상용 실리콘 나노입자로 제조된 비교 예2의 경우 18~54 사이클 용량 유지율이 80%로 나타났지만, 직경이 70~100 nm 크기의 상용 실리콘 나노입자로 제조된 비교 예3 및 비교 예4의 경우 18~70 사이클 용량 유지율이 각각 20% 및 51%로 현저히 낮게 나타남을 확인할 수 있다 (표 5). In addition, in Comparative Example 2 made of commercially available silicon nanoparticles having a diameter of about 50 nm, the capacity retention ratio of 18 to 54 cycles was 80%. However, Comparative Example 2 made of commercially available silicon nanoparticles having a diameter of 70 to 100 nm 3 and Comparative Example 4, the capacity retention ratios of 18 to 70 cycles were remarkably lowered to 20% and 51%, respectively (Table 5).
<실험 예7> 리튬 이차전지(full cell)의 전기화학적 특성 분석EXPERIMENTAL EXAMPLE 7 Electrochemical Characterization of Lithium Secondary Cell (full cell)
상기 제조된 리튬 이차전지 완전지들의 전기화학적 특성분석을 위하여 일정 전류법으로 충/방전 사이클 특성을 분석하였다. In order to analyze the electrochemical characteristics of the lithium secondary battery prepared above, charge / discharge cycle characteristics were analyzed by a constant current method.
도 22는 실시 예3에 의해 제조된 다공성 실리콘-탄소 복합체(실시 예3에 의한 것)를 음극 재료로 사용한 음극 및 NCM622 (LiNi 0.6Co 0.2Mn 0.2O 2)을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지의 충/방전 사이클 성능을 나타내는 그래프이다. 이 때, 음극 활물질로 상용 흑연(graphite)을 사용하여 제조된 리튬 이차전지 완전지를 대조군으로 이용하였으며, 용량은 양극재료의 중량을 기준으로 표시하였다. 도 22에서, 충/방전 사이클 특성 분석은 2.0~4.2 V 사이의 전압 범위에서, C-rate 0.1C에서 5사이클, 이후 사이클부터는 C-rate 0.5C에서 수행한 결과이다. 이를 참고하면 초기 0.1C 조건에서 실시 예3에 따른 다공성 실리콘-탄소 복합체를 음극 활물질로 사용한 완전지가 상기 대조군 완전지 대비 동등 이상의 용량을 발현하였으며, 이 후 0.5C 조건에서 200 사이클 동안 상기 대조군 완전지 대비 동등 이상의 사이클 안정성을 나타냄을 확인할 수 있다. Fig. 22 is a graph showing the results of the evaluation of the properties of the porous silicon-carbon composites (Example 3) prepared in Example 3 using a negative electrode and negative electrode using NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ) FIG. 5 is a graph showing charge / discharge cycle performance of a lithium secondary battery. FIG. At this time, the complete lithium rechargeable battery prepared using graphite as the negative electrode active material was used as a control, and the capacity was expressed based on the weight of the cathode material. In FIG. 22, charge / discharge cycle characteristics analysis is performed at a voltage range of 2.0 to 4.2 V, at 5 cycles at a C-rate of 0.1 C, and at a C-rate of 0.5 C from a subsequent cycle. As a result, the complete pore of the porous silicon-carbon composite according to Example 3 as the negative electrode active material exhibited a capacity equal to or higher than that of the control pore under the initial 0.1C condition. Then, It is confirmed that the cycle stability is equal to or higher than that of the comparative example.
도 23은 본 발명의 실시 예에 따라 제조된 다공성 실리콘-탄소 복합체를 음극 재료로 사용한 음극 및 NCM622을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지와, 흑연을 음극 재료로 사용한 음극 및 NCM622을 양극 재료로 사용한 양극을 포함하는 리튬 이차전지의 중량 및 부피 에너지 밀도를 도시한 것이다. 이때 중량 및 부피 에너지 밀도의 계산에는 각각 양극과 음극 활물질의 합계 중량 및 합계 부피만을 고려하였다. 이를 참고하면, 고용량 다공성 실리콘-탄소 복합체를 음극 활물질로 사용한 리튬 이차전지는 상용 흑연을 음극 활물질로 사용한 리튬 이차전지와 비교해 중량당 에너지 밀도는 약 1.3배, 그리고 부피당 에너지 밀도는 약 1.7배 높게 나타남을 확인할 수 있다. 따라서 고용량 다공성 실리콘-탄소 복합체를 음극 활물질로 사용한 리튬 이차전지는 상용 흑연을 음극 활물질로 사용한 리튬 이차전지와 비교하여 동등 이상의 사이클 안정성을 가지면서 리튬 이차전지의 에너지 밀도를 크게 향상시킬 수 있는 것을 확인할 수 있다.FIG. 23 is a graph showing a relationship between a lithium secondary battery including a negative electrode using a porous silicon-carbon composite material according to an embodiment of the present invention as a negative electrode material and a positive electrode using NCM 622 as a positive electrode material, a negative electrode using graphite as a negative electrode material, The weight and the volume energy density of a lithium secondary battery including a positive electrode used as a material. At this time, only the total weight and the total volume of the anode and the anode active material were considered in calculating the weight and the volume energy density, respectively. As a result, a lithium secondary battery using a high-capacity porous silicon-carbon composite as a negative electrode active material exhibits an energy density of about 1.3 times higher and a density of energy per volume of about 1.7 times higher than that of a lithium secondary battery using a commercial graphite as an anode active material can confirm. Therefore, the lithium secondary battery using the high-capacity porous silicon-carbon composite as the negative electrode active material has a cycle stability equal to or higher than that of the lithium secondary battery using the commercial graphite as the negative electrode active material, and it is confirmed that the energy density of the lithium secondary battery can be greatly improved .

Claims (19)

  1. (i) 하기 화학식 1로 표시되는 실리콘 전구체를 열분산제와 혼합하고 제1열처리하여 제1혼합물을 제조하는 단계;(i) mixing a silicon precursor represented by the following formula (1) with a heat dispersing agent and subjecting the mixture to a first heat treatment to prepare a first mixture;
    [화학식1] [Chemical Formula 1]
    M 2/nO·Al 2O 3·xSiO 2·yH 2OM 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O
    (ii) 상기 제1혼합물과 금속 환원제를 혼합하여 제2혼합물을 제조하는 단계;(ii) mixing the first mixture with a metal reducing agent to prepare a second mixture;
    (iii) 상기 제2혼합물을 반응 챔버에 수용하고 제2열처리하여 실리콘 전구체를 환원 반응하여 반응물을 제조하는 단계; (iii) receiving the second mixture in a reaction chamber and performing a second heat treatment to reduce the silicon precursor to produce a reactant;
    (iv) 상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계; (iv) washing the reactants to recover porous silicon particles;
    (v) 상기 다공성 실리콘 입자에 탄소 전구체를 혼합하여 제3혼합물을 제조하는 단계; 및 (v) mixing the porous silicon particles with a carbon precursor to produce a third mixture; And
    (vi) 상기 제3혼합물을 제3열처리하여 다공성 실리콘 입자에 탄소를 코팅하는 단계;를 포함하는 (vi) subjecting the third mixture to a third heat treatment to coat the porous silicon particles with carbon
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 실리콘 전구체는, 제올라이트 X, Y, A, Beta, ZSM-5 및 Mordenite 구조의 결정형 알루미노실리케이트 중 적어도 어느 하나인,The silicon precursor represented by Formula 1 is at least one of zeolite X, Y, A, Beta, ZSM-5, and crystalline aluminosilicate having a mordenite structure.
    다공성 실리콘-탄소 복합체 제조방법. A method for producing a porous silicon - carbon composite.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 화학식 1로 표시되는 실리콘 전구체는, 알칼리금속계열 (알칼리금속은 Na, Li, K, Ca 및 Mg 중 어느 하나), NH 4 계열 및 H 계열 중 적어도 어느 하나인, Wherein the silicon precursor represented by Formula 1 is at least one selected from the group consisting of alkali metals (alkali metal is any of Na, Li, K, Ca, and Mg), NH 4 series,
    다공성 실리콘-탄소 복합체 제조방법. A method for producing a porous silicon - carbon composite.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 화학식 1 에서 x는 2 이상인, Wherein x is 2 or more,
    다공성 실리콘-탄소 복합체 제조방법. A method for producing a porous silicon - carbon composite.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 열분산제는 염화나트륨(NaCl), 염화칼륨(KCl), 염화칼슘(CaCl 2) 및 염화마그네슘(MgCl 2) 중 적어도 어느 하나인, Wherein the heat dispersing agent is at least one of sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl 2 ) and magnesium chloride (MgCl 2 )
    다공성 실리콘-탄소 복합체 제조방법.A method for producing a porous silicon - carbon composite.
  6. 제 1항에 있어서,The method according to claim 1,
    상기 제1혼합물을 제조하는 단계에서, In the step of preparing the first mixture,
    상기 열분산제는 상기 실리콘 전구체 100 중량부에 대하여 100 내지 1200 중량부의 비율로 첨가되는, Wherein the heat dispersing agent is added in a ratio of 100 to 1200 parts by weight based on 100 parts by weight of the silicon precursor.
    다공성 실리콘-탄소 복합체 제조방법.A method for producing a porous silicon - carbon composite.
  7. 제 1항에 있어서,The method according to claim 1,
    상기 제1 열처리 단계는 수분이 없는 가스 분위기의 550 ℃ 내지 800 ℃ 범위의 온도에서 4시간 내지 7 시간 동안 수행되어 실리콘 전구체 기공 내부의 수분 및 히드록실기(-OH)를 제거해주는, Wherein the first heat treatment step is performed for 4 hours to 7 hours at a temperature in the range of 550 ° C to 800 ° C in a moisture-free gas atmosphere to remove moisture and hydroxyl groups (-OH) in the silicon precursor pores,
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  8. 제 1항에 있어서,The method according to claim 1,
    상기 금속 환원제는 나트륨(Na), 마그네슘(Mg) 및 알루미늄(Al) 중 적어도 어느 하나인, Wherein the metal reducing agent is at least one of sodium (Na), magnesium (Mg), and aluminum (Al)
    다공성 실리콘-탄소 복합체 제조방법.A method for producing a porous silicon - carbon composite.
  9. 제 1항에 있어서,The method according to claim 1,
    상기 제2혼합물을 제조하는 단계에서, In the step of preparing the second mixture,
    상기 금속 환원제는 실리콘 전구체 100 중량부에 대하여 50 내지 200 중량부의 비율로 혼합되는, Wherein the metal reducing agent is mixed in a ratio of 50 to 200 parts by weight based on 100 parts by weight of the silicon precursor,
    다공성 실리콘-탄소 복합체 제조방법.A method for producing a porous silicon - carbon composite.
  10. 제 1항에 있어서,The method according to claim 1,
    상기 제2열처리 단계는 산소가 없는 반응 챔버에서 300 ℃ 내지 1000 ℃의 온도범위 및 1시간 내지 24 시간 범위에서 수행되는, Wherein the second heat treatment step is performed in an oxygen-free reaction chamber at a temperature in the range of 300 DEG C to 1000 DEG C and in a range of 1 hour to 24 hours,
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  11. 제1항에 있어서,The method according to claim 1,
    상기 제2열처리는 반응 챔버 내부의 압력이 10 -3 bar 내지 5 bar 압력범위에서 수행되는, Wherein the second heat treatment is performed at a pressure within the reaction chamber of from 10 &lt; -3 &gt; bar to 5 bar.
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  12. 제1항에 있어서,The method according to claim 1,
    상기 반응물을 세척하여 다공성 실리콘 입자를 회수하는 단계는, The step of washing the reactants to recover the porous silicon particles comprises:
    (iv-1) 증류수로 세척하여 열분산제를 제거하는 단계; (iv-1) washing with distilled water to remove the heat dispersing agent;
    (iv-2) 염산(HCl) 수용액으로 세척하여 실리콘 이외의 부산물을 제거하는 단계; 및 (iv-2) washing with an aqueous solution of hydrochloric acid (HCl) to remove by-products other than silicon; And
    (iv-3) 불산(HF) 수용액으로 실리카 잔유물을 식각하여 제거하는 단계;를 포함하는,(iv-3) etching the silica residue with an aqueous solution of hydrofluoric acid (HF).
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  13. 제 1항에 있어서,The method according to claim 1,
    상기 다공성 실리콘 입자를 회수하는 단계에서 회수된 다공성 실리콘 입자는, In the step of recovering the porous silicon particles,
    BET 측정법에 따른 비표면적이 30 m 2/g 이상 내지 500 m 2/g 이하이고, The specific surface area according to the BET measurement method is not less than 30 m 2 / g and not more than 500 m 2 / g,
    BET 측정에 따른 총 기공부피가 0.2 cm 3/g 내지 1.0 cm 3/g 이고, The total pore volume according to the BET measurement is from 0.2 cm 3 / g to 1.0 cm 3 / g,
    상기 다공성 실리콘 입자를 구성하는 개별 실리콘 일차 입자의 평균 입경이 5 내지 50 nm 인,Wherein the individual silicon primary particles constituting the porous silicon particles have an average particle diameter of 5 to 50 nm,
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  14. 제 1항에 있어서,The method according to claim 1,
    상기 탄소 전구체는 피치(pitch), 수크로오즈(sucrose), 글루코스(glucose), 레조시놀-포름알데히드(resorcinol-formaldehyde), 페놀-포름알데히드(phenol-formaldehyde), 페놀 수지(phenolic resin), 폴리 도파민(polydopamine), 흑연, 카본블랙, 탄소나노튜브, 및 그래핀 중 적어도 어느 하나인, The carbon precursor may be selected from the group consisting of pitch, sucrose, glucose, resorcinol-formaldehyde, phenol-formaldehyde, phenolic resin, At least one of polyphenylene, polydopamine, graphite, carbon black, carbon nanotubes, and graphene,
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  15. 제 14항에 있어서,15. The method of claim 14,
    상기 다공성 실리콘 입자에 탄소를 코팅하는 단계는,Wherein the step of coating carbon on the porous silicon particles comprises:
    불활성 가스 분위기 또는 불활성 가스 및 수소 혼합가스 분위기에서 600 ℃ 내지 1000 ℃ 에서 열처리하여 수행되는,In an inert gas atmosphere or an atmosphere of an inert gas and a hydrogen gas, at a temperature of 600 to 1000 占 폚,
    다공성 실리콘-탄소 복합체의 제조 방법.A method for producing a porous silicon-carbon composite.
  16. 제1항의 제조 방법에 의하여 제조된 다공성 실리콘-탄소 복합체.A porous silicon-carbon composite produced by the method of claim 1.
  17. 제16항의 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극.A secondary battery anode comprising the porous silicon-carbon composite of claim 16.
  18. 제17항의 이차전지 음극을 포함하는 이차전지.A secondary battery comprising the secondary battery anode of claim 17.
  19. 제18항의 이차전지를 전력공급원으로 포함하는 전자기기.An electronic device comprising the secondary battery of claim 18 as a power source.
PCT/KR2018/009648 2017-08-25 2018-08-22 Method for producing porous silicon-carbon complex, secondary battery negative electrode comprising porous silicon-carbon complex produced by production method, and secondary battery comprising secondary battery negative electrode WO2019039856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0107905 2017-08-25
KR20170107905 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039856A1 true WO2019039856A1 (en) 2019-02-28

Family

ID=65439530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009648 WO2019039856A1 (en) 2017-08-25 2018-08-22 Method for producing porous silicon-carbon complex, secondary battery negative electrode comprising porous silicon-carbon complex produced by production method, and secondary battery comprising secondary battery negative electrode

Country Status (2)

Country Link
KR (1) KR102144771B1 (en)
WO (1) WO2019039856A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021749A (en) * 2019-04-26 2019-07-16 蜂巢能源科技有限公司 Silicon-carbon cathode material and preparation method thereof, battery
CN111600005A (en) * 2020-06-16 2020-08-28 广西师范大学 Preparation method of lithium ion battery negative electrode material porous Si/C composite material
CN111646472A (en) * 2020-05-22 2020-09-11 兰州理工大学 Method for in-situ preparation of porous silicon-carbon composite negative electrode material
CN111682186A (en) * 2020-06-28 2020-09-18 蜂巢能源科技有限公司 Silicon-carbon composite material, preparation method and application thereof
CN112366294A (en) * 2020-07-31 2021-02-12 万向一二三股份公司 Graphite/silicon/carbon composite negative electrode material and preparation method thereof
CN112436130A (en) * 2020-12-08 2021-03-02 湖南师范大学 Controllable synthesis method of yolk-shell type silicon/carbon composite negative electrode material
CN112467140A (en) * 2020-08-14 2021-03-09 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
CN113830785A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Modified ZSM-5 molecular sieve and preparation method and application thereof
WO2021258232A1 (en) * 2020-06-22 2021-12-30 苏州楚捷新材料科技有限公司 Preparation method for si/c negative electrode material having elastic shell layer-coated structure for lithium ion battery
CN114551834A (en) * 2022-02-23 2022-05-27 惠州锂威新能源科技有限公司 Composite material, preparation method thereof, negative plate and secondary battery
CN115832272A (en) * 2023-02-24 2023-03-21 江苏正力新能电池技术有限公司 Carbon-coated silicon negative electrode material and preparation method and application thereof
CN116936753A (en) * 2022-03-29 2023-10-24 比亚迪股份有限公司 Silicon-carbon electrode material and preparation method and application thereof
TWI820513B (en) * 2020-11-16 2023-11-01 南韓商大洲電子材料股份有限公司 Porous silicon-carbon composite, preparation method thereof, and negative electrode active material comprising same
CN117542980A (en) * 2023-12-01 2024-02-09 宣城矽立科新材料有限公司 Silicon-carbon negative electrode material capable of reducing interface side reaction and preparation method thereof
WO2024086584A1 (en) * 2022-10-17 2024-04-25 GRU Energy Lab Inc. Carbon-silicon composite structures and methods of fabricating thereof
EP4112548A4 (en) * 2020-03-26 2024-06-12 Dong-A University Research Foundation for Industry-Academy Cooperation Method for manufacturing porous silicon and secondary battery anode active material containing same
CN116936753B (en) * 2022-03-29 2024-10-29 比亚迪股份有限公司 Silicon-carbon electrode material and preparation method and application thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298897B1 (en) * 2020-05-13 2021-09-07 삼정이앤알 주식회사 Manufacturing method of SiC using wasted solar cell
CN113851634B (en) * 2020-06-28 2023-05-09 宝武碳业科技股份有限公司 Core-shell structure silicon-carbon composite material for lithium ion battery, preparation method of core-shell structure silicon-carbon composite material and negative electrode
KR102402461B1 (en) * 2020-09-23 2022-05-27 대주전자재료 주식회사 Porous silicon based-carbon composite, preparation method thereof, and negative electrode active material comprising same
KR102388470B1 (en) * 2020-12-01 2022-04-21 단국대학교 천안캠퍼스 산학협력단 Silicon-based nano plate manufacturing method, and negative electrode material including silicon-based nano plate
KR102516476B1 (en) * 2021-02-22 2023-04-03 한양대학교 산학협력단 Anode active material for lithium secondary battery and method for preparing the same
KR102587556B1 (en) * 2021-08-30 2023-10-11 주식회사 나노실리텍 Method of preparing nanoporous silicon and anode active material for lithium secondary battery comprising nanoprous silicon prepared thereby
KR20230039407A (en) 2021-09-14 2023-03-21 인천대학교 산학협력단 Manufacturing method of silicon-carbon nano composite, secondary-battery anode including the silicon-carbon nano composite, and secondary-battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082876A (en) * 2003-03-20 2004-09-30 주식회사 엘지화학 Preparation method for porous silicon and nano-sized silicon powder, and application for anode material in lithium secondary batteries
KR20150000069A (en) * 2013-06-21 2015-01-02 국립대학법인 울산과학기술대학교 산학협력단 Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
KR20160037334A (en) * 2014-09-26 2016-04-06 (주)에스제이신소재 The porous silicon based negative active material for a secondary battery and manufacturing method, and rechargeable lithium ion battery including the same
JP6016036B2 (en) * 2011-05-13 2016-11-02 国立大学法人 熊本大学 Carbon nanotube composite electrode and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646188B2 (en) 2010-02-23 2014-12-24 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Negative electrode active material for lithium ion secondary battery
JP6807233B2 (en) * 2014-06-20 2021-01-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア How to form a battery electrode and how to form a battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082876A (en) * 2003-03-20 2004-09-30 주식회사 엘지화학 Preparation method for porous silicon and nano-sized silicon powder, and application for anode material in lithium secondary batteries
JP6016036B2 (en) * 2011-05-13 2016-11-02 国立大学法人 熊本大学 Carbon nanotube composite electrode and manufacturing method thereof
KR20150000069A (en) * 2013-06-21 2015-01-02 국립대학법인 울산과학기술대학교 산학협력단 Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same
KR20160037334A (en) * 2014-09-26 2016-04-06 (주)에스제이신소재 The porous silicon based negative active material for a secondary battery and manufacturing method, and rechargeable lithium ion battery including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, EUDEM ET AL.: "Preparation of Silicon-carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode", KOREAN JOURNAL OF MATERIALS RESEARCH, vol. 24, no. 5, 27 May 2014 (2014-05-27), pages 243 - 248, XP055578570 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021749A (en) * 2019-04-26 2019-07-16 蜂巢能源科技有限公司 Silicon-carbon cathode material and preparation method thereof, battery
EP4112548A4 (en) * 2020-03-26 2024-06-12 Dong-A University Research Foundation for Industry-Academy Cooperation Method for manufacturing porous silicon and secondary battery anode active material containing same
CN111646472A (en) * 2020-05-22 2020-09-11 兰州理工大学 Method for in-situ preparation of porous silicon-carbon composite negative electrode material
CN111600005A (en) * 2020-06-16 2020-08-28 广西师范大学 Preparation method of lithium ion battery negative electrode material porous Si/C composite material
CN111600005B (en) * 2020-06-16 2022-04-22 广西师范大学 Preparation method of lithium ion battery negative electrode material porous Si/C composite material
WO2021258232A1 (en) * 2020-06-22 2021-12-30 苏州楚捷新材料科技有限公司 Preparation method for si/c negative electrode material having elastic shell layer-coated structure for lithium ion battery
CN113830785A (en) * 2020-06-24 2021-12-24 中国石油化工股份有限公司 Modified ZSM-5 molecular sieve and preparation method and application thereof
CN111682186A (en) * 2020-06-28 2020-09-18 蜂巢能源科技有限公司 Silicon-carbon composite material, preparation method and application thereof
CN111682186B (en) * 2020-06-28 2021-09-17 蜂巢能源科技有限公司 Silicon-carbon composite material, preparation method and application thereof
CN112366294B (en) * 2020-07-31 2022-02-15 万向一二三股份公司 Graphite/silicon/carbon composite negative electrode material and preparation method thereof
CN112366294A (en) * 2020-07-31 2021-02-12 万向一二三股份公司 Graphite/silicon/carbon composite negative electrode material and preparation method thereof
CN112467140A (en) * 2020-08-14 2021-03-09 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
CN112467140B (en) * 2020-08-14 2022-07-01 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
TWI820513B (en) * 2020-11-16 2023-11-01 南韓商大洲電子材料股份有限公司 Porous silicon-carbon composite, preparation method thereof, and negative electrode active material comprising same
CN112436130A (en) * 2020-12-08 2021-03-02 湖南师范大学 Controllable synthesis method of yolk-shell type silicon/carbon composite negative electrode material
CN112436130B (en) * 2020-12-08 2024-04-23 湖南师范大学 Controllable synthesis method of yolk-shell type silicon/carbon composite anode material
CN114551834B (en) * 2022-02-23 2023-08-01 惠州锂威新能源科技有限公司 Composite material, preparation method thereof, negative electrode plate and secondary battery
CN114551834A (en) * 2022-02-23 2022-05-27 惠州锂威新能源科技有限公司 Composite material, preparation method thereof, negative plate and secondary battery
CN116936753A (en) * 2022-03-29 2023-10-24 比亚迪股份有限公司 Silicon-carbon electrode material and preparation method and application thereof
CN116936753B (en) * 2022-03-29 2024-10-29 比亚迪股份有限公司 Silicon-carbon electrode material and preparation method and application thereof
WO2024086584A1 (en) * 2022-10-17 2024-04-25 GRU Energy Lab Inc. Carbon-silicon composite structures and methods of fabricating thereof
CN115832272A (en) * 2023-02-24 2023-03-21 江苏正力新能电池技术有限公司 Carbon-coated silicon negative electrode material and preparation method and application thereof
CN117542980A (en) * 2023-12-01 2024-02-09 宣城矽立科新材料有限公司 Silicon-carbon negative electrode material capable of reducing interface side reaction and preparation method thereof

Also Published As

Publication number Publication date
KR102144771B1 (en) 2020-08-18
KR20190022365A (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2019039856A1 (en) Method for producing porous silicon-carbon complex, secondary battery negative electrode comprising porous silicon-carbon complex produced by production method, and secondary battery comprising secondary battery negative electrode
WO2021132761A1 (en) Cathode active material, method for manufacturing same, and lithium secondary battery comprising cathode containing same
WO2018101809A1 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
WO2020256395A2 (en) Carbon-silicon composite oxide composite for lithium secondary battery anode material, and preparation method therefor
WO2019088340A1 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same
WO2014126413A1 (en) Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same
WO2020040586A1 (en) Silicon-based composite, anode comprising same, and lithium secondary battery
WO2021194149A1 (en) Method for manufacturing porous silicon and secondary battery anode active material containing same
WO2021132762A1 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode including same
WO2021034020A1 (en) Cathode active material, preparation method therefor and lithium secondary battery comprising same
WO2019093681A2 (en) Porous carbon, and positive electrode and lithium secondary battery comprising same
WO2019066402A2 (en) Yolk-shell structured particles, method for producing same, and lithium secondary battery comprising same
WO2020055017A1 (en) Sulfur-carbon composite, method for producing same, and lithium secondary battery including same
WO2021112323A1 (en) Positive active material, preparation method therefor, and lithium secondary battery having positive electrode comprising same
WO2020036397A1 (en) Negative electrode active material, method for producing same, and lithium secondary battery having negative electrode including same
WO2021132763A1 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising positive electrode comprising same
WO2021034109A1 (en) Siliconㆍsilicon oxide-carbon complex, method for preparing same, and negative electrode active material comprising same for lithium secondary battery
WO2018034553A1 (en) Negative electrode material comprising silicon flakes and method for preparing silicon flakes
WO2022131695A1 (en) Anode material for lithium ion secondary battery, preparation method therefor, and lithium ion secondary battery comprising same
WO2019066129A2 (en) Composite anode active material, manufacturing method therefor, and lithium secondary battery having anode including same
WO2020256440A1 (en) Composite anode and lithium secondary battery comprising same
WO2020179978A1 (en) Secondary battery, fuel cell, separator for secondary battery or fuel cell, and method for manufacturing separator
WO2022265259A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022139243A1 (en) Porous silicon structure, porous silicon-carbon composite comprising same, and negative electrode active material
WO2022060034A1 (en) Positive electrode composite material for all-solid-state lithium secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847655

Country of ref document: EP

Kind code of ref document: A1