JP5646188B2 - Negative electrode active material for lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP5646188B2
JP5646188B2 JP2010037422A JP2010037422A JP5646188B2 JP 5646188 B2 JP5646188 B2 JP 5646188B2 JP 2010037422 A JP2010037422 A JP 2010037422A JP 2010037422 A JP2010037422 A JP 2010037422A JP 5646188 B2 JP5646188 B2 JP 5646188B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010037422A
Other languages
Japanese (ja)
Other versions
JP2011175766A (en
Inventor
稲垣 徹
徹 稲垣
直哉 小林
直哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2010037422A priority Critical patent/JP5646188B2/en
Priority to KR1020100071084A priority patent/KR101181860B1/en
Priority to US13/005,042 priority patent/US9077029B2/en
Publication of JP2011175766A publication Critical patent/JP2011175766A/en
Application granted granted Critical
Publication of JP5646188B2 publication Critical patent/JP5646188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Secondary Cells (AREA)

Description

この発明は、充放電サイクル特性に優れたリチウムイオン二次電池用負極活物質に関するものである。   The present invention relates to a negative electrode active material for a lithium ion secondary battery excellent in charge / discharge cycle characteristics.

従来、リチウムイオン二次電池の負極活物質としては、サイクル寿命と安全性に優れた、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料が用いられており、電池の高容量化のために、これら炭素材料の利用率向上、電極体積当たりの充填密度向上による性能の改善が図られてきた。しかし、このような負極活物質として炭素材料を用いたリチウムイオン二次電池では、黒鉛の理論容量(372mAh/g)に近い実用容量が達成され、また、充填密度向上も限界に近づいてきたため、これ以上の高容量化は困難になりつつある。   Conventionally, as a negative electrode active material of a lithium ion secondary battery, various carbon materials such as artificial graphite, natural graphite, and hard carbon having excellent cycle life and safety have been used. In addition, the performance has been improved by improving the utilization rate of these carbon materials and increasing the packing density per electrode volume. However, in such a lithium ion secondary battery using a carbon material as the negative electrode active material, a practical capacity close to the theoretical capacity of graphite (372 mAh / g) has been achieved, and the improvement in packing density has also approached the limit. Increasing the capacity beyond this is becoming difficult.

このため、リチウムイオン二次電池の一層の高容量化を図るために、炭素材料以上の容量を有する物質を負極活物質として用いることが検討されており、このような物質として、黒鉛と比較して非常に大きな充放電容量を持つ、Si、Sn等を含む金属系材料が注目されている(特許文献1)。   For this reason, in order to further increase the capacity of lithium ion secondary batteries, it has been studied to use a material having a capacity higher than that of a carbon material as a negative electrode active material. Attention has been focused on metal-based materials including Si, Sn and the like having a very large charge / discharge capacity (Patent Document 1).

特許第2997741号公報Japanese Patent No. 2999741

しかしながら、これらの金属系材料は充放電時の体積変化が著しいので、これらの金属系材料からなる負極活物質層は崩壊しやすく、負極内での物理的、電気的な結合を維持することが困難である。   However, since these metal-based materials undergo significant changes in volume during charge and discharge, the negative electrode active material layer made of these metal-based materials tends to collapse and maintain physical and electrical coupling within the negative electrode. Have difficulty.

そこで本発明は、上記現状に鑑み、充放電時の体積変化による影響を緩和して、良好な充放電サイクル特性を発現することが可能なリチウムイオン二次電池用負極活物質を提供することを課題とする。   Therefore, in view of the above-described situation, the present invention provides a negative electrode active material for a lithium ion secondary battery that can alleviate the effect of volume change during charge / discharge and exhibit good charge / discharge cycle characteristics. Let it be an issue.

すなわち本発明に係るリチウムイオン二次電池用負極活物質は、少なくともシリコンと酸素とを構成元素中に含む物質からなるリチウムイオン二次電池用の負極活物質であって、厚みが30〜500nmであり、かつ、平均長径/厚みの比が10〜100である鱗片状の粉末からなり、酸素含有量が5〜38wt%であることを特徴とする。なお、本発明において鱗片状とは、長径が厚みの10倍以上である長尺な形状を意味し、当該形状は、例えば、電子顕微鏡や粒度分布計等を用いて測定することができる。また、本発明に係る負極活物質の酸素含有量は、例えば、不活性ガス融解赤外線吸収法を用いて測定することができる。   That is, the negative electrode active material for a lithium ion secondary battery according to the present invention is a negative electrode active material for a lithium ion secondary battery made of a material containing at least silicon and oxygen in constituent elements, and has a thickness of 30 to 500 nm. It is made of scale-like powder having an average major axis / thickness ratio of 10 to 100, and has an oxygen content of 5 to 38 wt%. In the present invention, scaly means a long shape whose major axis is 10 times or more the thickness, and the shape can be measured using, for example, an electron microscope or a particle size distribution meter. Moreover, the oxygen content of the negative electrode active material according to the present invention can be measured using, for example, an inert gas melting infrared absorption method.

本発明に係る負極活物質は、上述のような大きさ・形状の鱗片状の粉末からなることより、負極内で互いに平行に配向するので、負極内での圧力、歪みを均一に分散させることができ、このため、充放電時の体積変化による影響を効果的に緩和することができる。また、本発明に係る負極活物質は、酸素含有量が5〜38wt%であるので、電子伝導性が高く維持され、充放電容量の維持率に優れたものとなる。   Since the negative electrode active material according to the present invention is composed of scaly powder having the above-mentioned size and shape, the negative electrode active materials are oriented in parallel with each other in the negative electrode, so that the pressure and strain in the negative electrode are uniformly dispersed. For this reason, the influence by the volume change at the time of charging / discharging can be relieve | moderated effectively. In addition, since the negative electrode active material according to the present invention has an oxygen content of 5 to 38 wt%, the electron conductivity is maintained high and the charge / discharge capacity retention rate is excellent.

前記鱗片状の粉末の平均長径は、1〜20μmであることが好ましい。   The average major axis of the scaly powder is preferably 1 to 20 μm.

本発明における、少なくともシリコンと酸素とを構成元素中に含む物質としては、酸素元素が非平衡状態で存在しているものが好ましく、具体的には、シリコンと酸素とから構成されるアモルファスからなるマトリックス中に、シリコン単体の粒子が分散しているものが挙げられる。   In the present invention, the substance containing at least silicon and oxygen in the constituent elements is preferably a substance in which the oxygen element is present in a non-equilibrium state, and specifically comprises an amorphous material composed of silicon and oxygen. One in which particles of silicon alone are dispersed in the matrix can be mentioned.

このような本発明に係る負極活物質、導電剤及び結着剤を含有する負極を備えているリチウムイオン二次電池もまた、本発明の1つである。   The lithium ion secondary battery including the negative electrode containing the negative electrode active material, the conductive agent and the binder according to the present invention is also one aspect of the present invention.

本発明に係るリチウムイオン二次電池において、前記導電剤としては、炭素材料からなるものが好ましく、前記結着剤としては、イミド結合を有する有機材料からなるものものが好ましい。   In the lithium ion secondary battery according to the present invention, the conductive agent is preferably made of a carbon material, and the binder is preferably made of an organic material having an imide bond.

このような構成の本発明によれば、良好な充放電サイクル特性を有するリチウムイオン二次電池を得ることができる。   According to the present invention having such a configuration, a lithium ion secondary battery having good charge / discharge cycle characteristics can be obtained.

以下に本発明の一実施形態に係るリチウムイオン二次電池について説明する。   A lithium ion secondary battery according to an embodiment of the present invention will be described below.

本実施形態に係るリチウムイオン二次電池は、例えば、コイン、ボタン、シート、シリンダー、偏平、角形等の形態をとり、正極、負極、電解質、正極と負極との間に設けられたセパレータ等から構成されている。   The lithium ion secondary battery according to the present embodiment takes, for example, a coin, a button, a sheet, a cylinder, a flat shape, a square shape, and the like from a positive electrode, a negative electrode, an electrolyte, a separator provided between the positive electrode and the negative electrode, and the like. It is configured.

本実施形態における負極は、負極活物質として、少なくともシリコン(Si)と酸素(O)とを構成元素中に含む物質(以下、SiOxともいう。)を用いるものである。当該SiOxとしては、酸素元素が非平衡状態で存在しているものが好ましく、具体的には、シリコンと酸素とから構成されるアモルファスからなるマトリックス中に、シリコン単体の粒子が分散しているものが挙げられる。このようなものは、黒鉛等の炭素材料に比べて容量が大きく、寿命特性に優れ長寿命であり、かつ、シリコン単体より充放電時の体積変化率が小さく、充放電サイクル特性に優れている。   The negative electrode in the present embodiment uses a material (hereinafter also referred to as SiOx) containing at least silicon (Si) and oxygen (O) in constituent elements as a negative electrode active material. As the SiOx, those in which oxygen element is present in a non-equilibrium state are preferable. Specifically, silicon single particles are dispersed in an amorphous matrix composed of silicon and oxygen. Is mentioned. Such a material has a larger capacity than carbon materials such as graphite, has excellent life characteristics, has a long life, and has a smaller volume change rate during charge / discharge than silicon alone, and has excellent charge / discharge cycle characteristics. .

当該SiOxは、厚みが30〜500nmであり、かつ、平均長径/厚みの比が10〜100である鱗片状の粉末形状を有している。本発明で用いるSiOxは上述のような大きさ・形状の鱗片状であるので、負極作製時には、その大部分が集電体と平行な方向に配向する。そのため、充放電時の体積変化による圧力、歪みが負極内で均一に分散されて、充放電を繰り返した後も、負極内における物理的、電気的な結合が保持される。   The SiOx has a scale-like powder shape with a thickness of 30 to 500 nm and an average major axis / thickness ratio of 10 to 100. Since SiOx used in the present invention has a scale-like shape as described above, most of it is oriented in a direction parallel to the current collector when the negative electrode is produced. Therefore, the pressure and strain due to the volume change at the time of charge / discharge are uniformly dispersed in the negative electrode, and the physical and electrical coupling in the negative electrode is maintained even after repeated charge / discharge.

前記負極活物質としては、なかでも、平均長径が1〜20μmであるものが好ましい。平均長径が1μm未満であると、充放電時の膨張収縮による体積変化の影響が大きくなり、充放電容量が低下しやすく、一方、平均長径が20μmを超えると、充放電時の体積変化の影響により、活物質粉末に亀裂が発生しやすく、その際に新たに形成された亀裂面上で電解質が分解し、充放電サイクル特性の低下を招きやすい。なお、前記SiOxの粉末形状は、例えば、電子顕微鏡や粒度分布計等を用いて測定することができる。   Among these negative electrode active materials, those having an average major axis of 1 to 20 μm are preferable. If the average major axis is less than 1 μm, the effect of volume change due to expansion / contraction during charge / discharge increases, and the charge / discharge capacity tends to decrease. On the other hand, if the average major axis exceeds 20 μm, the effect of volume change during charge / discharge Thus, cracks are likely to occur in the active material powder, and the electrolyte is decomposed on the newly formed crack surface at that time, and the charge / discharge cycle characteristics are likely to be deteriorated. The powder shape of the SiOx can be measured using, for example, an electron microscope or a particle size distribution meter.

前記SiOxの酸素含有量は5〜38wt%であり、好ましくは10〜30wt%であり、より好ましくは15〜25wt%である。酸素含有量が38wt%を超えると、電子伝導性が低下し、これに起因して充放電容量も許容範囲を超えて低下する。一方、酸素含有量が5wt%未満であると、充放電容量の維持率が低下し、充放電サイクル特性に劣ったものとなる。なお、前記SiOxの酸素含有量は、例えば、不活性ガス融解赤外線吸収法を用いて測定することができる。   The oxygen content of the SiOx is 5 to 38 wt%, preferably 10 to 30 wt%, more preferably 15 to 25 wt%. When the oxygen content exceeds 38 wt%, the electron conductivity is lowered, and due to this, the charge / discharge capacity is also lowered beyond the allowable range. On the other hand, when the oxygen content is less than 5 wt%, the charge / discharge capacity retention rate is lowered, and the charge / discharge cycle characteristics are poor. The oxygen content of the SiOx can be measured using, for example, an inert gas melting infrared absorption method.

前記SiOxは、シリコンと酸素に加えて、その特性が阻害されない範囲において不純物を含有していてもよい。   The SiOx may contain impurities in addition to silicon and oxygen as long as the characteristics are not hindered.

このような鱗片状のSiOxは、例えば、以下のような方法により製造することができる。即ち、金属シリコン単体、又は、金属シリコンと一酸化ケイ素及び/若しくは二酸化ケイ素との混合物を原材料として、スパッタリング法や真空蒸着法等を用いて、酸素分圧を適当に調整した雰囲気下で、基材表面に当該組成の酸化物を前記厚みまで堆積させた後、得られた堆積膜を基材から剥離し、粉砕することによって、上述のような鱗片状のSiOxを得ることができる。   Such scaly SiOx can be produced, for example, by the following method. In other words, a metal silicon alone or a mixture of metal silicon and silicon monoxide and / or silicon dioxide is used as a raw material in an atmosphere in which the oxygen partial pressure is appropriately adjusted using a sputtering method, a vacuum deposition method, or the like. After depositing the oxide of the composition to the above thickness on the surface of the material, the obtained deposited film is peeled off from the substrate and pulverized, whereby the scaly SiOx as described above can be obtained.

前記基材としては、例えば、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン等の樹脂フィルム;銅、ステンレス等の金属箔等が挙げられる。   Examples of the substrate include resin films such as polyethylene terephthalate, polyethylene, and polypropylene; metal foils such as copper and stainless steel.

また、得られた堆積膜を粉砕する方法としては、例えば、ボールミルを用いて有機溶媒中で湿式粉砕する方法が挙げられる。   Moreover, as a method of grind | pulverizing the obtained deposited film, the method of wet-grinding in an organic solvent using a ball mill is mentioned, for example.

前記負極は、負極活物質である前記SiOxに加えて、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。   For the negative electrode, in addition to the SiOx that is a negative electrode active material, for example, additives such as a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended.

前記導電剤としては特に限定されず、適宜公知の導電剤を使用することができるが、なかでも、優れた導電性を奏することより、カーボンブラック、鱗片状黒鉛、カーボンナノファイバー等の微細構造を持つ粉末状の炭素材料が好適に用いられる。これらの導電剤は単独で用いられてもよく、2種以上が併用されてもよい。   The conductive agent is not particularly limited, and a known conductive agent can be used as appropriate. Among them, a fine structure such as carbon black, flaky graphite, and carbon nanofiber can be obtained by providing excellent conductivity. A powdery carbon material is preferably used. These electrically conductive agents may be used independently and 2 or more types may be used together.

前記結着剤としては特に限定されず、例えば、ポリフッ化ビニリデン、ポリエチレン、スチレンブタジエンゴム、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール等が挙げられるが、なかでも、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール等の、機械的強度が高いイミド結合を有する有機材料が好適に用いられる。これらの結着剤は単独で用いられてもよく、2種以上が併用されてもよい。   The binder is not particularly limited, and examples thereof include polyvinylidene fluoride, polyethylene, styrene butadiene rubber, polyimide, polyamideimide, polybenzimidazole, and the like, among others, polyimide, polyamideimide, polybenzimidazole, and the like. An organic material having an imide bond with high mechanical strength is preferably used. These binders may be used independently and 2 or more types may be used together.

前記負極を製造するには、例えば、前記負極活物質と前記導電剤や前記結着剤を含む各種添加剤との混合物を、水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて集電体に塗布し、乾燥したものをロールプレスにて調厚して、負極とする。   In order to produce the negative electrode, for example, a mixture of the negative electrode active material and various additives including the conductive agent and the binder is added to a solvent such as water or an organic solvent to form a slurry or a paste. The obtained slurry or paste is applied to a current collector using a doctor blade method or the like, and the dried one is adjusted with a roll press to obtain a negative electrode.

前記集電体としては、例えば、銅、ニッケル、ステンレス鋼等からなる箔、シートやネット:炭素繊維からなるシートやネット等から構成されたものが挙げられる。なお、集電体を用いずに、ペレット状に圧密化成形して負極としてもよい。   Examples of the current collector include a foil, a sheet or a net made of copper, nickel, stainless steel, or the like: a sheet or a net made of carbon fiber. Instead of using the current collector, the negative electrode may be formed by compacting into a pellet.

前記正極としては、例えば、Liを含有するTi、Mo、W、Nb、V、Mn、Fe、Cr、Ni、Co等の遷移金属の酸化物や硫化物、バナジウム酸化物、共役系ポリマー等の有機導電性材料、シェブレル相化合物等を活物質とするものが挙げられる。これらの正極活物質は単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the positive electrode include Li-containing Ti, Mo, W, Nb, V, Mn, Fe, Cr, Ni, Co, and other transition metal oxides, sulfides, vanadium oxides, conjugated polymers, and the like. The thing which uses an organic electroconductive material, a chevrel phase compound, etc. as an active material is mentioned. These positive electrode active materials may be used independently and 2 or more types may be used together.

前記正極は、前記の活物質からなる粉末に加えて、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。   In the positive electrode, in addition to the powder made of the active material, for example, additives such as a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。これらの添加剤は単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned. These additives may be used independently and 2 or more types may be used together.

前記正極を製造するには、例えば、正極活物質と各種添加剤との混合物を溶媒に添加してスラリー又はペースト化し、上述した負極と同様の方法を用いて製造することができる。   In order to manufacture the positive electrode, for example, a mixture of a positive electrode active material and various additives can be added to a solvent to form a slurry or paste, and the positive electrode can be manufactured using the same method as the above-described negative electrode.

前記電解質としては、例えば、有機溶媒にリチウム塩を溶解させた非水電解液、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との複合材等が挙げられる。   Examples of the electrolyte include a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a composite material of a polymer electrolyte and an inorganic solid electrolyte, and the like.

前記非水電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状エステル類:γ−ブチルラクトン等のγ−ラクトン類:1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類:テトラヒドロフラン類の環状エーテル類:アセトニトリル等のニトリル類等が挙げられる。これらの溶媒は単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the solvent for the non-aqueous electrolyte include chain esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate: γ-lactones such as γ-butyllactone: 1,2-dimethoxy Chain ethers such as ethane, 1,2-diethoxyethane, and ethoxymethoxyethane: Cyclic ethers of tetrahydrofuran: Nitriles such as acetonitrile. These solvents may be used independently and 2 or more types may be used together.

前記非水電解液の溶質であるリチウム塩としては、例えば、LiAsF、LiBF、LiPF、LiAlCl、LiClO、LiCFSO、LiSbF、LiSCN、LiCl、LiCSO、LiN(CFSO、LiC(CFSO、LiCSO等が挙げられる。 Examples of the lithium salt that is a solute of the non-aqueous electrolyte include LiAsF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H 5 SO 3 , Examples thereof include LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 P 9 SO 3 .

前記セパレータとしては、例えば、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜や、ガラスフィルター、不織布等の多孔質材が使用できる。   As the separator, for example, a porous film made of a polyolefin such as polypropylene or polyethylene, or a porous material such as a glass filter or a nonwoven fabric can be used.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<負極活物質の製造>
(実施例1)
基材として厚さ100μmのポリエチレンテレフタレートフィルムを使用し、当該基材表面にRFスパッタリング法によりSiOx膜を厚み200nmまで成膜した。ターゲットには純度6Nの金属シリコンを用い、基材−ターゲット間の距離は65mmとした。また、スパッタガスとしてはアルゴン−0.1%酸素混合ガスを用い、反応時の装置内圧力は0.1Paになるように調整した。更に、高周波の出力は400Wとした。その後、得られたSiOx膜を基材から剥離し、ボールミルを使用してエタノールを溶媒とし30分間湿式粉砕した後、乾燥して、活物質粉末Aを得た。得られた活物質粉末Aの長径を、電子顕微鏡写真から測定すると、平均10μmで、5〜20μmの分布を示した。厚み方向に割れている粉末は存在せず、全ての粉末が成膜時の厚みである200nmを保持していたため、平均長径/厚みの比は50であった。この活物質粉末Aに含まれる酸素量を不活性ガス融解赤外線吸収法にて測定したところ5.0wt%であった。
<Manufacture of negative electrode active material>
Example 1
A polyethylene terephthalate film having a thickness of 100 μm was used as a base material, and a SiOx film was formed to a thickness of 200 nm on the base material surface by RF sputtering. The target was 6N pure metal silicon, and the distance between the substrate and the target was 65 mm. Moreover, argon-0.1% oxygen mixed gas was used as the sputtering gas, and the internal pressure during the reaction was adjusted to 0.1 Pa. Furthermore, the high frequency output was 400 W. Thereafter, the obtained SiOx film was peeled off from the base material, wet-pulverized for 30 minutes using ethanol as a solvent using a ball mill, and dried to obtain active material powder A. When the major axis of the obtained active material powder A was measured from an electron micrograph, an average of 10 μm and a distribution of 5 to 20 μm were shown. There was no powder cracking in the thickness direction, and all the powders maintained the thickness of 200 nm, which was the thickness at the time of film formation, so the ratio of average major axis / thickness was 50. The amount of oxygen contained in this active material powder A was measured by an inert gas melting infrared absorption method and found to be 5.0 wt%.

(実施例2)
実施例1と同条件で成膜、剥離したSiOx膜を、ボールミルを使用してエタノールを溶媒とし5時間湿式粉砕した後、乾燥して活物質粉末Bを得た。得られた活物質粉末Bの形状は、長径が平均4μmで2〜8μmの分布を示した。活物質粉末Bにおいても活物質粉末Aと同様に厚み方向に割れている粉末は存在せず、全ての粉末が成膜時の厚みである200nmを保持していたため、平均長径/厚みの比は20であった。この活物質粉末Bに含まれる酸素量は5.8wt%であった。
(Example 2)
The SiOx film formed and peeled off under the same conditions as in Example 1 was wet pulverized for 5 hours using ethanol as a solvent using a ball mill, and dried to obtain active material powder B. The shape of the obtained active material powder B showed a distribution of 2 to 8 μm with an average major axis of 4 μm. Similarly to the active material powder A, the active material powder B does not have a powder that is cracked in the thickness direction, and all the powders maintained the thickness at the time of film formation of 200 nm. It was 20. The amount of oxygen contained in this active material powder B was 5.8 wt%.

(実施例3)
成膜時のスパッタガスとしてアルゴン−1.0%酸素混合ガスを使用した以外の条件は、実施例1と同じくして、活物質粉末Cを得た。得られた活物質粉末Cの形状は、活物質粉末Aとほぼ同様であった。この活物質粉末Cに含まれる酸素量は9.8wt%であった。
Example 3
An active material powder C was obtained in the same manner as in Example 1 except that argon-1.0% oxygen mixed gas was used as the sputtering gas during film formation. The shape of the obtained active material powder C was almost the same as that of the active material powder A. The amount of oxygen contained in this active material powder C was 9.8 wt%.

(実施例4)
成膜時のスパッタガスとしてアルゴン−3.0%酸素混合ガスを使用した以外の条件は、実施例1と同じくして、活物質粉末Dを得た。得られた活物質粉末Dの形状は、活物質粉末Aとほぼ同様であった。この活物質粉末Dに含まれる酸素量は20.4wt%であった。
Example 4
An active material powder D was obtained in the same manner as in Example 1 except that an argon-3.0% oxygen mixed gas was used as the sputtering gas during film formation. The shape of the obtained active material powder D was almost the same as that of the active material powder A. The amount of oxygen contained in this active material powder D was 20.4 wt%.

(実施例5)
成膜時のスパッタガスとしてアルゴン−5.0%酸素混合ガスを使用した以外の条件は、実施例1と同じくして、活物質粉末Eを得た。得られた活物質粉末Eの形状は、活物質粉末Aとほぼ同様であった。この活物質粉末Eに含まれる酸素量は29.1wt%であった。
(Example 5)
An active material powder E was obtained in the same manner as in Example 1 except that an argon-5.0% oxygen mixed gas was used as the sputtering gas during film formation. The shape of the obtained active material powder E was almost the same as that of the active material powder A. The amount of oxygen contained in this active material powder E was 29.1 wt%.

(比較例1)
厚み5μmまで成膜した以外の条件は、実施例1と同じくして、活物質粉末Fを得た。得られた活物質粉末Fの形状はほぼブロック状(短い板状)であり、厚みは1〜3μm、長径は平均5μmで2〜10μmの分布を示し、平均長径/厚みの比は1.7〜5であった。この活物質粉末Fに含まれる酸素量は5.0wt%であった。
(Comparative Example 1)
The active material powder F was obtained in the same manner as in Example 1 except that the film was formed to a thickness of 5 μm. The shape of the obtained active material powder F is almost a block (short plate shape), the thickness is 1 to 3 μm, the major axis is 5 μm on average and 2 to 10 μm in distribution, and the average major axis / thickness ratio is 1.7. ~ 5. The amount of oxygen contained in this active material powder F was 5.0 wt%.

(比較例2)
実施例1と同条件で成膜したSiOx膜を剥離して、乳鉢で乾式粉砕して活物質粉末Gを得た。得られた活物質粉末Gの形状は、長径が平均50μmで35〜100μmの分布を示した。活物質粉末Gにおいても活物質粉末Aと同様に厚み方向に割れている粉末は存在せず、全ての粉末が成膜時の厚みである200nmを保持していたため、平均長径/厚みの比は250であった。この活物質粉末Gに含まれる酸素量は5.0wt%であった。
(Comparative Example 2)
The SiOx film formed under the same conditions as in Example 1 was peeled off and dry pulverized in a mortar to obtain an active material powder G. The shape of the obtained active material powder G showed a distribution of 35 to 100 μm with an average major axis of 50 μm. Similarly to the active material powder A, the active material powder G has no powder cracking in the thickness direction, and all the powders maintained the thickness at the time of film formation of 200 nm. 250. The amount of oxygen contained in this active material powder G was 5.0 wt%.

(比較例3)
成膜時のスパッタガスとしてアルゴン−7.0%酸素混合ガスを使用した以外の条件は、実施例1と同じくして、活物質粉末Hを得た。得られた活物質粉末Hの形状は、活物質粉末Aとほぼ同様であった。この活物質粉末Hに含まれる酸素量は39.1wt%であった。
(Comparative Example 3)
An active material powder H was obtained in the same manner as in Example 1 except that an argon-7.0% oxygen mixed gas was used as a sputtering gas during film formation. The shape of the obtained active material powder H was almost the same as that of the active material powder A. The amount of oxygen contained in this active material powder H was 39.1 wt%.

<電池特性の評価>
各実施例及び比較例において得られた活物質粉末を用いたリチウムイオン二次電池の電池特性を、以下のようにして評価した。得られた活物質粉末80wt%に、デンカブラック(登録商標、電気化学工業製)10wt%、ポリアミドイミドのN−メチルピロリドン溶液をポリアミドイミド固形分として10wt%加え、更に溶媒としてN−メチルピロリドンを加えてスラリー状に混合した。これを厚さ10μmの銅箔に5mg/cmとなるように塗布し、130℃で乾燥後、更に250℃で熱硬化したものを、直径13mmの円板に打ち抜き、所定の厚みになるようにプレスして電極を作製した。この電極を用いて金属リチウムを対極としたコインセルを作製し、電池特性の評価を行った。当該コインセルでは、セパレータとして厚さ20μmのポリエチレン多孔膜を、電解液としてエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7 LiPF 1.2Mを使用した。
<Evaluation of battery characteristics>
The battery characteristics of the lithium ion secondary battery using the active material powder obtained in each example and comparative example were evaluated as follows. To the obtained active material powder 80 wt%, Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo) 10 wt%, polyamideimide N-methylpyrrolidone solution is added 10 wt% as polyamideimide solids, and N-methylpyrrolidone is added as a solvent. In addition, it was mixed in the form of a slurry. This was applied to a copper foil having a thickness of 10 μm so as to be 5 mg / cm 2 , dried at 130 ° C., and further heat-cured at 250 ° C., and punched into a disk having a diameter of 13 mm so as to have a predetermined thickness. To prepare an electrode. Using this electrode, a coin cell using metallic lithium as a counter electrode was produced, and the battery characteristics were evaluated. In the coin cell, a polyethylene porous film having a thickness of 20 μm was used as a separator, and ethylene carbonate (EC) / diethyl carbonate (DEC) = 3/7 LiPF 6 1.2M was used as an electrolytic solution.

作製したコインセルを、定電流0.05Cで0.005Vまで充電した後、放電終始電圧1.4Vまで0.05C放電を実施して、1サイクル目の放電容量を測定した。その後、定電流0.5Cで0.005Vまで充電し、1.4Vまで0.5Cで放電するサイクルを50サイクル繰り返した。その結果を下記の表1に示した。   The manufactured coin cell was charged to 0.005 V at a constant current of 0.05 C, and then 0.05 C discharge was performed to a discharge starting voltage of 1.4 V, and the discharge capacity at the first cycle was measured. Thereafter, a cycle of charging to 0.005 V at a constant current of 0.5 C and discharging at 0.5 C to 1.4 V was repeated 50 cycles. The results are shown in Table 1 below.

Figure 0005646188
Figure 0005646188

実施例1〜5においては、SiOx中に含まれる酸素の量が増加するに従って、1サイクル目の放電容量は低下したが、充放電サイクル時の放電容量の維持率は改善され、良好な電池特性が得られることが確認された。一方、比較例1においては、活物質粉末の形状が鱗片状ではないため、充放電サイクルにおいて、活物質粉末の膨張収縮による体積変化の影響が大きく、この結果、放電容量の劣化が増大した。また、比較例2においては、活物質粉末の形状は鱗片状ではあるが、長径方向の長さが過大であるため、充放電時の体積変化の影響により、活物質粉末に顕著に亀裂が発生し、その際に形成された新生面上で電解液が分解し、このため、充放電サイクル特性が低下した。更に、比較例3においては、SiOx中の酸素量が多いため、電子伝導性が低下し、充放電容量が著しく低下した。   In Examples 1 to 5, the discharge capacity at the first cycle decreased as the amount of oxygen contained in SiOx increased, but the discharge capacity retention rate during the charge / discharge cycle was improved and good battery characteristics were obtained. It was confirmed that On the other hand, in Comparative Example 1, since the shape of the active material powder was not scaly, the volume change due to the expansion and contraction of the active material powder was large in the charge / discharge cycle, and as a result, the deterioration of the discharge capacity increased. In Comparative Example 2, the active material powder has a scaly shape, but the length in the major axis direction is excessive, and therefore the active material powder is significantly cracked due to the volume change during charging and discharging. However, the electrolytic solution was decomposed on the newly formed surface formed at that time, and the charge / discharge cycle characteristics deteriorated. Further, in Comparative Example 3, since the amount of oxygen in SiOx was large, the electron conductivity was lowered, and the charge / discharge capacity was significantly lowered.

Claims (5)

シリコンと酸素とを構成元素中に含む鱗片状のSiOx粉末から構成されるリチウムイオン二次電池用の負極活物質であって、
酸素含有量が5〜38wt%であり、
前記鱗片状のSiOx粉末は、厚みが30〜500nmであり、かつ、平均長径/厚みの比が10〜100であることを特徴とするリチウムイオン二次電池用の負極活物質。
A negative electrode active material for a lithium ion secondary battery composed of scaly SiOx powder containing silicon and oxygen in constituent elements,
The oxygen content is 5 to 38 wt%,
The scale-like SiOx powder has a thickness of 30 to 500 nm and an average major axis / thickness ratio of 10 to 100, and a negative electrode active material for a lithium ion secondary battery.
前記平均長径が、1〜20μmである請求項1記載のリチウムイオン二次電池用負極活物質。   The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the average major axis is 1 to 20 μm. 請求項1又は2記載の負極活物質、導電剤及び結着剤を含有する負極を備えていることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising a negative electrode containing the negative electrode active material according to claim 1, a conductive agent, and a binder. 前記導電剤が、炭素材料からなるものである請求項3記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 3, wherein the conductive agent is made of a carbon material. 前記結着剤が、イミド結合を有する有機材料からなるものである請求項3又は4記載のリチウムイオン二次電池。

The lithium ion secondary battery according to claim 3 or 4, wherein the binder is made of an organic material having an imide bond.

JP2010037422A 2010-02-23 2010-02-23 Negative electrode active material for lithium ion secondary battery Active JP5646188B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010037422A JP5646188B2 (en) 2010-02-23 2010-02-23 Negative electrode active material for lithium ion secondary battery
KR1020100071084A KR101181860B1 (en) 2010-02-23 2010-07-22 Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
US13/005,042 US9077029B2 (en) 2010-02-23 2011-01-12 Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037422A JP5646188B2 (en) 2010-02-23 2010-02-23 Negative electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011175766A JP2011175766A (en) 2011-09-08
JP5646188B2 true JP5646188B2 (en) 2014-12-24

Family

ID=44688465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037422A Active JP5646188B2 (en) 2010-02-23 2010-02-23 Negative electrode active material for lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5646188B2 (en)
KR (1) KR101181860B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757331B2 (en) * 2011-06-30 2015-07-29 株式会社豊田自動織機 Method for producing negative electrode for lithium ion secondary battery
JP2015032447A (en) * 2013-08-02 2015-02-16 尾池工業株式会社 Negative electrode material and lithium secondary battery
TWI504047B (en) * 2013-09-16 2015-10-11 Auo Crystal Corp Materials and manufacture method for a battery
KR102280508B1 (en) * 2014-06-11 2021-07-21 닛신 가세이 가부시키가이샤 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
KR102144771B1 (en) 2017-08-25 2020-08-18 동아대학교 산학협력단 Method for manufacturing porous silicon-carbon composite, secondary-battery anode including the porous silicon-carbon composite and secondary-battery including the secondary-battery anode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589047B2 (en) * 2003-08-28 2010-12-01 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2006012576A (en) * 2004-06-25 2006-01-12 Shin Etsu Chem Co Ltd Electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP4844764B2 (en) * 2008-03-17 2011-12-28 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using the same
JP2011062983A (en) * 2009-09-18 2011-03-31 Hokushin Co Ltd Flameproof mdf and method for manufacturing the same

Also Published As

Publication number Publication date
KR101181860B1 (en) 2012-09-11
KR20110097579A (en) 2011-08-31
JP2011175766A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP7319265B2 (en) Non-aqueous electrolyte secondary battery
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP5390336B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
WO2021059706A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6213980B2 (en) Electrochemical cell
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5646188B2 (en) Negative electrode active material for lithium ion secondary battery
WO2020195335A1 (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
CN116210102A (en) Negative electrode material, and negative electrode and secondary battery comprising same
JP2008140707A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
KR102244226B1 (en) Silicon Composite Anode Active Material including Network of Conductive Fibers, Manufacturing method thereof and Lithium Secondary Battery Comprising the Same
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP2012124113A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250