WO2014126413A1 - Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same - Google Patents

Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same Download PDF

Info

Publication number
WO2014126413A1
WO2014126413A1 PCT/KR2014/001220 KR2014001220W WO2014126413A1 WO 2014126413 A1 WO2014126413 A1 WO 2014126413A1 KR 2014001220 W KR2014001220 W KR 2014001220W WO 2014126413 A1 WO2014126413 A1 WO 2014126413A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
phosphorus
active material
sodium
sodium secondary
Prior art date
Application number
PCT/KR2014/001220
Other languages
French (fr)
Korean (ko)
Inventor
오승모
김영진
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2014126413A1 publication Critical patent/WO2014126413A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cathode active material for a sodium secondary battery, a method for manufacturing an electrode using the same, and a sodium secondary battery including the same. More particularly, by forming a cathode active material using a phosphorus-carbon composite, a reversible capacity for sodium ions is achieved. It relates to a large, excellent initial efficiency of the anode active material for sodium secondary battery, a method for producing an electrode using the same and a sodium secondary battery comprising the same.
  • a secondary battery is a battery that can be used repeatedly through a charging process that is reverse to the discharge where chemical energy is converted into electrical energy.
  • lithium secondary batteries can be used in various portable electronic devices such as laptops and mobile phones, and the market is expected to expand greatly in the future for electric vehicles and energy storage.
  • lithium reserves are limited and thus secondary batteries are required.
  • Japanese Patent Application Laid-Open No. 2007-35588 applies carbon as a negative electrode active material of a sodium ion secondary battery, but has the ability to reversibly store and discharge sodium ions, that is, a reversible capacity of less than 300 mAh / g. There is. Therefore, in order to implement a sodium secondary battery, it is urgent to develop a negative electrode and a positive electrode material having a high reversible capacity of sodium ions and a low charge / discharge voltage.
  • an object of the present invention is to solve such a conventional problem, and can reversibly store and discharge sodium ions, thereby improving electrical conductivity by compounding carbon in red phosphorus having excellent storage and releasing ability of sodium, and improving sodium conductivity.
  • the purpose of the present invention is to provide a negative electrode active material, an electrode using the same, and a sodium secondary battery including the same, including a phosphorus-carbon composite having high capacity and high efficiency by increasing reactivity.
  • cathode active material comprising a phosphorus-carbon composite having a reversible capacity of 650 mAh / g or more and having a low charge / discharge voltage, an electrode using the same, and a sodium secondary battery including the same, compared to a cathode active material using only carbon or red phosphorus.
  • the negative electrode active material for a sodium secondary battery including a phosphorus-carbon composite
  • phosphorus in the phosphorus-carbon composite is at least one of red phosphorus, black phosphorus, white phosphorus or sulfur Can be.
  • the weight ratio of the phosphorus and carbon of the phosphorus-carbon composite may be 1: 0.1 to 1: 2.5.
  • the average particle diameter of the phosphorus-carbon composite may be 0.01 to 10 ⁇ m, and the primary particle size may be 5 to 500 nm.
  • the phosphorus-carbon composite may further include graphene.
  • Carbon of the phosphorus-carbon composite may have a specific surface area of 10 to 3000 m 2 / g.
  • Carbon of the phosphorus-carbon composite may include graphite.
  • Phosphorus of the phosphorus-carbon complex may be red phosphorus, and the red phosphorus may be in an amorphous phase.
  • the amorphous phase has a signal-to-noise ratio of less than 50 compared to the noise appearing at the baseline when X-ray diffraction analysis is performed at a scan rate of 1 o / min to 16 o / min per minute and 20 o to 70 o at 0.01 o intervals. Can be.
  • the negative electrode active material may have a peak at a wavenumber of 1582 cm ⁇ 1 in Raman spectroscopy.
  • the cathode material may have a peak appearing at a wavenumber of 1582 cm ⁇ 1 as measured by Raman spectroscopy than a peak appearing at a wave number of 1332 cm ⁇ 1 .
  • the negative electrode active material may operate in a voltage range of 0.2 to 1.0V in preparation for the reduction potential of sodium.
  • the negative electrode active material may have a reversible capacity of 650 mAh / g or more.
  • a paste preparation step of preparing a paste by mixing a negative active material powder, a binder and a dispersion consisting of a phosphorus-carbon composite An application step of applying the paste to an electrode current collector; And a drying step of drying the paste at a temperature of 50 to 200 ° C.
  • the dispersion may be 10 to 200 parts by weight, and the binder may be 3 to 50 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the dispersion may include at least one of N-methylpyrrolidone, isopropyl alcohol, acetone or water.
  • the binder is polytetrafluoroethylene, polyvinylidene fluoride, cellulose styrene-butadiene rubber, polyimide, polyacrylic acid, polyacrylic acid alkali salt, polymethyl methacrylate or polyacrylonitrile It may include at least one of the reels.
  • the paste may further include a powdery conductive material, and the conductive material may include at least one of carbon black, vapor-grown carbon fiber, or graphite.
  • the conductive material may be 1 to 30 parts by weight based on 100 parts by weight of the negative electrode active material.
  • a sodium secondary battery according to an embodiment of the present invention is a positive electrode including at least one of a negative electrode, a sodium metal oxide, sodium metal phosphate, sodium metal fluoride oxide or sodium metal fluoride oxide containing the negative electrode active material, the It may comprise a separator and an electrolyte present between the negative electrode and the positive electrode.
  • the sodium metal oxide is Na x CoO 2 , Na x Co 2/3 Mn 1/3 O 2 , Na x Fe 1/2 Mn 1/2 O 2 , NaCrO 2 , NaLi 0.2 Ni 0.25 Mn 0.75 O 2.35 , Na 0.44 MnO 2 , NaMnO 2 , Na 0.7 VO 2 , Na 0.33 V 2 O 5 , wherein 0 ⁇ x ⁇ 1.
  • the sodium metal phosphate may include at least one of Na 3 V 2 (PO 4 ) 3 , NaFePO 4 , NaMn 0.5 Fe 0.5 PO 4 , Na 3 V 2 (PO 4 ) 3 .
  • the sodium metal fluorophosphate may include at least one of Na 2 FePO 4 F, Na 3 V 2 (PO 4 ) 3 .
  • the sodium metal fluoride oxide may be NaFeSO 4 F.
  • the electrolyte may be dissolved in a sodium salt comprising at least one of NaClO 4 , NaAsF 6 , NaBF 4 , NaPF 6 , NaSbF 6 , NaCF 3 SO 3 or NaN (SO 2 CF 3 ) 2 in an organic solvent.
  • the organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, ethylene fluoride carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, at least one of ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, diethyl ether, tetraethylene glycol dimethyl ether or sulfolane It may include one.
  • the sodium salt may be 0.1 to 2 molar concentrations.
  • the electrolyte may include 0.1 to 10% by weight of ethylene fluoride as an additive.
  • the initial efficiency is high, and the output characteristics are excellent.
  • the formation of the phosphorus-carbon composite can be formed by a simple method of mechanically synthesizing phosphorus and carbon using ball milling at room temperature, so that the anode active material can be easily produced economically.
  • FIG. 1 is a flowchart sequentially illustrating a method of manufacturing an electrode for sodium secondary battery according to the present invention.
  • FIG. 2A is a graph showing the results of X-ray diffraction analysis of Example 1 negative active material in Experiment 1.
  • Figure 2b is a photograph taken in Example 1, the negative electrode active material of Example 1 with a transmission electron microscope.
  • FIG. 3A is a graph showing the results of X-ray diffraction analysis of Example 2 negative active material in Experiment 1.
  • Figure 3b is a photograph taken in Example 1, the negative electrode active material of Example 2 with a transmission electron microscope.
  • FIG. 4A is a graph showing the results of X-ray diffraction analysis of Comparative Example 1 negative electrode active material in Experiment 1.
  • FIG. 4A is a graph showing the results of X-ray diffraction analysis of Comparative Example 1 negative electrode active material in Experiment 1.
  • Figure 4b is a photograph taken with a scanning electron microscope in Comparative Example 1, the negative electrode active material of Comparative Example 1.
  • FIG. 5 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 3 in Experiment 2.
  • FIG. 5 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 3 in Experiment 2.
  • FIG. 6 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 4 in Experiment 2.
  • FIG. 6 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 4 in Experiment 2.
  • FIG. 7 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 7 in Experiment 2.
  • FIG. 8 is a graph showing charge and recharge curves showing electrochemical properties associated with sodium ion storage of Example 8 in Experiment 2.
  • FIG. 9 is a graph showing charge and discharge curves showing electrochemical characteristics related to sodium ion storage of Comparative Example 2 in Experiment 2.
  • Example 11 is a graph showing the results of ex-situ X-ray diffraction analysis according to the charge and discharge of Example 3 in Experiment 4.
  • FIG. 12 is a graph showing charge and discharge curves according to current magnitudes of Example 3 in Experiment 5.
  • FIG. 12 is a graph showing charge and discharge curves according to current magnitudes of Example 3 in Experiment 5.
  • FIG. 13 is a graph showing discharge capacity according to current magnitudes of Examples 3 to 6 in Experiment 5.
  • Example 14 is a photograph taken by a scanning electron microscope of Example 9 the negative electrode active material in Experiment 1.
  • FIG. 15 is a result of photographing the cross-section of the cathode active material of Example 9 with a scanning electron microscope and analyzing the components with an energy dispersive X-ray spectrometer (EDS).
  • EDS energy dispersive X-ray spectrometer
  • Example 16 is a graph showing the results of X-ray diffraction analysis of Example 9, Comparative Example 1 and Comparative Example 5 negative electrode active material in Experiment 1.
  • FIG. 17 is a graph showing Raman spectroscopy results of Example 9 and Comparative Example 1 negative electrode active material in Experiment 1.
  • FIG. 17 is a graph showing Raman spectroscopy results of Example 9 and Comparative Example 1 negative electrode active material in Experiment 1.
  • FIG. 18 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 10 in Experiment 2.
  • Example 21 is a graph showing the cycle characteristics when the sodium secondary battery of Example 11 is applied in Experiment 3.
  • FIG. 22 is a graph showing charge and discharge curves showing electrochemical characteristics associated with storage of sodium ions of Example 12 in Experiment 2.
  • FIG. 23 is a graph showing the cycle characteristics when the sodium secondary battery of Example 12 is applied in Experiment 3.
  • FIG. 23 is a graph showing the cycle characteristics when the sodium secondary battery of Example 12 is applied in Experiment 3.
  • FIG. 25 is a graph showing the cycle characteristics when the sodium secondary battery of Example 13 is applied in Experiment 3.
  • FIG. 25 is a graph showing the cycle characteristics when the sodium secondary battery of Example 13 is applied in Experiment 3.
  • FIG. 26 is a graph showing discharge capacity according to current magnitudes related to sodium ion storage of Example 10 in Experiment 6.
  • FIG. 26 is a graph showing discharge capacity according to current magnitudes related to sodium ion storage of Example 10 in Experiment 6.
  • FIG. 27 is a graph showing discharge capacity according to current magnitudes related to sodium ion storage of Example 11 in Experiment 6.
  • the negative electrode active material for sodium secondary battery of the present invention comprises a phosphorus-carbon composite.
  • Phosphorus has the ability to reversibly store / discharge sodium ions, but it is very low in electrical conductivity and cannot be used as an electrode material.
  • the present invention solves the low electrical conductivity problem of phosphorus by complexing with carbon having high electrical conductivity.
  • Phosphorus has various allotropes, and red phosphorus, black phosphorus, white phosphorus, or sulfur phosphorus may be used as a composite material with carbon in the present invention, but red phosphorus is most effective.
  • red phosphorus has a great advantage in the diffusion rate of ions because it has an amorphous phase without crystallinity, compared with black phosphorus, white phosphorus, and yellow phosphorus, and is more advantageous for ion diffusion because it forms a dense structure with low density. .
  • the weight ratio of phosphorus to carbon of the phosphorus-carbon composite is preferably 1: 0.1 to 1: 2.5, more preferably 1: 0.4 to 1: 1. If the weight ratio of phosphorus and carbon is less than 1: 0.1, there is a problem of low electrical conductivity, and if it exceeds 1: 2.5, the reversible capacity is small and is not suitable as an active material.
  • the phosphor-carbon composite preferably has an average particle diameter of 0.01 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m. If the average particle diameter is less than 0.01 ⁇ m, the reactivity with sodium decreases, making the electrode difficult. If the average particle diameter exceeds 10 ⁇ m, the diffusion of sodium ions becomes difficult and the possibility of defects caused by the large particles in the electrode manufacturing increases. .
  • the primary particle diameter of the phosphorus-carbon composite is preferably 5 to 500 nm, more preferably 10 to 100 nm.
  • the primary particle size is less than 10 nm or more than 100 nm, not only the reactivity with sodium is rather reduced, but also there is a problem that electrode formation is difficult.
  • the primary particle diameter refers to the diameter of the primary particles
  • the primary particles are particles constituting the powder and aggregate, particles of the smallest unit that does not break the bond between molecules, each particle is a different particle It means the particles in a state of being present alone without aggregation with.
  • the secondary particle means a particle formed by aggregation of a plurality of primary particles, that is, aggregated particles.
  • the unit representing the unbroken mass is called primary particles, and the case where these primary particles aggregate to form powder is called secondary particles.
  • the phosphorus-carbon composite of the preferred embodiment of the present invention may further include graphene.
  • Graphene has excellent electrical conductivity, a large surface area of more than 2600 m 2 / g, and is chemically stable.
  • the space between the graphene can buffer the volume expansion and contraction of the electrode generated during the charging / discharging process, it can improve the cycle efficiency of the battery when implementing the negative electrode active material further comprising graphene .
  • the content of graphene is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the phosphorus-carbon composite.
  • the carbon of the phosphorus-carbon composite preferably has a specific surface area of 10 to 3000 m 2 / g, more preferably 10 to 100 m 2 / g.
  • the phosphorus of the phosphorus-carbon complex is most preferably red phosphorus, which is characterized in that the amorphous phase.
  • the amorphous phase means that the characteristic peak does not appear when the X-ray diffraction analysis is measured at 0.01 o intervals from 20 o to 70 o at a scanning speed of 1 o / min to 16 o / min per minute.
  • the red phosphorus-carbon composite of the present invention is advantageous as the crystallinity is lower, the degree of crystallization can be determined by the experimental results of X-ray diffraction analysis (XRD). Therefore, the results of several experiments confirmed that the effect of the present invention can be exerted when the characteristic peak does not appear by performing X-ray diffraction analysis under the above conditions.
  • the presence of the characteristic peak can be determined by whether a signal having a characteristic peak sufficiently larger than the noise appearing in the base line is generated. When a sufficiently large signal was generated for the noise and the signal-to-noise ratio (S / N ratio) was 50 or more, it was determined that a characteristic peak existed.
  • the magnitude of the noise refers to the amplitude of the base line in the region where no characteristic peak occurs, and it is also possible to set the standard deviation as a reference.
  • the signal-to-noise ratio is a value representing the magnitude ratio of the generated signal relative to the amount of noise based on the amplitude of the signal appearing on the baseline. More preferably, the signal having the signal-to-noise ratio of 10 or more does not occur. Is most effective. As a result of several experiments, the above conditions are most preferable to satisfy the effects of the present invention.
  • the type of carbon in the phosphorus-carbon composite anode active material is not limited, it is preferable that the electrical conductivity is high when constructing the composite.
  • a material including carbon black or graphite may be used, and in particular, it is preferable to have a structure having regularity manufactured using graphite.
  • the regularity is the presence of a peak showing the regularity in Raman spectroscopy, it is advantageous that the G-band around 1582cm -1 due to carbon developed in the phosphor-carbon composite anode active material, in particular 1332cm -1 A structure in which the G band is more developed than the peak of the adjacent D band is preferable.
  • Phosphorus-carbon composite anode active material maximizes the increase in reactivity, and realizes high capacity, excellent output characteristics, and charging characteristics.
  • the phosphorus-carbon composite anode active material according to the present invention operates in a voltage range of 0.2 to 1.0 V in comparison with the reduction potential of sodium, so that the charge and discharge voltage is very low.
  • the reversible capacity per weight exerts an effect of 650mAh / g or more, it can be realized a reversible capacity of 1300mAh / g or more as shown in the following experiment.
  • the phosphorus-carbon composite anode active material of the present invention is most preferably implemented as a cathode active material of sodium secondary battery, but this does not limit the application to other batteries.
  • the method of manufacturing an electrode using the phosphorus-carbon composite anode active material according to the present invention comprises a paste preparation step (S10), coating step (S20) and drying step (S30). .
  • Paste preparation step (S10) is a step of preparing a paste by mixing a binder and a dispersion in a negative electrode active material powder consisting of a phosphorus-carbon composite.
  • the negative electrode active material composed of the phosphorus-carbon composite is as described above.
  • the binder is used in the form of a powder to make easily into a paste. Mixing is preferably performed through a stirring process, but any method may be used as long as it can be mixed evenly.
  • Phosphorus-carbon composites synthesize phosphorus and carbon using mechanical milling.
  • Mechanical milling method is loaded with phosphorus and carbon together with a ball and mounted in a high-energy ball mill to perform mechanical synthesis at a rotation speed of 200 to 500 or more times per minute, which is performed in an argon gas atmosphere to minimize the effects of oxygen or moisture. It is preferable.
  • This milling can be performed at room temperature, so that the phosphor-carbon composite can be easily synthesized in a simple process without a separate process.
  • graphene may be further included to form a complex.
  • the binder comprises at least one of polytetrafluoroethylene, polyvinylidene fluoride, cellulose styrenebutadiene rubber, polyimide, polyacrylic acid, alkali alkali salt, polymethyl methacrylate or polyacrylonitrile can do.
  • the amount of the binder is effective to include 3 to 50 parts by weight based on 100 parts by weight of the negative electrode active material. If the binder is less than 3 parts by weight, the binder may not fully serve, and if it exceeds 50 parts by weight, there is a problem of inhibiting the reactivity of the negative electrode active material.
  • the dispersion may include at least one of N-methylpyrrolidone, isopropyl alcohol, acetone or water. This serves to easily disperse the negative electrode active material and the binder.
  • the content of the dispersion is preferably 10 to 200 parts by weight, more preferably 50 to 100 parts by weight based on 100 parts by weight of the negative electrode active material. If the dispersion is less than 10 parts by weight, there is a problem that the mixing action is difficult because the dispersion action does not occur sufficiently, if it exceeds 200 parts by weight, there is a problem that the economic efficiency, such as too thin to take a long drying process.
  • a conductive material may be further added.
  • the conductive material is mixed with the negative electrode active material, the binder, and the dispersion, and further reduces the resistance of the electrode, thereby increasing the output of the battery.
  • the conductive material is at least one of carbon black, vapor grown carbon fiber, or graphite, and may be powdery. It is preferable to add 1-30 weight part with respect to 100 weight part of negative electrode active materials, More preferably, it is effective to add 10-20 weight part. If the conductive material is less than 1 part by weight, the effect of reducing the resistance of the electrode is insignificant, and if it exceeds 30 parts by weight, not only economic efficiency is reduced, but rather there is a problem that can reduce the effect of the negative electrode active material.
  • the applying step (S20) is a step of applying the paste to the electrode current collector.
  • the current collector for the electrode is a highly conductive metal, and should be easily adhered to the paste. If the metal having such a performance is not limited in use, but at least one of copper, aluminum, stainless steel, nickel can be implemented to excellent performance.
  • the method of uniformly applying the paste prepared by the paste preparation step (S10) to the electrode current collector is possible in various ways, but after dispensing the paste on the electrode current collector, a doctor blade or the like is used. It is most preferable to uniformly disperse the liquid, and in some cases, a method of distributing and dispersing in one process may be used. In addition, methods such as die casting, comma coating, and screen printing may be used, and may be formed on a separate substrate and then bonded to the current collector by pressing or lamination. Can also be.
  • the drying step (S30) is a step of drying the paste.
  • the drying temperature is preferably 50 to 200 ° C, more preferably 100 to 150 ° C. If the temperature is less than 50 ° C., there is a problem in that the drying time is increased and the economy is inferior. If the temperature is more than 200 ° C., the paste is carbonized or rapidly dried to increase the resistance of the electrode. Drying step (S30) is a process of evaporating the dispersion medium or the solvent passing through the hot air blowing region may be made at atmospheric pressure.
  • the electrode manufactured by the method of manufacturing an electrode using the phosphorus-carbon composite anode active material of the present invention may be used for a sodium secondary battery, but is not limited thereto.
  • the sodium secondary battery including the phosphorus-carbon composite anode active material according to the present invention comprises a negative electrode, a positive electrode, a separator and an electrolyte.
  • the negative electrode includes the phosphorous-carbon composite negative active material described above.
  • the anode may include at least one of sodium metal oxide, sodium metal phosphate, sodium metal phosphate or sodium metal sulphate.
  • the sodium metal oxide is Na x CoO 2 , Na x Co 2/3 Mn 1/3 O 2 , Na x Fe 1/2 Mn 1/2 O 2 , NaCrO 2 , NaLi 0.2 Ni 0.25 Mn 0.75 O 2.35 , Na 0.44 At least one of MnO 2 , NaMnO 2 , Na 0.7 VO 2 , Na 0.33 V 2 O 5 , wherein 0 ⁇ x ⁇ 1 , and the sodium metal phosphate is Na 3 V 2 (PO 4 ) 3 , NaFePO 4 , NaMn 0.5 Fe 0.5 PO 4 , Na 3 V 2 (PO 4 ) 3 It may include at least one, the sodium metal fluoride is Na 2 FePO 4 F, Na 3 V 2 (PO 4 It may include at least one of 3 ), the sodium metal fluoride oxide may be NaFeSO 4 F.
  • the separator is present between the cathode and the anode. This serves to block internal short circuits of the two electrodes and to impregnate the electrolyte.
  • the material of the separator is preferably made of at least one of polypropylene and polyethylene to maximize the performance of the battery using the negative electrode and the positive electrode.
  • the electrolyte is a sodium salt dissolved in an organic solvent, including at least one of NaClO 4 , NaAsF 6 , NaBF 4 , NaPF 6 , NaSbF 6 , NaCF 3 SO 3 or NaN (SO 2 CF 3 ) 2 in an organic solvent Can be done.
  • the organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, ethylene fluoride carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, diethyl ether, tetraethylene glycol dimethyl ether or sulfolane And tetraethylene glycol dimethyl is effective. In some cases, two or more may be used in combination. It is effective to use the electrolyte to maximize the performance of the sodium secondary battery using the negative electrode and the positive electrode.
  • the phosphorus-carbon composite anode active material according to the present invention a method of manufacturing an electrode using the same, and an embodiment of a sodium secondary battery including the same, will demonstrate the effect of the present invention.
  • the mixture prepared by mixing red phosphorus and carbon in a weight ratio of 7: 3 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting on a high energy ball mill. Carbon black was used.
  • the weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, and was carried out in a glove box of argon gas atmosphere to prepare a phosphorus-carbon composite anode active material.
  • a phosphorus-carbon composite anode active material was prepared in the same manner as in Example 1 except that the mixture was prepared by mixing red phosphorus and carbon in a weight ratio of 5: 5.
  • a phosphorus-carbon composite anode active material was prepared in the same manner as in Example 1 except that carbon was used as graphite.
  • Red phosphorus (Aldrich) was used as the negative electrode active material instead of the mixture.
  • Red phosphorus and graphite were prepared in a mixture only without a ball milling process at a mass ratio of 1: 1.
  • the cathode active material according to Example 9 was processed by using a focused ion beam (FIB), and the elements were analyzed using a scanning electron microscope and an energy dispersive X-ray spectrometer.
  • FIB focused ion beam
  • X-ray diffraction analysis results and the particle shape observed by transmission electron microscope of Example 1 are shown in Figs. 2a and 2b, respectively.
  • Phosphorus and carbon of the phosphorus-carbon composite anode active material of Example 1 both appeared to be in an amorphous phase, and it can be seen that the average particle diameter is 0.1 to 3 ⁇ m in size.
  • Example 2 X-ray diffraction analysis results and the particle shape observed with a scanning electron microscope of Example 2 are shown in Figs. 3a and 3b, respectively. As in Example 1, Example 2 also appeared in both the phosphorus and carbon of the phosphorus-carbon composite anode active material in an amorphous phase, it can be seen that the average particle size is 0.1 to 3 ⁇ m size.
  • Comparative Example 1 X-ray diffraction analysis of Comparative Example 1 and the particle shape observed by transmission electron microscope are shown in Figs. 4a and 4b, respectively.
  • Comparative Example 1 was also amorphous, but the average particle diameter was widely distributed in the range of 0.01 to 10 ⁇ m. That is, in the case of red phosphorus, red phosphorus itself is not suitable as an active material due to its low electrical conductivity, and the average particle diameter may be wide so that diffusion of sodium ions may be difficult, making it difficult to use as a negative electrode active material.
  • Example 9 X-ray diffraction analysis results of Example 9 and the particle shape observed by scanning electron microscopy prepared by scanning electron microscope and focused ion beam are shown in Figure 14 and 15, respectively.
  • Example 9 X-ray diffraction analysis results for Example 9 and Comparative Examples 1 and 5 are shown in FIG. 16.
  • the characteristic peaks shown in Comparative Examples 1 and 5 were synthesized in the disappeared amorphous state.
  • Example 9 and Comparative Example 1 Raman spectroscopic analysis results of Example 9 and Comparative Example 1 are shown in FIG. 17. X-ray diffraction analysis showed that the negative electrode active material of Example 9, which did not show any peak, was regular in a short period. The peak appears at a wavenumber of 1582 cm -1 corresponding to the graphite structure of carbon, which is larger than the peak at 1332 cm -1 at the diamond structure.
  • the electrode was prepared for the sample prepared above.
  • An electrode was prepared using the phosphorus-carbon composite anode active material prepared in Example 1 above.
  • the paste prepared by mixing and stirring a phosphorus-carbon composite anode active material, carbon black as a conductive material, and polyacrylic acid as a binder in a weight ratio of 70:10:20 was stirred on a copper current collector and dried at 120 ° C. to remove moisture.
  • the dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box.
  • sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
  • An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the phosphorus-carbon composite anode active material prepared in Example 2, and an electrochemical cell was prepared in the same manner.
  • the mixture prepared by mixing red phosphorus and carbon in a weight ratio of 9: 1 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting in a high energy ball mill. Carbon black was used.
  • the weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, the same method as in Example 3 except that the electrode was prepared using a phosphorous-carbon composite anode active material by performing in a glove box of argon gas atmosphere An electrode was prepared, and an electrochemical cell was prepared in the same manner.
  • the mixture prepared by mixing red phosphorus and carbon in a weight ratio of 8: 2 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting in a high energy ball mill. Carbon black was used.
  • the weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, the same method as in Example 3 except that the electrode was prepared using a phosphorous-carbon composite anode active material by performing in a glove box of argon gas atmosphere An electrode was prepared, and an electrochemical cell was prepared in the same manner.
  • Red phosphorus, carbon, and graphene were mixed in a weight ratio of 70: 30: 5, dispersed in distilled water, and dried in an oven to remove moisture to prepare a mixture.
  • An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the composite anode active material, and an electrochemical cell was prepared in the same manner.
  • An electrode was prepared in the same manner as in Example 3, except that polyvinylidenedifluoride (PVdF) dissolved in N-methylpyrrolidone was used as a binder, and an electrochemical cell was prepared in the same manner.
  • PVdF polyvinylidenedifluoride
  • An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the phosphorus-carbon composite anode active material prepared in Example 9, and an electrochemical cell was prepared in the same manner.
  • An electrode was prepared in the same manner as in Example 10, and an electrochemical cell was prepared in the same manner as in Example 10 except that 5 wt% of ethylene carbonate was added to the electrolyte.
  • An electrode was manufactured in the same manner as in Example 10.
  • An electrochemical cell was prepared in the same manner as in Example 10, except that 1.0 mol of NaPF 6 was used instead of 0.8 mol of NaClO 4 for the electrolyte.
  • An electrode was prepared using red phosphorus according to Comparative Example 1 as a negative electrode active material.
  • the negative electrode active material, carbon black as a conductive material, and polyacrylic acid as a binder were mixed at a weight ratio of 70:10:20 and stirred to coat a paste prepared on a copper current collector and dried at 120 ° C. to remove moisture.
  • the dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box.
  • sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
  • the mixture prepared by mixing red phosphorus and carbon in a weight ratio of 2.5: 7.5 was infiltrated with a ball in a cylindrical vial and milled for 20 hours after mounting on a high energy ball mill. Carbon black was used.
  • the weight ratio of the ball and the mixture was maintained at a ratio of 10 to 30 to 1, it was carried out in a glove box of argon gas atmosphere to prepare a phosphorus-carbon composite anode active material.
  • the paste prepared by mixing and stirring a phosphorus-carbon composite anode active material, carbon black as a conductive material, and polyacrylic acid as a binder in a weight ratio of 70:10:20 was stirred on a copper current collector and dried at 120 ° C. to remove moisture.
  • the dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture.
  • a 2032 size coin cell was fabricated inside an argon glove box.
  • sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
  • An electrode was prepared using carbon as a negative electrode active material.
  • the carbon negative electrode active material, carbon black as a conductive material, and polyacrylic acid as a binder were mixed in a weight ratio of 70:10:20 and stirred to coat a paste prepared on a copper current collector and dried at 120 ° C. to remove moisture.
  • the dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box.
  • sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
  • Example 3 The constant current charge and discharge curves of Example 3 are shown in FIG. 5.
  • the charge capacity of the first cycle is 1557 mAh / g and the discharge capacity is 1323 mAh / g, which is very large and has an initial efficiency of 85%.
  • the second cycle is charging and discharging with a value similar to the first discharge capacity.
  • the 1890mAh / g has a high reversibility corresponding to 73% of the theoretical capacity of the phosphorus (P).
  • P phosphorus
  • most of the charge and discharge occurs in the range of 0.3 to 0.8V, which is a desirable characteristic as the negative electrode of the sodium secondary battery.
  • the charge-discharge voltage is in the range of 0.3 to 0.8V, so that there is no problem of electrodeposition of sodium and a problem of decreasing the output voltage of the complete cell.
  • Example 4 The constant current charge and discharge curves of Example 4 are shown in FIG. 6. As shown in FIG. 6, the charge capacity of the first cycle is 903 mAh / g, and the discharge capacity is 683 mAh / g, showing a gentle slope curve. In Example 5, the content of red phosphorus was lower than that of Example 4, so the capacity and initial efficiency appeared to be somewhat lower, but the initial efficiency reached 75%, and the charge / discharge voltage was in the range of 0.3 to 0.8V.
  • Example 6 when the battery was charged and discharged at a constant current of 286 mA / g, the discharge capacity was 1117 mAh / g, which is not sufficient for the phosphorus content because the electric conductivity is not high due to the lack of carbon, but the capacity is not high. Shows capacity.
  • Example 5 when the charge and discharge at a constant current of 286mA / g, the discharge capacity was the highest to 1428mAh / g, because the electrical conductivity is higher than in Example 6 and the phosphorus content is higher than in Examples 3 and 4 to be.
  • Example 7 The constant current charge and discharge curves of Example 7 are shown in FIG. 7. As shown in FIG. 7, the charge capacity of the first cycle is 1208 mAh / g, and the discharge capacity is 1016 mAh / g. Compared to Example 4, graphene was added to the electrode to decrease the capacity per weight, and the initial efficiency was 84%, which is similar to that of Example 4.
  • Example 8 The constant current charge and discharge curves of Example 8 are shown in FIG. 8.
  • the charge capacity of the first cycle is 1698 mAh / g and the discharge capacity is 1473 mAh / g, which shows an excellent effect with an initial efficiency of 86%. Capacity retention in the second cycle was also excellent.
  • Example 10 The constant current charge and discharge curves of Example 10 are shown in FIG. 18.
  • the first cycle had a charge capacity of 1730 mAh / g and a discharge capacity of 1350 mAh / g, which showed a high capacity despite the high phosphorus content and a relatively high initial efficiency of 78%.
  • the constant current charge / discharge curve of Example 11 is shown in FIG. 20.
  • the charge capacity of the first cycle was 1870mAh / g and the discharge capacity was 1492mAh / g, indicating a high capacity, and the initial efficiency was 80%, and it can be seen that the initial capacity is increased when ethylene carbonate is added.
  • Example 12 The constant current charge and discharge curves of Example 12 are shown in FIG. 22.
  • the charging capacity was 1670mAh / g and the discharge capacity was 1100mAh / g, which was a high capacity, and the initial efficiency was 66%, which was somewhat lower than that in Example 10.
  • Example 13 The constant current charge and discharge curves of Example 13 are shown in FIG. 24.
  • the charge capacity was 1730mAh / g and the discharge capacity was 1520mAh / g, showing a high capacity, and the initial efficiency was also very high at 88%.
  • TEGDME tetraethylene glycol dimethyl ether
  • Comparative Example 2 The constant current charge and discharge curves of Comparative Example 2 are shown in FIG. 9. As shown in Fig. 9, the charge capacity of the first cycle is 1718mAh / g, the discharge capacity is 250mAh / g, and the efficiency is very low, which is 15%. From the second cycle it can be seen that the charge and discharge capacity is drastically reduced. Comparative Example 2 seems to have a low initial efficiency because the volume is expanded and contracted during the initial charging and discharging process, and some phosphorus (P) is electrically isolated so that the stored sodium does not escape. This is because the electrical isolation becomes serious when phosphorus is not complexed with carbon.
  • P phosphorus
  • the reversible capacity of Comparative Example 3 was 347 mAh / g, and the reversible capacity of Comparative Example 4 was 115 mAh / g, since the phosphorus content mainly responsible for storing sodium in the phosphorus-carbon composite was low or absent. It can be seen that the discharge and storage capacity of sodium ions is significantly lowered and has a very low value capacity.
  • the electrochemical cell prepared in Example 3 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 10.
  • the electrochemical cell prepared in Example 10 was charged in a constant current / constant voltage method and discharged in a constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 19. There is a slight decrease in capacity up to the first 10 cycles, but there is no decrease in capacity even after 60 cycles. Rather, all of the initially reduced capacity is recovered to maintain a stable capacity. In view of this, it can be seen that the use of graphite in the preparation of the phosphorus-carbon composite anode active material can realize the excellent initial capacity and ensure a stable lifetime.
  • the electrochemical cell prepared in Example 11 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 21. Not only did the initial capacity increase than that of Example 10, but the portion where the capacity decreases initially disappears and then the capacity continuously increases, and after 30 cycles, a capacity of 1700 mAh / g or more appears. When ethylene carbonate is added to the electrolyte, it can be seen that more stable and superior performance can be achieved.
  • the electrochemical cell prepared in Example 12 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 23. Although the initial dose was somewhat low, all of the samples prepared in Example 9 had a stable cycle, and when NaPF 6 salt was used, the initial capacity was still excellent even though the initial dose was somewhat low.
  • Example 13 The electrochemical cell prepared in Example 13 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 25. High initial efficiency and stable capacity are shown without decreasing initial capacity or gradual change of capacity. Therefore, it is stable when tetraethylene glycol dimethyl ether is used as solvent in electrolyte.
  • the electrochemical cell prepared in Example 3 was charged and discharged with a constant current, and X-ray diffraction analysis was performed by ex-situ method. A current of 143 mA / g was used in the 0.0-1.5 V (vs. Na / Na + ) voltage range.
  • the electrodes were stopped at 1.5V, and each electrode was prepared by decomposing an electrochemical cell in an argon glove box to obtain an electrode. This electrode was performed by adhering Kapton tape to a beryllium (Be) window.
  • Be beryllium
  • the experimental results are shown in FIG. 11.
  • the phosphorus-carbon composite which was in an amorphous phase before charging, showed no peak due to the charging progressing to 0.2V, but specific peaks corresponding to Na 3 P were observed in the diffraction pattern obtained by X-ray diffraction analysis after stopping charging at 0.0V. It was confirmed to be amorphous again in the X-ray diffraction pattern measured after discharging this to 1.5V. This result confirms that the phosphorus-carbon composite is changed to the crystalline Na 3 P phase which was amorphous during the charging process, and then restored to the amorphous phosphor again during the discharge process.
  • the rate characteristic results of the electrochemical cell prepared in Example 3 are shown in FIG.
  • Charging and discharging experiments were carried out in the voltage range of 0.0 ⁇ 1.5V (vs. Na / Na + ), and the current was charged while changing the magnitude of 143mA / g, 286mA / g, 571mA / g, 1430mA / g, 2860mA / g.
  • Over discharge was performed. 12 shows very high reversible capacity despite increasing charge and discharge currents, 91% capacity at 1430mA / g current compared to capacity at 143mA / g current, and 82 at 2860mA / g. A dose of% is shown.
  • FIG. 1 Velocity characteristic results of the electrochemical cell prepared in Example 10 are shown in FIG.
  • Charging and discharging experiments were conducted in the voltage range of 0.0 ⁇ 1.5V (vs. Na / Na + ), and the magnitude of current was 50mA / g, 100mA / g, 200mA / g, 300mA / g, 500mA / g, 1000mA / g
  • Charging and discharging were performed while changing to 2000 mA / g and 50 mA / g.
  • FIG. 1 Charging and discharging experiments were conducted in the voltage range of 0.0 ⁇ 1.5V (vs. Na / Na + ), and the magnitude of current was 50mA / g, 100mA / g, 200mA / g, 300mA / g, 500mA / g, 1000mA / g
  • Charging and discharging were performed while changing to 2000 mA / g and 50 mA
  • FIG. 27 Velocity characteristic results of the electrochemical cell prepared in Example 11 are shown in FIG. 27. Experimental conditions were performed in the same manner as in Example 10 above. It can be seen that the use of ethylene fluoride carbonate as an additive to the electrolyte improves the rate characteristic. Even at a current of 500 mA / g, a capacity of 1200 mAh / g or more is shown, indicating a capacity of 80% or more of the capacity at a low current of 50 mA / g.
  • Velocity characteristic results of the electrochemical cell prepared in Example 13 are shown in FIG. 29.
  • Experimental conditions were performed in the same manner as in Example 10 above. This shows little reduction in capacity even at a current of 500mA / g and a capacity of more than 1100mAh / g at a current of 1000mA / g.
  • a large capacity of 800 mAh / g or more is expressed, indicating a capacity of 60% or more compared to the capacity at a low current of 50 mA / g.
  • tetraethylene glycol dimethyl ether was used as the solvent of the electrolyte, the most excellent speed characteristics could be achieved.
  • the output material of the phosphorus-carbon composite is very excellent as the anode active material of the sodium secondary battery capable of rapid charging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an anode active material for a sodium secondary battery, an electrode using the same, and a sodium secondary battery comprising the same. The anode active material for a sodium secondary battery of the present invention is characterized by comprising a phosphorus-carbon composite, wherein the phosphorus-carbon composite is at least one of red phosphorus, black phosphorus, white phosphorus, and yellow phosphorus.

Description

나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지Anode active material for sodium secondary battery, manufacturing method of electrode using same and sodium secondary battery comprising same
본 발명은 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지에 관한 것으로, 보다 상세하게는 인-탄소 복합체를 이용하여 음극활물질을 형성함으로써, 나트륨 이온에 대한 가역용량이 크고, 초기 효율이 우수한 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지에 관한 것이다.The present invention relates to a cathode active material for a sodium secondary battery, a method for manufacturing an electrode using the same, and a sodium secondary battery including the same. More particularly, by forming a cathode active material using a phosphorus-carbon composite, a reversible capacity for sodium ions is achieved. It relates to a large, excellent initial efficiency of the anode active material for sodium secondary battery, a method for producing an electrode using the same and a sodium secondary battery comprising the same.
이차전지란 화학에너지가 전기에너지로 변환되는 방전과 역방향인 충전 과정을 통하여 반복적으로 사용할 수 있는 전지를 말한다. 이 중, 리튬 이차전지는 노트북, 휴대폰 등 다양한 휴대용 전자기기에 사용할 수 있으며, 향후 전기 자동차와 에너지 저장용으로 그 시장이 크게 확대될 것으로 예측된다. 그러나 리튬 이차전지의 시장이 확대됨에도 불구하고, 리튬의 매장량은 한정되어 있어 이를 대체할 수 있는 이차전지가 요구되고 있다.A secondary battery is a battery that can be used repeatedly through a charging process that is reverse to the discharge where chemical energy is converted into electrical energy. Among these, lithium secondary batteries can be used in various portable electronic devices such as laptops and mobile phones, and the market is expected to expand greatly in the future for electric vehicles and energy storage. However, despite the expansion of the market for lithium secondary batteries, lithium reserves are limited and thus secondary batteries are required.
리튬에 대한 대안으로, 리튬과 함께 주기율표 1족에 속하는 알칼리 금속으로 전세계적으로 고른 분포로 풍부하게 매장되어 있으며, 리튬 못지않은 산화-환원 전위값을 가지고 높은 에너지 밀도를 가지는 차세대 나트륨 이차전지로 관심이 집중되고 있다. As an alternative to lithium, it is abundantly buried in the world with even distribution of alkali metals belonging to group 1 of the periodic table, and is of interest as a next-generation sodium secondary battery with a high energy density with redox potential equal to that of lithium. This is concentrated.
그러나, 나트륨 이온은 리튬 이온보다 사이즈가 커 이동속도가 느리며, 나트륨의 반응활성 또한 우수하지 않아, 기존의 리튬 이차전지에서 사용되었던 전극 소재를 적용하는 경우 리튬이온 이차전지에서 나타내었던 특성에 비하여 용량이 발현되지 않거나, 급격한 용량퇴화 및 특성저하를 가져오는 경우가 대부분이다. However, since sodium ions are larger in size than lithium ions, they move slowly and do not have good reaction activity. So, when the electrode material used in the conventional lithium secondary battery is applied, the capacity is higher than that of the lithium ion secondary battery. In most cases, this is not expressed or results in rapid capacity deterioration and deterioration.
일본국 특허공개공보 제 2007-35588호에서는 탄소를 나트륨이온 이차전지의 음극활물질로 적용하고 있으나, 나트륨 이온을 가역적으로 저장 및 배출할 수 있는 능력, 즉, 가역용량이 300mAh/g 이하에 그치는 문제가 있다. 따라서, 나트륨 이차전지를 구현하기 위해서는 나트륨 이온의 가역 용량이 높고, 충방전 전압이 낮은 음극 및 양극 소재의 개발이 시급한 실정이다.Japanese Patent Application Laid-Open No. 2007-35588 applies carbon as a negative electrode active material of a sodium ion secondary battery, but has the ability to reversibly store and discharge sodium ions, that is, a reversible capacity of less than 300 mAh / g. There is. Therefore, in order to implement a sodium secondary battery, it is urgent to develop a negative electrode and a positive electrode material having a high reversible capacity of sodium ions and a low charge / discharge voltage.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 나트륨 이온을 가역적으로 저장 및 배출할 수 있어, 나트륨의 저장 및 배출 능력이 우수한 적린에 탄소를 복합화함으로써 전기전도도를 향상시키고 나트륨과의 반응성을 높여 용량이 크고, 효율이 우수한 인-탄소 복합체를 포함하여 이루어진 음극활물질, 이를 이용한 전극 및 이를 포함한 나트륨 이차전지를 제공함에 목적이 있다.Accordingly, an object of the present invention is to solve such a conventional problem, and can reversibly store and discharge sodium ions, thereby improving electrical conductivity by compounding carbon in red phosphorus having excellent storage and releasing ability of sodium, and improving sodium conductivity. The purpose of the present invention is to provide a negative electrode active material, an electrode using the same, and a sodium secondary battery including the same, including a phosphorus-carbon composite having high capacity and high efficiency by increasing reactivity.
인-탄소 복합체의 1차 입경과 2차 입경의 크기를 조절함으로써, 나트륨 이온 확산을 용이하게 할 수 있는 인-탄소 복합체를 포함하여 이루어진 음극활물질, 이를 이용한 전극 및 이를 포함한 나트륨 이차전지를 제공함에 목적이 있다.By adjusting the size of the primary and secondary particle size of the phosphorus-carbon composite, to provide a cathode active material comprising a phosphorus-carbon composite that can facilitate the diffusion of sodium ions, an electrode using the same and a sodium secondary battery comprising the same There is a purpose.
탄소 또는 적린만을 사용한 음극활물질보다, 가역용량이 650mAh/g 이상으로 매우 크면서, 충방전 전압이 낮은 인-탄소 복합체를 포함하여 이루어진 음극활물질, 이를 이용한 전극 및 이를 포함한 나트륨 이차전지를 제공함에 목적이 있다.To provide a cathode active material comprising a phosphorus-carbon composite having a reversible capacity of 650 mAh / g or more and having a low charge / discharge voltage, an electrode using the same, and a sodium secondary battery including the same, compared to a cathode active material using only carbon or red phosphorus. There is this.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 나트륨 이차전지용 음극활물질은, 인-탄소 복합체를 포함하여 이루어지고, 상기 인-탄소 복합체에서 인은 적린, 흑린, 백린 또는 황린 중 적어도 하나일 수 있다.In order to achieve the above object, the negative electrode active material for a sodium secondary battery according to an embodiment of the present invention, including a phosphorus-carbon composite, phosphorus in the phosphorus-carbon composite is at least one of red phosphorus, black phosphorus, white phosphorus or sulfur Can be.
상기 인-탄소 복합체의 상기 인과 탄소의 중량비는 1:0.1 내지 1:2.5일 수 있다. The weight ratio of the phosphorus and carbon of the phosphorus-carbon composite may be 1: 0.1 to 1: 2.5.
상기 인-탄소 복합체의 평균 입경은 0.01 내지 10㎛이고, 1차 입경은 5 내지 500㎚일 수 있다. The average particle diameter of the phosphorus-carbon composite may be 0.01 to 10 μm, and the primary particle size may be 5 to 500 nm.
상기 인-탄소 복합체는 그래핀을 더 포함할 수 있다. 상기 인-탄소 복합체의 탄소는 비표면적이 10 내지 3000㎡/g일 수 있다.The phosphorus-carbon composite may further include graphene. Carbon of the phosphorus-carbon composite may have a specific surface area of 10 to 3000 m 2 / g.
상기 인-탄소 복합체의 탄소는 흑연을 포함할 수 있다.Carbon of the phosphorus-carbon composite may include graphite.
상기 인-탄소 복합체의 인은 적린이고, 상기 적린은 비정질상일 수 있다.Phosphorus of the phosphorus-carbon complex may be red phosphorus, and the red phosphorus may be in an amorphous phase.
상기 비정질상은 X선 회절분석을 분당 1o/min내지 16o/min의 주사속도로, 20o에서 70o까지 0.01o간격으로 측정하였을 때, 베이스 라인에서 나타나는 잡음에 비하여 신호 대 잡음비가 50미만일 수 있다.The amorphous phase has a signal-to-noise ratio of less than 50 compared to the noise appearing at the baseline when X-ray diffraction analysis is performed at a scan rate of 1 o / min to 16 o / min per minute and 20 o to 70 o at 0.01 o intervals. Can be.
상기 음극활물질은 라만 분광법에서 1582cm-1의 파수에서 피크가 존재할 수 있다.The negative electrode active material may have a peak at a wavenumber of 1582 cm −1 in Raman spectroscopy.
상기 음극화물질은, 라만 분광법으로 측정한 1582cm-1의 파수에서 나타나는 피크가 1332cm-1의 파수에서 나타나는 피크보다 클 수 있다.The cathode material may have a peak appearing at a wavenumber of 1582 cm −1 as measured by Raman spectroscopy than a peak appearing at a wave number of 1332 cm −1 .
상기 음극활물질은 나트륨의 환원전위에 대비하여 0.2 내지 1.0V의 전압 영역에서 작동할 수 있다. The negative electrode active material may operate in a voltage range of 0.2 to 1.0V in preparation for the reduction potential of sodium.
상기 음극활물질은 가역용량이 650mAh/g 이상일 수 있다.The negative electrode active material may have a reversible capacity of 650 mAh / g or more.
본 발명의 일 실시예에 따른 나트륨 이차전지용 전극의 제조방법은, 인-탄소 복합체로 이루어진 음극활물질 분말, 결합제 및 분산액을 혼합하여 페이스트를 준비하는 페이스트 준비단계; 상기 페이스트를 전극용 집전체에 도포하는 도포단계; 및 상기 페이스트를 50 내지 200℃의 온도에서 건조시키는 건조단계를 포함할 수 있다.Method for manufacturing a sodium secondary battery electrode according to an embodiment of the present invention, a paste preparation step of preparing a paste by mixing a negative active material powder, a binder and a dispersion consisting of a phosphorus-carbon composite; An application step of applying the paste to an electrode current collector; And a drying step of drying the paste at a temperature of 50 to 200 ° C.
상기 페이스트 준비단계에서, 상기 음극활물질 100중량부에 대하여, 상기 분산액은 10 내지 200중량부이고, 상기 결합제는 3 내지 50중량부일 수 있다.In the paste preparation step, the dispersion may be 10 to 200 parts by weight, and the binder may be 3 to 50 parts by weight based on 100 parts by weight of the negative electrode active material.
상기 페이스트 준비단계에서, 상기 분산액은 N-메틸피롤리돈, 이소프로필알콜, 아세톤 또는 물 중 적어도 하나를 포함할 수 있다.In the paste preparation step, the dispersion may include at least one of N-methylpyrrolidone, isopropyl alcohol, acetone or water.
상기 페이스트 준비단계에서, 상기 결합제는 폴리테트라플루오르에틸렌, 폴리비닐리덴플루오라이드, 셀룰로오스 스타이렌부타다이엔러버, 폴리이미드, 폴리아크릴릭산, 폴리아크릴산 알칼리염, 폴리메틸메타크릴레이트 또는 폴리아크릴로나이트릴 중 적어도 하나를 포함할 수 있다.In the paste preparation step, the binder is polytetrafluoroethylene, polyvinylidene fluoride, cellulose styrene-butadiene rubber, polyimide, polyacrylic acid, polyacrylic acid alkali salt, polymethyl methacrylate or polyacrylonitrile It may include at least one of the reels.
상기 페이스트 준비단계에서, 상기 페이스트는 분말상의 도전재를 더 포함하며, 상기 도전재는 카본블랙, 기상성장탄소섬유 또는 흑연 중 적어도 하나를 포함할 수 있다.In the paste preparation step, the paste may further include a powdery conductive material, and the conductive material may include at least one of carbon black, vapor-grown carbon fiber, or graphite.
상기 도전재는 상기 음극활물질 100중량부에 대하여, 1 내지 30중량부일 수 있다.The conductive material may be 1 to 30 parts by weight based on 100 parts by weight of the negative electrode active material.
본 발명의 일 실시예에 따른 나트륨 이차전지는 상술한 음극활물질을 포함하는 음극, 나트륨 금속산화물, 나트륨 금속인산화물, 나트륨 금속 불화인산화물 또는 나트륨 금속 불화황산화물 중 적어도 하나를 포함하는 양극, 상기 음극 및 상기 양극 사이에 존재하는 분리막 및 전해질을 포함하여 이루어질 수 있다.A sodium secondary battery according to an embodiment of the present invention is a positive electrode including at least one of a negative electrode, a sodium metal oxide, sodium metal phosphate, sodium metal fluoride oxide or sodium metal fluoride oxide containing the negative electrode active material, the It may comprise a separator and an electrolyte present between the negative electrode and the positive electrode.
상기 나트륨 금속산화물은 NaxCoO2,NaxCo2/3Mn1/3O2,NaxFe1/2Mn1/2O2,NaCrO2,NaLi0.2Ni0.25Mn0.75O2.35,Na0.44MnO2,NaMnO2,Na0.7VO2,Na0.33V2O5중 적어도 하나를 포함할 수 있다(여기서, 0<x≤1임). The sodium metal oxide is Na x CoO 2 , Na x Co 2/3 Mn 1/3 O 2 , Na x Fe 1/2 Mn 1/2 O 2 , NaCrO 2 , NaLi 0.2 Ni 0.25 Mn 0.75 O 2.35 , Na 0.44 MnO 2 , NaMnO 2 , Na 0.7 VO 2 , Na 0.33 V 2 O 5 , wherein 0 <x ≦ 1.
상기 나트륨 금속인산화물은 Na3V2(PO4)3,NaFePO4,NaMn0.5Fe0.5PO4,Na3V2(PO4)3중 적어도 하나를 포함할 수 있다. The sodium metal phosphate may include at least one of Na 3 V 2 (PO 4 ) 3 , NaFePO 4 , NaMn 0.5 Fe 0.5 PO 4 , Na 3 V 2 (PO 4 ) 3 .
상기 나트륨 금속 불화인산화물은 Na2FePO4F,Na3V2(PO4)3중 적어도 하나를 포함할 수 있다.The sodium metal fluorophosphate may include at least one of Na 2 FePO 4 F, Na 3 V 2 (PO 4 ) 3 .
상기 나트륨 금속 불화황산화물은 NaFeSO4F일 수 있다.The sodium metal fluoride oxide may be NaFeSO 4 F.
상기 전해질은, 유기용매에 NaClO4,NaAsF6,NaBF4,NaPF6,NaSbF6,NaCF3SO3또는 NaN(SO2CF3)2중 적어도 하나를 포함하여 이루어진 나트륨염이 용해될 수 있다.The electrolyte may be dissolved in a sodium salt comprising at least one of NaClO 4 , NaAsF 6 , NaBF 4 , NaPF 6 , NaSbF 6 , NaCF 3 SO 3 or NaN (SO 2 CF 3 ) 2 in an organic solvent.
상기 유기용매는 에틸렌카보네이트, 프로필렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 이소프로필메틸카보네이트, 비닐렌카보네이트, 불화에틸렌카보네이트, 1,2-디메톡시에탄, 1,2-디에톡시에탄, γ-부티로락톤, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, 1,3-디옥센, 4-메틸-1,3-디옥센, 디에틸에테르, 테트라에틸렌글리콜 디메틸이써 또는 술포란 중 적어도 하나를 포함할 수 있다.The organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, ethylene fluoride carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, at least one of γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, diethyl ether, tetraethylene glycol dimethyl ether or sulfolane It may include one.
상기 나트륨염은 0.1 내지 2몰농도일 수 있다.The sodium salt may be 0.1 to 2 molar concentrations.
상기 전해질은 첨가제로 불화에틸렌카보네이트 0.1 내지 10중량%를 포함할 수 있다.The electrolyte may include 0.1 to 10% by weight of ethylene fluoride as an additive.
본 발명의 나트륨 이차전지용 음극활물질, 이를 이용한 전극 및 이를 포함한 나트륨 이차전지에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.According to the cathode active material for a sodium secondary battery of the present invention, an electrode using the same, and a sodium secondary battery including the same, one or more of the following effects are provided.
첫째, 인과 탄소가 결합된 인-탄소 복합체를 형성하여, 이를 음극활물질로 활용하여, 나트륨과의 반응성을 증가시켜 종래의 나트륨 이차전지의 가역용량에 비하여 현저히 높은 650mAh/g의 가역용량을 구현할 수 있으며, 충방전 전압이 낮은 우수한 효과가 있다.First, by forming a phosphorus-carbon composite combined with phosphorus and carbon, by using it as a negative electrode active material, by increasing the reactivity with sodium can realize a reversible capacity of 650mAh / g significantly higher than the reversible capacity of the conventional sodium secondary battery It has an excellent effect of low charge and discharge voltage.
둘째, 인-탄소 복합체를 음극활물질로 하여 나트륨 이차전지를 구현하면, 초기 효율이 높고, 출력 특성이 우수한 효과가 있다.Second, when the sodium secondary battery is implemented using the phosphorus-carbon composite as the negative electrode active material, the initial efficiency is high, and the output characteristics are excellent.
셋째, 인-탄소 복합체의 음극활물질을 사용하여 나트륨 이차전지를 구현하는 경우, 계속적인 충방전에도 용량감소가 거의 없어 안정적으로 지속적인 사용이 가능하다.Third, in the case of implementing a sodium secondary battery using a negative electrode active material of the phosphorus-carbon composite, there is almost no capacity decrease even with continuous charging and discharging, thereby enabling stable and continuous use.
넷째, 인-탄소 복합체의 형성은, 인과 탄소를 상온에서 볼밀링을 이용하여 기계적으로 합성하는 간단한 방법으로 형성할 수 있어, 공정이 단순하며 경제적으로 음극활물질을 용이하게 제조할 수 있다.Fourth, the formation of the phosphorus-carbon composite can be formed by a simple method of mechanically synthesizing phosphorus and carbon using ball milling at room temperature, so that the anode active material can be easily produced economically.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명에 의한 나트륨 이차전지용 전극을 제조하는 방법을 순차적으로 나타낸 순서도이다.1 is a flowchart sequentially illustrating a method of manufacturing an electrode for sodium secondary battery according to the present invention.
도 2a는 실험 1에서, 실시예 1 음극활물질의 X선 회절분석 결과를 도시한 그래프이다.2A is a graph showing the results of X-ray diffraction analysis of Example 1 negative active material in Experiment 1. FIG.
도 2b는 실험 1에서, 실시예 1 음극활물질을 투과전자현미경으로 촬영한 사진이다.Figure 2b is a photograph taken in Example 1, the negative electrode active material of Example 1 with a transmission electron microscope.
도 3a는 실험 1에서, 실시예 2 음극활물질의 X선 회절분석 결과를 도시한 그래프이다.3A is a graph showing the results of X-ray diffraction analysis of Example 2 negative active material in Experiment 1. FIG.
도 3b는 실험 1에서, 실시예 2 음극활물질을 투과전자현미경으로 촬영한 사진이다.Figure 3b is a photograph taken in Example 1, the negative electrode active material of Example 2 with a transmission electron microscope.
도 4a는 실험 1에서, 비교예 1 음극활물질을 X선 회절분석 결과를 도시한 그래프이다.4A is a graph showing the results of X-ray diffraction analysis of Comparative Example 1 negative electrode active material in Experiment 1. FIG.
도 4b는 실험 1에서, 비교예 1 음극활물질을 주사전자현미경으로 촬영한 사진이다.Figure 4b is a photograph taken with a scanning electron microscope in Comparative Example 1, the negative electrode active material of Comparative Example 1.
도 5는 실험 2에서, 실시예 3의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 5 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 3 in Experiment 2. FIG.
도 6은 실험 2에서, 실시예 4의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 6 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 4 in Experiment 2. FIG.
도 7은 실험 2에서, 실시예 7의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 7 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 7 in Experiment 2.
도 8은 실험 2에서, 실시예 8의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충반전 곡선을 나타낸 그래프이다.FIG. 8 is a graph showing charge and recharge curves showing electrochemical properties associated with sodium ion storage of Example 8 in Experiment 2.
도 9는 실험 2에서, 비교예 2의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 9 is a graph showing charge and discharge curves showing electrochemical characteristics related to sodium ion storage of Comparative Example 2 in Experiment 2.
도 10은 실험 3에서, 실시예 3의 나트륨 이차전지 적용시의 사이클 특성을 나타낸 그래프이다.10 is a graph showing the cycle characteristics when applying the sodium secondary battery of Example 3 in Experiment 3.
도 11은 실험 4에서, 실시예 3의 충방전에 따른 ex-situ X선 회절분석 결과를 도시한 그래프이다.11 is a graph showing the results of ex-situ X-ray diffraction analysis according to the charge and discharge of Example 3 in Experiment 4.
도 12는 실험 5에서, 실시예 3의 전류 크기에 따른 충방전 곡선을 나타낸 그래프이다.FIG. 12 is a graph showing charge and discharge curves according to current magnitudes of Example 3 in Experiment 5. FIG.
도 13은 실험 5에서, 실시예 3 내지 6의 전류 크기에 따른 방전용량을 나타낸 그래프이다.FIG. 13 is a graph showing discharge capacity according to current magnitudes of Examples 3 to 6 in Experiment 5. FIG.
도 14는 실험 1에서, 실시예 9 음극활물질을 주사전자현미경으로 촬영한 사진이다.14 is a photograph taken by a scanning electron microscope of Example 9 the negative electrode active material in Experiment 1.
도 15는 실험 1에서, 실시예 9 음극활물질의 단면을 주사전자현미경으로 촬영하고 에너지분산 X선분광분석기(EDS)로 성분을 분석한 결과이다.FIG. 15 is a result of photographing the cross-section of the cathode active material of Example 9 with a scanning electron microscope and analyzing the components with an energy dispersive X-ray spectrometer (EDS).
도 16은 실험 1에서, 실시예 9, 비교예 1 및 비교예 5 음극활물질의 X선 회절분석 결과를 도시한 그래프이다.16 is a graph showing the results of X-ray diffraction analysis of Example 9, Comparative Example 1 and Comparative Example 5 negative electrode active material in Experiment 1.
도 17은 실험 1에서, 실시예 9, 비교예 1 음극활물질의 라만 분광 결과를 도시한 그래프이다.17 is a graph showing Raman spectroscopy results of Example 9 and Comparative Example 1 negative electrode active material in Experiment 1. FIG.
도 18은 실험 2에서, 실시예 10의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 18 is a graph showing charge and discharge curves showing electrochemical characteristics associated with sodium ion storage of Example 10 in Experiment 2.
도 19는 실험 3에서, 실시예 10의 나트륨 이차전지 적용시의 사이클 특성을 나타낸 그래프이다.19 is a graph showing the cycle characteristics when the sodium secondary battery of Example 10 is applied in Experiment 3.
도 20은 실험 2에서, 실시예 11의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.20 is a graph showing the charge and discharge curves showing the electrochemical characteristics associated with the storage of sodium ions of Example 11 in Experiment 2.
도 21은 실험 3에서, 실시예 11의 나트륨 이차전지 적용시의 사이클 특성을 나타낸 그래프이다.21 is a graph showing the cycle characteristics when the sodium secondary battery of Example 11 is applied in Experiment 3.
도 22는 실험 2에서, 실시예 12의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.FIG. 22 is a graph showing charge and discharge curves showing electrochemical characteristics associated with storage of sodium ions of Example 12 in Experiment 2.
도 23은 실험 3에서, 실시예 12의 나트륨 이차전지 적용시의 사이클 특성을 나타낸 그래프이다.FIG. 23 is a graph showing the cycle characteristics when the sodium secondary battery of Example 12 is applied in Experiment 3. FIG.
도 24는 실험 2에서, 실시예 13의 나트륨 이온 저장과 관련된 전기화학적 특성을 나타내는 충방전 곡선을 나타낸 그래프이다.24 is a graph showing charge and discharge curves showing the electrochemical properties associated with sodium ion storage of Example 13 in Experiment 2.
도 25는 실험 3에서, 실시예 13의 나트륨 이차전지 적용시의 사이클 특성을 나타낸 그래프이다.FIG. 25 is a graph showing the cycle characteristics when the sodium secondary battery of Example 13 is applied in Experiment 3. FIG.
도 26은 실험 6에서, 실시예 10의 나트륨 이온 저장과 관련된 전류 크기에 따른 방전용량을 나타낸 그래프이다.FIG. 26 is a graph showing discharge capacity according to current magnitudes related to sodium ion storage of Example 10 in Experiment 6. FIG.
도 27은 실험 6에서, 실시예 11의 나트륨 이온 저장과 관련된 전류 크기에 따른 방전용량을 나타낸 그래프이다.FIG. 27 is a graph showing discharge capacity according to current magnitudes related to sodium ion storage of Example 11 in Experiment 6.
도 28은 실험 6에서, 실시예 12의 나트륨 이온 저장과 관련된 전류 크기에 따른 방전용량을 나타낸 그래프이다.28 is a graph showing the discharge capacity according to the magnitude of current associated with the storage of sodium ions of Example 12 in Experiment 6.
도 29는 실험 6에서, 실시예 13의 나트륨 이온 저장과 관련된 전류 크기에 따른 방전용량을 나타낸 그래프이다.29 is a graph showing the discharge capacity according to the current magnitude associated with the sodium ion storage of Example 13 in Experiment 6.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계 및/또는 동작은 하나 이상의 다른 구성요소, 단계 및/또는 동작의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to a component, step, and / or operation that excludes the presence or addition of one or more other components, steps, and / or operations. I never do that.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionaries are not ideally or excessively interpreted unless they are specifically defined clearly.
이하, 본 발명에 의한 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지에 대하여 도면을 참조하여 상세히 설명하도록 한다.Hereinafter, a cathode active material for a sodium secondary battery according to the present invention, a method of manufacturing an electrode using the same, and a sodium secondary battery including the same will be described in detail with reference to the accompanying drawings.
본 발명의 나트륨 이차전지용 음극활물질은, 인-탄소 복합체를 포함하여 이루어진다. 인은 가역적으로 나트륨 이온을 저장/배출할 수 있는 능력이 있지만, 전기전도도가 매우 낮아서 전극재료로 활용할 수 없으나, 본 발명에서는 전기전도도가 높은 탄소와 복합화하여 인의 낮은 전기전도도 문제를 해결하였다. The negative electrode active material for sodium secondary battery of the present invention comprises a phosphorus-carbon composite. Phosphorus has the ability to reversibly store / discharge sodium ions, but it is very low in electrical conductivity and cannot be used as an electrode material. However, the present invention solves the low electrical conductivity problem of phosphorus by complexing with carbon having high electrical conductivity.
인은 다양한 동소체를 가지고 있으며, 본 발명에서 탄소와의 복합물질로서 적린, 흑린, 백린, 황린 중 어느 것을 사용하여도 무방하나, 적린이 가장 효과적이다.Phosphorus has various allotropes, and red phosphorus, black phosphorus, white phosphorus, or sulfur phosphorus may be used as a composite material with carbon in the present invention, but red phosphorus is most effective.
나트륨 이온은 리튬 이온보다 반응성이 매우 낮으며, 이온의 확산속도도 느리기 때문에 활물질의 일차 입자의 크기도 작아야 하며, 활물질 내에서의 확산속도도 커야 한다. 따라서, 인과 탄소의 복합체를 구성함에 있어서도 인의 일차 입자 크기를 충분히 감소시키는 것이 중요하며, 전기전도성이 우수한 탄소와 균일한 복합체가 구성되도록 하여야 한다. 적린의 경우 백린의 P4분자에서 P-P 결합 하나가 깨어지면서 사슬형 구조를 가지며, 결정성이 없는 비정질 구조로, 밀도는 2.2 내지 2.34g/㎝3 정도를 나타내, 흑린의 밀도 2.69 g/㎝3보다작은값을가진다. 즉, 적린은 흑린, 백린, 황린과 비교하였을 때, 결정성이 없는 비정질상을 지니기 때문에 이온의 확산 속도에 큰 장점을 가지며, 더욱이 낮은 밀도로 치밀하지 않은 구조를 형성하고 있으므로 이온 확산에 더욱 유리하다.Since sodium ions are much less reactive than lithium ions, and the diffusion rate of ions is also slow, the size of primary particles of the active material should be small, and the diffusion rate within the active material should be large. Therefore, it is important to sufficiently reduce the primary particle size of phosphorus in forming a composite of phosphorus and carbon, and to make a uniform composite with carbon having excellent electrical conductivity. For red phosphorus having a binding chain-like structure PP As one wakes up from P 4 molecule of the WP, with an amorphous structure with no crystallinity, density represents a degree of 2.2 to 2.34g / ㎝ 3, heukrin density of 2.69 g / ㎝ 3 Has a smaller value. That is, red phosphorus has a great advantage in the diffusion rate of ions because it has an amorphous phase without crystallinity, compared with black phosphorus, white phosphorus, and yellow phosphorus, and is more advantageous for ion diffusion because it forms a dense structure with low density. .
인-탄소 복합체의 인과 탄소의 중량비는 1:0.1 내지 1:2.5인 것이 바람직하고, 더 바람직하게는 1:0.4 내지 1:1 인 것이 효과적이다. 인과 탄소의 중량비가 1:0.1 미만인 경우에는 전기전도도가 낮은 문제가 있으며, 1:2.5를 초과하는 경우에는 가역용량이 작아 활물질로 적합하지 않다.The weight ratio of phosphorus to carbon of the phosphorus-carbon composite is preferably 1: 0.1 to 1: 2.5, more preferably 1: 0.4 to 1: 1. If the weight ratio of phosphorus and carbon is less than 1: 0.1, there is a problem of low electrical conductivity, and if it exceeds 1: 2.5, the reversible capacity is small and is not suitable as an active material.
또한, 상기 인-탄소 복합체는 평균 입경이 0.01 내지 10㎛인 것이 바람직하며, 더 바람직하게는 0.1 내지 3㎛인 것이 효과적이다. 평균 입경이 0.01㎛ 미만이면 나트륨과의 반응성이 감소하여 전극의 형성이 어렵고, 10㎛를 초과하는 경우에는 나트륨 이온의 확산이 어려워지고 전극 제조시 거대 입자로 인한 불량이 발생할 가능성이 높아지는 문제가 있다.In addition, the phosphor-carbon composite preferably has an average particle diameter of 0.01 to 10 μm, more preferably 0.1 to 3 μm. If the average particle diameter is less than 0.01 μm, the reactivity with sodium decreases, making the electrode difficult. If the average particle diameter exceeds 10 μm, the diffusion of sodium ions becomes difficult and the possibility of defects caused by the large particles in the electrode manufacturing increases. .
상기 인-탄소 복합체의 1차 입경은 5 내지 500㎚인 것이 바람직하며, 더 바람직하게는 10 내지 100㎚인 것이 효과적이다. 1차 입경이 10㎚ 미만이거나 100㎚를 초과하는 경우에는 나트륨과의 반응성이 오히려 감소할 뿐만 아니라, 전극형성이 어려운 문제가 있다.The primary particle diameter of the phosphorus-carbon composite is preferably 5 to 500 nm, more preferably 10 to 100 nm. When the primary particle size is less than 10 nm or more than 100 nm, not only the reactivity with sodium is rather reduced, but also there is a problem that electrode formation is difficult.
여기서, 1차 입경은 1차 입자의 지름을 의미하는 것으로, 1차 입자는 분체 및 응집체를 구성하는 입자로, 분자간의 결합을 파괴하지 않고 존재하는 최소단위의 입자이며, 개개의 입자가 다른 입자와 응집하지 않고 단독으로 존재하고 있는 상태의 입자를 의미한다. 또한, 2차 입자는 1차 입자가 복수 개로 응집하여 형성된 입자, 즉 응집 입자를 의미한다.Here, the primary particle diameter refers to the diameter of the primary particles, the primary particles are particles constituting the powder and aggregate, particles of the smallest unit that does not break the bond between molecules, each particle is a different particle It means the particles in a state of being present alone without aggregation with. In addition, the secondary particle means a particle formed by aggregation of a plurality of primary particles, that is, aggregated particles.
결과적으로, 입자의 형상을 관찰할 때 갈라져있지 않은 덩어리를 나타내는 단위를 1차 입자라 하며, 이러한 1차 입자들이 뭉쳐서 분체를 형성하는 경우를 2차 입자라 한다. As a result, when observing the shape of the particles, the unit representing the unbroken mass is called primary particles, and the case where these primary particles aggregate to form powder is called secondary particles.
본 발명의 바람직한 실시예의 인-탄소 복합체는 그래핀을 더 포함할 수 있다. 그래핀은 전기 전도도가 우수하고 2600㎡/g 이상의 큰 표면적을 지니고 있으며 화학적으로 안정하다. 또한 그래핀 사이의 공간은 충전/방전 과정에서 발생하는 전극의 부피 팽창과 수축에 대한 완충 작용을 할 수 있기 때문에 그래핀을 더 포함하여 음극활물질을 구현하는 경우 전지의 사이클 효율을 향상시킬 수 있다. 그래핀의 함량은 인-탄소 복합체 100중량부에 대하여 0.1 내지 10중량부인 것이 바람직하다. 인-탄소 복합체의 탄소는 비표면적이 10 내지 3000㎡/g인 것이 바람직하며, 더 바람직하게는 10 내지 100㎡/g인 것이 효과적이다.The phosphorus-carbon composite of the preferred embodiment of the present invention may further include graphene. Graphene has excellent electrical conductivity, a large surface area of more than 2600 m 2 / g, and is chemically stable. In addition, since the space between the graphene can buffer the volume expansion and contraction of the electrode generated during the charging / discharging process, it can improve the cycle efficiency of the battery when implementing the negative electrode active material further comprising graphene . The content of graphene is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the phosphorus-carbon composite. The carbon of the phosphorus-carbon composite preferably has a specific surface area of 10 to 3000 m 2 / g, more preferably 10 to 100 m 2 / g.
상기에서 설명한 바와 같이, 인-탄소 복합체의 인은 적린인 것이 가장 바람직하며, 적린은 비정질상인 것을 특징으로 한다.As described above, the phosphorus of the phosphorus-carbon complex is most preferably red phosphorus, which is characterized in that the amorphous phase.
여기서, 비정질상이란, X선 회절분석을 분당 1o/min내지 16o/min의 주사속도로, 20o에서 70o까지 0.01o간격으로 측정하였을 때, 특성 피크가 나타나지 않는 것는 것을 의미한다. 상기 본 발명의 적린-탄소 복합체는 결정화도가 낮을수록 유리하며, 결정화의 정도는 X선 회절분석(XRD)의 실험결과로 판단이 가능하다. 따라서, 수차례의 실험결과, 상기와 같은 조건에서 X선 회절분석을 실시하여 특성 피크가 나타나지 않는 경우에 본 발명의 효과를 발휘할 수 있는 것으로 확인되었다.Here, the amorphous phase means that the characteristic peak does not appear when the X-ray diffraction analysis is measured at 0.01 o intervals from 20 o to 70 o at a scanning speed of 1 o / min to 16 o / min per minute. The red phosphorus-carbon composite of the present invention is advantageous as the crystallinity is lower, the degree of crystallization can be determined by the experimental results of X-ray diffraction analysis (XRD). Therefore, the results of several experiments confirmed that the effect of the present invention can be exerted when the characteristic peak does not appear by performing X-ray diffraction analysis under the above conditions.
또한, 상기 특성 피크의 존재여부는 베이스 라인에서 나타나는 잡음에 비하여 충분히 큰 특성피크의 신호가 발생하는지 여부로 판단할 수 있다. 잡음에 대하여 충분히 큰 신호가 발생하여 신호 대 잡음비(S/N ratio)가 50 이상인 경우에는 특성 피크가 존재하는 것으로 판단하였다. 잡음의 크기는 특성 피크가 발생하지 않는 영역에서의 베이스 라인의 진폭을 의미하며, 표준편차를 기준으로 잡는 것도 가능하다.In addition, the presence of the characteristic peak can be determined by whether a signal having a characteristic peak sufficiently larger than the noise appearing in the base line is generated. When a sufficiently large signal was generated for the noise and the signal-to-noise ratio (S / N ratio) was 50 or more, it was determined that a characteristic peak existed. The magnitude of the noise refers to the amplitude of the base line in the region where no characteristic peak occurs, and it is also possible to set the standard deviation as a reference.
상기 신호 대 잡음비란, 베이스 라인에 나타나는 신호의 진폭을 기준으로 하는 잡음의 크기에 대비하여, 발생되는 신호의 크기 비율을 나타내는 값으로, 더욱 바람직하게는 상기 신호 대 잡음비가 10 이상인 신호가 발생하지 않는 것이 가장 효과적이다. 수차례의 실험결과, 본 발명의 효과를 만족시키기 위해 상기 조건이 가장 바람직하다.The signal-to-noise ratio is a value representing the magnitude ratio of the generated signal relative to the amount of noise based on the amplitude of the signal appearing on the baseline. More preferably, the signal having the signal-to-noise ratio of 10 or more does not occur. Is most effective. As a result of several experiments, the above conditions are most preferable to satisfy the effects of the present invention.
인-탄소 복합체 음극활물질에서 탄소의 종류는 제한되지 않으나 복합체의 구성시에 전기전도성이 높은 것이 바람직하다. 이러한 물질로 카본블랙(carbon black) 또는 흑연을 포함한 물질을 사용할 수 있으며, 특히 흑연을 이용하여 제조한 규칙성을 지니는 구조인 것이 바람직하다.Although the type of carbon in the phosphorus-carbon composite anode active material is not limited, it is preferable that the electrical conductivity is high when constructing the composite. As such a material, a material including carbon black or graphite may be used, and in particular, it is preferable to have a structure having regularity manufactured using graphite.
여기서, 규칙성이란 라만 분광법에서 규칙성을 나타내는 피크가 존재하는 것이며, 이는 인-탄소 복합체 음극활물질에서 탄소로 인하여 나타는 1582cm-1부근의 G밴드가 발달된 경우가 유리하며, 특히 1332cm-1부근의 D밴드의 피크보다 G밴드가 더욱 발달된 구조가 바람직하다.Here, the regularity is the presence of a peak showing the regularity in Raman spectroscopy, it is advantageous that the G-band around 1582cm -1 due to carbon developed in the phosphor-carbon composite anode active material, in particular 1332cm -1 A structure in which the G band is more developed than the peak of the adjacent D band is preferable.
인-탄소 복합체 음극활물질은 반응성의 증가를 극대화하여, 높은 용량과 우수한 출력특성, 충전특성을 구현하였다. 본 발명에 따른 인-탄소 복합체 음극활물질은 나트륨의 환원전위에 대비하여 0.2 내지 1.0V의 전압 영역에서 작동하여, 충방전 전압이 매우 낮다. 또한, 무게당 가역용량이 650mAh/g 이상의 효과를 발휘하며, 하기의 실험에서 보는 바와 같이 1300mAh/g 이상의 가역용량을 구현할 수 있다.Phosphorus-carbon composite anode active material maximizes the increase in reactivity, and realizes high capacity, excellent output characteristics, and charging characteristics. The phosphorus-carbon composite anode active material according to the present invention operates in a voltage range of 0.2 to 1.0 V in comparison with the reduction potential of sodium, so that the charge and discharge voltage is very low. In addition, the reversible capacity per weight exerts an effect of 650mAh / g or more, it can be realized a reversible capacity of 1300mAh / g or more as shown in the following experiment.
상기 본 발명의 인-탄소 복합체 음극활물질은 나트륨 이차전지의 음극활물질로 구현되는 것이 가장 바람직하나, 이는 다른 전지에 대한 적용을 제한하지 않는다.The phosphorus-carbon composite anode active material of the present invention is most preferably implemented as a cathode active material of sodium secondary battery, but this does not limit the application to other batteries.
다음으로, 본 발명의 의한 인-탄소 복합체 음극활물질을 이용한 전극의 제조방법은, 도 1에 나타난 바와 같이, 페이스트 준비단계(S10), 도포단계(S20) 및 건조단계(S30)를 포함하여 이루어진다.Next, the method of manufacturing an electrode using the phosphorus-carbon composite anode active material according to the present invention, as shown in Figure 1, comprises a paste preparation step (S10), coating step (S20) and drying step (S30). .
페이스트 준비단계(S10)는 인-탄소 복합체로 이루어지는 음극활물질 분말에, 결합제 및 분산액을 혼합하여 페이스트를 제조하는 단계이다. 여기서, 인-탄소 복합체로 이루어지는 음극활물질은 상기에서 설명한 바와 같다. 또한, 음극활물질, 결합제는 페이스트로 만들기 용이하도록 분말형태로 사용된다. 혼합은 교반공정을 통해 이루어지는 것이 바람직하나 고르게 혼합될 수 있는 방법이면 어떠한 방법을 사용해도 무방하다.Paste preparation step (S10) is a step of preparing a paste by mixing a binder and a dispersion in a negative electrode active material powder consisting of a phosphorus-carbon composite. Here, the negative electrode active material composed of the phosphorus-carbon composite is as described above. In addition, the negative electrode active material, the binder is used in the form of a powder to make easily into a paste. Mixing is preferably performed through a stirring process, but any method may be used as long as it can be mixed evenly.
인-탄소 복합체는 인과 탄소를 기계적 밀링법을 이용하여 복합체를 합성한다. 기계적 밀링법은 인과 탄소를 볼과 함께 장입하여 고에너지 볼밀링기에 장착시켜 분당 200 내지 500회 이상의 회전속도로 기계적 합성을 수행하는 것으로, 산소 또는 수분의 영향을 최소화하기 위하여 아르곤 가스 분위기에서 수행하는 것이 바람직하다. 이러한 밀링은 상온에서 수행할 수 있어, 인-탄소 복합체를 별도의 공정없이 간단한 공정으로 용이하게 합성할 수 있다. 상기에서 설명한 바와 같이 그래핀을 더 포함하여 복합체를 형성할 수도 있다.Phosphorus-carbon composites synthesize phosphorus and carbon using mechanical milling. Mechanical milling method is loaded with phosphorus and carbon together with a ball and mounted in a high-energy ball mill to perform mechanical synthesis at a rotation speed of 200 to 500 or more times per minute, which is performed in an argon gas atmosphere to minimize the effects of oxygen or moisture. It is preferable. This milling can be performed at room temperature, so that the phosphor-carbon composite can be easily synthesized in a simple process without a separate process. As described above, graphene may be further included to form a complex.
상기 결합제는 폴리테트라플루오르에틸렌, 폴리비닐리덴플루오라이드, 셀룰로오스 스타이렌부타다이엔러버, 폴리이미드, 폴리아크릴릭산, 폴리아크릴산 알칼리염, 폴리메틸메타크릴레이트 또는 폴리아크릴로나이트릴 중 적어도 하나를 포함할 수 있다. The binder comprises at least one of polytetrafluoroethylene, polyvinylidene fluoride, cellulose styrenebutadiene rubber, polyimide, polyacrylic acid, alkali alkali salt, polymethyl methacrylate or polyacrylonitrile can do.
상기 결합제의 함량은 음극활물질 100중량부에 대하여, 3 내지 50중량부를 포함하는 것이 효과적이다. 결합제가 3중량부 미만인 경우에는 결합제의 역할을 충분히 수행할 수 없으며, 50중량부를 초과하는 경우에는 음극활물질의 반응성을 저해시키는 문제가 있다.The amount of the binder is effective to include 3 to 50 parts by weight based on 100 parts by weight of the negative electrode active material. If the binder is less than 3 parts by weight, the binder may not fully serve, and if it exceeds 50 parts by weight, there is a problem of inhibiting the reactivity of the negative electrode active material.
상기 분산액은 N-메틸피롤리돈, 이소프로필알콜, 아세톤 또는 물 중 적어도 하나를 포함할 수 있다. 이는 음극활물질과 결합제가 용이하게 분산되도록 하는 역할을 한다. The dispersion may include at least one of N-methylpyrrolidone, isopropyl alcohol, acetone or water. This serves to easily disperse the negative electrode active material and the binder.
상기 분산액의 함량은 상기 음극활물질 100중량부에 대하여, 10 내지 200중량부를 포함하는 것이 바람직하며, 더 바람직하게는 50 내지 100중량부를 포함하는 것이 효과적이다. 분산액이 10중량부 미만인 경우에는 분산작용이 충분히 일어나지 않아 혼합이 어려운 문제가 있으며, 200중량부를 초과하는 경우에는 너무 묽어져 건조 과정이 오래 걸리는 등의 경제성이 떨어지는 문제가 있다.The content of the dispersion is preferably 10 to 200 parts by weight, more preferably 50 to 100 parts by weight based on 100 parts by weight of the negative electrode active material. If the dispersion is less than 10 parts by weight, there is a problem that the mixing action is difficult because the dispersion action does not occur sufficiently, if it exceeds 200 parts by weight, there is a problem that the economic efficiency, such as too thin to take a long drying process.
페이스트 준비단계(S10)에서, 도전재를 추가로 첨가할 수 있다. 도전재는 음극활물질, 결합제, 분산액과 함께 혼합되며, 전극의 저항을 더욱 줄임으로써 전지의 출력을 높이는 효과를 가져온다.In the paste preparation step S10, a conductive material may be further added. The conductive material is mixed with the negative electrode active material, the binder, and the dispersion, and further reduces the resistance of the electrode, thereby increasing the output of the battery.
상기 도전재는 카본블랙, 기상성장탄소섬유(vapor grown carbon fiber) 또는 흑연 중 적어도 하나이고, 분말상일 수 있다. 도전재는 음극활물질 100중량부에 대하여 1 내지 30중량부를 첨가하는 것이 바람직하며, 더 바람직하게는 10 내지 20중량부를 첨가하는 것이 효과적이다. 도전재가 1중량부 미만인 경우에는 전극의 저항을 줄여주는 효과가 미미하며, 30중량부를 초과하는 경우에는 경제성이 떨어질 뿐만 아니라, 오히려 음극활물질의 효과를 감소시킬 수 있는 문제가 있다.The conductive material is at least one of carbon black, vapor grown carbon fiber, or graphite, and may be powdery. It is preferable to add 1-30 weight part with respect to 100 weight part of negative electrode active materials, More preferably, it is effective to add 10-20 weight part. If the conductive material is less than 1 part by weight, the effect of reducing the resistance of the electrode is insignificant, and if it exceeds 30 parts by weight, not only economic efficiency is reduced, but rather there is a problem that can reduce the effect of the negative electrode active material.
다음으로, 도포단계(S20)는 페이스트를 전극용 집전체에 도포하는 단계이다. 전극용 집전체는 전도성이 높은 금속으로써, 상기 페이스트에 용이하게 접착될 수 있어야 한다. 이러한 성능을 가진 금속이라면 사용상 제한은 없으나, 구리, 알루미늄, 스테인리스, 니켈 중 적어도 하나를 사용하는 것이 뛰어난 성능을 구현할 수 있다. Next, the applying step (S20) is a step of applying the paste to the electrode current collector. The current collector for the electrode is a highly conductive metal, and should be easily adhered to the paste. If the metal having such a performance is not limited in use, but at least one of copper, aluminum, stainless steel, nickel can be implemented to excellent performance.
상기 페이스트 준비단계(S10)에 의해 준비된 페이스트를 상기 전극용 집전체에 균일하게 도포하는 방법은 다양한 방식으로 가능하나, 페이스트를 전극용 집전체 위에 분배시킨 후 닥터 블레이트(doctor blade) 등을 사용하여 균일하게 분산시키는 것이 가장 바람직하며, 경우에 따라서는 분배와 분산 과정을 하나의 공정으로 실행하는 방법도 사용 가능하다. 이 외에도 다이캐스팅(die casting), 콤마코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법이 사용가능하며, 별도의 기재 위에 성형한 후 프레싱(pressing) 또는 라미네이션 방법에 의해 집전체와 접합시킬 수 도 있다.The method of uniformly applying the paste prepared by the paste preparation step (S10) to the electrode current collector is possible in various ways, but after dispensing the paste on the electrode current collector, a doctor blade or the like is used. It is most preferable to uniformly disperse the liquid, and in some cases, a method of distributing and dispersing in one process may be used. In addition, methods such as die casting, comma coating, and screen printing may be used, and may be formed on a separate substrate and then bonded to the current collector by pressing or lamination. Can also be.
마지막으로, 건조단계(S30)는 상기 페이스트를 건조시키는 단계이다. 건조 온도는 50 내지 200℃인 것이 바람직하며, 더욱 바람직하게는 100 내지 150℃인 것이 효과적이다. 50℃ 미만인 경우에는 건조 시간이 증가되어 경제성이 떨어지는 문제점이 있으며, 200℃를 초과하는 경우에는 페이스트가 탄화되거나 급속히 건조되어 전극의 저항이 증가되는 문제가 있다. 건조단계(S30)는 열풍이 부는 영역을 통과시키며 분산매 또는 용매를 증발시키는 과정이며 상압에서 이루어질 수 있다.Finally, the drying step (S30) is a step of drying the paste. The drying temperature is preferably 50 to 200 ° C, more preferably 100 to 150 ° C. If the temperature is less than 50 ° C., there is a problem in that the drying time is increased and the economy is inferior. If the temperature is more than 200 ° C., the paste is carbonized or rapidly dried to increase the resistance of the electrode. Drying step (S30) is a process of evaporating the dispersion medium or the solvent passing through the hot air blowing region may be made at atmospheric pressure.
상기 본 발명의 인-탄소 복합체 음극활물질을 이용한 전극의 제조방법에 의해 제조된 전극은 나트륨 이차전지용으로 사용될 수 있으며, 이에 한정되는 것은 아니다.The electrode manufactured by the method of manufacturing an electrode using the phosphorus-carbon composite anode active material of the present invention may be used for a sodium secondary battery, but is not limited thereto.
다음으로, 본 발명에 의한 인-탄소 복합체 음극활물질을 포함하는 나트륨 이차전지는 음극, 양극, 분리막 및 전해질을 포함하여 이루어진다.Next, the sodium secondary battery including the phosphorus-carbon composite anode active material according to the present invention comprises a negative electrode, a positive electrode, a separator and an electrolyte.
음극은 상술한 인-탄소 복합체 음극활물질을 포함하여 이루어진다.The negative electrode includes the phosphorous-carbon composite negative active material described above.
양극은 나트륨 금속산화물, 나트륨 금속인산화물, 나트륨 금속 불화인산화물 또는 나트륨 금속 불화황산화물 중 적어도 하나를 포함할 수 있다. 상기 나트륨 금속산화물은 NaxCoO2,NaxCo2/3Mn1/3O2,NaxFe1/2Mn1/2O2,NaCrO2,NaLi0.2Ni0.25Mn0.75O2.35,Na0.44MnO2,NaMnO2,Na0.7VO2,Na0.33V2O5중 적어도 하나를 포함할 수 있고 (여기서, 0<x≤1임), 상기 나트륨 금속인산화물은 Na3V2(PO4)3,NaFePO4,NaMn0.5Fe0.5PO4,Na3V2(PO4)3중 적어도 하나를 포함할 수 있고, 상기 나트륨 금속 불화인산화물은 Na2FePO4F,Na3V2(PO4)3중 적어도 하나를 포함할 수 있고, 상기 나트륨 금속 불화황산화물은 NaFeSO4F일 수 있다. 상기 음극활물질과 최적의 조합으로 반응성을 증가시킬 수 있으며, 이는 나트륨 이온의 흡장 및 방출을 빠르게 한다.The anode may include at least one of sodium metal oxide, sodium metal phosphate, sodium metal phosphate or sodium metal sulphate. The sodium metal oxide is Na x CoO 2 , Na x Co 2/3 Mn 1/3 O 2 , Na x Fe 1/2 Mn 1/2 O 2 , NaCrO 2 , NaLi 0.2 Ni 0.25 Mn 0.75 O 2.35 , Na 0.44 At least one of MnO 2 , NaMnO 2 , Na 0.7 VO 2 , Na 0.33 V 2 O 5 , wherein 0 <x ≦ 1 , and the sodium metal phosphate is Na 3 V 2 (PO 4 ) 3 , NaFePO 4 , NaMn 0.5 Fe 0.5 PO 4 , Na 3 V 2 (PO 4 ) 3 It may include at least one, the sodium metal fluoride is Na 2 FePO 4 F, Na 3 V 2 (PO 4 It may include at least one of 3 ), the sodium metal fluoride oxide may be NaFeSO 4 F. The optimum combination with the negative electrode active material can increase the reactivity, which speeds up the storage and release of sodium ions.
또한, 상기 분리막은 상기 음극 및 상기 양극 사이에 존재한다. 이는 두 개의 전극의 내부 단락을 차단하고 전해액을 함침하는 역할을 한다. 분리막의 재질은 폴리프로필렌, 폴리에틸렌 중 적어도 하나를 포함하여 이루어지는 것이 상기 음극 및 양극을 이용한 전지의 성능을 극대화하는데 바람직하다.In addition, the separator is present between the cathode and the anode. This serves to block internal short circuits of the two electrodes and to impregnate the electrolyte. The material of the separator is preferably made of at least one of polypropylene and polyethylene to maximize the performance of the battery using the negative electrode and the positive electrode.
상기 전해질은 유기용매에 나트륨염이 용해된 것으로, 유기용매에 NaClO4,NaAsF6,NaBF4,NaPF6,NaSbF6,NaCF3SO3또는 NaN(SO2CF3)2중 적어도 하나를 포함하여 이루어질 수 있다. The electrolyte is a sodium salt dissolved in an organic solvent, including at least one of NaClO 4 , NaAsF 6 , NaBF 4 , NaPF 6 , NaSbF 6 , NaCF 3 SO 3 or NaN (SO 2 CF 3 ) 2 in an organic solvent Can be done.
상기 유기용매는 에틸렌카보네이트, 프로필렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 이소프로필메틸카보네이트, 비닐렌카보네이트, 불화에틸렌카보네이트, 1,2-디메톡시에탄, 1,2-디에톡시에탄, γ-부티로락톤, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, 1,3-디옥센, 4-메틸-1,3-디옥센, 디에틸에테르, 테트라에틸렌 글리콜디메틸이써 또는 술포란 중 하나일 수 있고, 테트라에틸렌 글리콜디메틸이써인 것이 효과적이다. 경우에 따라 2 이상을 조합하여 사용할 수 있다. 음극과 양극을 이용한 나트륨 이차전지의 성능을 극대화하는데 상기 전해질을 사용하는 것이 효과적이다. The organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, ethylene fluoride carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, diethyl ether, tetraethylene glycol dimethyl ether or sulfolane And tetraethylene glycol dimethyl is effective. In some cases, two or more may be used in combination. It is effective to use the electrolyte to maximize the performance of the sodium secondary battery using the negative electrode and the positive electrode.
상기 전해질에는 0.1 내지 5중량%의 불소화에틸렌카보네이트를 더 첨가하는 것이 바람직하다.It is preferable to further add 0.1 to 5% by weight of fluorinated ethylene carbonate to the electrolyte.
이하에서는 본 발명에 의한 인-탄소 복합체 음극활물질 및 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지의 실시예를 통해, 본 발명의 효과를 입증해보도록 한다.Hereinafter, the phosphorus-carbon composite anode active material according to the present invention, a method of manufacturing an electrode using the same, and an embodiment of a sodium secondary battery including the same, will demonstrate the effect of the present invention.
실시예 1Example 1
적린과 탄소를 7:3의 중량비로 혼합하여 준비한 혼합물을 원통형 바이얼에 볼과 함께 잠입하여 고에너지 볼밀링기에 장착 후 20시간동안 밀링하였다. 탄소는 카본블랙을 사용하였다. 볼과 혼합물의 무게비는 10 내지 30 대 1의 비율을 유지하였으며, 아르곤 가스 분위기의 글러브 박스(glove box) 내에서 수행하여 인-탄소 복합체 음극활물질을 제조하였다. The mixture prepared by mixing red phosphorus and carbon in a weight ratio of 7: 3 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting on a high energy ball mill. Carbon black was used. The weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, and was carried out in a glove box of argon gas atmosphere to prepare a phosphorus-carbon composite anode active material.
실시예 2Example 2
적린과 탄소를 5:5의 중량비로 혼합하여 혼합물을 준비하는 것을 제외하고, 실시예 1과 동일하게 인-탄소 복합체 음극활물질을 제조하였다.A phosphorus-carbon composite anode active material was prepared in the same manner as in Example 1 except that the mixture was prepared by mixing red phosphorus and carbon in a weight ratio of 5: 5.
실시예 9Example 9
탄소를 흑연으로 사용한 것을 제외하고, 실시예 1과 동일하게 인-탄소 복합체 음극활물질을 제조하였다.A phosphorus-carbon composite anode active material was prepared in the same manner as in Example 1 except that carbon was used as graphite.
비교예 1Comparative Example 1
혼합물 대신 적린(Aldrich 사)를 음극활물질로 하였다.Red phosphorus (Aldrich) was used as the negative electrode active material instead of the mixture.
비교예 5Comparative Example 5
적린과 흑연을 1:1의 질량비로 볼밀링 공정없이 혼합물만으로 준비하였다.Red phosphorus and graphite were prepared in a mixture only without a ball milling process at a mass ratio of 1: 1.
<실험 1> X선 회절분석 실험 및 입자 형상의 관찰 Experiment 1 X-ray Diffraction Experiment and Observation of Particle Shape
실시예 1, 2, 9 및 비교예 1, 5에 의한 음극활물질에 대하여, X선 회절분석 실험을 수행하여 결정성을 측정하였으며, 투과전자현미경 및 주사전자현미경으로 관찰하여 입자의 형상을 확인하였다.For the negative electrode active materials according to Examples 1, 2, 9 and Comparative Examples 1, 5, X-ray diffraction analysis was performed to determine crystallinity, and the shape of the particles was confirmed by observation with a transmission electron microscope and a scanning electron microscope. .
실시예 9에 의한 음극활물질에 대하여, 집속 이온빔(focusted ion beam, FIB)를 이용하여 단면을 가공하고 주사전자현미경과 에너지분산형 X선분광기를 이용하여 원소를 분석하였다. The cathode active material according to Example 9 was processed by using a focused ion beam (FIB), and the elements were analyzed using a scanning electron microscope and an energy dispersive X-ray spectrometer.
또한, 라만 분광법을 이용하여 실시예 9 및 비교예 1, 5에 의한 음극활물질에 대한 구조의 규칙성을 분석하였다.In addition, the regularity of the structure of the negative electrode active material according to Example 9 and Comparative Examples 1 and 5 was analyzed using Raman spectroscopy.
실시예 1의 X선 회절분석 결과와 투과전자현미경으로 관찰한 입자 형태를 도2a와 도2b에 각각 도시하였다. 실시예 1의 인-탄소 복합체 음극활물질의 인과 탄소는 모두 비정질상으로 나타났으며, 평균 입경이 0.1 내지 3㎛ 크기임을 알 수 있다.X-ray diffraction analysis results and the particle shape observed by transmission electron microscope of Example 1 are shown in Figs. 2a and 2b, respectively. Phosphorus and carbon of the phosphorus-carbon composite anode active material of Example 1 both appeared to be in an amorphous phase, and it can be seen that the average particle diameter is 0.1 to 3 μm in size.
실시예 2의 X선 회절분석 결과와 주사전자현미경으로 관찰한 입자 형태를 도3a와 도3b에 각각 도시하였다. 실시예 1과 마찬가지로, 실시예 2 또한 인-탄소 복합체 음극활물질의 인과 탄소 모두 비정질상으로 나타났으며, 평균 입경이 0.1 내지 3㎛ 크기임을 알 수 있다.X-ray diffraction analysis results and the particle shape observed with a scanning electron microscope of Example 2 are shown in Figs. 3a and 3b, respectively. As in Example 1, Example 2 also appeared in both the phosphorus and carbon of the phosphorus-carbon composite anode active material in an amorphous phase, it can be seen that the average particle size is 0.1 to 3㎛ size.
비교예 1의 X선 회절분석 결과와 투과전자현미경으로 관찰한 입자 형태를 도4a와 도4b에 각각 도시하였다. 비교예 1 또한 비정질상이나, 평균 입경이 0.01 내지 10㎛로 분포가 넓게 나타났다. 즉, 적린의 경우, 적린 자체가 전기전도도가 낮아 활물질로 적합하지 않을뿐더러, 평균 입경이 범위가 넓어 나트륨 이온의 확산이 어렵다는 문제가 생길 수 있어 음극활물질로 사용하기 어렵다.X-ray diffraction analysis of Comparative Example 1 and the particle shape observed by transmission electron microscope are shown in Figs. 4a and 4b, respectively. Comparative Example 1 was also amorphous, but the average particle diameter was widely distributed in the range of 0.01 to 10 µm. That is, in the case of red phosphorus, red phosphorus itself is not suitable as an active material due to its low electrical conductivity, and the average particle diameter may be wide so that diffusion of sodium ions may be difficult, making it difficult to use as a negative electrode active material.
실시예 9의 X선 회절분석 결과와 주사전자현미경, 집속 이온빔으로 가공하여 준비된 단면이 주사전자현미경으로 관찰한 입자 형태를 도 14 및 도 15에 각각 도시하였다.X-ray diffraction analysis results of Example 9 and the particle shape observed by scanning electron microscopy prepared by scanning electron microscope and focused ion beam are shown in Figure 14 and 15, respectively.
수백 나노미터 크기의 입자가 뭉쳐서 수 마이크로 미터 크기의 이차 입자를 형성하고 있었다. 또한 단면에서의 에너지 분산형 X선분광의 결과를 보면 활물질 내부까지 인과 탄소가 균일하게 혼합되어 인-탄소 복합체 음극활물질이 제조되었음을 알 수 있다.Hundreds of nanometers of particles joined together to form secondary microparticles of several micrometers in size. In addition, the results of the energy dispersive X-ray spectroscopy in the cross section shows that phosphorus and carbon are uniformly mixed up to the inside of the active material to prepare a phosphorus-carbon composite anode active material.
실시예 9와 비교예 1, 5에 대한 X선 회절분석 결과를 도 16에 나타내었다. 실시예 9의 그래프에서는 비교예 1 및 5에서 나타나는 특성 피크들이 모두 사라진 비정질 상태로 합성되었음을 알 수 있다.X-ray diffraction analysis results for Example 9 and Comparative Examples 1 and 5 are shown in FIG. 16. In the graph of Example 9, it can be seen that the characteristic peaks shown in Comparative Examples 1 and 5 were synthesized in the disappeared amorphous state.
실시예 9와 비교예 1에 대한 라만 분광 분석 결과를 도 17에 나타내었다. X선 회절분석에서는 어떠한 피크도 나타나지 않은 실시예 9의 음극활물질도 짧은 구간에서는 규칙성이 있음을 알 수 있었다. 탄소의 흑연 구조에 해당하는 1582cm-1의 파수에서 피크가 나타나고 있으며, 이 피크는 다이아몬드 구조에서 나타나는 1332cm-1의 파수에서의 피크보다 더욱 크다.Raman spectroscopic analysis results of Example 9 and Comparative Example 1 are shown in FIG. 17. X-ray diffraction analysis showed that the negative electrode active material of Example 9, which did not show any peak, was regular in a short period. The peak appears at a wavenumber of 1582 cm -1 corresponding to the graphite structure of carbon, which is larger than the peak at 1332 cm -1 at the diamond structure.
다음은, 나트륨 이차전지 충방전 실험을 진행하기 위하여 앞서 제조된 시료에 대하여 전극을 제조하였다. Next, in order to proceed with the sodium secondary battery charge and discharge experiment, the electrode was prepared for the sample prepared above.
실시예 3Example 3
상기 실시예 1에 의해 제조된 인-탄소 복합체 음극활물질을 이용하여 전극을 제조하였다. 인-탄소 복합체 음극활물질, 도전재인 카본블랙, 결합제인 폴리아크릴릭산을 70:10:20의 중량비로 혼합하고 교반하여 준비된 페이스트를 구리 집전체 상에 코팅하고 120℃에서 건조하여 수분을 제거하였다. 건조된 전극을 롤프레스를 이용하여 압착한 후, 필요한 크기로 절단하여 120℃ 진공오븐에서 12시간 이상 건조시켜 잔류 수분을 제거하였다. 이렇게 만들어진 전극을 사용하여 2032 사이즈 코인 셀을 아르곤 분위기의 글러브 박스 내부에서 제작하였다. 이 때, 반대전극으로는 나트륨 금속 호일을 사용하였으며, 전해질로는 0.8몰농도의 NaClO4/에틸렌카보네이트(EC): 디에틸카보네이트(DEC) (부피비 1:1)을 사용하여 전기화학 셀을 제조하였다.An electrode was prepared using the phosphorus-carbon composite anode active material prepared in Example 1 above. The paste prepared by mixing and stirring a phosphorus-carbon composite anode active material, carbon black as a conductive material, and polyacrylic acid as a binder in a weight ratio of 70:10:20 was stirred on a copper current collector and dried at 120 ° C. to remove moisture. The dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box. At this time, sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
실시예 4Example 4
상기 실시예 2에 의해 제조된 인-탄소 복합체 음극활물질을 이용하여 전극을 제조한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the phosphorus-carbon composite anode active material prepared in Example 2, and an electrochemical cell was prepared in the same manner.
실시예 5Example 5
적린과 탄소를 9:1의 중량비로 혼합하여 준비한 혼합물을 원통형 바이얼에 볼과 함께 잠입하여 고에너지 볼밀링기에 장착 후 20시간동안 밀링하였다. 탄소는 카본블랙을 사용하였다. 볼과 혼합물의 무게비는 10 내지 30 대 1의 비율을 유지하였으며, 아르곤 가스 분위기의 글러브 박스 내에서 수행하여 인-탄소 복합체 음극활물질을 이용하여 전극을 제조한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.The mixture prepared by mixing red phosphorus and carbon in a weight ratio of 9: 1 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting in a high energy ball mill. Carbon black was used. The weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, the same method as in Example 3 except that the electrode was prepared using a phosphorous-carbon composite anode active material by performing in a glove box of argon gas atmosphere An electrode was prepared, and an electrochemical cell was prepared in the same manner.
실시예 6Example 6
적린과 탄소를 8:2의 중량비로 혼합하여 준비한 혼합물을 원통형 바이얼에 볼과 함께 잠입하여 고에너지 볼밀링기에 장착 후 20시간동안 밀링하였다. 탄소는 카본블랙을 사용하였다. 볼과 혼합물의 무게비는 10 내지 30 대 1의 비율을 유지하였으며, 아르곤 가스 분위기의 글러브 박스 내에서 수행하여 인-탄소 복합체 음극활물질을 이용하여 전극을 제조한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.The mixture prepared by mixing red phosphorus and carbon in a weight ratio of 8: 2 was immersed with a ball in a cylindrical vial and milled for 20 hours after mounting in a high energy ball mill. Carbon black was used. The weight ratio of the ball and the mixture was maintained in a ratio of 10 to 30 to 1, the same method as in Example 3 except that the electrode was prepared using a phosphorous-carbon composite anode active material by performing in a glove box of argon gas atmosphere An electrode was prepared, and an electrochemical cell was prepared in the same manner.
실시예 7Example 7
적린, 탄소, 그래핀을 70:30:5의 중량비로 혼합하여 증류수에서 분산한 후, 오븐에서 건조하여 수분을 제거하여 혼합물을 준비하는 것을 제외하고, 실시예 1과 동일하게 제조된 인-탄소 복합체 음극활물질을 이용하여 전극을 제조한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.Red phosphorus, carbon, and graphene were mixed in a weight ratio of 70: 30: 5, dispersed in distilled water, and dried in an oven to remove moisture to prepare a mixture. An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the composite anode active material, and an electrochemical cell was prepared in the same manner.
실시예 8Example 8
결합제로 N-메틸피롤리돈에 녹아있는 폴리비닐리덴다이플루오라이드(PVdF)를 사용한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.An electrode was prepared in the same manner as in Example 3, except that polyvinylidenedifluoride (PVdF) dissolved in N-methylpyrrolidone was used as a binder, and an electrochemical cell was prepared in the same manner.
실시예 10Example 10
상기 실시예 9에 의해 제조된 인-탄소 복합체 음극활물질을 이용하여 전극을 제조한 것을 제외하고, 실시예 3과 동일한 방법으로 전극을 제조하였으며, 동일한 방법으로 전기화학 셀을 제조하였다.An electrode was manufactured in the same manner as in Example 3, except that the electrode was manufactured using the phosphorus-carbon composite anode active material prepared in Example 9, and an electrochemical cell was prepared in the same manner.
실시예 11Example 11
상기 실시예 10과 동일한 방법으로 전극을 제조하였으며, 전해질에 5중량%의 블화에틸렌카보네이트를 첨가한 것을 제외하고는 상기 실시예 10과 동일한 방법으로 전기화학 셀을 제조하였다.An electrode was prepared in the same manner as in Example 10, and an electrochemical cell was prepared in the same manner as in Example 10 except that 5 wt% of ethylene carbonate was added to the electrolyte.
실시예 12Example 12
상기 실시예 10과 동일한 방법으로 전극을 제조하였으며, 전해질에 0.8몰농도의 NaClO4대신에 1.0몰 농도의 NaPF6를 사용한 것을 제외하고는 상기 실시예 10과 동일한 방법으로 전기화학 셀을 제조하였다.An electrode was manufactured in the same manner as in Example 10. An electrochemical cell was prepared in the same manner as in Example 10, except that 1.0 mol of NaPF 6 was used instead of 0.8 mol of NaClO 4 for the electrolyte.
비교예 2Comparative Example 2
상기 비교예 1에 의한 적린을 음극활물질로 하여 전극을 제조하였다. 적린 음극활물질, 도전재인 카본블랙, 결합제인 폴리아크릴릭산을 70:10:20의 중량비로 혼합하고 교반하여 준비된 페이스트를 구리 집전체 상에 코팅하고 120℃에서 건조하여 수분을 제거하였다. 건조된 전극을 롤프레스를 이용하여 압착한 후, 필요한 크기로 절단하여 120℃ 진공오븐에서 12시간 이상 건조시켜 잔류 수분을 제거하였다. 이렇게 만들어진 전극을 사용하여 2032 사이즈 코인 셀을 아르곤 분위기의 글러브 박스 내부에서 제작하였다. 이 때, 반대전극으로는 나트륨 금속 호일을 사용하였으며, 전해질로는 0.8몰농도의 NaClO4/에틸렌카보네이트(EC): 디에틸카보네이트(DEC) (부피비 1:1)을 사용하여 전기화학 셀을 제조하였다.An electrode was prepared using red phosphorus according to Comparative Example 1 as a negative electrode active material. The negative electrode active material, carbon black as a conductive material, and polyacrylic acid as a binder were mixed at a weight ratio of 70:10:20 and stirred to coat a paste prepared on a copper current collector and dried at 120 ° C. to remove moisture. The dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box. At this time, sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
비교예 3Comparative Example 3
적린과 탄소를 2.5:7.5의 중량비로 혼합하여 준비한 혼합물을 원통형 바이얼에 볼과 함께 잠입하여 고에너지 볼밀링기에 장착 후 20시간동안 밀링하였다. 탄소는 카본블랙을 사용하였다. 볼과 혼합물의 무게비는 10 내지 30 대 1의 비율을 유지하였으며, 아르곤 가스 분위기의 글러브 박스(glove box) 내에서 수행하여 인-탄소 복합체 음극활물질을 제조하였다. 인-탄소 복합체 음극활물질, 도전재인 카본블랙, 결합제인 폴리아크릴릭산을 70:10:20의 중량비로 혼합하고 교반하여 준비된 페이스트를 구리 집전체 상에 코팅하고 120℃에서 건조하여 수분을 제거하였다. 건조된 전극을 롤프레스를 이용하여 압착한 후, 필요한 크기로 절단하여 120℃ 진공오븐에서 12시간 이상 건조시켜 잔류 수분을 제거하였다. 이렇게 만들어진 전극을 사용하여 2032 사이즈 코인 셀을 아르곤 분위기의 글러브 박스 내부에서 제작하였다. 이 때, 반대전극으로는 나트륨 금속 호일을 사용하였으며, 전해질로는 0.8몰농도의 NaClO4/에틸렌카보네이트(EC): 디에틸카보네이트(DEC) (부피비 1:1)을 사용하여 전기화학 셀을 제조하였다.The mixture prepared by mixing red phosphorus and carbon in a weight ratio of 2.5: 7.5 was infiltrated with a ball in a cylindrical vial and milled for 20 hours after mounting on a high energy ball mill. Carbon black was used. The weight ratio of the ball and the mixture was maintained at a ratio of 10 to 30 to 1, it was carried out in a glove box of argon gas atmosphere to prepare a phosphorus-carbon composite anode active material. The paste prepared by mixing and stirring a phosphorus-carbon composite anode active material, carbon black as a conductive material, and polyacrylic acid as a binder in a weight ratio of 70:10:20 was stirred on a copper current collector and dried at 120 ° C. to remove moisture. The dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box. In this case, sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
비교예 4Comparative Example 4
탄소를 음극활물질로 하여 전극을 제조하였다. 탄소 음극활물질, 도전재인 카본블랙, 결합제인 폴리아크릴릭산을 70:10:20의 중량비로 혼합하고 교반하여 준비된 페이스트를 구리 집전체 상에 코팅하고 120℃에서 건조하여 수분을 제거하였다. 건조된 전극을 롤프레스를 이용하여 압착한 후, 필요한 크기로 절단하여 120℃ 진공오븐에서 12시간 이상 건조시켜 잔류 수분을 제거하였다. 이렇게 만들어진 전극을 사용하여 2032 사이즈 코인 셀을 아르곤 분위기의 글러브 박스 내부에서 제작하였다. 이 때, 반대전극으로는 나트륨 금속 호일을 사용하였으며, 전해질로는 0.8몰농도의 NaClO4/에틸렌카보네이트(EC): 디에틸카보네이트(DEC) (부피비 1:1)을 사용하여 전기화학 셀을 제조하였다.An electrode was prepared using carbon as a negative electrode active material. The carbon negative electrode active material, carbon black as a conductive material, and polyacrylic acid as a binder were mixed in a weight ratio of 70:10:20 and stirred to coat a paste prepared on a copper current collector and dried at 120 ° C. to remove moisture. The dried electrode was pressed using a roll press, cut into a required size, and dried in a vacuum oven at 120 ° C. for at least 12 hours to remove residual moisture. Using this electrode, a 2032 size coin cell was fabricated inside an argon glove box. In this case, sodium metal foil was used as the counter electrode, and an electrochemical cell was prepared using 0.8 mol of NaClO 4 / ethylene carbonate (EC): diethyl carbonate (DEC) (volume ratio 1: 1) as the electrolyte. It was.
<실험 2> 재료의 반응전압 및 용량 확인<Experiment 2> Confirmation of reaction voltage and capacity of material
상기 실시예 3 내지 8, 11 내지 13과 비교예 2에 의해 제조된 전기화학 셀을 정전류 조건에서 충방전 실험을 수행하였다. 활물질 무게를 기준으로 143mA/g 또는 286mA/g 크기의 전류밀도를 사용하였다.Charge and discharge experiments were performed under the constant current conditions of the electrochemical cells prepared in Examples 3 to 8, 11 to 13, and Comparative Example 2. A current density of 143 mA / g or 286 mA / g was used based on the weight of the active material.
실시예 3의 정전류 충방전 곡선은 도 5에 나타내었다. 도 5에서 보는 바와 같이, 첫 번째 사이클의 충전용량은 1557mAh/g, 방전용량은 1323mAh/g으로 용량이 매우 크고 초기효율도 85%로 매우 높다. 두 번째 사이클에서도 첫 방전용량과 유사한 값을 보이며 충방전하고 있다. 방전용량을 적린에 대비하여 환산해 보면, 1890mAh/g으로 인(P)의 이론용량의 73%에 해당하는 높은 가역성을 지니고 있음을 알 수 있다. 또한 대부분의 충방전이 0.3 내지 0.8V 범위에서 일어남을 볼 수 있는데 이는 나트륨 이차전지의 음극으로 바람직한 특성이다. 즉, 음극으로서 충전전압이 너무 낮으면 충전시 나트륨의 전착(electroplating)이 일어나 전지의 안전성에 치명적인 문제가 있으며, 음극으로서 방전전압이 너무 높으면 완전지의 출력전압이 낮아진다. 따라서, 실시예 4의 경우, 충방전 전압이 0.3 내지 0.8V 범위 내에 있어 나트륨의 전착 문제와 완전지의 출력전압 감소 문제가 없음을 알 수 있다.The constant current charge and discharge curves of Example 3 are shown in FIG. 5. As shown in FIG. 5, the charge capacity of the first cycle is 1557 mAh / g and the discharge capacity is 1323 mAh / g, which is very large and has an initial efficiency of 85%. The second cycle is charging and discharging with a value similar to the first discharge capacity. In terms of the discharge capacity compared to the green, it can be seen that the 1890mAh / g has a high reversibility corresponding to 73% of the theoretical capacity of the phosphorus (P). In addition, it can be seen that most of the charge and discharge occurs in the range of 0.3 to 0.8V, which is a desirable characteristic as the negative electrode of the sodium secondary battery. In other words, if the charging voltage is too low as the negative electrode, the electroplating of sodium occurs during charging, which causes a fatal problem in the safety of the battery. If the discharge voltage is too high as the negative electrode, the output voltage of the battery is low. Therefore, in the case of Example 4, it can be seen that the charge-discharge voltage is in the range of 0.3 to 0.8V, so that there is no problem of electrodeposition of sodium and a problem of decreasing the output voltage of the complete cell.
실시예 4의 정전류 충방전 곡선은 도 6에 나타내었다. 도 6에서 보는 바와 같이, 첫 번째 사이클의 충전용량은 903mAh/g이고, 방전용량은 683mAh/g로 완만한 기울기의 곡선 형태를 나타낸다. 실시예 5는 실시예 4에 비하여 적린의 함량이 적어 용량과 초기 효율이 다소 낮게 나타난 것으로 보이나, 초기효율이 75%에 달하며, 충방전 전압이 0.3 내지 0.8V 범위 내에 있다.The constant current charge and discharge curves of Example 4 are shown in FIG. 6. As shown in FIG. 6, the charge capacity of the first cycle is 903 mAh / g, and the discharge capacity is 683 mAh / g, showing a gentle slope curve. In Example 5, the content of red phosphorus was lower than that of Example 4, so the capacity and initial efficiency appeared to be somewhat lower, but the initial efficiency reached 75%, and the charge / discharge voltage was in the range of 0.3 to 0.8V.
실시예 6의 경우 286mA/g의 정전류로 충방전 하였을 때, 방전용량이 1117mAh/g을 나타내며, 이는 탄소가 부족하여 전기전도성이 높지 않기 때문에 인의 함량에 대비하여서는 충분하지 않은 용량을 나타내고 있으나, 높은 용량을 보인다. 또한 실시예 5의 경우에는 286mA/g의 정전류로 충방전하였을 때, 방전용량이 1428mAh/g으로 가장 높게 나타나며 이는 실시예 6보다는 전기전도성이 높고 실시예 3과 4에 비하여는 인의 함량이 높아졌기 때문이다.In Example 6, when the battery was charged and discharged at a constant current of 286 mA / g, the discharge capacity was 1117 mAh / g, which is not sufficient for the phosphorus content because the electric conductivity is not high due to the lack of carbon, but the capacity is not high. Shows capacity. In addition, in the case of Example 5, when the charge and discharge at a constant current of 286mA / g, the discharge capacity was the highest to 1428mAh / g, because the electrical conductivity is higher than in Example 6 and the phosphorus content is higher than in Examples 3 and 4 to be.
실시예 7의 정전류 충방전 곡선은 도 7에 나타내었다. 도 7에서 보는 바와 같이, 첫 번째 사이클의 충전용량은 1208mAh/g 이고, 방전용량은 1016mAh/g이다. 실시예 4에 비하여 전극에 그래핀이 추가되어 전체 무게당 용량이 감소하였으며, 초기 효율은 84%로 실시예 4와 유사한 값을 보이고 있다.The constant current charge and discharge curves of Example 7 are shown in FIG. 7. As shown in FIG. 7, the charge capacity of the first cycle is 1208 mAh / g, and the discharge capacity is 1016 mAh / g. Compared to Example 4, graphene was added to the electrode to decrease the capacity per weight, and the initial efficiency was 84%, which is similar to that of Example 4.
실시예 8의 정전류 충방전 곡선은 도 8에 나타내었다. 첫 번째 사이클의 충전용량은 1698mAh/g이고, 방전용량은 1473mAh/g으로서, 초기 효율이 86%로 우수한 효과를 나타낸다. 두번째 사이클에서의 용량 유지율 또한 우수하게 나타났다. The constant current charge and discharge curves of Example 8 are shown in FIG. 8. The charge capacity of the first cycle is 1698 mAh / g and the discharge capacity is 1473 mAh / g, which shows an excellent effect with an initial efficiency of 86%. Capacity retention in the second cycle was also excellent.
실시예 10의 정전류 충방전 곡선은 도 18에 나타내었다. 첫 번째 사이클의 충전용량은 1730mAh/g이고, 방전용량은 1350mAh/g으로서 인의 함량이 높지 않음에도 불구하고 높은 용량을 나타내었으며 초기 효율도 78%로 비교적 높게 관찰되었다.The constant current charge and discharge curves of Example 10 are shown in FIG. 18. The first cycle had a charge capacity of 1730 mAh / g and a discharge capacity of 1350 mAh / g, which showed a high capacity despite the high phosphorus content and a relatively high initial efficiency of 78%.
실시예 11의 정전류 충방전 곡선은 도 20에 나타내었다. 첫 번째 사이클의 충전용량은 1870mAh/g이고 방전용량은 1492mAh/g으로서 높은 용량을 나타내었으며, 초기 효율은 80%로 불화에틸렌카보네이트를 추가하여 사용하는 경우 초기 용량이 증가함을 알 수 있다.The constant current charge / discharge curve of Example 11 is shown in FIG. 20. The charge capacity of the first cycle was 1870mAh / g and the discharge capacity was 1492mAh / g, indicating a high capacity, and the initial efficiency was 80%, and it can be seen that the initial capacity is increased when ethylene carbonate is added.
실시예 12의 정전류 충방전 곡선은 도 22에 나타내었다. 첫 번째 사이클의 충전용량은 1670mAh/g이고 방전용량은 1100mAh/g으로서 높은 용량을 나타내었으며, 초기 효율도 66%로 실시예 10보다는 다소 낮은 용량과 효율을 나타내었다.The constant current charge and discharge curves of Example 12 are shown in FIG. 22. In the first cycle, the charging capacity was 1670mAh / g and the discharge capacity was 1100mAh / g, which was a high capacity, and the initial efficiency was 66%, which was somewhat lower than that in Example 10.
실시예 13의 정전류 충방전 곡선은 도 24에 나타내었다. 첫 번째 사이클의 충전용량은 1730mAh/g이고 방전용량은 1520mAh/g으로 높은 용량을 나타내였으며, 초기 효율도 88%로 매우 높게 나타내고 있어, 용매로 테트라에틸렌글리콜 디메틸이써(TEGDME)를 사용하는 경우 성능이 향상됨을 알 수 있다.The constant current charge and discharge curves of Example 13 are shown in FIG. 24. In the first cycle, the charge capacity was 1730mAh / g and the discharge capacity was 1520mAh / g, showing a high capacity, and the initial efficiency was also very high at 88%. When using tetraethylene glycol dimethyl ether (TEGDME) as a solvent, It can be seen that the performance is improved.
비교예 2의 정전류 충방전 곡선은 도 9에 나타내었다. 도 9에서 보는 바와 같이, 첫 번째 사이클의 충전용량은 1718mAh/g이고, 방전용량은 250mAh/g으로서 효율이 15%로 매우 낮다. 두번째 사이클부터는 충방전 용량이 급격히 감소함을 알 수 있다. 비교예 2는 초기 충방전 과정에서 부피가 팽창 및 수축하며 일부 인(P)이 전기적으로 고립되어 저장된 나트륨이 빠져 나오지 못하여 초기 효율이 낮은 것으로 보인다. 이는 인이 탄소와 복합화되지 않은 경우 전기적 고립현상이 심각해지기 때문이다. 비교예 3의 경우의 가역용량은 347mAh/g, 비교예 4의 경우의 가역용량은 115mAh/g으로 측정되었으며, 인-탄소 복합체에서 나트륨을 저장하는 역할을 주로 담당하는 인의 함량이 낮거나 없기 때문에 나트륨 이온의 배출 및 저장 능력이 현저히 떨어져 매우 낮은 값의 용량을 가짐을 알 수 있다.The constant current charge and discharge curves of Comparative Example 2 are shown in FIG. 9. As shown in Fig. 9, the charge capacity of the first cycle is 1718mAh / g, the discharge capacity is 250mAh / g, and the efficiency is very low, which is 15%. From the second cycle it can be seen that the charge and discharge capacity is drastically reduced. Comparative Example 2 seems to have a low initial efficiency because the volume is expanded and contracted during the initial charging and discharging process, and some phosphorus (P) is electrically isolated so that the stored sodium does not escape. This is because the electrical isolation becomes serious when phosphorus is not complexed with carbon. The reversible capacity of Comparative Example 3 was 347 mAh / g, and the reversible capacity of Comparative Example 4 was 115 mAh / g, since the phosphorus content mainly responsible for storing sodium in the phosphorus-carbon composite was low or absent. It can be seen that the discharge and storage capacity of sodium ions is significantly lowered and has a very low value capacity.
따라서, 본 발명에서와 같이 음극활물질로 인과 탄소의 복합체를 구성함으로써, 나트륨을 저장할 수 있는 인의 함량을 확보하면서도 전기적 고립현상을 억제하여 저장된 나트륨을 모두 배출할 수 있게 하여, 높은 용량, 높은 효율의 구현이 가능해진다.Therefore, by forming a composite of phosphorus and carbon with a cathode active material as in the present invention, while ensuring the content of phosphorus to store sodium, it is possible to discharge all stored sodium by suppressing the electrical isolation phenomenon, high capacity, high efficiency Implementation is possible.
<실험 3> 재료의 수명 특성Experiment 3 Life Characteristics of Materials
실시예 3에서 제조된 전기화학 셀을 정전류·정전압 방식으로 충전하고 정전류 방식으로 방전하여 전지의 수명 특성을 측정하고 그 결과를 도 10에 나타내었다. The electrochemical cell prepared in Example 3 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 10.
정전류 충전시 인-탄소 복합체 음극활물질의 무게를 기준으로 143mA/g의 전류에서 0V(vs. Na/Na+)전압영역까지 충전을 수행하였다. 정전류 방전은 활물질의 무게를 기준으로 143mA/g의 전류 하에 1.5V(vs. Na/Na+)까지 방전하여 용량의 감소를 확인하였다. 실험 결과, 30 사이클까지도 용량의 감소가 거의 없으며, 적린 몰당 2몰 이상의 나트륨 이온이 가역적으로 저장/배출되며 약 1250mAh/g 이상의 높은 가역 용량을 나타냈다.During constant current charging, charging was performed from a current of 143 mA / g to a 0 V (vs. Na / Na + ) voltage region based on the weight of the phosphorus-carbon composite anode active material. The constant current discharge was discharged to 1.5 V (vs. Na / Na + ) under a current of 143 mA / g based on the weight of the active material to confirm the decrease in capacity. As a result of the experiment, there was almost no reduction in capacity up to 30 cycles, and more than 2 moles of sodium ions per mole of red were reversibly stored / exhausted and showed a high reversible capacity of about 1250 mAh / g or more.
실시예 10에서 제조된 전기화학 셀을 정전류·정전압 방식으로 충전하고 정전류 방식으로 방전하여 전지의 수명 특성을 측정하고 그 결과를 도 19에 나타내었다. 초기 10사이클까지 용량의 감소가 조금 발생하지만 이 이후에 60사이클까지도 용량의 감소가 일어나지 않으며 오히려 초기에 감소된 용량이 모두 회복되어 안정한 용량을 유지하고 있다. 이를 볼 때, 인-탄소 복합체 음극활물질의 제조시에 흑연을 사용하는 것은 우수한 초기용량의 구현 및 안정된 수명의 확보가 가능함을 알 수 있다.The electrochemical cell prepared in Example 10 was charged in a constant current / constant voltage method and discharged in a constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 19. There is a slight decrease in capacity up to the first 10 cycles, but there is no decrease in capacity even after 60 cycles. Rather, all of the initially reduced capacity is recovered to maintain a stable capacity. In view of this, it can be seen that the use of graphite in the preparation of the phosphorus-carbon composite anode active material can realize the excellent initial capacity and ensure a stable lifetime.
실시예 11에서 제조된 전기화학 셀을 정전류·정전압 방식으로 충전하고 정전류 방식으로 방전하여 전지의 수명 특성을 측정하고 그 결과를 도 21에 나타내었다. 초기용량이 실시예 10보다 증가하였을 뿐만 아니라 초기에 용량이 감소하는 부분이 사라지고 이후에 지속적으로 용량이 증가하여 30사이클 이후에는 1700mAh/g 이상의 용량이 나타났다. 전해질에 불화에틸렌카보네이트를 첨가하는 경우 더욱 안정되고 우수한 성능의 구현이 가능함을 알 수 있다.The electrochemical cell prepared in Example 11 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 21. Not only did the initial capacity increase than that of Example 10, but the portion where the capacity decreases initially disappears and then the capacity continuously increases, and after 30 cycles, a capacity of 1700 mAh / g or more appears. When ethylene carbonate is added to the electrolyte, it can be seen that more stable and superior performance can be achieved.
실시예 12에서 제조된 전기화학 셀을 정전류·정전압 방식으로 충전하고 정전류 방식으로 방전하여 전지의 수명 특성을 측정하고 그 결과를 도 23에 나타내었다. 초기의 용량은 다소 낮았으나 실시예 9에서 준비된 시료는 모두 안정된 사이클이 진행되었고 NaPF6염을 사용하는 경우에 초기용량은 다소 낮더라도 수명 특성에서는 여전히 우수하게 관찰되었다.The electrochemical cell prepared in Example 12 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 23. Although the initial dose was somewhat low, all of the samples prepared in Example 9 had a stable cycle, and when NaPF 6 salt was used, the initial capacity was still excellent even though the initial dose was somewhat low.
실시예 13에서 제조된 전기화학 셀을 정전류·정전압 방식으로 충전하고 정전류 방식으로 방전하여 전지의 수명 특성을 측정하고 그 결과를 도 25에 나타내었다. 높은 초기효율을 구현하고 초기용량의 감소나 점진적인 용량의 변화없이 안정한 용량이 나타나고 있어 전해질에서 용매로 테트라에틸렌글리콜 디메틸이써를 사용하는 경우에 안정되니 성능이 구현 가능함을 알 수 있다.The electrochemical cell prepared in Example 13 was charged by the constant current and constant voltage method and discharged by the constant current method to measure the life characteristics of the battery, and the results are shown in FIG. 25. High initial efficiency and stable capacity are shown without decreasing initial capacity or gradual change of capacity. Therefore, it is stable when tetraethylene glycol dimethyl ether is used as solvent in electrolyte.
<실험 4> 재료의 충방전에 따른 구조 변화 특성Experiment 4 Characteristics of Structural Change due to Charge and Discharge of Materials
실시예 3에서 제조된 전기화학 셀을 정전류로 충방전하며 ex-situ 방법으로 X선 회절분석을 수행하였다. 0.0~1.5V(vs. Na/Na+)전압영역에서 143mA/g 의 전류를 사용하였다. X선 회절분석은 첫 번째 사이클 충전시 0.2V, 0.0V에서 충전을 중단하고, 1.5V에서 방전을 중단한 전극을 각각 준비하여 아르곤 분위기의 글러브 박스에서 전기화학 셀을 분해하여 전극을 얻어낸 후, 이 전극을 베릴륨(Be) 윈도우에 캡톤 테이프로 접착하여 수행하였다.The electrochemical cell prepared in Example 3 was charged and discharged with a constant current, and X-ray diffraction analysis was performed by ex-situ method. A current of 143 mA / g was used in the 0.0-1.5 V (vs. Na / Na + ) voltage range. In the X-ray diffraction analysis, when the first cycle charging was stopped at 0.2V and 0.0V, the electrodes were stopped at 1.5V, and each electrode was prepared by decomposing an electrochemical cell in an argon glove box to obtain an electrode. This electrode was performed by adhering Kapton tape to a beryllium (Be) window.
실험 결과를 도 11에 나타내었다. 충전 전에 비정질상이었던 인-탄소 복합체는 충전이 0.2V까지 진행되어 피크가 나타나지 않았지만, 0.0V에서 충전을 중단하고 X선 회절분석으로 얻어낸 회절 패턴에서는 Na3P에 해당하는 특정 피크가 관측되었다. 이를 1.5V까지 방전시킨 후 측정한 X선 회절 패턴에서는 다시 비정질로 확인되었다. 이 결과를 통해 인-탄소 복합체는 충전 과정 중에 비정질이었던 인이 결정질 Na3P상으로 변화하였다가, 방전 과정에 다시 비정질상 인으로 복원되는 것을 확인할 수 있었다. The experimental results are shown in FIG. 11. The phosphorus-carbon composite, which was in an amorphous phase before charging, showed no peak due to the charging progressing to 0.2V, but specific peaks corresponding to Na 3 P were observed in the diffraction pattern obtained by X-ray diffraction analysis after stopping charging at 0.0V. It was confirmed to be amorphous again in the X-ray diffraction pattern measured after discharging this to 1.5V. This result confirms that the phosphorus-carbon composite is changed to the crystalline Na 3 P phase which was amorphous during the charging process, and then restored to the amorphous phosphor again during the discharge process.
<실험 5> 재료의 전류 속도에 따른 충방전 특성 - 1 Experiment 5 Charge and Discharge Characteristics According to Current Rate of Materials-1
실시예 3에서 제조된 전기화학 셀의 속도 특성 결과는 도 12에 나타내었다. 충전 및 방전 실험을 0.0~1.5V(vs. Na/Na+)전압영역에서 진행하였고, 전류의 크기를 143mA/g, 286mA/g, 571mA/g, 1430mA/g, 2860mA/g 로 변화시키면서 충전과 방전을 진행하였다. 도 12에 의하면, 충전 및 방전 전류가 증가함에도 불구하고 매우 높은 가역용량을 나타내며, 143mA/g 전류에서의 용량과 비교하여, 1430mA/g 전류에서 91%의 용량을 나타내었으며, 2860mA/g 에서도 82%의 용량을 나타내었다. The rate characteristic results of the electrochemical cell prepared in Example 3 are shown in FIG. Charging and discharging experiments were carried out in the voltage range of 0.0 ~ 1.5V (vs. Na / Na + ), and the current was charged while changing the magnitude of 143mA / g, 286mA / g, 571mA / g, 1430mA / g, 2860mA / g. Over discharge was performed. 12 shows very high reversible capacity despite increasing charge and discharge currents, 91% capacity at 1430mA / g current compared to capacity at 143mA / g current, and 82 at 2860mA / g. A dose of% is shown.
또한, 실시예 3 내지 6에서의 충전 및 방전전류에 따른 용량을 도 13에 비교하여 나타내었다. 이를 보면 용량은 인의 함량이 높을수록 속도 특성은 탄소의 함량이 높아질수록 유리하기 때문에 용량과 속도 특성을 모두 고려하여 고용량과 고출력 특성을 조합할 수 있으며, 특히 실시예 3의 조성의 경우 전류 속도에 따른 충방전 특성에 있어서, 가장 우수한 효과가 나타남을 알 수 있었다.In addition, the capacity according to the charge and discharge current in Examples 3 to 6 is shown in comparison with FIG. This shows that the capacity is advantageous in that the higher the content of phosphorus and the higher the content of carbon, the higher the capacity and the higher the carbon content. In the charge and discharge characteristics according to, it was found that the most excellent effect appears.
<실험 6> 재료의 전류 속도에 따른 충방전 특성 - 2Experiment 6 Charge and Discharge Characteristics According to Current Rate of Materials-2
실시예 10에서 제조된 전기화학 셀의 속도 특성 결과는 도 26에 나타내었다. 충전 및 방전 실험을 0.0~1.5V(vs. Na/Na+)전압영역에서 진행하였고, 전류의 크기를 50mA/g, 100mA/g, 200mA/g, 300mA/g, 500mA/g, 1000mA/g, 2000mA/g, 50mA/g 로 변화시키면서 충전과 방전을 진행하였다. 도 26에 의하면, 충전 및 방전 전류가 증가함에도 불구하고 매우 높은 가역용량을 나타내며 300mA/g 전류에서도 약 1000mAh/g의 용량을 나타내어 낮은 전류인 50mA/g에서의 용량 대비 65%의 용량을 나타내었다.Velocity characteristic results of the electrochemical cell prepared in Example 10 are shown in FIG. Charging and discharging experiments were conducted in the voltage range of 0.0 ~ 1.5V (vs. Na / Na + ), and the magnitude of current was 50mA / g, 100mA / g, 200mA / g, 300mA / g, 500mA / g, 1000mA / g Charging and discharging were performed while changing to 2000 mA / g and 50 mA / g. According to FIG. 26, despite the increase in the charge and discharge currents, it exhibits a very high reversible capacity and a capacity of about 1000 mAh / g even at 300 mA / g current, representing 65% of the capacity at a low current of 50 mA / g. .
실시예 11에서 제조된 전기화학 셀의 속도 특성 결과는 도 27에 나타내었다. 실험 조건은 상기의 실시예 10의 조건과 동일하게 진행하였다. 이를 보면 전해질에 첨가제로 불화에틸렌카보네이트를 사용하여 속도 특성을 향상시킴을 알 수 있다. 500mA/g의 전류에도 1200mAh/g 이상의 용량을 나타내어 낮은 전류인 50mA/g에서의 용량 대비 80% 이상의 용량을 나타내고 있다.Velocity characteristic results of the electrochemical cell prepared in Example 11 are shown in FIG. 27. Experimental conditions were performed in the same manner as in Example 10 above. It can be seen that the use of ethylene fluoride carbonate as an additive to the electrolyte improves the rate characteristic. Even at a current of 500 mA / g, a capacity of 1200 mAh / g or more is shown, indicating a capacity of 80% or more of the capacity at a low current of 50 mA / g.
실시예 12에서 제조된 전기화학 셀의 속도 특성 결과는 도 28에 나타내었다. 실험 조건은 상기의 실시예 10의 조건과 동일하게 진행하였다. 이를 보면 실시예 10의 경우보다 높은 전류 조건에서도 큰 용량을 나타내어 전해질에 NaPF6염을 사용하는 경우에 속도 특성을 향상시킬 수 있음을 알 수 있다. Velocity characteristic results of the electrochemical cell prepared in Example 12 are shown in FIG. Experimental conditions were performed in the same manner as in Example 10 above. It can be seen that the rate characteristic can be improved when NaPF 6 salt is used in the electrolyte by showing a large capacity even at higher current conditions than in Example 10.
실시예 13에서 제조된 전기화학 셀의 속도 특성 결과는 도 29에 나타내었다. 실험 조건은 상기의 실시예 10의 조건과 동일하게 진행하였다. 이를 보면 500mA/g의 전류에서도 용량의 감소가 거의 나타나지 않으며 1000mA/g의 전류에서도 1100mAh/g 이상의 용량을 나타내었다. 또한, 2000mA/g의 전류에서도 800mAh/g 이상의 큰 용량을 발현하고 있어 낮은 전류인 50mA/g에서의 용량 대비 60% 이상의 용량을 나타내고 있다. 전해질의 용매로 테트라에틸렌글리콜 디메틸이써를 사용하는 경우 가장 뛰어난 속도 특성을 구현할 수 있었다.Velocity characteristic results of the electrochemical cell prepared in Example 13 are shown in FIG. 29. Experimental conditions were performed in the same manner as in Example 10 above. This shows little reduction in capacity even at a current of 500mA / g and a capacity of more than 1100mAh / g at a current of 1000mA / g. In addition, even at a current of 2000 mA / g, a large capacity of 800 mAh / g or more is expressed, indicating a capacity of 60% or more compared to the capacity at a low current of 50 mA / g. When tetraethylene glycol dimethyl ether was used as the solvent of the electrolyte, the most excellent speed characteristics could be achieved.
이를 통해, 인-탄소 복합체의 출력 특성이 매우 우수하여 급속 충전이 가능한 나트륨 이차전지의 음극활물질로 최적의 재료임을 알 수 있다. Through this, it can be seen that the output material of the phosphorus-carbon composite is very excellent as the anode active material of the sodium secondary battery capable of rapid charging.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가지는 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the present invention as claimed in the claims, any person having ordinary skill in the art to which the present invention pertains is considered to be within the scope of the claims described in the present invention to various extents which can be modified.
본 발명에 의한 나트륨 이차전지용 음극활물질을 이용하여 나트륨과의 반응성을 높여 무게당 가역용량이 크고, 충방전 전압이 낮은 나트륨 이차전지의 구현이 가능하다.It is possible to implement a sodium secondary battery having a large reversible capacity per weight and a low charge / discharge voltage by increasing the reactivity with sodium by using the cathode active material for sodium secondary battery according to the present invention.

Claims (27)

  1. 인-탄소 복합체를 포함하여 이루어지고, 상기 인-탄소 복합체에서 인은 적린, 흑린, 백린 또는 황린 중 적어도 하나인 나트륨 이차전지용 음극활물질.Comprising a phosphorus-carbon composite, the phosphorus in the phosphorus-carbon composite is at least one of red phosphorus, black phosphorus, white phosphorus or sulfur phosphorus active material for sodium secondary battery.
  2. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체의 상기 인과 탄소의 중량비는 1:0.1 내지 1:2.5인 나트륨 이차전지용 음극활물질.The weight ratio of the phosphorus and carbon of the phosphorus-carbon composite is 1: 0.1 to 1: 2.5 negative electrode active material for sodium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체의 평균 입경은 0.01 내지 10㎛이고, 1차 입경은 5 내지 500㎚인 나트륨 이차전지용 음극활물질.The average particle diameter of the phosphorus-carbon composite is 0.01 to 10㎛, the primary particle size is 5 to 500nm of the negative electrode active material for sodium secondary battery.
  4. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체는 그래핀을 더 포함하는 나트륨 이차전지용 음극활물질.The phosphorus-carbon composite is a cathode active material for sodium secondary battery further comprising graphene.
  5. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체의 탄소는 비표면적이 10 내지 3000㎡/g인 나트륨 이차전지용 음극활물질.Carbon of the phosphorus-carbon composite is a negative electrode active material for sodium secondary battery having a specific surface area of 10 to 3000 m 2 / g.
  6. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체의 탄소는 흑연을 포함하는 나트륨 이차전지용 음극활물질.Carbon of the phosphorus-carbon composite is a cathode active material for sodium secondary battery containing graphite.
  7. 제1항에 있어서,The method of claim 1,
    상기 인-탄소 복합체의 인은 적린이고, 상기 적린은 비정질상인 나트륨 이차전지용 음극활물질.Phosphorus of the phosphorus-carbon composite is red phosphorus, wherein the red phosphorus is in an amorphous phase.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 비정질상은 X선 회절분석을 분당 1o/min내지 16o/min의 주사속도로, 20o에서 70o까지 0.01o간격으로 측정하였을 때, 베이스 라인에서 나타나는 잡음에 비하여 신호 대 잡음비가 50미만인 나트륨 이차전지용 음극활물질.The amorphous phase has a signal-to-noise ratio of less than 50 compared to the noise appearing at the baseline when X-ray diffraction analysis is performed at a scanning speed of 1 o / min to 16 o / min per minute and 20 o to 70 o at 0.01 o intervals. Anode active material for sodium secondary battery.
  9. 제1항에 있어서,The method of claim 1,
    상기 음극활물질은 라만 분광법에서 1582cm-1의 파수에서 피크가 존재하는 것인 나트륨 이차전지용 음극활물질.The negative electrode active material is a cathode active material for sodium secondary battery that the peak is present in the wave number of 1582cm -1 in Raman spectroscopy.
  10. 제1항에 있어서,The method of claim 1,
    상기 음극화물질은, 라만 분광법으로 측정한 1582cm-1의 파수에서 나타나는 피크가 1332cm-1의 파수에서 나타나는 피크보다 큰 나트륨 이차전지용 음극활물질.The cathode material is a cathode active material for a sodium secondary battery having a peak at a wavenumber of 1582 cm -1 measured by Raman spectroscopy is larger than a peak at a wave number of 1332 cm -1 .
  11. 제1항에 있어서,The method of claim 1,
    상기 음극활물질은 나트륨의 환원전위에 대비하여 0.2 내지 1.0V의 전압 영역에서 작동하는 나트륨 이차전지용 음극활물질.The negative electrode active material is a cathode active material for sodium secondary battery operating in the voltage range of 0.2 to 1.0V in preparation for the reduction potential of sodium.
  12. 제1항에 있어서,The method of claim 1,
    상기 음극활물질은 가역용량이 650mAh/g 이상인 나트륨 이차전지용 음극활물질.The negative electrode active material is a negative electrode active material for sodium secondary battery having a reversible capacity of 650mAh / g or more.
  13. 인-탄소 복합체로 이루어진 음극활물질 분말, 결합제 및 분산액을 혼합하여 페이스트를 준비하는 페이스트 준비단계;A paste preparation step of preparing a paste by mixing a negative active material powder, a binder, and a dispersion composed of a phosphorus-carbon composite;
    상기 페이스트를 전극용 집전체에 도포하는 도포단계; 및An application step of applying the paste to an electrode current collector; And
    상기 페이스트를 50 내지 200℃의 온도에서 건조시키는 건조단계를 포함하는 나트륨 이차전지용 전극의 제조방법.The method of manufacturing an electrode for a sodium secondary battery comprising a drying step of drying the paste at a temperature of 50 to 200 ℃.
  14. 제13항에 있어서,The method of claim 13,
    상기 페이스트 준비단계에서, 상기 음극활물질 100중량부에 대하여, 상기 분산액은 10 내지 200중량부이고, 상기 결합제는 3 내지 50중량부인 나트륨 이차전지용 전극의 제조방법.In the paste preparation step, with respect to 100 parts by weight of the negative electrode active material, the dispersion is 10 to 200 parts by weight, the binder is 3 to 50 parts by weight of the method for producing a sodium secondary battery electrode.
  15. 제13항에 있어서,The method of claim 13,
    상기 페이스트 준비단계에서, 상기 분산액은 N-메틸피롤리돈, 이소프로필알콜, 아세톤 또는 물 중 적어도 하나를 포함하는 나트륨 이차전지용 전극의 제조방법.In the paste preparation step, the dispersion is a method of manufacturing an electrode for a sodium secondary battery comprising at least one of N-methylpyrrolidone, isopropyl alcohol, acetone or water.
  16. 제13에 있어서,The method of claim 13,
    상기 페이스트 준비단계에서, 상기 결합제는 폴리테트라플루오르에틸렌, 폴리비닐리덴플루오라이드, 셀룰로오스 스타이렌부타다이엔러버, 폴리이미드, 폴리아크릴릭산, 폴리아크릴산 알칼리염, 폴리메틸메타크릴레이트 또는 폴리아크릴로나이트릴 중 적어도 하나를 포함하는 나트륨 이차전지용 전극의 제조방법.In the paste preparation step, the binder is polytetrafluoroethylene, polyvinylidene fluoride, cellulose styrene-butadiene rubber, polyimide, polyacrylic acid, polyacrylic acid alkali salt, polymethyl methacrylate or polyacrylonitrile A method of manufacturing an electrode for sodium secondary battery comprising at least one of reels.
  17. 제13항에 있어서,The method of claim 13,
    상기 페이스트 준비단계에서, 상기 페이스트는 분말상의 도전재를 더 포함하며, 상기 도전재는 카본블랙, 기상성장탄소섬유 또는 흑연 중 적어도 하나를 포함하는 나트륨 이차전지용 전극의 제조방법.In the paste preparation step, the paste further comprises a powdery conductive material, wherein the conductive material comprises at least one of carbon black, vapor-grown carbon fiber or graphite.
  18. 제17항에 있어서,The method of claim 17,
    상기 도전재는 상기 음극활물질 100중량부에 대하여, 1 내지 30중량부인 나트륨 이차전지용 전극의 제조방법.The conductive material is a sodium secondary battery electrode manufacturing method of 1 to 30 parts by weight based on 100 parts by weight of the negative electrode active material.
  19. 제1항에 따른 음극활물질을 포함하는 음극;A negative electrode comprising the negative electrode active material according to claim 1;
    나트륨 금속산화물, 나트륨 금속인산화물, 나트륨 금속 불화인산화물 또는 나트륨 금속 불화황산화물 중 적어도 하나를 포함하는 양극;An anode comprising at least one of sodium metal oxide, sodium metal phosphate, sodium metal fluoride or sodium metal fluoride;
    상기 음극 및 상기 양극 사이에 존재하는 분리막; 및A separator existing between the cathode and the anode; And
    전해질을 포함하여 이루어지는 나트륨 이차전지.Sodium secondary battery comprising an electrolyte.
  20. 제19항에 있어서,The method of claim 19,
    상기 나트륨 금속산화물은 NaxCoO2,NaxCo2/3Mn1/3O2,NaxFe1/2Mn1/2O2,NaCrO2,NaLi0.2Ni0.25Mn0.75O2.35,Na0.44MnO2,NaMnO2,Na0.7VO2,Na0.33V2O5중 적어도 하나를 포함하는 나트륨 이차전지. The sodium metal oxide is Na x CoO 2 , Na x Co 2/3 Mn 1/3 O 2 , Na x Fe 1/2 Mn 1/2 O 2 , NaCrO 2 , NaLi 0.2 Ni 0.25 Mn 0.75 O 2.35 , Na 0.44 Sodium secondary battery comprising at least one of MnO 2 , NaMnO 2 , Na 0.7 VO 2 , Na 0.33 V 2 O 5 .
    (여기서, 0<x≤1 임)Where 0 <x≤1
  21. 제19항에 있어서,The method of claim 19,
    상기 나트륨 금속인산화물은 Na3V2(PO4)3,NaFePO4,NaMn0.5Fe0.5PO4,Na3V2(PO4)3중 적어도 하나를 포함하는 나트륨 이차전지.The sodium metal phosphate is at least one of Na 3 V 2 (PO 4 ) 3 , NaFePO 4 , NaMn 0.5 Fe 0.5 PO 4 , Na 3 V 2 (PO 4 ) 3 .
  22. 제19항에 있어서,The method of claim 19,
    상기 나트륨 금속 불화인산화물은 Na2FePO4F,Na3V2(PO4)3중 적어도 하나를 포함하는 나트륨 이차전지.The sodium metal fluorophosphate is sodium secondary battery comprising at least one of Na 2 FePO 4 F, Na 3 V 2 (PO 4 ) 3 .
  23. 제19항에 있어서,The method of claim 19,
    상기 나트륨 금속 불화황산화물은 NaFeSO4F인 나트륨 이차전지.The sodium metal fluoride oxide is NaFeSO 4 F Sodium secondary battery.
  24. 제19항에 있어서,The method of claim 19,
    상기 전해질은, 유기용매에 NaClO4,NaAsF6,NaBF4,NaPF6,NaSbF6,NaCF3SO3또는 NaN(SO2CF3)2중 적어도 하나를 포함하여 이루어진 나트륨염이 용해된 것인 나트륨 이차전지.The electrolyte is sodium in which a sodium salt comprising at least one of NaClO 4 , NaAsF 6 , NaBF 4 , NaPF 6 , NaSbF 6 , NaCF 3 SO 3 or NaN (SO 2 CF 3 ) 2 is dissolved in an organic solvent. Secondary battery.
  25. 제24항에 있어서,The method of claim 24,
    상기 유기용매는 에틸렌카보네이트, 프로필렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 이소프로필메틸카보네이트, 비닐렌카보네이트, 불화에틸렌카보네이트, 1,2-디메톡시에탄, 1,2-디에톡시에탄, γ-부티로락톤, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, 1,3-디옥센, 4-메틸-1,3-디옥센, 디에틸에테르, 테트라에틸렌글리콜 디메틸이써 또는 술포란 중 적어도 하나를 포함하는 나트륨 이차전지.The organic solvent is ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, isopropylmethyl carbonate, vinylene carbonate, ethylene fluoride, 1,2-dimethoxyethane, 1,2-diethoxyethane, at least one of γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxene, 4-methyl-1,3-dioxene, diethyl ether, tetraethylene glycol dimethyl ether or sulfolane Sodium secondary battery comprising one.
  26. 제24항에 있어서,The method of claim 24,
    상기 나트륨염은 0.1 내지 2몰농도인 나트륨 이차전지.The sodium salt is sodium secondary battery of 0.1 to 2 molar concentration.
  27. 제24항에 있어서,The method of claim 24,
    상기 전해질은 첨가제로 불화에틸렌카보네이트 0.1 내지 10중량%를 포함하는 나트륨 이차전지.The electrolyte is sodium secondary battery containing 0.1 to 10% by weight of ethylene fluoride as an additive.
PCT/KR2014/001220 2013-02-15 2014-02-14 Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same WO2014126413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0016285 2013-02-15
KR1020130016285A KR101444189B1 (en) 2013-02-15 2013-02-15 Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same

Publications (1)

Publication Number Publication Date
WO2014126413A1 true WO2014126413A1 (en) 2014-08-21

Family

ID=51354356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001220 WO2014126413A1 (en) 2013-02-15 2014-02-14 Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR101444189B1 (en)
WO (1) WO2014126413A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025194A (en) * 2016-05-12 2016-10-12 安泰科技股份有限公司 Black-phosphorus-based composite negative electrode material and preparing method thereof
CN106129359A (en) * 2016-07-15 2016-11-16 天津大学 A kind of red phosphorus carbonization Bacterial cellulose flexible composite and preparation method
CN106711408A (en) * 2015-11-13 2017-05-24 中国科学院金属研究所 Flexible lithium ion battery black phosphorus nanosheet-graphene composite film anode, and preparation thereof
CN106711245A (en) * 2015-07-23 2017-05-24 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN106920920A (en) * 2017-03-08 2017-07-04 深圳博磊达新能源科技有限公司 A kind of composite negative pole pole piece and preparation method thereof, mobile base station lithium ion battery
CN108598451A (en) * 2017-12-12 2018-09-28 湖北工业大学 Sodium-ion battery red phosphorus cathode pole piece and preparation method thereof
CN108767209A (en) * 2018-04-26 2018-11-06 昆明理工大学 A kind of preparation method of phosphorus/porous carbon/graphene composite material
CN109286002A (en) * 2018-09-06 2019-01-29 东莞理工学院 Thousand layers of Bark Biomass carbon load red phosphorus anode material of lithium-ion battery of one kind and preparation method thereof
CN110034281A (en) * 2018-04-12 2019-07-19 南方科技大学 Phosphorus/carbon composite material, preparation method thereof, lithium ion battery and sodium ion battery
CN110492105A (en) * 2019-08-26 2019-11-22 东莞维科电池有限公司 The anode pole piece of a kind of positive electrode and its preparation and obtained lithium ion battery
CN112420999A (en) * 2020-10-13 2021-02-26 天津大学 Phosphorus-based negative electrode material with coating structure and preparation method and application thereof
CN113307247A (en) * 2021-06-17 2021-08-27 西安交通大学 Preparation method of porous hard carbon/red phosphorus composite material
CN113745011A (en) * 2021-08-31 2021-12-03 西安交通大学 Application of red phosphorus/carbon nanotube composite material in sodium ion capacitor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747402B1 (en) 2015-10-12 2017-06-14 주식회사 엘지화학 Composite electrode for electrochemical device, method for manufacturing the same, and electrochemical device including the same
KR101897895B1 (en) * 2017-01-09 2018-09-12 동국대학교 산학협력단 Anode active material for Sodium-Ion Secondary Batteries and method for preparing the same
CN109309198B (en) * 2017-07-26 2021-08-03 中国地质大学(北京) Preparation method of lithium ion battery cathode red phosphorus/graphene composite material
EP3761404B1 (en) 2018-03-02 2023-04-05 Lg Chem, Ltd. Anode slurry composition, and anode and secondary battery manufactured using same
KR102038588B1 (en) 2018-04-11 2019-10-31 한국과학기술연구원 Anode active material for a rechargeable battery, preparation method thereof and rechargeable battery comprising the same
CN109638271A (en) * 2018-11-05 2019-04-16 成都市银隆新能源有限公司 A kind of preparation method and lithium battery of lithium battery
KR102197838B1 (en) * 2019-04-09 2021-01-04 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
CN111261860B (en) * 2020-01-22 2022-08-16 佛山科学技术学院 Conductive polymer coated red phosphorus/graphite composite structure negative electrode material and preparation method thereof
KR20240008605A (en) 2022-07-12 2024-01-19 한국전기연구원 Method of manufacturing hard carbon-CNT composite, the hard carbon-CNT composite manufactured by the method, and negative electrode for secondary battery using the same
CN115020654B (en) * 2022-07-20 2022-11-11 晖阳(贵州)新能源材料有限公司 Preparation method of hard carbon composite material for sodium ion battery
KR20240059936A (en) 2022-10-28 2024-05-08 한국전기연구원 Method of manufacturing hard carbon-nanocarbon composite manufactured by microwave induction heating, the hard carbon-nano carbon composite manufactured by the method, and negative electrode for secondary battery using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788487B1 (en) * 2006-08-08 2007-12-24 재단법인서울대학교산학협력재단 Method for preparing black phosphorus and black phosphorus-carbon composites, the prepared black phosphorus and black phosphorus-carbon composites and lithium rechargeable battery comprising the same and method for using the rechargeable battery
KR20120020962A (en) * 2010-08-31 2012-03-08 경상대학교산학협력단 Sodium battery and the method manufacturing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788487B1 (en) * 2006-08-08 2007-12-24 재단법인서울대학교산학협력재단 Method for preparing black phosphorus and black phosphorus-carbon composites, the prepared black phosphorus and black phosphorus-carbon composites and lithium rechargeable battery comprising the same and method for using the rechargeable battery
KR20120020962A (en) * 2010-08-31 2012-03-08 경상대학교산학협력단 Sodium battery and the method manufacturing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.J SOHN ET AL.: "Black Phosphorus and its Composite for Lithium Rechargeable Batteries", ADV. MATER, vol. 19, 1 September 2007 (2007-09-01), pages 2465 - 2468 *
X. HE ET AL.: "Nano-structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries", ANGEW. CHEM. INT., vol. 51, 3 September 2012 (2012-09-03), pages 9034 - 9037 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711245A (en) * 2015-07-23 2017-05-24 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN106711408B (en) * 2015-11-13 2019-05-10 中国科学院金属研究所 Flexible lithium ion battery black phosphorus nanometer sheet-graphene composite film cathode and preparation
CN106711408A (en) * 2015-11-13 2017-05-24 中国科学院金属研究所 Flexible lithium ion battery black phosphorus nanosheet-graphene composite film anode, and preparation thereof
CN106025194A (en) * 2016-05-12 2016-10-12 安泰科技股份有限公司 Black-phosphorus-based composite negative electrode material and preparing method thereof
CN106129359A (en) * 2016-07-15 2016-11-16 天津大学 A kind of red phosphorus carbonization Bacterial cellulose flexible composite and preparation method
CN106920920A (en) * 2017-03-08 2017-07-04 深圳博磊达新能源科技有限公司 A kind of composite negative pole pole piece and preparation method thereof, mobile base station lithium ion battery
CN108598451A (en) * 2017-12-12 2018-09-28 湖北工业大学 Sodium-ion battery red phosphorus cathode pole piece and preparation method thereof
CN108598451B (en) * 2017-12-12 2020-11-06 湖北工业大学 Sodium ion battery red phosphorus negative pole piece and preparation method thereof
CN110034281A (en) * 2018-04-12 2019-07-19 南方科技大学 Phosphorus/carbon composite material, preparation method thereof, lithium ion battery and sodium ion battery
CN110034281B (en) * 2018-04-12 2021-06-15 南方科技大学 Phosphorus/carbon composite material, preparation method thereof, lithium ion battery and sodium ion battery
CN108767209A (en) * 2018-04-26 2018-11-06 昆明理工大学 A kind of preparation method of phosphorus/porous carbon/graphene composite material
CN109286002A (en) * 2018-09-06 2019-01-29 东莞理工学院 Thousand layers of Bark Biomass carbon load red phosphorus anode material of lithium-ion battery of one kind and preparation method thereof
CN109286002B (en) * 2018-09-06 2022-02-08 东莞理工学院 Multi-bark biomass carbon-loaded red phosphorus sodium ion battery negative electrode material and preparation method thereof
CN110492105A (en) * 2019-08-26 2019-11-22 东莞维科电池有限公司 The anode pole piece of a kind of positive electrode and its preparation and obtained lithium ion battery
CN112420999A (en) * 2020-10-13 2021-02-26 天津大学 Phosphorus-based negative electrode material with coating structure and preparation method and application thereof
CN113307247A (en) * 2021-06-17 2021-08-27 西安交通大学 Preparation method of porous hard carbon/red phosphorus composite material
CN113745011A (en) * 2021-08-31 2021-12-03 西安交通大学 Application of red phosphorus/carbon nanotube composite material in sodium ion capacitor
CN113745011B (en) * 2021-08-31 2023-03-31 西安交通大学 Application of red phosphorus/carbon nanotube composite material in sodium ion capacitor

Also Published As

Publication number Publication date
KR20140103376A (en) 2014-08-27
KR101444189B1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2014126413A1 (en) Anode active material for sodium secondary battery, method for manufacturing electrode using same, and sodium secondary battery comprising same
WO2015065047A1 (en) Negative electrode active material and method for preparing same
WO2017099456A1 (en) Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same
WO2015020486A1 (en) Cathode material for lithium secondary battery, and lithium secondary battery containing same
WO2015084036A1 (en) Porous silicon-based anode active material and method for preparing same, and lithium secondary battery including same
WO2020040586A1 (en) Silicon-based composite, anode comprising same, and lithium secondary battery
WO2013089426A1 (en) Positive active material for rechargeable lithium battery
WO2022154309A1 (en) Method for charging and discharging secondary battery
WO2021025349A1 (en) Anode, manufacturing method therefor, and secondary battery comprising same
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2021086098A1 (en) Anode active material, preparation method therefor, and anode and secondary battery which comprise same
WO2023027499A1 (en) Positive electrode active material, method for preparing same, and lithium secondary battery including positive electrode comprising same
WO2021060811A1 (en) Method for manufacturing secondary battery
WO2021020805A1 (en) Composite anode active material, manufacturing method of same, anode comprising same, and secondary battery
WO2022164244A1 (en) Negative electrode, and secondary battery comprising same
WO2022060138A1 (en) Negative electrode and secondary battery comprising same
WO2022080979A1 (en) Negative electrode and method for manufacturing same
WO2021251663A1 (en) Anode and secondary battery comprising same
WO2020067793A1 (en) Sulfur-carbon composite and manufacturing method therefor
WO2022265259A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019098733A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium secondary battery comprising same
WO2022019605A1 (en) Porous composite, anode and lithium battery each including same, and method for preparing same
WO2022060104A1 (en) Negative electrode active material, and negative electrode and secondary battery comprising same
WO2020060084A1 (en) Sulfur-carbon composite, preparation method thereof, positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2021033852A1 (en) Positive active material, preparation method therefor, and lithium secondary battery comprising positive electrode comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751875

Country of ref document: EP

Kind code of ref document: A1