WO2017099456A1 - Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same - Google Patents

Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same Download PDF

Info

Publication number
WO2017099456A1
WO2017099456A1 PCT/KR2016/014255 KR2016014255W WO2017099456A1 WO 2017099456 A1 WO2017099456 A1 WO 2017099456A1 KR 2016014255 W KR2016014255 W KR 2016014255W WO 2017099456 A1 WO2017099456 A1 WO 2017099456A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
carbon
particles
Prior art date
Application number
PCT/KR2016/014255
Other languages
French (fr)
Korean (ko)
Inventor
이성만
신민선
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Publication of WO2017099456A1 publication Critical patent/WO2017099456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure provides a negative electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same.
  • lithium secondary batteries As the application of lithium secondary batteries to medium and large-sized lithium secondary batteries such as electric vehicles as well as portable electronic devices, high capacity and charge / discharge output characteristics are required to be improved.
  • silicon (Si) or its compound As a material which can replace graphite, silicon (Si) or its compound has been studied conventionally. Silicon reversibly occludes and releases lithium through compound formation reaction with lithium and is promising as a high capacity cathode material because its theoretical maximum capacity is about 4200 mAh / g (9800 mAh / cc, specific gravity 2.23), which is much larger than graphite.
  • One embodiment of the present invention is to provide a negative active material for a lithium secondary battery having a large charge and discharge capacity, excellent cycle life characteristics, excellent charge and discharge output characteristics at high current density and improved thermal stability.
  • Another embodiment of the present invention is to provide a method of manufacturing the negative electrode active material for the lithium secondary battery.
  • Another embodiment of the present invention is to provide a lithium secondary battery comprising the negative electrode active material for the lithium secondary battery.
  • One embodiment of the present invention includes a core particle including at least one selected from hard carbon, soft carbon, and spherical natural graphite, and a shell layer on the surface of the core particle,
  • the shell layer may comprise: i) a first shell layer comprising silicon (Si) / carbon black / carbon composite particles, and amorphous or semi-crystalline carbon; And ii) a structure in which amorphous or quasi-crystalline carbon is distributed between the flaky graphite fragment particles, and the flaky graphite fragment particles are stacked in a concentric manner and formed, and a second shell layer formed on the first shell layer.
  • a negative active material for a secondary battery is provided.
  • the average particle diameter (D50) of the core particles may be 2 to 20 ⁇ m.
  • the core particles may be included in 5 to 85% by weight based on the total amount of the negative electrode active material.
  • the average particle diameter (D50) of the composite particles included in the first shell layer may be 0.05 ⁇ m to 2 ⁇ m.
  • the composite particles included in the first shell layer may include silicon particles having an average particle diameter of 5 to 200 nm, and may include mesopores having an average size of 2.0 to 50 nm.
  • the composite particles included in the first shell layer may include silicon particles and carbon black particles in a weight ratio of 1: 9 to 9: 1.
  • the composite particles included in the first shell layer may include 0.1 to 70% by weight of amorphous or semicrystalline carbon.
  • the first shell layer may include the composite particles and amorphous or semicrystalline carbon in a weight ratio of 1: 9 to 9: 1.
  • the total weight of the first shell layer may be 10 to 94% by weight based on the total weight of the negative electrode active material.
  • An average thickness of the flaky graphite fragment particles included in the second shell layer may be 100 nm or less.
  • the flaky graphite fragment particles included in the second shell layer may be included in an amount of 1 to 40 wt% based on the total weight of the negative electrode active material.
  • the amorphous or semicrystalline carbon may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin, cellulose, styrene, polyyi It may be formed from a carbon precursor including at least one selected from the group consisting of mid, epoxy resin, vinyl chloride resin, coal-based pitch, petroleum-based pitch, mesoface pitch, tar and low molecular weight heavy oil.
  • the ratio of the average particle diameter (D50) of the core particles and the thickness of the shell layer may be 17 to 95: 5 to 83.
  • the ratio of the thickness of the first shell layer and the second shell layer may be 5 to 95:95 to 5.
  • the anode active material may further include a coating layer disposed on the surface of the shell layer and including the amorphous or semicrystalline carbon, and the thickness of the coating layer may be 0.01 to 5 ⁇ m.
  • the average particle diameter (D50) of the negative electrode active material may be 2 to 40 ⁇ m.
  • Another embodiment of the present invention provides a surface of a core particle comprising at least one selected from hard carbon, soft carbon, and spherical natural graphite, a mixture of silicon / carbon black / carbon composite particles, and an amorphous or semicrystalline carbon precursor. Coating to form a first shell layer, and coating the surface of the first shell layer with a mixture of flaky graphite fragment particles and an amorphous or semi-crystalline carbon precursor to form a second shell layer to obtain anode active material precursor particles; And it provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of heat-treating the negative electrode active material precursor particles.
  • the method of manufacturing the negative active material may further include coating the surface of the negative electrode active material precursor particles with an amorphous or semi-crystalline carbon precursor before the heat treatment of the negative electrode active material precursor particles.
  • the heat treatment may be performed under an atmosphere containing nitrogen, argon, hydrogen or a mixed gas thereof, or under vacuum, and may be performed at a temperature of 700 to 1300 ° C.
  • the negative electrode including the negative electrode active material; anode; And it provides a lithium secondary battery comprising an electrolyte solution.
  • a lithium secondary battery having a large charge and discharge capacity, excellent cycle life characteristics, excellent charge and discharge output characteristics at a high current density, and greatly improved thermal stability can be implemented.
  • FIG. 1 is a schematic cross-sectional view of a negative electrode active material according to an embodiment.
  • FIG. 2 is a conceptual diagram of a cross section of a silicon (Si) / carbon black / carbon composite particle included in a core of a negative active material for a lithium secondary battery according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of a negative electrode active material according to another embodiment.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the core particles used in Example 1 and Comparative Example 1.
  • SEM scanning electron microscope
  • Example 5 is a scanning electron microscope (SEM) photograph of the core particles used in Example 2 and Comparative Example 2.
  • FIG. 6 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Example 1.
  • SEM scanning electron microscope
  • FIG. 7 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Comparative Example 1.
  • SEM scanning electron microscope
  • FIG. 8 is a scanning electron microscope (SEM) photograph of the anode active material prepared in Example 2.
  • SEM scanning electron microscope
  • FIG. 9 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Comparative Example 2.
  • SEM scanning electron microscope
  • FIG. 10 is a particle size distribution of negative electrode active materials prepared in Example 1 and Comparative Example 1.
  • FIG. 10 is a particle size distribution of negative electrode active materials prepared in Example 1 and Comparative Example 1.
  • FIG. 11 is a particle size distribution of the negative electrode active materials prepared in Example 2 and Comparative Example 2.
  • Example 16 is a cycle curve for the lithium secondary battery prepared in Example 1 and Comparative Example 1.
  • Example 17 is a cycle curve for the lithium secondary battery prepared in Example 2 and Comparative Example 2.
  • FIG. 18 shows the results of differential scanning thermal analysis (DSC) of electrodes prepared using the negative electrode active materials of Example 1 and Comparative Example 1.
  • DSC differential scanning thermal analysis
  • FIG. 19 is a result of differential scanning thermal analysis (DSC) of electrodes prepared using the negative electrode active materials of Example 2 and Comparative Example 2.
  • DSC differential scanning thermal analysis
  • the negative electrode active material according to one embodiment may be described with reference to FIG. 1.
  • FIG. 1 is a schematic cross-sectional view of a negative electrode active material according to an embodiment.
  • the negative electrode active material 1 may include a core particle 11 and a shell layer located on the surface of the core particle 11.
  • the shell layer may have a shape surrounding the core particle 11.
  • the core particle 11 may include at least one selected from hard carbon, soft carbon, and spherical natural graphite.
  • the hard carbon may be amorphous hard carbon
  • the soft carbon may be specifically semicrystalline or low crystalline soft carbon.
  • the spherical natural graphite particles are formed by flakes of natural graphite fragments in the cabbage or random phase.
  • the shell layer comprises: i) a first shell layer comprising silicon (Si) / carbon black / carbon composite particles (12), and amorphous or semi-crystalline carbon (13); And ii) amorphous or quasi-crystalline carbon 15 is distributed between the flaky graphite fragment particles 14, and the flaky graphite fragment particles are laminated in a concentric direction and formed and formed on the first shell layer. It may comprise two shell layers.
  • Hard carbon or soft carbon used as the core particles has good output characteristics of the battery when used as a negative electrode material, but has low initial efficiency and low storage capacity of lithium ions.
  • the spheronized natural graphite used as the core particles has a limit of theoretical capacity of 372 mAh / g of lithium ions, which has a need for increasing capacity.
  • the capacity of the battery is high, but the initial efficiency is low, and the volume change occurs, which causes micronization of the silicon active material powder and poor electrical contact between the silicon active material powder and the current collector. Can be.
  • the battery capacity is drastically reduced, which causes the cycle life to be shortened.
  • the thermal recognition property may be lowered by directly contacting and reacting with the electrolyte.
  • hard carbon, soft carbon, and spherical natural graphite are used as core particles, and the surface of the core particles is i) silicon (Si) / carbon black / carbon composite particles 12, and amorphous ( a first shell layer comprising amorphous or semi-crystalline carbon 13; And ii) amorphous or quasi-crystalline carbon 15 is distributed between the flaky graphite fragment particles 14, and the flaky graphite fragment particles are laminated in a concentric direction and formed and formed on the first shell layer. It has a structure of coating with 2 shell layers, which has a large lithium storage capacity, high capacity retention rate, improved initial efficiency, easy movement of lithium ions during charge and discharge, and excellent output characteristics and high charge and discharge efficiency. have.
  • the thermal stability of the negative electrode active material is greatly improved by preventing contact between the silicon (Si) / carbon black / carbon composite particles 12 and the electrolyte solution.
  • the average particle diameter (D50) of the core particles may be 2 to 20 ⁇ m, specifically 5 to 15 ⁇ m.
  • the coating for forming the shell layer with the carbon fine particles is well made, and thus can be usefully applied to a lithium secondary battery having a high capacity and excellent output characteristics.
  • the average particle diameter (D50) refers to the diameter of the particles corresponding to the cumulative volume 50% by volume in the particle size distribution.
  • the hard carbon may be sucrose, phenol resin, furan resin, furfuryl alcohol, polyacrylonitrile, polyimide, epoxy resin. ), Cellulose, styrene, citric acid, stearic acid, polyvinylidene fluoride, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene At least one carbonaceous material selected from ethylene-propylene-diene monomer (EPDM), sulfonated ethylene-propylene-diene monomer (EPDM), starch, glucose, gelatin and saccharides may be used.
  • EPDM ethylene-propylene-diene monomer
  • EPDM sulfonated ethylene-propylene-diene monomer
  • starch glucose, gelatin and saccharides
  • the soft carbon may be formed by carbonizing at least one carbonaceous material selected from polyvinyl alcohol, polyvinyl chloride, coal-based pitch, petroleum-based pitch, mesoface pitch, and low molecular weight heavy oil.
  • the core particles may be included in 5 to 85% by weight, specifically, 20 to 80% by weight based on the total amount of the negative electrode active material.
  • the shell layer may be formed at an appropriate ratio around the core particles to exhibit excellent output characteristics and to improve capacity.
  • composite particles Silicon / carbon black / carbon composite particles (hereinafter referred to as “composite particles”) included in the first shell layer And amorphous or semicrystalline carbon in the core in a weight ratio of 1: 9 to 9: 1. If the weight ratio of the multiparticulates and amorphous or semicrystalline carbon is less than 1: 9, the effect of increasing the capacity may not be sufficient. If the weight ratio of the multiparticulates and the amorphous or semicrystalline carbon is less than 9: 1, it is difficult to uniformly mix and disperse the multiparticulates and the amorphous or semicrystalline carbon. Properties as the negative electrode active material may be lowered.
  • the total weight of the first shell layer including the composite particles and amorphous or semi-crystalline carbon is preferably included in 10 to 94% by weight based on the total weight of the negative electrode active material.
  • the composite particles 12 have a structure in which silicon particles 21 and carbon black particles 22 are uniformly mixed and bonded by amorphous or semi-crystalline carbon 23.
  • D 50 (0% volume cumulative particle diameter measured by laser diffraction scattering particle size distribution measurement) of the composite particles is preferably from 0.05 ⁇ m to 2 ⁇ m, which is dispersed during the preparation of the negative electrode active material when D 50 is less than 0.05 ⁇ m This may not be sufficient, and when it exceeds 2 ⁇ m, it may be difficult to form the first shell layer in the negative electrode active material.
  • the composite particle provides a negative active material for a lithium secondary battery, characterized in that the silicon particles and carbon black particles in a weight ratio of 1: 9 to 9: 1.
  • the weight ratio of the silicon particles and the carbon black particles is less than 1: 9, when the amount of the silicon particles is small, the high capacity effect by silicon may not be sufficient, and the weight ratio of the silicon particles and the carbon black particles is 9: 1.
  • the amount of the silicon particles is larger, the dispersion effect of the silicon particles by the carbon black may not be sufficient.
  • the composite particles may include 0.1 to 70% by weight of amorphous or semicrystalline carbon relative to the total weight of the composite particles for the purpose of bonding and coating the silicon particles and the carbon black particles.
  • amorphous or semi-crystalline carbon of the composite particles is less than 0.1% by weight, the effect of bonding and coating the silicon particles and the carbon black particles is not sufficient, and the capacity by silicon when the amorphous or semi-crystalline carbon is 70% by weight or more It is difficult to expect an increase effect.
  • Carbon black included in the composite particles may be exemplified by acetylene black, Caten black, channel black, furnace black, summer black, super P, but not limited thereto. Can be.
  • Carbon black particles generally have an average particle size of 10 nm to 100 nm, but several of these carbon black particles may be present in agglomerated particles such as grape clusters.
  • the carbon in the composite particles may be prepared using the same precursor as the precursor for forming amorphous or semicrystalline carbon, which will be described later as amorphous or semicrystalline carbon.
  • amorphous carbon refers to hard carbon that does not change into crystalline graphite even when the temperature is raised in a state in which carbon atoms are randomly arranged.
  • the semicrystalline carbon is crystalline graphite having low crystallinity when heated to a temperature of 2000 ° C. or less It means a low crystalline carbon is changed to.
  • the composite particles may include silicon particles having an average particle diameter of 5 to 200 nm, more preferably silicon particles having an average particle diameter of 20 to 100 nm.
  • the size of the silicon particles is less than 5 nm, it is easy to form a compound such as SiC during heat treatment at 1000 ° C. or higher during the preparation of the negative electrode active material, and thus it is difficult to expect a high capacity effect by silicon.
  • the size of the silicon particles exceeds 200 nm, it is difficult to control the volume expansion of the negative electrode active material particles due to the large volume expansion when forming a lithium compound by reacting with lithium.
  • the composite particles may comprise a mesopore (24) having an average size of 2.0 to 50 nm, thereby preventing the volume expansion by the reaction of the silicon particles in the composite particles with lithium during charge and discharge A buffering effect can be expected.
  • the amorphous or semi-crystalline carbon included in the first shell layer may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin And those formed from carbon precursors including at least one selected from cellulose, styrene, polyimide, epoxy resins, vinyl chloride resins, coal-based pitches, petroleum-based pitches, mesophase pitches, tars, and low molecular weight heavy oils.
  • the flaky graphite fragment particles 14 included in the second shell layer may be obtained by peeling flaky graphite to have an average thickness of 100 nm or less.
  • the flaky graphite fragment particles included in the second shell layer are preferably included in an amount of 1 to 40% by weight based on the total weight of the negative electrode active material, which is less than 1% by weight based on the total amount of the negative electrode active material. This is because the buffering effect on the volume expansion of the composite particles is not sufficient, and when the content exceeds 40% by weight, the charge / discharge output characteristics of the negative electrode active material may decrease and the capacity increase effect is insufficient.
  • the amorphous or quasicrystalline carbon 16 between the flaky graphite segments in the second shell layer may be made of the same material as the amorphous or quasicrystalline carbon of the first shell layer, and may exist in the form of the particles or the matrix.
  • pores may be included between the flaky graphite fragments.
  • the thickness of the shell layer including the first shell layer and the second shell layer is preferably 1 to 15 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the thickness of the shell layer is less than 1 ⁇ m, the capacity increase and structural stability improvement effect of the negative electrode active material by the shell layer are insufficient, and when the thickness of the shell layer exceeds 15 ⁇ m, the reaction of the composite particles with lithium during charge and discharge may occur. It is suppressed, so it is difficult to expect high capacity at high rate charge and discharge.
  • the ratio of the average particle diameter (D50) of the core particles and the thickness of the shell layer may be 17 to 95: 5 to 83, specifically 30 to 90: 70 to 10.
  • the negative electrode active material having a ratio in the above range may have a high capacity and exhibit excellent high rate output characteristics.
  • the ratio of the thickness of a said 1st shell layer and a said 2nd shell layer is 5-95: 95-5.
  • the negative electrode active material 1 may be manufactured according to the following two methods, but is not necessarily limited thereto, and any method capable of finally obtaining the negative electrode active material according to the present invention may be used without limitation.
  • the surface of the core particles is coated with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semicrystalline carbon precursor to form a first shell layer, and the surface of the first shell layer is flaky graphite fragment particles and amorphous particles.
  • the negative electrode active material may be prepared by coating a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles and heat treating the same.
  • the surface of the first shell layer is flake graphite fragment particles and amorphous particles.
  • the negative electrode active material may be prepared by coating a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles, and to perform a second heat treatment.
  • the amorphous or semi-crystalline carbon precursor may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin, cellulose, styrene, At least one selected from polyimide, epoxy resin, vinyl chloride resin, coal pitch, petroleum pitch, mesoface pitch, tar and low molecular weight heavy oil can be used.
  • a mechanochemical method such as a blade, mechano-fusion, etc., which can give a shear force
  • a spray dry method or an emulsion method may also be used. (emulsion) may be used, but is not limited thereto.
  • the core particles, the silicon / carbon black / carbon composite particles, and the amorphous or semi-crystalline carbon precursor are introduced into a rotor blade mill, and thus, at a temperature higher than the softening point of the amorphous or semi-crystalline carbon precursor.
  • the first shell layer may be coated by imparting a strong mechanical shear force.
  • the composite particle including the first shell layer, the flaky graphite fragment particles, and the amorphous or quasi-crystalline carbon precursor are introduced into a rotor blade mill, whereby the temperature above the softening point of the amorphous or quasi-crystalline carbon precursor. In order to give a strong mechanical shear force in the second shell layer can be coated.
  • All heat treatments including the first heat treatment and the second heat treatment may be performed under an atmosphere containing nitrogen, argon, hydrogen, or a mixed gas thereof, or under vacuum.
  • the heat treatment may be performed at a temperature of 700 to 1300 °C, more preferably may be carried out at a temperature of 800 to 1200 °C.
  • the silicon of the silicon / carbon black / carbon composite particles is suppressed from forming a silicon compound (eg, SiC), so that the capacity increase effect is excellent, and the amorphous or quasi-crystalline carbon precursor Carbonization can take place sufficiently.
  • the negative electrode active material according to another embodiment may be described with reference to FIG. 3.
  • FIG. 3 is a schematic cross-sectional view of a negative electrode active material according to another embodiment.
  • the negative electrode active material 2 may further include a coating layer 16 positioned on the shell layer of the negative electrode active material particles having the structure shown in FIG. 1.
  • the shell layer may be in the form of surrounding the core particles
  • the coating layer may be in the form of surrounding the shell layer.
  • the coating layer 16 may include amorphous or semicrystalline carbon, and the amorphous or semicrystalline carbon is as described above.
  • the exposure of the graphite edge surface may be reduced, thereby improving initial charge and discharge efficiency, and appropriately buffering the volume expansion of silicon in the composite particles to provide cycle life characteristics and thermal properties. Stability can be further improved.
  • the thickness of the coating layer may be 0.01 to 5 ⁇ m, specifically 0.1 to 3 ⁇ m.
  • the thickness of the coating layer is formed in the above range, the exposure of the graphite edge surface is reduced, thereby increasing the initial charge and discharge efficiency, excellent output characteristics, and can implement a lithium secondary battery having improved high capacity and thermal stability.
  • the negative electrode active material 1 may be manufactured according to the following two methods, but is not necessarily limited thereto, and any method capable of finally obtaining the negative electrode active material according to the present invention may be used without limitation. .
  • the surface of the core particles is coated with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semicrystalline carbon precursor to form a first shell layer, and the surface of the first shell layer is flaky graphite fragment particles and amorphous particles.
  • the coated negative electrode active material precursor may be prepared by heat treating the particles.
  • the surface of the first shell layer is flake graphite fragment particles and amorphous particles.
  • the coated negative electrode active material precursor may be prepared by subjecting the particles to a second heat treatment.
  • the silicon / carbon black / carbon composite particles, flaky graphite fragment particles, and amorphous or semicrystalline carbon precursors are as described above, and the atmosphere and temperature of the heat treatment are also as described above.
  • the shape of the negative active material according to the exemplary embodiment illustrated through FIGS. 1 and 3 may be spherical, but is not limited thereto.
  • the average particle diameter (D50) of the negative electrode active material may be 2 to 40 ⁇ m, specifically, may be 5 to 30 ⁇ m.
  • the negative electrode active material has an average particle diameter (D50) in the above range it can be obtained an excellent electrode manufacturing process efficiency and electrode density.
  • a cathode including a cathode active material capable of intercalating and deintercalating lithium ions, a cathode including the anode active material, and a lithium secondary battery including an electrolyte is provided. .
  • the lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, etc., Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the negative electrode may be prepared by mixing the above-described negative electrode active material, a binder, and optionally a conductive material to prepare a composition for forming a negative electrode active material layer, and then coating the negative electrode current collector.
  • the binder may be polyvinyl alcohol, carboxymethyl cellulose / styrene-butadiene rubber, hydroxypropylene cellulose, diacetylene cellulose, polyvinylchloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene or Polypropylene may be used, but is not limited thereto.
  • the binder may be mixed in an amount of 1 to 30 wt% based on the total amount of the composition for forming the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes to the battery.
  • graphite such as natural graphite and artificial graphite
  • Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be mixed in an amount of 0.1 to 30 wt% based on the total amount of the composition for forming the negative electrode active material layer.
  • the negative electrode current collector may have a thickness of 3 to 500 ⁇ m.
  • Examples of the negative electrode current collector may include stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel.
  • the negative electrode current collector may increase the adhesion of the negative electrode active material by forming fine irregularities on its surface, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the positive electrode includes a positive electrode active material, and as the positive electrode active material, a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound) may be used. Specifically, at least one selected from cobalt, manganese and nickel and at least one of complex oxides of lithium can be used.
  • the positive electrode may also be prepared by mixing the positive electrode active material, a binder, and optionally a conductive material to prepare a composition for forming a positive electrode active material layer, and then applying the composition to a positive electrode current collector such as aluminum.
  • the electrolyte solution is a lithium salt; And non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like.
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenylborate, imide and the like can be used.
  • the non-aqueous organic solvent is N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, tetrahydrate Roxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, triphosphate Esters, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyrionate, ethyl propionate And the like can be used.
  • the organic solid electrolyte may include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a poly etchation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, and an ionic dissociation group.
  • a polyethylene derivative a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a poly etchation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, and an ionic dissociation group.
  • To the polymer can be used.
  • the inorganic solid electrolyte may be Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 ⁇ Nitrides, halides, sulfates, and the like of Li, such as LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 , may be used.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitrobenzene Derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like can be added.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included to impart nonflammability
  • carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the separator may exist between the positive electrode and the negative electrode according to the type of the lithium secondary battery.
  • As the separator an insulating thin film having high ion permeability and mechanical strength may be used.
  • the separator may have a pore diameter of 0.01 to 10 ⁇ m and a thickness of 5 to 300 ⁇ m.
  • the separator may include an olefin polymer such as polypropylene having chemical resistance and hydrophobicity; Sheets or nonwovens made of glass fibers, polyethylene, and the like can be used.
  • an olefin polymer such as polypropylene having chemical resistance and hydrophobicity
  • Sheets or nonwovens made of glass fibers, polyethylene, and the like can be used.
  • the electrolyte may also serve as a separator.
  • a graphite fragment having an average particle diameter (D50) of 200 ⁇ m was added to an ethyl alcohol solution, mixed using a magnetic stirrer, and then a flaky graphite fragment having an average thickness of 30 nm using a high shear mixer. Particles were prepared.
  • the obtained composite particle powder was mixed with flaky graphite fragment particles having a thickness of 30 nm and a petroleum pitch and introduced into a rotor blade mill, and the surface of the composite particle was coated with a shell layer composed of flaky graphite fragments and a petroleum pitch. Obtained composite particles.
  • the obtained composite particle powder was heat-treated at 1000 ° C. for 1 hour at an elevated temperature rate of 5 ° C./min in argon atmosphere, and then cooled to prepare a negative electrode active material having an average particle diameter (D50) of 15 ⁇ m.
  • a graphite fragment having an average particle diameter (D50) of 200 ⁇ m was added to an ethyl alcohol solution, mixed using a magnetic stirrer, and then a flaky graphite fragment having an average thickness of 30 nm using a high shear mixer. Particles were prepared.
  • D50 average particle diameter
  • Si silicon
  • D50 average particle diameter
  • the surface of the hard carbon is coated with a mixture of the silicon (Si) / carbon black / carbon composite particles and the petroleum pitch Composite particle powder was obtained.
  • the obtained composite particle powder was mixed with flaky graphite fragment particles having a thickness of 30 nm and a petroleum pitch and introduced into a rotor blade mill, and the surface of the composite particle was coated with a shell layer composed of flaky graphite fragments and a petroleum pitch. Obtained composite particles.
  • the obtained composite particle powder was heat-treated at 1000 ° C. for 1 hour at an elevated temperature rate of 5 ° C./min in argon atmosphere, and then cooled to prepare a negative electrode active material having an average particle diameter (D50) of 15 ⁇ m.
  • a negative electrode active material was prepared in the same manner as in Comparative Example 1 except that the average particle diameter (D50) of 10 ⁇ m population type natural graphite was used in Comparative Example 1.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of hard carbon particles as core particles used in Example 1 and Comparative Example 1
  • FIG. 5 is spherical natural graphite particles as core particles used in Example 2 and Comparative Example 2.
  • the hard carbon particles which are the core particles used in Example 1 and Comparative Example 1
  • the hard carbon particles have a sharp shape, and are spherical natural particles of the core particles used in Examples 2 and Comparative Example 2.
  • graphite it can be confirmed that spherical natural graphite fragments are spherical.
  • FIG. 6 is a scanning electron microscope (SEM) photograph of the negative electrode active material according to Comparative Example 1
  • FIG. 7 is a scanning electron microscope (SEM) photograph of the negative electrode active material according to Example 1.
  • Example 1 a semi-crystalline material obtained by carbonizing carbon fine particles, silicon (Si) / carbon black / carbon composite particles, and petroleum pitch on the surface of core particles that are hard carbon or soft carbon It can be confirmed that the core particles made of carbon have a core-shell structure forming a shell layer, and in Comparative Example 1, only core particles were present without the coated shell layer.
  • FIG. 8 is a scanning electron microscope (SEM) picture of the negative electrode active material according to Comparative Example 2
  • Figure 9 is a scanning electron microscope (SEM) picture of the negative electrode active material according to Example 2.
  • Example 2 carbon particles, silicon (Si) / carbon black / carbon composite particles, and semicrystalline carbon obtained by carbonizing petroleum pitch on the surface of spherical natural graphite core particles It can be confirmed that the core particles have a core-shell structure forming a shell layer, and in Comparative Example 2, only core particles were present without the coated shell layer.
  • Figure 11 is a particle size distribution of the negative electrode active material according to Example 2 and Comparative Example 2.
  • the particle size distribution of the negative electrode active material of Example 1 increases as compared with the case of the negative electrode active material of Comparative Example 1. This is due to the fact that the negative electrode active material prepared in Example 1 had a shell layer composed of flaky graphite and semi-crystalline carbon on the surface of the negative electrode active material particles of Comparative Example 1.
  • the negative electrode active material, carbon black, and CMC / SBR (carboxymethyl cellulose / styrene-butadiene rubber) prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were mixed in distilled water at a weight ratio of 80: 5: 15.
  • a negative electrode slurry was prepared.
  • the negative electrode slurry was coated on a copper foil, followed by drying and pressing to prepare a negative electrode.
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • charging was performed in CC / CV mode, the termination voltage was maintained at 0.02V, and charging was terminated when the current was 0.02mA. Discharge was performed in CC mode, and the termination voltage was kept at 2.0V. Charging was performed in CC mode from three cycles thereafter, and the termination voltage was maintained at 0.02V. Discharge was performed in CC mode, and the termination voltage was kept at 2.0V.
  • 12 and 13 are charge and discharge curves of one (1st) and two (2nd) cycles of the lithium secondary battery manufactured using the negative electrode active materials prepared in Example 1 and Comparative Example 1, respectively.
  • 15 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared using the negative electrode active material prepared in Example 2 and Comparative Example 2, respectively, from which the lithium secondary including the negative electrode active material according to the present invention It was found that the battery can obtain better initial efficiency characteristics.
  • 16 and 17 are cycle curves for the lithium secondary battery manufactured by using the negative electrode active materials prepared in Example 1, Comparative Example 1, Example 2, and Comparative Example 2, respectively. It was found that the included lithium secondary battery can obtain better life characteristics.
  • Examples 18 and 19 show the results of differential scanning sequence analysis of the electrodes prepared using the negative electrode active materials of Example 1, Comparative Example 1, Example 2, and Comparative Example 2, respectively. It can be seen that the calorific values of Examples 1 and 2 are lower than those of Comparative Examples 1 and 2 in the low temperature (250 ° C. or lower) range, and the exothermic peaks of Examples 1 and 2 in the high temperature (250 ° C. or higher) range. It turned out that was higher than the comparative example 1 and the comparative example 2.

Abstract

A negative electrode active material for a lithium secondary battery, a manufacturing method therefor, and a lithium secondary battery including the same are provided, the negative electrode active material comprising: core particles that include one or more selected from hard carbon, soft carbon and spherical natural graphite; and shell layers located on surfaces of the core particles, wherein the shell layer comprises i) a first shell layer that includes silicon (Si)/carbon black/carbon composite particles, and amorphous or semi-crystalline carbon, and ii) a second shell layer that has a structure in which the amorphous or semi-crystalline carbon is dispersed between flake graphite fragment particles, and the flake graphite fragment particles are stacked and structured in a concentric circle direction, and that is formed on the first shell layer.

Description

카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지Anode active material for lithium secondary battery comprising a core made of carbon, a manufacturing method thereof and a lithium secondary battery comprising the same
본 기재는 리튬 이차 전지용 음극 활물질, 이의 제조방법, 그리고 이를 포함하는 리튬 이차 전지가 제공된다.The present disclosure provides a negative electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same.
최근 리튬 이차 전지가 휴대용 전자기기뿐 아니라 전기자동차 등 중대형 리튬 이차 전지로 응용이 확대됨에 따라 고용량 및 충방전 출력 특성 향상이 요구되고 있다. Recently, as the application of lithium secondary batteries to medium and large-sized lithium secondary batteries such as electric vehicles as well as portable electronic devices, high capacity and charge / discharge output characteristics are required to be improved.
그러나 현재 상용화되어 있는 음극 활물질로서 흑연은 이론적 용량이 약 372 mAh/g으로 제한되어 있어 새로운 고용량 음극 활물질 개발이 시급한 실정이다.However, graphite as a commercially available negative active material is limited to a theoretical capacity of about 372 mAh / g, so it is urgent to develop a new high capacity negative active material.
흑연을 대체 할 수 있는 재료로서 종래부터 실리콘(Si) 이나 그 화합물이 검토되어 왔다. 실리콘은 리튬과의 화합물 형성 반응을 통해 리튬을 가역적으로 흡장 및 방출하며 이론적 최대 용량이 약 4200mAh/g(9800mAh/cc, 비중 2.23)으로서 흑연에 비해 매우 크기 때문에 고용량 음극 재료로 유망하다. As a material which can replace graphite, silicon (Si) or its compound has been studied conventionally. Silicon reversibly occludes and releases lithium through compound formation reaction with lithium and is promising as a high capacity cathode material because its theoretical maximum capacity is about 4200 mAh / g (9800 mAh / cc, specific gravity 2.23), which is much larger than graphite.
그러나 충전 및 방전시 리튬과의 반응에 의해서 부피 변화가 일어나며, 이로 인하여 실리콘 활물질 분말의 미분화 및 실리콘 활물질 분말과 집전체와의 전기적 접촉 불량이 발생한다. 이로 인해 전지의 충전 및 방전 사이클이 진행됨에 따라 전지 용량이 급격하게 감소되어 사이클 수명이 짧아지는 원인이 된다.However, during charging and discharging, a volume change occurs due to reaction with lithium, which causes micronization of the silicon active material powder and poor electrical contact between the silicon active material powder and the current collector. As a result, as the charge and discharge cycles of the battery proceed, the battery capacity is drastically reduced, which causes the cycle life to be shortened.
이에 따라 충방전 사이클 특성을 개선하기 위해 실리콘(Si) 또는 그 화합물 입자를 형성하거나, 이들 화합물 입자와 탄소와의 복합체 활물질을 이용하는 방법이 검토되어 왔다. 그러나 여전히 리튬 이차 전지용 음극 활물질로 사용하기에는 용량, 사이클 특성 및 출력 특성의 향상이 충분하지 않다. 또한 상기 복합입자의 표면에 노출된 Si 및 Si계 화합물의 경우 충방전 시 전해액과의 반응이 일어나 사이클 특성이 저하 될 수 있으며 온도 증가에 따른 열적 안정성이 저하될 수 있다. Accordingly, in order to improve charge and discharge cycle characteristics, a method of forming silicon (Si) or a compound particle thereof or using a composite active material of these compound particles and carbon has been studied. However, there is still not enough improvement in capacity, cycle characteristics, and output characteristics for use as a negative electrode active material for lithium secondary batteries. In addition, in the case of Si and Si-based compounds exposed to the surface of the composite particles, the reaction with the electrolyte may occur during charging and discharging, and thus the cycle characteristics may be lowered, and thermal stability may decrease due to an increase in temperature.
본 발명의 일 구현예는 충방전 용량이 크고, 사이클 수명 특성이 우수하며, 높은 전류밀도에서의 충방전 출력 특성이 우수하고 열적 안정성이 향상된 리튬 이차 전지용 음극 활물질을 제공하기 위한 것이다. One embodiment of the present invention is to provide a negative active material for a lithium secondary battery having a large charge and discharge capacity, excellent cycle life characteristics, excellent charge and discharge output characteristics at high current density and improved thermal stability.
본 발명의 다른 일 구현예는 상기 리튬 이차 전지용 음극 활물질의 제조 방법을 제공하기 위한 것이다.Another embodiment of the present invention is to provide a method of manufacturing the negative electrode active material for the lithium secondary battery.
본 발명의 또 다른 일 구현예는 상기 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지를 제공하기 위한 것이다.Another embodiment of the present invention is to provide a lithium secondary battery comprising the negative electrode active material for the lithium secondary battery.
본 발명의 일 구현예는 하드 카본, 소프트 카본 및 구형화 천연흑연으로부터 선택되는 적어도 하나를 포함하는 코어 입자 및 상기 코어 입자의 표면에 위치하는 쉘층을 포함하고,One embodiment of the present invention includes a core particle including at least one selected from hard carbon, soft carbon, and spherical natural graphite, and a shell layer on the surface of the core particle,
상기 쉘층은 i) 실리콘(Si)/카본블랙/탄소 복합입자, 및 비정질(amorphous) 또는 준결정질(semi-crystalline) 탄소를 포함하는 제1 쉘층; 및 ii) 인편상 흑연 절편 입자 사이에 비정질 또는 준결정질 탄소가 분포하고, 인편상 흑연 절편 입자가 동심원 방향으로 적층되어 결구된 구조를 가지며, 상기 제1 쉘층 상에 형성된 제2 쉘층을 포함하는 리튬 이차 전지용 음극 활물질을 제공한다.The shell layer may comprise: i) a first shell layer comprising silicon (Si) / carbon black / carbon composite particles, and amorphous or semi-crystalline carbon; And ii) a structure in which amorphous or quasi-crystalline carbon is distributed between the flaky graphite fragment particles, and the flaky graphite fragment particles are stacked in a concentric manner and formed, and a second shell layer formed on the first shell layer. Provided is a negative active material for a secondary battery.
상기 코어 입자의 평균입경(D50)은 2 내지 20 ㎛일 수 있다. The average particle diameter (D50) of the core particles may be 2 to 20 ㎛.
상기 코어 입자는 상기 음극 활물질 총량에 대하여 5 내지 85 중량%로 포함될 수 있다.The core particles may be included in 5 to 85% by weight based on the total amount of the negative electrode active material.
상기 제1 쉘층에 포함된 복합입자의 평균입경(D50)은 0.05 ㎛ 내지 2 ㎛일 수 있다.The average particle diameter (D50) of the composite particles included in the first shell layer may be 0.05 μm to 2 μm.
상기 제1 쉘층에 포함된 복합입자는 평균 입경이 5 내지 200 ㎚인 실리콘 입자를 포함하며, 평균 크기가 2.0 내지 50 ㎚인 메소 포아(mesopore)를 포함할 수 있다.The composite particles included in the first shell layer may include silicon particles having an average particle diameter of 5 to 200 nm, and may include mesopores having an average size of 2.0 to 50 nm.
상기 제1 쉘층에 포함된 복합입자는 실리콘 입자 및 카본 블랙 입자를 1:9 내지 9:1의 중량비로 포함할 수 있다.The composite particles included in the first shell layer may include silicon particles and carbon black particles in a weight ratio of 1: 9 to 9: 1.
상기 제1 쉘층에 포함된 복합입자는 0.1 내지 70 중량%의 비정질 또는 준결정질 탄소를 포함할 수 있다.The composite particles included in the first shell layer may include 0.1 to 70% by weight of amorphous or semicrystalline carbon.
상기 제1 쉘층은 복합입자 및 비정질 또는 준결정질 탄소를 1:9 내지 9:1의 중량비로 포함할 수 있다.The first shell layer may include the composite particles and amorphous or semicrystalline carbon in a weight ratio of 1: 9 to 9: 1.
상기 제1 쉘층의 총 중량은 음극 활물질 전체 중량 기준으로 10 내지 94 중량%일 수 있다.The total weight of the first shell layer may be 10 to 94% by weight based on the total weight of the negative electrode active material.
상기 제2 쉘층에 포함된 인편상 흑연 절편 입자의 평균 두께는 100 nm 이하일 수 있다.An average thickness of the flaky graphite fragment particles included in the second shell layer may be 100 nm or less.
상기 제2 쉘층에 포함된 인편상 흑연 절편 입자는 음극 활물질 전체 중량을 기준으로 1 내지 40 중량% 포함될 수 있다.The flaky graphite fragment particles included in the second shell layer may be included in an amount of 1 to 40 wt% based on the total weight of the negative electrode active material.
상기 비정질 또는 준결정질 탄소는 수크로오스(sucrose), 페놀 수지, 나프탈렌 수지, 폴리비닐알코올, 폴리비닐클로라이드, 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴, 폴리아미드, 퓨란 수지, 셀룰로오스, 스티렌, 폴리이미드, 에폭시 수지, 염화비닐 수지, 석탄계 피치, 석유계 피치, 메조페이스 피치, 타르 및 저분자량 중질유로부터 선택되는 적어도 하나를 포함하는 탄소 전구체로부터 형성될 수 있다.The amorphous or semicrystalline carbon may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin, cellulose, styrene, polyyi It may be formed from a carbon precursor including at least one selected from the group consisting of mid, epoxy resin, vinyl chloride resin, coal-based pitch, petroleum-based pitch, mesoface pitch, tar and low molecular weight heavy oil.
상기 코어 입자의 평균입경(D50)과 상기 쉘층의 두께의 비율은 17 내지 95 : 5 내지 83 일 수 있다.The ratio of the average particle diameter (D50) of the core particles and the thickness of the shell layer may be 17 to 95: 5 to 83.
상기 제1 쉘층과 상기 제2 쉘층의 두께의 비율은 5 내지 95 : 95 내지 5 일 수 있다.The ratio of the thickness of the first shell layer and the second shell layer may be 5 to 95:95 to 5.
상기 음극 활물질은 상기 쉘층의 표면에 위치하고 상기 비정질 또는 준결정질 탄소를 포함하는 코팅층을 더 포함할 수 있고, 상기 코팅층의 두께는 0.01 내지 5 ㎛일 수 있다.The anode active material may further include a coating layer disposed on the surface of the shell layer and including the amorphous or semicrystalline carbon, and the thickness of the coating layer may be 0.01 to 5 μm.
상기 음극 활물질의 평균입경(D50)은 2 내지 40 ㎛일 수 있다. The average particle diameter (D50) of the negative electrode active material may be 2 to 40 ㎛.
본 발명의 다른 일 구현예는 하드 카본, 소프트 카본 및 구형화 천연흑연으로부터 선택되는 적어도 하나를 포함하는 코어 입자의 표면을, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고, 상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자를 얻는 단계; 및 상기 음극 활물질 전구체 입자를 열처리하는 단계를 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법을 제공한다.Another embodiment of the present invention provides a surface of a core particle comprising at least one selected from hard carbon, soft carbon, and spherical natural graphite, a mixture of silicon / carbon black / carbon composite particles, and an amorphous or semicrystalline carbon precursor. Coating to form a first shell layer, and coating the surface of the first shell layer with a mixture of flaky graphite fragment particles and an amorphous or semi-crystalline carbon precursor to form a second shell layer to obtain anode active material precursor particles; And it provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of heat-treating the negative electrode active material precursor particles.
상기 음극 활물질의 제조 방법은 상기 음극 활물질 전구체 입자를 열처리하는 단계 전에, 상기 음극 활물질 전구체 입자의 표면을 비정질 또는 준결정질 탄소 전구체로 코팅하는 단계를 더 포함할 수 있다.The method of manufacturing the negative active material may further include coating the surface of the negative electrode active material precursor particles with an amorphous or semi-crystalline carbon precursor before the heat treatment of the negative electrode active material precursor particles.
상기 열처리는 질소, 아르곤, 수소 또는 이들의 혼합 가스를 포함하는 분위기, 또는 진공 하에서 수행될 수 있고, 700 내지 1300℃의 온도에서 수행될 수 있다.The heat treatment may be performed under an atmosphere containing nitrogen, argon, hydrogen or a mixed gas thereof, or under vacuum, and may be performed at a temperature of 700 to 1300 ° C.
본 발명의 또 다른 일 구현예는 상기 음극 활물질을 포함하는 음극; 양극; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.Another embodiment of the invention the negative electrode including the negative electrode active material; anode; And it provides a lithium secondary battery comprising an electrolyte solution.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments of the present invention are included in the following detailed description.
충방전 용량이 크고, 사이클 수명 특성이 우수하며, 높은 전류밀도에서의 충방전 출력 특성이 우수하며 열적 안정성이 크게 향상된 리튬 이차 전지를 구현할 수 있다.A lithium secondary battery having a large charge and discharge capacity, excellent cycle life characteristics, excellent charge and discharge output characteristics at a high current density, and greatly improved thermal stability can be implemented.
도 1은 일 구현예에 따른 음극 활물질의 개략적인 단면도이다. 1 is a schematic cross-sectional view of a negative electrode active material according to an embodiment.
도 2는 본 발명에 따른 리튬 이차전지용 음극 활물질의 코어에 포함되는 실리콘(Si)/카본블랙/탄소 복합입자의 단면에 대한 개념도이다.2 is a conceptual diagram of a cross section of a silicon (Si) / carbon black / carbon composite particle included in a core of a negative active material for a lithium secondary battery according to the present invention.
도 3은 다른 일 구현예에 따른 음극 활물질의 개략적인 단면도이다.3 is a schematic cross-sectional view of a negative electrode active material according to another embodiment.
도 4는 실시예 1 및 비교예 1에 사용된 코어입자의 주사전자현미경(SEM) 사진이다.4 is a scanning electron microscope (SEM) photograph of the core particles used in Example 1 and Comparative Example 1. FIG.
도 5는 실시예 2 및 비교예 2에 사용된 코어입자의 주사전자현미경(SEM) 사진이다.5 is a scanning electron microscope (SEM) photograph of the core particles used in Example 2 and Comparative Example 2.
도 6는 실시예 1에서 제조된 음극 활물질의 주사전자현미경(SEM) 사진이다.6 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Example 1. FIG.
도 7는 비교예 1에서 제조된 음극 활물질의 주사전자현미경(SEM) 사진이다.7 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Comparative Example 1. FIG.
도 8는 실시예 2에서 제조된 음극 활물질의 주사전자현미경(SEM) 사진이다.8 is a scanning electron microscope (SEM) photograph of the anode active material prepared in Example 2. FIG.
도 9는 비교예 2에서 제조된 음극 활물질의 주사전자현미경(SEM) 사진이다.9 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Comparative Example 2. FIG.
도 10는 실시예 1 및 비교예 1에서 제조된 음극 활물질의 입도분포이다.10 is a particle size distribution of negative electrode active materials prepared in Example 1 and Comparative Example 1. FIG.
도 11는 실시예 2 및 비교예 2에서 제조된 음극 활물질의 입도분포이다.11 is a particle size distribution of the negative electrode active materials prepared in Example 2 and Comparative Example 2. FIG.
도 12은 실시예 1에서 제조된 음극활물질을 이용하여 제조된 리튬 이차전지에 대한 1회 및 2회 사이클의 충방전 곡선이다.12 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared using the negative electrode active material prepared in Example 1.
도 13은 비교예 1에서 제조된 리튬 이차전지에 대한 1회 및 2회 사이클의 충방전 곡선이다.13 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared in Comparative Example 1.
도 14은 실시예 2에서 제조된 음극활물질을 이용하여 제조된 리튬 이차전지에 대한 1회 및 2회 사이클의 충방전 곡선이다.14 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared using the negative electrode active material prepared in Example 2.
도 15은 비교예 2에서 제조된 리튬 이차전지에 대한 1회 및 2회 사이클의 충방전 곡선이다.15 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared in Comparative Example 2.
도 16은 실시예 1 및 비교예 1에서 제조된 리튬 이차전지에 대한 사이클곡선이다. 16 is a cycle curve for the lithium secondary battery prepared in Example 1 and Comparative Example 1.
도 17은 실시예 2 및 비교예 2에서 제조된 리튬 이차전지에 대한 사이클곡선이다. 17 is a cycle curve for the lithium secondary battery prepared in Example 2 and Comparative Example 2.
도 18는 실시예 1 및 비교예 1의 음극 활물질을 이용하여 제조한 전극을 시차주사열분석(DSC)한 결과이다.FIG. 18 shows the results of differential scanning thermal analysis (DSC) of electrodes prepared using the negative electrode active materials of Example 1 and Comparative Example 1. FIG.
도 19는 실시예 2 및 비교예 2의 음극 활물질을 이용하여 제조한 전극을 시차주사열분석(DSC)한 결과이다.19 is a result of differential scanning thermal analysis (DSC) of electrodes prepared using the negative electrode active materials of Example 2 and Comparative Example 2. FIG.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
일 구현예에 따른 음극 활물질은 도 1을 통하여 설명될 수 있다.The negative electrode active material according to one embodiment may be described with reference to FIG. 1.
도 1은 일 구현예에 따른 음극 활물질의 개략적인 단면도이다. 1 is a schematic cross-sectional view of a negative electrode active material according to an embodiment.
도 1을 참고하면, 일 구현예에 따른 음극 활물질(1)은 코어 입자(11)와 상기 코어 입자(11)의 표면에 위치하는 쉘층으로 이루어질 수 있다. 구체적으로 상기 쉘층은 상기 코어 입자(11)를 둘러싸는 형태일 수 있다.Referring to FIG. 1, the negative electrode active material 1 according to an embodiment may include a core particle 11 and a shell layer located on the surface of the core particle 11. In detail, the shell layer may have a shape surrounding the core particle 11.
상기 코어 입자(11)는 하드 카본, 소프트 카본 및 구형화 천연흑연으로부터 선택되는 적어도 하나를 포함할 수 있다. 상기 하드 카본은 구체적으로 비정질 하드 카본일 수 있고, 상기 소프트 카본은 구체적으로 준결정질 또는 저결정질 소프트 카본일 수 있다. 또한, 상기 구형화 천연 흑연 입자는 인편상 천연흑연 절편들이 양배추상 혹은 랜덤상으로 결구되어 형성된다.The core particle 11 may include at least one selected from hard carbon, soft carbon, and spherical natural graphite. Specifically, the hard carbon may be amorphous hard carbon, and the soft carbon may be specifically semicrystalline or low crystalline soft carbon. In addition, the spherical natural graphite particles are formed by flakes of natural graphite fragments in the cabbage or random phase.
상기 쉘층은 i) 실리콘(Si)/카본블랙/탄소 복합입자(12), 및 비정질(amorphous) 또는 준결정질(semi-crystalline) 탄소(13)를 포함하는 제1 쉘층; 및 ii) 인편상 흑연 절편 입자(14) 사이에 비정질 또는 준결정질 탄소(15)가 분포하고, 인편상 흑연 절편 입자가 동심원 방향으로 적층되어 결구된 구조를 가지며, 상기 제1 쉘층 상에 형성된 제2 쉘층을 포함할 수 있다.The shell layer comprises: i) a first shell layer comprising silicon (Si) / carbon black / carbon composite particles (12), and amorphous or semi-crystalline carbon (13); And ii) amorphous or quasi-crystalline carbon 15 is distributed between the flaky graphite fragment particles 14, and the flaky graphite fragment particles are laminated in a concentric direction and formed and formed on the first shell layer. It may comprise two shell layers.
상기 코어 입자로 사용되는 하드 카본이나 소프트 카본은 음극재로 사용할 경우 전지의 출력특성은 좋으나, 초기 효율이 낮고, 리튬 이온의 저장 용량이 낮다.Hard carbon or soft carbon used as the core particles has good output characteristics of the battery when used as a negative electrode material, but has low initial efficiency and low storage capacity of lithium ions.
상기 코어 입자로 사용되는 상기 구형화 천연흑연은 리튬 이온의 저장 용량이 372 mAh/g의 이론적 용량의 한계를 가지고 있어 용량 증대의 필요성을 가지고 있다.The spheronized natural graphite used as the core particles has a limit of theoretical capacity of 372 mAh / g of lithium ions, which has a need for increasing capacity.
또한 상기 실리콘 또는 실리콘 합금 미립자를 음극재로 사용할 경우 전지의 용량은 높으나, 초기 효율이 낮고, 부피 변화가 일어나며, 이로 인하여 실리콘 활물질 분말의 미분화 및 실리콘 활물질 분말과 집전체와의 전기적 접촉 불량이 발생할 수 있다. 이로 인해 전지의 충방전 사이클이 진행됨에 따라 전지 용량이 급격하게 감소되어 사이클 수명이 짧아지는 원인이 된다. 또한, 상기 실리콘 또는 실리콘 합금 미립자를 음극재로 사용할 경우 전해액과 직접 접촉하여 반응함으로서 열적 인정성이 저하될 수 있다.In addition, when the silicon or silicon alloy fine particles are used as the negative electrode material, the capacity of the battery is high, but the initial efficiency is low, and the volume change occurs, which causes micronization of the silicon active material powder and poor electrical contact between the silicon active material powder and the current collector. Can be. As a result, as the charge and discharge cycle of the battery proceeds, the battery capacity is drastically reduced, which causes the cycle life to be shortened. In addition, when the silicon or silicon alloy fine particles are used as the negative electrode material, the thermal recognition property may be lowered by directly contacting and reacting with the electrolyte.
일 구현예에 따르면, 하드 카본, 소프트 카본 및 구형화 천연흑연을 코어 입자로 사용하고, 상기 코어 입자의 표면을, i) 실리콘(Si)/카본블랙/탄소 복합입자(12), 및 비정질(amorphous) 또는 준결정질(semi-crystalline) 탄소(13)를 포함하는 제1 쉘층; 및 ii) 인편상 흑연 절편 입자(14) 사이에 비정질 또는 준결정질 탄소(15)가 분포하고, 인편상 흑연 절편 입자가 동심원 방향으로 적층되어 결구된 구조를 가지며, 상기 제1 쉘층 상에 형성된 제2 쉘층으로 코팅하는 구조를 가짐으로써, 리튬 저장 용량이 크고, 용량 유지율이 높으며, 초기 효율이 향상되고, 충방전시 리튬 이온의 이동이 용이하여 출력특성이 우수하고, 높은 충방전 효율을 가질 수 있다. 또한, 상기 실리콘(Si)/카본블랙/탄소 복합입자(12)와 전해액과의 접촉을 방지하여 상기 음극 활물질의 열적 안정성이 크게 향상된다.According to one embodiment, hard carbon, soft carbon, and spherical natural graphite are used as core particles, and the surface of the core particles is i) silicon (Si) / carbon black / carbon composite particles 12, and amorphous ( a first shell layer comprising amorphous or semi-crystalline carbon 13; And ii) amorphous or quasi-crystalline carbon 15 is distributed between the flaky graphite fragment particles 14, and the flaky graphite fragment particles are laminated in a concentric direction and formed and formed on the first shell layer. It has a structure of coating with 2 shell layers, which has a large lithium storage capacity, high capacity retention rate, improved initial efficiency, easy movement of lithium ions during charge and discharge, and excellent output characteristics and high charge and discharge efficiency. have. In addition, the thermal stability of the negative electrode active material is greatly improved by preventing contact between the silicon (Si) / carbon black / carbon composite particles 12 and the electrolyte solution.
상기 코어 입자의 평균입경(D50)은 2 내지 20 ㎛ 일 수 있고, 구체적으로는 5 내지 15 ㎛ 일 수 있다. 상기 코어 입자가 상기 범위의 평균입경(D50)을 가질 경우 상기 탄소 미립자로 쉘층을 형성하기 위한 코팅이 잘 이루어지며, 이에 따라 고용량을 가지며 출력특성이 우수한 리튬 이차 전지에 유용하게 적용할 수 있다. 이때 상기 평균입경(D50)은 입도 분포에서 누적 체적이 50 부피%에 해당되는 입자의 지름을 의미한다.The average particle diameter (D50) of the core particles may be 2 to 20 ㎛, specifically 5 to 15 ㎛. When the core particles have an average particle diameter (D50) in the above range, the coating for forming the shell layer with the carbon fine particles is well made, and thus can be usefully applied to a lithium secondary battery having a high capacity and excellent output characteristics. At this time, the average particle diameter (D50) refers to the diameter of the particles corresponding to the cumulative volume 50% by volume in the particle size distribution.
상기 하드 카본은 수크로오스(sucrose), 페놀 수지(phenol resin), 퓨란 수지(furan resin), 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리이미드(polyimide), 에폭시 수지(epoxy resin), 셀룰로오스(cellulose), 스티렌(styrene), 구연산, 스티아르산, 폴리불화비닐리덴, 카르복시메틸셀룰로오스(CMC), 히드록시프로필셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 에틸렌-프로필렌-디엔 모노머(EPDM), 전분, 글루코오스, 젤라틴 및 당류로부터 선택되는 적어도 하나의 탄소질 물질이 탄화되어 형성된 것을 사용할 수 있다. The hard carbon may be sucrose, phenol resin, furan resin, furfuryl alcohol, polyacrylonitrile, polyimide, epoxy resin. ), Cellulose, styrene, citric acid, stearic acid, polyvinylidene fluoride, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene At least one carbonaceous material selected from ethylene-propylene-diene monomer (EPDM), sulfonated ethylene-propylene-diene monomer (EPDM), starch, glucose, gelatin and saccharides may be used.
상기 소프트 카본은 폴리비닐알코올, 폴리비닐클로라이드, 석탄계 피치, 석유계 피치, 메조페이스 피치 및 저분자량 중질유로부터 선택되는 적어도 하나의 탄소질 물질이 탄화되어 형성된 것을 사용할 수 있다.The soft carbon may be formed by carbonizing at least one carbonaceous material selected from polyvinyl alcohol, polyvinyl chloride, coal-based pitch, petroleum-based pitch, mesoface pitch, and low molecular weight heavy oil.
상기 코어 입자는 상기 음극 활물질 총량에 대하여 5 내지 85 중량%로 포함될 수 있고, 구체적으로는 20 내지 80 중량%로 포함될 수 있다. 상기 코어 입자가 상기 범위 내로 포함될 경우 상기 코어 입자 주위에 쉘층이 적절한 비율로 형성되어 우수한 출력특성을 나타낼 수 있으며, 용량을 향상시킬 수 있다.The core particles may be included in 5 to 85% by weight, specifically, 20 to 80% by weight based on the total amount of the negative electrode active material. When the core particles are included in the above range, the shell layer may be formed at an appropriate ratio around the core particles to exhibit excellent output characteristics and to improve capacity.
제1 쉘층에 포함된 실리콘/카본블랙/탄소 복합입자(이하 '복합입자'라 함) 및 비정질 또는 준결정질 탄소는 1:9 내지 9:1의 중량비로 코어에 포함하는 것이 바람직하다. 복합입자 및 비정질 또는 준결정질 탄소의 중량비가 1:9 보다 작을 경우 용량 증대 효과가 충분하지 않을 수 있고, 9:1 보다 클 경우에는 복합입자 및 비정질 또는 준결정질 탄소가 균일하게 혼합 및 분산이 어려워 음극 활물질로서의 특성이 저하될 수 있다.Silicon / carbon black / carbon composite particles (hereinafter referred to as “composite particles”) included in the first shell layer And amorphous or semicrystalline carbon in the core in a weight ratio of 1: 9 to 9: 1. If the weight ratio of the multiparticulates and amorphous or semicrystalline carbon is less than 1: 9, the effect of increasing the capacity may not be sufficient. If the weight ratio of the multiparticulates and the amorphous or semicrystalline carbon is less than 9: 1, it is difficult to uniformly mix and disperse the multiparticulates and the amorphous or semicrystalline carbon. Properties as the negative electrode active material may be lowered.
나아가, 상기 복합입자 및 비정질 또는 준결정질 탄소를 포함하는 제1 쉘층의 총 중량은 음극 활물질 전체 중량 기준으로 10 내지 94 중량%로 포함되는 것이 바람직하다.Further, the total weight of the first shell layer including the composite particles and amorphous or semi-crystalline carbon is preferably included in 10 to 94% by weight based on the total weight of the negative electrode active material.
상기 복합입자(12)는 도 2에 나타낸 바와 같이 실리콘 입자(21) 및 카본 블랙 입자(22)가 균일하게 혼합되고, 비정질 또는 준결정질 탄소(23)에 의해서 결합된 구조를 가진다.As shown in FIG. 2, the composite particles 12 have a structure in which silicon particles 21 and carbon black particles 22 are uniformly mixed and bonded by amorphous or semi-crystalline carbon 23.
상기 복합입자의 D50(레이저 회절 산란식 입도 분포 측정법에 의해 측정된 50% 체적 누적 입경)은 0.05 ㎛ 내지 2 ㎛인 것이 바람직한데, 이는 D50이 0.05 ㎛ 미만일 경우 상기 음극활물질 제조 과정 중 분산이 충분하지 않을 수 있으며, 2 ㎛를 초과할 경우에는 음극활물질에서 상기 제1 쉘층 형성이 어려울 수 있다.D 50 (50% volume cumulative particle diameter measured by laser diffraction scattering particle size distribution measurement) of the composite particles is preferably from 0.05 ㎛ to 2 ㎛, which is dispersed during the preparation of the negative electrode active material when D 50 is less than 0.05 ㎛ This may not be sufficient, and when it exceeds 2 μm, it may be difficult to form the first shell layer in the negative electrode active material.
또한, 상기 복합입자는 실리콘 입자 및 카본 블랙 입자를 1:9 내지 9:1의 중량비로 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질을 제공한다. 상기 실리콘 입자 및 상기 카본 블랙 입자의 중량비가 1:9 보다 작아 상기 실리콘 입자의 양이 적을 경우 실리콘에 의한 고용량 효과가 충분하지 않을 수 있고, 상기 실리콘 입자 및 상기 카본 블랙 입자의 중량비가 9:1 보다 커서 상기 실리콘 입자의 양이 많을 경우 상기 카본 블랙에 의한 상기 실리콘 입자의 분산 효과가 충분하지 않을 수 있다.In addition, the composite particle provides a negative active material for a lithium secondary battery, characterized in that the silicon particles and carbon black particles in a weight ratio of 1: 9 to 9: 1. When the weight ratio of the silicon particles and the carbon black particles is less than 1: 9, when the amount of the silicon particles is small, the high capacity effect by silicon may not be sufficient, and the weight ratio of the silicon particles and the carbon black particles is 9: 1. When the amount of the silicon particles is larger, the dispersion effect of the silicon particles by the carbon black may not be sufficient.
또한, 상기 복합입자는 실리콘 입자 및 상기 카본 블랙 입자를 결합 및 코팅하기 위한 목적으로 복합입자의 전체 중량 대비 0.1 내지 70 중량%의 비정질 또는 준결정질 탄소를 포함할 수 있다. 복합입자 중 상기 비정질 또는 준결정질 탄소가 0.1 중량% 미만일 경우 상기 실리콘 입자 및 상기 카본 블랙 입자를 결합 및 코팅하기 위한 효과가 충분하지 않고, 비정질 또는 준결정질 탄소가 70 중량% 이상일 경우 실리콘에 의한 용량 증대 효과를 기대하기 어렵다.In addition, the composite particles may include 0.1 to 70% by weight of amorphous or semicrystalline carbon relative to the total weight of the composite particles for the purpose of bonding and coating the silicon particles and the carbon black particles. When the amorphous or semi-crystalline carbon of the composite particles is less than 0.1% by weight, the effect of bonding and coating the silicon particles and the carbon black particles is not sufficient, and the capacity by silicon when the amorphous or semi-crystalline carbon is 70% by weight or more It is difficult to expect an increase effect.
상기 복합입자에 포함되는 카본블랙은 아세틸렌 블랙, 캐첸 블랙, 채널 블랙, 퍼네이스 블랙, 서머 블랙, 슈퍼 피(super P) 등을 대표적인 예로 들 수 있으나, 이에 국한되지 않고 모든 종류의 카본블랙이 사용될 수 있다.Carbon black included in the composite particles may be exemplified by acetylene black, Caten black, channel black, furnace black, summer black, super P, but not limited thereto. Can be.
카본 블랙 입자는 일반적으로 평균 입자 크기가 10 nm 내지 100 nm이지만, 이들 카본 블랙 입자가 여러 개가 포도송이와 같이 입자가 응집된 상태 (aggregate)로 존재할 수 있다.Carbon black particles generally have an average particle size of 10 nm to 100 nm, but several of these carbon black particles may be present in agglomerated particles such as grape clusters.
상기 복합입자 중 상기 탄소는 비정질 또는 준결정질 탄소로서 후술할 비정질 또는 준결정질 탄소를 형성하기 위한 전구체와 동일한 전구체를 이용하여 제조될 수 있다.The carbon in the composite particles may be prepared using the same precursor as the precursor for forming amorphous or semicrystalline carbon, which will be described later as amorphous or semicrystalline carbon.
참고로, 비정질 탄소는 탄소 원자가 무질서하게 배열된 상태로 온도를 높여도 결정질 흑연으로 변화되지 않는 하드 카본을 뜻하며, 상기 준결정질 탄소는 2000 ℃ 이하의 온도로 가열할 경우, 결정성이 낮은 결정질 흑연으로 변화되는 저결정성 탄소를 의미한다.For reference, amorphous carbon refers to hard carbon that does not change into crystalline graphite even when the temperature is raised in a state in which carbon atoms are randomly arranged. The semicrystalline carbon is crystalline graphite having low crystallinity when heated to a temperature of 2000 ° C. or less It means a low crystalline carbon is changed to.
또한, 상기 복합입자는 평균 입경이 5 내지 200 ㎚인 실리콘 입자를 포함하며, 더 바람직하게는 평균 입경 20 내지 100 nm의 실리콘 입자를 포함할 수 있다. 상기 실리콘 입자의 크기가 5 nm 미만인 경우 상기 음극 활물질 제조 과정에서 1000℃ 이상에서 열처리 시 SiC와 같은 화합물을 형성하기 쉬워 실리콘에 의한 고용량 효과를 기대하기 어렵다. 또한 상기 실리콘 입자의 크기가 200 nm를 초과하는 경우 리튬과 반응하여 리튬 화합물 형성 시 부피 팽창이 커 상기 음극 활물질 입자의 부피 팽창 제어가 어렵게 된다.In addition, the composite particles may include silicon particles having an average particle diameter of 5 to 200 nm, more preferably silicon particles having an average particle diameter of 20 to 100 nm. When the size of the silicon particles is less than 5 nm, it is easy to form a compound such as SiC during heat treatment at 1000 ° C. or higher during the preparation of the negative electrode active material, and thus it is difficult to expect a high capacity effect by silicon. In addition, when the size of the silicon particles exceeds 200 nm, it is difficult to control the volume expansion of the negative electrode active material particles due to the large volume expansion when forming a lithium compound by reacting with lithium.
한편, 상기 복합입자는 평균 크기 2.0 내지 50 ㎚인 메소 포아(mesopore)(24)를 포함할 수 있으며, 이에 의해 충·방전 동안 상기 복합입자 내 실리콘 입자의 리튬과의 반응에 의한 부피 팽창에 대한 완충 효과를 기대할 수 있다.On the other hand, the composite particles may comprise a mesopore (24) having an average size of 2.0 to 50 nm, thereby preventing the volume expansion by the reaction of the silicon particles in the composite particles with lithium during charge and discharge A buffering effect can be expected.
제1 쉘층에 포함되는 상기 비정질 또는 준결정질 탄소는 수크로오스(sucrose), 페놀 수지, 나프탈렌 수지, 폴리비닐알코올, 폴리비닐클로라이드, 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴, 폴리아미드, 퓨란 수지, 셀룰로오스, 스티렌, 폴리이미드, 에폭시 수지, 염화비닐 수지, 석탄계 피치, 석유계 피치, 메조페이스 피치, 타르 및 저분자량 중질유로부터 선택되는 적어도 하나를 포함하는 탄소 전구체로부터 형성된 것을 사용할 수 있다.The amorphous or semi-crystalline carbon included in the first shell layer may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin And those formed from carbon precursors including at least one selected from cellulose, styrene, polyimide, epoxy resins, vinyl chloride resins, coal-based pitches, petroleum-based pitches, mesophase pitches, tars, and low molecular weight heavy oils.
제2 쉘층에 포함되는 상기 인편상 흑연 절편 입자(14)는 100 nm 이하의 평균 두께를 가지도록 인편상 흑연을 박리하여 얻어질 수 있다.The flaky graphite fragment particles 14 included in the second shell layer may be obtained by peeling flaky graphite to have an average thickness of 100 nm or less.
상기 제2 쉘층에 포함되는 인편상 흑연 절편 입자는 음극 활물질 전체 중량을 기준으로 1 내지 40 중량%로 포함되는 것이 바람직한데, 이는, 음극 활물질 총량에 대하여 1 중량% 미만인 경우에는 충·방전 동안 상기 복합입자의 부피 팽창에 대한 완충 효과가 충분하지 않으며, 40중량%를 초과하는 경우에는 상기 음극 활물질의 충방전 출력 특성이 저하 될 수 있고 용량 증대 효과가 미흡하기 때문이다.The flaky graphite fragment particles included in the second shell layer are preferably included in an amount of 1 to 40% by weight based on the total weight of the negative electrode active material, which is less than 1% by weight based on the total amount of the negative electrode active material. This is because the buffering effect on the volume expansion of the composite particles is not sufficient, and when the content exceeds 40% by weight, the charge / discharge output characteristics of the negative electrode active material may decrease and the capacity increase effect is insufficient.
또한, 제2 쉘층에서 인편상 흑연 절편 사이의 비정질 또는 준결정질 탄소(16)는 제1 쉘층의 비정질 또는 준결정질 탄소와 동일한 소재로 이루어질 수 있고, 상기 입자 또는 매트릭스의 형태로 존재할 수 있다. 상기 비정질 또는 준결정질 탄소가 입자 형태로 존재하는 경우에는 인편상 흑연 절편 사이에 기공이 포함될 수 있다.In addition, the amorphous or quasicrystalline carbon 16 between the flaky graphite segments in the second shell layer may be made of the same material as the amorphous or quasicrystalline carbon of the first shell layer, and may exist in the form of the particles or the matrix. When the amorphous or semicrystalline carbon is present in the form of particles, pores may be included between the flaky graphite fragments.
상기 제1 쉘층 및 제2 쉘층을 포함한 쉘층의 두께는 1 내지 15 ㎛인 것이 바람직하며, 더욱 바람직하게는 2 내지 10 ㎛이다. 상기 쉘층의 두께가 1 ㎛ 미만이면 쉘층에 의한 상기 음극 활물질의 용량 증대 및 구조적 안정성 향상 효과가 미흡하며, 상기 쉘층의 두께가 15 ㎛를 초과하면 충·방전 동안 상기 복합입자의 리튬과의 반응이 억제되어 고율 충·방전 시 고용량을 기대하기 어렵다.The thickness of the shell layer including the first shell layer and the second shell layer is preferably 1 to 15 µm, more preferably 2 to 10 µm. When the thickness of the shell layer is less than 1 μm, the capacity increase and structural stability improvement effect of the negative electrode active material by the shell layer are insufficient, and when the thickness of the shell layer exceeds 15 μm, the reaction of the composite particles with lithium during charge and discharge may occur. It is suppressed, so it is difficult to expect high capacity at high rate charge and discharge.
한편, 상기 코어 입자의 평균입경(D50)과 상기 쉘층의 두께의 비율은 17 내지 95 : 5 내지 83일 수 있고, 구체적으로는 30 내지 90 : 70 내지 10일 수 있다. 상기 범위의 비율로 이루어진 음극 활물질은 고용량을 가질 수 있고 우수한 고율 출력 특성을 나타낼 수 있다.On the other hand, the ratio of the average particle diameter (D50) of the core particles and the thickness of the shell layer may be 17 to 95: 5 to 83, specifically 30 to 90: 70 to 10. The negative electrode active material having a ratio in the above range may have a high capacity and exhibit excellent high rate output characteristics.
나아가, 상기 제1 쉘층과 상기 제2 쉘층의 두께의 비율은 5 내지 95 : 95 내지 5인 것이 바람직하다.Furthermore, it is preferable that the ratio of the thickness of a said 1st shell layer and a said 2nd shell layer is 5-95: 95-5.
상기 음극 활물질(1)은 다음과 같이 2가지 방법에 따라 제조될 수 있으나, 반드시 이에 제한되는 것은 아니며, 전술한 본 발명에 따른 음극 활물질을 최종적으로 수득할 수 있는 방법이라면 제약 없이 사용 가능하다.The negative electrode active material 1 may be manufactured according to the following two methods, but is not necessarily limited thereto, and any method capable of finally obtaining the negative electrode active material according to the present invention may be used without limitation.
우선, 상기 코어 입자의 표면을, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고, 상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자 제조하고 이를 열처리하여 상기 음극 활물질을 제조할 수 있다.First, the surface of the core particles is coated with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semicrystalline carbon precursor to form a first shell layer, and the surface of the first shell layer is flaky graphite fragment particles and amorphous particles. Alternatively, the negative electrode active material may be prepared by coating a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles and heat treating the same.
또는, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고 제1 차 열처리를 실시한 후, 상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자 제조하고 제2 차 열처리를 실시함으로써 상기 음극 활물질을 제조할 수 있다.Alternatively, after coating with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semi-crystalline carbon precursor to form a first shell layer and performing a first heat treatment, the surface of the first shell layer is flake graphite fragment particles and amorphous particles. Alternatively, the negative electrode active material may be prepared by coating a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles, and to perform a second heat treatment.
상기 비정질 또는 준결정질 탄소 전구체는 수크로오스(sucrose), 페놀 수지, 나프탈렌 수지, 폴리비닐알코올, 폴리비닐클로라이드, 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴, 폴리아미드, 퓨란 수지, 셀룰로오스, 스티렌, 폴리이미드, 에폭시 수지, 염화비닐 수지, 석탄계 피치, 석유계 피치, 메조페이스 피치, 타르 및 저분자량 중질유로부터 선택되는 적어도 하나를 사용할 수 있다. The amorphous or semi-crystalline carbon precursor may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin, cellulose, styrene, At least one selected from polyimide, epoxy resin, vinyl chloride resin, coal pitch, petroleum pitch, mesoface pitch, tar and low molecular weight heavy oil can be used.
상기 제1 쉘층 또는 제2 쉘층의 코팅 방법은, 전단력을 줄 수 있는 블레이드(blade), 메카노-퓨전 등의 기계화학적(mechanochemical) 방법을 사용할 수 있고, 또한 분무 건조법(spray dry)이나 에멀젼법(emulsion)을 사용할 수도 있으나, 이에 한정되는 것은 아니다. As the coating method of the first shell layer or the second shell layer, a mechanochemical method such as a blade, mechano-fusion, etc., which can give a shear force, may be used, and a spray dry method or an emulsion method may also be used. (emulsion) may be used, but is not limited thereto.
일 예로, 상기 코어 입자, 상기 실리콘/카본블랙/탄소 복합입자, 그리고 상기 비정질 또는 준결정질 탄소 전구체를 로터 블레이드 밀(rotor blade mill)에 투입함으로써, 상기 비정질 또는 준결정질 탄소 전구체의 연화점 이상의 온도에서 강한 기계적 전단력을 부여하여 상기 제1 쉘층을 코팅할 수 있다. For example, the core particles, the silicon / carbon black / carbon composite particles, and the amorphous or semi-crystalline carbon precursor are introduced into a rotor blade mill, and thus, at a temperature higher than the softening point of the amorphous or semi-crystalline carbon precursor. The first shell layer may be coated by imparting a strong mechanical shear force.
그리고, 상기 제1 쉘층이 포함된 복합 입자, 상기 인편상 흑연 절편 입자 및 상기 비정질 또는 준결정질 탄소 전구체를 로터 블레이드 밀(rotor blade mill)에 투입함으로써, 상기 비정질 또는 준결정질 탄소 전구체의 연화점 이상의 온도에서 강한 기계적 전단력을 부여하여 상기 제2 쉘층을 코팅할 수 있다. The composite particle including the first shell layer, the flaky graphite fragment particles, and the amorphous or quasi-crystalline carbon precursor are introduced into a rotor blade mill, whereby the temperature above the softening point of the amorphous or quasi-crystalline carbon precursor. In order to give a strong mechanical shear force in the second shell layer can be coated.
상기 제1 차 열처리 및 제2 차 열처리 등을 포함한 모든 열처리는 질소, 아르곤, 수소 또는 이들의 혼합 가스를 포함하는 분위기, 또는 진공 하에서 수행될 수 있다.All heat treatments including the first heat treatment and the second heat treatment may be performed under an atmosphere containing nitrogen, argon, hydrogen, or a mixed gas thereof, or under vacuum.
또한 상기 열처리는 700 내지 1300℃의 온도에서 수행될 수 있고, 보다 바람직하게는 800 내지 1200℃의 온도에서 수행될 수 있다. 상기 열처리가 상기 온도 범위에서 수행될 경우 상기 실리콘/카본블랙/탄소 복합입자의 실리콘이 실리콘 화합물(예를 들어, SiC)의 형성이 억제되어 용량 증대 효과가 우수하며, 비정질 또는 준결정질 탄소 전구체의 탄화가 충분히 일어날 수 있다.In addition, the heat treatment may be performed at a temperature of 700 to 1300 ℃, more preferably may be carried out at a temperature of 800 to 1200 ℃. When the heat treatment is performed in the temperature range, the silicon of the silicon / carbon black / carbon composite particles is suppressed from forming a silicon compound (eg, SiC), so that the capacity increase effect is excellent, and the amorphous or quasi-crystalline carbon precursor Carbonization can take place sufficiently.
다른 일 구현예에 따른 음극 활물질은 도 3을 통하여 설명될 수 있다.The negative electrode active material according to another embodiment may be described with reference to FIG. 3.
도 3은 또 다른 일 구현예에 따른 음극 활물질의 개략적인 단면도이다.3 is a schematic cross-sectional view of a negative electrode active material according to another embodiment.
도 3을 참고하면, 음극 활물질(2)은 상기 도 1에 도시된 구조를 가지는 음극 활물질 입자의 쉘층 상에 위치하는 코팅층(16)을 더 포함해 이루어질 수 있다. 구체적으로 상기 쉘층은 상기 코어 입자를 둘러싸는 형태일 수 있고, 상기 코팅층은 상기 쉘층을 둘러싸는 형태일 수 있다.Referring to FIG. 3, the negative electrode active material 2 may further include a coating layer 16 positioned on the shell layer of the negative electrode active material particles having the structure shown in FIG. 1. Specifically, the shell layer may be in the form of surrounding the core particles, the coating layer may be in the form of surrounding the shell layer.
상기 코어 입자와 상기 쉘층에 대한 내용은 전술한 바와 같다.Details of the core particles and the shell layer are as described above.
상기 코팅층(16)은 비정질 또는 준결정질 탄소를 포함할 수 있으며, 상기 비정질 또는 준결정질 탄소는 전술한 바와 같다.The coating layer 16 may include amorphous or semicrystalline carbon, and the amorphous or semicrystalline carbon is as described above.
상기 비정질 또는 준결정질 탄소가 상기 쉘층에 더욱 코팅될 경우, 흑연 가장자리 면의 노출이 감소되어 초기 충방전 효율이 향상될 수 있으며, 상기 복합입자 내 실리콘의 부피 팽창을 적절히 완충시켜 사이클 수명 특성 및 열적 안정성이 더욱 향상될 수 있다.When the amorphous or semi-crystalline carbon is further coated on the shell layer, the exposure of the graphite edge surface may be reduced, thereby improving initial charge and discharge efficiency, and appropriately buffering the volume expansion of silicon in the composite particles to provide cycle life characteristics and thermal properties. Stability can be further improved.
상기 코팅층의 두께는 0.01 내지 5 ㎛일 수 있고, 구체적으로는 0.1 내지 3 ㎛일 수 있다. 상기 코팅층의 두께가 상기 범위로 형성될 경우 흑연 가장자리 면의 노출이 감소되어 초기 충방전 효율이 증가하고, 출력특성이 우수하며, 고용량 및 열적 안정성이 향상된 리튬 이차 전지를 구현할 수 있다. The thickness of the coating layer may be 0.01 to 5 ㎛, specifically 0.1 to 3 ㎛. When the thickness of the coating layer is formed in the above range, the exposure of the graphite edge surface is reduced, thereby increasing the initial charge and discharge efficiency, excellent output characteristics, and can implement a lithium secondary battery having improved high capacity and thermal stability.
상기 음극 활물질(1)은 다음과 같이 2가지 방법에 따라 제조될 수 있으나, 반드시에 이에 제한되는 것은 아니며, 전술한 본 발명에 따른 음극 활물질을 최종적으로 수득할 수 있는 방법이라면 제약 없이 사용 가능하다.The negative electrode active material 1 may be manufactured according to the following two methods, but is not necessarily limited thereto, and any method capable of finally obtaining the negative electrode active material according to the present invention may be used without limitation. .
우선, 상기 코어 입자의 표면을, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고, 상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자를 제조하고, 상기 음극 활물질 전구체 입자의 표면을 상기 비정질 또는 준결정질 탄소 전구체로 코팅한 후, 상기 코팅된 음극 활물질 전구체 입자를 열처리해 상기 음극 활물질을 제조할 수 있다.First, the surface of the core particles is coated with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semicrystalline carbon precursor to form a first shell layer, and the surface of the first shell layer is flaky graphite fragment particles and amorphous particles. Or by coating with a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles, and after coating the surface of the negative electrode active material precursor particles with the amorphous or semi-crystalline carbon precursor, the coated negative electrode active material precursor The negative electrode active material may be prepared by heat treating the particles.
또는, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고 제1 차 열처리를 실시한 후, 상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자를 제조하고, 상기 음극 활물질 전구체 입자의 표면을 상기 비정질 또는 준결정질 탄소 전구체로 코팅한 후, 상기 코팅된 음극 활물질 전구체 입자를 제2 차 열처리해 상기 음극 활물질을 제조할 수 있다.Alternatively, after coating with a mixture of silicon / carbon black / carbon composite particles and an amorphous or semi-crystalline carbon precursor to form a first shell layer and performing a first heat treatment, the surface of the first shell layer is flake graphite fragment particles and amorphous particles. Or by coating with a mixture of semi-crystalline carbon precursors to form a second shell layer to prepare negative electrode active material precursor particles, and after coating the surface of the negative electrode active material precursor particles with the amorphous or semi-crystalline carbon precursor, the coated negative electrode active material precursor The negative electrode active material may be prepared by subjecting the particles to a second heat treatment.
상기 실리콘/카본블랙/탄소 복합입자, 인편상 흑연 절편 입자, 및 비정질 또는 준결정질 탄소 전구체는 전술한 바와 같으며, 상기 열처리의 분위기 및 온도 또한 전술한 바와 같다. The silicon / carbon black / carbon composite particles, flaky graphite fragment particles, and amorphous or semicrystalline carbon precursors are as described above, and the atmosphere and temperature of the heat treatment are also as described above.
도 1 및 3을 통하여 예시된 일 구현예에 따른 음극 활물질의 형상은 구형일 수 있으나, 이에 한정되는 것은 아니다. The shape of the negative active material according to the exemplary embodiment illustrated through FIGS. 1 and 3 may be spherical, but is not limited thereto.
상기 음극 활물질의 평균입경(D50)은 2 내지 40 ㎛일 수 있고, 구체적으로는 5 내지 30 ㎛일 수 있다. 상기 음극 활물질이 상기 범위의 평균입경(D50)을 가질 경우 우수한 전극 제조 공정 효율과 전극밀도를 얻을 수 있다.The average particle diameter (D50) of the negative electrode active material may be 2 to 40 ㎛, specifically, may be 5 to 30 ㎛. When the negative electrode active material has an average particle diameter (D50) in the above range it can be obtained an excellent electrode manufacturing process efficiency and electrode density.
본 발명의 다른 일 구현예에 따르면, 리튬 이온을 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하는 양극, 상기 음극 활물질을 포함하는 음극, 그리고 전해액을 포함하는 리튬 이차 전지를 제공한다.According to another embodiment of the present invention, a cathode including a cathode active material capable of intercalating and deintercalating lithium ions, a cathode including the anode active material, and a lithium secondary battery including an electrolyte is provided. .
리튬 이차 전지는 사용하는 세퍼레이터와 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.The lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, etc., Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
상기 음극은 전술한 음극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 음극 집전체에 도포하여 제조될 수 있다. The negative electrode may be prepared by mixing the above-described negative electrode active material, a binder, and optionally a conductive material to prepare a composition for forming a negative electrode active material layer, and then coating the negative electrode current collector.
상기 바인더로는 폴리비닐알콜, 카르복시메틸셀룰로즈/스티렌-부타디엔러버, 히드록시프로필렌셀룰로즈, 디아세틸렌셀룰로즈, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌 또는 폴리프로필렌 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder may be polyvinyl alcohol, carboxymethyl cellulose / styrene-butadiene rubber, hydroxypropylene cellulose, diacetylene cellulose, polyvinylchloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene or Polypropylene may be used, but is not limited thereto.
상기 바인더는 음극 활물질층 형성용 조성물 총량에 대하여 1 내지 30 중량%로 혼합될 수 있다. The binder may be mixed in an amount of 1 to 30 wt% based on the total amount of the composition for forming the negative electrode active material layer.
상기 도전재로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 구체적으로는 천연 흑연, 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes to the battery. Specifically, graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 도전재는 음극 활물질층 형성용 조성물 총량에 대하여 0.1 내지 30 중량%로 혼합될 수 있다. The conductive material may be mixed in an amount of 0.1 to 30 wt% based on the total amount of the composition for forming the negative electrode active material layer.
상기 음극 집전체는 3 내지 500 ㎛의 두께일 수 있다. 상기 음극 집전체의 예로는, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 상기 음극 집전체는 그것의 표면에 미세한 요철을 형성하여 음극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The negative electrode current collector may have a thickness of 3 to 500 μm. Examples of the negative electrode current collector may include stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel. The negative electrode current collector may increase the adhesion of the negative electrode active material by forming fine irregularities on its surface, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 양극은 양극 활물질을 포함하며, 상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 구체적으로는 코발트, 망간, 니켈로부터 선택되는 적어도 1종과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있다.The positive electrode includes a positive electrode active material, and as the positive electrode active material, a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound) may be used. Specifically, at least one selected from cobalt, manganese and nickel and at least one of complex oxides of lithium can be used.
상기 양극 역시 음극과 마찬가지로 상기 양극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이 조성물을 알루미늄 등의 양극 집전체에 도포하여 제조할 수 있다.Like the negative electrode, the positive electrode may also be prepared by mixing the positive electrode active material, a binder, and optionally a conductive material to prepare a composition for forming a positive electrode active material layer, and then applying the composition to a positive electrode current collector such as aluminum.
상기 전해액은 리튬염; 및 비수성 유기 용매, 유기 고체 전해액, 무기 고체 전해액 등이 사용된다.The electrolyte solution is a lithium salt; And non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like.
상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다. The lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenylborate, imide and the like can be used.
상기 비수성 유기 용매로는 N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부티로 락톤, 1,2-디메톡시에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭사이드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 술포란, 메틸 술포란, 1,3-디메틸-2-이미다졸리돈, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등이 사용될 수 있다.The non-aqueous organic solvent is N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane, tetrahydrate Roxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, triphosphate Esters, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyrionate, ethyl propionate And the like can be used.
상기 유기 고체 전해액으로는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.The organic solid electrolyte may include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a poly etchation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, and an ionic dissociation group. To the polymer can be used.
상기 무기 고체 전해액으로는 Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다. The inorganic solid electrolyte may be Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 − Nitrides, halides, sulfates, and the like of Li, such as LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 , may be used.
상기 전해액은 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수 있다.For the purpose of improving the charge and discharge characteristics, flame retardancy and the like, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitrobenzene Derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like can be added.
또한 불연성을 부여하기 위하여 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.In addition, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included to impart nonflammability, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 있다. 이러한 세퍼레이터로는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다. 상기 세퍼레이터의 공극 직경은 0.01 내지 10 ㎛이고 두께는 5 내지 300 ㎛일 수 있다. The separator may exist between the positive electrode and the negative electrode according to the type of the lithium secondary battery. As the separator, an insulating thin film having high ion permeability and mechanical strength may be used. The separator may have a pore diameter of 0.01 to 10 μm and a thickness of 5 to 300 μm.
상기 세퍼레이터는 구체적으로, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유, 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다. 전해액으로 폴리머 등의 고체 전해액이 사용되는 경우 고체 전해액이 분리막을 겸할 수도 있다.Specifically, the separator may include an olefin polymer such as polypropylene having chemical resistance and hydrophobicity; Sheets or nonwovens made of glass fibers, polyethylene, and the like can be used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention and the present invention is not limited to the following examples.
음극 활물질 제조Manufacture of negative electrode active material
<< 실시예Example 1>  1> 하드카본을Hard carbon 코어입자로 이용한  Used as core particle 음극활물질Cathode active material 제조 Produce
1. 실리콘(Si)/카본블랙/탄소 복합입자 제조1. Manufacture of Silicon (Si) / Carbon Black / Carbon Composite Particles
평균입경(D50)이 50 nm인 실리콘과 평균입경(D50)이 30 nm인 카본블랙을 60:40 중량비로 혼합한 혼합물 100중량부를 폴리아크릴산 8중량부와 물 1000중량부에 넣고 교반하여 현탁액을 제조하고 이를 열풍온도 160℃에서 분무건조하여 조립입자를 얻었다. 상기 조립입자를 아르곤 분위기 하에서 1000℃의 온도로 열처리후, 볼밀링(ball milling)공정과 초음파 처리(ultrasonication) 공정을 통하여 평균입경(D50)이 170nm인 실리콘(Si)/카본블랙/탄소 복합입자를 제조하였다.100 parts by weight of a mixture of silicon having an average particle diameter (D50) of 50 nm and carbon black having an average particle diameter (D50) of 30 nm in a 60:40 weight ratio was added to 8 parts by weight of polyacrylic acid and 1000 parts by weight of water, followed by stirring. It was prepared and spray dried at a hot air temperature of 160 ℃ to obtain granulated particles. After heat-treating the granulated particles at a temperature of 1000 ° C. under argon atmosphere, silicon (Si) / carbon black / carbon composite particles having an average particle diameter (D50) of 170 nm through a ball milling process and an ultrasonic treatment process. Was prepared.
2. 인편상 흑연절편입자 제조 공정2. Manufacturing process of flaky graphite fragment particles
평균입경(D50)이 200 ㎛인 흑연 절편을 에틸알코올(ethyle alcohol) 용액에 첨가하여 자석교반기를 이용하여 혼합한 후에 고속전단믹서(high shear mixer)를 이용하여 평균두께가 30nm 인 인편상 흑연절편입자를 제조하였다.A graphite fragment having an average particle diameter (D50) of 200 μm was added to an ethyl alcohol solution, mixed using a magnetic stirrer, and then a flaky graphite fragment having an average thickness of 30 nm using a high shear mixer. Particles were prepared.
3. 음극 활물질 제조 공정3. Anode Active Material Manufacturing Process
평균입경(D50)이 9㎛인 하드 카본 35 중량%, 평균입경(D50)이 170 nm인 실리콘(Si)/카본블랙/탄소 복합입자 35 중량%, 그리고 석유계 피치 30 중량%를 로터 블레이드 밀(rotor blade mill)(수초 내지 수분에 5000 내지 20000 rpm으로 회전됨)에 투입하여, 상기 하드 카본의 표면이 상기 실리콘(Si)/카본블랙/탄소 복합입자 및 상기 석유계 피치의 혼합물로 코팅된 복합 입자 분말을 얻었다. 얻어진 복합 입자 분말을 30nm 두께를 갖는 인편상 흑연 절편입자와 석유계 피치와 혼합하여 로터 블레이드 밀(rotor blade mill)에 투입하여 상기 복합입자 표면에 인편상 흑연 절편과 석유계 피치로 이루어진 쉘층이 코팅된 복합입자를 얻었다. 얻어진 복합 입자 분말을 아르곤 분위기에서 5℃/min의 승온 속도로 1000℃에서 1 시간 동안 열처리한 후 노냉하여 평균입경(D50)이 15㎛인 음극 활물질을 제조하였다.35% by weight of hard carbon having an average particle diameter (D50) of 9 μm, 35% by weight of silicon (Si) / carbon black / carbon composite particles having an average particle diameter (D50) of 170 nm, and 30% by weight of a petroleum pitch of the rotor blade mill. Into a rotor blade mill (rotated at 5000 to 20000 rpm in a few seconds to several minutes), the surface of the hard carbon was coated with a mixture of the silicon (Si) / carbon black / carbon composite particles and the petroleum pitch The composite particle powder was obtained. The obtained composite particle powder was mixed with flaky graphite fragment particles having a thickness of 30 nm and a petroleum pitch and introduced into a rotor blade mill, and the surface of the composite particle was coated with a shell layer composed of flaky graphite fragments and a petroleum pitch. Obtained composite particles. The obtained composite particle powder was heat-treated at 1000 ° C. for 1 hour at an elevated temperature rate of 5 ° C./min in argon atmosphere, and then cooled to prepare a negative electrode active material having an average particle diameter (D50) of 15 μm.
<< 실시예Example 2>  2> 구형천연흑연을Spherical natural graphite 코어입자로 이용한  Used as core particle 음극활물질Cathode active material 제조 Produce
1. 실리콘(Si)/카본블랙/탄소 복합입자 제조1. Manufacture of Silicon (Si) / Carbon Black / Carbon Composite Particles
평균입경(D50)이 50 nm인 실리콘과 케첸블랙을 70:30 중량비로 혼합한 혼합물 100중량부를 석유계 핏치 40중량부를 테트라하이드로퓨란 100중량부에 넣고 교반하여 현탁액을 제조하고 이를 볼밀링(ball milling) 및 건조공정을 통하여 평균입경(D50)이 1.6 ㎛인 실리콘(Si)/카본블랙/탄소 복합입자를 제조하였다.100 parts by weight of a mixture of silicon and ketjen black having a mean particle diameter (D50) of 50 nm in a 70:30 weight ratio was added to 40 parts by weight of petroleum pitch in 100 parts by weight of tetrahydrofuran to prepare a suspension, which was then ball milled (ball Through milling and drying, silicon (Si) / carbon black / carbon composite particles having an average particle diameter (D50) of 1.6 μm were prepared.
2. 인편상 흑연절편입자 제조 공정2. Manufacturing process of flaky graphite fragment particles
평균입경(D50)이 200 ㎛인 흑연 절편을 에틸알코올(ethyle alcohol) 용액에 첨가하여 자석교반기를 이용하여 혼합한 후에 고속전단믹서(high shear mixer)를 이용하여 평균두께가 30nm 인 인편상 흑연절편입자를 제조하였다. A graphite fragment having an average particle diameter (D50) of 200 μm was added to an ethyl alcohol solution, mixed using a magnetic stirrer, and then a flaky graphite fragment having an average thickness of 30 nm using a high shear mixer. Particles were prepared.
3. 음극 활물질 제조 공정3. Anode Active Material Manufacturing Process
평균입경(D50)이 10㎛인 구형천연흑연 35중량%, 평균입경(D50)이 170 nm인 실리콘(Si)/카본블랙/탄소 복합입자 35중량%, 그리고 석유계 피치 30 중량%를 로터 블레이드 밀(rotor blade mill)(수초 내지 수분에 5000 내지 20000 rpm으로 회전됨)에 투입하여, 상기 하드 카본의 표면이 상기 실리콘(Si)/카본블랙/탄소 복합입자 및 상기 석유계 피치의 혼합물로 코팅된 복합 입자 분말을 얻었다. 얻어진 복합 입자 분말을 30nm 두께를 갖는 인편상 흑연 절편입자와 석유계 피치와 혼합하여 로터 블레이드 밀(rotor blade mill)에 투입하여 상기 복합입자 표면에 인편상 흑연 절편과 석유계 피치로 이루어진 쉘층이 코팅된 복합입자를 얻었다. 얻어진 복합 입자 분말을 아르곤 분위기에서 5℃/min의 승온 속도로 1000℃에서 1 시간 동안 열처리한 후 노냉하여 평균입경(D50)이 15㎛인 음극 활물질을 제조하였다.35 wt% of spherical natural graphite with an average particle diameter (D50) of 10 μm, 35 wt% of silicon (Si) / carbon black / carbon composite particles with an average particle diameter (D50) of 170 nm, and 30 wt% of petroleum pitch Into a rotor blade mill (rotated at 5000 to 20000 rpm in seconds to minutes), the surface of the hard carbon is coated with a mixture of the silicon (Si) / carbon black / carbon composite particles and the petroleum pitch Composite particle powder was obtained. The obtained composite particle powder was mixed with flaky graphite fragment particles having a thickness of 30 nm and a petroleum pitch and introduced into a rotor blade mill, and the surface of the composite particle was coated with a shell layer composed of flaky graphite fragments and a petroleum pitch. Obtained composite particles. The obtained composite particle powder was heat-treated at 1000 ° C. for 1 hour at an elevated temperature rate of 5 ° C./min in argon atmosphere, and then cooled to prepare a negative electrode active material having an average particle diameter (D50) of 15 μm.
<비교예 1>Comparative Example 1
평균입경(D50)이 9㎛인 하드 카본 35 중량%, 평균입경(D50)이 170 nm인 실리콘(Si)/카본블랙/탄소 복합입자 35 중량%, 그리고 석유계 피치 30 중량%를 로터 블레이드 밀(rotor blade mill)(수초 내지 수분에 5000 내지 20000 rpm으로 회전됨)에 투입하여, 상기 하드 카본의 표면이 상기 실리콘(Si)/카본블랙/탄소 복합입자 및 상기 석유계 피치의 혼합물로 코팅된 복합 입자 분말을 얻었다. 얻어진 복합 입자 분말을 아르곤 분위기에서 5℃/min의 승온 속도로 1000℃에서 1 시간 동안 열처리한 후 노냉하여 평균입경(D50)이 13㎛인 음극 활물질을 제조하였다.35% by weight of hard carbon having an average particle diameter (D50) of 9 μm, 35% by weight of silicon (Si) / carbon black / carbon composite particles having an average particle diameter (D50) of 170 nm, and 30% by weight of a petroleum pitch of the rotor blade mill. Into a rotor blade mill (rotated at 5000 to 20000 rpm in a few seconds to several minutes), the surface of the hard carbon was coated with a mixture of the silicon (Si) / carbon black / carbon composite particles and the petroleum pitch The composite particle powder was obtained. The obtained composite particle powder was heat-treated at 1000 ° C. for 1 hour at an elevated temperature rate of 5 ° C./min in argon atmosphere, and then cooled to prepare a negative electrode active material having an average particle diameter (D50) of 13 μm.
<비교예 2>Comparative Example 2
상기 비교예 1에서 평균입경(D50)이 10㎛ 인구형 천연흑연을 사용한 것 외에는 상기 비교예 1과 동일하게 음극활물질을 제작하였다.A negative electrode active material was prepared in the same manner as in Comparative Example 1 except that the average particle diameter (D50) of 10 µm population type natural graphite was used in Comparative Example 1.
평가 1 : 음극활물질의 주사 전자 현미경(SEM) 분석Evaluation 1: Scanning Electron Microscopy (SEM) Analysis of Cathode Active Material
실시예 1 및 2와 비교예 1 및 2에서 사용된 각 코어입자의 주사전자현미경(SEM) 사진을 도 4 및 도 5에 나타내었다. Scanning electron microscope (SEM) photographs of the core particles used in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. 4 and 5.
도 4 는 실시예 1 및 비교예 1에 사용된 코어입자인 하드카본입자의 주사전자현미경(SEM) 사진이고, 도 5 는 실시예 2 및 비교예 2에 사용된 코어입자인 구형천연흑연입자의 주사전자현미경(SEM) 사진이다.FIG. 4 is a scanning electron microscope (SEM) photograph of hard carbon particles as core particles used in Example 1 and Comparative Example 1, and FIG. 5 is spherical natural graphite particles as core particles used in Example 2 and Comparative Example 2. FIG. Scanning electron microscope (SEM) photographs.
도 4 및 도 5를 참고하면, 실시예 1 및 비교예 1에 사용된 코어입자인 하드 카본입자는 날카로운 형상을 갖는 것을 확인할 수 있으며, 실시예 2 및 비교예 2에 사용된 코어입자인 구형천연흑연의 경우 인편상 천연흑연 절편들이 결구되어 구형인 것을 확인할 수 있다. 4 and 5, it can be seen that the hard carbon particles, which are the core particles used in Example 1 and Comparative Example 1, have a sharp shape, and are spherical natural particles of the core particles used in Examples 2 and Comparative Example 2. In the case of graphite, it can be confirmed that spherical natural graphite fragments are spherical.
실시예 1 및 2와 비교예 1 및 2에서 제조된 음극 활물질 각각의 주사전자현미경(SEM) 사진을 도 6 내지 도 9에 나타내었다.Scanning electron microscope (SEM) photographs of the negative electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. 6 to 9.
도 6은 비교예 1에 따른 음극 활물질의 주사전자현미경(SEM) 사진이고, 도 7은 실시예 1에 따른 음극 활물질의 주사전자현미경(SEM) 사진이다. 6 is a scanning electron microscope (SEM) photograph of the negative electrode active material according to Comparative Example 1, and FIG. 7 is a scanning electron microscope (SEM) photograph of the negative electrode active material according to Example 1. FIG.
도 6 및 도 7을 참고하면, 실시예 1의 경우 하드 카본 또는 소프트 카본인 코어 입자의 표면에 탄소 미립자, 실리콘(Si)/카본블랙/탄소 복합입자, 그리고 석유계 피치를 탄화하여 얻은 준결정질 탄소로 구성된 코어입자에 쉘층을 형성하는 코어-쉘구조를 가짐을 확인할 수 있으며, 비교예 1의 경우 코팅된 쉘 층 없이 각각 코어 입자만 존재함을 확인할 수 있었다. Referring to FIGS. 6 and 7, in Example 1, a semi-crystalline material obtained by carbonizing carbon fine particles, silicon (Si) / carbon black / carbon composite particles, and petroleum pitch on the surface of core particles that are hard carbon or soft carbon It can be confirmed that the core particles made of carbon have a core-shell structure forming a shell layer, and in Comparative Example 1, only core particles were present without the coated shell layer.
도 8은 비교예 2에 따른 음극 활물질의 주사전자현미경(SEM) 사진이고, 도 9는 실시예 2에 따른 음극 활물질의 주사전자현미경(SEM) 사진이다. 8 is a scanning electron microscope (SEM) picture of the negative electrode active material according to Comparative Example 2, Figure 9 is a scanning electron microscope (SEM) picture of the negative electrode active material according to Example 2.
도 8 및 도 9를 참고하면, 실시예 2의 경우 구형천연흑연 코어 입자의 표면에 탄소 미립자, 실리콘(Si)/카본블랙/탄소 복합입자, 그리고 석유계 피치를 탄화하여 얻은 준결정질 탄소로 구성된 코어입자에 쉘층을 형성하는 코어-쉘구조를 가짐을 확인할 수 있으며, 비교예 2의 경우 코팅된 쉘 층 없이 각각 코어 입자만 존재함을 확인할 수 있었다. Referring to FIGS. 8 and 9, in Example 2, carbon particles, silicon (Si) / carbon black / carbon composite particles, and semicrystalline carbon obtained by carbonizing petroleum pitch on the surface of spherical natural graphite core particles It can be confirmed that the core particles have a core-shell structure forming a shell layer, and in Comparative Example 2, only core particles were present without the coated shell layer.
평가 2 : Evaluation 2: 음극활물질의Of cathode active material 입도분포Particle size distribution 분석 analysis
실시예 1 및 2와 비교예 1 및 2에서 제조된 음극 활물질의 입도 분포를 레이저 회절 산란식 입도 분포 측정법(PSA)으로 측정하여도 도 10 및 도 11에 나타내었다.The particle size distributions of the negative electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. 10 and 11 even when measured by laser diffraction scattering particle size distribution measurement (PSA).
도 10은 실시예 1 및 비교예 1에 따른 음극 활물질의 입도분포이고, 도 11은 실시예 2 및 비교예 2에 따른 음극 활물질의 입도분포이다. 10 is a particle size distribution of the negative electrode active material according to Example 1 and Comparative Example 1, Figure 11 is a particle size distribution of the negative electrode active material according to Example 2 and Comparative Example 2.
도 10을 참고하면, 비교예 1의 음극 활물질의 경우와 대비하여, 실시예 1의 음극 활물질의 입도분포가 증가함을 확인할 수 있다. 이는 실시예 1에서 제조된 음극 활물질이 비교예 1의 음극활물질 입자 표면에 인편상 흑연 및 준결졍질탄소로 구성된 쉘층이 형성된 것에 기인한다. Referring to FIG. 10, it can be seen that the particle size distribution of the negative electrode active material of Example 1 increases as compared with the case of the negative electrode active material of Comparative Example 1. This is due to the fact that the negative electrode active material prepared in Example 1 had a shell layer composed of flaky graphite and semi-crystalline carbon on the surface of the negative electrode active material particles of Comparative Example 1.
도 11을 참고하면, 비교예 2의 음극 활물질의 경우와 대비하여, 실시예 2의 음극 활물질의 입도분포가 증가함을 확인할 수 있다. 이는 실시예 2에서 제조된 음극 활물질이 비교예 2의 음극활물질 입자 표면에 인편상 흑연 및 준결졍질탄소로 구성된 쉘층이 형성된 것에 기인한다. Referring to FIG. 11, in comparison with the case of the negative electrode active material of Comparative Example 2, it can be seen that the particle size distribution of the negative electrode active material of Example 2 increases. This is due to the fact that the negative electrode active material prepared in Example 2 had a shell layer composed of flaky graphite and semi-crystalline carbon on the surface of the negative electrode active material particles of Comparative Example 2.
(리튬이차전지 제작)(Lithium Secondary Battery)
상기 실시예 1 및 2와 비교예 1 및 2에서 제조된 각각의 음극활물질, 카본 블랙, 그리고 CMC/SBR(카르복시메틸 셀룰로오스/스티렌-부타디엔러버)을 80:5:15의 중량비로 증류수에서 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 호일 상에 코팅한 후, 건조 및 압착하여 음극을 제조하였다.The negative electrode active material, carbon black, and CMC / SBR (carboxymethyl cellulose / styrene-butadiene rubber) prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were mixed in distilled water at a weight ratio of 80: 5: 15. A negative electrode slurry was prepared. The negative electrode slurry was coated on a copper foil, followed by drying and pressing to prepare a negative electrode.
상기 각각의 음극과 리튬 금속을 양극으로 하여, 음극과 양극 사이에 분리막인 셀가드를 개재하여 적층시켜 전극 조립체를 제조하였다. 이후 디에틸 카보네이트(DEC) 및 에틸렌 카보네이트(EC)의 혼합 용매(DEC:EC = 1:1)에 1M의 LiPF6을 용해시킨 전해액을 첨가하여 리튬 이차전지 셀을 제작하였다.Each of the negative electrode and the lithium metal was used as the positive electrode, and the electrode assembly was manufactured by laminating the negative electrode and the positive electrode through a cell guard as a separator. Then, a lithium secondary battery cell was prepared by adding an electrolyte solution in which 1 M LiPF 6 was dissolved in a mixed solvent (DEC: EC = 1: 1) of diethyl carbonate (DEC) and ethylene carbonate (EC).
평가 3: 리튬 이차 전지의 사이클 전기화학적 특성Evaluation 3: Cycle Electrochemical Characteristics of a Lithium Secondary Battery
상기 실시예 1 및 2와 비교예 1 및 2에서 제조된 각각의 음극활물질을 이용하여 제조된 리튬 이차전지에 대하여 다음과 같은 방법으로 수명 특성을 평가하였다.The lifespan characteristics of the lithium secondary batteries manufactured using the negative electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated in the following manner.
1회 및 2회 사이클의 경우 충전은 CC/CV 모드로 행하였고, 종지 전압은 0.02V로 유지하였으며, 전류가 0.02mA일 때 충전을 종료하였다. 방전은 CC 모드로 행하였고, 종지 전압은 2.0V로 유지하였다. 이후 3회 사이클부터 충전은 CC 모드로 행하였고, 종지 전압은 0.02V로 유지하였다. 방전은 CC 모드로 행하였고, 종지 전압은 2.0V로 유지하였다.For one and two cycles, charging was performed in CC / CV mode, the termination voltage was maintained at 0.02V, and charging was terminated when the current was 0.02mA. Discharge was performed in CC mode, and the termination voltage was kept at 2.0V. Charging was performed in CC mode from three cycles thereafter, and the termination voltage was maintained at 0.02V. Discharge was performed in CC mode, and the termination voltage was kept at 2.0V.
도 12 및 도 13은 각각 실시예 1 및 비교예 1에서 제조된 음극활물질을 이용하여 제조된 리튬 이차전지에 대한 1회(1st) 및 2회(2nd) 사이클의 충방전 곡선이고, 도 14 및 15는 각각 실시예 2 및 비교예 2 에서 제조된 음극활물질을 이용하여 제조된 리튬 이차전지에 대한 1회 및 2회 사이클의 충방전 곡선으로서, 이로부터 본 발명에 따른 음극 활물질이 포함된 리튬 이차전지가 보다 우수한 초기효율 특성을 얻을 수 있음을 알 수 있었다.12 and 13 are charge and discharge curves of one (1st) and two (2nd) cycles of the lithium secondary battery manufactured using the negative electrode active materials prepared in Example 1 and Comparative Example 1, respectively. 15 is a charge and discharge curve of one and two cycles for the lithium secondary battery prepared using the negative electrode active material prepared in Example 2 and Comparative Example 2, respectively, from which the lithium secondary including the negative electrode active material according to the present invention It was found that the battery can obtain better initial efficiency characteristics.
도 16 및 도 17은 각각 실시예 1 및 비교예 1과 실시예 2 및 비교예 2에서 제조된 음극활물질을 이용하여 제조된 리튬 이차전지에 대한 사이클곡선으로서, 이로부터 본 발명에 따른 음극 활물질이 포함된 리튬 이차전지가 보다 우수한 수명특성을 얻을 수 있음을 알 수 있었다.16 and 17 are cycle curves for the lithium secondary battery manufactured by using the negative electrode active materials prepared in Example 1, Comparative Example 1, Example 2, and Comparative Example 2, respectively. It was found that the included lithium secondary battery can obtain better life characteristics.
평가 4: 음극 활물질 Evaluation 4: Anode Active Material 시차주사열분석Differential Scanning Sequence Analysis (( DSCDSC ))
도 18 및 19는 각각 실시예 1 및 비교예 1과 실시예 2 및 비교예 2의 음극 활물질을 이용하여 제조한 전극을 시차주사열분석한 결과이다. 저온(250 ℃ 이하)범위에서 실시예 1 및 실시예 2의 발열량이 비교예 1 및 비교예 2보다 적은 것을 알 수 있고, 고온(250 ℃ 이상)범위에서 실시예 1 및 실시예 2의 발열 피크가 비교예 1 및 비교예 2보다 높아진 것을 알 수 있었다.18 and 19 show the results of differential scanning sequence analysis of the electrodes prepared using the negative electrode active materials of Example 1, Comparative Example 1, Example 2, and Comparative Example 2, respectively. It can be seen that the calorific values of Examples 1 and 2 are lower than those of Comparative Examples 1 and 2 in the low temperature (250 ° C. or lower) range, and the exothermic peaks of Examples 1 and 2 in the high temperature (250 ° C. or higher) range. It turned out that was higher than the comparative example 1 and the comparative example 2.
[부호의 설명][Description of the code]
1 및 2: 음극 활물질1 and 2: negative electrode active material
11: 코어 입자11: core particle
12: 실리콘(Si)/카본블랙/탄소 복합입자12: silicon (Si) / carbon black / carbon composite particles
13, 15: 비정질 탄소 또는 준결정질 탄소13, 15: amorphous carbon or semicrystalline carbon
14: 인편상 흑연 절편 입자14: flaky graphite fragment particle
16: 코팅층16: coating layer
21 : 실리콘 입자21: silicon particles
22 : 카본블랙 입자22: carbon black particles
23 : 비정질 탄소 또는 준결정질 탄소23: amorphous carbon or semicrystalline carbon
24 : 기공24: pore

Claims (22)

  1. 하드 카본, 소프트 카본 및 구형화 천연흑연으로부터 선택되는 적어도 하나를 포함하는 코어 입자 및 상기 코어 입자의 표면에 위치하는 쉘층을 포함하고,A core particle comprising at least one selected from hard carbon, soft carbon, and spheroidized natural graphite, and a shell layer located on the surface of the core particle,
    상기 쉘층은 i) 실리콘(Si)/카본블랙/탄소 복합입자, 및 비정질(amorphous) 또는 준결정질(semi-crystalline) 탄소를 포함하는 제1 쉘층; 및 ii) 인편상 흑연 절편 입자 사이에 비정질 또는 준결정질 탄소가 분포하고, 인편상 흑연 절편 입자가 동심원 방향으로 적층되어 결구된 구조를 가지며, 상기 제1 쉘층 상에 형성된 제2 쉘층을 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The shell layer may comprise: i) a first shell layer comprising silicon (Si) / carbon black / carbon composite particles, and amorphous or semi-crystalline carbon; And ii) an amorphous or semi-crystalline carbon is distributed between the flaky graphite fragment particles, and the scaly graphite fragment particles are laminated in a concentric direction and formed by the second shell layer formed on the first shell layer. The negative electrode active material for lithium secondary batteries characterized by the above-mentioned.
  2. 제1항에 있어서,The method of claim 1,
    상기 코어 입자의 평균입경(D50)은 2 내지 20 ㎛인 리튬 이차 전지용 음극 활물질.The average particle diameter (D50) of the core particles is 2 to 20 ㎛ negative electrode active material for a secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 코어 입자는 상기 음극 활물질 총량에 대하여 5 내지 85 중량%로 포함되는 리튬 이차 전지용 음극 활물질.The core particle is a lithium secondary battery negative electrode active material is contained in 5 to 85% by weight based on the total amount of the negative electrode active material.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층에 포함된 복합입자의 평균입경(D50)은 0.05 ㎛ 내지 2 ㎛인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The average particle diameter (D50) of the composite particles contained in the first shell layer is a lithium secondary battery negative electrode active material, characterized in that 0.05 to 2 ㎛.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층에 포함된 복합입자는 평균 입경이 5 내지 200 ㎚인 실리콘 입자를 포함하며, 평균 크기가 2.0 내지 50 ㎚인 메소 포아(mesopore)를 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The composite particle included in the first shell layer includes silicon particles having an average particle diameter of 5 to 200 nm and a mesopore having a mean size of 2.0 to 50 nm.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층에 포함된 복합입자는 실리콘 입자 및 카본 블랙 입자를 1:9 내지 9:1의 중량비로 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The composite particles included in the first shell layer include silicon particles and carbon black particles in a weight ratio of 1: 9 to 9: 1.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층에 포함된 복합입자는 0.1 내지 70 중량%의 비정질 또는 준결정질 탄소를 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The composite particle included in the first shell layer is a negative active material for a lithium secondary battery, characterized in that containing 0.1 to 70% by weight of amorphous or semicrystalline carbon.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층은 복합입자 및 비정질 또는 준결정질 탄소를 1:9 내지 9:1의 중량비로 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The first shell layer is a negative active material for a lithium secondary battery, characterized in that the composite particles and the amorphous or semi-crystalline carbon in a weight ratio of 1: 9 to 9: 1.
  9. 제1항에 있어서, The method of claim 1,
    상기 제1 쉘층의 총 중량은 음극 활물질 전체 중량 기준으로 10 내지 94 중량%인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The total weight of the first shell layer is a lithium secondary battery negative electrode active material, characterized in that 10 to 94% by weight based on the total weight of the negative electrode active material.
  10. 제1항에 있어서,The method of claim 1,
    상기 제2 쉘층에 포함된 인편상 흑연 절편 입자의 평균 두께는 100 nm 이하인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.An average thickness of the flaky graphite fragment particles contained in the second shell layer is 100 nm or less, the negative electrode active material for lithium secondary batteries.
  11. 제1항에 있어서, The method of claim 1,
    상기 제2 쉘층에 포함된 인편상 흑연 절편 입자는 음극 활물질 전체 중량을 기준으로 1 내지 40 중량% 포함되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The scaly graphite fragment particles included in the second shell layer are included in an amount of 1 to 40 wt% based on the total weight of the negative electrode active material.
  12. 제1항에 있어서,The method of claim 1,
    상기 비정질 또는 준결정질 탄소는 수크로오스(sucrose), 페놀 수지, 나프탈렌 수지, 폴리비닐알코올, 폴리비닐클로라이드, 퍼푸릴 알코올(furfuryl alcohol), 폴리아크릴로니트릴, 폴리아미드, 퓨란 수지, 셀룰로오스, 스티렌, 폴리이미드, 에폭시 수지, 염화비닐 수지, 석탄계 피치, 석유계 피치, 메조페이스 피치, 타르 및 저분자량 중질유로부터 선택되는 적어도 하나를 포함하는 탄소 전구체로부터 형성되는 리튬 이차 전지용 음극 활물질.The amorphous or semicrystalline carbon may be sucrose, phenol resin, naphthalene resin, polyvinyl alcohol, polyvinyl chloride, furfuryl alcohol, polyacrylonitrile, polyamide, furan resin, cellulose, styrene, polyyi A negative electrode active material for a lithium secondary battery formed from a carbon precursor comprising at least one selected from mead, epoxy resin, vinyl chloride resin, coal-based pitch, petroleum-based pitch, mesophase pitch, tar, and low molecular weight heavy oil.
  13. 제1항에 있어서,The method of claim 1,
    상기 코어 입자의 평균입경(D50)과 상기 쉘층의 두께의 비율은 17 내지 95 : 5 내지 83인 리튬 이차 전지용 음극 활물질.The ratio of the average particle diameter (D50) of the core particles and the thickness of the shell layer is 17 to 95: 5 to 83 negative electrode active material for lithium secondary batteries.
  14. 제1항에 있어서,The method of claim 1,
    상기 제1 쉘층과 상기 제2 쉘층의 두께의 비율은 5 내지 95 : 95 내지 5인 리튬 이차 전지용 음극 활물질.The ratio of the thickness of the said 1st shell layer and the said 2nd shell layer is 5-95: 95-5 the negative electrode active material for lithium secondary batteries.
  15. 제1항에 있어서,The method of claim 1,
    상기 음극 활물질은 The negative active material is
    상기 쉘층의 표면에 위치하고 상기 비정질 또는 준결정질 탄소를 포함하는 코팅층을 더 포함하는 리튬 이차 전지용 음극 활물질.The negative active material for a rechargeable lithium battery further comprising a coating layer on the surface of the shell layer and containing the amorphous or semi-crystalline carbon.
  16. 제15항에 있어서,The method of claim 15,
    상기 코팅층의 두께는 0.01 내지 5 ㎛인 리튬 이차 전지용 음극 활물질.The thickness of the coating layer is a negative active material for a lithium secondary battery of 0.01 to 5 ㎛.
  17. 제1항에 있어서,The method of claim 1,
    상기 음극 활물질의 평균입경(D50)은 2 내지 40 ㎛인 리튬 이차 전지용 음극 활물질.An average particle diameter (D50) of the negative electrode active material is a negative active material for a lithium secondary battery having a 2 to 40 ㎛.
  18. 하드 카본, 소프트 카본 및 구형화 천연흑연으로부터 선택되는 적어도 하나를 포함하는 코어 입자의 표면을, 실리콘/카본블랙/탄소 복합입자, 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제1 쉘층을 형성시키고,The surface of the core particle comprising at least one selected from hard carbon, soft carbon and spherical natural graphite is coated with a mixture of silicon / carbon black / carbon composite particles and amorphous or semicrystalline carbon precursors to form a first shell layer. Let's
    상기 제1 쉘층 표면을 인편상 흑연 절편 입자 및 비정질 또는 준결정질 탄소 전구체의 혼합물로 코팅해 제2 쉘층을 형성시켜 음극 활물질 전구체 입자를 얻는 단계; 및 Coating the surface of the first shell layer with a mixture of flake graphite fragment particles and an amorphous or semi-crystalline carbon precursor to form a second shell layer to obtain anode active material precursor particles; And
    상기 음극 활물질 전구체 입자를 열처리하는 단계;Heat treating the anode active material precursor particles;
    를 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법.Method for producing a negative electrode active material for a lithium secondary battery comprising a.
  19. 제18항에 있어서,The method of claim 18,
    상기 음극 활물질 전구체 입자를 열처리하는 단계 전에,Before the heat treatment of the negative electrode active material precursor particles,
    상기 음극 활물질 전구체 입자의 표면을 비정질 또는 준결정질 탄소 전구체로 코팅하는 단계를 더 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법.The method of manufacturing a negative active material for a lithium secondary battery further comprising the step of coating the surface of the negative electrode active material precursor particles with an amorphous or semi-crystalline carbon precursor.
  20. 제18항에 있어서,The method of claim 18,
    상기 열처리는 질소, 아르곤, 수소 또는 이들의 혼합 가스를 포함하는 분위기, 또는 진공 하에서 수행되는 리튬 이차 전지용 음극 활물질의 제조 방법. The heat treatment is a method for producing a negative electrode active material for a lithium secondary battery is carried out under an atmosphere containing nitrogen, argon, hydrogen or a mixed gas thereof, or under a vacuum.
  21. 제18항에 있어서,The method of claim 18,
    상기 열처리는 700 내지 1300℃의 온도에서 수행되는 리튬 이차 전지용 음극 활물질의 제조 방법.The heat treatment is a method of manufacturing a negative electrode active material for a lithium secondary battery is carried out at a temperature of 700 to 1300 ℃.
  22. 제1항 내지 제17항 중 어느 한 항의 음극 활물질을 포함하는 음극; 양극; 및 전해액을 포함하는 리튬 이차 전지.A negative electrode comprising the negative electrode active material of any one of claims 1 to 17; anode; And a lithium secondary battery comprising an electrolyte solution.
PCT/KR2016/014255 2015-12-07 2016-12-06 Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same WO2017099456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150172950A KR101786714B1 (en) 2015-12-07 2015-12-07 Negative active material for rechargeable lithium battery including core consisting of carbon, method of preparing the same, and rechargeable lithium battery including the same
KR10-2015-0172950 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017099456A1 true WO2017099456A1 (en) 2017-06-15

Family

ID=59013489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014255 WO2017099456A1 (en) 2015-12-07 2016-12-06 Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same

Country Status (2)

Country Link
KR (1) KR101786714B1 (en)
WO (1) WO2017099456A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524635A (en) * 2018-09-16 2019-03-26 北京化工大学 A kind of preparation method and applications of the silicon carbon composite for negative electrode of lithium ion battery
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
US20200243846A1 (en) * 2017-09-30 2020-07-30 Btr New Material Group Co., Ltd. Carbon matrix composite material, preparation method therefor and lithium ion battery comprising same
CN113380998A (en) * 2021-06-02 2021-09-10 夏秀明 Silicon-carbon negative electrode material and preparation method and application thereof
CN113889593A (en) * 2020-07-02 2022-01-04 洛阳月星新能源科技有限公司 Preparation method of hard carbon-coated soft carbon composite material
US11489160B2 (en) * 2020-12-10 2022-11-01 The Industry & Academic Cooperation In Chungnam National University (Iac) Anode active material including carbon composite for lithium secondary battery and method of manufacturing the same
CN115275191A (en) * 2022-09-26 2022-11-01 江苏正力新能电池技术有限公司 Negative electrode material, negative plate and sodium ion battery
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US11682757B2 (en) 2017-09-26 2023-06-20 Unist (Ulsan National Institute Of Science And Technology) Composite anode active material, method of preparing the composite anode material, and lithium secondary battery comprising the composite anode active material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401839B1 (en) * 2017-07-21 2022-05-25 에스케이온 주식회사 Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR102434067B1 (en) * 2017-09-08 2022-08-22 주식회사 엘지에너지솔루션 Negative electrode for lithium secondarty battery, and lithium secondarty battery comprising the negative electrode
KR20190067474A (en) * 2017-12-07 2019-06-17 에스케이이노베이션 주식회사 Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR102051072B1 (en) * 2018-01-10 2019-12-02 울산과학기술원 Composite anode active material, a method of preparing the composite anode material, and Lithium secondary battery comprising the composite anode active material
CN110085856A (en) 2018-01-26 2019-08-02 三星电子株式会社 Containing silicon structure body, preparation method, using its carbon complex and respectively including its electrode, lithium battery and equipment
CN111418096A (en) * 2018-10-30 2020-07-14 秦洪秀 Silicon-graphite composite electrode active material for lithium secondary battery, electrode comprising same, lithium secondary battery, and method for producing silicon-graphite composite electrode active material
CN115621534B (en) * 2022-12-16 2023-04-07 宁德新能源科技有限公司 Electrochemical device and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060069738A (en) * 2004-12-18 2006-06-22 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR20130107892A (en) * 2012-03-23 2013-10-02 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150047274A (en) * 2013-10-24 2015-05-04 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
KR20150063620A (en) * 2013-11-29 2015-06-10 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150075207A (en) * 2013-12-24 2015-07-03 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060069738A (en) * 2004-12-18 2006-06-22 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR20130107892A (en) * 2012-03-23 2013-10-02 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150047274A (en) * 2013-10-24 2015-05-04 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
KR20150063620A (en) * 2013-11-29 2015-06-10 강원대학교산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150075207A (en) * 2013-12-24 2015-07-03 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626584B2 (en) 2014-04-25 2023-04-11 South Dakota Board Of Regents High capacity electrodes
US11682757B2 (en) 2017-09-26 2023-06-20 Unist (Ulsan National Institute Of Science And Technology) Composite anode active material, method of preparing the composite anode material, and lithium secondary battery comprising the composite anode active material
US20200243846A1 (en) * 2017-09-30 2020-07-30 Btr New Material Group Co., Ltd. Carbon matrix composite material, preparation method therefor and lithium ion battery comprising same
US11757089B2 (en) * 2017-09-30 2023-09-12 Btr New Material Group Co., Ltd. Carbon matrix composite material, preparation method therefor and lithium ion battery comprising same
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
US11824189B2 (en) 2018-01-09 2023-11-21 South Dakota Board Of Regents Layered high capacity electrodes
CN109524635A (en) * 2018-09-16 2019-03-26 北京化工大学 A kind of preparation method and applications of the silicon carbon composite for negative electrode of lithium ion battery
CN113889593A (en) * 2020-07-02 2022-01-04 洛阳月星新能源科技有限公司 Preparation method of hard carbon-coated soft carbon composite material
CN113889593B (en) * 2020-07-02 2023-04-07 洛阳月星新能源科技有限公司 Preparation method of hard carbon-coated soft carbon composite material
US11489160B2 (en) * 2020-12-10 2022-11-01 The Industry & Academic Cooperation In Chungnam National University (Iac) Anode active material including carbon composite for lithium secondary battery and method of manufacturing the same
CN113380998A (en) * 2021-06-02 2021-09-10 夏秀明 Silicon-carbon negative electrode material and preparation method and application thereof
CN115275191A (en) * 2022-09-26 2022-11-01 江苏正力新能电池技术有限公司 Negative electrode material, negative plate and sodium ion battery

Also Published As

Publication number Publication date
KR101786714B1 (en) 2017-10-18
KR20170066819A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2017099456A1 (en) Negative electrode active material for lithium secondary battery comprising core composed of carbon, manufacturing method therefor, and lithium secondary battery including same
US9419276B2 (en) Anode active material, lithium secondary battery comprising the same, and method of manufacturing anode active material
WO2018030616A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
WO2019107936A1 (en) Negative electrode active material, negative electrode and lithium secondary battery comprising same
WO2015065047A1 (en) Negative electrode active material and method for preparing same
WO2019151814A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2016018023A1 (en) Graphite secondary particle, and lithium secondary battery comprising same
WO2020040586A1 (en) Silicon-based composite, anode comprising same, and lithium secondary battery
WO2020149688A1 (en) Anode active material for secondary battery, anode comprising same, and method for manufacturing same
WO2019194554A1 (en) Negative electrode active material for lithium secondary battery, manufacturing method therefor, lithium secondary battery negative electrode comprising same, and lithium secondary battery
WO2016200223A1 (en) Positive electrode mixture and secondary battery including same
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2019168352A1 (en) Anode active material, preparation method therefor, and anode and lithium secondary battery, which include anode active material
WO2020036392A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
WO2018221827A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2018034553A1 (en) Negative electrode material comprising silicon flakes and method for preparing silicon flakes
WO2021251663A1 (en) Anode and secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2015093894A1 (en) Anode active material, and lithium secondary battery comprising same
WO2020141953A1 (en) Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
WO2017074109A1 (en) Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2020067793A1 (en) Sulfur-carbon composite and manufacturing method therefor
WO2024085297A1 (en) Anode active material, and anode and lithium secondary battery comprising same
WO2023059015A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2019147093A1 (en) Conductive material, electrode-forming slurry including same, electrode, and lithium secondary battery manufactured using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873321

Country of ref document: EP

Kind code of ref document: A1