WO2019039718A1 - Woven flexible planar heating element comprising protective film, and method for producing same - Google Patents

Woven flexible planar heating element comprising protective film, and method for producing same Download PDF

Info

Publication number
WO2019039718A1
WO2019039718A1 PCT/KR2018/007092 KR2018007092W WO2019039718A1 WO 2019039718 A1 WO2019039718 A1 WO 2019039718A1 KR 2018007092 W KR2018007092 W KR 2018007092W WO 2019039718 A1 WO2019039718 A1 WO 2019039718A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heating
protective film
woven
fibers
Prior art date
Application number
PCT/KR2018/007092
Other languages
French (fr)
Korean (ko)
Inventor
이동윤
차승일
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to CN201880054946.2A priority Critical patent/CN111034353A/en
Publication of WO2019039718A1 publication Critical patent/WO2019039718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a woven soft-surface heating element including a protective film and a method for manufacturing the same, and more particularly, to a protective film formed by forming a protective film using molding to provide a protective film having excellent flexibility, And a method of manufacturing the same.
  • a heating element that converts energy from electricity or gas into heat energy is divided into a linear heating element made of metal or ceramic wire, a bulk heating element such as graphite, and a plane heating element coated with a heating element on a flat electrode.
  • the double-sided heating element has a metal, ceramic or carbon-based heating layer coated on a planar metal electrode, and the upper and lower portions of the heating layer are sealed with an insulator.
  • a conventional flexible surface heating element is manufactured by coating a material such as carbon on a flexible substrate or by arranging a linear heating element such as nichrome on a flexible material such as a plastic film or cloth and fixing the same.
  • a planar heating element has a problem of durability, a problem that the heating is not uniformly generated over the whole area, and a problem of the linear heating element that the entire heating element becomes inoperable if the line is broken.
  • a carbon-based electrode which is expected to be a planar heating element, is oxidized at a high temperature and is brittle, easily cracking due to impact, and the planar heating element can not be used for a long time due to such a problem.
  • the far-infrared ceramic heat-generating body is coated on the metal substrate, there is a disadvantage that it can not be used when the bending of the surface heat-generating body is large due to the warp limit of the ceramic heat-generating body.
  • a technique for manufacturing a surface heating element by weaving a conductive material into a line There is known a method of weaving an area heating element by using a weaving yarn made by twisting together ordinary fibers and metal fibers, such as 'Korean Patent Application No. 10-2008-0090068', a surface heating element and its physical structure and manufacturing method .
  • a surface heating element technique in which conductivity is imparted by coating conductive carbon on the surface of a non-conductive polymer seal such as "Korean Utility Model Registration Utility Model No. 20-2005-0011304".
  • the metal-fiber surface heating element is produced by thermally bonding a layer made of a polymer-based insulating material to both surfaces of the heating electrode after woven thereon, or by attaching insulating ceramic fibers in layers.
  • the efficiency is poor due to the thick thickness of the polymer layer bonded to the heating element electrode during the production of the flat type surface heating element in this manner, and there is a material problem that delamination occurs due to mechanical repeated stress during use.
  • the production process is complicated in terms of the manufacturing process, the production speed is low, and expensive manufacturing equipments such as the thermocompression equipment are required. Therefore, it is difficult to make the heating elements of various shapes because the mold must be used.
  • a woven flexible heat generating element comprising a protective film formed by molding and having excellent flexibility, no peeling during use, high production speed and stable quality, and a method of manufacturing the same.
  • a woven flexible surface heating element including a protective film which can be heated in a heating direction and can be controlled in a thermal direction, thereby achieving a high thermal efficiency and shortening a heating time.
  • a heat-shrinkable laminate comprising: a heat generating layer formed by weaving metal heating fibers; And a protection film of a polymer material which is impregnated while the metal heating fibers are woven so as to surround the surface of the heating layer so as to protect the heating layer from the external environment so that pores do not exist. Is achieved by a flexible planar heating element.
  • the protective film may be formed by molding the heat generating layer by dipping the heat generating layer in a roll-to-roll manner into the liquid polymer, or the protective film may be formed by any one of a spraying method, a screen printing method and a doctor blade method .
  • a reflective layer formed by woven ceramic fibers laminated on one surface of the heating layer and reflecting heat generated from one surface so that heat generated from the heating layer is emitted to the other surface,
  • the ceramic fibers are preferably impregnated during the weaving process so as to surround the surface of the heating layer and the reflective layer.
  • the heating layer is formed by weaving the metal heating fibers with warp and weft
  • the reflecting layer is formed by weaving the ceramic fibers with warp and weft
  • the heating layer and the reflecting layer are preferably bonded or stitched together It is preferable that the metal heating fibers are woven in warp and weft, and the ceramic fiber is woven together with warp and weft, thereby integrally weaving the heating layer and the reflection layer.
  • the heat generating layer has an arrangement area of the metal heating fibers larger than that of the ceramic fibers as compared with the reflective layer and the arrangement area of the ceramic fibers in the reflective layer is wider than the metal heating fibers as compared with the heating layer.
  • the ceramic fiber is preferably selected from the group consisting of glass fiber, heat-resistant polymer fiber, titanium oxide fiber, aluminum oxide fiber, zirconium oxide fiber, silicon carbide fiber, potassium titanate fiber, barzat fiber and a mixture thereof.
  • a heat insulating layer made of a polymer and ceramic particles is laminated on the protective film and a radiation layer made of a polymer and a carbon material is laminated on a surface facing the heat insulating layer laminated on the protective film.
  • the material of the heat generating fiber is selected from the group consisting of platinum (Pt), iron (Fe), nickel (Ni), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo) (Ag), palladium (Pd), ruthenium (Ru), magnesium (Mg), chromium (Cr), zinc (Zn), tungsten (W), cobalt ,
  • the polymer material is preferably selected from the group consisting of an epoxy resin, an acrylic resin, a polyamide resin, a polyimide resin, and a mixture thereof.
  • the above-mentioned object is also achieved by a method of manufacturing a metal foil, comprising: weaving a metal heating fiber to form a heat generating layer; Applying a polymer so as to surround the surface of the heating layer and impregnating the polymer while the metal heating fibers are woven to prevent pores from forming a protective layer, And is also achieved by a method for producing an area heating element.
  • the protective film may be formed by molding the heat generating layer by a roll-to-roll method in a liquid polymer, or the protective film may be formed by any one of a spraying method, a screen printing method and a doctor blade method .
  • a protective film using molding is formed to obtain a woven flexible heat generating element including a protective film having excellent flexibility, no peeling during use, high production speed and stable quality.
  • heat emitted from the heat generating layer is reflected and the thermal direction can be controlled, thereby achieving high heat efficiency and shortening the heating time.
  • FIG. 1 is a cross-sectional view of a woven soft-surface heating element according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating a protective film forming process.
  • Fig. 1A is a woven soft-surface heating element 10 according to the first embodiment, and includes a heating layer 11 and a protective film 13.
  • the heat generating layer (11) is formed by woven metal heating fibers, which are made of metal that generates heat, in a thin line.
  • general weaving methods such as resigning, twilling and water-repellent can be used. Available.
  • the material of the heat generating fiber is selected from platinum (Pt), iron (Fe), nickel (Ni), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo) ) Selected from the group consisting of palladium (Pd), ruthenium (Ru), magnesium (Mg), chromium (Cr), zinc (Zn), tungsten (W), cobalt It is preferable that the heat-generating fibers are made of different metals or alloy materials and are woven. In particular, stainless steel or nichrome can be used most preferably for metal heating fibers made of alloy, and stainless steel and nichrome can be prepared singly or in combination.
  • Nichrome fiber has high heat-generating efficiency and is less flexible than stainless steel fibers or superior materials that are easy to weave.
  • the heat generation efficiency is lower than that of stainless steel fiber or nichrome fiber, but it can be easily used when special equipment such as semiconductor equipment or characteristics inherent to metal are required.
  • the metal heating fibers When the diameter of the metal heating fibers is less than 10 mu m, the metal heating fibers are very close to each other and the protective layer 13 is difficult to be molded between the intervals, If the thickness exceeds 200 m, the thick heating layer 11 may be formed and the flexibility may be deteriorated.
  • the protective film 13 is formed of a polymer material and has a structure in which the heating layer 11 is surrounded to protect the heating layer 11 from external environment and to be insulated.
  • the protective film 13 is formed of a polymer material that surrounds the surface of the heat generating layer 11 to protect the heat generating layer 11 from the external environment and is impregnated while the metal heating fibers are woven to prevent pores. That is, the protective film 13 is formed so as to surround the outer surface of the heat generating layer 11 in order to prevent the heat generating layer 11 from being leaked or short-circuited due to contact with the outside, .
  • the method for producing the planar heating element 10 includes the steps of forming the heating layer 11 by weaving the metal heating fibers; Applying a polymer so as to surround the surface of the heat generating layer 11 and impregnating the polymer while the metal heating fibers are woven so that pores do not exist to form the protective layer 13.
  • the protective layer 13 may be formed by molding the liquid polymer 1 as shown in Fig. 2 and immersing the exothermic layer 11 in the liquid polymer 1 .
  • the liquid polymer 1 is disposed between the woven heat generating layers 11 and cured, so that the heat generating layers 11 are filled uniformly and tightly, 13) can be formed.
  • the exothermic layer 11 is fed into the liquid polymer 1 in a roll-to-roll manner.
  • thermoplastic insulating polymer film is attached to the upper and lower portions of the heat generating layer, and the polymer protective film is laminated on the heat generating layer by thermocompression bonding.
  • the protective film is formed in this manner, the polymer is not properly filled between the heating layers, and separation may occur during use depending on the state of the polymer film, resulting in product failure.
  • the protective layer 13 is manufactured through the molding method of the present invention, since the heating layer 11 is stably inserted into the polymer, it is mechanically very stable, .
  • the roll-to-roll method since the roll-to-roll method is used in the present invention, it is easy to mass-produce, and it is easy to attach using chemical bonding or mechanical bar method, so it is easy to produce products for clothes, outdoor, heating and the like.
  • the spraying method, the doctor blade method, or the screen printing method which is a method of coating a polymer, does not form an excellent protective film as compared with the molding method of the present invention, but can be used as a process.
  • the polymer material forming the protective film 13 can be used for the polymer material forming the protective film 13 according to the flexibility, usable temperature, and flame retardancy standard.
  • an epoxy or acrylic resin is preferable.
  • the resin is used at a temperature of 250 ° C or less, Based resin is preferable.
  • a polyimide resin is suitable when the woven flexible heat generating element 10 is used at a temperature of 400 ° C or less and high flexibility. All of these resins are coated on the heat generating layer 11 by using a thermosetting resin or an ultraviolet curable resin It should be prepared in the form of high viscosity liquid phase and solid phase after curing.
  • the heating element 11 of the present invention is applied to a place where flame resistance is required, it is preferable that the heating element 11 is made to have a thermoplasticity of 10 cm, generally 1 to 30 cm, on the basis of a serial in automobiles.
  • the woven flexible non-heating body 20 according to the second embodiment includes a heating layer 21, a protective film 23 and a reflective layer 25 as shown in Fig. 1B.
  • the heat generating layer 21 and the protective film 23 are formed in the same shape and material as those of the heat generating layer 11 and the protective film 13 according to the first embodiment.
  • the reflective layer 25 is laminated on one surface of the heat generating layer 21 and reflects heat generated from one surface so that heat generated from the heat generating layer 21 is emitted to the other surface. As shown in FIG. This reflective layer 25 is formed by weaving ceramic fibers.
  • the protective film 23 exists so as to surround the surfaces of the heat generating layer 21 and the reflective layer 25 while being impregnated with the ceramic fibers so as not to have pores. That is, the protective layer 23 is impregnated so that there is no pore between the reflective layer 25 like the protective layer 23 formed on the heat generating layer 21 as in the first embodiment, (23) are not separated from each other.
  • the ceramic fiber is a thin line-shaped ceramic material that reflects heat without absorbing heat.
  • a ceramic fiber is woven using a weaving method such as resign, twine, and water like the metal heating fiber.
  • the heat-reflecting ceramic fiber material is selected from the group consisting of glass fiber, heat-resistant polymer fiber, titanium oxide fiber, aluminum oxide fiber, zirconium oxide fiber, silicon carbide fiber, potassium titanate fiber, But is not limited thereto.
  • Basalt which is produced by spinning basalt, is an excellent insulating material and is a material suitable for the present invention.
  • the structure of the heat generating layer 21 and the reflective layer 25 of the present invention may be formed as follows. First, the heating layer 21 is formed by weaving the metal heating fibers in warp and weft, and the reflecting layer 25 is also formed by weaving ceramic fibers in warp and weft. The heat generating layer 21 and the reflective layer 25 may be adhered using an adhesive or may be bonded by sewing to form the heat generating body 20. [ When the heating element 20 is formed with such a structure, the metal heating fibers and the ceramic fibers are clearly separated from each other so that the heat generated from the metal heating fibers can easily be discharged to the other surface of the heating layer 21. [
  • the woven flexible heat-generating body 20 which can be formed in different shapes, is obtained by weaving the metal heating fibers in warp and weft, weaving the ceramic fibers in the warp and weft together with the metal heating fibers to form the heating layer 21 and the reflection layer 25, Is integrally woven.
  • the area of the woven heat generating layer 21 is larger than that of the reflection layer 25, and the area of the reflection layer 25 is larger than that of the heat generating layer 21, do.
  • the heat generating layer 21 includes a part of the ceramic fibers, the heat generating layer 21 has a large area for arranging the heat generating fibers to discharge heat.
  • the reflecting layer 25 includes a part of the heat generating fibers, And serves to reflect the heat emitted from the heat generating layer 21 to the other surface of the heat generating layer 21.
  • the heat generating layer (21) has the arrangement area of the metal heating fibers within the range of 70 to 100%
  • the reflection layer (25) forms the heating element (20) so that the arrangement area of the ceramic fibers is within the range of 70 to 100% . This is because the arrangement area is less than 70%, and it is difficult to control the direction of heat emitted from the metal heating fiber through the ceramic fiber.
  • the woven flexible surface heating element 30 according to the third embodiment includes a heating layer 31, a protective film 33, and a heat insulating layer 35. Since the heating layer 31 and the protecting layer 33 are formed of the same shape and material as those of the heating layer 11 and the protecting layer 13 according to the first embodiment, (25) are not separately included.
  • the insulating layer 35 is formed on the outside of the protective film 33, not on the inside thereof, but on a material made of polymer and ceramic particles.
  • the heat insulating layer 35 allows heat to be emitted to the opposite side without releasing the heat toward the heat insulating layer 35 like the reflective layer 25.
  • the insulating layer 35 is laminated on the lower side by a painting method, a spraying method, a dipping method, a doctor blade method, or a screen printing method.
  • the heat insulating layer 35 having a high heat insulating characteristic is a composite material of a specially produced high heat insulating ceramic and polymer, and has a low thermal conductivity of 0.05 W / mK or less.
  • a heat insulating layer is formed by using a heat insulating material made of a ceramic ball containing a silica ball or a titania ball as a filler.
  • the woven flexible surface heating element 40 includes a heating layer 41, a protective film 43, a reflective layer 45, a heat insulating layer 47, and a radiating layer 49.
  • the heating layer 41, the reflective layer 43, the protective film 45 and the heat insulating layer 47 are formed on the heat generating layers 21 and 31, the protective films 23 and 33, 25 and the heat insulating layer 35, the detailed description thereof will be omitted.
  • the radiation layer 49 is laminated on the surface facing the heat insulating layer 47 stacked on the protective film 43 and is made of a mixture of a polymer and a carbon material.
  • the radiation layer 49 having a high infrared ray emissivity is formed in consideration of the fact that heat generated in the heating element 40 is dissipated not only by conduction or convection but also by infrared radiation.
  • As a high emissivity material graphite, nano-carbon, carbon nanotubes or graphene, which are carbon materials, are mixed with the polymer to form a high emissivity material.
  • a polymer-based insulating material layer is thermally bonded to the both surfaces of the heating electrode after the heating electrode is woven, or the insulating ceramic fiber is laminated to form a layer.
  • the efficiency is poor due to the thick thickness of the polymer layer bonded to the heating element electrode during the production of the flat type surface heating element in this manner, and there is a material problem that delamination occurs due to mechanical repeated stress during use.
  • the production process is complicated in terms of the manufacturing process, the production speed is low, and expensive manufacturing equipments such as the thermocompression equipment are required. Therefore, it is difficult to make the heating elements of various shapes because the mold must be used.
  • the heating layers 11, 21, 31 and 41 are immersed in the liquid polymer 1 to form the protective films 13, 23, 33 and 43 through molding,
  • the protective films 13, 23, 33, and 43 can be formed without being separated by the external impact due to uniform and tight filling between the protective films 13, 23, 33, and 43.
  • Heat generated from the heat generating layers 11, 21, 31 and 41 through the formation of the heat insulating layers 35 and 47 and the reflecting layers 25 and 45 is reflected by the heat insulating layers 35 and 47 and the reflecting layers 25 and 45
  • the heat radiation performance through infrared radiation can be increased through the radiation layers 25 and 45.
  • the woven soft surface heaters 10, 20, 30, and 40 of the present invention are formed by weaving the metal heating fibers and the ceramic fibers to form the heat generating layers 11, 21, 31, and 41 and the reflecting layers 25 and 45 Therefore, it has high flexibility, excellent impact resistance, mechanical durability and electrical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

The present invention relates to a woven flexible planar heating element comprising a protective film, and a method for producing the heating element, and the technical gist of the present invention is to include: a heating layer formed by weaving a metallic heating fiber; and a protective film, made of a polymeric material, which surrounds the surface of the heating layer so as to protect the heating layer from the external environment, and is impregnated in the spaces between woven threads of the metallic heating fiber such that no void is present therein. Accordingly, a woven flexible planar heating element comprising a protective film can be obtained which has a protective film employing molding and thus has excellent flexibility and is free from peeling during use, enables a high production speed, and has stable quality. Also, heat emitted from the heating layer is reflected and thus heat direction control is possible, which enables a high thermal efficiency and a reduction in heating time.

Description

보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법WOVEN FABRIC PLASTICS HEATING ELEMENT AND PROCESS FOR PRODUCING THE SAME
본 발명은 보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법에 관한 것으로, 더욱 상세하게는 몰딩을 이용한 보호막을 형성하여 유연성이 우수하고 사용 중 박리가 일어나지 않으며, 생산 속도가 높고 안정된 품질로 이루어진 보호막을 포함하는 보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법에 관한 것이다.The present invention relates to a woven soft-surface heating element including a protective film and a method for manufacturing the same, and more particularly, to a protective film formed by forming a protective film using molding to provide a protective film having excellent flexibility, And a method of manufacturing the same.
전기 또는 가스로부터의 에너지를 열에너지로 변환시키는 발열체는 일반적으로 금속 또는 세라믹 선으로 만들어진 선상 발열체, 흑연과 같은 벌크 발열체 및 평면 전극 위에 막(membrane)상으로 발열체가 코팅된 면상 발열체로 구분된다. 이중 면상 발열체는 평면상의 금속전극 위에 금속, 세라믹 또는 탄소계 발열층이 코팅되어 있고, 상기 발열층의 상부 및 하부를 절연체로 실링하는 구조로 되어있다.Generally, a heating element that converts energy from electricity or gas into heat energy is divided into a linear heating element made of metal or ceramic wire, a bulk heating element such as graphite, and a plane heating element coated with a heating element on a flat electrode. The double-sided heating element has a metal, ceramic or carbon-based heating layer coated on a planar metal electrode, and the upper and lower portions of the heating layer are sealed with an insulator.
최근 상기와 같은 면상 발열체를 평면이 아닌 곡면의 형상을 가지거나, 사용 중 유연하게 휘어질 수 있는 유연 면상 발열체를 제조할 필요성이 대두되고 있다. 종래의 유연 면상 발열체는 카본과 같은 소재를 유연기판 위에 코팅하여 제조하거나, 니크롬과 같은 선상 발열체를 플라스틱 필름이나 천과 같은 유연소재 위에 배열하여 이를 고정시키는 방법으로 제조한다. 그러나 이러한 면상 발열체는 내구성의 문제, 발열이 전면적에 대해 불균일하게 발열되는 문제, 선상 발열체의 경우 선이 끊어지게 되면 발열체 전체가 작동불능이 되는 문제들을 지니고 있다. 예를 들면 면상 발열체로 기대되는 탄소계 전극의 경우 고온에서 산화되며 취성이 있어 충격에 의해 쉽게 균열이 발생하며, 이러한 문제로 인해 면상 발열체를 장기간 사용이 용이하지 못하다. 또한 원적외선 세라믹계 발열체를 금속기판 상부에 코팅하여 만든 경우 세라믹 발열체의 휘어짐 한계로 인해 면상 발열체의 휘어짐이 클 경우 사용이 불가능하다는 단점이 있다.In recent years, there has been a need to manufacture a flexible surface heating element having the shape of a curved surface rather than a flat surface, or capable of flexing flexibly during use. A conventional flexible surface heating element is manufactured by coating a material such as carbon on a flexible substrate or by arranging a linear heating element such as nichrome on a flexible material such as a plastic film or cloth and fixing the same. However, such a planar heating element has a problem of durability, a problem that the heating is not uniformly generated over the whole area, and a problem of the linear heating element that the entire heating element becomes inoperable if the line is broken. For example, a carbon-based electrode, which is expected to be a planar heating element, is oxidized at a high temperature and is brittle, easily cracking due to impact, and the planar heating element can not be used for a long time due to such a problem. In addition, when the far-infrared ceramic heat-generating body is coated on the metal substrate, there is a disadvantage that it can not be used when the bending of the surface heat-generating body is large due to the warp limit of the ceramic heat-generating body.
이를 극복하기 위해 전도성이 있는 물질을 선상으로 만들어 이를 직조하여 면상의 발열체를 제조하는 기술이 알려져 있다. 즉 '대한민국특허청 공개특허 제10-2008-0090068호 면상발열체와 그 물성구조 및 제조방법'과 같이 일반섬유와 금속섬유를 함께 꼬아서 만든 직조용 실을 사용하여 면상 발열체를 직조하는 방법이 알려져 있다. 이 이외에도 '대한민국특허청 등록실용신안 제20-2005-0011304호 면사직조발열체'와 같이 전도성이 없는 폴리머실 표면에 전도성이 있는 카본을 코팅하여 전도성을 부여한 면상 발열체 기술이 알려져 있다.In order to overcome this problem, there is known a technique for manufacturing a surface heating element by weaving a conductive material into a line. There is known a method of weaving an area heating element by using a weaving yarn made by twisting together ordinary fibers and metal fibers, such as 'Korean Patent Application No. 10-2008-0090068', a surface heating element and its physical structure and manufacturing method . In addition, there is known a surface heating element technique in which conductivity is imparted by coating conductive carbon on the surface of a non-conductive polymer seal, such as "Korean Utility Model Registration Utility Model No. 20-2005-0011304".
이와 같이 금속섬유 면상 발열체는 발열전극의 직조 후 그 양면에 폴리머계의 절연물질로 이루어진 층을 열압착하여 붙이거나 절연 세라믹섬유를 층상으로 붙여서 제조하게 된다. 그러나 이러한 방법으로 직조형 면상 발열체를 제조 시 발열체 전극과 접착한 폴리머층의 두께가 두꺼워 효율성이 나쁘고, 사용 중 기계적 반복 응력에 의해 층간 박리가 일어나는 소재적 문제점이 있다. 또한 제조 공정 면에서 공정이 복잡하여 생산속도가 낮고, 열압착 장비 등 고비용의 제작 장비가 필요하며, 금형을 사용하여야 하므로 다양한 형상의 발열체를 만드는 것이 어려운 문제점이 있다.As described above, the metal-fiber surface heating element is produced by thermally bonding a layer made of a polymer-based insulating material to both surfaces of the heating electrode after woven thereon, or by attaching insulating ceramic fibers in layers. However, there is a problem in that the efficiency is poor due to the thick thickness of the polymer layer bonded to the heating element electrode during the production of the flat type surface heating element in this manner, and there is a material problem that delamination occurs due to mechanical repeated stress during use. Also, the production process is complicated in terms of the manufacturing process, the production speed is low, and expensive manufacturing equipments such as the thermocompression equipment are required. Therefore, it is difficult to make the heating elements of various shapes because the mold must be used.
따라서 본 발명의 목적은, 몰딩을 이용한 보호막을 형성하여 유연성이 우수하고 사용 중 박리가 일어나지 않으며, 생산 속도가 높고 안정된 품질로 이루어진 보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a woven flexible heat generating element comprising a protective film formed by molding and having excellent flexibility, no peeling during use, high production speed and stable quality, and a method of manufacturing the same.
또한, 발열층으로부터 방출되는 열이 반사되어 열방향 제어가 가능하며, 이를 통해 높은 열효율을 가져 가열 시간을 단축시킬 수 있는 보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법을 제공하는 것이다.Also, it is an object of the present invention to provide a woven flexible surface heating element including a protective film which can be heated in a heating direction and can be controlled in a thermal direction, thereby achieving a high thermal efficiency and shortening a heating time.
상기한 목적은, 금속발열섬유를 직조하여 형성된 발열층과; 외부의 환경으로부터 상기 발열층 보호하도록 상기 발열층의 표면을 둘러싸며, 기공이 존재하지 않도록 상기 금속발열섬유가 직조된 사이에 함침되는 폴리머 소재의 보호막을 포함하는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체에 의해서 달성된다.The above-mentioned object is achieved by a heat-shrinkable laminate comprising: a heat generating layer formed by weaving metal heating fibers; And a protection film of a polymer material which is impregnated while the metal heating fibers are woven so as to surround the surface of the heating layer so as to protect the heating layer from the external environment so that pores do not exist. Is achieved by a flexible planar heating element.
여기서, 상기 보호막은 상기 발열층을 롤투롤(roll-to-roll) 방식으로 액상 폴리머 내에 침지시켜 몰딩을 통해 형성되거나 또는 상기 보호막은 스프레이법, 스크린프린팅법 또는 닥터블레이드법 중 어느 하나의 방법으로 형성되는 것이 바람직하다.Here, the protective film may be formed by molding the heat generating layer by dipping the heat generating layer in a roll-to-roll manner into the liquid polymer, or the protective film may be formed by any one of a spraying method, a screen printing method and a doctor blade method .
또한, 상기 발열층의 일면에 적층되어 상기 발열층으로부터 발생하는 열이 타면으로 방출되도록 일면에서 발생하는 열을 반사시키는 세라믹섬유를 직조하여 형성된 반사층을 더 포함하며, 상기 보호막은 기공이 존재하지 않도록 상기 세라믹섬유가 직조된 사이에 함침됨과 동시에 상기 발열층 및 상기 반사층의 표면을 둘러싸도록 존재하는 것이 바람직하다.And a reflective layer formed by woven ceramic fibers laminated on one surface of the heating layer and reflecting heat generated from one surface so that heat generated from the heating layer is emitted to the other surface, The ceramic fibers are preferably impregnated during the weaving process so as to surround the surface of the heating layer and the reflective layer.
상기 발열층은 상기 금속발열섬유를 경사 및 위사로 직조하여 형성되고, 상기 반사층은 상기 세라믹섬유를 경사 및 위사로 직조하여 형성되며, 상기 발열층 및 상기 반사층은 접착 또는 재봉에 의해 결합되는 것이 바람직하며, 상기 금속발열섬유를 경사 및 위사로 직조하고 상기 세라믹섬유를 경사 및 위사로 함께 직조하여 상기 발열층 및 상기 반사층을 일체로 직조하는 것이 바람직하다.The heating layer is formed by weaving the metal heating fibers with warp and weft, and the reflecting layer is formed by weaving the ceramic fibers with warp and weft, and the heating layer and the reflecting layer are preferably bonded or stitched together It is preferable that the metal heating fibers are woven in warp and weft, and the ceramic fiber is woven together with warp and weft, thereby integrally weaving the heating layer and the reflection layer.
상기 발열층은 상기 반사층에 비해 상기 금속발열섬유의 배치 면적이 상기 세라믹 섬유보다 넓으며, 상기 반사층은 상기 발열층에 비해 상기 세라믹섬유의 배치 면적이 상기 금속발열섬유보다 넓은 것이 바람직하다.It is preferable that the heat generating layer has an arrangement area of the metal heating fibers larger than that of the ceramic fibers as compared with the reflective layer and the arrangement area of the ceramic fibers in the reflective layer is wider than the metal heating fibers as compared with the heating layer.
상기 세라믹섬유는, 유리섬유, 내열폴리머섬유, 산화티타늄섬유, 산화알루미늄섬유, 산화지르코늄섬유, 탄화규소섬유, 티타늄산칼륨섬유, 바잘트섬유 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The ceramic fiber is preferably selected from the group consisting of glass fiber, heat-resistant polymer fiber, titanium oxide fiber, aluminum oxide fiber, zirconium oxide fiber, silicon carbide fiber, potassium titanate fiber, barzat fiber and a mixture thereof.
상기 보호막에는 폴리머와 세라믹입자로 이루어지는 단열층이 적층되며, 상기 보호막에 적층된 상기 단열층과 대향하는 면에는 폴리머와 카본소재로 이루어지는 방사층이 적층되는 것이 바람직하다.It is preferable that a heat insulating layer made of a polymer and ceramic particles is laminated on the protective film and a radiation layer made of a polymer and a carbon material is laminated on a surface facing the heat insulating layer laminated on the protective film.
상기 금속발열섬유의 소재는, 백금(Pt), 철(Fe), 니켈(Ni), 알루미늄(Al), 구리(Cu), 티타늄(Ti), 몰리브덴(Mo), 금(Au), 은(Ag), 팔라듐(Pd), 루테늄(Ru), 마그네슘(Mg), 크롬(Cr), 아연(Zn), 텡스텐(W), 코발트(Co) 및 이의 합금으로 이루어진 군으로부터 선택되는 것이 바람직하며, 상기 폴리머 소재는, 에폭시계 수지, 아크릴계 수지, 폴리아미드계 수지, 폴리이미드계 수지 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The material of the heat generating fiber is selected from the group consisting of platinum (Pt), iron (Fe), nickel (Ni), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo) (Ag), palladium (Pd), ruthenium (Ru), magnesium (Mg), chromium (Cr), zinc (Zn), tungsten (W), cobalt , And the polymer material is preferably selected from the group consisting of an epoxy resin, an acrylic resin, a polyamide resin, a polyimide resin, and a mixture thereof.
상기한 목적은 또한, 금속발열섬유를 직조하여 발열층을 형성하는 단계와; 상기 발열층의 표면을 둘러싸도록 폴리머를 도포하고, 기공이 존재하지 않도록 상기 금속발열섬유가 직조된 사이에 폴리머를 함침하여 보호층을 형성하는 단계를 포함하는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체 제조방법에 의해서도 달성된다.The above-mentioned object is also achieved by a method of manufacturing a metal foil, comprising: weaving a metal heating fiber to form a heat generating layer; Applying a polymer so as to surround the surface of the heating layer and impregnating the polymer while the metal heating fibers are woven to prevent pores from forming a protective layer, And is also achieved by a method for producing an area heating element.
여기서, 상기 보호막은 상기 발열층을 롤투롤(roll-to-roll) 방식으로 액상 폴리머 내에 침지시켜 몰딩을 통해 형성거나 또는 상기 보호막은 스프레이법, 스크린프린팅법 또는 닥터블레이드법 중 어느 하나의 방법으로 형성되는 것이 바람직하다.Here, the protective film may be formed by molding the heat generating layer by a roll-to-roll method in a liquid polymer, or the protective film may be formed by any one of a spraying method, a screen printing method and a doctor blade method .
상술한 본 발명의 구성에 따르면, 몰딩을 이용한 보호막을 형성하여 유연성이 우수하고 사용 중 박리가 일어나지 않으며, 생산 속도가 높고 안정된 품질로 이루어진 보호막을 포함하는 직조 유연 면상 발열체를 얻을 수 있다.According to the structure of the present invention described above, a protective film using molding is formed to obtain a woven flexible heat generating element including a protective film having excellent flexibility, no peeling during use, high production speed and stable quality.
또한, 발열층으로부터 방출되는 열이 반사되어 열방향 제어가 가능하며, 이를 통해 높은 열효율을 가져 가열 시간을 단축시킬 수 있다.In addition, heat emitted from the heat generating layer is reflected and the thermal direction can be controlled, thereby achieving high heat efficiency and shortening the heating time.
도 1은 본 발명의 실시예에 따른 직조 유연 면상 발열체의 단면도이고,1 is a cross-sectional view of a woven soft-surface heating element according to an embodiment of the present invention,
도 2는 보호막 형성 과정을 나타낸 단면도이다.2 is a cross-sectional view illustrating a protective film forming process.
이하 본 발명의 실시예에 따른 보호막을 포함하는 직조 유연 면상 발열체 및 그 제조방법을 도면을 통해 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1a는 제1실시예에 따른 직조 유연 면상 발열체(10)로, 발열층(11)과 보호막(13)을 포함한다. 발열층(11)은 발열을 일으키는 금속을 얇은 선상으로 제조한 금속발열섬유를 직조하여 형성된 것으로, 직조 방법으로는 사직, 능직, 수자직 등 일반적인 직조 방법을 사용 가능하며 이 이외의 직조 방법도 제한 없이 사용 가능하다. 이러한 금속발열섬유의 소재는 백금(Pt), 철(Fe), 니켈(Ni), 알루미늄(Al), 구리(Cu), 티타늄(Ti), 몰리브덴(Mo), 금(Au), 은(Ag), 팔라듐(Pd), 루테늄(Ru), 마그네슘(Mg), 크롬(Cr), 아연(Zn), 텡스텐(W), 코발트(Co) 및 이의 합금으로 이루어진 군으로부터 선택되거나 또는 복수 개의 금속발열섬유가 각각 상이한 금속 또는 합금 소재로 이루어진 것을 준비하여 직조하는 것이 바람직하다. 특히 합금으로 이루어진 금속발열섬유의 경우 스테인레스 스틸(stainless steel) 또는 니크롬(nichrome)을 가장 바람직하게 적용할 수 있으며, 스테인레스 스틸과 니크롬을 단독 또는 함께 준비하여 직조할 수 있다.Fig. 1A is a woven soft-surface heating element 10 according to the first embodiment, and includes a heating layer 11 and a protective film 13. Fig. The heat generating layer (11) is formed by woven metal heating fibers, which are made of metal that generates heat, in a thin line. As the weaving method, general weaving methods such as resigning, twilling and water-repellent can be used. Available. The material of the heat generating fiber is selected from platinum (Pt), iron (Fe), nickel (Ni), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo) ) Selected from the group consisting of palladium (Pd), ruthenium (Ru), magnesium (Mg), chromium (Cr), zinc (Zn), tungsten (W), cobalt It is preferable that the heat-generating fibers are made of different metals or alloy materials and are woven. In particular, stainless steel or nichrome can be used most preferably for metal heating fibers made of alloy, and stainless steel and nichrome can be prepared singly or in combination.
스테인레스 스틸 섬유의 경우 SUS304, SUS304L, SUS316, SUS316L 등을 사용할 수 있는데, 유연성, 강도, 직조성, 발열성 등이 우수하여 본 발명에 매우 유리한 소재에 해당한다. 니크롬 섬유의 경우 고효율의 발열성을 지니고 있으며 직조가 용이한 우수한 소재이나 스테인레스 스틸 섬유보다 유연성은 떨어진다. 또한 단일 또는 합금으로 이루어진 섬유의 경우 발열 효율은 스테인레스 스틸 섬유 또는 니크롬 섬유보다는 낮으나 반도체 장비와 같은 특수 장비나 금속 고유의 특성을 요구하는 경우에는 용이하게 사용 가능하다.In the case of stainless steel fibers, SUS304, SUS304L, SUS316, SUS316L and the like can be used, and they are excellent materials in the present invention because of their excellent flexibility, strength, straightness and heat generation. Nichrome fiber has high heat-generating efficiency and is less flexible than stainless steel fibers or superior materials that are easy to weave. In the case of fibers made of single or alloy, the heat generation efficiency is lower than that of stainless steel fiber or nichrome fiber, but it can be easily used when special equipment such as semiconductor equipment or characteristics inherent to metal are required.
금속발열섬유의 직경은 10 내지 200㎛로 이루어지는 것이 바람직한데, 직경이 10㎛ 미만일 경우 금속발열섬유의 직조 간격이 매우 가깝기 때문에 간격 사이에 보호막(13)이 몰딩되기 어려워 발열층(11)과 보호막(13)의 일부 영역이 서로 분리될 수 있으며, 200㎛를 초과할 경우 두꺼운 발열층(11)이 형성되어 유연성이 떨어지게 된다는 단점이 있다.When the diameter of the metal heating fibers is less than 10 mu m, the metal heating fibers are very close to each other and the protective layer 13 is difficult to be molded between the intervals, If the thickness exceeds 200 m, the thick heating layer 11 may be formed and the flexibility may be deteriorated.
보호막(13)은 폴리머 소재로 형성되며, 외부의 환경으로부터 발열층(11)을 보호하며 절연 가능하도록 발열층(11)을 둘러싸는 구조로 이루어진다. 이때 보호막(13)은 외부의 환경으로부터 발열층(11)을 보호하도록 발열층(11)의 표면을 둘러싸며, 기공이 존재하지 않도록 금속발열섬유가 직조된 사이에 함침되는 폴리머소재로 이루어진다. 즉 보호막(13)은 발열층(11)이 외부와의 접촉에 의해 전기가 누설되거나 단락이 되는 것을 방지하고, 기계적인 마모나 파손을 방지하기 위해 발열층(11)의 외부 표면을 둘러싸도록 형성하게 된다. The protective film 13 is formed of a polymer material and has a structure in which the heating layer 11 is surrounded to protect the heating layer 11 from external environment and to be insulated. At this time, the protective film 13 is formed of a polymer material that surrounds the surface of the heat generating layer 11 to protect the heat generating layer 11 from the external environment and is impregnated while the metal heating fibers are woven to prevent pores. That is, the protective film 13 is formed so as to surround the outer surface of the heat generating layer 11 in order to prevent the heat generating layer 11 from being leaked or short-circuited due to contact with the outside, .
발열층(11)과 보호막(13) 사이에 기공(pore)이 존재할 경우 면상 발열체(10)를 지속적으로 구부리거나 세탁하게 되면 외부의 자극에 의해 기공에서 균열이 발생하여 발열층(11)과 보호막(13)이 서로 분리되는 문제가 발생할 수 있다. 특히 종래기술과 같이 발열층의 표면에 절연층을 각각 적층하여 열처리를 통해 압착할 경우, 아무리 큰 압력을 가하더라도 발열층과 절연층 사이에 기공이 반드시 존재하기 때문에 이는 외부의 자극 또는 세탁에 의해 기공에 균열이 생기는 문제가 발생할 수 있다. 하지만 본 발명의 경우 기공이 존재하지 않도록 발열층(11)을 이루는 금속발열섬유 사이에 폴리머를 함침시키고, 발열층(11)의 표면에도 폴리머를 도포하여 함침된 폴리머와 표면에 도포된 폴리머가 일체로 형성된 보호막(13)을 형성할 수 있다.When pores are present between the heating layer 11 and the protective film 13, if the surface heating body 10 is continuously bent or washed, cracks are generated in the pores due to external stimulation, (13) may be separated from each other. In particular, when the insulating layer is laminated on the surface of the heat generating layer, and the heat insulating layer is pressed through the heat treatment as in the prior art, pores are always present between the heat generating layer and the insulating layer, There may be a problem that the pores are cracked. However, in the case of the present invention, the polymer is impregnated between the metal heating fibers constituting the heating layer 11 so that pores do not exist, and the polymer impregnated on the surface of the heating layer 11 and the polymer The protective film 13 can be formed.
이와 같은 면상 발열체(10)를 제조하는 방법으로는, 금속발열섬유를 직조하여 발열층(11)을 형성하는 단계와; 발열층(11)의 표면을 둘러싸도록 폴리머를 도포하고, 기공이 존재하지 않도록 금속발열섬유가 직조된 사이에 폴리머를 함침하여 보호층(13)을 형성하는 단계를 포함한다.The method for producing the planar heating element 10 includes the steps of forming the heating layer 11 by weaving the metal heating fibers; Applying a polymer so as to surround the surface of the heat generating layer 11 and impregnating the polymer while the metal heating fibers are woven so that pores do not exist to form the protective layer 13. [
이 중 보호층(13)을 형성하는 방법으로는 도 2에 도시된 바와 같이 액상 폴리머(1)를 준비하고, 발열층(11)을 액상 폴리머(1) 내에 침지시켜 몰딩을 통해 형성될 수 있다. 몰딩을 통해 보호막(13)을 형성하게 되면 직조된 발열층(11) 사이 사이에 액상 폴리머(1)가 배치된 후 경화되기 때문에 발열층(11) 사이가 균일하고 빈틈없이 채워짐에 의해 안정된 보호막(13)을 형성할 수 있다. 이때 발열층(11)은 롤투롤(roll-to-roll) 방식으로 액상 폴리머(1) 내에 공급된다. The protective layer 13 may be formed by molding the liquid polymer 1 as shown in Fig. 2 and immersing the exothermic layer 11 in the liquid polymer 1 . When the protective film 13 is formed through the molding, the liquid polymer 1 is disposed between the woven heat generating layers 11 and cured, so that the heat generating layers 11 are filled uniformly and tightly, 13) can be formed. At this time, the exothermic layer 11 is fed into the liquid polymer 1 in a roll-to-roll manner.
일반적으로 폴리머를 코팅하는 방법으로는, 열가소성 절연 폴리머필름을 발열층의 상부 및 하부에 부착한 후 열압착에 의해 폴리머 보호막을 발열층에 적층시키게 된다. 이와 같은 방법으로 보호막을 형성할 경우 폴리머가 발열층 사이에 제대로 채워지지 않으며, 폴리머필름의 상태에 따라 사용 중 분리가 일어나서 제품 불량을 일으킬 수 있다. 이에 비해 본 발명의 몰딩 방식을 통해 보호막(13)을 제조할 경우 발열층(11)이 폴리머 내에 안정적으로 삽입되어 있기 때문에 기계적으로 매우 안정하며, 필름 방식에 비해 매우 얇은 코팅이 가능하기 때문에 유연성이 증가할 수 있다. 또한 본 발명의 경우 롤투롤 방식을 이용하기 때문에 대량 생산이 용이하며, 화학적 접착 또는 기계적 봉재법을 이용하여 부착하는 것이 쉽기 때문에 의복, 아웃도어, 난방용 등의 제품 제작이 용이하다. 또한 폴리머를 코팅하는 방법인 분사법, 닥터블레이드법 또는 스크린프린팅법의 경우에도 본 발명의 몰딩 방법에 비해서 우수한 보호막을 형성하지는 않으나 공정으로 사용이 가능하다.Generally, as a method of coating a polymer, a thermoplastic insulating polymer film is attached to the upper and lower portions of the heat generating layer, and the polymer protective film is laminated on the heat generating layer by thermocompression bonding. When the protective film is formed in this manner, the polymer is not properly filled between the heating layers, and separation may occur during use depending on the state of the polymer film, resulting in product failure. In contrast, when the protective layer 13 is manufactured through the molding method of the present invention, since the heating layer 11 is stably inserted into the polymer, it is mechanically very stable, . In addition, since the roll-to-roll method is used in the present invention, it is easy to mass-produce, and it is easy to attach using chemical bonding or mechanical bar method, so it is easy to produce products for clothes, outdoor, heating and the like. Also, the spraying method, the doctor blade method, or the screen printing method, which is a method of coating a polymer, does not form an excellent protective film as compared with the molding method of the present invention, but can be used as a process.
보호막(13)을 형성하는 폴리머 소재는 유연성, 사용가능 온도, 난연성 기준에 따라 각각 다른 소재가 사용될 수 있다. 예를 들어 직조 유연 면상 발열체(10)를 고유연성을 필요로 하며 150℃ 이하의 온도에서 사용 시에는 에폭시계 또는 아크릴계 수지가 바람직하며, 유연성은 높지 않으나 250℃ 이하의 온도에서 사용 시에는 폴리아미드계 수지가 바람직하다. 또한 고유연성과 400℃ 이하의 온도에서 직조 유연 면상 발열체(10)를 사용 시에는 폴리이미드계 수지가 적합하며, 이러한 수지들은 모두 열경화성 수지 또는 자외선경화성 수지를 이용하여 발열층(11)에 코팅할 때 고점도 액상으로 이루어지고 경화 후에는 고상으로 이루어지는 형태로 준비되어야 한다. 본 발명의 발열체(11)가 난연성이 요구되는 곳에 적용될 경우 자동차 내연재 기준으로 10cm, 일반적으로 1 내지 30cm의 열가소성을 지니도록 제조하는 것이 바람직하다.Different materials can be used for the polymer material forming the protective film 13 according to the flexibility, usable temperature, and flame retardancy standard. For example, when the woven flexible non-heat generating body 10 is used at a temperature of 150 ° C or less, an epoxy or acrylic resin is preferable. When the resin is used at a temperature of 250 ° C or less, Based resin is preferable. In addition, a polyimide resin is suitable when the woven flexible heat generating element 10 is used at a temperature of 400 ° C or less and high flexibility. All of these resins are coated on the heat generating layer 11 by using a thermosetting resin or an ultraviolet curable resin It should be prepared in the form of high viscosity liquid phase and solid phase after curing. When the heating element 11 of the present invention is applied to a place where flame resistance is required, it is preferable that the heating element 11 is made to have a thermoplasticity of 10 cm, generally 1 to 30 cm, on the basis of a serial in automobiles.
제2실시예에 따른 직조 유연 면상 발열체(20)는, 도 1b에 도시된 바와 같이 발열층(21), 보호막(23) 및 반사층(25)을 포함한다. 여기서 발열층(21) 및 보호막(23)은 제1실시예에 따른 발열층(11) 및 보호막(13)과 동일한 형상 및 소재로 이루어지기 때문에 자세한 설명은 생략한다.The woven flexible non-heating body 20 according to the second embodiment includes a heating layer 21, a protective film 23 and a reflective layer 25 as shown in Fig. 1B. Here, the heat generating layer 21 and the protective film 23 are formed in the same shape and material as those of the heat generating layer 11 and the protective film 13 according to the first embodiment.
반사층(25)은 발열층(21)의 일면에 적층되어 발열층(21)으로부터 발생하는 열이 타면으로 방출되도록 일면에서 발생하는 열을 반사시키는 역할을 하며, 반사층(25)은 보호막(23) 내부에 배치되는 것이 바람직하다. 이러한 반사층(25)은 세라믹섬유를 직조하여 형성된다. 상세히 설명하면 보호막(23)은 기공이 존재하지 않도록 세라믹섬유가 직조된 사이에 함침됨과 동시에 발열층(21) 및 반사층(25)의 표면을 둘러싸도록 존재한다. 즉 제1실시예와 같이 발열층(21)에 형성된 보호막(23)처럼 반사층(25) 사이에 기공이 존재하지 않도록 보호막(23)이 함침되어 외부의 자극 또는 세탁에 의해 반사층(25)과 보호막(23)이 서로 분리되지 않도록 한다.The reflective layer 25 is laminated on one surface of the heat generating layer 21 and reflects heat generated from one surface so that heat generated from the heat generating layer 21 is emitted to the other surface. As shown in FIG. This reflective layer 25 is formed by weaving ceramic fibers. In detail, the protective film 23 exists so as to surround the surfaces of the heat generating layer 21 and the reflective layer 25 while being impregnated with the ceramic fibers so as not to have pores. That is, the protective layer 23 is impregnated so that there is no pore between the reflective layer 25 like the protective layer 23 formed on the heat generating layer 21 as in the first embodiment, (23) are not separated from each other.
여기서 세라믹섬유는 열을 흡수하지 않고 반사시키는 세라믹 소재를 얇은 선상으로 제조한 것으로, 이러한 세라믹섬유를 금속발열섬유와 마찬가지로 사직, 능직, 수자직 등의 직조 방법을 이용하여 직조하게 된다. 열을 반사시키는 세라믹섬유의 소재는 유리섬유, 내열폴리머섬유, 산화티타늄섬유, 산화알루미늄섬유, 산화지르코늄섬유, 탄화규소섬유, 티타늄산칼륨섬유, 바잘트섬유 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정되지는 않는다. 특히 현무암을 방사하여 제조하는 바잘트는 우수한 단열섬유로 본 발명에 매우 적합한 소재이다.Here, the ceramic fiber is a thin line-shaped ceramic material that reflects heat without absorbing heat. Such a ceramic fiber is woven using a weaving method such as resign, twine, and water like the metal heating fiber. The heat-reflecting ceramic fiber material is selected from the group consisting of glass fiber, heat-resistant polymer fiber, titanium oxide fiber, aluminum oxide fiber, zirconium oxide fiber, silicon carbide fiber, potassium titanate fiber, But is not limited thereto. Basalt, which is produced by spinning basalt, is an excellent insulating material and is a material suitable for the present invention.
본 발명의 발열층(21) 및 반사층(25)의 구조는 다음과 같이 두 가지로 형성될 수 있다. 먼저 발열층(21)은 금속발열섬유를 경사 및 위사로 직조하여 형성되고, 반사층(25) 또한 세라믹섬유를 경사 및 위사로 직조하여 형성된다. 이러한 발열층(21) 및 반사층(25)은 접착제를 이용하여 접착되거나, 또는 재봉에 의해 결합되어 발열체(20)를 형성할 수 있다. 이러한 구조로 발열체(20)를 형성할 경우 금속발열섬유와 세라믹섬유가 그 층이 명확히 구분되어 금속발열섬유로부터 발생하는 열이 발열층(21)의 타면으로 용이하게 방출 가능하다.The structure of the heat generating layer 21 and the reflective layer 25 of the present invention may be formed as follows. First, the heating layer 21 is formed by weaving the metal heating fibers in warp and weft, and the reflecting layer 25 is also formed by weaving ceramic fibers in warp and weft. The heat generating layer 21 and the reflective layer 25 may be adhered using an adhesive or may be bonded by sewing to form the heat generating body 20. [ When the heating element 20 is formed with such a structure, the metal heating fibers and the ceramic fibers are clearly separated from each other so that the heat generated from the metal heating fibers can easily be discharged to the other surface of the heating layer 21. [
또한 다른 형상으로 이루어질 수 있는 직조 유연 면상 발열체(20)는 금속발열섬유를 경사 및 위사로 직조하고, 세라믹섬유를 경사 및 위사로 금속발열섬유와 함께 직조하여 발열층(21) 및 반사층(25)이 일체로 직조되도록 구성된다. 이때 직조된 발열층(21) 영역은 반사층(25) 영역에 비해 금속발열섬유의 배치 면적이 넓으며, 반사층(25) 영역은 발열층(21) 영역에 비해 세라믹섬유의 배치 면적이 넓도록 직조한다. 이를 통해 발열층(21)은 일부 세라믹섬유를 포함하고 있긴 하지만 금속발열섬유의 배치 면적이 넓어 열을 방출하는 역할을 하며, 이와 반대로 반사층(25)은 금속발열섬유를 일부 포함하고 있긴 하지만 세라믹섬유의 배치 면적이 넓어 발열층(21)으로부터 방출되는 열을 발열층(21)의 타면으로 반사시키는 역할을 한다. 여기서 발열층(21)은 금속발열섬유의 배치 면적이 70 내지 100% 범위 내로 존재하도록 하며, 반사층(25)은 세라믹섬유의 배치 면적이 70 내지 100% 범위 내로 존재하도록 발열체(20)를 형성하는 것이 바람직하다. 이러한 배치 면적은 각각이 70% 미만일 경우 금속발열섬유로부터 방출되는 열의 방향을 세라믹섬유를 통해 제어하기 힘들기 때문이다.In addition, the woven flexible heat-generating body 20, which can be formed in different shapes, is obtained by weaving the metal heating fibers in warp and weft, weaving the ceramic fibers in the warp and weft together with the metal heating fibers to form the heating layer 21 and the reflection layer 25, Is integrally woven. At this time, the area of the woven heat generating layer 21 is larger than that of the reflection layer 25, and the area of the reflection layer 25 is larger than that of the heat generating layer 21, do. Although the heat generating layer 21 includes a part of the ceramic fibers, the heat generating layer 21 has a large area for arranging the heat generating fibers to discharge heat. On the other hand, the reflecting layer 25 includes a part of the heat generating fibers, And serves to reflect the heat emitted from the heat generating layer 21 to the other surface of the heat generating layer 21. [ Here, the heat generating layer (21) has the arrangement area of the metal heating fibers within the range of 70 to 100%, and the reflection layer (25) forms the heating element (20) so that the arrangement area of the ceramic fibers is within the range of 70 to 100% . This is because the arrangement area is less than 70%, and it is difficult to control the direction of heat emitted from the metal heating fiber through the ceramic fiber.
제3실시예에 따른 직조 유연 면상 발열체(30)는, 발열층(31), 보호막(33) 및 단열층(35)을 포함한다. 여기서 발열층(31) 및 보호막(33)은 제1실시예에 따른 발열층(11) 및 보호막(13)과 동일한 형상 및 소재로 이루어지기 때문에 자세한 설명은 생략하며, 제2실시예에 따른 반사층(25)은 따로 포함되지 않는다.The woven flexible surface heating element 30 according to the third embodiment includes a heating layer 31, a protective film 33, and a heat insulating layer 35. Since the heating layer 31 and the protecting layer 33 are formed of the same shape and material as those of the heating layer 11 and the protecting layer 13 according to the first embodiment, (25) are not separately included.
단열층(35)은 보호막(33)의 내부가 아닌 외부에 적층되는 구성으로, 폴리머와 세라믹입자로 이루어지는 소재를 통해 형성된다. 단열층(35)은 반사층(25)과 마찬가지로 단열층(35) 방향으로 열이 방출되지 않고 반대쪽으로 방출되도록 한다. 이러한 단열층(35)은 보호막(33)의 경화가 끝난 후에 하부에 페인팅법, 스프레이법, 침지법, 닥터블레이드법 또는 스크린프린팅법을 이용하여 적층 형성시킨다. 고단열성 특징을 지니는 단열층(35)은 특별하게 제조되는 고단열성 세라믹과 폴리머의 복합재로써, 0.05W/mK 이하의 낮은 열전도도를 지니게 된다. 0.05W/mK 이하의 낮은 열전도도는 일반적인 단일소재의 폴리머에서는 실현될 수 없으며, 예를 들어 아크릴레진과 같은 폴리머 내부에 특수한 필러를 충진시켜 제작하기 때문에 본 발명에서는 속이 빈 상태의 10 내지 100㎛ 사이즈의 실리카볼(silica ball) 또는 티타니아볼(titania ball)을 포함하는 세라믹 볼을 충진제로 한 단열성 소재를 사용하여 단열층을 형성한다.The insulating layer 35 is formed on the outside of the protective film 33, not on the inside thereof, but on a material made of polymer and ceramic particles. The heat insulating layer 35 allows heat to be emitted to the opposite side without releasing the heat toward the heat insulating layer 35 like the reflective layer 25. [ After the curing of the protective film 33 is completed, the insulating layer 35 is laminated on the lower side by a painting method, a spraying method, a dipping method, a doctor blade method, or a screen printing method. The heat insulating layer 35 having a high heat insulating characteristic is a composite material of a specially produced high heat insulating ceramic and polymer, and has a low thermal conductivity of 0.05 W / mK or less. Since a low thermal conductivity of 0.05 W / mK or less can not be realized in a general single-material polymer, and a special filler is filled in a polymer such as acrylic resin, for example, A heat insulating layer is formed by using a heat insulating material made of a ceramic ball containing a silica ball or a titania ball as a filler.
제4실시예에 따른 직조 유연 면상 발열체(40)는, 발열층(41), 보호막(43), 반사층(45), 단열층(47) 및 방사층(49)을 포함한다. 여기서 발열층(41), 반사층(43), 보호막(45) 및 단열층(47)은 제2실시예 및 제3실시예에 따른 발열층(21, 31), 보호막(23, 33), 반사층(25) 및 단열층(35)과 동일한 형상 및 소재로 이루어지기 때문에 자세한 설명은 생략한다.The woven flexible surface heating element 40 according to the fourth embodiment includes a heating layer 41, a protective film 43, a reflective layer 45, a heat insulating layer 47, and a radiating layer 49. The heating layer 41, the reflective layer 43, the protective film 45 and the heat insulating layer 47 are formed on the heat generating layers 21 and 31, the protective films 23 and 33, 25 and the heat insulating layer 35, the detailed description thereof will be omitted.
방사층(49)은 보호막(43)에 적층된 단열층(47)과 대향하는 면에 적층되며, 폴리머와 카본소재의 혼합으로 이루어진다. 발열체(40)에서 발생한 열이 전도나 대류뿐이 아닌 적외선 복사에 의해서도 방열되는 것을 감안하여 적외선 방사율이 높은 방사층(49)을 형성하며, 이는 고방사율소재로 이루어지게 된다. 고방사율소재로써 카본소재인 흑연, 나노카본, 카본나노튜브 또는 그래핀이 폴리머와 혼합되어 고방사율소재를 이루게 된다.The radiation layer 49 is laminated on the surface facing the heat insulating layer 47 stacked on the protective film 43 and is made of a mixture of a polymer and a carbon material. The radiation layer 49 having a high infrared ray emissivity is formed in consideration of the fact that heat generated in the heating element 40 is dissipated not only by conduction or convection but also by infrared radiation. As a high emissivity material, graphite, nano-carbon, carbon nanotubes or graphene, which are carbon materials, are mixed with the polymer to form a high emissivity material.
종래의 면상 발열체의 경우 금속소재로 이루어지게 되면 외부와의 접촉에 의해 전기가 누설되거나 단락이 될 수 있으며, 기계적인 마모나 파손이 발생할 수 있다. 이를 방지하기 위해 발열전극의 직조 후 그 양면에 폴리머계의 절연물질층을 열압착하여 붙이거나 절연 세라믹섬유를 층상으로 붙여서 제조하게 된다. 그러나 이러한 방법으로 직조형 면상 발열체를 제조 시 발열체 전극과 접착한 폴리머층의 두께가 두꺼워 효율성이 나쁘고, 사용 중 기계적 반복 응력에 의해 층간 박리가 일어나는 소재적 문제점이 있다. 또한 제조 공정 면에서 공정이 복잡하여 생산속도가 낮고, 열압착 장비 등 고비용의 제작 장비가 필요하며, 금형을 사용하여야 하므로 다양한 형상의 발열체를 만드는 것이 어려운 문제점이 있다.In the case of a conventional planar heating element, if it is made of a metal material, electricity may be leaked or short-circuited due to contact with the outside, and mechanical abrasion or breakage may occur. In order to prevent this, a polymer-based insulating material layer is thermally bonded to the both surfaces of the heating electrode after the heating electrode is woven, or the insulating ceramic fiber is laminated to form a layer. However, there is a problem in that the efficiency is poor due to the thick thickness of the polymer layer bonded to the heating element electrode during the production of the flat type surface heating element in this manner, and there is a material problem that delamination occurs due to mechanical repeated stress during use. Also, the production process is complicated in terms of the manufacturing process, the production speed is low, and expensive manufacturing equipments such as the thermocompression equipment are required. Therefore, it is difficult to make the heating elements of various shapes because the mold must be used.
이에 비해 본 발명의 경우 발열층(11, 21, 31, 41)을 액상 폴리머(1) 내에 침지시켜 몰딩을 통해 보호막(13, 23, 33, 43)을 형성하기 때문에 발열체(10, 20, 30, 40) 사이가 균일하고 빈틈없이 채워짐에 의해 외부 충격에 의해 분리되지 않고 안정된 보호막(13, 23, 33, 43)을 형성할 수 있다. 또한 단열층(35, 47) 및 반사층(25, 45)의 형성을 통해 발열층(11, 21, 31, 41)으로부터 방출되는 열이 단열층(35, 47) 및 반사층(25, 45)을 통해 반사되어 열 방향을 제어 가능하며, 방사층(25, 45)을 통해 적외선복사를 통한 방열 성능을 증가시킬 수 있다. 이를 통해 높은 열효율을 가지며 가열시간을 단축시킬 수 있는 효과를 얻을 수 있다. 이뿐만 아니라 본 발명의 직조 유연 면상 발열체(10, 20, 30, 40)는 금속발열섬유 및 세라믹섬유를 직조하여 발열층(11, 21, 31, 41) 및 반사층(25, 45)이 형성되기 때문에 유연성이 높고 내충격성이 우수하며, 기계적 내구성 및 전기적 특성을 향상시킬 수 있다.In contrast to this, in the present invention, since the heating layers 11, 21, 31 and 41 are immersed in the liquid polymer 1 to form the protective films 13, 23, 33 and 43 through molding, The protective films 13, 23, 33, and 43 can be formed without being separated by the external impact due to uniform and tight filling between the protective films 13, 23, 33, and 43. Heat generated from the heat generating layers 11, 21, 31 and 41 through the formation of the heat insulating layers 35 and 47 and the reflecting layers 25 and 45 is reflected by the heat insulating layers 35 and 47 and the reflecting layers 25 and 45 And the heat radiation performance through infrared radiation can be increased through the radiation layers 25 and 45. Thus, it is possible to obtain a high thermal efficiency and shorten the heating time. In addition, the woven soft surface heaters 10, 20, 30, and 40 of the present invention are formed by weaving the metal heating fibers and the ceramic fibers to form the heat generating layers 11, 21, 31, and 41 and the reflecting layers 25 and 45 Therefore, it has high flexibility, excellent impact resistance, mechanical durability and electrical properties.

Claims (15)

  1. 보호막을 포함하는 직조 유연 면상 발열체에 있어서,In the woven flexible heat generating element including the protective film,
    금속발열섬유를 직조하여 형성된 발열층과;A heating layer formed by woven metal heating fibers;
    외부의 환경으로부터 상기 발열층 보호하도록 상기 발열층의 표면을 둘러싸며, 기공이 존재하지 않도록 상기 금속발열섬유가 직조된 사이에 함침되는 폴리머 소재의 보호막을 포함하는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.And a protection film of a polymer material which is impregnated while the metal heating fibers are woven so as to surround the surface of the heating layer so as to protect the heating layer from the external environment so that pores do not exist. Flexible flat heating element.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 보호막은 상기 발열층을 롤투롤(roll-to-roll) 방식으로 액상 폴리머 내에 침지시켜 몰딩을 통해 형성되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the protective film is formed by molding the heat generating layer by immersing the heat generating layer in a roll-to-roll manner in the liquid polymer.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 보호막은 스프레이법, 스크린프린팅법 또는 닥터블레이드법 중 어느 하나의 방법으로 형성되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the protective film is formed by any one of a spraying method, a screen printing method, and a doctor blade method.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 발열층의 일면에 적층되어 상기 발열층으로부터 발생하는 열이 타면으로 방출되도록 일면에서 발생하는 열을 반사시키는 세라믹섬유를 직조하여 형성된 반사층을 더 포함하며, And a reflective layer formed by woven ceramic fibers that are laminated on one surface of the heating layer and reflect heat generated from one surface so that heat generated from the heating layer is emitted to the other surface,
    상기 보호막은 기공이 존재하지 않도록 상기 세라믹섬유가 직조된 사이에 함침됨과 동시에 상기 발열층 및 상기 반사층의 표면을 둘러싸도록 존재하는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the protective film is present so as to surround the surfaces of the heating layer and the reflective layer while being impregnated while the ceramic fibers are woven so that pores do not exist.
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 발열층은 상기 금속발열섬유를 경사 및 위사로 직조하여 형성되고,Wherein the heat generating layer is formed by weaving the metal heating fibers in warp and weft,
    상기 반사층은 상기 세라믹섬유를 경사 및 위사로 직조하여 형성되며,Wherein the reflective layer is formed by weaving the ceramic fibers in warp and weft,
    상기 발열층 및 상기 반사층은 접착 는 재봉에 의해 결합되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the heat generating layer and the reflective layer are bonded by stitching.
  6. 제 4항에 있어서,5. The method of claim 4,
    상기 금속발열섬유를 경사 및 위사로 직조하고 상기 세라믹섬유를 경사 및 위사로 함께 직조하여 상기 발열층 및 상기 반사층을 일체로 직조하는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the metal heating fibers are woven in warp and weft, and the ceramic fibers are woven together with warp and weft to weave the heating layer and the reflecting layer integrally.
  7. 제 4항에 있어서,5. The method of claim 4,
    상기 발열층은 상기 반사층에 비해 상기 금속발열섬유의 배치 면적이 상기 세라믹섬유보다 넓으며, 상기 반사층은 상기 발열층에 비해 상기 세라믹섬유의 배치 면적이 상기 금속발열섬유보다 넓은 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the heat generating layer has an arrangement area of the metal heating fibers larger than that of the ceramic fibers as compared with the reflective layer and an arrangement area of the ceramic fibers in the reflective layer is wider than the metal heating fibers as compared with the heating layer. Including woven flexible surface heating elements.
  8. 제 4항에 있어서,5. The method of claim 4,
    상기 세라믹섬유는, 유리섬유, 내열폴리머섬유, 산화티타늄섬유, 산화알루미늄섬유, 산화지르코늄섬유, 탄화규소섬유, 티타늄산칼륨섬유, 바잘트섬유 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the ceramic fiber is selected from the group consisting of glass fiber, heat-resistant polymer fiber, titanium oxide fiber, aluminum oxide fiber, zirconium oxide fiber, silicon carbide fiber, potassium titanate fiber, And a woven flexible non-woven fabric.
  9. 제 1항에 있어서,The method according to claim 1,
    상기 보호막에는 폴리머와 세라믹입자로 이루어지는 단열층이 적층되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the protective film is laminated with a heat insulating layer comprising a polymer and ceramic particles.
  10. 제 9항에 있어서,10. The method of claim 9,
    상기 보호막에 적층된 상기 단열층과 대향하는 면에는 폴리머와 카본소재로 이루어지는 방사층이 적층되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.And a radiation layer made of a polymer and a carbon material is laminated on a surface facing the heat insulating layer laminated on the protective film.
  11. 제 1항에 있어서,The method according to claim 1,
    상기 금속발열섬유의 소재는, 백금(Pt), 철(Fe), 니켈(Ni), 알루미늄(Al), 구리(Cu), 티타늄(Ti), 몰리브덴(Mo), 금(Au), 은(Ag), 팔라듐(Pd), 루테늄(Ru), 마그네슘(Mg), 크롬(Cr), 아연(Zn), 텡스텐(W), 코발트(Co) 및 이의 합금으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.The material of the heat generating fiber is selected from the group consisting of platinum (Pt), iron (Fe), nickel (Ni), aluminum (Al), copper (Cu), titanium (Ti), molybdenum (Mo) (Ag), palladium (Pd), ruthenium (Ru), magnesium (Mg), chromium (Cr), zinc (Zn), tungsten (W), cobalt Wherein the protective film is made of a thermoplastic resin.
  12. 제 1항에 있어서,The method according to claim 1,
    상기 폴리머 소재는, 에폭시계 수지, 아크릴계 수지, 폴리아미드계 수지, 폴리이미드계 수지 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체.Wherein the polymer material is selected from the group consisting of an epoxy resin, an acrylic resin, a polyamide resin, a polyimide resin, and a mixture thereof.
  13. 보호막을 포함하는 직조 유연 면상 발열체 제조방법에 있어서,A method for manufacturing a woven flexible flat surface heating element including a protective film,
    금속발열섬유를 직조하여 발열층을 형성하는 단계와;Forming a heat generating layer by weaving metal heating fibers;
    상기 발열층의 표면을 둘러싸도록 폴리머를 도포하고, 기공이 존재하지 않도록 상기 금속발열섬유가 직조된 사이에 폴리머를 함침하여 보호층을 형성하는 단계를 포함하는 것을 특징으로 하는 보호막을 포함는 직조 유연 면상 발열체 제조방법.Applying a polymer so as to surround the surface of the heating layer and impregnating the polymer while the metal heating fibers are woven to form a protective layer so that pores do not exist; A method of manufacturing a heating element.
  14. 제 13항에 있어서,14. The method of claim 13,
    상기 보호막은 상기 발열층을 롤투롤(roll-to-roll) 방식으로 액상 폴리머 내에 침지시켜 몰딩을 통해 형성되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체 제조방법.Wherein the protective film is formed by molding the heat generating layer by immersing the heat generating layer in a roll-to-roll system in a liquid polymer.
  15. 제 13항에 있어서,14. The method of claim 13,
    상기 보호막은 스프레이법, 스크린프린팅법 또는 닥터블레이드법 중 어느 하나의 방법으로 형성되는 것을 특징으로 하는 보호막을 포함하는 직조 유연 면상 발열체 제조방법.Wherein the protective film is formed by any one of spraying, screen printing, and doctor blade methods.
PCT/KR2018/007092 2017-08-23 2018-06-22 Woven flexible planar heating element comprising protective film, and method for producing same WO2019039718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880054946.2A CN111034353A (en) 2017-08-23 2018-06-22 Woven soft planar heating element containing protective film and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106734 2017-08-23
KR1020170106734A KR102434600B1 (en) 2017-08-23 2017-08-23 A woven flexible surface heating element including an insulating film

Publications (1)

Publication Number Publication Date
WO2019039718A1 true WO2019039718A1 (en) 2019-02-28

Family

ID=65439984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007092 WO2019039718A1 (en) 2017-08-23 2018-06-22 Woven flexible planar heating element comprising protective film, and method for producing same

Country Status (3)

Country Link
KR (1) KR102434600B1 (en)
CN (1) CN111034353A (en)
WO (1) WO2019039718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567893A (en) * 2020-04-08 2020-08-25 深圳麦克韦尔科技有限公司 Heating element, preparation method thereof and heating non-combustible aerosol forming device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218641A1 (en) * 2019-04-25 2020-10-29 (주)티엔케이 Flexible carbon-fiber heating product having 3d form and manufacturing method therefor
KR20220069480A (en) * 2020-11-20 2022-05-27 한국전기연구원 Method of manufacturing a metal fiber heating element electrode in which a connector electrode is bonded to the tip, and a metal fiber heating element electrode manufactured thereby
CN118031288A (en) * 2024-03-13 2024-05-14 广东暖时代科技有限公司 Mobile flexible heating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491225B1 (en) * 2003-01-09 2005-05-25 서영석 Surface type heater which emits infrared rays
KR101108219B1 (en) * 2010-11-05 2012-01-31 앤에이오에스 주식회사 Method for manufacturing planar heating element using carbon equipped with insulation and earth function
KR101215652B1 (en) * 2010-11-29 2012-12-26 한국전기연구원 Flexible Sheet Heater Using Fiber Reinforced Composite Insulation Film
KR101554989B1 (en) * 2014-08-20 2015-09-23 한국전기연구원 Flexible planar heating element which is woven
KR101752394B1 (en) * 2016-10-13 2017-07-11 윤진숙 A latex cushion heating mat

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506616B1 (en) * 2003-01-23 2005-08-03 (주)포스메디 Making method of electric heat seat for mat having a heat and negative electric potential
US20090078690A1 (en) * 2004-11-16 2009-03-26 Mi-Ae Lee Fiber reinforced heating unit and mattress with thereof
WO2006065060A1 (en) * 2004-12-14 2006-06-22 Hyung Woo Kim A heating apparatus of iron
KR100684132B1 (en) * 2005-05-26 2007-02-20 배종호 A carbon coating fabric and manufacture method of it
CN100588298C (en) * 2006-06-27 2010-02-03 黄喆官 Method for producing planar heating body with carbon fiber
KR100922098B1 (en) 2007-04-04 2009-10-16 한승재 Heating element of plane form and the properties of matter structure and manufacture method
ES2386584T3 (en) * 2007-09-28 2012-08-23 Funate Innovation Technology Co. Ltd. Flat thermal source
JP4980455B2 (en) * 2010-02-08 2012-07-18 富士フイルム株式会社 Method for manufacturing metal substrate with insulating layer, method for manufacturing semiconductor device, method for manufacturing solar cell, method for manufacturing electronic circuit, and method for manufacturing light emitting element
KR101310667B1 (en) * 2011-10-12 2013-09-24 전찬익 Plate heater and manufacturing method of plate heater
CN103194842B (en) * 2013-04-09 2015-04-08 北京光华纺织集团有限公司 Metal-wire-containing electric heating fabric suitable for severe environment
CN103640267B (en) * 2013-11-21 2016-03-02 苏州市莱赛电车技术有限公司 A kind of Three-dimensional fiber composite material
DE102015104373A1 (en) * 2015-03-24 2016-09-29 Heraeus Noblelight Gmbh Strip-shaped carbon heating filament and process for its production
CN205232481U (en) * 2015-11-18 2016-05-11 山东大学 Take reflection configuration's carbon fiber to weave radiation heating area

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491225B1 (en) * 2003-01-09 2005-05-25 서영석 Surface type heater which emits infrared rays
KR101108219B1 (en) * 2010-11-05 2012-01-31 앤에이오에스 주식회사 Method for manufacturing planar heating element using carbon equipped with insulation and earth function
KR101215652B1 (en) * 2010-11-29 2012-12-26 한국전기연구원 Flexible Sheet Heater Using Fiber Reinforced Composite Insulation Film
KR101554989B1 (en) * 2014-08-20 2015-09-23 한국전기연구원 Flexible planar heating element which is woven
KR101752394B1 (en) * 2016-10-13 2017-07-11 윤진숙 A latex cushion heating mat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567893A (en) * 2020-04-08 2020-08-25 深圳麦克韦尔科技有限公司 Heating element, preparation method thereof and heating non-combustible aerosol forming device

Also Published As

Publication number Publication date
KR20190021680A (en) 2019-03-06
KR102434600B1 (en) 2022-08-19
CN111034353A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2019039718A1 (en) Woven flexible planar heating element comprising protective film, and method for producing same
EP0014104B1 (en) Electrically conductive prepreg materials, articles manufactured therefrom, and a method of manufacturing said prepreg material
JP7343546B2 (en) Improvement of artificial muscle actuator
KR101554989B1 (en) Flexible planar heating element which is woven
US20100170891A1 (en) Carbon nanotube heater
KR101028843B1 (en) carbon fiber radiator of plate heating element and manufacturing method thereof
CN109413774B (en) Graphene electrothermal film, preparation method thereof and electrothermal product
SE441053B (en) COVERED ELECTROLUMINESCENT LAMP AND PROCEDURE FOR ENCAPPING AN ELECTROLUMINESCENT LAMP
US12075530B2 (en) Article with conductive sheet and method for producing same
TWI399119B (en) Linear heater
JP2002046137A (en) Method for manufacturing thermally conductive sheet
JP3463898B2 (en) Heating element and network structure for heating element
WO2014008244A1 (en) Transparent and reusable vacuum infusion heating bag and method of using the same
KR20190018600A (en) Battery Heat-retaining heating element and Manufacturing method thereof using Carbon fiber
WO2022253089A1 (en) Composite structure, flexible screen assembly, and foldable terminal
JPH1140329A (en) Flat heating body
JP3314867B2 (en) Heating laminate and electric heating board for floor heating
JPH1197160A (en) Sheet heater
JP2019079714A (en) Planar heat generating cloth and manufacturing method thereof
CN207496160U (en) A kind of integration silicon rubber Compound Fabric heater
CN109637706B (en) Wind energy cable and production process thereof
CN107415375B (en) A kind of integration silicon rubber Compound Fabric heater
KR20130012992A (en) Plate type heater with-excellent flexibilty and durability
JP2021012814A (en) Planar heating element and manufacturing method of the same
TWI408990B (en) Linear heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847464

Country of ref document: EP

Kind code of ref document: A1